WO2015054768A1 - Micropartículas magnéticas de sílica porosa e processo de síntese - Google Patents

Micropartículas magnéticas de sílica porosa e processo de síntese Download PDF

Info

Publication number
WO2015054768A1
WO2015054768A1 PCT/BR2014/000388 BR2014000388W WO2015054768A1 WO 2015054768 A1 WO2015054768 A1 WO 2015054768A1 BR 2014000388 W BR2014000388 W BR 2014000388W WO 2015054768 A1 WO2015054768 A1 WO 2015054768A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
emulsion
nanoparticles
sodium
process according
Prior art date
Application number
PCT/BR2014/000388
Other languages
English (en)
French (fr)
Inventor
Raquel De Lima Camargo Giordano
Fernando Manuel Araujo Moreira
Willian KOPP
Original Assignee
Fundação Universidade Federal De São Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundação Universidade Federal De São Carlos filed Critical Fundação Universidade Federal De São Carlos
Publication of WO2015054768A1 publication Critical patent/WO2015054768A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00422Magnetic properties

Definitions

  • the present invention relates to porous silica magnetic microparticles and further a process for the synthesis of said microparticles for application in industrial processes.
  • the magnetic microparticles of the present invention are porous silica containing within them a high concentration of supermagnetic nanoparticles. These microparticles have high chemical resistance, high temperature resistance, large surface area, mesoporous structure, superparamagnetic properties and high saturation magnetization, which are capable of purification of bioproducts, purification of non-biological chemicals, immobilization of enzymes and wastewater treatment.
  • Bioproducts such as antibodies, enzymes, bioactive proteins, bioactive oligopeptides and bioactive organic molecules, named as bioproducts, after being extracted from their original organisms (eg plants, animals or microorganisms) need to be concentrated and purified, in cases such as Therapeutic molecules require near 100% purity. Similar difficulties are encountered in concentrating and purifying molecules of industrial interest obtained through chemical synthesis (eg fine chemicals and pharmaceuticals).
  • porous supports with magnetic properties may allow the purification of molecules even in complex media containing other suspended solids (eg cell debris) by simply and rapidly applying an external magnetic field. selective and without the need for major investments in equipment.
  • Magnetic iron oxide nanoparticles are biocompatible and have superparamagnetic properties, ie these materials have magnetic properties (at 25 ° C) in the presence of an external magnetic field, but behave as paramagnetic materials once As the field is removed, they can be recovered magnetically and re-dispersed in solution without traces of magnetism.
  • the coating of magnetic nanoparticles allows modulating their binding specificity as well as ensuring magnetic stability.
  • the most versatile method for coating iron oxide magnetic nanoparticles is sianization, enabling the obtention of porous particles with a high surface area and biocompatibles.
  • silica-coated magnetic iron oxide nanoparticles can be surface activated with various functional groups such as amino, epoxides, aldehyde and even hydrophobic groups employing a number of commercially available organosilanes.
  • JP2000012314 and JP2000012313 encompass processes for preparing magnetic silica microparticles employing previously hydrolyzed organosilanes in the presence of an acid as the source of silica.
  • organosilanes it is possible to use sodium silicate (Na 2 0 3 Si), much cheaper than organosilanes, for the coating of magnetic nanoparticles.
  • W / O / W water-oil-water
  • the authors produced different materials with an average pore diameter between 2 and 23 nm, particle size between 7 and 18 pm and surface area between 38 and 757 m 2 .g "1. It was found that the increase in silicate concentration In addition, sodium sulfate increased particle size and particle size distribution, disagreeing with our results.With high purity commercial ready-made sodium silicate solutions were used in this work, which allowed working with high molar concentrations.
  • JP2003104996-A describes a process for synthesizing magnetic silica microparticles in a single emulsion using sodium silicate as the source of silica, the polymerization of silica is induced by the addition of ammonium sulfate to the solution.
  • the magnetic core employed herein is ferromagnetic with a particle size of 280 nm and ferromagnetic properties, thus possessing physical and chemical properties distinct from the magnetic nanoparticles employed in the synthesis process of the subject material of this patent.
  • FIG. 1 Synthesis of silica magnetic microparticles with superparamagnetic properties.
  • SA isolated forms of emulsion A
  • SB emulsion B
  • Transient dimer formed by the mixture of SA and SB
  • SX emulsion X
  • SX emulsion X
  • microparticles formed by the adhesion of SX
  • FIG. 2 Scanning electron microscopy (SEM) for silica magnetic microparticles with superparamagnetic properties obtained using different reaction conditions.
  • the figures have an increase of 800x and the inserts an increase of SO.OOOx.
  • Figure 3 - a) Saturation magnetization results for silica magnetic microparticles with superparamagnetic properties obtained using different reaction conditions; b) Comparison of the saturation magnetization result obtained for the TW1-NPS ⁇ 1-SI1 sample with results found in the literature for silica micro and nanoparticles.
  • Figure 4 Magnetization curve as a function of magnetic field (M x H) for samples TW0.5-NPSi0.5-Si0.5 (a) TW0.5-NPSi0.5-Si1 (b) and TW0.5 -NPS10.5-Si-1.75 (c).
  • Figure 5 Magnetization curve as a function of magnetic field (x H). TW0.25-NPS10.5-SM (a), TW0.5-NPS10.5-Si1 (b) and TW1-NPS10.5-Si1 (c).
  • FIG. 6 Magnetization curve as a function of magnetic field (M x H). TW0.5-NPSY0.5-Si1 (a) and TW0.5-NPSY1-Si1 (b).
  • Figure 7 Magnetization curve as a function of magnetic field (x H) for sample TW1-NPS ⁇ 1-SI1.
  • the present invention relates to porous silica magnetic microparticles and further a process for the synthesis of said microparticles for application in industrial processes.
  • the synthesis process of the present invention utilizes a mixture of emulsions, particularly water-in-oil emulsions.
  • the silica source of this development is sodium silicate (Na 2 0 3 Si), ammonium sulfate reagent ((NH4) 2 S0 4 ) was used as an ion exchanger for sodium withdrawal and mainly for precise pH control. nano-droplets inside.
  • a first emulsion SA contains sodium silicate and a second emulsion SB contains ammonium sulfate.
  • emulsions act as nanoreactors that allow control of the material's morphology, surface area and pore structure and thus achieve the desired characteristics.
  • Sodium silicate being an extremely reactive reagent, is difficult to control.
  • ammonium sulphate it is possible to precisely control the pH within the nanoparticles between 8-12, which allows the formation of the microparticles.
  • These magnetic microparticles are porous silica with high chemical resistance, high temperature resistance, large surface area, mesoporous structure with superparamagnetic properties and high saturation magnetization, which are capable of purifying bioproducts, enzyme immobilization and treatment of effluent.
  • Ferrite nanoparticles, particularly iron oxide, are used as a superparamagnetic core.
  • nanoparticles were synthesized by homogeneous coprecipitation method employing SFIC 3 .6H 2 0, SFIC 2 .4H 2 0 and ammonium hydroxide.
  • the nanoparticles obtained were characterized using X-ray diffraction (XRD), infrared (FT-IR) and superconducting quantum interference device (S.QU.l.D) analysis.
  • XRD data show diffraction patterns and relative intensities that match the crystal structure of magnetite and maghemite
  • FT-IR data confirm sample composition
  • S.QU.lD analysis shows that particles have superparamagnetic properties and saturation magnetization of 70 emu / g at 25 ° C.
  • the SA emulsion is obtained by the addition of an aqueous sodium silicate solution containing a certain mass of ferrite magnetic nanoparticles, preferably iron oxide to a solution of a nonpolar solvent containing one or more surfactants and / or other later amphipathic molecules. agitation.
  • Emulsion SB is prepared by adding aqueous ammonium sulfate solution to a non-polar solvent solution containing one or more surfactants and / or other amphipathic molecules with further stirring.
  • the carrier solvents of the present invention may be selected from cyclohexane; n-heptane; n-hexane; n-pentane; 2,2,4-trimethylpentane; tetrachloromethane; trichloromethane; dichloromethane; ethyl etanoate; toluene; cyclohexanone.
  • surfactants may also be selected from Triton-X 100; fatty acids; monododecyloctaethylene glycol ether; monododecylpentylene glycol ether; decylglucoside; laurylglucoside; octylglucoside; Nonoxynol-9; glycerillaurate; polysorbates; Spans; Cocamide MEA, Cocamide DEA; dodecyldimethylamine oxide; Poloxamers; Polyethoxylated Tailow Amine; ammonium lauryl sulfate; Sodium lauryl sulfate; sodium lauride sulfate; dioctylsulfosuccinate from sodium; sodium stearate; sodium laurylarcosinate; octenidinedihydrochloride; hexadecyltrimethylammonium bromide; cetyltrimethylammonium chloride; cetylpyridinium chloride;
  • This reaction is conducted at temperatures from 2 to 99 ° C, specifically from 25 to 80 ° C, with stirring from 300 to 1500 rpm, preferably at 1000 rpm and pH from 8-12.
  • This process makes it possible to obtain porous silica microparticles containing superparamagnetic ferrite core (preferably iron oxide) with amorphous morphology, surface area between 30 to 500 m 2 / g, pore diameter between 2 to 200 nm, saturation magnetization between 20 at 75 emu / g and particle size between 1 and 300 pm.
  • superparamagnetic ferrite core preferably iron oxide
  • microparticles may have optimal characteristics for application in bioprocesses having preferably surface area between 49 to 103 m 2 / g, pore diameter between 2 to 60 nm, saturation magnetization between 45 to 65 emu / g and particle size between 10 to 100 m.
  • SA was prepared by adding 100 mL of aqueous solution containing different molar concentrations of sodium silicate and different masses of iron oxide magnetic nanoparticles to 350 mL of cyclohexane containing different volumes of Triton X 100, this mixture was then stirred until obtaining a stable emulsion (first emulsion).
  • SB was similarly prepared, 100 mL of an aqueous ammonium sulfate solution containing different molar concentrations was added to 350 mL of cyclohexane containing different volumes of Triton X 100, this mixture was mechanically stirred until a stable emulsion was obtained.
  • the SA solution was added to a stirred reactor, then SB was slowly added to SA.
  • microparticles and silica were then magnetically recovered and washed repeatedly with a 1: 1 mixture of ethanol and acetone. for removal of residual Triton X 100.
  • Figure 1 exemplifies the material preparation procedure.
  • SEM scanning electron microscopy
  • XRD XRD
  • FT-IR FT-IR
  • adsorption-desorption isotherm of N 2 and S.QU.ID were performed.
  • the samples show amorphous morphology where the pore structure is formed by fundamental particles from the nucleation and growth of silica nanospheres (containing high concentration of iron oxides inside).
  • microparticles obtained by the process described herein have optimum characteristics for applications in bioprocesses, in the purification of chemical compounds with the most varied characteristics and in the most varied process types.
  • microparticles have extremely high saturation magnetization values (this being their main feature), this ensures the efficiency in the recovery of these materials by applying an external magnetic field.
  • Nanoparticle synthesis can also be performed by employing other iron salts which, when dissolved in aqueous solution, liberate Fe 2+ and Fe 3+ ions, different molar concentrations of these iron salts and different stoichiometric Fe 2+ / Fe 3+ ratios. be employed.
  • Other bases may also be used in the process, and not only ammonium hydroxide, different molar volumes and concentrations of these bases may also be used.
  • the order of addition of the reagents may be reversed by the addition of solutions containing mixtures of dissolved iron salts with different molar concentrations to base which may or may not be ammonium hydroxide.
  • the SA solution was prepared by adding 100 mL of a 0.5, 1.0 or 1.75 M sodium silicate solution containing a given mass of magnetic iron oxide nanoparticles to 350 mL of cyclohexane containing 25, 50 or 100 mL of Triton X 100
  • SB solution in turn was prepared by adding 100 mL of a 0.5, 1.0 or 1.75 M ammonium sulfate solution in 350 mL of cyclohexane containing 25, 50 or 100 mL of Triton X 100.
  • the SA solution was stirred in reactor until a stable emulsion was obtained, then an also stable SB emulsion was slowly added to the reactor. After complete addition of SB to SA the resulting mixture was kept at 25 ° C for one hour under 1000 RPM stirring. The formed particles were then separated by applying an external magnetic field and washed with a 1: 1 mixture of ethanol and acetone to remove residual Triton X 100.
  • the synthesis of magnetic microparticles can be performed using molar concentrations of reagents, molar ratios, volumes, volumetric ratios and mass ratios distinct from those described in this procedure.
  • FT-IR Infrared Vibrational Spectroscopy
  • N 2 adsorption-desorption isotherms were obtained using a Micrometrics ASAP 2010 apparatus. The isotherms, in the appropriate range, were used to determine the surface area (BJH model) and pore diameter of the material (BET model).
  • FeCl 3 .6H 2 0 which releases Fe 3+ ion
  • FeCl 2 .4H 2 0 which releases Fe 2+
  • They were prepared in a liter of solution SFIC 3 .6H 2 0 and 350mm SFIC liter of solution 200m 2 .4H 2 0 in distilled water.
  • the water used to prepare the solution was previously boiled in order to decrease the dissolved oxygen concentration in the water, as the Fe 2+ ion is unstable from oxidation and rapidly converts to Fe 3+ in oxygen rich environments.
  • the iron salt solution was heated to 60 ⁇ ° C then 250 ⁇ l of 28% ammonium hydroxide was rapidly added yielding a final pH of approximately 10.5.
  • the addition of the base immediately changes the coloration of the solution from orange to black indicating magnetic nanoparticles.
  • Other bases such as sodium hydroxide, potassium hydroxide and lithium hydroxide may also be employed, but The use of ammonium hydroxide yields magnetic nanoparticles with superior magnetic properties.
  • the reaction was conducted at 60 ° C with a stirring of 1000 RPM for one hour.
  • the nanoparticles were then separated using an external magnetic field.
  • the nanoparticles were repeatedly washed with distilled water (to remove residual ammonium hydroxide) and properly stored until use.
  • the magnetic nanoparticles produced in this work stage were characterized using XRD, FT-IR and S.QU.i.D.
  • FT-IR analysis shows three strong bands located at 445, 580, and 628 cm -1 corresponding to the stretching vibrations of iron atoms (uFe-O). In the region corresponding to wavelengths 1450 and 1630 cm “1 Two bands marked the vibration of water molecules strongly attached to the material surface ( ⁇ - ⁇ ) can be observed. In the region between 3100 and 3600 cm “1 it is possible to verify a wide band that also corresponds to the vibration of water molecules attached to the surface of the material ( ⁇ - ⁇ ).
  • Magnetic nanoparticles / sodium silicate ratio (m / m) - Magnetic nanoparticles / sodium silicate ratio 1: 1 (NPS ⁇ 1), magnetic nanoparticles / sodium silicate ratio (NPSiO.5).
  • TW1-SPL0.5-S1 Effect of magnetic nanoparticles / sodium silicate ratio
  • N 2 adsorption-desorption isotherms analyzes were performed to determine the effect of molar concentration of sodium silicate on surface area and material diameter.
  • the obtained isotherms were analyzed by Brunauer, Emmett and Teller (BET) methods to obtain the surface area of the materials and by the Barrett, Joyner and Halenda (BJH) method for pore size verification.
  • BET Brunauer, Emmett and Teller
  • BJH Barrett, Joyner and Halenda
  • the isotherms obtained for all materials are type IV, which is typical of mesoporous solids. Decreased surface area and pore volume of nanoparticles can be observed when the molar concentration of sodium silicate is increased. Increasing the sodium silicate concentration also increases the material's average pore diameter and changes the pore distribution profile.
  • the particle size distribution obtained through the analysis of SEM images show that there were no significant changes in the particle size of the material with the increase in sodium silicate concentration employed.
  • Magnetization data of the samples as a function of the external magnetic field DC (MXH curves) at room temperature indicate that the magnetic silica microparticles have high saturation magnetization (Figure 4).
  • Samples TW0.5-NPSI0.5-Si1, TW0.5-NPSi0.5-Si1 TW0.5-NPSi0.5-Si-1.75 showed a saturation magnetization of 63.8 emu.g "1 , 61.4 emu.g " 1 and 53.6 emu.g " , respectively.
  • This result shows that the increase in molar concentration of sodium silicate employed in the synthesis of magnetic nanoparticles decreases the saturation magnetization of the material.
  • TW0.5-NPSY0.5-Si1 and TW0.25-NPSY0.5-Si1 allow us to identify all peaks relative to the crystal structure of magnetite and maghemite. Through FT-IR analyzes it is possible to confirm the presence of iron oxide nanoparticles in silica microparticles.
  • N 2 adsorption-desorption isotherms analyzes for the TW1-NPSY0.5-S1, TW0.5-NPSY0.5-SY1 and TW0.25-NPSY0.5-SY1 samples show the effect of the Triton X 100 / surface area and pore diameter of magnetic silica microparticles. The obtained isotherms indicate that the materials have type IV isotherms.
  • the increase in surfactant concentration employed in the process caused an increase in the surface area of the material and a decrease in the average pore diameter. Increased surfactant concentration It also decreased the average particle size as well as allowing a narrower size distribution.
  • the increase in the magnetic nanoparticle concentration in the process caused a decrease in the surface area and the pore volume of the material, the average pore diameter increased.
  • the particle size distribution and mean particle size were not significantly changed with the increase in magnetic nanoparticle concentration employed in the process.
  • the increase in magnetic nanoparticle concentration did not significantly change the saturation magnetization observed for the material, the process did not change the superparamagnetic properties of iron oxide (Figure 6).
  • TW1-NPSM-SM sample It was possible to identify in the XRD analysis of the TW1-NPSM-SM sample all the peaks related to the magnetite and maghemite structure. In the FT-IR analysis it is possible to identify bands related to the presence of iron and silicon oxides, confirming the structure of the sample.
  • the sample has high surface area. Despite having an average pore diameter of 11 nm, it is possible to see that this sample has a large pore diameter distribution, between 2 and 40 nm, which is larger than that found for the sample TW1-NPSi0.5-Si1 and for the sample. TW0.5-NPSi1-Si.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compounds Of Iron (AREA)

Abstract

A presente invenção refere-se a micropartículas magnéticas de sílica porosa com área superficial entre 30 a 500 m2/g, diâmetro de poros entre 2 a 200 nm, magnetização de saturação a temperatura ambiente entre 20 e 75 emu/g e tamanho de partículas entre 1 a 300 μm, sendo capazes de atuar na purificação de bioprodutos, produtos químicos, imobilização de enzimas e tratamento de efluentes. O processo de síntese de tais partículas consiste na adição de uma emulsão formada por sulfato de amónio, solvente apolar e surfactante a uma emulsão formada por nanopartículas superparamagnéticas, silicato de sódio, solvente apolar e surfactante.

Description

" 1CROPARTÍCULAS MAGNÉTICAS DE SÍLICA POROSA E PROCESSO DE SÍNTESE"
CAMPO DA INVENÇÃO
A presente invenção refere-se a micropartículas magnéticas de sílica porosa e ainda um processo para a síntese de referidas micropartículas para aplicação em processos industriais.
Mais especificadamente, as micropartículas magnéticas da presente invenção são de sílica porosa contendo em seu interior alta concentração de nanopartículas supermagnéticas. Estas micropartículas apresentam alta resistência química, resistência a temperaturas elevadas, grande área de superfície, estrutura mesoporosa, propriedades superparamagnéticas e alta magnetização de saturação, as quais são capazes de atuar na purificação de bioprodutos, purificação de produtos químicos de origem não biológica, imobilização de enzimas e tratamento de efluentes.
ANTECEDENTES DA INVENÇÃO
Algumas das principais dificuldades operacionais encontradas nas indústrias biotecnológica e farmacêutica residem na separação, concentração e purificação de produtos.
Produtos tais como anticorpos, enzimas, proteínas bioativas, oiigopeptídeos bioativos e moléculas orgânicas bioativas, nomeados como bioprodutos, após serem extraídos de seus organismos de origem (ex. plantas, animais ou microorganismos) necessitam serem concentrados e purificados, sendo que em casos como de moléculas terapêuticas é necessário um grau de pureza próximo a 100%. Dificuldades similares são encontradas na concentração e purificação de moléculas de interesse industrial, obtidas através de síntese química (ex. químicos finos e produtos farmacêuticos).
Industrialmente técnicas como centrifugação, filtração, ultra- filtração e cromatografia em coluna são empregadas para a purificação e/ou concentração de bioprodutos. Todas estas técnicas demandam alto investimento em equipamentos além de apresentarem dificuldades quando empregadas em grandes escalas de produção. Muitas vezes, para atingir o grau de purificação desejado, várias etapas são realizadas consumindo tempo, diminuindo o rendimento global do processo e aumentando o custo final do produto.
Recentemente, a purificação de produtos industriais através de adsorção de moléculas na superfície sólida de suportes porosos tem ganhado destaque devido sua simplicidade, baixo custo e por não necessitar de grandes investimentos em equipamentos. Concomitantemente, a utilização de suportes porosos com propriedades magnéticas pode permitir a purificação de moléculas até mesmo em meios complexos, contendo outros sólidos em suspensão (ex. debris celulares), por meio da aplicação de um campo magnético externo, de forma simples, rápida e seletiva e sem necessidade de grandes investimentos em equipamentos.
Contudo, os suportes magnéticos comercialmente disponíveis, não atendem às necessidades de aplicações em grande escala, pois a maioria destes materiais são destinados a aplicações em escala laboratorial em biomedicina, o que contribui para o alto preço praticado na venda destes materiais.
Persiste assim, uma demanda global, por suportes magnéticos para aplicações em btoprocessos.
Nanopartículas magnéticas de óxidos de ferro (ex. magnetita e maghemita) são biocompátiveis e possuem propriedades superparamagnéticas, ou seja, estes materiais apresentam propriedades magnéticas (a 25°C) na presença de um campo magnético externo, mas se comportam como materiais paramagnéticos uma vez que o campo é removido, desta forma podem ser recuperados magnéticamente e re-dispersados em solução sem apresentar resquícios de magnetismo.
Devido à instabilidade química destes óxidos de ferro frente a condições extremas de pH e/ou frente a oxidação é necessário recobrir estas nanopartículas magnéticas isolando-as do ambiente.
Em adição, o recobrimento de nanopartículas magnéticas permite modular sua especificidade de ligação além de garantir estabilidade magnética.
Nomeadamente, o método mais versátil para recobrimento de nanopartículas magnéticas de óxido de ferro é a siianização, possibilitando a obtenção de partículas porosas com alta área de superfície e biocompátiveis.
É de conhecimento do estado da técnica que nanopartículas magnéticas de óxido de ferro recobertas com sílica podem ter sua superfície ativada com diversos grupos funcionais como amino, epóxidos, aldeído e até mesmo grupos hidrofóbicos empregando uma série de organossilanos disponíveis comercialmente.
A patente brasileira P10302329-0 descreve um nanomaterial superparamagnético composto de magnetita e processo para obtenção. As nanopartículas superparamagnéticas de óxidos de ferro são recobertas com organossilanos na qual são ancorados agentes extratores. A fonte de sílica neste caso são organossilanos. Ademais, outros documentos do estado de técnica também descrevem nanopartículas magnéticas recobertas com sílica mediante a utilização de organõsilanos, tais como CN101723389 que descreve a síntese de microesferas magnéticas de sílica contendo nanopartículas de óxido de ferro; WO2011156895 que aborda um método de obtenção de nanopartículas superparamagnéticas recobertas com sílica através em sistema de emulsão empregando organossilanos; o US4,695,392 descreve a síntese de nano ou micropartículas magnéticas de oxido de ferro e/ou outros óxidos de metais recobertos com sílica empregando como fonte de sílica organossilanos e o WO2011156895 que descreve a síntese de nanopartículas magnéticas de magnetita recobertas com sílica empregando organossilanos como fonte de sílica na presença de surfactantes.
Ainda, os processos descritos em JP2000012314 e JP2000012313 englobam processos de preparação de micropartículas magnéticas de sílica empregando organossilanos previamente hidrolisados na presença de um ácido como fonte de sílica.
Alternativamente ao uso de organossilanos, é possível a utilização de silicato de sódio (Na203Si), muito mais barato que organossilanos, para o recobrimento das nanopartículas magnéticas.
Fujiwara et al. (2004) sintetizaram micropartículas porosas de sílica não magnética empregando silicato de sódio em emulsões água-óleo-água {W/O/W) com distintos surfactantes, precipitantes e diferentes concentrações de silicato de sódio. Neste trabalho os autores produziram materiais diferentes com um diâmetro médio de poro entre 2 e 23 nm, tamanho de partícula entre 7 e 18 pm e área superficial entre 38 e 757 m2.g"1. Foi verificado que o aumento na concentração de silicato de sódio aumentava o tamanho e também a distribuição do tamanho das partículas, discordando dos nossos resultados. Neste trabalho foram utilizadas soluções comerciais prontas de silicato de sódio com alto grau de pureza, o que permitia trabalhar com concentrações molares elevadas.
Lee et al (2006) prepararam micropartículas de sílica não magnética em emulsões w/o utilizando soluções de silicato de sódio de 0.1 a 1.0 M e verificaram que com o aumento da concentração deste reagente ocorria também um aumento do tamanho médio da partícula de 0.1 para 2.3 pm.
Zhang et. aí (2008) sintetizaram micropartículas de sílica contendo óxido de ferro em seu interior empregando hidrólise alcalina de tetraetilortosilicato (TEOS), obtendo uma magnetização de saturação de apenas 2.49 emu.g" . Butterworth et. a! (1996), por sua vez, produziram micropartícuias magnéticas de sílica empregando silicato de sódio e obtiveram uma magnetização de saturação de 23.1 emu.g"1 enquanto Santra et al. (2001) obtiveram apenas 1.0 emu.g" .
O documento US6,924,033; aborda processo para obtenção de nanopartículas de óxido de ferro (magnetita) recobertas com silicato de sódio. Apesar de magnéticos os materiais descritos neste não foram caracterizados quanto a suas propriedades magnéticas.
A patente JP2003104996-A descreve um processo de síntese de micropartícuias magnéticas de sílica em uma emulsão simples usando silicato de sódio como fonte de sílica, a polimerização da sílica é induzida através da adição de sulfato de amónio a solução. O núcleo magnético empregado neste documento é ferromagnético com um tamanho de partícul de 280 nm e propriedades ferromagnéticas, possuindo, portanto, propriedades físicas e químicas distintas das nanopartículas magnéticas empregadas no processo de síntese do material tema desta patente
DESCRIÇÃO DAS FIGURAS
Figura 1 - Síntese de micropartícuias magnéticas de sílica com propriedades superparamagnéticas. a) formas isoladas da emulsão A (SA) e emulsão B (SB); Dímero transiente formado pela mistura de SA e SB; c) emulsão X (SX) formada pela troca dos conteúdos entre SA e SB contendo ácido ortosilícico parcialmente polimerizado; c) micropartícuias formadas pela adesão de SX; d) micropartícuias após processo de lavagem para remoção do surfactante.
Figura 2 - Microscopia eletrônica de varredura (MEV) para micropartícuias magnéticas de sílica com propriedades superparamagnéticas obtidas empregando diferentes condições de reação. As figuras possuem um aumento de 800x e as inserções um aumento de SO.OOOx.
Figura 3 - a) Resultados de magnetização de saturação para micropartícuias magnéticas de sílica com propriedades superparamagnéticas obtidas empregando diferentes condições de reação; b) Comparação do resultado de magnetização de saturação obtido para a amostra TW1-NPSÍ1-SÍ1 com resultados encontrados na literatura para micro e nanopartículas de sílica.
Figura 4 - Curva de magnetização em função do campo magnético (M x H), para as amostras TW0.5-NPSi0.5-Si0.5 (a) TW0.5-NPSi0.5-Si1 (b) e TW0.5-NPSi0.5-Si-1.75 (c). Figura 5 - Curva de magnetização em função do campo magnético ( x H). TW0.25-NPSi0.5-SM (a), TW0.5-NPSÍ0.5-SÍ1 (b) e TW1-NPSÍ0.5- Si1 (c).
Figura 6 - Curva de magnetização em função do campo magnético (M x H). TW0.5-NPSÍ0.5-SÍ1 (a) e TW0.5-NPSÍ1-SÍ1 (b).
Figura 7 - Curva de magnetização em função do campo magnético ( x H) para a amostra TW1-NPSÍ1-SÍ1.
DESCRIÇÃO DETALHADA DA INVENÇÃO
A presente invenção refere-se a micropartículas magnéticas de sílica porosa e ainda um processo para a síntese de referidas micropartículas para aplicação em processos industriais.
Vantajosamente, o processo de síntese da presente invenção utiliza uma mistura de emulsões, particularmente emulsões água-em-óleo.
A fonte de sílica deste desenvolvimento é o silicato de sódio (Na203Si), o reagente sulfato de amónio ((NH4)2S04) foi utilizado como trocador de íons para retirada de sódio e principalmente para controle preciso do pH no interior das nano-gotas.
Assim, uma primeira emulsão SA contém silicato de sódio e uma segunda emulsão SB contém sulfato de amónio.
Estas emulsões atuam como nanoreatores que permitem o controle da morfologia, área de superfície e estrutura de poros do material e assim, possibilitam alcançar as características desejadas.
O silicato de sódio, por ser um reagente extremamente reativo torna-se de difícil controle. Contudo, com a utilização do sulfato de amónio é possível controlar de forma precisa o pH no interior das nanogotas entre 8-12, o que permite a formação das micropartículas.
Estas características do processo da presente invenção permitem uma rápida polimerização da sílica no interior das nanogotas de forma altamente controlada e ainda, garante a alta quantidade de material magnético na estrutura finai da partícula, proporcionando alta magnetização de saturação na ordem de 20 a 75 emu/g, mais particularmente entre 45 a 65 emu/g.
Estas micropartículas magnéticas são de sílica porosa apresentando alta resistência química, resistência a temperaturas elevadas, grande área de superfície, estrutura mesoporosa com propriedades superparamagnéticas e alta magnetização de saturação, as quais são capazes de atuar na purificação de bioprodutos, imobilização de enzimas e tratamento de efluentes. Nanopartículas de ferritas, particularmente de óxido de ferro são utilizadas como núcleo superparamagnético.
Estas nanopartículas foram sintetizadas através do método de co-precipitação homogénea empregando FeCI3.6H20, FeCi2.4H20 e hidróxido de amónio.
As nanopartículas obtidas foram caracterizadas empregando análise de difração de raios-X (DRX), infravermelho (FT-IR) e "superconducting quantum interference device" (S.QU.l.D). Os dados de DRX mostram padrões de difração e intensidades relativas que condizem com a estrutura cristalina da magnetita e maghemita, os dados de FT-IR confirmam a composição da amostra e a análise de S.QU.l.D mostra que as partículas possuem propriedades superparamagnéticas e magnetização de saturação de 70 emu/g a 25°C.
Com o objetivo de modular as características finais das partículas, inúmeras condições reacionais inerentes e características deste processo foram empregadas.
Foram preparadas duas emulsões, conforme abaixo:
- emulsão SA, contendo silicato de sódio e
- emulsão SB contendo sulfato de amónio.
A emulsão SA é obtida pela adição de uma solução aquosa de silicato de sódio contendo uma determinada massa de nanopartículas magnéticas de ferritas, preferencialmente de óxido de ferro a uma solução de um solvente apolar contendo um ou mais surfactantes e/ou outras moléculas anfipáticas com posterior agitação.
A emulsão SB é preparada pela adição de solução aquosa de sulfato de amónio a solução de um solvente apolar contendo um ou mais surfactantes e/ou outras moléculas anfipáticas com posterior agitação.
Os solventes apoiares da presente invenção podem ser selecionados entre ciclohexano; n-heptano; n-hexano; n-pentano; 2,2,4- trimetilpentano; tetraclorometano; triclorometano; diclorometano; etanoato de etila; tolueno; ciclohexanona.
Ainda, os surfactantes também podem ser selecionados entre Triton-X 100; ácidos graxos; monododeciloctaetileno glicol éter; monododecilpentáetileno glicol éter; decilglucosideo; laurilglucosideo; octilglucosideo; Nonoxynol-9; glicerillaurato; polissorbatos; Spans; Cocamide MEA, Cocamide DEA; óxido de dodecildimetilamina; Poloxamers; Polyethoxylated Tailow Amine; lauril sulfato de amónio; lauril sulfato de sódio; laureto sulfato de sódio; dioctilsulfossuccinato de sódio; estearato de sódio; sódio lauroilsarcosinato; octenidinadicloridrato; bromuro de hexadeciltrimetilamônio; cloreto de cetiltrimetilamônio; cloreto de cetilpiridínio; cloreto de benzalcônio; cloreto de benzetônio; 5-bromo-5-nitro-1 ,3-dioxano; cloreto de dimetildioctadecilamônio; brometo de cetrimônio; brometo dioctadecildimetilamônio; 3- [(3-colamidopropil) dimetilamônioj-1-propanossulfonato; lecitina, preferencialmente Triton-X 100 e ácidos graxos.
Esta reação é conduzida a temperaturas de 2 a 99°C, especificadamente entre 25 a 80°C, sob agitação entre 300 a 1500 rpm, preferencialmente a 1000 rpm e pH entre 8-12.
Este processo possibilita a obtenção de micropartículas de sílica porosa contendo núcleo superparamagnético de ferritas (preferencialmente óxido de ferro) com morfologia amorfa, área superficial entre 30 a 500 m2/g, diâmetro de poros entre 2 a 200 nm, magnetização de saturação entre 20 a 75 emu/g e tamanho de partículas entre 1 a 300 pm.
Foi ainda verificado que estas micropartículas podem ter características ótimas para aplicação em bioprocessos apresentando área superficial preferencialmente entre 49 a 103 m2/g, diâmetro de poros entre 2 a 60 nm, magnetização de saturação entre 45 a 65 emu/g e tamanho de partículas entre 10 a 100 m.
A seguir é descrita uma realização preferida, mas não limitativa da presente invenção.
SA foi preparada através da adição de 100 mL de solução aquosa contendo diferentes concentrações molares de silicato de sódio e diferentes massas de nanopartículas magnéticas de oxido de ferro a 350 mL de ciclohexano contendo diferentes volumes de Triton X 100, esta mistura foi então agitada até a obtenção de uma emulsão estável (primeira emulsão).
SB foi preparada de forma similar, 100 mL de uma solução aquosa de sulfato de amónio contendo diferentes concentrações molares foi adicionada a 350 mL de ciclohexano contendo diferentes volumes de Triton X 100, essa mistura era agitada mecanicamente até obter-se uma emulsão estável.
A solução SA foi adicionada a um reator sob agitação, em seguida SB foi lentamente adicionada a SA.
Após a adição completa de SB a SA a reação foi conduzida por uma hora a 25°C com uma agitação de 1000 RPM.
As micropartículas e sílica foram então recuperadas magneticamente e lavadas repetidas vezes com uma mistura de etanol e acetona 1 :1 para retirada do Triton X 100 residual. A Figura 1 exemplifica o procedimento de preparação do material. Para caracterizar as amostras obtidas, foram realizadas análises de microscopia eletrônica de varredura (MEV), DRX, FT-IR, Isoterma de adsorçâo-dessorção de N2 e S.QU.I.D. Através das análises de MEV (Figura 2) é possível observar que as amostras apresentam morfologia amorfa onde a estrutura de poros é formada por partículas fundamentais oriundas da nucleação e crescimento de nano-esferas de sílica (contendo alta concentração de óxidos de ferro em seu interior). Através de análise das imagens de MEV foi possível determinar o tamanho das partículas para as diferentes amostras, a distribuição de tamanho de partícula era entre 2-200 pm. Apesar da larga distribuição a maioria apresentava tamanho de partícula no intervalo entre 10-100 pm, o tamanho médio de partícula levando em consideração todas as amostras foi de 13 pm. As análises de S.QU.I.D mostram que todas as micropartículas obtidas apresentam propriedades superparamagnéticas e altos valores de magnetização de saturação, entre 45-65 emu/g (Figura 3), vale ressaltar que algumas amostras apresentaram um valor muito similar ao observado para os óxidos e ferro puros. Análises de isoterma de adsorção-dessorção de N2 mostram que os materiais obtidos possuem área superficial entre 49-103 m2/g e diâmetro de poros entre 2-60 nm.
As micropartículas obtidas pelo processo aqui descrito possuem características ótimas para aplicações em bioprocessos, na purificação de compostos químicos com as mais variadas características e nos mais variados tipos de processo.
Os resultados em termos de magnetização de saturação obtidos para as micropartículas de sílica produzidas neste invento superam em muito os resultados encontrados na literatura para micropartículas magnéticas de sílica.
Estas micropartículas possuem valores de magnetização de saturação extremamente elevados (sendo esta sua principal característica), isto garante a eficiência na recuperação destes materiais através da aplicação de um campo magnético externo.
Além da purificação de compostos químicos, de origem biológica ou não, o controle da química de superfície destas micropartículas permite sua aplicação em outros tipos de processo como, por exemplo, a imobilização de enzimas, imobilização de catalisadores químicos e tratamento de resíduos industriais.
Métodos
Síntese de Nanopartículas Magnéticas de Óxidò de Ferro Um litro de uma solução de FeCI3.6H20 350 mM foi preparada em água quente previamente fervida por 20 minutos, de uma forma similar um litro de uma solução de FeCI2.4H20 200 mM foi preparada em água quente também previamente fervida por 20 minutos. Logo após sua preparação as duas soluções foram mescladas em um reator encamisado agitado mecanicamente especialmente construído para a realização destes experimentos. A solução foi rapidamente aquecida até 60°C então 250 mL de hidróxido de amónio 28% (m/m) foram adicionados ao reator sob agitação. Após a adição completa da solução de hidróxido de amônio28% a reação foi conduzida por uma hora. As nanopartículas foram então recuperadas magneticamente empregando-se um campo magnético externo, lavadas com água destilada e armazenadas até o momento do uso. A síntese de nanopartículas também pode ser realizada empregando outros sais de ferro que ao serem dissolvidos em solução aquosa liberem íons Fe2+ e Fe3+, diferentes concentrações molares destes sais de ferro e diferentes relações estequiométricas Fe2+/Fe3+ também podem ser empregadas. Outras bases também podem ser utilizadas no processo, e não somente hidróxido de amónio, diferentes volumes e concentrações molares destas bases também podem ser utilizados. A ordem de adição dos reagentes pode ser invertida através da adição das soluções contento misturas de sais de ferro dissolvidos com diferentes concentrações molares a base que pode ser hidróxido de amónio ou não.
Síntese de Micropartículas Magnéticas de Sílica
A solução SA foi preparada através da adição de 100 mL de uma solução de silicato de sódio 0.5, 1.0 ou 1.75 M contendo uma determinada massa de nanopartículas magnéticas de óxido de ferro em 350 mL de ciclohexano contendo 25, 50 ou 100 mL de Triton X 100.
A solução SB por sua vez foi preparada pela adição de 100 mL de uma solução de sulfato de amónio 0.5, 1.0 ou 1.75 M em 350 mL de ciclohexano contendo 25, 50 ou 100 mL de Triton X 100.
A solução SA foi agitada em reator até a obtenção de uma emulsão estável, em seguida uma emulsão, também estável, de SB foi lentamente adicionada ao reator. Após a adição completa da SB a SA a mistura resultante foi mantida a 25°C por uma hora sob uma agitação de 1000 RPM. As partículas formadas foram então separadas através da aplicação de um campo magnético externo e lavadas com uma mistura de etanol e acetona 1:1 para retirada do Triton X 100 residual. A síntese das micropartículas magnéticas pode ser realizada empregando concentrações molares de reagentes, relações molares, volumes, relações volumétricas e relações mássicas distintas das descritas neste procedimento.
Para remoção do surfactante outros solventes e/ou mistura de solventes podem ser utilizados, opcionalmente tratamento térmico em temperaturas superiores a 200°C também pode ser empregado.
Análises instrumentais
Os difratogramas de raios-X (DRX) foram obtidos empregando um difratômetro Shimadzu LabX XRD-600 CuKal (λ=1 ,5406 A) operando a 30 kV e 30 mA. A amostra era escaneada no intervalo 2Θ de 20° a 80°, a uma velocidade de varredura de 2°/min em etapas de 0.02° e tempo de permanência de 3 segundos.
Para as análises de Espectroscopia Vibracional na Região do Infravermelho (FT-IR) foi empregado um aparelho modelo FTIR-8400S da Shimadzu. As amostras eram diluídas em Kbr (1 :300) e prensadas na forma de pastilhas. Os espectros no infravermelho foram registrados no intervalo de 4000 a 400 cm1 com resolução de 2 cm"1 e 16 varreduras.
As isotermas de adsoção-desorção de N2 eram obtidas empregando um aparelho ASAP 2010 das Micrometrics. As isotermas, na faixa apropriada, eram empregadas para a determinação da área superficial (modelo BJH) e diâmetro de poros do material (modelo BET).
Para realização das análises de microscopia eletrônica de Varredura as amostras eram dispersas em água. Cerca de 2 a 3 gotas da suspensão eram depositadas sobre um porta amostras de alumínio e metalizadas com ouro após secagem lenta a temperatura ambiente. As micrografias eletrônicas foram registradas empregando microscópio eletrônico de varredura Philips XL30 FEG operando a 25 kV. O diâmetro de partícula (diâmetro de Feret) foi calculado através do programa para análise de imagens ImageJ.
A magnetização em função do campo (M x H) e a magnetização em função da temperatura (sob um campo magnético fixo de 50 Oe) era medida empregando um Dispositivo Supercondutor de Interferência Quântica {Superconductíng Quantum InterferenceDevice ou S.QU.I.D) modelo XL-200. Os dados experimentais eram normalizados pela massa empregada nas medidas.
Exemplos
Síntese de Nanopartículas Magnéticas de Óxido de Ferro para aplicações industriais. Os métodos já existentes foram adaptados com o objetivo de diminuir o custo global do processo e facilitar o aumento de escala. Foram empregados os sais FeCI3.6H20 (que libera o íon Fe3+) e FeCI2.4H20 (que libera o íon Fe2+). Foram preparados um litro de solução de FeCI3.6H20 350mM e um litro de solução de FeCI2.4H20 200m em água destilada. A água empregada para preparo da solução foi previamente fervida com o intuito de diminuir a concentração de oxigénio dissolvido na água, pois o íon Fe2+ é instável frente à oxidação convertendo- se rapidamente em Fe3+ em ambientes ricos em oxigénio. Isto altera a relação estequiométrica da solução favorecendo a formação de maghemita (com menor magnetização de saturação), além de óxidos de ferro não magnéticos. A presença de altas quantidades de oxigénio no meio também pode causar a redução da magnetita formada gerando óxidos de ferro não magnéticos, o que por sua vez, diminui o rendimento do processo. Para diminuir a concentração de oxigénio dissolvido no meio reacional geralmente borbulha-se nitrogénio na solução, que retira o oxigénio do meio por pressão parcial. Para diminuir o custo do processo optou-se por ferver previamente a água para eliminar o oxigénio das soluções de sais de ferro, ao menos no início da reação que é a etapa crucial em que se dá a formação do cristal magnético.
As soluções de FeCI3.6H20 350mM e FeCI2.4H20 200mM foram mescladas em um reator encamisado com agitação mecânica, especialmente construído para realização do experimento.
Após a mistura das soluções, a concentração final de FeCI3.6H20 foi alterada para 175 mM e a concentração final de FeCI2.4H20 foi de 100 mM, gerando a relação molar de Fe3+/Fe2+ = 1.75:1.
Para formação de magnetita é necessária uma relação molar de Fe3+/Fe + próxima de 2:1. Neste caso foi empregada uma relação de 1.75:1 porque como a reação ocorre em um meio que não se encontra totalmente livre de oxigénio assume-se que uma parcela do íon Fe2+ é oxidada a Fe3+ gerando ao final uma relação estequiométrica mais próxima de 2: 1.
A solução de sais de ferro foi aquecida a 60°C em seguida foram rapidamente adicionados 250 nnL de hidróxido de amónio 28% rendendo um pH final de aproximadamente 10.5. A adição da base produz, imediatamente, alteração na coloração da solução que passa de vermelho alaranjado para preto indicando formação de nanopartículas magnéticas. Outras bases como hidróxido de sódio, hidróxido de potássio e hidróxido de lítio também podem ser empregadas, porém a utilização de hidróxido de amónio rende nanopartículas magnéticas com propriedades magnéticas superiores.
A reação foi conduzida a 60°C com uma agitação de 1000 RPM por uma hora. As nanopartículas foram então separadas empregando um campo magnético externo.
As nanopartículas foram lavadas por repetidas vezes com água destilada (para retirada do hidróxido de amónio residual) e apropriadamente armazenadas até sua utilização.
As nanopartículas magnéticas produzidas nesta etapa do trabaiho foram caracterizadas empregando DRX, FT-IR e S.QU.i.D. Os dados de DRX mostram padrões de difração e intensidades relativas que condizem com a estrutura cristalina da magnetita e maghemita. Foram observados picos relacionados a estrutura da magnetita e maghemita em 2Θ = 30.1°, 35.5°, 43.1°, 53.4°, 57.0°, 62.6°. A estrutura exata do crista! não pode ser determinada a partir destes dados, bem como a presença de maghemita como contaminante.
Com base nas condições reacionais utilizadas, acredita-se que no decorrer da reação foi gerado maioritariamente magnetita e uma pequena quantidade de maghemita como contaminante. Através da análise de FT-IR podem ser observadas três fortes bandas localizadas a 445, 580, e 628 cm"1 correspondente às vibrações de estiramento dos átomos de ferro (uFe-O). Na região correspondente aos comprimentos de onda 1450 e 1630 cm"1 podem ser observadas duas bandas assinaladas a vibração de moléculas de água fortemente unidas a superfície do material (δΟ-Η). Na região entre 3100 e 3600 cm"1 é possível verificar uma banda larga que também corresponde à vibração de moléculas de água unidas a superfície do material (δΟ-Η). Estas bandas referentes à presença de água são esperadas uma vez que as nanopartículas tanto de magnetita quanto de maghemita possuem uma camada de hidratação que recobre toda sua superfície formando uma camada magneticamente morta de FeOH. A análise de S.QU.I.D mostrou que a magnetização de saturação obtida para a amostra foi de 70 emu.g"1. Este é um excelente resultado, a magnetização de saturação usualmente obtida para magnetita em escala nanométrica gira em torno de 62 emu.g"1. Desta forma é possível concluir que a adaptação realizada no processo convencional de co-precipitação homogénea buscando a redução de custos permitiu a obtenção de partículas magnéticas com excelente susceptibilidade magnética. Através da curva de magnetização do material é possível verificar que a amostra apresenta um típico comportamento superparamagnético.
Recobrimento de Nanopartículas Magnéticas com Sílica Na literatura existem muitos trabalhos que descrevem o recobrimento de nanopartículas magnéticas de óxido de ferro empregando organossilanos, sobretudo TEOS (tetraetilortossilicato) e y-APTES (aminopropiltrietoxisilano), porém este método é desinteressante do ponto de vista industrial devido ao alto custo dos organossilanos, do tempo necessário e também do número de etapas utilizadas para realizar este procedimento. Com o objetivo de diminuir os custos do processo testou-se a obtenção de micropartículas magnéticas de sílica utilizando reações de condensação do ácido ortossilícico em meio alcalino. As reações foram conduzidas em emulsões w/o empregando diferentes condições reacionais com o intuito de modular as características finais da partícula. As seguintes variáveis foram investigadas:
• Concentração molar de silicato de sódio - Silicato de sódio 0.5 M (SiO.5), silicato de sódiol M (Si1) e silicato de sódio1.75 M (SÍ1.75);
• Relação Triton X 100/água (v/v) - Relação Triton X 100/água 1 :1 (TW1), Relação Triton X 100/água 1 :2 (TW0.5) e Relação Triton X 100/água 1:4 (TW0.25);
• Relação nanopartículas magnéticas/silicato de sódio (m/m) - Relação nanopartículas magnéticas/silicato de sódio 1:1 (NPSÍ1), relação nanopartículas magnéticas/silicato de sódio 1 :2 (NPSiO.5).
• Efeito conjunto da relação nanopartículas magnética/silicato de sódio (m/m) e da relação Triton X 100/água - Relação nanopartículas magnéticas/silicato de sódio 1 :1 (NPSil) e Triton X 100/água 1 :1 (TW1)
Tabela 1 - Relação dos experimentos de recobrimento das nanopartículas magnéticas com sílica
RELAÇÃO DAS AMOSTRAS PREPARADAS
Efeito da concentração molar de silicato de sódio
TW0.5-NPSÍ0.5-SÍ0.5
TW0.5-NPSÍ0.5-SÍ1
TW0.5-NPSi0.5-Si-1.75
Efeito da relação v/v Triton X 100/água
TW0.25-NPSÍ0.5-SÍ1
TW0.5-NPSÍ0.5-SÍ1
TW1-NPSÍ0.5-SÍ1 Efeito da relação nanoparticulas magnéticas/silicato de sódio
TW0.5-NPSÍ0.5-SÍ1
TW0.5-NPSÍ1-SÍ1
Efeitoconjunto da relação nanoparticulas magnéticas/Silicato de sódio e da relação v/v Triton X 100/água
TW1-NPSÍ1-SÍ1
Efeito da Concentração Molar de Silicato de sódio
Nas análises de DRX para as amostras TW0.5-NPSi0.5-Si0.5, TW0.5-NPSÍ0.5-SÍ1 e TW0.5-NPSi0.5-Si-1.75 foi possível identificar todos os picos relativos a estrutura cristalina da magnetita e maghemita (2Θ = 30.1°, 35.5°, 43.1°, 53.4°, 57.0°, 62.6°). Isto confirma a presença das nanoparticulas magnéticas de óxido de ferro no interior das micropartículas de sílica. Através das análises de FT-IR é possível visualizar, em todas as amostras, as bandas localizadas a 445, 580, e 628 cm"1 correspondente as vibrações de estiramento dos átomos de ferro (uFe-O) do sítio tetraédrico do cristal de magnetita. Para os espectrogramas referentes as micropartículas de sílica contendo nanoparticulas magnéticas de óxido de ferro pode ser observado a aparição de uma banda larga entre 875 e 1300 cm"1 centralizada em 1095 cm"1, esta banda esta relacionada com as vibrações de estiramento da ligações uSi-O-Si e uSi-O-H. Através das análises de FT-IR é possível observar um aumento da intensidade da banda relacionada as ligações Si-O-Si e Si-O-H com o aumento da concentração de silicato de sódio empregada na síntese das micropartículas e diminuição das bandas relacionadas a presença das nanoparticulas magnéticas.
Foram realizadas análises de isotermas de adsorção-desorção de N2 com o intuito de determinar o efeito da concentração molar de silicato de sódio na área de superfície e no diâmetro do material. As isotermas obtidas foram analisadas pelos métodos de Brunauer, Emmett e Teller (BET) para obter a área superficial dos materiais e pelo método de Barrett, Joyner e Halenda (BJH) para verificação do tamanho dos poros. As isotermas obtidas para todos os materiais são do tipo IV, que é típico de sólidos mesoporosos. Pode-se observar diminuição na área superficial e no volume de poros das nanoparticulas quando se eleva a concentração molar de silicato de sódio. O aumento da concentração de silicato de sódio também aumenta o diâmetro médio de poros do material além de alterar o perfil de distribuição de poros. A distribuição de tamanho de partículas obtida através da análise de imagens de MEV mostra que não houve alterações significativas no tamanho de partícula do material com o aumento na concentração de silicato de sódio empregado.
Dados de magnetização das amostras em função do campo magnético externo DC (curvas M X H) a temperatura ambiente indicam que as micropartículas magnéticas de sílica possuem alta magnetização de saturação (Figura 4). As amostras TW0.5-NPSÍ0.5-SÍ1 , TW0.5-NPSi0.5-Si1 TW0.5-NPSi0.5-Si-1.75 apresentaram uma magnetização de saturação de 63.8 emu.g"1, 61.4 emu.g"1 e 53.6 emu.g" , respectivamente. Este resultado, como esperado, mostra que o aumento na concentração molar de silicato de sódio empregado na síntese das nanopartículas magnéticas diminui a magnetização de saturação do material. Isto se deve ao fato de que concentrações mais altas de silicato de sódio favorecem a formação de micropartículas com maior concentração relativa de sílica em relação ao óxido de ferro. Os resultados em termos de magnetização de saturação obtidos para as micropartículas de sílica produzidas neste trabalho superam em muito os resultados encontrados na literatura. Zhang et. al (2008) sintetizaram micro partículas de sílica contendo óxido de ferros em seu interior empregando hidrólise alcalina do TEOS obtendo uma magnetização de saturação de apenas 2.49 emu.g'1. Butterworth et. a! (1996), por sua vez, produziram micropartículas magnéticas de sílica empregando silicato de sódio e obtiveram uma magnetização de saturação de 23.1 emu.g"1 enquanto Santra et al. (2001) obtiveram apenas 1.0 emu.g"1. Através das análises de magnetização a temperatura ambiente é possível verificar que o processo de recobrimento das nanopartículas de óxido de ferro com o silicato de sódio não alterou as propriedades superparamagnéticas do material (Figura 4).
Efeito da Relação Triton X 00/Água
As análises de DRX para as amostras TW1-NPSÍ0.5-SÍ1,
TW0.5-NPSÍ0.5-SÍ1 e TW0.25-NPSÍ0.5-SÍ1 permitem-nos identificar todos os picos relativos a estrutura cristalina da magnetita e maghemita. Através das análises de FT- IR é possível confirmar a presença das nanopartículas de óxido de ferro nas micropartículas de sílica. As análises de isotermas de adsorção-desorção de N2 para as amostras TW1-NPSÍ0.5-SÍ1, TW0.5-NPSÍ0.5-SÍ1 e TW0.25-NPSÍ0.5-SÍ1 mostram o efeito da relação Triton X 100/água na área superficial e no diâmetro de poros das micropartículas magnéticas de sílica. As isotermas obtidas indicam que os materiais possuem isotermas do tipo IV. O aumento na concentração de surfactante empregando no processo causou um aumento na área de superfície do material e diminuição no diâmetro médio de poros. O aumento na concentração de surfactante também diminuiu o tamanho médio de partícula além de possibilitar uma distribuição de tamanho mais estreita.
As magnetização de saturação do material permaneceu praticamente a mesma para as amostras TW0.25-NPSiO.5-Si1 (63.4 emu.g"1) e TW0.5- NPSÍ0.5-SÍ1 (61.4 emu.g"1). Já a amostra TW1-NPSÍ0.5-SÍ1 apresentou magnetização de saturação de 45.8 emu.g"1. Todas as amostras conservaram o comportamento superparamagnético dos óxidos de ferro (Figura 5):
Efeito da relação nanopartículas magnéticas/Silicato de sódio Através de análises de DRX foi possível identificar todos os picos relativos a estrutura cristalina da magnetita e maghemita nas amostras TW0.5- NPSÍ0.5-SM e TW0.5-NPSi1-Si1. As análises de FT-IR confirmam, assim como as análises anteriores, a presença de átomos de ferro e sílica na estrutura do material. É possível verificar um aumento das bandas referentes a presença de nanopartículas magnéticas de óxido de ferro e a diminuição da banda referente a presença de silício quando aumenta-se a relação nanopartículas/silicato de sódio de 0.5 para 1.0.
O aumento na concentração de nanopartículas magnéticas no processo causou diminuição na área de superfície e no volume de poros do material, o diâmetro médio de poros aumentou. A distribuição de tamanho de partículas e o tamanho médio de partículas não foram alterados significativamente com o aumento na concentração de nanopartículas magnéticas empregadas no processo. O aumento na concentração de nanopartículas magnéticas não alterou significativamente a magnetização de saturação observada para o material, o processo não alterou as propriedades superparamagnéticas do óxido de ferro (Figura 6).
Efeito Conjunto da Relação Nanopartículas Magnéticas/Silicato de sódio e da Relação Triton X 100/Água
Foi possível identificar na análise de DRX da amostra TW1- NPSM-SM todos os picos relativos a estrutura da magnetita e da maghemita.Na análise de FT-IR é possível identificar bandas relacionadas a presença de óxidos de ferro e silício, confirmando a estrutura da amostra. A amostra possui alta área de superfície. Apesar de possuir um diâmetro médio de poros de 11 nm é possível visualizar que esta amostra apresenta larga distribuição de diâmetro de poros, entre 2 e 40 nm, que é superior a encontrada para a amostra TW1-NPSi0.5-Si1 e para a amostra TW0.5-NPSi1-Si. É possível verificar, também, que a grande maioria dos poros do material encontram-se localizados na região entre 3 e 23 nm, possuindo ' somente um pequeno número de poros superiores a 23 nm, o que por sua vez determina o baixo diâmetro médio de poros do material, assim como a alta área de superfície. A análise de tamanho de partícula para a amostra TW1-NPSi1-Si1 indica um aumento no tamanho médio de partículas em relação as amostras TWt-NPSiO.5- Si1 e TW0.5-NPSi1-Si1. Comparando a magnetização de saturação da amostra TW0.5-NPSÍ1-SÍ1 (45.8 meu.g-1) e 7W1-NPSi1-Si1 (65.0 meu.g"1) é possível verificar que a ouve um considerável aumento na magnetização de saturação da amostra com o aumento na concentração de nanopartículas de óxido de ferro empregadas. A curva de H X para a amostra TW1-NPSÍ1-SÍ1 apresentou típico comportamento superparamagnético (Figura 7).
Deve-se ressaltar, que os exemplos e realizações aqui apresentados possuem caráter meramente ilustrativo, não sendo, portanto, limitativos à invenção, restando evidente para os especialistas na matéria que outras concentrações de reagentes e/ou condições reacionais poderão ser empregadas, sem fugir ao escopo da invenção.

Claims

REIVINDICAÇÕES
1. Processo pára a síntese de micropartículas magnéticas de sílica porosa, caracterizado por compreender uma mistura de pelo menos duas emulsões água-em-óleo.
2. Processo, de acordo com a reivindicação 1 , caracterizado por uma primeira emulsão SA conter silicato de sódio e uma segunda emulsão SB conter sulfato de amónio.
3. Processo, de acordo com as reivindicações 1 a 2, caracterizado pela emulsão SA ser obtida pela adição de nanopartículas superparamagnéticas de ferritas a solução de silicato de sódio seguindo de adição da solução resultante a uma solução de um solvente apolar contendo um ou mais surfactantes e/ou outras moléculas anfipáticas com posterior agitação.
4. Processo, de acordo com as reivindicações 1 a 5, caracterizado pela emulsão SB ser obtida pela adição de solução aquosa de sulfato de amónio a solução de um solvente apolar contendo um ou mais surfactantes e/ou outras moléculas anfipáticas com posterior agitação.
5. Processo, de acordo com as reivindicações 3 e 4, caracterizado pelo solvente apolar ser selecionado entre ciclohexano; n-heptano; n- hexano; n-pentano; 2,2,4-trimetilpentano; tetraclorometano; triclorometano; diclorometano; etanoato de etila; tolueno; ciclohexanona, preferencialmente ciclohexano.
6. Processo, de acordo com as reivindicações 3 e 4, caracterizado por pelo menos um surfactante ser selecionado entre Triton-X 100; ácidos graxos; monododeciloctaetileno glicol éter; monododecilpentaetileno glicol éter; decilglucosideo, laurilglucosideo; octilglucosideo; Nonoxynol-9; glicerillaurato; polissorbatos; Spans; Cocamide EA, Cocamide DEA; óxido de dodecildimetílamina;
Poloxamers; Polyethoxylated tallow amine; lauril sulfato de amónio; lauri! sulfato de sódio; laureto sulfato de sódio; dioctilsulfossuccinato de sódio; estearato de sódio; sódio lauroilsarcosinato; octenidinadicloridrato; bromuro de hexadeciltrimetilamonio; cloreto de cetiltrimetilamônio; cloreto de cetilpiridínio; cloreto de benzalcônio; cloreto de benzetônio; 5-bromo-5-nitro-1,3-dioxano; cloreto de dimetildioctadecilamônio; brometo de cetrimônio; brometo dioctadecildimetilamônio; 3-[(3-colamidopropil) dimetilamônio]-1-propanossulfonato; lecitina, preferencialmente Triton-X 100 e ácidos graxos.
7. Processo, de acordo cóm as reivindicações 1 a 6, caracterizado pela reação ser conduzida entre 2 e 99°C, preferencialmente entre 25°C e 80°C, sob agitação entre 300 a 1500rpm, preferencialmente a 1000 rpm e pH entre 8-12.
8. Processo, de acordo com as reivindicações 1 a 7, caracterizado pelas nanopartículas magnéticas de ferritas serem preferencialmente de óxido de ferro.
9. Micropartícula magnética de sílica porosa caracterizada por apresentar área superficial entre 30 a 500 m2/g, diâmetro de poros entre 2 a 200 nm, magnetização de saturação a temperatura ambiente entre 20 a 75 emu/g e tamanho de partículas entre 1 a 300 pm.
10. Micropartícula magnética, de acordo com a reivindicação 9, caracterizada pela área superficial ser preferencialmente entre 49 a 103 m2/g, diâmetro de poros entre 2 a 60 nm, magnetização de saturação a temperatura ambiente entre 45 a 65 emu/g e tamanho de partículas entre 10 a 100 pm.
11. Micropartículas magnéticas, de acordo com as reivindicações 9 a 10, caracterizada por ter núcleo superparamagnético contendo ferritas, prefencialmente óxido de ferro.
PCT/BR2014/000388 2013-10-15 2014-10-14 Micropartículas magnéticas de sílica porosa e processo de síntese WO2015054768A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102013026583-7A BR102013026583B1 (pt) 2013-10-15 2013-10-15 Micropartículas magnéticas de sílica porosa e processo de síntese
BRBR1020130265837 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015054768A1 true WO2015054768A1 (pt) 2015-04-23

Family

ID=52827486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000388 WO2015054768A1 (pt) 2013-10-15 2014-10-14 Micropartículas magnéticas de sílica porosa e processo de síntese

Country Status (2)

Country Link
BR (1) BR102013026583B1 (pt)
WO (1) WO2015054768A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147692A (zh) * 2018-02-06 2018-06-12 北京金隅水泥节能科技有限公司 一种水泥助磨剂及其制备方法
CN110064348A (zh) * 2019-04-19 2019-07-30 滕兆刚 一种介孔氧化硅包裹四氧化三铁磁性栓塞微球及其制备方法和应用
WO2022060732A1 (en) * 2020-09-17 2022-03-24 Nanophase Technologies Corporation Magnetic beads, method of making and method of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262387A (ja) * 1998-03-16 1999-09-28 Toyobo Co Ltd 核酸結合性磁性担体およびそれを用いた核酸単離方法
JP2003104996A (ja) * 2001-09-28 2003-04-09 Hitachi Maxell Ltd 核酸結合用磁性担体およびその製造方法
JP2006104021A (ja) * 2004-10-06 2006-04-20 Hitachi Maxell Ltd 複合粒子
KR20070068871A (ko) * 2005-12-27 2007-07-02 재단법인서울대학교산학협력재단 무기계 나노입자가 내포된 메조 세공 실리카 나노입자 및그 제조 방법
WO2009102171A2 (en) * 2008-02-14 2009-08-20 Bioneer Corporation Silica magnetic particles having a spherical form and a process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262387A (ja) * 1998-03-16 1999-09-28 Toyobo Co Ltd 核酸結合性磁性担体およびそれを用いた核酸単離方法
JP2003104996A (ja) * 2001-09-28 2003-04-09 Hitachi Maxell Ltd 核酸結合用磁性担体およびその製造方法
JP2006104021A (ja) * 2004-10-06 2006-04-20 Hitachi Maxell Ltd 複合粒子
KR20070068871A (ko) * 2005-12-27 2007-07-02 재단법인서울대학교산학협력재단 무기계 나노입자가 내포된 메조 세공 실리카 나노입자 및그 제조 방법
WO2009102171A2 (en) * 2008-02-14 2009-08-20 Bioneer Corporation Silica magnetic particles having a spherical form and a process for preparing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOPP, W.: "Sintese e ativação superficial de novos suportes magnéticos para imobilização de enzimas. Tese de doutorado.", UNIVERSIDADE FEDERAL DE SAO CARLOS., 2013, SãO CARLOS *
LEE, S.G.; ET AL.: "Synthesis of fine sodium-free silica powder from sodium silicate using w/o emulsion.", MATERIALS CHEMISTRY AND PHYSICS, vol. 100, 2006, pages 503 - 506 *
ZHANG, L.; ET AL.: "Fabrication and size-selective bioseparation of magnetic silica nanoespheres with highly ordered periodic mesostructure.", ADVANCED FUNCTIONAL MATERIALS, vol. 18, 2008, pages 3202 - 3212 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147692A (zh) * 2018-02-06 2018-06-12 北京金隅水泥节能科技有限公司 一种水泥助磨剂及其制备方法
CN110064348A (zh) * 2019-04-19 2019-07-30 滕兆刚 一种介孔氧化硅包裹四氧化三铁磁性栓塞微球及其制备方法和应用
CN110064348B (zh) * 2019-04-19 2021-07-02 滕兆刚 一种介孔氧化硅包裹四氧化三铁磁性栓塞微球及其制备方法和应用
WO2022060732A1 (en) * 2020-09-17 2022-03-24 Nanophase Technologies Corporation Magnetic beads, method of making and method of use thereof

Also Published As

Publication number Publication date
BR102013026583B1 (pt) 2024-01-09
BR102013026583A2 (pt) 2015-07-28

Similar Documents

Publication Publication Date Title
Rahimi et al. Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution
Parakhonskiy et al. Macromolecule Loading into Spherical, Elliptical, Star‐Like and Cubic Calcium Carbonate Carriers
Xiao et al. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples
Huo et al. Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes
Sun et al. Characterization of nano-iron oxyhydroxides and their application in UO 2 2+ removal from aqueous solutions
Xu et al. Synthesis of hierarchical flower-like Mg2Al-Cl layered double hydroxide in a surfactant-free reverse microemulsion
Milosevic et al. Facile microwave process in water for the fabrication of magnetic nanorods
Yu et al. Template-and surfactant-free synthesis of ultrathin CeO 2 nanowires in a mixed solvent and their superior adsorption capability for water treatment
Zhang et al. Oriented-assembly of hierarchical Fe3O4@ CuSiO3 microchains towards efficient separation of histidine-rich proteins
JP2016521858A (ja) 表面多孔性材料を含むクロマトグラフィーカラムおよび分離デバイス、および超臨界流体クロマトグラフィーおよび他のクロマトグラフィーのためのこれらの使用
Zhang et al. Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin
Kiasat et al. Fe 3 O 4@ Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3, 4-dihydropyrimidinones/thiones under solvent-free conditions
Yusan et al. Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content
JP2019509975A (ja) 超常磁性ナノ複合体の製造方法およびこれを用いて製造された超常磁性ナノ複合体
Zhang et al. γ‐AlOOH Nanomaterials with Regular Shapes: Hydrothermal Fabrication and Cr2O72–Adsorption
Han et al. Facile synthesis of magnetic hierarchical MgO–MgFe 2 O 4 composites and their adsorption performance towards Congo red
WO2015054768A1 (pt) Micropartículas magnéticas de sílica porosa e processo de síntese
Kalantari et al. Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals
CN109174161A (zh) 可磁分离TNTs/g-C3N4纳米复合材料的制备方法和应用
Zhang et al. Facile synthesis of sea urchin-like magnetic copper silicate hollow spheres for efficient removal of hemoglobin in human blood
Chen et al. Magnetically separable Fe 3 O 4@ TiO 2 nanospheres: preparation and photocatalytic activity
Yang et al. Microwave rapid synthesis of nanoporous Fe3O4 magnetic microspheres
Zimowska et al. Structural rearrangements in Fe-porous clay heterostructures composites derived from Laponite®–Influence of preparation methods and Fe source
Pryazhnikov et al. Surface-modified magnetic nanoscale materials: preparation and study of their structure, composition, and properties
CN109096499B (zh) 超顺磁纳米磁珠及其制备方法和可控乳化/破乳性能应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853718

Country of ref document: EP

Kind code of ref document: A1