WO2015051965A1 - Schrägscheibenmaschine - Google Patents

Schrägscheibenmaschine Download PDF

Info

Publication number
WO2015051965A1
WO2015051965A1 PCT/EP2014/069298 EP2014069298W WO2015051965A1 WO 2015051965 A1 WO2015051965 A1 WO 2015051965A1 EP 2014069298 W EP2014069298 W EP 2014069298W WO 2015051965 A1 WO2015051965 A1 WO 2015051965A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bearing block
swash plate
housing
plate machine
Prior art date
Application number
PCT/EP2014/069298
Other languages
English (en)
French (fr)
Inventor
Matthias Greiner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP14771229.3A priority Critical patent/EP3055565B1/de
Priority to CN201480061001.5A priority patent/CN105745442B/zh
Publication of WO2015051965A1 publication Critical patent/WO2015051965A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • F04B1/2085Bearings for swash plates or driving axles

Definitions

  • the present invention relates to a swash plate machine according to the preamble of claim 1 and a drive train according to the preamble of claim 11.
  • Swash plate machines serve as axial piston pumps for converting mechanical energy into hydraulic energy and as axial piston motor for converting hydraulic energy into mechanical energy.
  • Cylinder drum with piston bores is rotatably or rotatably mounted and pistons are arranged in the piston bores.
  • the cylinder drum is fixedly connected to a drive shaft and to a first part of the rotating
  • Piston bores temporarily acts a hydraulic fluid under high pressure and on a second part of the rotating piston bores acts temporarily a hydraulic fluid under low pressure.
  • a pivoting cradle is around one
  • Pivot axis pivotally mounted and on the pivoting cradle are on a flat bearing surface sliding shoes, which are attached to a retaining disc.
  • the pistons are attached to the sliding shoes.
  • Retaining disc with the sliding shoes performs together with the cylinder drum a rotational movement about a rotation axis and a flat
  • Support surface of the pivoting cradle is aligned at an acute angle, for example between 0 ° and + 20 ° and between 0 ° and -20 ° as a pivot angle, to the axis of rotation of the cylinder drum.
  • the pivoting cradle is by two hydraulic pivoting devices, each of which is formed by an adjusting piston and an adjusting cylinder to a Swivel axis pivots.
  • the pivoting cradle is pivotally supported by a pivot bearing about the pivot axis.
  • two fixed, teilzylindermantelförmige bearing shells are indirectly attached to the housing by the bearing shells are attached to a bearing block and the bearing block is attached directly to the housing.
  • the bearing shells are each pivotable, formed on the pivoting cradle
  • the weighing storage is designed as a sliding bearing between the bearing and counter bearing shells.
  • the partially cylindrical bearing shell is attached to two part-cylindrical partial surfaces of the bearing block and for the production of partially cylindrical
  • Part surfaces on the one-piece bracket is a complex and difficult spanabstagede machining due to the overall geometry of the one-piece bracket necessary.
  • a large axial length of the one-piece bracket in the direction of the axis of rotation of the drive shaft is required so that a small bend in the machining with the
  • EP 1 013 928 A2 shows an axial piston pump in a swashplate design with a driven circumferential and a plurality of piston bores having cylinder bores, wherein in each of webs separated piston bores are arranged linearly between a bottom dead center and a top dead center movable pistons and a Niederbuchan gleichniere and a Hochdruckin kidney having control disk is provided.
  • the CH 405 934 shows a Schrägusionnaxialkolbenpumpe whose non-rotating cylinder block for varying the flow rate in dependence on the delivery pressure is longitudinally displaceable, wherein at the pressed by a spring in the direction of increasing the delivery cylinder block a
  • Control slide unit is attached with a spool.
  • DE 27 33 870 C2 shows a control device for a
  • Swing wing acts on the engine, both motors are controllable by means of a pivotable about the pivot axis of the cradle arranged plate-shaped control valve spool and serve to adjust the flow rate of the pump.
  • Axialmaschine with a housing, a pivoting cradle and formed by the housing and the pivoting cradle pivotal bearing area known.
  • Schwenkwiegenlager Symposium arranged bearing element are formed deformable such that a deflection of the pivoting cradle can be compensated.
  • Swash plate machine as axial piston pump and / or axial piston motor, comprising one rotatable about an axis of rotation or
  • Plunger bores movably mounted pistons, a swivel cradle mounted pivotably about a pivot axis, a housing, a weighing storage for the pivoting cradle with at least one fixed bearing shell on a bearing block and with at least one pivotable counter-bearing shell on the pivoting cradle, wherein the bearing block is formed in several parts.
  • Drive shaft can be produced.
  • machining operations in particular a part of the bearing block clamped in a tool and then at a low bend due to a
  • the Machining tool are made particularly accurate. As a result, a very small axial length of the multi-part bearing block is possible and still an evasive accurate machining of partial cylindrical surfaces on the multi-part bracket possible. As a result, the swash plate machine overall advantageously has a small axial length.
  • the bearing block is formed in three parts and / or the fixed bearing shell is indirectly attached to the multi-part bearing block to the housing and / or the multi-piece bracket is, in particular directly attached to the housing.
  • the fixed bearing shell is fixed to the multi-part bearing block and the bearing block is fixed to the housing.
  • the stationary bearing shell is indirectly fixed by means of the bearing block on the housing, in particular a flange of the housing.
  • the weighing bearing has two stationary bearing shells and a first bearing shell is fastened to a first bearing block part and the second bearing shell is fastened to a second bearing block part and / or the multi-part bearing block is designed as an additional component in addition to the housing.
  • the first and second bearing block part in particular directly, attached to a third bearing block part and / or on the first and / or second bearing block part depending on a fixed bearing shell, in particular directly attached.
  • partially cylindrical part surfaces can be particularly easily manufactured with high accuracy on the first bearing block part and on the second bearing block part, since the first and second bearing block part simply fixed in a processing machine and then from a
  • Machining tool can be machined on the faces, with a slight bending of the first and second bearing block part.
  • the three-part bearing block has a total of a small axial length in the direction of the axis of rotation of the drive shaft.
  • the first and second bearing block part each have a partially cylindrical partial surface on which each of the partially cylindrical bearing shell is attached.
  • the third bearing block part in particular directly, is preferably fastened to the housing, in particular to a flange of the housing.
  • the third bearing block part as a ring, in particular a disc-shaped ring formed.
  • the third bearing block part is a
  • the inner end sides of the multi-part bearing block have a small distance from the axis of rotation of the drive shaft at or a small distance to the outside of the drive shaft. As a result, the distance between the two bearing shells is low and the bending of the
  • Pivoting cradle due to the force applied by the shoes on the support surface of the pivoting cradle pressure forces is low in an advantageous manner. Furthermore, the distance between the two bearing shells is independent of the outer diameter of a bearing for the drive shaft at the opening of the housing. Only
  • the first and second bearing block part with a
  • Bearing part positively and / or non-positively and / or materially attached to the third bearing block part, for example by means of a recess
  • the third bearing block part is positively and / or non-positively and / or materially attached to the housing, in particular a flange of the housing, for example by means of a screw and / or a rivet and / or positively due to a recess in the
  • the housing and the bearing block parts made of metal, for. As steel or aluminum, and / or the housing and the
  • Bearing parts are made of an identical material.
  • Bearing shell on each abutment surface of the anvil shell and / or the first and / or second and / or third bearing block part has at a radial inner side a smaller minimum distance, in particular by 10%, 20%, 30% or 40% smaller distance to the Rotation axis of
  • Cylinder drum as the housing, in particular a flange, at an opening with a bearing for the drive shaft.
  • Bearing part thus have a small distance from each other, so that thereby a slight bending on the pivoting cradle occurs.
  • the swash plate machine is designed such that the at least one bearing surface and / or the at least one abutment surface in the region of one of the drive shaft facing
  • Pivoting cradle has a lower rigidity than in the region of the drive shaft facing away from the outer end side. Due to the smaller rigidity of the at least one bearing surface in the region of the inner end side compared to the outer end side and due to the larger bends of the bearing surface in the region of the inner end side in comparison to the region on the outer end side occurs between the bearing surface and the counter surface advantageously a substantially same Surface pressure on.
  • the area preferably comprises less than 10%, 20% or 30% of the total extent of the bearing surface and / or the abutment surface in the direction parallel to the pivot axis.
  • the swash plate machine comprises two bearing shells and two counter-bearing shells and the two bearing shells and two counter-bearing shells are arranged in a, in particular identical, distance from the axis of rotation of the drive shaft.
  • the at least one bearing shell is formed by a separate bearing shell part, which is attached directly or indirectly to the first and second bearing block part of the swash plate machine.
  • the bearing shell part is a separate component and consists of a different material than the housing and / or the bearing block,
  • the counter-bearing shell is formed directly from the pivoting cradle made of steel, so that thereby the bearing surface and the counter-bearing surface are formed of a different material or material to reduce the friction loss at the weighing storage.
  • the at least one counter bearing shell is formed by the pivoting cradle.
  • the swashplate machine on the housing and / or the pivoting cradle and / or on at least one bearing block part and / or on a bearing for the drive shaft and / or on the at least one bearing shell and / or at least one
  • the pivot axis of the pivoting cradle is aligned perpendicular to the axis of rotation of the drive shaft and the cylinder drum.
  • the bearing shell of a different material than the anvil shell.
  • the bearing switching part made of PEEK or brass and the counter bearing shell made of steel.
  • Inventive drive train for a motor vehicle comprising at least one swash plate machine for converting mechanical energy into hydraulic energy and vice versa, at least one pressure accumulator, wherein the swash plate machine as one in this patent application
  • the drive train comprises two swash plate machines, which are hydraulically connected to each other and act as a hydraulic transmission and / or the drive train comprises two pressure accumulator as
  • the swashplate machine comprises a drive shaft which is connected at least in a rotationally fixed manner to the cylinder drum and which is mounted rotatably or rotatably about the rotation axis.
  • the swash plate machine comprises at least one pivoting device for pivoting the pivoting cradle.
  • the swash plate machine comprises a low-pressure opening for introducing and / or discharging hydraulic fluid into and / or out of the rotating piston bores.
  • the swash plate machine comprises a high-pressure opening for discharging and / or introducing hydraulic fluid out of and / or into the rotating piston bores.
  • Fig. 1 is a longitudinal section of a swash plate machine by a
  • Fig. 2 shows a cross section A-A of FIG. 1 a valve disc of
  • Fig. 3 is a view of a flange of a housing with the thereto
  • FIG. 4 shows a section B-B according to FIG. 3 of the flange and the first, second and third bearing block parts of the swash plate machine, FIG.
  • Fig. 5 is a section C-C of FIG. 3 of the flange and the third
  • FIG. 6 shows a drive train for a motor vehicle.
  • a swashplate machine 1 shown in a longitudinal section in FIG. 1 serves as axial piston pump 2 for conversion or conversion of mechanical energy (torque, speed) into hydraulic energy (volume flow, pressure) or as axial piston motor 3 for conversion or conversion of hydraulic energy (volume flow, pressure ) into mechanical energy (torque,
  • a drive shaft 9 is by means of a bearing 10 at a
  • Cylinder drum 5 rotatably and connected in the axial direction
  • Drive shaft 9 and the cylinder drum 5 are formed in one or two parts and the boundary between the drive shaft 9 and the cylinder drum 5 in Fig. 1st is shown in dashed lines.
  • the cylinder drum 5 carries out the rotational movement of the drive shaft 9 with due to a rotationally fixed connection.
  • Cylinder drum 5 a plurality of piston bores 6 with an arbitrary cross-section, for example square or circular, incorporated.
  • the longitudinal axes of the piston bores 6 are substantially parallel to the axis of rotation 8 of the drive shaft 9 or the cylinder drum 5
  • a pivoting cradle 14 is mounted pivotably about a pivot axis 15 on the housing 4. The pivot axis 15 is perpendicular to the
  • the axis of rotation 8 of the cylinder drum 5 is arranged parallel to and in the drawing plane of Fig. 1 and perpendicular to the plane of Fig. 2.
  • the housing 4 defines an interior space 44 which with
  • Hydraulic fluid is filled.
  • the pivoting cradle 14 has a flat or planar bearing surface 18 for the indirect support of a retaining disk 37.
  • the retaining plate 37 has bores (not shown), within which a respective sliding shoe 39 is arranged.
  • the sliding blocks 39 are located directly on the support surface 18 of the pivoting cradle 14.
  • Each shoe 39 is in each case one
  • the sliding block 39 has a bearing ball 40 (FIG. 1), which is fastened in a bearing socket 59 on the piston 7, so that a piston connection point 22 between the bearing ball 40 and the bearing socket 59 is formed on the piston 7.
  • Bearing ball 40 and bearing cup 59 are both complementary or spherical, so characterized in a corresponding possibility of movement between the bearing ball 40 and the bearing cup 59 to the piston 7, a permanent connection between the piston 7 and the shoe 39 is present. Due to the connection of the piston 7 with the rotating cylinder drum 5 and the connection of the bearing cups 59 with the
  • Sliding shoes 39 perform the sliding blocks 39 a rotational movement about the axis of rotation 8 with and due to the arrangement of the sliding shoes 39 in the holes of the retaining plate 37 and the retaining plate 37 performs a rotational movement about the rotation axis 8 with. So that
  • Restraining disc 37 is in constant indirect contact with the support surface 18 of the pivoting cradle 14, this is by a compression spring 41 under a Pressing force on the support surface 18 is pressed so that the sliding shoes 39 are pressed by the compression spring 41 on the support surface 18 directly.
  • the pivoting cradle 14 is - as already mentioned - pivotally mounted about the pivot axis 15 and further comprises an opening 42 (Fig. 1) for
  • a weighing storage 20 is formed on the housing 4.
  • two counter bearing shells 23 are formed on the pivoting cradle 14. The two pivotable counter-bearing shells 23 at the
  • Pivoting cradle 14 are each on a bearing shell 17, so that the two bearing shells 17 and two counter-bearing shells 23 form the weighing storage 20. Depending on a bearing surface 33 on the two bearing shells 17 is thus on an abutment surface 34 on the counter-bearing shells 23.
  • Countershells 23 are integrally formed by the pivoting cradle 14 made of steel.
  • the pivoting cradle 14 is thus pivotally mounted about the pivot axis 15 by means of a plain bearing 20 as a pivot bearing.
  • a plain bearing 20 as a pivot bearing.
  • Tilt angle ⁇ of approximately + 20 °.
  • the pivoting angle ⁇ is present between a fictitious plane perpendicular to the axis of rotation 8 and a plane spanned by the flat support surface 18 of the pivoting cradle 14 according to the sectional formation in Fig. 1.
  • the pivoting cradle 14 can be between two pivotal limit angle ⁇ between + 20 ° and -20 ° be pivoted by means of two pivoting means 24.
  • the first and second pivoting means 25, 26 as pivoting means 24 has a connection point 32 between the pivoting device 24 and the
  • the two pivoting devices 24 each have an adjusting piston 29, which is movably mounted in an adjusting cylinder 30.
  • the adjusting piston 29 or an axis of the adjusting cylinder 30 is aligned substantially parallel to the axis of rotation 8 of the cylinder drum 5.
  • Adjusting piston 29 has this a bearing cup 31, in which a
  • Bearing ball 19 is mounted.
  • the bearing ball 19 on a pivot arm 16 (Fig. 1 to 2) of the pivoting cradle 14 is present.
  • Pivoting device 25, 26 is thus connected to a respective pivot ball 19 on a respective pivot arm 16 with the pivoting cradle 14.
  • the pivoting cradle 14 can be pivoted about the pivot axis 15, as characterized on the adjusting piston 29 to the open valve 27, 28 with a hydraulic fluid under pressure in the adjusting 30 a force is applied.
  • this pivotal movement of the pivoting cradle 14 from.
  • a valve disk 1 1 is located on the end of the cylinder drum 5 shown on the right in FIG. 1, with a kidney-shaped high-pressure opening 12 and a kidney-shaped
  • the piston bores 6 of the rotating cylinder drum 5 are thus fluidly connected in an arrangement on the high-pressure opening 12 with the high-pressure opening 12 and in an arrangement on the
  • Low-pressure port 13 fluidly connected to the low pressure port 13. At a swivel angle ⁇ of 0 ° and during operation of the
  • Swash plate machine 1 for example, as axial piston pump 2, despite a rotational movement of the drive shaft 9 and the cylinder drum 5, no hydraulic fluid from the axial piston pump 2 promoted because the piston 7 perform no strokes in the piston bores 6.
  • swash plate machine 1 both as axial piston 2 and as
  • Axial piston motor 3 have the piston bores 6, which are temporarily in fluid-conducting connection with the high-pressure opening 12, have a greater pressure on hydraulic fluid than the piston bores 6, which are temporarily in fluid-conducting connection with the low-pressure opening 13.
  • An axial end 66 of the cylinder drum 5 rests on the valve disc 1 1.
  • a mechanical seal 74 is also arranged, so that the hydraulic fluid can not flow out of the inner space 44 to the outside.
  • the bearing surface 33 of the two bearing shells 17 is located on each of the
  • the bearing shell 17 is formed by two separate components, namely a first bearing shell 77 and a second bearing shell 78. These two bearing shells 17, 77, 78 are indirectly by means of a three-piece bearing block 79 on the housing 4, d. H. the flange 21 of the swash plate machine 1, attached.
  • Bearing 79 includes a first bearing block portion 70, a second bearing block portion 71 and a third bearing block portion 72, wherein the third bearing block portion 72 is formed as a disc-shaped ring 73.
  • the first and second bearing block part 70, 71 each have a partially cylindrical partial surface, on each of which the first bearing shell 77 and the second bearing shell 78 is attached.
  • the first and second bearing block part 70, 71 and the first and second bearing shell 77, 78 are formed rectangular in a projection direction according to the plan view of FIG. 3.
  • the annular third bearing block part 72 is positively connected by means of a
  • the third bearing block portion 72 has two separate recesses 76, each for positive reception of the first Bearing part 70 and the second bearing block part 71st As a result, the first and second bearing part 70, 71 are positively and non-positively connected to the third bearing block part 73. Further, the first and second
  • Bearing part 70, 71 by means of a plurality of fastening bolts 61 and
  • Attachment pins 68 additionally positively attached to the third bearing block part 72.
  • the two bearing shell parts 62 as the first and second bearing shell 77, 78 are made of a different material, for. B. PEEK or brass, such as the
  • the bearing shell part 62 has the bearing surface 33 on.
  • the bearing surface 33 is formed teilzylindermantelelförmig.
  • an abutment shell 23 is provided, wherein the abutment shell 23 is also formed teilzylindermantelelförmig with an abutment surface 34 of the abutment shell 23.
  • Bearing shell 17 on the first and second bearing block part 70, 71 is thus formed by a respective bearing shell part 62 and the counter bearing shell 23 is direct formed without a separate component of the pivoting cradle 14 made of steel.
  • a fictitious cylinder on the bearing surface 33 and the counter-surface 34 has a longitudinal axis which corresponds to the pivot axis 15 of the pivoting cradle 14.
  • the abutment surface 34 on the pivoting cradle 14 lies on the
  • the bearing block parts 70, 71, 72 are made of steel as the housing 4. Within the opening 63 of the flange 21 are a bearing 10 for the
  • Opening 63 is substantially larger than the minimum radial distance 43 between the rotation axis 8 and a radial inner side 80 of the bearing block 79, in particular of the third bearing block part 72 as well as the first and second bearing block part 70, 71.
  • the two bearing block parts 70, 71 and thus the on it resting first and second bearing shells 77, 78 and thus also the two bearing surfaces 33 thus have a small distance from the radial
  • the pivoting cradle 14 has a slight bend.
  • the large required diameter of the opening 63 for the bearing 10 and the mechanical seal 74 can thus from the opening 63 overhanging
  • Inner end pages 36 has a lower rigidity than in the area of
  • Bearing surface 33 between the abutment surface 34 and the bearing surface 33 has a substantially constant surface pressure. At the inner end sides 36 it comes so not to very large surface pressures.
  • the substantially uniform surface pressure or pressure causes a uniform mechanical wear on the bearing surface 33 and on the
  • Drive train 45 has an internal combustion engine 46, which drives a planetary gear 48 by means of a shaft 47.
  • Planetary gear 48 two shafts 47 are driven, wherein a first shaft 47 is connected to a clutch 49 with a differential gear 56.
  • a second or other shaft driven by the planetary gear 48 drives a first swash plate machine 50 through a clutch 49, and the first swash plate machine 50 is hydraulically connected by means of two hydraulic lines 52 to a second swash plate machine 51.
  • the first and second swash plate machines 50, 51 thereby form a hydraulic gear 60, and from the second swash plate machine 51, the differential gear 56 can also be driven by means of a shaft 47.
  • Differential gear 56 drives the wheels 57 with the wheel shafts 58.
  • the drive train 45 has two pressure accumulators 53 as a high-pressure accumulator 54 and as a low-pressure accumulator 55.
  • the two accumulators 53 are hydraulically connected by means not shown hydraulic lines with the two swash plate machines 50, 51, so that thereby mechanical energy of the engine 46 in the high-pressure accumulator 54 can be stored hydraulically and also in a recuperation of a motor vehicle with the drive train 45 also kinetic energy of the motor vehicle in the high-pressure accumulator 54 can be stored hydraulically.
  • the differential gear 56 can additionally be driven with a swash plate machine 50, 51.
  • the bearing block 79 made of steel is designed in several parts, namely in three parts with the first
  • the first and second bearing block part 70, 71 each have partially cylindrical partial surfaces, on each of which the first and second bearing shell 77, 78 are attached.
  • these partially cylindrical partial surfaces on the separate components of the first and second bearing block part 70, 71 can be produced particularly easily by a machining tool, for example a lathe or a milling cutter.
  • the first and second bearing block portion 70, 71 a small axial length in the direction of the axis of rotation 8 of the drive shaft 9 and thus also the total bearing block 79, since the third bearing block portion 72 is formed as a disc-shaped ring 73 with a small extension in the direction of As a result, the swash plate machine 1 as a whole has a small axial length and is simple and inexpensive to manufacture in terms of the bearing block 79.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Schrägscheibenmaschine (1) als Axialkolbenpumpe (2) und/oder Axialkolbenmotor (3), umfassend eine um eine Rotationsachse (8) drehbar bzw. rotierend gelagerte Zylindertrommel (5) mit Kolbenbohrungen (6), in den Kolbenbohrungen (6) beweglich gelagerte Kolben (7), eine um eine Schwenkachse (15) verschwenkbar gelagerte Schwenkwiege (14), ein Gehäuse (4), eine Wiegenlagerung (20) für die Schwenkwiege (14) mit wenigstens einer feststehenden Lagerschale (17) an einem Lagerbock (79) und mit wenigstens einer verschwenkbaren Gegenlagerschale (23) an der Schwenkwiege (14), wobei der Lagerbock (79) mehrteilig ausgebildet ist.

Description

Beschreibung Titel
Schrägscheibenmaschine
Die vorliegende Erfindung betrifft eine Schrägscheibenmaschine gemäß dem Oberbegriff des Anspruches 1 und einen Antriebsstrang gemäß dem Oberbegriff des Anspruches 1 1 .
Stand der Technik
Schrägscheibenmaschinen dienen als Axialkolbenpumpen zur Umwandlung von mechanischer Energie in hydraulische Energie und als Axialkolbenmotor zur Umwandlung von hydraulischer Energie in mechanische Energie. Eine
Zylindertrommel mit Kolbenbohrungen ist drehbar bzw. rotierend gelagert und in den Kolbenbohrungen sind Kolben angeordnet. Die Zylindertrommel ist fest mit einer Antriebswelle verbunden und auf einen ersten Teil der rotierenden
Kolbenbohrungen wirkt temporär eine Hydraulikflüssigkeit unter Hochdruck und auf einen zweiten Teil der rotierenden Kolbenbohrungen wirkt temporär eine Hydraulikflüssigkeit unter Niederdruck. Eine Schwenkwiege ist um eine
Schwenkachse verschwenkbar gelagert und auf der Schwenkwiege liegen an einer ebenen Auflagefläche Gleitschuhe auf, welche an einer Rückhaltescheibe befestigt sind. An den Gleitschuhen sind die Kolben befestigt. Die
Rückhaltescheibe mit den Gleitschuhen führt zusammen mit der Zylindertrommel eine Rotationsbewegung um eine Rotationsachse aus und eine ebene
Auflagefläche der Schwenkwiege ist dabei in einem spitzen Winkel, zum Beispiel zwischen 0° und +20° und zwischen 0° und -20° als Schwenkwinkel, zu der Rotationsachse der Zylindertrommel ausgerichtet.
Die Schwenkwiege wird von zwei hydraulischen Schwenkeinrichtungen, die je von einem Verstellkolben und einem Verstellzylinder gebildet sind, um eine Schwenkachse verschwenkt. Die Schwenkwiege ist mit einer Wiegenlagerung verschwenkbar um die Schwenkachse gelagert. Hierzu sind an dem Gehäuse zwei feststehende, teilzylindermantelförmige Lagerschalen mittelbar befestigt, indem die Lagerschalen an einem Lagerbock befestigt sind und der Lagerbock an dem Gehäuse unmittelbar befestigt ist. An den beiden Lagerschalen liegen jeweils verschwenkbare, an der Schwenkwiege ausgebildete
teilzylindermantelförmige Gegenlageschalen auf. Die Wiegenlagerung ist als eine Gleitlagerung zwischen den Lager- und Gegenlagerschalen ausgebildet. Die teilzylinderförmige Lagerschale ist an zwei teilzylinderförmigen Teilflächen an dem Lagerbock befestigt und für die Herstellung der teilzylinderförmigen
Teilflächen an dem einteiligen Lagerbock ist eine aufwendige und schwierige spanabgebende Bearbeitung aufgrund der Gesamtgeometrie des einteiligen Lagerbockes notwendig. Damit bei der spanabgebenden Bearbeitung eine ausreichende Genauigkeit erzielt werden kann ist eine große axiale Baulänge des einteiligen Lagerbockes in Richtung der Rotationsachse der Antriebswelle erforderlich, damit eine geringe Biegung bei der Bearbeitung mit dem
Bearbeitungswerkzeug auftritt. Diese große axiale Baulänge führt in nachteiliger Weise zu einer größeren axialen Baulänge der gesamten
Schrägscheibenmaschine.
Die EP 1 013 928 A2 zeigt eine Axialkolbenpumpe in Schrägscheibenbauweise mit einer angetriebenen umlaufenden und eine Mehrzahl von darin angeordneten Kolbenbohrungen aufweisenden Zylindertrommel, wobei in den jeweils durch Stege voneinander getrennten Kolbenbohrungen linear zwischen einem unteren Totpunkt und einem oberen Totpunkt bewegliche Kolben angeordnet sind und eine Niederdruckanschlussniere und eine Hochdruckanschlussniere aufweisende Steuerscheibe vorgesehen ist.
Die CH 405 934 zeigt eine Schrägscheibenaxialkolbenpumpe, deren nicht umlaufender Zylinderblock zum Verändern der Fördermenge in Abhängigkeit vom Förderdruck längs verschiebbar ist, wobei an dem durch eine Feder in Richtung der Erhöhung der Fördermenge gedrückten Zylinderblock eine
Steuerschiebereinheit mit einem Schieberkolben befestigt ist. Die DE 27 33 870 C2 zeigt eine Steuereinrichtung für eine
Schrägenscheibenaxialkolbenpumpe, bei der an beiden Seiten der Wiege zur Verschwenkung der Schrägscheibe je ein hydraulisch beaufschlagter
Schwenkflügel am Motor angreift, wobei beide Motoren mittels eines um die Schwenkachse der Wiege verschwenkbar angeordneten plattenförmigen Steuerventilschiebers steuerbar sind und zur Einstellung der Fördermenge der Pumpe dienen.
Aus der DE 10 2008 013 010 A1 ist eine Schwenkwiegenlagerung einer
Axialmaschine mit einem Gehäuse, einer Schwenkwiege und einem durch das Gehäuse und der Schwenkwiege gebildeten Schwenkwiegenlagerbereich bekannt. Die Schwenkwiege und/oder das Gehäuse und/oder ein in dem
Schwenkwiegenlagerbereich angeordnetes Lagerelement sind derart verformbar ausgebildet, dass eine Durchbiegung der Schwenkwiege ausgleichbar ist.
Offenbarung der Erfindung
Vorteile der Erfindung
Erfindungsgemäße Schrägscheibenmaschine als Axialkolbenpumpe und/oder Axialkolbenmotor, umfassend eine um eine Rotationsachse drehbar bzw.
rotierend gelagerte Zylindertrommel mit Kolbenbohrungen, in den
Kolbenbohrungen beweglich gelagerte Kolben, eine um eine Schwenkachse verschwenkbar gelagerte Schwenkwiege, ein Gehäuse, eine Wiegenlagerung für die Schwenkwiege mit wenigstens einer feststehenden Lagerschale an einem Lagerbock und mit wenigstens einer verschwenkbaren Gegenlagerschale an der Schwenkwiege, wobei der Lagerbock mehrteilig ausgebildet ist. Bei der
Herstellung des Lagerbockes können die teilzylinderförmigen Teilflächen für die Befestigung der Lagerschalen spanabhebend mit einer hohen Genauigkeit bei einer geringen axialen Baulänge in Richtung der Rotationsachse der
Antriebswelle hergestellt werden. Bei den spanabhebenden Bearbeitungen kann insbesondere ein Teil des Lagebockes in ein Werkzeug eingespannt und anschließend bei einer geringen Biegung aufgrund eines
Bearbeitungswerkzeuges besonders genau hergestellt werden. Dadurch ist eine sehr geringe axiale Baulänge des mehrteiligen Lagerbockes möglich und trotzdem eine ausweichende genaue spanabhebende Bearbeitung der teilzylinderförmigen Teilflächen an dem mehrteiligen Lagerbock möglich. Dadurch weist die Schrägscheibenmaschine insgesamt in vorteilhafter Weise eine geringe axiale Baulänge auf.
Insbesondere ist der Lagerbock dreiteilig ausgebildet und/oder die feststehende Lagerschale ist mit dem mehrteiligen Lagerbock mittelbar an dem Gehäuse befestigt und/oder der mehrteilige Lagerbock ist, insbesondere unmittelbar, an dem Gehäuse befestigt. Die feststehende Lagerschale ist an dem mehrteiligen Lagerbock befestigt und der Lagerbock ist an dem Gehäuse befestigt. Dadurch ist die feststehende Lageschale mittelbar mittels des Lagerbockes an dem Gehäuse, insbesondere einem Flansch des Gehäuses befestigt.
In eine weiteren Ausführungsform weist die Wiegenlagerung zwei feststehende Lagerschalen auf und eine erste Lageschale ist an einem ersten Lagerbockteil befestigt ist und die zweite Lagerschale an einem zweiten Lagerbockteil befestigt und/oder der mehrteilige Lagerbock ist als ein zusätzliches Bauteil in Ergänzung zu dem Gehäuse ausgebildet.
In einer ergänzenden Ausführungsform ist das erste und zweite Lagerbockteil, insbesondere unmittelbar, an einem dritten Lagerbockteil befestigt und/oder an dem ersten und/oder zweiten Lagerbockteil ist je eine feststehende Lagerschale, insbesondere unmittelbar, befestigt. Bei der Herstellung des mehrteiligen Lagerbockes können somit die teilzylinderförmigen Teilflächen an dem ersten Lagebockteil und an dem zweiten Lagebockteil besonders einfach mit einer hohen Genauigkeit hergestellt werden, da das erste und zweite Lagerbockteil einfach in einer Bearbeitungsmaschine befestigt und anschließend von einem
Bearbeitungswerkzeug spanabhebend an den Teilflächen bearbeitet werden kann, bei einer geringen Biegung des ersten und zweiten Lagebockteiles.
Dadurch weist der dreiteilige Lagerbock insgesamt eine geringe axiale Baulänge in Richtung der Rotationsachse der Antriebswelle auf. Vorzugsweise weist das erste und zweite Lagerbockteil je eine teilzylinderförmige Teilfläche auf, an welcher je die teilzylinderförmige Lagerschale befestigt ist.
Vorzugsweise ist das dritte Lagerbockteil, insbesondere unmittelbar, an dem Gehäuse, insbesondere an einem Flansch des Gehäuses, befestigt. In einer Variante ist das dritte Lagerbockteil als ein Ring, insbesondere ein scheibenförmiger Ring, ausgebildet. Das dritte Lagerbockteil ist ein
scheibenförmiger Ring ausgebildet und der Ring weist eine Öffnung zur
Durchführung der Antriebswelle. Die Innenendseiten des mehrteiligen Lagerbockes weisen einen geringen Abstand zu der Rotationsachse der Antriebswelle auf bzw. einen geringen Abstand zu der Außenseite der Antriebswelle. Dadurch ist der Abstand der beiden Lageschalen voneinander gering und die Biegung der
Schwenkwiege aufgrund der von den Gleitschuhen auf die Auflagefläche der Schwenkwiege aufgebrachten Druckkräfte ist gering in vorteilhafter Weise. Ferner ist der Abstand der beiden Lageschalen unabhängig vom Außendurchmesser einer Lagerung für die Antriebswelle an der Öffnung des Gehäuses. Lediglich
beispielsweise durch den Einsatz von geometrisch unterschiedlichen ersten und zweiten Lagerbockteilen bei einem identischen dritten Lagerbockteil können dadurch die beiden Lagerschalen an unterschiedlichen Lagerungen für die
Antriebswelle befestigt werden.
Zweckmäßig sind das erste und zweite Lagerbockteil mit einem
Befestigungsbolzen oder Befestigungspin an dem dritten Lagerbockteil befestigt.
In einer zusätzlichen Ausführungsform ist das erste und/oder zweite
Lagerbockteil form- und/oder kraftschlüssig und/oder stoffschlüssig an dem dritten Lagerbockteil befestigt, beispielsweise mittels einer Ausnehmung
formschlüssig an dem dritten Lagerbockteil und/oder mit einer
Schraubverbindung und/oder mit einer Pressverbindung und/oder mit einer Schweißverbindung und/oder kraftschlüssig aufgrund der Druckkraft zwischen dem ersten und zweiten Lagerbockteil sowie dem dritten Lagerbockteil.
In einer weiteren Ausführungsform ist das dritte Lagerbockteil form- und/oder kraft- und/oder stoffschlüssig an dem Gehäuse, insbesondere einem Flansch des Gehäuses befestigt, beispielsweise mittels einer Schraubverbindung und/oder einer Nietverbindung und/oder formschlüssig aufgrund einer Ausnehmung in dem
Gehäuse und/oder mit einer Schweißverbindung und/oder kraftschlüssig aufgrund der Druckkraft in Richtung der Rotationsachse der Antriebswelle zwischen dem Gehäuse und dem dritten Lagerbockteil. In einer weiteren Ausgestaltung bestehen das Gehäuse und die Lagerbockteile aus Metall, z. B. Stahl oder Aluminium, und/oder das Gehäuse und die
Lagerbockteile bestehen aus einem identischen Werkstoff.
In einer ergänzenden Ausführungsform liegt je eine Lagerfläche an der
Lagerschale auf je einer Gegenlagerfläche der Gegenlagerschale auf und/oder das erste und/oder zweite und/oder dritte Lagerbockteil weist an einer radialen Innenseite einen kleineren minimalen Abstand, insbesondere um 10%, 20%, 30% oder 40% kleineren Abstand, zu der Rotationsachse der
Zylindertrommel auf als das Gehäuse, insbesondere ein Flansch, an einer Öffnung mit einer Lagerung für die Antriebswelle. Das erste und zweite
Lagerbockteil weisen damit einen geringen Abstand zueinander auf, so dass dadurch eine geringe Biegung an der Schwenkwiege auftritt.
In einer weiteren Variante ist die Schrägscheibenmaschine dahingehend ausgebildet, dass die wenigstens eine Lagerfläche und/oder die wenigstens eine Gegenlagerfläche im Bereich einer der Antriebswelle zugewandten
Innenendseite in einer Richtung parallel zu der Schwenkachse der
Schwenkwiege eine kleinere Steifigkeit aufweist als im Bereich einer der Antriebswelle abgewandten Außenendseite. Aufgrund der kleineren Steifigkeit der wenigstens einen Lagerfläche im Bereich der Innenendseite im Vergleich zur Außenendseite und aufgrund der größeren Biegungen der Lagerfläche im Bereich der Innenendseite in Vergleich zu dem Bereich an der Außenendseite tritt damit zwischen der Lagerfläche und der Gegenlagefläche in vorteilhafter Weise eine im Wesentlichen gleiche Flächenpressung auf. Der Bereich umfasst vorzugsweise weniger als 10%, 20% oder 30% der Gesamtausdehnung der Lagerfläche und/oder der Gegenlagerfläche in der Richtung parallel zu der Schwenkachse.
In einer weiteren Ausführungsform ist die Lagerfläche und/oder die
Gegenlagerfläche in einem Schnitt, insbesondere in sämtlichen Schnitten, senkrecht zu der Schwenkachse als ein Kreissegment mit einem identischen Abstand zu der Schwenkachse ausgebildet. Die Längsachse eines fiktiven Zylinders an dem Kreissegment entspricht vorzugsweise der Schwenkachse der Schwenkwiege. Insbesondere umfasst die Schrägscheibenmaschine zwei Lagerschalen und zwei Gegenlagerschalen und die zwei Lagerschalen und zwei Gegenlagerschalen sind in einem, insbesondere identischen, Abstand zu der Rotationsachse der Antriebswelle angeordnet.
In einer ergänzenden Ausführungsform ist die wenigstens eine Lagerschale von einem gesonderten Lagerschalenteil gebildet, welches an dem ersten und zweiten Lagerbockteil der Schrägscheibenmaschine mittelbar oder unmittelbar befestigt ist. Das Lagerschalenteil ist ein gesondertes Bauteil und besteht aus einem anderen Material als das Gehäuse und/oder der Lagerbock,
beispielsweise Kunststoff, PEEK oder Messing. Die Gegenlagerschale ist unmittelbar von der Schwenkwiege aus Stahl gebildet, so dass dadurch zur Reduzierung der Reibleistung an der Wiegenlagerung die Lagerfläche und die Gegenlagerfläche aus einem unterschiedlichen Material bzw. Werkstoff gebildet sind.
In einer weiteren Variante ist die wenigstens eine Gegenlagerschale von der Schwenkwiege gebildet.
In einer zusätzlichen Ausführungsform weist die Schrägscheibenmaschine an dem Gehäuse und/oder der Schwenkwiege und/oder an wenigstens einem Lagerbockteil und/oder an einer Lagerung für die Antriebswelle und/oder an der der wenigstens einen Lagerschale und/oder an der wenigstens einen
Gegenlagerschale im Bereich der Innenendseite eine Aussparung und/oder einen Hohlraum und/oder ein Relief auf. Bei einer großen auf die Schwenkwiege wirkenden gesamtresultierenden axialen Kraft tritt eine große Biegung der Schwenkwiege an den Innenendseiten auf und die Aussparungen und/oder der Hohlraum bewirkt eine kleinere Steifigkeit der Lagerfläche und/oder der
Gegenlagerfläche im Bereich der Innenendseiten im Vergleich zu den
Außenendseiten, so dass damit eine im Wesentlichen gleichmäßige
Flächenpressung zwischen der Lagerfläche und der Gegenlagerfläche auftritt.
In einer Variante ist die Schwenkachse der Schwenkwiege senkrecht zu der Rotationsachse der Antriebswelle und der Zylindertrommel ausgerichtet. In einer weiteren Ausgestaltung besteht die Lagerschale aus einem anderen Material als die Gegenlagerschale.
Zweckmäßig besteht das Lagerschaltenteil aus PEEK oder Messing und die Gegenlagerschale aus Stahl.
Erfindungsgemäßer Antriebsstrang für ein Kraftfahrzeug, umfassend wenigstens eine Schrägscheibenmaschine zur Umwandlung von mechanischer Energie in hydraulische Energie und umgekehrt, wenigstens einen Druckspeicher, wobei die Schrägscheibenmaschine als eine in dieser Schutzrechtsanmeldung
beschriebene Schrägscheibenmaschine ausgebildet ist.
Vorzugsweise umfasst der Antriebsstrang zwei Schrägscheibenmaschinen, welche hydraulisch miteinander verbunden sind und als hydraulisches Getriebe fungieren und/oder der Antriebsstrang umfasst zwei Druckspeicher als
Hochdruckspeicher und Niederdruckspeicher.
In einer weiteren Ausführungsform umfasst die Schrägscheibenmaschine eine mit der Zylindertrommel zumindest drehfest verbundene Antriebswelle, welche um die Rotationsachse drehbar bzw. rotierend gelagert ist.
In einer weiteren Ausgestaltung umfasst die Schrägscheibenmaschine wenigstens eine Schwenkeinrichtung zum Verschwenken der Schwenkwiege.
In einer zusätzlichen Variante umfasst die Schrägscheibenmaschine eine Niederdrucköffnung zum Ein- und/oder Ausleiten von Hydraulikflüssigkeit in die und/oder aus den rotierenden Kolbenbohrungen.
In einer ergänzenden Ausführungsform umfasst die Schrägscheibenmaschine eine Hochdrucköffnung zum Aus- und/oder Einleiten von Hydraulikflüssigkeit aus den und/oder in die rotierenden Kolbenbohrungen.
Kurze Beschreibung der Zeichnungen Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter
Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
Fig. 1 einen Längsschnitt einer Schrägscheibenmaschine durch eine
Rotationsachse einer Antriebswelle und senkrecht zu einer
Schwenkachse einer Schwenkwiege,
Fig. 2 einen Querschnitt A-A gemäß Fig. 1 einer Ventilscheibe der
Schrägscheibenmaschine sowie eine Ansicht einer Schwenkwiege,
Fig. 3 eine Ansicht eines Flansches eines Gehäuses mit dem daran
befestigten dritten Lagerbockteil sowie zwei Lagerschalenteile,
Fig. 4 einen Schnitt B-B gemäß Fig. 3 des Flansches und der ersten, zweiten und dritten Lagerbockteile der Schrägscheibenmaschine,
Fig. 5 einen Schnitt C-C gemäß Fig. 3 des Flansches und des dritten
Lagerbockteiles der Schrägscheibenmaschine und
Fig. 6 einen Antriebsstrang für ein Kraftfahrzeug.
Ausführungsformen der Erfindung
Eine in Fig. 1 in einem Längsschnitt dargestellte Schrägscheibenmaschine 1 dient als Axialkolbenpumpe 2 zur Umsetzung bzw. Umwandlung mechanischer Energie (Drehmoment, Drehzahl) in hydraulische Energie (Volumenstrom, Druck) oder als Axialkolbenmotor 3 zur Umsetzung bzw. Umwandlung hydraulischer Energie (Volumenstrom, Druck) in mechanische Energie (Drehmoment,
Drehzahl). Eine Antriebswelle 9 ist mittels einer Lagerung 10 an einem
Flansch 21 eines- oder mehrteiligen Gehäuse 4 und mit einer weiteren Lagerung 10 an dem Gehäuse 4 der Schrägscheibenmaschine 1 um eine Rotationsachse 8 drehbar bzw. rotierend gelagert (Fig. 1 ). Mit der Antriebswelle 9 ist eine
Zylindertrommel 5 drehfest und in axialer Richtung verbunden, wobei die
Antriebswelle 9 und die Zylindertrommel 5 ein- oder zweiteilig ausgebildet sind und die Grenze zwischen der Antriebswelle 9 und der Zylindertrommel 5 in Fig. 1 strichliert dargestellt ist. Die Zylindertrommel 5 führt die Rotationsbewegung der Antriebswelle 9 mit aus aufgrund einer drehfesten Verbindung. In die
Zylindertrommel 5 sind eine Vielzahl von Kolbenbohrungen 6 mit einem beliebigen Querschnitt, zum Beispiel quadratisch oder kreisförmig, eingearbeitet. Die Längsachsen der Kolbenbohrungen 6 sind dabei im Wesentlichen parallel zu der Rotationsachse 8 der Antriebswelle 9 bzw. der Zylindertrommel 5
ausgerichtet. In den Kolbenbohrungen 6 ist jeweils ein Kolben 7 beweglich gelagert. Eine Schwenkwiege 14 ist um eine Schwenkachse 15 verschwenkbar an dem Gehäuse 4 gelagert. Die Schwenkachse 15 ist senkrecht zu der
Zeichenebene von Fig. 1 und parallel zu der Zeichenebene von Fig. 2
ausgerichtet. Die Rotationsachse 8 der Zylindertrommel 5 ist parallel zur und in der Zeichenebene von Fig. 1 angeordnet und senkrecht auf der Zeichenebene von Fig. 2. Das Gehäuse 4 begrenzt einen Innenraum 44, der mit
Hydraulikflüssigkeit befüllt ist.
Die Schwenkwiege 14 weist eine ebene bzw. plane Auflagefläche 18 zur mittelbaren Auflage einer Rückhaltescheibe 37 auf. Die Rückhaltescheibe 37 weist Bohrungen (nicht dargestellt) auf, innerhalb derer je ein Gleitschuh 39 angeordnet ist. Die Gleitschuhe 39 liegen unmittelbar auf der Auflagefläche 18 der Schwenkwiege 14 auf. Jeder Gleitschuh 39 ist dabei mit jeweils einem
Kolben 7 verbunden. Hierzu weist der Gleitschuh 39 eine Lagerkugel 40 (Fig. 1 ) auf, welcher in einer Lagerpfanne 59 an dem Kolben 7 befestigt ist, sodass eine Kolbenverbindungsstelle 22 zwischen der Lagerkugel 40 und der Lagerpfanne 59 an dem Kolben 7 ausgebildet ist. Die teilweise sphärisch ausgebildete
Lagerkugel 40 und Lagerpfanne 59 sind beide komplementär bzw. sphärisch ausgebildet, sodass dadurch bei einer entsprechenden Bewegungsmöglichkeit zueinander zwischen der Lagerkugel 40 und der Lagerpfanne 59 an den Kolben 7 eine ständige Verbindung zwischen dem Kolben 7 und dem Gleitschuh 39 vorhanden ist. Aufgrund der Verbindung der Kolben 7 mit der rotierenden Zylindertrommel 5 und der Verbindung der Lagerpfannen 59 mit den
Gleitschuhen 39 führen die Gleitschuhe 39 eine Rotationsbewegung um die Rotationsachse 8 mit aus und aufgrund der Anordnung der Gleitschuhe 39 in den Bohrungen der Rückhaltescheibe 37 führt auch die Rückhaltescheibe 37 eine Rotationsbewegung um die Rotationsachse 8 mit aus. Damit die
Rückhaltescheibe 37 in ständigem mittelbarem Kontakt zu der Auflagefläche 18 der Schwenkwiege 14 steht, wird diese von einer Druckfeder 41 unter einer Druckkraft auf die Auflagefläche 18 gedrückt, so dass die Gleitschuhe 39 von der Druckfeder 41 auf die Auflagefläche 18 unmittelbar gedrückt sind.
Die Schwenkwiege 14 ist - wie bereits erwähnt - um die Schwenkachse 15 verschwenkbar gelagert und weist ferner eine Öffnung 42 (Fig. 1 ) zur
Durchführung der Antriebswelle 9 auf. Am Gehäuse 4 ist eine Wiegenlagerung 20 ausgebildet. Dabei sind an der Schwenkwiege 14 zwei Gegenlagerschalen 23 ausgebildet. Die beiden verschwenkbaren Gegenlagerschalen 23 an der
Schwenkwiege 14 liegen auf je einer Lagerschale 17 auf, so dass die beiden Lageschalen 17 und beiden Gegenlagerschalen 23 die Wiegenlagerung 20 bilden. Je eine Lagerfläche 33 an den beiden Lagerschalen 17 liegt damit auf einer Gegenlagerfläche 34 an den Gegenlagerschalen 23 auf. Die
Gegenlageschalen 23 sind einteilig von der Schwenkwiege 14 aus Stahl gebildet. Die Schwenkwiege 14 ist damit mittels einer Gleitlagerung als Wiegenlagerung 20 um die Schwenkachse 15 verschwenkbar gelagert. In der Darstellung in Fig. 1 weist die Auflagefläche 18 gemäß der Schnittbildung in Fig. 1 einen
Schwenkwinkel α von ungefähr +20° auf. Der Schwenkwinkel α ist zwischen einer fiktiven Ebene senkrecht zu der Rotationsachse 8 und einer von der ebenen Auflagefläche 18 der Schwenkwiege 14 aufgespannten Ebene vorhanden gemäß der Schnittbildung in Fig. 1. Die Schwenkwiege 14 kann dabei zwischen zwei Schwenkgrenzwinkel α zwischen +20° und -20° mittels zweier Schwenkeinrichtungen 24 verschwenkt werden.
Die erste und zweite Schwenkeinrichtung 25, 26 als Schwenkeinrichtungen 24 weist eine Verbindungsstelle 32 zwischen der Schwenkeinrichtung 24 und der
Schwenkwiege 14 auf. Die beiden Schwenkeinrichtungen 24 weisen jeweils einen Verstellkolben 29 auf, welcher in einem Verstellzylinder 30 beweglich gelagert ist. Der Verstellkolben 29 bzw. eine Achse des Verstellzylinders 30 ist dabei im Wesentlichen parallel zu der Rotationsachse 8 der Zylindertrommel 5 ausgerichtet. An einem in Fig. 1 links dargestellten Endbereich des
Verstellkolbens 29 weist dieser eine Lagerpfanne 31 auf, in welcher eine
Lagerkugel 19 gelagert ist. Dabei ist die Lagerkugel 19 an einem Schwenkarm 16 (Fig. 1 bis 2) der Schwenkwiege 14 vorhanden. Die erste und zweite
Schwenkeinrichtung 25, 26 ist somit mit jeweils einer Lagerkugel 19 an jeweils einem Schwenkarm 16 mit der Schwenkwiege 14 verbunden. Durch Öffnen eines der beiden Ventile 27, 28 als erstes Ventil 27 an der ersten Schwenkeinrichtung 25 und dem zweiten Ventil 28 an der zweiten Schenkeinrichtung 26 gemäß der Darstellung in Fig. 1 kann die Schwenkwiege 14 um die Schwenkachse 15 verschwenkt werden, da dadurch auf den Verstellkolben 29 an dem geöffneten Ventil 27, 28 mit einer Hydraulikflüssigkeit unter Druck in dem Verstellzylinder 30 eine Kraft aufgebracht wird. Dabei führt nicht nur die Schwenkwiege 14, sondern auch die Rückhaltescheibe 37 aufgrund der Druckbeaufschlagung mit der Druckfeder 41 diese Schwenkbewegung der Schwenkwiege 14 mit aus.
Bei einem Betrieb der Schrägscheibenmaschine 1 als Axialkolbenpumpe 2 ist bei konstanter Drehzahl der Antriebswelle 9 der von der Schrägscheibenmaschine 1 geförderte Volumenstrom umso größer, je größer der Betrag des
Schwenkwinkels α ist und umgekehrt. Hierzu liegt an dem in Fig. 1 rechts dargestellten Ende der Zylindertrommel 5 eine Ventilscheibe 1 1 auf, mit einer nierenförmigen Hochdrucköffnung 12 und einer nierenförmigen
Niederdrucköffnung 13. Die Kolbenbohrungen 6 der rotierenden Zylindertrommel 5 werden somit fluidleitend bei einer Anordnung an der Hochdrucköffnung 12 mit der Hochdrucköffnung 12 verbunden und bei einer Anordnung an der
Niederdrucköffnung 13 mit der Niederdrucköffnung 13 fluidleitend verbunden. Bei einem Schwenkwinkel α von 0° und bei einem Betrieb der
Schrägscheibenmaschine 1 beispielsweise als Axialkolbenpumpe 2 wird trotz einer Rotationsbewegung der Antriebswelle 9 und der Zylindertrommel 5 keine Hydraulikflüssigkeit von der Axialkolbenpumpe 2 gefördert, da die Kolben 7 keine Hubbewegungen in den Kolbenbohrungen 6 ausführen. Bei einem Betrieb der Schrägscheibenmaschine 1 sowohl als Axialkolbenpumpe 2 als auch als
Axialkolbenmotor 3 weisen die temporär in fluidleitender Verbindung mit der Hochdrucköffnung 12 stehenden Kolbenbohrungen 6 einen größeren Druck an Hydraulikflüssigkeit auf als die Kolbenbohrungen 6, welche temporär in fluidleitender Verbindung mit der Niederdrucköffnung 13 stehen. Ein axiales Ende 66 der der Zylindertrommel 5 liegt auf der Ventilscheibe 1 1 auf. An einer ersten Seite 64 des Gehäuses 4 bzw. dem Flansch 21 des Gehäuses 4 ist eine Öffnung 63 mit der Lagerung 10 ausgebildet und eine zweite Seite 65 weist eine Aussparung zur Lagerung der Antriebswelle 9 mit einer weiteren Lagerung 10 auf. In der Öffnung 63 ist außerdem eine Gleitringdichtung 74 angeordnet, damit die Hydraulikflüssigkeit nicht aus dem Innenraum 44 nach außen strömen kann. Die Lagerfläche 33 von den beiden Lagerschalen 17 liegt jeweils auf der
Gegenlagerfläche 34 an der Schwenkwiege 14 auf. Dabei ist die Lagerschale 17 von zwei getrennten Bauteilen, nämlich einer ersten Lagerschale 77 und einer zweiten Lagerschale 78 gebildet. Diese beiden Lagerschalen 17, 77, 78 sind mittelbar mittels eines dreiteiligen Lagerbockes 79 an dem Gehäuse 4, d. h. dem Flansch 21 der Schrägscheibenmaschine 1 , befestigt. Der dreiteilige
Lagerbock 79 umfasst ein erstes Lagerbockteil 70, ein zweites Lagerbockteil 71 und ein drittes Lagerbockteil 72, wobei das dritte Lagerbockteil 72 als ein scheibenförmiger Ring 73 ausgebildet ist. Das erste und zweite Lagerbockteil 70, 71 weisen je eine teilzylinderförmige Teilfläche auf, an der jeweils die erste Lagerschale 77 und die zweite Lagerschale 78 befestigt ist. Das erste und zweite Lagerbockteil 70, 71 und die erste und zweite Lagerschale 77, 78 sind in einer Projektionsrichtung gemäß der Draufsicht von Fig. 3 rechteckförmig ausgebildet. Das ringförmige dritte Lagerbockteil 72 ist formschlüssig mittels einer
Ausnehmung 75 an dem Flansch 21 des Gehäuses 4 befestigt. Aufgrund der Druckkraft zwischen dem Flansch 21 und dem dritten Lagerbockteil 72 besteht damit eine form- und kraftschlüssige Verbindung zwischen dem Flansch 21 und dem dritten Lagerbockteil 72. In analoger Weise weist das dritte Lagerbockteil 72 zwei getrennte Ausnehmungen 76 auf, jeweils zur formschlüssigen Aufnahme des ersten Lagerbockteiles 70 und des zweiten Lagerbockteiles 71 . Dadurch sind auch das erste und zweite Lagerteil 70, 71 form- und kraftschlüssig mit dem dritten Lagerbockteil 73 verbunden. Ferner sind das erste und zweite
Lagerbockteil 70, 71 mittels mehrerer Befestigungsbolzen 61 bzw.
Befestigungspins 68 zusätzlich formschlüssig an dem dritten Lagerbockteil 72 befestigt.
Die zwei Lagerschalenteile 62 als der ersten und zweiten Lagerschale 77, 78 bestehen aus einem anderen Material, z. B. PEEK oder Messing, wie die
Gegenlagerfläche 34 der Schwenkwiege 14 und der Flansch 21 aus Stahl und das erste, zweite und dritte Lagerbockteil 70, 71 , 72. Das Lagerschalenteil 62 weist die Lagerfläche 33 auf. Die Lagerfläche 33 ist teilzylindermantelförmig ausgebildet. An der Schwenkwiege 14 ist eine Gegenlagerschale 23 vorhanden, wobei die Gegenlagerschale 23 ebenfalls teilzylindermantelförmig mit einer Gegenlagerfläche 34 der Gegenlagerschale 23 ausgebildet ist. Je eine
Lagerschale 17 an dem ersten und zweiten Lagerbockteil 70, 71 ist somit von je einem Lagerschalenteil 62 gebildet und die Gegenlagerschale 23 ist unmittelbar ohne ein gesondertes Bauteil von der Schwenkwiege 14 aus Stahl gebildet. Ein fiktiver Zylinder an der Lagerfläche 33 und der Gegenlagefläche 34 weist eine Längsachse auf, welche der Schwenkachse 15 der Schwenkwiege 14 entspricht. Die Gegenlagerfläche 34 an der Schwenkwiege 14 liegt dabei auf der
Lagerfläche 33 an dem Lagerschalenteil 62 auf. Die Lagerschale 17 und die
Gegenlagerschale 23 bilden damit die Wiegenlagerung 20 für die
Schwenkwiege 14. Die Lagerbockteile 70, 71 , 72 bestehen aus Stahl wie das Gehäuse 4. Innerhalb der Öffnung 63 des Flansches 21 sind eine Lagerung 10 für die
Antriebswelle 9 und die Gleitringdichtung 74 angeordnet. Eine im Querschnitt kreisförmige Begrenzungsfläche des Flansches 21 begrenzt somit die
Öffnung 63 und der minimale Abstand 38 zwischen der Rotationsachse 8 der Antriebswelle 9 und dieser Begrenzungsfläche des Flansches 21 für die
Öffnung 63 ist wesentlich größer als der minimale radiale Abstand 43 zwischen der Rotationsachse 8 und einer radialen Innenseite 80 des Lagerbockes 79, insbesondere des dritten Lagerbockteiles 72 sowie auch des ersten und zweiten Lagerbockteiles 70, 71. Die beiden Lagerbockteile 70, 71 und damit die darauf aufliegenden ersten und zweiten Lagerschalen 77, 78 und damit auch die beiden Lagerflächen 33 weisen damit einen geringen Abstand zu der radialen
Außenseite der Antriebswelle 9 auf. Aufgrund dieses geringen Abstandes der Lagerflächen 33 und der Gegenlagerflächen 34 können dadurch die von den Gleitschuhen 39 auf die Auflagefläche 18 der Schwenkwiege 14 einwirkenden Druckkräfte an den Lagerflächen 33 bzw. Gegenflächen 34 in einem geringen Abstand voneinander in den Flansch 21 eingeleitet werden, so dass dadurch in vorteilhafter Weise die Schwenkwiege 14 eine geringe Biegung aufweist. Der große erforderliche Durchmesser der Öffnung 63 für die Lagerung 10 und die Gleitringdichtung 74 kann damit von dem die Öffnung 63 überkragenden
Lagerbock 79 ausgeglichen werden.
Bei einer Belastung der Schwenkwiege 14 aufgrund der von den Gleitschuhen 39 auf die Schwenkwiege 14 an der Auflagefläche 18 aufgebrachten Druckkräfte tritt an den beiden Innenendseiten 36 der Lagerfläche 33 und auch an den dem ersten und zweiten Lagerbockteil 70, 71 eine größere Biegung bzw. Verformung auf als an den Außenendseiten 35. In dem dritten Lagerbockteil 72 und in dem ersten und zweiten Lagerbockteil 70, 71 sind Hohlräume 67 und Aussparungen 69 ausgebildet, so dass dadurch die Lagerfläche 33 im Bereich der
Innenendseiten 36 eine kleinere Steifigkeit aufweist als im Bereich der
Außenendseiten 35. Bei einer großen Biegung und dadurch bedingten
Verformung der Schwenkwiege 14 tritt somit aufgrund der Steifigkeit der
Lagerfläche 33 zwischen der Gegenlagerfläche 34 und der Lagerfläche 33 eine im Wesentlichen konstante Flächenpressung auf. An den Innenendseiten 36 kommt es damit nicht zu sehr großen Flächenpressungen. Die im Wesentlichen gleichmäßige Flächenpressung bzw. Pressung bewirkt einen gleichmäßigen mechanischen Verschleiß an der Lagerfläche 33 und an der
Gegenlagerfläche 34 aufgrund der Gleitlagerung zwischen der Lager- und
Gegenlagerfläche 33, 34.
In Fig. 6 ist ein erfindungsgemäßer Antriebsstrang 45 dargestellt. Der
erfindungsgemäße Antriebsstrang 45 weist einen Verbrennungsmotor 46 auf, welcher mittels einer Welle 47 ein Planetengetriebe 48 antreibt. Mit dem
Planetengetriebe 48 werden zwei Wellen 47 angetrieben, wobei eine erste Welle 47 mit einer Kupplung 49 mit einem Differentialgetriebe 56 verbunden ist. Eine zweite bzw. andere Welle, welche von dem Planetengetriebe 48 angetrieben ist, treibt durch eine Kupplung 49 eine erste Schrägscheibenmaschine 50 an und die erste Schrägscheibenmaschine 50 ist mittels zweier Hydraulikleitungen 52 mit einer zweiten Schrägscheibenmaschine 51 hydraulisch verbunden. Die erste und zweite Schrägscheibenmaschine 50, 51 bilden dadurch ein hydraulisches Getriebe 60 und von der zweiten Schrägscheibenmaschine 51 kann mittels einer Welle 47 auch das Differentialgetriebe 56 angetrieben werden. Das
Differentialgetriebe 56 treibt mit den Radwellen 58 die Räder 57 an. Ferner weist der Antriebsstrang 45 zwei Druckspeicher 53 als Hochdruckspeicher 54 und als Niederdruckspeicher 55 auf. Die beiden Druckspeicher 53 sind dabei mittels nicht dargestellter Hydraulikleitungen auch mit den beiden Schrägscheibenmaschinen 50, 51 hydraulisch verbunden, sodass dadurch mechanische Energie des Verbrennungsmotors 46 in dem Hochdruckspeicher 54 hydraulisch gespeichert werden kann und ferner in einem Rekuperationsbetrieb eines Kraftfahrzeugs mit dem Antriebsstrang 45 ebenfalls kinetische Energie des Kraftfahrzeugs in dem Hochdruckspeicher 54 hydraulisch gespeichert werden kann. Mittels der in dem Hochdruckspeicher 54 gespeicherten hydraulischen Energie kann mit einer Schrägscheibenmaschine 50, 51 zusätzlich das Differentialgetriebe 56 angetrieben werden. Insgesamt betrachtet sind mit der erfindungsgemäßen
Schrägscheibenmaschine 1 wesentliche Vorteile verbunden. Der Lagerbock 79 aus Stahl ist mehrteilig ausgebildet, nämlich dreiteilig mit dem ersten
Lagerbockteil 70, dem zweien Lagerbockteil 71 und dem dritten Lagerbockteil 72. Der erste und zweite Lagerbockteil 70, 71 weist jeweils teilzylinderförmige Teilflächen auf, an denen jeweils die erste und zweite Lagerschale 77, 78 befestigt sind. Bei der Herstellung der Schrägscheibenmaschine 1 können diese teilzylinderförmigen Teilflächen an den getrennten Bauteilen des ersten und zweiten Lagerbockteiles 70, 71 besonders einfach spanabhebend von einem Bearbeitungswerkzeug, beispielsweise einer Drehbank oder einer Fräse, hergestellt werden. Dadurch weist das erste und zweite Lagerbockteil 70, 71 eine geringe axiale Baulänge in Richtung der Rotationsachse 8 der Antriebswelle 9 auf und damit auch insgesamt der Lagerbock 79, da das dritte Lagerbockteil 72 als ein scheibenförmiger Ring 73 ausgebildet ist mit einer geringen Ausdehnung in Richtung der Rotationsachse der Antriebswelle 9. Dadurch weist insgesamt die Schrägscheibenmaschine 1 eine geringe axiale Baulänge auf und ist in der Herstellung einfach und preiswert bezüglich des Lagerbockes 79.

Claims

Ansprüche
1 . Schrägscheibenmaschine (1 ) als Axialkolbenpumpe (2) und/oder
Axialkolbenmotor (3), umfassend
- eine um eine Rotationsachse (8) drehbar bzw. rotierend gelagerte Zylindertrommel (5) mit Kolbenbohrungen (6),
- in den Kolbenbohrungen (6) beweglich gelagerte Kolben (7),
- eine um eine Schwenkachse (15) verschwenkbar gelagerte
Schwenkwiege (14),
- ein Gehäuse (4),
- eine Wiegenlagerung (20) für die Schwenkwiege (14) mit wenigstens einer feststehenden Lagerschale (17) an einem Lagerbock (79) und mit wenigstens einer verschwenkbaren Gegenlagerschale (23) an der Schwenkwiege (14), dadurch gekennzeichnet, dass der Lagerbock (79) mehrteilig ausgebildet ist.
2. Schrägscheibenmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Lagerbock (79) dreiteilig ausgebildet ist
und/oder
die feststehende Lagerschale (17) mit dem mehrteiligen Lagerbock (79) mittelbar an dem Gehäuse (4) befestigt ist
und/oder
der mehrteilige Lagerbock (79), insbesondere unmittelbar, an dem
Gehäuse (4) befestigt ist.
3. Schrägscheibenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wiegenlagerung (20) zwei feststehende Lagerschalen (17) aufweist und eine erste Lageschale (77) an einem ersten Lagerbockteil (70) befestigt ist und die zweite Lagerschale (78) an einem zweiten
Lagerbockteil (71 ) befestigt ist
und/oder
der mehrteilige Lagerbock (79) als ein zusätzliches Bauteil (79) in Ergänzung zu dem Gehäuse (4) ausgebildet ist.
4. Schrägscheibenmaschine nach Anspruch 3, dadurch gekennzeichnet, dass das erste und zweite Lagerbockteil (70, 71 ), insbesondere unmittelbar, an einem dritten Lagerbockteil (72) befestigt ist
und/oder
an dem ersten und/oder zweiten Lagerbockteil (70, 71 ) je eine feststehende Lagerschale (17), insbesondere unmittelbar, befestigt ist.
5. Schrägscheibenmaschine nach Anspruch 4, dadurch gekennzeichnet, dass das dritte Lagerbockteil (73), insbesondere unmittelbar, an dem Gehäuse (4), insbesondere an einem Flansch (21 ) des Gehäuses (4), befestigt ist.
6. Schrägscheibenmaschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das dritte Lagerbockteil (72) als ein Ring (73), insbesondere ein scheibenförmiger Ring (73), ausgebildet ist.
7. Schrägscheibenmaschine nach einem oder mehreren der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das erste und zweite Lagerbockteil (70, 71 ) mit einem Befestigungsbolzen (61 ) oder Befestigungspin (68) an dem dritten Lagerbockteil (72) befestigt sind.
8. Schrägscheibenmaschine nach einem oder mehreren der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (4) und die Lagerbockteile (70, 71 , 72) aus Metall, z. B.
Stahl oder Aluminium, bestehen
und/oder
das Gehäuse (4) und die Lagerbockteile (70, 71 , 72) aus einem identischen Werkstoff bestehen.
9. Schrägscheibenmaschine nach einem oder mehreren der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass je eine Lagerfläche (33) an der Lagerschale (17) auf je einer
Gegenlagerfläche (34) der Gegenlagerschale (23) aufliegt
und/oder
das erste und/oder zweite und/oder dritte Lagerbockteil (70, 71 , 72) an einer radialen Innenseite (80) einen kleineren minimalen Abstand (43), insbesondere um 10%, 20%, 30% oder 40% kleineren Abstand, zu der Rotationsachse (8) der Zylindertrommel (5) aufweist als das Gehäuse (4), insbesondere ein Flansch (21 ), an einer Öffnung (63) mit einer Lagerung (10) für die Antriebswelle (9).
10. Schrägscheibenmaschine nach einem oder mehreren der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schrägscheibenmaschine (1 ) dahingehend ausgebildet ist, dass die wenigstens eine Lagerfläche (33) und/oder die wenigstens eine
Gegenlagerfläche (34) im Bereich einer der Antriebswelle (9) zugewandten Innenendseite (36) in einer Richtung parallel zu der Schwenkachse (15) der Schwenkwiege (14) eine kleinere Steifigkeit aufweist als im Bereich einer der Antriebswelle (9) abgewandten Außenendseite (35).
1 1 . Antriebsstrang (45) für ein Kraftfahrzeug, umfassend
- wenigstens eine Schrägscheibenmaschine (1 ) zur Umwandlung von mechanischer Energie in hydraulische Energie und umgekehrt,
- wenigstens einen Druckspeicher (53), dadurch gekennzeichnet, dass die Schrägscheibenmaschine (1 ) nach einem oder mehreren der vorhergehenden Ansprüche ausgebildet ist.
12. Antriebsstrang nach Anspruch 1 1 , dadurch gekennzeichnet, dass der Antriebsstrang (45) zwei Schrägscheibenmaschinen (1 ) umfasst, welche hydraulisch miteinander verbunden sind und als hydraulisches Getriebe (60) fungieren
und/oder
der Antriebsstrang (45) zwei Druckspeicher (53) als Hochdruckspeicher (54) und Niederdruckspeicher (55) umfasst.
PCT/EP2014/069298 2013-10-08 2014-09-10 Schrägscheibenmaschine WO2015051965A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14771229.3A EP3055565B1 (de) 2013-10-08 2014-09-10 Schrägscheibenmaschine
CN201480061001.5A CN105745442B (zh) 2013-10-08 2014-09-10 斜盘式机器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013220231.8 2013-10-08
DE201310220231 DE102013220231A1 (de) 2013-10-08 2013-10-08 Schrägscheibenmaschine

Publications (1)

Publication Number Publication Date
WO2015051965A1 true WO2015051965A1 (de) 2015-04-16

Family

ID=51582360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/069298 WO2015051965A1 (de) 2013-10-08 2014-09-10 Schrägscheibenmaschine

Country Status (4)

Country Link
EP (1) EP3055565B1 (de)
CN (1) CN105745442B (de)
DE (1) DE102013220231A1 (de)
WO (1) WO2015051965A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212601A1 (de) 2015-07-06 2017-01-12 Robert Bosch Gmbh Verfahren zur Steuerung und Regelung eines Antriebsstranges
CN108150479A (zh) * 2016-12-05 2018-06-12 江苏汉力士液压制造有限公司 分体式摇摆
DE102019116250B4 (de) * 2019-06-14 2023-02-16 Schaeffler Technologies AG & Co. KG Schwenkwiegenlagerung und Verfahren zur Herstellung einer Schwenkwiegenlagerung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911969A1 (de) * 2005-07-19 2008-04-16 Kabushiki Kaisha Kawasaki Precision Machinery Installationsstruktur für schrägscheibenstützbasis und hydraulische vorrichtung
KR20080067959A (ko) * 2007-09-11 2008-07-22 가부시키 가이샤 가와사키 프리시젼 머시너리 사판식 피스톤 펌프ㆍ모터
US20090120279A1 (en) * 2007-11-08 2009-05-14 Caterpillar Inc. Bearing restricting device in swash plate hydraulic pump or motor
DE102008013010A1 (de) * 2007-12-28 2009-07-02 Robert Bosch Gmbh Schwenkwiegenlagerung für Axialkolbenmaschinen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH405934A (de) 1962-07-26 1966-01-15 Weatherhead Co Schrägscheiben-Axialkolbenpumpe
US4076459A (en) 1976-09-14 1978-02-28 Abex Corporation Horsepower limiter control for a variable displacement pump
EP1013928A3 (de) 1998-12-22 2000-11-08 Parker Hannifin GmbH Schrägscheiben-Axialkolbenpumpe mit Einrichtung zur Pulsationsminderung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911969A1 (de) * 2005-07-19 2008-04-16 Kabushiki Kaisha Kawasaki Precision Machinery Installationsstruktur für schrägscheibenstützbasis und hydraulische vorrichtung
KR20080067959A (ko) * 2007-09-11 2008-07-22 가부시키 가이샤 가와사키 프리시젼 머시너리 사판식 피스톤 펌프ㆍ모터
US20090120279A1 (en) * 2007-11-08 2009-05-14 Caterpillar Inc. Bearing restricting device in swash plate hydraulic pump or motor
DE102008013010A1 (de) * 2007-12-28 2009-07-02 Robert Bosch Gmbh Schwenkwiegenlagerung für Axialkolbenmaschinen

Also Published As

Publication number Publication date
CN105745442A (zh) 2016-07-06
CN105745442B (zh) 2017-12-15
EP3055565A1 (de) 2016-08-17
EP3055565B1 (de) 2017-11-15
DE102013220231A1 (de) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2014032848A1 (de) Schrägscheibenmaschine
EP3055565B1 (de) Schrägscheibenmaschine
DE102013203787A1 (de) Schrägscheibenmaschine
DE102015206716A1 (de) Schrägscheibenmaschine
DE102012222962A1 (de) Schrägscheibenmaschine
WO2015086266A1 (de) Schrägscheibenmaschine
WO2015018648A1 (de) Schrägscheibenmaschine
WO2014187608A1 (de) Schrägscheibenmaschine
DE102013200718A1 (de) Schrägscheibenmaschine
WO2015086260A1 (de) Schrägscheibenmaschine
WO2014195083A1 (de) Schrägscheibenmaschine
WO2015197400A1 (de) Schrägscheibenmaschine
DE102013202295A1 (de) Schrägscheibenmaschine
WO2015140033A1 (de) Schrägscheibenmaschine als axialkolbenpumpe und/oder axialkolbenmotor
WO2015036176A1 (de) Schrägscheibenmaschine als axialkolbenpumpe und/oder axialkolbenmotor
WO2017063798A1 (de) Schrägscheibenmaschine
WO2016124284A1 (de) Schrägscheibenmaschine
WO2016045849A1 (de) Schrägscheibenmaschine
WO2016124288A1 (de) Schrägscheibenmaschine
DE102013210387A1 (de) Schrägscheibenmaschine
DE102015223849A1 (de) Schrägscheibenmaschine
WO2014206713A1 (de) Schrägscheibenmaschine als axialkolbenpumpe und/oder axialkolbenmotor
DE102013210400A1 (de) Schrägscheibenmaschine
WO2014111360A1 (de) Schrägscheibenmaschine
DE102015211315A1 (de) Schrägscheibenmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771229

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014771229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014771229

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE