WO2015052838A1 - Decoupling circuit - Google Patents

Decoupling circuit Download PDF

Info

Publication number
WO2015052838A1
WO2015052838A1 PCT/JP2013/077792 JP2013077792W WO2015052838A1 WO 2015052838 A1 WO2015052838 A1 WO 2015052838A1 JP 2013077792 W JP2013077792 W JP 2013077792W WO 2015052838 A1 WO2015052838 A1 WO 2015052838A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output terminal
signal
distribution
circuit
Prior art date
Application number
PCT/JP2013/077792
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 牧村
西本 研悟
深沢 徹
良和 吉田
和宜 大塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/077792 priority Critical patent/WO2015052838A1/en
Priority to JP2015541406A priority patent/JPWO2015052838A1/en
Publication of WO2015052838A1 publication Critical patent/WO2015052838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/185Networks for phase shifting comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/175Series LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations

Definitions

  • the present invention relates to, for example, a decoupling circuit that connects a plurality of antennas mounted on a wireless communication device or the like, and more particularly, to a decoupling circuit that reduces coupling between two antennas.
  • Non-Patent Document 1 discloses a decoupling circuit composed of two transmission lines and a reactance element that connects the two transmission lines. The mutual coupling is reduced.
  • Patent Document 1 discloses a method of reducing coupling between antennas by connecting antennas with a connection circuit.
  • the conventional decoupling circuit is configured as described above, in principle, the coupling is reduced at one frequency. For this reason, when the frequency band to be used is wide, there existed a subject which cannot reduce coupling in the whole use frequency band. In particular, when the coupling phase between the antennas greatly changes within the used frequency band, there is a problem that the coupling cannot be reduced over the entire used frequency band.
  • the present invention has been made to solve the above-described problems, and provides a decoupling circuit capable of reducing the coupling in the entire used frequency band even when the coupling phase greatly changes in the used frequency band. For the purpose.
  • the decoupling circuit according to the present invention has a first signal distribution means for distributing a signal input from the first input / output terminal to the second and third input / output terminals, and a signal input from the fourth input / output terminal.
  • the second signal distribution means for distributing the received signal to the fifth and sixth input / output terminals, and the third signal input means or the sixth input / output terminal.
  • Amplitude and phase adjusting means for adjusting the amplitude and phase of the signal distributed by the second signal distributing means, from the first input / output terminal to the fourth input / output terminal through the second and fifth input / output terminals.
  • the amplitude phase adjustment means the coupling phase of the first signal path to the second signal path from the first input / output terminal to the fourth input / output terminal through the amplitude phase adjustment means is opposite in phase.
  • the phase adjustment amount is set.
  • the phase adjustment amount in the amplitude phase adjustment means is set so that the coupling phase of the first signal path and the second signal path is opposite, the frequency used Even when the coupling phase changes greatly within the band, there is an effect that the coupling can be reduced over the entire use frequency band.
  • FIG. 6 is an explanatory diagram showing the effect of the decoupling circuit according to the first embodiment.
  • FIG. 1 is a block diagram showing a decoupling circuit according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing a decoupling circuit according to Embodiment 1 of the present invention.
  • a distribution circuit 1 serving as a first signal distribution unit includes an input / output terminal 11 (first input / output terminal) for high-frequency signals, an input / output terminal 12 (second input / output terminal) serving as a connection point, and Connected to the input / output terminal 13 (third input / output terminal), the high frequency signal input from the input / output terminal 11 is divided into two, and one high frequency signal after distribution is output to the input / output terminal 12, The other high-frequency signal after distribution is output to the input / output terminal 13.
  • An antenna 3 (first antenna) is connected to the input / output terminal 12.
  • the distribution circuit 2 as the second signal distribution means includes an input / output terminal 21 (fourth input / output terminal) for high-frequency signals, an input / output terminal 22 (fifth input / output terminal) as connection points, and an input / output terminal 23. (Sixth input / output terminal), the high frequency signal input from the input / output terminal 21 is divided into two, the one high frequency signal after distribution is output to the input / output terminal 22, and the other after distribution Is output to the input / output terminal 23.
  • An antenna 4 (second antenna) is connected to the input / output terminal 22.
  • the amplitude / phase adjustment circuit 5 is connected between the input / output terminal 13 and the input / output terminal 23, and performs processing for adjusting the amplitude and phase of the high-frequency signal distributed by the distribution circuit 1 or the distribution circuit 2.
  • the amplitude phase adjustment circuit 5 constitutes an amplitude phase adjustment means.
  • Route is referred to as A route
  • the signal path (second signal path) of the input / output terminal 11 to the distribution circuit 1 to the input / output terminal 13 to the amplitude / phase adjustment circuit 5 to the input / output terminal 22 to the distribution circuit 2 to the input / output terminal 21 ) Is called the B route.
  • the signal distribution ratio in the distribution circuits 1 and 2 and the amplitude adjustment amount in the amplitude phase adjustment circuit 5 are set so that the combined amplitudes of the A route and the B route are equal, and the A route and the B route.
  • the phase adjustment amount in the amplitude and phase adjustment circuit 5 is set so that the coupling phase with the phase is reversed.
  • FIG. 2 is a block diagram showing an amplitude phase adjustment circuit 5 of the decoupling circuit according to the first embodiment of the present invention.
  • the amplitude / phase adjustment circuit 5 includes a transmission line 31 and a parallel resonant circuit 32 connected to the transmission line 31 in a shunt, and one end of the transmission line 31 is connected to the input / output terminal 13. The other end is connected to the input / output terminal 23.
  • the parallel resonance circuit 32 includes a capacitor 32a and an inductor 32b, which are lumped constant elements.
  • the distribution circuit 1 distributes the high frequency signal into two, outputs one high frequency signal after distribution to the input / output terminal 12, and outputs the other high frequency signal after distribution. Is output to the input / output terminal 13.
  • the high frequency signal output from the distribution circuit 1 to the input / output terminal 12 is supplied to the antenna 3, and electromagnetic waves generated by the high frequency signal are radiated from the antenna 3 to the space. At this time, a part of the electromagnetic wave radiated from the antenna 3 to the space is received by the antenna 4, and a high-frequency signal related to the electromagnetic wave is input to the distribution circuit 2 via the input / output terminal 22.
  • the high frequency signal output from the distribution circuit 1 to the input / output terminal 13 passes through the amplitude / phase adjustment circuit 5 and is input to the distribution circuit 2 via the input / output terminal 23.
  • the distribution circuit 2 has a high frequency signal (high frequency signal passing through the A route) input from the antenna 4 via the input / output terminal 22 and a high frequency signal (B) input from the amplitude / phase adjustment circuit 5 via the input / output terminal 23. High-frequency signal passing through the route) and the combined high-frequency signal is output to the input / output terminal 21.
  • FIG. 3 is an explanatory diagram showing an example of frequency characteristics of the coupling amplitude between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route (characteristics of the antenna alone).
  • FIG. 4 is an explanatory diagram showing an example of the frequency characteristic of the coupling phase between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route (characteristic of the antenna alone).
  • the coupling of the A route varies depending on the characteristics of the antennas 3 and 4, the arrangement, and the surrounding space conditions.
  • the combination A A (f) of the A route is defined as the following formula (1).
  • Equation (1) f is the frequency, s A (f) is the amplitude of coupling at the frequency f of the A route, and ⁇ A (f) is the phase of coupling at the frequency f of the A route.
  • the unit of phase is (°).
  • the coupling of the B route varies depending on the design value of the amplitude / phase adjustment circuit 5.
  • the combination S B (f) of the B route is defined as the following equation (2).
  • S B (f) s B (f) exp (j ⁇ B (f)) (2)
  • f the frequency
  • s B (f) the amplitude of coupling at the frequency f of the B route
  • ⁇ B (f) the phase of coupling at the frequency f of the B route.
  • FIG. 2 shows a configuration example of the amplitude / phase adjustment circuit 5, but it is known that the parallel resonance circuit 32 connected to the transmission line 31 in a shunt acts as a band-pass filter.
  • the capacitance of the capacitor 32a of the parallel resonance circuit 32 is Cp (F) and the inductance of the inductor 32b is Lp (H)
  • Lp the relationship between the resonance frequency fr of the parallel resonance circuit 32 and Cp
  • the Q value representing the sharpness of resonance is represented by the following equation (6), where R is the characteristic impedance of the transmission line 31.
  • the coupling of the A route via the antennas 3 and 4 and the space generally has bandpass characteristics. Therefore, if the resonant frequency fr and Q value of the parallel resonant circuit 32 are appropriately set, the coupling of the A route S A (f ) And the B route combination S B (f) can be made substantially the same.
  • the resonance frequency fr of the parallel resonance circuit 32 is set to a frequency f Amax at which the coupling A A (f) of the A route becomes maximum within the use frequency band. It is also conceivable that the resonance frequency fr of the parallel resonance circuit 32 is set to the center frequency of the used frequency band.
  • the coupling amplitude difference ⁇ s (f) is defined as in the following equation (7), where the upper limit of the use frequency band is f H and the lower limit is f L.
  • ⁇ s (f) s (fr) ⁇ s (f) (7)
  • a method of searching for the Q value at which the change of the pass amplitude characteristic s LPF (f) of the parallel resonance circuit 32 is closest to s A (f) can be considered by the least square method or the like.
  • the designer may appropriately select the values of Lp and Cp in consideration of other requirements such as the ease of configuration of the parallel resonant circuit 32 and the distribution of s A (f).
  • FIG. 5 is an explanatory diagram showing an example of the pass characteristics of the parallel resonant circuit 32 connected to the transmission line 31 in a shunt.
  • the resonance frequency fr of the parallel resonance circuit 32 is made to coincide with the maximum frequency f Amax within the use frequency band, and the Q value is set to 59.7.
  • the characteristic impedance R of the transmission line 31 is 50 ⁇ . From FIG. 5, it is confirmed that the way of changing the pass amplitude characteristic s LPF (f) within the used frequency band is close to the way of changing the coupling A A (f) of the A route shown in FIG. .
  • the absolute value of the pass amplitude characteristic s LPF (f) and the absolute value of the coupling A A (f) of the A route may be adjusted according to the characteristics of the distribution circuits 1 and 2. Only the way of change needs to be matched.
  • the passing phase characteristic ⁇ LPF (f) when the parallel resonant circuit 32 is connected to the transmission line 31 in a shunt is as shown in FIG.
  • the passing amplitude from the input / output terminal 11 to the input / output terminal 13 is P 1 (dB)
  • the passing amplitude from the input / output terminal 11 to the input / output terminal 12 is P 2 (dB).
  • the passing amplitude from the input / output terminal 21 to the input / output terminal 23 be P 1 (dB)
  • the passing amplitude from the input / output terminal 21 to the input / output terminal 22 be P 2 (dB).
  • the pass characteristics between the terminals in the distribution circuits 1 and 2 are symmetrical.
  • the pass amplitude from the input / output terminal 13 to the input / output terminal 11 is also P 1 (dB).
  • the passing amplitude to the output terminal 21 is also P 1 (dB).
  • the B route coupling S B (f) is determined from the distribution ratio of the distribution circuits 1 and 2 and the pass amplitude characteristics of the parallel resonant circuit 32 connected to the transmission line 31 in a shunt.
  • ⁇ 11-13 (f) which is a passing phase characteristic from input / output terminal 11 to input / output terminal 13
  • input / output terminal 23 is connected to input / output terminal 21.
  • ⁇ 23-21 (f) which is the passing phase characteristic
  • the amplitude phase adjustment circuit 5 may be designed so as to satisfy the following expression (11).
  • the electrical length ⁇ of the transmission line 31 is set so as to satisfy the following conditions (1) and (2).
  • (1) at the maximum frequency f Amax in the used frequency band, A route combined phase phi A and (f Amax), combined phase phi B of Route B (f Amax) is substantially opposite phase.
  • ⁇ LPF ⁇ ( ⁇ LPF (f H ) ⁇ LPF (f L ))
  • FIG. 7 shows an amplitude and phase adjustment circuit when a parallel resonant circuit 32 having the characteristics shown in FIG. 5 is connected to a shunt with respect to a transmission line 31 having an electrical length of 444 ° at the maximum frequency f Amax within the used frequency band.
  • FIG. 5 is an explanatory diagram showing a pass phase characteristic ⁇ p (f) of FIG. Compared with the combined phase ⁇ A (f) of the A route shown in FIG. 4, the passing phase characteristic ⁇ p (f) of the amplitude phase adjustment circuit 5 has a phase of almost 180 ° over the entire use frequency band. You can see that they are different.
  • FIG. 8 is an explanatory diagram showing the effect of the decoupling circuit according to the first embodiment.
  • the worst value of the coupling between the input and output terminals within the used frequency band is about ⁇ 20 dB (1/100) compared to the case without the decoupling circuit. The effect of the present invention to reduce the coupling over the entire use frequency band is confirmed.
  • the signal distribution ratio in the distribution circuits 1 and 2 and the amplitude adjustment amount in the amplitude phase adjustment circuit 5 are set so that the coupling amplitudes of the A route and the B route become equal.
  • the phase adjustment amount in the amplitude phase adjustment circuit 5 is set so that the coupling phase of the A route and the B route is opposite to each other. Even when the coupling amplitude and the coupling phase change greatly, the coupling between the input / output terminal 11 and the input / output terminal 21 can be reduced over the entire use frequency band. It is not particularly difficult to manufacture all of the distribution circuits 1 and 2 and the amplitude / phase adjustment circuit 5 on the same substrate.
  • the amplitude phase adjustment circuit 5 is mounted with a resonance circuit and the change in the passing amplitude and the passing phase difference becomes large, the circuit can be miniaturized.
  • the amplitude phase adjustment circuit 5 in which one parallel resonance circuit is connected to the transmission line 31 in a shunt is shown, but the amplitude adjustment amount and the phase adjustment amount in the amplitude phase adjustment circuit 5 are appropriately designed. If so, the amplitude / phase adjustment circuit 5 may have another configuration. For example, in order to configure the amplitude phase adjustment circuit 5 in which the change of the passing amplitude and the phase difference is extremely steep, a resonance circuit having an extremely high Q value is required. Although it is difficult to realize a resonance circuit having an extremely high Q value, an amplitude / phase adjustment circuit 5 having similar pass characteristics can be configured by combining a plurality of resonance circuits.
  • an amplitude phase adjustment circuit 5 in which a series resonance circuit 35 is connected in series to the transmission lines 33 and 34 may be used.
  • the series resonance circuit 35 is configured by connecting an inductor 35a and a capacitor 35b in series.
  • the amplitude / phase adjustment circuit 5 may include both the parallel resonance circuit 32 and the series resonance circuit 35.
  • FIG. 10 is a block diagram showing a decoupling circuit according to Embodiment 2 of the present invention.
  • a directional coupler 6 (first directional coupler) which is a first signal distribution means is connected to the input / output terminal 11, the input / output terminal 12, the input / output terminal 13 and the input / output terminal 14.
  • the high-frequency signal input from the terminal 11 is divided into two, one high-frequency signal after distribution is output to the input / output terminal 12, and the other high-frequency signal after distribution is output to the input-output terminal 13.
  • the input / output terminal 14 is connected to the GND conductor 43 via a termination resistor 41.
  • the directional coupler 7 (second directional coupler) as the second signal distribution means is connected to the input / output terminal 21, the input / output terminal 22, the input / output terminal 23, and the input / output terminal 24.
  • the high-frequency signal input from the terminal 21 is divided into two, one high-frequency signal after distribution is output to the input / output terminal 22, and the other high-frequency signal after distribution is output to the input-output terminal 23.
  • the input / output terminal 24 is connected to the GND conductor 43 via a termination resistor 42.
  • the distribution circuits 1 and 2 distribute the high-frequency signal input from the input / output terminals 11 and 21 and output one of the distributed high-frequency signals to the input / output terminals 12 and 22 for distribution.
  • the other high-frequency signal is output to the input / output terminals 13 and 23.
  • the directional couplers 6 and 7 receive the high-frequency signal input from the input / output terminals 11 and 21, respectively.
  • the divided high frequency signal may be output to the input / output terminals 12 and 22, and the other high frequency signal after distribution may be output to the input / output terminals 13 and 23.
  • the coupling amount between the input / output terminal 11 and the input / output terminal 14 is very small, and the coupling amount between the input / output terminal 12 and the input / output terminal 13 is very small.
  • the coupling amount between the input / output terminal 21 and the input / output terminal 24 is very small, and the coupling amount between the input / output terminal 22 and the input / output terminal 23 is very small. Therefore, in the directional coupler 6, isolation between the input / output terminal 12 and the input / output terminal 13 is ensured, and in the directional coupler 7, isolation between the input / output terminal 22 and the input / output terminal 23 is ensured.
  • the resistance values of the termination resistors 41 and 42 are generally the same as the standardized impedance for designing the directional couplers 6 and 7 (for example, 50 ⁇ ), but the resistance values are not limited to this. .
  • the input / output terminals over the entire use frequency band. 11 and the input / output terminal 21 can be reduced.
  • the Q value of the parallel resonant circuit 32 is set so that the coupling S A (f) of the A route matches the coupling S B (f) of the B route.
  • the Q value of the parallel resonance circuit 32 may be set so that the passing phase characteristic ⁇ p (f) of the amplitude phase adjustment circuit 5 is equal to the coupling phase ⁇ A (f) of the A route.
  • the electrical length ⁇ (f) of the transmission line 31 is determined by the following equation (15), for example. Is done.
  • ⁇ A (fr) + 180 ° and ⁇ B (fr) are matched, but the reference frequency is not limited to the resonance frequency fr.
  • the range of ⁇ A (f) is [ ⁇ 180 °, 180 °]
  • the range of ⁇ (f) is [0 °, 360 °].
  • the Q value of the parallel resonance circuit 32 is set so that the passing phase characteristic ⁇ p (f) of the amplitude phase adjustment circuit 5 is equal to the coupling phase ⁇ A (f) of the A route.
  • the electrical length ⁇ (f) of the transmission line 31 can be 360 ° at the maximum. As a result, it is possible to reduce the coupling between the antennas over a wide band and to obtain an effect of obtaining a small decoupling circuit.
  • FIG. 11 is a block diagram showing an amplitude / phase adjustment circuit 5 of a decoupling circuit according to Embodiment 4 of the present invention.
  • the short stub 36 is a distributed constant line connected to the transmission line 31 in a shunt, and realizes a parallel resonance circuit for the transmission line 31.
  • the short stub 36 is realized by a triplate line formed in the inner layer of the multilayer substrate.
  • the method of manufacturing the short stub 36 is not limited to this. For example, it may be realized by a microstrip line on a substrate.
  • the Q value of the parallel resonance circuit 32 is set so that the coupling S A (f) of the A route matches the coupling S B (f) of the B route.
  • the parallel resonant circuit 32 is formed by the capacitor 32a and the inductor 32b which are lumped elements. It is expected to be difficult to construct.
  • a stub structure constituted by distributed constant lines can be used as a resonance circuit.
  • the amplitude / phase adjusting circuit 5 is configured by connecting the short stub 36 to the shunt with respect to the transmission line 31.
  • the short stub 36 serves as a parallel resonant circuit, so that the Q value can be freely determined without being restricted by the value of the lumped element. Therefore, effects that can be matched coupling S A of Route A a (f) and B root of binding S B (f) more precisely can be obtained.
  • the method for producing the short stub 36 is not particularly limited. However, when realized with a triplate line, the characteristic impedance of the stub can be lowered as compared with the case of realizing with a microstrip line.
  • the parallel resonant circuit can be made.
  • a plurality of stubs can be arranged in an overlapping manner, so that the circuit area can be reduced.
  • the short stub 36 is connected to the shunt with respect to the transmission line 31, but an open stub may be used instead of the short stub 36.
  • an open stub may be used instead of the short stub 36.
  • some or all of the resonance circuits may be realized by stubs.
  • the stub structure constituted by the distributed constant line is used as the parallel resonant circuit 32.
  • the stub structure constituted by the distributed constant line is used as the series resonant circuit 35. It may be.
  • FIG. FIG. 12 is a block diagram showing the amplitude phase adjustment circuit 5 of the decoupling circuit according to the fifth embodiment of the present invention.
  • the meander line 37 is a transmission line having one end connected to the input / output terminal 13 and the other end connected to the input / output terminal 23.
  • the input / output terminal 13 and the input / output terminal 23 are connected by the transmission line 31.
  • the transmission line 31 is configured by a meander line 37 as shown in FIG. May be. By configuring the transmission line 31 with the meander line 37, the transmission line can be downsized.
  • the transmission line 31 in the amplitude / phase adjustment circuit 5 of FIG. 2 is configured by the meander line 37, but the transmission lines 33 and 34 in the amplitude / phase adjustment circuit 5 of FIG. 9 are configured by the meander line 37.
  • the transmission line 31 in the amplitude / phase adjustment circuit 5 of FIG. 11 may be configured by the meander line 37.
  • FIG. 13 is a block diagram showing the amplitude phase adjustment circuit 5 of the decoupling circuit according to the sixth embodiment of the present invention.
  • a plurality of lumped constant elements 51 for example, capacitors and inductors
  • a plurality of lumped constant elements 52 for example, capacitors and inductors
  • T-type phase shift circuit To form a T-type phase shift circuit, and a plurality of phase shift circuits carry transmission lines.
  • the amount of phase shift can be increased by combining a plurality of phase shift circuits.
  • the phase shift circuit is configured only by the lumped constant elements 51 and 52, the circuit can be reduced in size.
  • a T-type phase shift circuit is shown in FIG. 13, it may be a saddle type phase shift circuit.
  • the antennas 4 and 5 are connected to the input / output terminals 12 and 22, and the example in which the coupling between the antennas is reduced has been described.
  • the coupling exists between the input / output terminal 11 and the input / output terminal 21 through some propagation medium, the coupling can be reduced by applying the present invention.
  • the decoupling circuit according to the present invention is suitable, for example, for a circuit that has a high need for enabling sufficient effects of diversity and MIMO by reducing the coupling between two antennas.
  • 1 distribution circuit (first signal distribution means), 2 distribution circuit (second signal distribution means), 3 antenna (first antenna), 4 antenna (second antenna), 5 amplitude phase adjustment circuit (amplitude phase) Adjustment means), 6 directional coupler (first directional coupler, first signal distribution means), 7 directional coupler (second directional coupler, second signal distribution means), 11 input Output terminal (first input / output terminal), 12 Input / output terminal (second input / output terminal), 13 Input / output terminal (third input / output terminal), 14 Input / output terminal, 21 Input / output terminal (fourth Input / output terminal), 22 input / output terminal (fifth input / output terminal), 23 input / output terminal (sixth input / output terminal), 24 input / output terminal, 31 transmission line, 32 parallel resonant circuit, 32a capacitor, 32b inductor 33, 34 Transmission line, 35 Series resonant circuit, 35a inductors, 35b capacitor 36 short stub, 37 meander line, 41 terminating resistor, 43 GND conductor,

Abstract

A decoupling circuit is configured such that signal distribution ratios in distribution circuits (1, 2) and an amplitude adjustment amount in an amplitude phase adjustment circuit (5) are set such that coupling amplitudes in a route A and a route B become equal and a phase adjustment amount in the amplitude phase adjustment circuit (5) is set such that coupling phases in the route A and the route B become opposite to each other. Consequently, even if the coupling amplitude and coupling phase between antennas greatly change in a usable frequency band, the coupling between an input/output terminal (11) and an input/output terminal (21) can be reduced over the whole usable frequency band.

Description

減結合回路Decoupling circuit
 この発明は、例えば、無線通信装置等に搭載される複数のアンテナ間を接続する減結合回路に関し、特に、2本のアンテナ間の結合を低減する減結合回路に関するものである。 The present invention relates to, for example, a decoupling circuit that connects a plurality of antennas mounted on a wireless communication device or the like, and more particularly, to a decoupling circuit that reduces coupling between two antennas.
 近年、無線通信システムの高速化や高品質化に伴って、ダイバーシチやMIMO(Multiple Input Multiple Output)を適用するために、複数のアンテナを用いるマルチアンテナ技術への要求が高まっている。
 ダイバーシチやMIMOが十分な効果を発揮するには、複数のアンテナ間の結合を出来る限り小さくして、アンテナ相関を低くする必要がある。 
In recent years, with the increase in speed and quality of wireless communication systems, there is an increasing demand for multi-antenna technology using a plurality of antennas in order to apply diversity and MIMO (Multiple Input Multiple Output).
In order for diversity and MIMO to exhibit sufficient effects, it is necessary to reduce the coupling between a plurality of antennas as much as possible to lower the antenna correlation.
 しかし、一般的には、複数のアンテナを小型の通信端末等の狭い領域に搭載する際には、アンテナ間の距離を十分に確保することができないため、アンテナ間の結合が強くなって通信性能が劣化することがある。
 アンテナ間の結合が強くなる問題を回避する方法として、複数のアンテナ間に減結合回路を接続し、空間を介するアンテナ間の結合を当該減結合回路で打ち消す方法が知られている。 
However, in general, when multiple antennas are mounted in a small area such as a small communication terminal, the distance between the antennas cannot be sufficiently secured, so that the coupling between the antennas is increased and the communication performance is increased. May deteriorate.
As a method for avoiding the problem of strong coupling between antennas, a method is known in which a decoupling circuit is connected between a plurality of antennas, and the coupling between antennas via a space is canceled by the decoupling circuit.
 例えば、以下の非特許文献1には、2つの伝送線路と、2つの伝送線路間を接続するリアクタンス素子とで構成されている減結合回路が開示されており、この減結合回路によって、アンテナ間の相互結合を低減している。
 なお、以下の特許文献1には、アンテナ間を接続回路で接続することで、アンテナ間の結合を低減する方法が開示されている。
For example, the following Non-Patent Document 1 discloses a decoupling circuit composed of two transmission lines and a reactance element that connects the two transmission lines. The mutual coupling is reduced.
The following Patent Document 1 discloses a method of reducing coupling between antennas by connecting antennas with a connection circuit.
特開2012-227742号公報JP 2012-227742 A
 従来の減結合回路は以上のように構成されているので、原理的に1つの周波数で結合を低減するものである。このため、使用する周波数帯域が広い場合には、使用周波数帯域の全体で結合を低減させることができない課題があった。
 特に、使用周波数帯域内で、アンテナ間の結合位相が大きく変化する場合には、使用周波数帯域の全体で結合を低減させることができない課題があった。
Since the conventional decoupling circuit is configured as described above, in principle, the coupling is reduced at one frequency. For this reason, when the frequency band to be used is wide, there existed a subject which cannot reduce coupling in the whole use frequency band.
In particular, when the coupling phase between the antennas greatly changes within the used frequency band, there is a problem that the coupling cannot be reduced over the entire used frequency band.
 この発明は上記のような課題を解決するためになされたもので、使用周波数帯域内で結合位相が大きく変化する場合でも、使用周波数帯域の全体で結合を低減させることができる減結合回路を得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides a decoupling circuit capable of reducing the coupling in the entire used frequency band even when the coupling phase greatly changes in the used frequency band. For the purpose.
 この発明に係る減結合回路は、第1の入出力端子から入力された信号を第2及び第3の入出力端子に分配する第1の信号分配手段と、第4の入出力端子から入力された信号を第5及び第6の入出力端子に分配する第2の信号分配手段と、第3の入出力端子と第6の入出力端子との間に接続され、第1の信号分配手段又は第2の信号分配手段により分配された信号の振幅及び位相を調整する振幅位相調整手段とを備え、第1の入出力端子から第2及び第5の入出力端子を通じて第4の入出力端子に至る第1の信号経路と、第1の入出力端子から振幅位相調整手段を通じて第4の入出力端子に至る第2の信号経路との結合位相が逆位相になるように、振幅位相調整手段における位相調整量が設定されているようにしたものである。 The decoupling circuit according to the present invention has a first signal distribution means for distributing a signal input from the first input / output terminal to the second and third input / output terminals, and a signal input from the fourth input / output terminal. The second signal distribution means for distributing the received signal to the fifth and sixth input / output terminals, and the third signal input means or the sixth input / output terminal. Amplitude and phase adjusting means for adjusting the amplitude and phase of the signal distributed by the second signal distributing means, from the first input / output terminal to the fourth input / output terminal through the second and fifth input / output terminals. In the amplitude phase adjustment means, the coupling phase of the first signal path to the second signal path from the first input / output terminal to the fourth input / output terminal through the amplitude phase adjustment means is opposite in phase. The phase adjustment amount is set.
 この発明によれば、第1の信号経路と第2の信号経路との結合位相が逆位相になるように、振幅位相調整手段における位相調整量が設定されているように構成したので、使用周波数帯域内で結合位相が大きく変化する場合でも、使用周波数帯域の全体で結合を低減させることができる効果がある。 According to the present invention, since the phase adjustment amount in the amplitude phase adjustment means is set so that the coupling phase of the first signal path and the second signal path is opposite, the frequency used Even when the coupling phase changes greatly within the band, there is an effect that the coupling can be reduced over the entire use frequency band.
この発明の実施の形態1による減結合回路を示す構成図である。It is a block diagram which shows the decoupling circuit by Embodiment 1 of this invention. この発明の実施の形態1による減結合回路の振幅位相調整回路5を示す構成図である。It is a block diagram which shows the amplitude phase adjustment circuit 5 of the decoupling circuit by Embodiment 1 of this invention. 高周波信号がAルートを通る際の入出力端子11と入出力端子21間の結合振幅の周波数特性(アンテナ単体の特性)の一例を示す説明図である。It is explanatory drawing which shows an example of the frequency characteristic (characteristic of a single antenna) of the coupling amplitude between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route. 高周波信号がAルートを通る際の入出力端子11と入出力端子21間の結合位相の周波数特性(アンテナ単体の特性)の一例を示す説明図である。It is explanatory drawing which shows an example of the frequency characteristic (characteristic of a single antenna) of the coupling phase between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route. 伝送線路31に対してシャントに接続された並列共振回路32の通過特性の一例を示す説明図である。It is explanatory drawing which shows an example of the passage characteristic of the parallel resonant circuit 32 connected to the shunt with respect to the transmission line 31. FIG. 並列共振回路32が伝送線路31にシャントに接続された際の通過位相特性φLPF(f)の一例を示す説明図である。It is explanatory drawing which shows an example of the passage phase characteristic (phi) LPF (f) when the parallel resonant circuit 32 is connected to the transmission line 31 by the shunt. 使用周波数帯域内の最大周波数fAmaxで電気長444°の長さを有する伝送線路31に対して、図5の特性を有する並列共振回路32をシャントに接続した場合の振幅位相調整回路5の通過位相特性φ(f)を示す説明図である。Passing through the amplitude and phase adjustment circuit 5 when the parallel resonant circuit 32 having the characteristics shown in FIG. 5 is connected to the shunt with respect to the transmission line 31 having an electrical length of 444 ° at the maximum frequency f Amax within the used frequency band. It is explanatory drawing which shows phase characteristic (phi) p (f). 実施の形態1による減結合回路の効果を示す説明図である。FIG. 6 is an explanatory diagram showing the effect of the decoupling circuit according to the first embodiment. この発明の実施の形態1による減結合回路の振幅位相調整回路5を示す構成図である。It is a block diagram which shows the amplitude phase adjustment circuit 5 of the decoupling circuit by Embodiment 1 of this invention. この発明の実施の形態2による減結合回路を示す構成図である。It is a block diagram which shows the decoupling circuit by Embodiment 2 of this invention. この発明の実施の形態4による減結合回路の振幅位相調整回路5を示す構成図である。It is a block diagram which shows the amplitude phase adjustment circuit 5 of the decoupling circuit by Embodiment 4 of this invention. この発明の実施の形態5による減結合回路の振幅位相調整回路5を示す構成図である。It is a block diagram which shows the amplitude phase adjustment circuit 5 of the decoupling circuit by Embodiment 5 of this invention. この発明の実施の形態6による減結合回路の振幅位相調整回路5を示す構成図である。It is a block diagram which shows the amplitude phase adjustment circuit 5 of the decoupling circuit by Embodiment 6 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による減結合回路を示す構成図である。
 図1において、第1の信号分配手段である分配回路1は、高周波信号の入出力端子11(第1の入出力端子)、接続点である入出力端子12(第2の入出力端子)及び入出力端子13(第3の入出力端子)と接続されており、入出力端子11から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子12に出力して、分配後の他方の高周波信号を入出力端子13に出力する。入出力端子12にはアンテナ3(第1のアンテナ)が接続されている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a block diagram showing a decoupling circuit according to Embodiment 1 of the present invention.
In FIG. 1, a distribution circuit 1 serving as a first signal distribution unit includes an input / output terminal 11 (first input / output terminal) for high-frequency signals, an input / output terminal 12 (second input / output terminal) serving as a connection point, and Connected to the input / output terminal 13 (third input / output terminal), the high frequency signal input from the input / output terminal 11 is divided into two, and one high frequency signal after distribution is output to the input / output terminal 12, The other high-frequency signal after distribution is output to the input / output terminal 13. An antenna 3 (first antenna) is connected to the input / output terminal 12.
 第2の信号分配手段である分配回路2は、高周波信号の入出力端子21(第4の入出力端子)、接続点である入出力端子22(第5の入出力端子)及び入出力端子23(第6の入出力端子)と接続されており、入出力端子21から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子22に出力して、分配後の他方の高周波信号を入出力端子23に出力する。入出力端子22にはアンテナ4(第2のアンテナ)が接続されている。
 振幅位相調整回路5は入出力端子13と入出力端子23の間に接続されており、分配回路1又は分配回路2により分配された高周波信号の振幅及び位相を調整する処理を実施する。なお、振幅位相調整回路5は振幅位相調整手段を構成している。
The distribution circuit 2 as the second signal distribution means includes an input / output terminal 21 (fourth input / output terminal) for high-frequency signals, an input / output terminal 22 (fifth input / output terminal) as connection points, and an input / output terminal 23. (Sixth input / output terminal), the high frequency signal input from the input / output terminal 21 is divided into two, the one high frequency signal after distribution is output to the input / output terminal 22, and the other after distribution Is output to the input / output terminal 23. An antenna 4 (second antenna) is connected to the input / output terminal 22.
The amplitude / phase adjustment circuit 5 is connected between the input / output terminal 13 and the input / output terminal 23, and performs processing for adjusting the amplitude and phase of the high-frequency signal distributed by the distribution circuit 1 or the distribution circuit 2. The amplitude phase adjustment circuit 5 constitutes an amplitude phase adjustment means.
 この実施の形態1では、入出力端子11~分配回路1~入出力端子12~アンテナ3~空間~アンテナ4~入出力端子22~分配回路2~入出力端子21の信号経路(第1の信号経路)をAルートと称し、入出力端子11~分配回路1~入出力端子13~振幅位相調整回路5~入出力端子22~分配回路2~入出力端子21の信号経路(第2の信号経路)をBルートと称する。
 このとき、AルートとBルートとの結合振幅が等しくなるように、分配回路1,2における信号分配比及び振幅位相調整回路5における振幅調整量が設定されており、また、AルートとBルートとの結合位相が逆位相になるように、振幅位相調整回路5における位相調整量が設定されている。
In the first embodiment, the signal path (first signal) of the input / output terminal 11 to the distribution circuit 1 to the input / output terminal 12 to the antenna 3 to the space to the antenna 4 to the input / output terminal 22 to the distribution circuit 2 to the input / output terminal 21. Route) is referred to as A route, and the signal path (second signal path) of the input / output terminal 11 to the distribution circuit 1 to the input / output terminal 13 to the amplitude / phase adjustment circuit 5 to the input / output terminal 22 to the distribution circuit 2 to the input / output terminal 21 ) Is called the B route.
At this time, the signal distribution ratio in the distribution circuits 1 and 2 and the amplitude adjustment amount in the amplitude phase adjustment circuit 5 are set so that the combined amplitudes of the A route and the B route are equal, and the A route and the B route. The phase adjustment amount in the amplitude and phase adjustment circuit 5 is set so that the coupling phase with the phase is reversed.
 図2はこの発明の実施の形態1による減結合回路の振幅位相調整回路5を示す構成図である。
 図2において、振幅位相調整回路5は、伝送線路31と、伝送線路31に対してシャントに接続された並列共振回路32とから構成されており、伝送線路31の一端は入出力端子13と接続され、他端は入出力端子23と接続されている。
 並列共振回路32は集中定数素子であるキャパシタ32a及びインダクタ32bから構成されている。
FIG. 2 is a block diagram showing an amplitude phase adjustment circuit 5 of the decoupling circuit according to the first embodiment of the present invention.
In FIG. 2, the amplitude / phase adjustment circuit 5 includes a transmission line 31 and a parallel resonant circuit 32 connected to the transmission line 31 in a shunt, and one end of the transmission line 31 is connected to the input / output terminal 13. The other end is connected to the input / output terminal 23.
The parallel resonance circuit 32 includes a capacitor 32a and an inductor 32b, which are lumped constant elements.
 次に動作について説明する。
 分配回路1は、入出力端子11から高周波信号が入力されると、その高周波信号を2分配して、分配後の一方の高周波信号を入出力端子12に出力し、分配後の他方の高周波信号を入出力端子13に出力する。
 分配回路1から入出力端子12に出力された高周波信号はアンテナ3に供給され、その高周波信号による電磁波がアンテナ3から空間に放射される。
 このとき、アンテナ3から空間に放射された電磁波の一部は、アンテナ4によって受信され、その電磁波に係る高周波信号が入出力端子22を介して分配回路2に入力される。
Next, the operation will be described.
When a high frequency signal is input from the input / output terminal 11, the distribution circuit 1 distributes the high frequency signal into two, outputs one high frequency signal after distribution to the input / output terminal 12, and outputs the other high frequency signal after distribution. Is output to the input / output terminal 13.
The high frequency signal output from the distribution circuit 1 to the input / output terminal 12 is supplied to the antenna 3, and electromagnetic waves generated by the high frequency signal are radiated from the antenna 3 to the space.
At this time, a part of the electromagnetic wave radiated from the antenna 3 to the space is received by the antenna 4, and a high-frequency signal related to the electromagnetic wave is input to the distribution circuit 2 via the input / output terminal 22.
 また、分配回路1から入出力端子13に出力された高周波信号は、振幅位相調整回路5を通過し、入出力端子23を介して分配回路2に入力される。
 分配回路2は、アンテナ4から入出力端子22を介して入力された高周波信号(Aルートを通る高周波信号)と、振幅位相調整回路5から入出力端子23を介して入力された高周波信号(Bルートを通る高周波信号)とを合成し、合成後の高周波信号を入出力端子21に出力する。
The high frequency signal output from the distribution circuit 1 to the input / output terminal 13 passes through the amplitude / phase adjustment circuit 5 and is input to the distribution circuit 2 via the input / output terminal 23.
The distribution circuit 2 has a high frequency signal (high frequency signal passing through the A route) input from the antenna 4 via the input / output terminal 22 and a high frequency signal (B) input from the amplitude / phase adjustment circuit 5 via the input / output terminal 23. High-frequency signal passing through the route) and the combined high-frequency signal is output to the input / output terminal 21.
 図3は高周波信号がAルートを通る際の入出力端子11と入出力端子21間の結合振幅の周波数特性(アンテナ単体の特性)の一例を示す説明図である。
 また、図4は高周波信号がAルートを通る際の入出力端子11と入出力端子21間の結合位相の周波数特性(アンテナ単体の特性)の一例を示す説明図である。
 Aルートの結合は、アンテナ3,4の特性、配置や周囲の空間の条件によって様々に変わる。
 ここでは、Aルートの結合S(f)を下記の式(1)のように定義する。
 S(f)=s(f)exp(jφ(f))        (1)
 式(1)において、fは周波数、s(f)はAルートの周波数fにおける結合の振幅、φ(f)はAルートの周波数fにおける結合の位相である。
 また、jは虚数単位であり、j=-1である。位相の単位は(°)である。
FIG. 3 is an explanatory diagram showing an example of frequency characteristics of the coupling amplitude between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route (characteristics of the antenna alone).
FIG. 4 is an explanatory diagram showing an example of the frequency characteristic of the coupling phase between the input / output terminal 11 and the input / output terminal 21 when the high-frequency signal passes through the A route (characteristic of the antenna alone).
The coupling of the A route varies depending on the characteristics of the antennas 3 and 4, the arrangement, and the surrounding space conditions.
Here, the combination A A (f) of the A route is defined as the following formula (1).
S A (f) = s A (f) exp (jφ A (f)) (1)
In Equation (1), f is the frequency, s A (f) is the amplitude of coupling at the frequency f of the A route, and φ A (f) is the phase of coupling at the frequency f of the A route.
J is an imaginary unit, and j 2 = −1. The unit of phase is (°).
 一方、Bルートの結合は、振幅位相調整回路5の設計値によって様々に変わる。
 ここでは、Bルートの結合S(f)を下記の式(2)のように定義する。
 S(f)=s(f)exp(jφ(f))        (2)
 式(2)において、fは周波数、s(f)はBルートの周波数fにおける結合の振幅、φ(f)はBルートの周波数fにおける結合の位相である。
On the other hand, the coupling of the B route varies depending on the design value of the amplitude / phase adjustment circuit 5.
Here, the combination S B (f) of the B route is defined as the following equation (2).
S B (f) = s B (f) exp (jφ B (f)) (2)
In equation (2), f is the frequency, s B (f) is the amplitude of coupling at the frequency f of the B route, and φ B (f) is the phase of coupling at the frequency f of the B route.
 ここで、使用周波数帯域の全体に亘って、Bルートの結合がAルートの結合と等振幅逆位相となるように、振幅位相調整回路5が設計された場合、下記の式(3)に示すような関係が成立する。
 S(f)=s(f)exp(jφ(f))
      =s(f)exp(j(φ(f)-180°))  (3)
 したがって、上記のように、振幅位相調整回路5が設計された場合、分配回路2において、Aルートの結合S(f)とBルートの結合S(f)を合成すると、下記の式(4)に示すように、その合成結果が0になる。
 S(f)+S(f)
 =s(f){exp(jφ(f))+exp(j(φ(f)-180°))}
 =0             (4)
Here, when the amplitude phase adjustment circuit 5 is designed so that the coupling of the B route has the same amplitude opposite phase as the coupling of the A route over the entire use frequency band, the following expression (3) is given. Such a relationship is established.
S B (f) = s B (f) exp (jφ B (f))
= S A (f) exp (j (φ A (f) −180 °)) (3)
Therefore, when the amplitude / phase adjustment circuit 5 is designed as described above, the combination of the A route coupling S A (f) and the B route coupling S B (f) is synthesized in the distribution circuit 2 as follows: As shown in 4), the synthesis result is zero.
S A (f) + S B (f)
= S A (f) {exp (jφ A (f)) + exp (j (φ A (f) −180 °))}
= 0 (4)
 この結果は、入出力端子11と入出力端子21間の結合が0になっていることを示している。
 したがって、使用周波数帯域の全体に亘って、Bルートの結合がAルートの結合と等振幅逆位相となるように、振幅位相調整回路5が設計された場合、入出力端子11と入出力端子21間の結合をほぼ0に低減することができる。
This result indicates that the coupling between the input / output terminal 11 and the input / output terminal 21 is zero.
Therefore, when the amplitude phase adjustment circuit 5 is designed so that the coupling of the B route has the same amplitude opposite phase as that of the coupling of the A route over the entire use frequency band, the input / output terminal 11 and the input / output terminal 21. The coupling between them can be reduced to almost zero.
 図2は振幅位相調整回路5の構成例を示しているが、伝送線路31に対してシャントに接続された並列共振回路32は、バンドパスフィルタとして働くことが知られている。
 並列共振回路32のキャパシタ32aのキャパシタンスをCp(F)、インダクタ32bのインダクタンスをLp(H)とすると、並列共振回路32の共振周波数frと、Cp,Lpの関係は、下記の式(5)のように表される。
 Lp=1/((2×fr×π)Cp)            (5)
 また、共振の鋭さを表すQ値は、伝送線路31の特性インピーダンスをRとすると、下記の式(6)のように表される。
 Q=R/(2×π×fr×Lp)=2×π×fr×Cp×R   (6)
FIG. 2 shows a configuration example of the amplitude / phase adjustment circuit 5, but it is known that the parallel resonance circuit 32 connected to the transmission line 31 in a shunt acts as a band-pass filter.
When the capacitance of the capacitor 32a of the parallel resonance circuit 32 is Cp (F) and the inductance of the inductor 32b is Lp (H), the relationship between the resonance frequency fr of the parallel resonance circuit 32 and Cp, Lp is expressed by the following equation (5). It is expressed as
Lp = 1 / ((2 × fr × π) 2 Cp) (5)
Further, the Q value representing the sharpness of resonance is represented by the following equation (6), where R is the characteristic impedance of the transmission line 31.
Q = R / (2 × π × fr × Lp) = 2 × π × fr × Cp × R (6)
 アンテナ3,4と空間を介するAルートの結合は、一般的にバンドパス特性を有するため、並列共振回路32の共振周波数frとQ値を適切に設定すれば、Aルートの結合S(f)とBルートの結合S(f)をほぼ同一にすることができる。
 例えば、並列共振回路32の共振周波数frとして、Aルートの結合S(f)が使用周波数帯域内で最大となる周波数fAmaxに設定することが考えられる。
 また、並列共振回路32の共振周波数frとして、使用周波数帯域の中心周波数に設定することも考えられる。
The coupling of the A route via the antennas 3 and 4 and the space generally has bandpass characteristics. Therefore, if the resonant frequency fr and Q value of the parallel resonant circuit 32 are appropriately set, the coupling of the A route S A (f ) And the B route combination S B (f) can be made substantially the same.
For example, it is conceivable that the resonance frequency fr of the parallel resonance circuit 32 is set to a frequency f Amax at which the coupling A A (f) of the A route becomes maximum within the use frequency band.
It is also conceivable that the resonance frequency fr of the parallel resonance circuit 32 is set to the center frequency of the used frequency band.
 使用周波数帯域の上限をf、下限をfとして、結合振幅差Δs(f)を下記の式(7)のように定義する。
 Δs(f)=s(fr)-s(f)            (7)
 この場合、並列共振回路32のQ値として、例えば、Δs(f)=Δs(f)、Δs(f)=Δs(f)を満足するように決定することが考えられる。
 また、並列共振回路32の通過振幅特性sLPF(f)の変化がs(f)と最も近くなるQ値を最小二乗法などで探す方法も考えられる。
 もちろん、並列共振回路32の構成のし易さやs(f)の分布など、その他の要望を勘案して、Lp,Cpの値を設計者が適切に選択しても構わない。
The coupling amplitude difference Δs (f) is defined as in the following equation (7), where the upper limit of the use frequency band is f H and the lower limit is f L.
Δs (f) = s (fr) −s (f) (7)
In this case, the Q value of the parallel resonance circuit 32 is determined so as to satisfy, for example, Δs A (f H ) = Δs B (f H ), Δs A (f L ) = Δs B (f L ). Conceivable.
Further, a method of searching for the Q value at which the change of the pass amplitude characteristic s LPF (f) of the parallel resonance circuit 32 is closest to s A (f) can be considered by the least square method or the like.
Of course, the designer may appropriately select the values of Lp and Cp in consideration of other requirements such as the ease of configuration of the parallel resonant circuit 32 and the distribution of s A (f).
 図5は伝送線路31に対してシャントに接続された並列共振回路32の通過特性の一例を示す説明図である。
 図5の例では、並列共振回路32の共振周波数frを使用周波数帯域内の最大周波数fAmaxに一致させるとともに、Q値を59.7に設定している。伝送線路31の特性インピーダンスRは50Ωである。
 図5より、使用周波数帯域内における通過振幅特性sLPF(f)の変化の仕方が、図3に示されているAルートの結合S(f)の変化の仕方に近いことが確認される。
 ただし、通過振幅特性sLPF(f)の絶対値と、Aルートの結合S(f)の絶対値は、分配回路1,2の特性によって調整すればよく、ここでは使用周波数帯域内での変化の仕方のみを一致させればよい。
 なお、並列共振回路32が伝送線路31にシャントに接続された際の通過位相特性φLPF(f)は図6のようになる。
FIG. 5 is an explanatory diagram showing an example of the pass characteristics of the parallel resonant circuit 32 connected to the transmission line 31 in a shunt.
In the example of FIG. 5, the resonance frequency fr of the parallel resonance circuit 32 is made to coincide with the maximum frequency f Amax within the use frequency band, and the Q value is set to 59.7. The characteristic impedance R of the transmission line 31 is 50Ω.
From FIG. 5, it is confirmed that the way of changing the pass amplitude characteristic s LPF (f) within the used frequency band is close to the way of changing the coupling A A (f) of the A route shown in FIG. .
However, the absolute value of the pass amplitude characteristic s LPF (f) and the absolute value of the coupling A A (f) of the A route may be adjusted according to the characteristics of the distribution circuits 1 and 2. Only the way of change needs to be matched.
The passing phase characteristic φ LPF (f) when the parallel resonant circuit 32 is connected to the transmission line 31 in a shunt is as shown in FIG.
 次に、分配回路1及び分配回路2における高周波信号の分配比の決定方法について説明する。
 ここでは、分配回路1において、入出力端子11から入出力端子13への通過振幅をP(dB)、入出力端子11から入出力端子12への通過振幅をP(dB)とする。
 また、分配回路2において、入出力端子21から入出力端子23への通過振幅をP(dB)、入出力端子21から入出力端子22への通過振幅をP(dB)とする。
 なお、分配回路1,2における端子間の通過特性は対称の関係にあり、例えば、入出力端子13から入出力端子11への通過振幅もP(dB)であり、入出力端子23から入出力端子21への通過振幅もP(dB)である。
Next, a method for determining the distribution ratio of high-frequency signals in the distribution circuit 1 and the distribution circuit 2 will be described.
Here, in the distribution circuit 1, the passing amplitude from the input / output terminal 11 to the input / output terminal 13 is P 1 (dB), and the passing amplitude from the input / output terminal 11 to the input / output terminal 12 is P 2 (dB).
In the distribution circuit 2, let the passing amplitude from the input / output terminal 21 to the input / output terminal 23 be P 1 (dB), and let the passing amplitude from the input / output terminal 21 to the input / output terminal 22 be P 2 (dB).
Note that the pass characteristics between the terminals in the distribution circuits 1 and 2 are symmetrical. For example, the pass amplitude from the input / output terminal 13 to the input / output terminal 11 is also P 1 (dB). The passing amplitude to the output terminal 21 is also P 1 (dB).
 使用周波数帯域の全体に亘ってAルートの結合S(f)とBルートの結合S(f)をほぼ同振幅とするために、例えば、下記の式(8)(9)を満足するように分配比を決定することが考えられる。

Figure JPOXMLDOC01-appb-I000001


Figure JPOXMLDOC01-appb-I000002
 分配回路1,2の分配比と、伝送線路31に対してシャントに接続された並列共振回路32の通過振幅特性より、Bルートの結合S(f)が決定される。
To substantially the same amplitude coupling S B (f) of the coupling S A (f) and B routes A route throughout the frequency band, for example, to satisfy the equation (8) (9) below Thus, it is conceivable to determine the distribution ratio.

Figure JPOXMLDOC01-appb-I000001


Figure JPOXMLDOC01-appb-I000002
The B route coupling S B (f) is determined from the distribution ratio of the distribution circuits 1 and 2 and the pass amplitude characteristics of the parallel resonant circuit 32 connected to the transmission line 31 in a shunt.
 使用周波数帯域の全体に亘ってAルートの結合位相φ(f)とBルートの結合位相φ(f)を一致させるためには、使用周波数帯域の全体に亘って、下記の式(10)を満足するように、振幅位相調整回路5が設計されている必要がある。
 φ(f)=φ(f)-180°            (10)
To match the throughout the frequency band A route combined phase phi A (f) and B routes combined phase phi B (f) is over the entire frequency band, the following equation (10 The amplitude / phase adjustment circuit 5 must be designed so as to satisfy (2).
φ B (f) = φ A (f) −180 ° (10)
 以下では、分配回路1において、入出力端子11から入出力端子13への通過位相特性であるφ11-13(f)が0、分配回路2において、入出力端子23から入出力端子21への通過位相特性であるφ23-21(f)が0であるとして説明を行うが、これらが値を持つ場合も同様に考えることができる。
 通過位相特性φ11-13(f),φ23-21(f)が0である場合、振幅位相調整回路5の通過位相特性φ(f)と、Bルートの結合位相φ(f)とが等しくなるので、下記の式(11)を満足するように、振幅位相調整回路5を設計すればよいことになる。
 φ(f)=φ(f)=φ(f)+180°        (11)
Hereinafter, in distribution circuit 1, φ 11-13 (f), which is a passing phase characteristic from input / output terminal 11 to input / output terminal 13, is 0, and in distribution circuit 2, input / output terminal 23 is connected to input / output terminal 21. The description will be made assuming that φ 23-21 (f), which is the passing phase characteristic, is 0, but the same can be considered when these have values.
When the passing phase characteristics φ 11-13 (f) and φ 23-21 (f) are 0, the passing phase characteristics φ p (f) of the amplitude phase adjusting circuit 5 and the B phase combined phase φ B (f) Therefore, the amplitude phase adjustment circuit 5 may be designed so as to satisfy the following expression (11).
φ p (f) = φ B (f) = φ A (f) + 180 ° (11)
 次に、使用周波数帯域内の最大周波数fAmaxでの伝送線路31の電気長θを決定する方法の一例を説明する。
 伝送線路31の電気長θは、以下の条件(1)(2)を満足するように設定する。
(1)使用周波数帯域内の最大周波数fAmaxにおいて、Aルートの結合位相φ(fAmax)と、Bルートの結合位相φ(fAmax)がほぼ逆相となる。
(2)Δφ=φ(f)-φ(f)がΔφ=φ(f)-φ(f)とほぼ等しくなる。
 よって、下記の式(12)から、上記の条件(1)(2)を満足するような伝送線路31の電気長θを決定することができる。

Figure JPOXMLDOC01-appb-I000003
 式(12)において、
   ΔφLPF=-(φLPF(f)-φLPF(f))
Figure JPOXMLDOC01-appb-I000004
Next, an example of a method for determining the electrical length θ of the transmission line 31 at the maximum frequency f Amax within the use frequency band will be described.
The electrical length θ of the transmission line 31 is set so as to satisfy the following conditions (1) and (2).
(1) at the maximum frequency f Amax in the used frequency band, A route combined phase phi A and (f Amax), combined phase phi B of Route B (f Amax) is substantially opposite phase.
(2) Δφ A = φ A (f L ) −φ A (f H ) is substantially equal to Δφ B = φ B (f L ) −φ B (f H ).
Therefore, the electrical length θ of the transmission line 31 that satisfies the above conditions (1) and (2) can be determined from the following equation (12).

Figure JPOXMLDOC01-appb-I000003
In equation (12),
Δφ LPF = − (φ LPF (f H ) −φ LPF (f L ))
Figure JPOXMLDOC01-appb-I000004
 図7は使用周波数帯域内の最大周波数fAmaxで電気長444°の長さを有する伝送線路31に対して、図5の特性を有する並列共振回路32をシャントに接続した場合の振幅位相調整回路5の通過位相特性φ(f)を示す説明図である。
 振幅位相調整回路5の通過位相特性φ(f)は、図4に示しているAルートの結合位相φ(f)と比較すると、使用周波数帯域の全体に亘って、ほぼ180°位相が異なっていることが分かる。
FIG. 7 shows an amplitude and phase adjustment circuit when a parallel resonant circuit 32 having the characteristics shown in FIG. 5 is connected to a shunt with respect to a transmission line 31 having an electrical length of 444 ° at the maximum frequency f Amax within the used frequency band. FIG. 5 is an explanatory diagram showing a pass phase characteristic φ p (f) of FIG.
Compared with the combined phase φ A (f) of the A route shown in FIG. 4, the passing phase characteristic φ p (f) of the amplitude phase adjustment circuit 5 has a phase of almost 180 ° over the entire use frequency band. You can see that they are different.
 以上のように設計された分配回路1、分配回路2及び振幅位相調整回路5を組み合わせることで、使用周波数帯域内で入出力端子11と入出力端子21間の結合を低減することができる。
 図8は実施の形態1による減結合回路の効果を示す説明図である。
 図8では、図3に示しているアンテナ単体の特性も一緒に記述している。
 本発明を適用することで、使用周波数帯域内での入出力端子間の結合の最悪値が、減結合回路が無い場合と比較して、約-20dB(100分の1)となっており、使用周波数帯域の全体に亘って結合を低減するという本発明の効果が確認される。
By combining the distribution circuit 1, the distribution circuit 2, and the amplitude phase adjustment circuit 5 designed as described above, the coupling between the input / output terminal 11 and the input / output terminal 21 can be reduced within the used frequency band.
FIG. 8 is an explanatory diagram showing the effect of the decoupling circuit according to the first embodiment.
In FIG. 8, the characteristics of the single antenna shown in FIG. 3 are also described.
By applying the present invention, the worst value of the coupling between the input and output terminals within the used frequency band is about −20 dB (1/100) compared to the case without the decoupling circuit. The effect of the present invention to reduce the coupling over the entire use frequency band is confirmed.
 以上で明らかなように、この実施の形態1によれば、AルートとBルートとの結合振幅が等しくなるように、分配回路1,2における信号分配比及び振幅位相調整回路5における振幅調整量が設定され、AルートとBルートとの結合位相が逆位相になるように、振幅位相調整回路5における位相調整量が設定されているように構成したので、使用周波数帯域内で、アンテナ間の結合振幅及び結合位相が大きく変化する場合でも、使用周波数帯域の全体に亘って入出力端子11と入出力端子21間の結合を低減することができる効果を奏する。
 なお、分配回路1,2及び振幅位相調整回路5の全てを同一基板上に作製することは特に困難ではない。また、振幅位相調整回路5が共振回路を実装しており、通過振幅及び通過位相差の変化が大きくなるため、回路の小型化を図ることができる。
As apparent from the above, according to the first embodiment, the signal distribution ratio in the distribution circuits 1 and 2 and the amplitude adjustment amount in the amplitude phase adjustment circuit 5 are set so that the coupling amplitudes of the A route and the B route become equal. Is set, and the phase adjustment amount in the amplitude phase adjustment circuit 5 is set so that the coupling phase of the A route and the B route is opposite to each other. Even when the coupling amplitude and the coupling phase change greatly, the coupling between the input / output terminal 11 and the input / output terminal 21 can be reduced over the entire use frequency band.
It is not particularly difficult to manufacture all of the distribution circuits 1 and 2 and the amplitude / phase adjustment circuit 5 on the same substrate. In addition, since the amplitude phase adjustment circuit 5 is mounted with a resonance circuit and the change in the passing amplitude and the passing phase difference becomes large, the circuit can be miniaturized.
 この実施の形態1では、1つの並列共振回路が伝送線路31にシャントに接続されている振幅位相調整回路5を示したが、振幅位相調整回路5における振幅調整量及び位相調整量が適切に設計されていれば、振幅位相調整回路5は他の構成であってもよい。
 例えば、通過振幅と位相差の変化が極めて急峻な振幅位相調整回路5を構成するには、Q値が極端に高い共振回路が求められる。Q値が極端に高い共振回路を実現することは困難であるが、複数の共振回路を組み合わせることで、同様の通過特性となる振幅位相調整回路5を構成することができる。 
In the first embodiment, the amplitude phase adjustment circuit 5 in which one parallel resonance circuit is connected to the transmission line 31 in a shunt is shown, but the amplitude adjustment amount and the phase adjustment amount in the amplitude phase adjustment circuit 5 are appropriately designed. If so, the amplitude / phase adjustment circuit 5 may have another configuration.
For example, in order to configure the amplitude phase adjustment circuit 5 in which the change of the passing amplitude and the phase difference is extremely steep, a resonance circuit having an extremely high Q value is required. Although it is difficult to realize a resonance circuit having an extremely high Q value, an amplitude / phase adjustment circuit 5 having similar pass characteristics can be configured by combining a plurality of resonance circuits.
 また、振幅位相調整回路5の別の構成として、図9に示すように、直列共振回路35が伝送線路33,34に直列に接続されている振幅位相調整回路5であってもよい。
 図9の例では、直列共振回路35は、インダクタ35aとキャパシタ35bが直列に接続されて構成されている。
 振幅位相調整回路5を図9のように構成する場合も、直列共振回路35の共振周波数とQ値を適切に設定すれば、Aルートの結合S(f)とBルートの結合S(f)をほぼ同一にすることができる。
Further, as another configuration of the amplitude phase adjustment circuit 5, as shown in FIG. 9, an amplitude phase adjustment circuit 5 in which a series resonance circuit 35 is connected in series to the transmission lines 33 and 34 may be used.
In the example of FIG. 9, the series resonance circuit 35 is configured by connecting an inductor 35a and a capacitor 35b in series.
Even when the amplitude / phase adjusting circuit 5 is configured as shown in FIG. 9, if the resonance frequency and Q value of the series resonance circuit 35 are set appropriately, the A route coupling S A (f) and the B route coupling S B ( f) can be made substantially identical.
 直列共振回路35のインダクタ35aのインダクタンスをLs(H)、キャパシタ35bのキャパシタンスをCs(F)とすると、直列共振回路35の共振周波数frと、Cs,Lsの関係は、下記の式(13)のように表される。
 Ls=1/((2×fr×π)Cs)          (13)
 また、共振の鋭さを表すQ値は、伝送線路33,34の特性インピーダンスをRとすると、下記の式(14)のように表される。
 Q=(2×π×fr×Ls)/R=1/(2×π×fr×Cs×R)
                             (14)
 なお、振幅位相調整回路5は、並列共振回路32と直列共振回路35の双方を備えるものであってもよい。
When the inductance of the inductor 35a of the series resonance circuit 35 is Ls (H) and the capacitance of the capacitor 35b is Cs (F), the relationship between the resonance frequency fr of the series resonance circuit 35 and Cs, Ls is expressed by the following equation (13). It is expressed as
Ls = 1 / ((2 × fr × π) 2 Cs) (13)
Further, the Q value representing the sharpness of resonance is represented by the following equation (14), where R is the characteristic impedance of the transmission lines 33 and 34.
Q = (2 × π × fr × Ls) / R = 1 / (2 × π × fr × Cs × R)
(14)
The amplitude / phase adjustment circuit 5 may include both the parallel resonance circuit 32 and the series resonance circuit 35.
実施の形態2.
 図10はこの発明の実施の形態2による減結合回路を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 第1の信号分配手段である方向性結合器6(第1の方向性結合器)は入出力端子11、入出力端子12、入出力端子13及び入出力端子14と接続されており、入出力端子11から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子12に出力して、分配後の他方の高周波信号を入出力端子13に出力する。入出力端子14は終端抵抗41を介してGND導体43に接続されている。
 第2の信号分配手段である方向性結合器7(第2の方向性結合器)は入出力端子21、入出力端子22、入出力端子23及び入出力端子24と接続されており、入出力端子21から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子22に出力して、分配後の他方の高周波信号を入出力端子23に出力する。入出力端子24は終端抵抗42を介してGND導体43に接続されている。
Embodiment 2. FIG.
10 is a block diagram showing a decoupling circuit according to Embodiment 2 of the present invention. In the figure, the same reference numerals as those in FIG.
A directional coupler 6 (first directional coupler) which is a first signal distribution means is connected to the input / output terminal 11, the input / output terminal 12, the input / output terminal 13 and the input / output terminal 14. The high-frequency signal input from the terminal 11 is divided into two, one high-frequency signal after distribution is output to the input / output terminal 12, and the other high-frequency signal after distribution is output to the input-output terminal 13. The input / output terminal 14 is connected to the GND conductor 43 via a termination resistor 41.
The directional coupler 7 (second directional coupler) as the second signal distribution means is connected to the input / output terminal 21, the input / output terminal 22, the input / output terminal 23, and the input / output terminal 24. The high-frequency signal input from the terminal 21 is divided into two, one high-frequency signal after distribution is output to the input / output terminal 22, and the other high-frequency signal after distribution is output to the input-output terminal 23. The input / output terminal 24 is connected to the GND conductor 43 via a termination resistor 42.
 上記実施の形態1では、分配回路1,2が入出力端子11,21から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子12,22に出力して、分配後の他方の高周波信号を入出力端子13,23に出力するものを示したが、図10に示すように、方向性結合器6,7が入出力端子11,21から入力された高周波信号を2分配し、分配後の一方の高周波信号を入出力端子12,22に出力して、分配後の他方の高周波信号を入出力端子13,23に出力するようにしてもよい。 In the first embodiment, the distribution circuits 1 and 2 distribute the high-frequency signal input from the input / output terminals 11 and 21 and output one of the distributed high-frequency signals to the input / output terminals 12 and 22 for distribution. The other high-frequency signal is output to the input / output terminals 13 and 23. As shown in FIG. 10, the directional couplers 6 and 7 receive the high-frequency signal input from the input / output terminals 11 and 21, respectively. Alternatively, the divided high frequency signal may be output to the input / output terminals 12 and 22, and the other high frequency signal after distribution may be output to the input / output terminals 13 and 23.
 方向性結合器6では、入出力端子11と入出力端子14の結合量が非常に小さく、入出力端子12と入出力端子13の結合量が非常に小さくなっている。
 また、方向性結合器7では、入出力端子21と入出力端子24の結合量が非常に小さく、入出力端子22と入出力端子23の結合量が非常に小さくなっている。
 このため、方向性結合器6において、入出力端子12と入出力端子13間のアイソレーションが確保され、方向性結合器7において、入出力端子22と入出力端子23間のアイソレーションが確保されるので、分配回路1,2と同様の方法で、分配比などを容易に設計することができる。
 なお、終端抵抗41,42の抵抗値は、一般に、方向性結合器6,7を設計する規格化インピーダンスと同一とするが(例えば、50Ω)、その抵抗値は、これに限定するものではない。 
In the directional coupler 6, the coupling amount between the input / output terminal 11 and the input / output terminal 14 is very small, and the coupling amount between the input / output terminal 12 and the input / output terminal 13 is very small.
In the directional coupler 7, the coupling amount between the input / output terminal 21 and the input / output terminal 24 is very small, and the coupling amount between the input / output terminal 22 and the input / output terminal 23 is very small.
Therefore, in the directional coupler 6, isolation between the input / output terminal 12 and the input / output terminal 13 is ensured, and in the directional coupler 7, isolation between the input / output terminal 22 and the input / output terminal 23 is ensured. Therefore, the distribution ratio and the like can be easily designed by the same method as the distribution circuits 1 and 2.
The resistance values of the termination resistors 41 and 42 are generally the same as the standardized impedance for designing the directional couplers 6 and 7 (for example, 50Ω), but the resistance values are not limited to this. .
 この実施の形態2によれば、上記実施の形態1と同様に、使用周波数帯域内で、アンテナ間の結合振幅及び結合位相が大きく変化する場合でも、使用周波数帯域の全体に亘って入出力端子11と入出力端子21間の結合を低減することができる効果を奏する。また、設計が容易な減結合回路が得られる効果を奏する。 According to the second embodiment, as in the first embodiment, even when the coupling amplitude and the coupling phase between the antennas greatly change within the use frequency band, the input / output terminals over the entire use frequency band. 11 and the input / output terminal 21 can be reduced. In addition, it is possible to obtain a decoupling circuit that is easy to design.
実施の形態3.
 上記実施の形態1では、Aルートの結合S(f)とBルートの結合S(f)が一致するように並列共振回路32のQ値を設定するものを示したが、その際、振幅位相調整回路5の通過位相特性φ(f)と、Aルートの結合位相φ(f)とが等しくなるように、並列共振回路32のQ値を設定するようにしてもよい。
 並列共振回路32のQ値が、φ(f)=φ(f)となるように設定する場合、伝送線路31の電気長θ(f)は、例えば、下記の式(15)で決定される。ただし、式(15)では、φ(fr)+180°とφ(fr)を一致させているが、基準とする周波数は、共振周波数frに限るものではない。
 φ(fr)=θ(fr)=φ(fr)+180°   (15)
 φ(f)の範囲は、[-180°,180°]であるため、θ(f)の範囲は[0°,360°]となる。
Embodiment 3 FIG.
In the first embodiment, the Q value of the parallel resonant circuit 32 is set so that the coupling S A (f) of the A route matches the coupling S B (f) of the B route. The Q value of the parallel resonance circuit 32 may be set so that the passing phase characteristic φ p (f) of the amplitude phase adjustment circuit 5 is equal to the coupling phase φ A (f) of the A route.
When the Q value of the parallel resonant circuit 32 is set to be φ A (f) = φ p (f), the electrical length θ (f) of the transmission line 31 is determined by the following equation (15), for example. Is done. However, in Formula (15), φ A (fr) + 180 ° and φ B (fr) are matched, but the reference frequency is not limited to the resonance frequency fr.
φ B (fr) = θ (fr) = φ A (fr) + 180 ° (15)
Since the range of φ A (f) is [−180 °, 180 °], the range of θ (f) is [0 °, 360 °].
 以上のように、振幅位相調整回路5の通過位相特性φ(f)と、Aルートの結合位相φ(f)とが等しくなるように、並列共振回路32のQ値を設定することで、伝送線路31の電気長θ(f)を最大でも360°とすることができる。
 このことにより、広帯域に亘ってアンテナ間の結合を低減することができるとともに、小型な減結合回路が得られる効果が得られる。
As described above, the Q value of the parallel resonance circuit 32 is set so that the passing phase characteristic φ p (f) of the amplitude phase adjustment circuit 5 is equal to the coupling phase φ A (f) of the A route. The electrical length θ (f) of the transmission line 31 can be 360 ° at the maximum.
As a result, it is possible to reduce the coupling between the antennas over a wide band and to obtain an effect of obtaining a small decoupling circuit.
実施の形態4.
 図11はこの発明の実施の形態4による減結合回路の振幅位相調整回路5を示す構成図であり、図において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 ショートスタブ36は伝送線路31にシャントに接続されている分布定数線路であり、伝送線路31に対する並列共振回路を実現している。
 この実施の形態4では、ショートスタブ36が、多層基板の内層に作製されたトリプレート線路で実現されるものを想定しているが、ショートスタブ36の作製方法は、これに限定されるものではなく、例えば、基板上のマイクロストリップ線路で実現されるものであってもよい。
Embodiment 4 FIG.
FIG. 11 is a block diagram showing an amplitude / phase adjustment circuit 5 of a decoupling circuit according to Embodiment 4 of the present invention. In the figure, the same reference numerals as those in FIG.
The short stub 36 is a distributed constant line connected to the transmission line 31 in a shunt, and realizes a parallel resonance circuit for the transmission line 31.
In the fourth embodiment, it is assumed that the short stub 36 is realized by a triplate line formed in the inner layer of the multilayer substrate. However, the method of manufacturing the short stub 36 is not limited to this. For example, it may be realized by a microstrip line on a substrate.
 上記実施の形態1では、Aルートの結合S(f)とBルートの結合S(f)が一致するように並列共振回路32のQ値を設定するものを示したが、並列共振回路32のQ値によっては、キャパシタ32aやインダクタ32bの素子値を実現することが困難な場合があり、このような場合には、集中定数素子であるキャパシタ32aやインダクタ32bによって、並列共振回路32を構成することが困難であることが予想される。
 一方、分布定数線路によって構成されたスタブ構造は、共振回路として利用できることが知られている。 
In the first embodiment, the Q value of the parallel resonance circuit 32 is set so that the coupling S A (f) of the A route matches the coupling S B (f) of the B route. Depending on the Q value of 32, it may be difficult to realize the element values of the capacitor 32a and the inductor 32b. In such a case, the parallel resonant circuit 32 is formed by the capacitor 32a and the inductor 32b which are lumped elements. It is expected to be difficult to construct.
On the other hand, it is known that a stub structure constituted by distributed constant lines can be used as a resonance circuit.
 そこで、この実施の形態4では、伝送線路31に対してショートスタブ36をシャントに接続することで、振幅位相調整回路5を構成するようにしている。
 図11に示すように、ショートスタブ36が並列共振回路を担うことで、集中定数素子の値による制限を受けることなく、Q値を自由に決定することができる。
 そのため、Aルートの結合S(f)とBルートの結合S(f)をより厳密に一致させることができる効果が得られる。
Therefore, in the fourth embodiment, the amplitude / phase adjusting circuit 5 is configured by connecting the short stub 36 to the shunt with respect to the transmission line 31.
As shown in FIG. 11, the short stub 36 serves as a parallel resonant circuit, so that the Q value can be freely determined without being restricted by the value of the lumped element.
Therefore, effects that can be matched coupling S A of Route A a (f) and B root of binding S B (f) more precisely can be obtained.
 ショートスタブ36の作製方法は、上述したように、特に問わないが、トリプレート線路で実現する場合、マイクロストリップ線路で実現する場合よりもスタブの特性インピーダンスを下げることができるので、より高いQ値の並列共振回路を作ることができる。
 また、多層基板を用いれば、複数のスタブを重ねて配置することができるので、回路の小面積化を実現することができる。
As described above, the method for producing the short stub 36 is not particularly limited. However, when realized with a triplate line, the characteristic impedance of the stub can be lowered as compared with the case of realizing with a microstrip line. The parallel resonant circuit can be made.
In addition, if a multilayer substrate is used, a plurality of stubs can be arranged in an overlapping manner, so that the circuit area can be reduced.
 図11の例では、伝送線路31に対してショートスタブ36をシャントに接続しているが、ショートスタブ36の代わりに、オープンスタブを用いてもよい。
 また、複数の共振回路を用いる場合、一部又は全部の共振回路をスタブによって実現するようにしてもよい。
 なお、この実施の形態4では、分布定数線路によって構成されたスタブ構造を並列共振回路32として利用するものを示したが、分布定数線路によって構成されたスタブ構造を直列共振回路35として利用するようにしてもよい。
In the example of FIG. 11, the short stub 36 is connected to the shunt with respect to the transmission line 31, but an open stub may be used instead of the short stub 36.
When a plurality of resonance circuits are used, some or all of the resonance circuits may be realized by stubs.
In the fourth embodiment, the stub structure constituted by the distributed constant line is used as the parallel resonant circuit 32. However, the stub structure constituted by the distributed constant line is used as the series resonant circuit 35. It may be.
実施の形態5.
 図12はこの発明の実施の形態5による減結合回路の振幅位相調整回路5を示す構成図であり、図において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 メアンダライン37は一端が入出力端子13と接続され、他端が入出力端子23と接続されている伝送線路である。
Embodiment 5 FIG.
FIG. 12 is a block diagram showing the amplitude phase adjustment circuit 5 of the decoupling circuit according to the fifth embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
The meander line 37 is a transmission line having one end connected to the input / output terminal 13 and the other end connected to the input / output terminal 23.
 上記実施の形態1では、入出力端子13と入出力端子23の間を伝送線路31で接続しているものを示したが、図12に示すように、伝送線路31をメアンダライン37で構成してもよい。
 伝送線路31をメアンダライン37で構成することで、伝送線路の小型化を図ることができる効果を奏する。
In the first embodiment, the input / output terminal 13 and the input / output terminal 23 are connected by the transmission line 31. However, the transmission line 31 is configured by a meander line 37 as shown in FIG. May be.
By configuring the transmission line 31 with the meander line 37, the transmission line can be downsized.
 ここでは、図2の振幅位相調整回路5における伝送線路31をメアンダライン37で構成する例を示しているが、図9の振幅位相調整回路5における伝送線路33,34をメアンダライン37で構成するようにしてもよいし、図11の振幅位相調整回路5における伝送線路31をメアンダライン37で構成するようにしてもよい。 Here, an example is shown in which the transmission line 31 in the amplitude / phase adjustment circuit 5 of FIG. 2 is configured by the meander line 37, but the transmission lines 33 and 34 in the amplitude / phase adjustment circuit 5 of FIG. 9 are configured by the meander line 37. Alternatively, the transmission line 31 in the amplitude / phase adjustment circuit 5 of FIG. 11 may be configured by the meander line 37.
実施の形態6.
 図13はこの発明の実施の形態6による減結合回路の振幅位相調整回路5を示す構成図であり、図において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 図13の例では、直列に接続されている複数の集中定数素子51(例えば、キャパシタ、インダクタ)と、集中定数素子51とシャントに接続されている複数の集中定数素子52(例えば、キャパシタ、インダクタ)とからT型の移相回路が構成されており、複数の移相回路が伝送線路を担っている。
 このように、複数の移相回路を組み合わせることで、移相量を大きくすることができる。
 図13では、集中定数素子51,52のみで移相回路を構成しているので、回路の小型化を図ることができる。
 また、図13では、T型の移相回路を示しているが、Π型の移相回路であってもよい。
Embodiment 6 FIG.
FIG. 13 is a block diagram showing the amplitude phase adjustment circuit 5 of the decoupling circuit according to the sixth embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
In the example of FIG. 13, a plurality of lumped constant elements 51 (for example, capacitors and inductors) connected in series and a plurality of lumped constant elements 52 (for example, capacitors and inductors) connected to the lumped constant elements 51 and the shunt are used. ) To form a T-type phase shift circuit, and a plurality of phase shift circuits carry transmission lines.
Thus, the amount of phase shift can be increased by combining a plurality of phase shift circuits.
In FIG. 13, since the phase shift circuit is configured only by the lumped constant elements 51 and 52, the circuit can be reduced in size.
Further, although a T-type phase shift circuit is shown in FIG. 13, it may be a saddle type phase shift circuit.
 上記実施の形態1~6では、入出力端子12,22に対してアンテナ4,5が接続されており、アンテナ間の結合を低減する例を示したが、アンテナ間の結合を低減するものに限るものではなく、何らかの伝搬媒質を介して、入出力端子11と入出力端子21の間に結合が存在する場合、本発明を適用することで、その結合を低減することができる。  In the first to sixth embodiments, the antennas 4 and 5 are connected to the input / output terminals 12 and 22, and the example in which the coupling between the antennas is reduced has been described. When the coupling exists between the input / output terminal 11 and the input / output terminal 21 through some propagation medium, the coupling can be reduced by applying the present invention.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明に係る減結合回路は、例えば、2本のアンテナ間の結合を低減することで、ダイバーシチやMIMOの十分な効果を発揮できるようにする必要性が高いものに適している。 The decoupling circuit according to the present invention is suitable, for example, for a circuit that has a high need for enabling sufficient effects of diversity and MIMO by reducing the coupling between two antennas.
 1 分配回路(第1の信号分配手段)、2 分配回路(第2の信号分配手段)、3 アンテナ(第1のアンテナ)、4 アンテナ(第2のアンテナ)、5 振幅位相調整回路(振幅位相調整手段)、6 方向性結合器(第1の方向性結合器、第1の信号分配手段)、7 方向性結合器(第2の方向性結合器、第2の信号分配手段)、11 入出力端子(第1の入出力端子)、12 入出力端子(第2の入出力端子)、13 入出力端子(第3の入出力端子)、14 入出力端子、21 入出力端子(第4の入出力端子)、22 入出力端子(第5の入出力端子)、23 入出力端子(第6の入出力端子)、24 入出力端子、31 伝送線路、32 並列共振回路、32a キャパシタ、32b インダクタ、33,34 伝送線路、35 直列共振回路、35a インダクタ、35b キャパシタ、36 ショートスタブ、37 メアンダライン、41,42 終端抵抗、43 GND導体、51,52 集中定数素子。 1 distribution circuit (first signal distribution means), 2 distribution circuit (second signal distribution means), 3 antenna (first antenna), 4 antenna (second antenna), 5 amplitude phase adjustment circuit (amplitude phase) Adjustment means), 6 directional coupler (first directional coupler, first signal distribution means), 7 directional coupler (second directional coupler, second signal distribution means), 11 input Output terminal (first input / output terminal), 12 Input / output terminal (second input / output terminal), 13 Input / output terminal (third input / output terminal), 14 Input / output terminal, 21 Input / output terminal (fourth Input / output terminal), 22 input / output terminal (fifth input / output terminal), 23 input / output terminal (sixth input / output terminal), 24 input / output terminal, 31 transmission line, 32 parallel resonant circuit, 32a capacitor, 32b inductor 33, 34 Transmission line, 35 Series resonant circuit, 35a inductors, 35b capacitor 36 short stub, 37 meander line, 41 terminating resistor, 43 GND conductor, 51, 52 lumped element.

Claims (11)

  1.  第1の入出力端子から入力された信号を第2及び第3の入出力端子に分配する第1の信号分配手段と、
     第4の入出力端子から入力された信号を第5及び第6の入出力端子に分配する第2の信号分配手段と、
     前記第3の入出力端子と前記第6の入出力端子との間に接続され、前記第1の信号分配手段又は前記第2の信号分配手段により分配された信号の振幅及び位相を調整する振幅位相調整手段とを備え、
     前記第1の入出力端子から前記第2及び第5の入出力端子を通じて前記第4の入出力端子に至る第1の信号経路と、前記第1の入出力端子から前記振幅位相調整手段を通じて前記第4の入出力端子に至る第2の信号経路との結合位相が逆位相になるように、前記振幅位相調整手段における位相調整量が設定されていることを特徴とする減結合回路。
    First signal distribution means for distributing a signal input from the first input / output terminal to the second and third input / output terminals;
    Second signal distribution means for distributing a signal input from the fourth input / output terminal to the fifth and sixth input / output terminals;
    An amplitude which is connected between the third input / output terminal and the sixth input / output terminal and adjusts the amplitude and phase of the signal distributed by the first signal distribution means or the second signal distribution means. Phase adjustment means,
    A first signal path from the first input / output terminal through the second and fifth input / output terminals to the fourth input / output terminal; and from the first input / output terminal through the amplitude phase adjusting means. The decoupling circuit, wherein the phase adjustment amount in the amplitude phase adjusting means is set so that the coupling phase with the second signal path leading to the fourth input / output terminal is opposite in phase.
  2.  前記第1の信号経路と前記第2の信号経路との結合振幅が等しくなるように、前記第1及び第2の信号分配手段における信号分配比及び前記振幅位相調整手段における振幅調整量が設定されていることを特徴とする請求項1記載の減結合回路。 The signal distribution ratio in the first and second signal distribution means and the amplitude adjustment amount in the amplitude phase adjustment means are set so that the coupling amplitudes of the first signal path and the second signal path are equal. The decoupling circuit according to claim 1, wherein:
  3.  前記第1の信号分配手段は、前記第1の入出力端子から入力された信号を2分配し、分配後の一方の信号を前記第2の入出力端子に出力して、分配後の他方の信号を前記第3の入出力端子に出力する分配回路から構成されており、
     前記第2の信号分配手段は、前記第4の入出力端子から入力された信号を2分配し、分配後の一方の信号を前記第5の入出力端子に出力して、分配後の他方の信号を前記第6の入出力端子に出力する分配回路から構成されていることを特徴とする請求項1記載の減結合回路。
    The first signal distribution means distributes a signal input from the first input / output terminal into two, outputs one signal after distribution to the second input / output terminal, and outputs the other signal after distribution to the other A distribution circuit for outputting a signal to the third input / output terminal;
    The second signal distribution means distributes the signal input from the fourth input / output terminal into two, outputs one signal after distribution to the fifth input / output terminal, and outputs the other signal after distribution to the other 2. The decoupling circuit according to claim 1, comprising a distribution circuit that outputs a signal to the sixth input / output terminal.
  4.  前記第1の信号分配手段は、前記第1の入出力端子から入力された信号を2分配し、分配後の一方の信号を前記第2の入出力端子に出力して、分配後の他方の信号を前記第3の入出力端子に出力する第1の方向性結合器から構成されており、
     前記第2の信号分配手段は、前記第4の入出力端子から入力された信号を2分配し、分配後の一方の信号を前記第5の入出力端子に出力して、分配後の他方の信号を前記第6の入出力端子に出力する第2の方向性結合器から構成されており、
     前記第1及び第2の方向性結合器における信号を出力しない端子は接地されていることを特徴とする請求項1記載の減結合回路。
    The first signal distribution means distributes a signal input from the first input / output terminal into two, outputs one signal after distribution to the second input / output terminal, and outputs the other signal after distribution to the other A first directional coupler for outputting a signal to the third input / output terminal;
    The second signal distribution means distributes the signal input from the fourth input / output terminal into two, outputs one signal after distribution to the fifth input / output terminal, and outputs the other signal after distribution to the other A second directional coupler that outputs a signal to the sixth input / output terminal;
    2. The decoupling circuit according to claim 1, wherein a terminal that does not output a signal in the first and second directional couplers is grounded.
  5.  前記振幅位相調整手段は、共振回路と伝送線路から構成されており、
     前記共振回路のQ値が前記第1の信号経路と前記第2の信号経路との結合振幅が等しくなるように設定されており、
     前記伝送線路の長さが前記第1の信号経路と前記第2の信号経路との結合位相が逆位相になるように設定されていることを特徴とする請求項2記載の減結合回路。
    The amplitude phase adjusting means is composed of a resonance circuit and a transmission line,
    The Q value of the resonant circuit is set so that the coupling amplitudes of the first signal path and the second signal path are equal;
    3. The decoupling circuit according to claim 2, wherein the length of the transmission line is set so that a coupling phase between the first signal path and the second signal path is opposite.
  6.  前記共振回路は、前記伝送線路に対してシャントに接続された並列共振回路又は前記伝送線路と直列に接続された直列共振回路であり、前記並列共振回路又は前記直列共振回路が集中定数素子で構成されていることを特徴とする請求項5記載の減結合回路。 The resonant circuit is a parallel resonant circuit connected in a shunt with respect to the transmission line or a series resonant circuit connected in series with the transmission line, and the parallel resonant circuit or the series resonant circuit is configured by a lumped element. 6. The decoupling circuit according to claim 5, wherein the decoupling circuit is provided.
  7.  前記共振回路は、前記伝送線路に対してシャントに接続された並列共振回路又は前記伝送線路と直列に接続された直列共振回路であり、前記並列共振回路又は前記直列共振回路が分布定数線路で構成されていることを特徴とする請求項5記載の減結合回路。 The resonant circuit is a parallel resonant circuit connected in a shunt with respect to the transmission line or a series resonant circuit connected in series with the transmission line, and the parallel resonant circuit or the series resonant circuit is configured by a distributed constant line 6. The decoupling circuit according to claim 5, wherein the decoupling circuit is provided.
  8.  前記分布定数線路は、トリプレート線路からなるスタブで構成されていることを特徴とする請求項7記載の減結合回路。 8. The decoupling circuit according to claim 7, wherein the distributed constant line is composed of a stub made of a triplate line.
  9.  前記伝送線路は、メアンダラインで構成されていることを特徴とする請求項5記載の減結合回路。 6. The decoupling circuit according to claim 5, wherein the transmission line is formed of a meander line.
  10.  前記伝送線路は、集中定数素子からなるT型又はΠ型の移相回路で構成されていることを特徴とする請求項5記載の減結合回路。 6. The decoupling circuit according to claim 5, wherein the transmission line is composed of a T-type or saddle-type phase shift circuit composed of lumped constant elements.
  11.  前記第2の入出力端子には第1のアンテナが接続され、
     前記第5の入出力端子には第2のアンテナが接続されていることを特徴とする請求項1記載の減結合回路。
    A first antenna is connected to the second input / output terminal,
    The decoupling circuit according to claim 1, wherein a second antenna is connected to the fifth input / output terminal.
PCT/JP2013/077792 2013-10-11 2013-10-11 Decoupling circuit WO2015052838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/077792 WO2015052838A1 (en) 2013-10-11 2013-10-11 Decoupling circuit
JP2015541406A JPWO2015052838A1 (en) 2013-10-11 2013-10-11 Decoupling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077792 WO2015052838A1 (en) 2013-10-11 2013-10-11 Decoupling circuit

Publications (1)

Publication Number Publication Date
WO2015052838A1 true WO2015052838A1 (en) 2015-04-16

Family

ID=52812685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077792 WO2015052838A1 (en) 2013-10-11 2013-10-11 Decoupling circuit

Country Status (2)

Country Link
JP (1) JPWO2015052838A1 (en)
WO (1) WO2015052838A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655709A (en) * 2016-01-29 2016-06-08 深圳微迎智科技有限公司 Interference elimination circuit and antenna array
JP6272584B1 (en) * 2017-02-08 2018-01-31 三菱電機株式会社 Decoupling circuit
CN112997359A (en) * 2018-12-17 2021-06-18 华为技术有限公司 Antenna array electromagnetic decoupling method and structure
CN113659337A (en) * 2020-05-12 2021-11-16 西安电子科技大学 Antenna device, electronic apparatus, and decoupling method for antenna device
CN113764888A (en) * 2021-08-09 2021-12-07 荣耀终端有限公司 Antenna combination system and terminal equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197082U (en) * 1986-06-06 1987-12-15
JP2004173113A (en) * 2002-11-21 2004-06-17 Japan Radio Co Ltd Phase adjustment circuit and feedforward amplifier provided with the same
WO2010119717A1 (en) * 2009-04-15 2010-10-21 マークデバイシス株式会社 Frequency-varying complex resonant circuit
US20120207235A1 (en) * 2011-02-11 2012-08-16 Realtek Semiconductor Corp. Signal processing circuit and method thereof
JP2013121129A (en) * 2011-12-08 2013-06-17 Nippon Soken Inc Interference wave suppression device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197082U (en) * 1986-06-06 1987-12-15
JP2004173113A (en) * 2002-11-21 2004-06-17 Japan Radio Co Ltd Phase adjustment circuit and feedforward amplifier provided with the same
WO2010119717A1 (en) * 2009-04-15 2010-10-21 マークデバイシス株式会社 Frequency-varying complex resonant circuit
US20120207235A1 (en) * 2011-02-11 2012-08-16 Realtek Semiconductor Corp. Signal processing circuit and method thereof
JP2013121129A (en) * 2011-12-08 2013-06-17 Nippon Soken Inc Interference wave suppression device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655709A (en) * 2016-01-29 2016-06-08 深圳微迎智科技有限公司 Interference elimination circuit and antenna array
JP6272584B1 (en) * 2017-02-08 2018-01-31 三菱電機株式会社 Decoupling circuit
WO2018146744A1 (en) * 2017-02-08 2018-08-16 三菱電機株式会社 Decoupling circuit
CN112997359A (en) * 2018-12-17 2021-06-18 华为技术有限公司 Antenna array electromagnetic decoupling method and structure
CN112997359B (en) * 2018-12-17 2022-07-26 华为技术有限公司 Antenna array decoupling structure and antenna array
CN113659337A (en) * 2020-05-12 2021-11-16 西安电子科技大学 Antenna device, electronic apparatus, and decoupling method for antenna device
WO2021227808A1 (en) * 2020-05-12 2021-11-18 西安电子科技大学 Antenna apparatus, electronic device, and decoupling method for antenna apparatus
CN113764888A (en) * 2021-08-09 2021-12-07 荣耀终端有限公司 Antenna combination system and terminal equipment

Also Published As

Publication number Publication date
JPWO2015052838A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
AU727581B2 (en) A high frequency balun provided in a multilayer substrate
US9985682B2 (en) Broadband isolation low-loss ISM/MB-HB tunable diplexer
US8284001B2 (en) Differential filtering device with coplanar coupled resonators and filtering antenna furnished with such a device
JP5889425B2 (en) Decoupling circuit
US8704723B2 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
US10084225B2 (en) Directional coupler
US8305283B2 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
WO2015052838A1 (en) Decoupling circuit
US7633358B2 (en) Phase shifter circuit with proper broadband performance
KR101766157B1 (en) Tunable electronic circuit which converts balanced signals to unbalanced signals
JP2015173409A (en) directional coupler
JP6432693B2 (en) Antenna device
JP2016225399A (en) Laminated electronic component
CN112332048A (en) Balanced type filtering phase shifter
US9787353B2 (en) Radio frequency (RF) front-end without signal switches
WO2021140738A1 (en) Power feeder circuit for circularly polarized antenna
JP4842245B2 (en) Triplexer circuit
TW202240970A (en) Phase shifter circuit and power divider
US11217871B2 (en) Distributor and synthesizer
KR101697277B1 (en) Broad bandwidth compact marchand balun using metamaterial circuit
JP2015035759A (en) Divider/combiner and stub portion for transmission line having stub
WO2022201414A1 (en) Decoupling circuit
JP2010124095A (en) Reflected wave absorption type filter
US8487716B1 (en) Single-ended phase-shift network
KR101689816B1 (en) Compact marchand balun using metamaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895154

Country of ref document: EP

Kind code of ref document: A1