WO2015051540A1 - 热泵系统 - Google Patents
热泵系统 Download PDFInfo
- Publication number
- WO2015051540A1 WO2015051540A1 PCT/CN2013/085066 CN2013085066W WO2015051540A1 WO 2015051540 A1 WO2015051540 A1 WO 2015051540A1 CN 2013085066 W CN2013085066 W CN 2013085066W WO 2015051540 A1 WO2015051540 A1 WO 2015051540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump system
- heat pump
- pipeline
- heat exchanger
- compression chamber
- Prior art date
Links
- 230000006835 compression Effects 0.000 claims abstract description 146
- 238000007906 compression Methods 0.000 claims abstract description 146
- 238000010438 heat treatment Methods 0.000 claims abstract description 105
- 239000003507 refrigerant Substances 0.000 claims abstract description 89
- 230000007246 mechanism Effects 0.000 claims abstract description 32
- 238000005057 refrigeration Methods 0.000 claims description 45
- 239000007788 liquid Substances 0.000 claims description 17
- 238000005192 partition Methods 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 238000001816 cooling Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013526 supercooled liquid Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
- F04C28/26—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/26—Problems to be solved characterised by the startup of the refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/31—Low ambient temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
Definitions
- the present invention relates to a heat pump system. Background technique
- the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
- a heat pump system includes: a compressor including a housing and a compression mechanism, the compression mechanism being disposed in the housing, the compression mechanism including a first compression a cavity and a second compression chamber, the first compression chamber has a first suction port, the second compression chamber has a second suction port; an indoor heat exchanger and an outdoor heat exchanger, the indoor exchange The heat exchanger and the outdoor heat exchanger are respectively connected to the compressor through a four-way valve, and a refrigeration pipeline and a heating pipeline are disposed between the indoor heat exchanger and the outdoor heat exchanger; a device, the refrigeration throttle device is disposed on the refrigeration line; a heating and throttling device, the heating and throttling device is disposed on the heating pipe; a flasher, the flasher is disposed in the heating pipe On the road, between the heating and throttling device and the outdoor heat exchanger, the flasher has a gaseous refrigerant outlet, and a bypass pipeline is connected between the gaseous refrigerant outlet and the
- the heat pump system according to an embodiment of the present invention is provided with a flasher, and the flasher is connected to the second suction port, so that when the heat pump system is in the heating mode, it can be based on the indoor air temperature and the preset temperature and/or outdoor air.
- the temperature comprehensively controls the heating efficiency of the heat pump system, for example, when the heating capacity needs to be increased, the second compression chamber can participate in the work, thereby improving the heating effect of the heat pump system.
- the heat pump system according to the embodiment of the present invention can improve its heating effect in a low temperature environment such as winter.
- the heat pump system may further have the following additional technical features:
- the gaseous refrigerant outlet is located at an upper portion of the flasher. This can prevent the liquid refrigerant in the flasher from being sucked into the second compression chamber through the bypass line to cause liquid compression.
- the first control valve is a solenoid valve.
- the refrigeration throttling device is one of a capillary tube, a thermal expansion valve, and an electronic expansion valve, wherein the heating and throttling device is a capillary, a thermal expansion valve, and an electronic expansion valve.
- the heat pump system further includes: an indoor heat exchanger shared line and an outdoor heat exchanger shared line, wherein one end of the refrigeration line and one end of the heating line pass the
- the indoor heat exchanger sharing pipeline is connected to the indoor heat exchanger, and the other end of the refrigeration pipeline and the other end of the heating pipeline are respectively exchanged with the outdoor heat through the outdoor heat exchanger sharing pipeline Connected.
- the heat pump system further includes: a refrigeration check valve and a heating check valve, wherein the refrigeration check valve is disposed on the refrigeration line for facing the outdoor heat exchanger The direction of the indoor heat exchanger is unidirectionally connected to the refrigeration pipeline, and the heating check valve is disposed on the heating pipeline for single guidance along the direction of the indoor heat exchanger toward the outdoor heat exchanger Passing the heating pipe.
- a reservoir is disposed between the first suction port and the four-way valve.
- the compression mechanism comprises:
- a first cylinder and a second cylinder an intermediate partition is interposed between the first cylinder and the second cylinder, a first sliding groove is formed on the first cylinder, and the first suction port is formed a second sliding plate groove is formed on the second cylinder, and the second suction port is formed on the second cylinder;
- first sliding piece is movably disposed in the first sliding piece groove and the second sliding piece is movably disposed in the second sliding piece groove;
- main bearing is disposed above the first cylinder, the main bearing, the first cylinder and the intermediate partition define the first compression chamber;
- the sub-bearing is disposed under the second cylinder, and the second compression chamber is defined between the intermediate partition, the second cylinder and the auxiliary bearing;
- crankshaft penetrating the main bearing, the first cylinder, the intermediate partition, the second cylinder and the auxiliary bearing, wherein the crankshaft has a first eccentric portion and a second eccentric portion,
- the first eccentric portion is located in the first compression chamber and is sleeved with a first piston
- the second eccentric portion is located in the second compression chamber and is sleeved with a second piston.
- the trailing end of the second vane slot is in direct communication with the interior of the housing.
- the tail end of the second sliding vane groove is provided with a magnetic member adapted to magnetically adsorb the second sliding piece;
- the heat pump system further comprises: a connecting pipe,
- the connecting pipe communicates the bypass pipe with the inside of the casing, and the connecting pipe is provided with a second control valve, and the second control valve is used for controlling the opening and closing of the connecting pipe.
- the top of the housing is provided with an exhaust pipe, one end of which is connected to the exhaust pipe.
- the second control valve is a solenoid valve.
- the magnetic member is a permanent magnet.
- the magnetic member is an electromagnet
- the exhaust capacity of the first compression chamber and/or the second compression chamber is variable.
- the first cylinder is further formed with a first variable opening, the first variable opening is in communication with the first compression chamber, and the first variable opening is a first varactor line is connected between the first suction port, a third control valve is disposed on the first varactor line, and the third control valve is used for controlling the passage of the first varactor line Broken.
- the third control valve is a solenoid valve.
- the first compliant opening has a radial dimension that is less than a radial dimension of the first suction port.
- the second cylinder is further formed with a second variable opening, the second variable opening is in communication with the second compression chamber, and the second variable opening is a second varactor line is connected between the second suction port, a fourth control valve is disposed on the second varactor line, and the fourth control valve is used for controlling the passage of the second varactor line Broken.
- the fourth control valve is a solenoid valve.
- the second varactor has a radial dimension that is less than a radial dimension of the second suction port.
- the front end of the first sliding piece is adapted to abut against the outer circumferential surface of the first piston, and the front end of the second sliding piece abuts against the outer circumferential surface of the second sliding piston on.
- a front end of the first sliding piece is fixed on an outer circumferential surface of the first piston, and a front end of the second sliding piece is adapted to abut against an outer circumferential surface of the second piston
- the front end of the first sliding piece is adapted to abut against an outer circumferential surface of the first piston, and the front end of the second sliding piece is fixed on an outer circumferential surface of the second piston
- the first A tip end of the slider is fixed to an outer peripheral surface of the first piston, and a tip end of the second slider is fixed to an outer peripheral surface of the second piston.
- an exhaust capacity of the second compression chamber is an exhaust capacity of the first compression chamber
- FIG. 1 is a schematic view of a heat pump system in accordance with one embodiment of the present invention.
- Figure 2 is a schematic illustration of a compressor in accordance with one embodiment of the present invention.
- FIG. 3 is a schematic illustration of a compressor in accordance with another embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of a first cylinder of a compression mechanism in accordance with one embodiment of the present invention
- Figure 5 is a schematic cross-sectional view of a second cylinder of a compression mechanism in accordance with one embodiment of the present invention.
- Compressor 100
- Outdoor heat exchanger 400 Heating circuit 410, outdoor heat exchanger common line 420, heating throttle device 430, heating check valve 440, flash evaporator 450, gaseous refrigerant outlet 460, bypass line 470, a control valve 480;
- first and second are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, “multiple” means two or more unless otherwise stated.
- a heat pump system which has a cooling and heating function, will be described in detail below with reference to Figs.
- a heat pump system may include a compressor 100, an indoor heat exchanger 300, an outdoor heat exchanger 400, a refrigeration throttle device 330, a heating throttle device 430, and a flasher 450. And a first control valve 480.
- the compressor 100 can include a housing, a drive motor, and a compression mechanism.
- the housing may include a main housing 12, an upper housing 11 and a lower housing 13, and the main housing 12 may be formed as a ring having an open top and a bottom.
- the upper casing 11 is disposed on the upper surface of the main casing 12, the upper casing 11 and the main casing 12 are integrally welded, and the lower casing 13 is disposed under the main casing 12, and the lower casing 13 and the main casing 12 can be welded into one body, and the upper casing 11, the main casing 12 and the lower casing 13 are enclosed into a closed installation cavity, wherein main components of the compressor 100, such as a compression mechanism, a drive motor, etc., are disposed in the installation space. Inside the cavity.
- main components of the compressor 100 such as a compression mechanism, a drive motor, etc.
- the compression mechanism may include a first cylinder 22, a second cylinder 24, an intermediate partition 23, a main bearing 21, a sub-bearing 25, a first slide 222, a second slide 242, and a crankshaft 26.
- An intermediate partition 23 is interposed between the first cylinder 22 and the second cylinder 24, in other words, the first cylinder 22 is disposed above the intermediate partition 23, and the second cylinder 24 is disposed below the intermediate partition 23.
- a first intake port 226, a first exhaust port 227, and a first vane slot 221 are formed in the first cylinder 22, and the first intake port 226 is in the rotation direction of the crankshaft 26 (FIG. 4).
- the counterclockwise direction of FIG. 5, that is, the direction of the arrow in FIGS. 4 and 5) is located on the downstream side of the first vane groove 221 and preferably adjacent to the first vane groove 221, and the first exhaust port 227 is rotated at the crankshaft 26.
- the direction is located on the downstream side of the first intake port 226 and is preferably adjacent to the first vane slot 221.
- the first intake port 226 and the first exhaust port 227 are respectively located on both sides of the first vane groove 221.
- a second intake port 246, a second exhaust port 247, and a second vane groove 241 are formed in the second cylinder 24, and the second intake port 246 is located in the rotational direction of the crankshaft 26.
- the downstream side of the second vane groove 241 and preferably adjacent to the second vane groove 241, the second exhaust port 247 is located on the downstream side of the second intake port 246 in the direction of rotation of the crankshaft 26 and preferably adjacent to the second vane slot 241, in other words, the second suction port 246 and the second exhaust port 247 are respectively located at two sides of the second vane groove 241.
- the first sliding piece 222 is movably disposed in the first sliding piece groove 221, and the second sliding piece 242 is movably disposed in the second sliding piece groove 241.
- the main bearing 21 is disposed on the upper surface of the first cylinder 22, and the main bearing 21, the first cylinder 22 and the intermediate partition 23 define a first compression chamber, and the first suction port 226 and the first exhaust port 227 are respectively first
- the compression chamber is connected, and after the refrigerant is sucked into the first compression chamber from the first suction port 226, it is discharged from the first exhaust port 227 after being compressed by the first piston 263, and the first exhaust port 227 is A first exhaust valve is provided, and the first exhaust valve is used to control the on and off of the first exhaust port 227.
- the sub-bearing 25 is disposed under the second cylinder 24, and the intermediate diaphragm 23, the second cylinder 24 and the sub-bearing 25 define a second compression chamber, and the second suction port 246 and the second exhaust port 247 are respectively The second compression chamber is in communication. After the refrigerant is sucked into the second compression chamber from the second suction port 246, the refrigerant is discharged from the second exhaust port 247 after being compressed by the second piston 264. The second exhaust port 247 is exhausted.
- a second exhaust valve may be provided, and the second exhaust valve is used to control the opening and closing of the second exhaust port 247.
- the compression mechanism according to one embodiment of the present invention has a first compression chamber and a second compression chamber, and thus the compression mechanism according to one embodiment of the present invention is a two-cylinder structure.
- the crankshaft 26 extends through the main bearing 21, the first cylinder 22, the intermediate partition 23, the second cylinder 24, and the sub-bearing 25, and the crankshaft 26 has a first eccentric portion 261 and a second eccentric portion 262.
- the first eccentric portion 261 is located in the first compression chamber
- the first piston 263 is sleeved on the first eccentric portion 261
- the second eccentric portion 262 is located in the second compression chamber
- the second piston 264 is sleeved on the second eccentric portion. 262.
- the main bearing 21, the first cylinder 22, the intermediate partition 23, the second cylinder 24, and the sub-bearing 25 can be fastened by bolts.
- the main bearing 21 can be sleeved with a main muffler 21, and the refrigerant compressed by the first piston 263 can be discharged into the main muffler 21 1 through the main bearing 21, and finally discharged from the main muffler 21 1 to Inside the housing.
- the sub-squeegee 25 is provided with a sub-muffler 251, and the refrigerant compressed by the second piston 264 can be discharged into the sub-muffler 251 through the sub-bearing 25, and the refrigerant can be discharged through the passage in the compression mechanism. It is discharged into the main silencer 21 1 and finally discharged into the casing from the main muffler 21 1 .
- the compressor 100 of one embodiment of the present invention the refrigerant compressed by the compression mechanism is discharged into the interior of the casing, so that the compressor 100 according to an embodiment of the present invention can also be called This is a high back pressure compressor 100.
- the first compression chamber when the compressor 100 is in normal operation, for example, when the heat pump system is in the cooling mode, the first compression chamber may be operated alone.
- the first compression chamber when the heat pump system is in the heating mode, the first compression chamber can work alone, and of course, the first compression chamber and the second compression chamber can work simultaneously.
- the invention includes but is not limited thereto.
- a drive motor may be provided.
- the drive motor may include a stator 31 and a rotor 32.
- the rotor 32 may be fixed to an inner wall surface of the housing such as the main housing 12, and the rotor 32 may be rotatably disposed on the stator 31.
- the rotor 32 is fixed to the upper portion of the crankshaft 26 to drive the crankshaft 26 to rotate about the central axis of the crankshaft 26.
- the terminal of the drive motor may be disposed at the top of the drive motor, and the terminal may extend outward through the upper housing 11 to be adapted to be connected to a power source.
- the indoor heat exchanger 300 and the outdoor heat exchanger 400 pass through a four-way valve 200 and a compressor, respectively.
- the four-way valve 200 has an intake interface 220, an exhaust port 210, an indoor heat exchanger interface 230, and an outdoor heat exchanger interface 240.
- the exhaust pipe 27 of the casing of the compressor 100 is connected to the exhaust port 210.
- the first suction port 226 of the compressor 100 is connected to the suction interface 220, one end of the indoor heat exchanger 300 is connected to the indoor heat exchanger interface 230, and one end of the outdoor heat exchanger 400 is connected to the outdoor heat exchanger interface 240. .
- the first intake port 226 of the compressor 100 is connected to the intake port 220 in a broad sense.
- the first intake port 226 and the intake port 220 of the four-way valve 200 can pass directly through the tube.
- the road is connected.
- the first suction port 226 and the suction interface 220 of the four-way valve 200 may also be indirectly connected through the accumulator 600.
- the heat pump system may further include a liquid storage device 600,
- the gas interface 220 can be connected to the inlet of the accumulator 600, and the outlet of the accumulator 600 is connected to the first suction port 226, and a medium pipe can be connected between the outlet of the accumulator 600 and the first suction port 226.
- the four-way valve 200 can be an electromagnetic four-way valve. It should be understood that the specific construction and operation of the electromagnetic four-way valve 200 are prior art.
- the electromagnetic four-way valve 200 can have a power-on mode and a power-down mode.
- the exhaust port 210 can communicate with the indoor heat exchanger interface 230 and the air intake interface 220 can be exchanged with the outdoor.
- the heater interface 240 is in communication.
- the exhaust port 210 is in communication with the outdoor heat exchanger interface 240 and the intake port 220 is in communication with the indoor heat exchanger interface 230 by switching the upper portion of the electromagnetic four-way valve 200
- the power and power-down states make it easy to control the heat pump system to operate in either the cooling mode or the heating mode.
- a refrigerant line 310 and a heating line 410 are disposed between the indoor heat exchanger 300 and the outdoor heat exchanger 400, and the refrigerant line 310 and the heating line 410 are disposed in parallel.
- the heat pump system further includes an indoor heat exchanger common line 320 and an outdoor heat exchanger common line 420 through which one end of the refrigeration line 310 and one end of the heating line 410 pass.
- the heat exchanger common line 320 is connected to the indoor heat exchanger 300, and the other end of the refrigeration line 310 and the other end of the heating line 410 are connected to the outdoor heat exchanger 400 through the outdoor heat exchanger common line 420.
- the refrigeration line 310 and the heating line 410 are indirectly connected to the indoor heat exchanger 300 and the outdoor heat exchanger 400 through respective shared lines.
- the refrigeration line 310 and the heating line 410 can also be directly connected to the indoor heat exchanger 300 and the outdoor heat exchanger 400.
- the refrigerant flows through the refrigeration line 310.
- the heat pump system is in the heating mode, the refrigerant flows through the heating circuit 410.
- the refrigeration throttling device 330 is disposed on the refrigeration circuit 310, and the refrigeration throttling device 330 has a throttling and anti-pressure action.
- the heating and throttling device 430 is disposed on the heating pipe 410, and the heating and throttling device 430 has a throttling and depressurizing action.
- the flasher 450 is disposed on the heating circuit 410 and between the heating and throttling device 430 and the outdoor heat exchanger 400.
- the flasher 450 has a gaseous refrigerant outlet 460, and a connection between the gaseous refrigerant outlet 460 and the second intake port 246.
- the flasher 450 has a gas-liquid separation function. In other words, the refrigerant entering the flasher 450 can be separated into a liquid refrigerant and a gaseous refrigerant inside the flasher 450.
- the liquid refrigerant is located at the inner bottom of the flasher 450, and the gaseous refrigerant is located at the upper portion of the liquid refrigerant. .
- the refrigerant passes through the indoor heat exchanger 300 and the heating throttle device
- the refrigerant enters the flasher 450, and the gas-liquid separation is performed in the flasher 450.
- the gaseous refrigerant can be sucked from the second suction port 246 into the second compression chamber through the bypass line 470, thereby being
- the compression chamber is compressed to increase the displacement of the compressor 100 when the heat pump system is in the heating mode, thereby improving the heating effect.
- the dryness of the refrigerant entering the outdoor heat exchanger 400 is further lowered after being separated by the flasher 450, more heat can be absorbed in the outdoor heat exchanger 400, thereby increasing the heat generation of the heat pump system.
- flasher 450 is well known in the art and is well known to those of ordinary skill in the art and will therefore not be described in detail herein.
- the first control valve 480 is disposed on the bypass line 470 for controlling the opening and closing of the bypass line 470.
- the first control valve 480 may have an open and closed state, when the first control valve 480 is in an open state, Gaseous refrigerant can be drawn from the flasher 450 through the bypass line 470 into the second compression chamber.
- the first control valve 480 is closed, the flasher 450 is isolated from the second compression chamber and the gaseous refrigerant cannot circulate therebetween.
- FIG. 1 The cooling mode and the heating mode of the heat pump system according to an embodiment of the present invention will be described below with reference to FIG. 1, wherein the solid arrows in FIG. 1 indicate the flow of the refrigerant in the system when the heat pump system is in the cooling mode, and the dotted arrows indicate the heat pump. Schematic diagram of the flow of refrigerant in the system while the system is in heating mode.
- the high temperature and high pressure refrigerant compressed by the compression mechanism of the compressor 100 enters the outdoor heat exchanger 400 through the exhaust port 210 of the four-way valve 200 and the outdoor heat exchanger interface 240.
- the refrigerant can be cooled into a high-pressure supercooled liquid in the outdoor heat exchanger 400, and then depressurized by the refrigeration throttling device 330 to enter the indoor heat exchanger 300, and absorb heat in the surrounding air in the indoor heat exchanger 300.
- the first control valve 480 is in a closed state while the second piston 264 is not involved in compressing the refrigerant, i.e., the refrigerant may be compressed by the first piston 263 only within the first compression chamber.
- the heat pump system When the heat pump system is in the heating mode, it can be divided into a partial heating mode and a full heating mode, and the switching between the two modes can be determined according to the indoor air temperature and the preset temperature and/or the outdoor air temperature. For example, when the indoor air temperature is higher than the set temperature and/or the outdoor temperature is higher than zero, the partial heating mode can be used. When the indoor air temperature is lower than the set temperature and/or the outdoor temperature is lower than zero, the entire heating mode can be used.
- the high temperature and high pressure refrigerant compressed by the compression mechanism of the compressor 100 enters the indoor heat exchanger 300 through the exhaust port 210 of the four-way valve 200 and the indoor heat exchanger interface 230.
- the refrigerant is cooled into a high-pressure supercooled liquid in the indoor heat exchanger 300, and then depressurized by the heating and throttling device 430 to enter the flasher 450.
- the refrigerant is discharged from the flasher 450 and then enters the outdoor heat exchanger 400.
- the outdoor heat exchanger 400 heat is absorbed from the outdoor air to become a superheated gaseous refrigerant, and finally can be sucked from the first suction port 226 to the first pressure through the outdoor heat exchanger interface 240 and the suction interface 220. Within the constriction chamber, it is compressed by the first piston 263 to form a loop. It can be understood that when the heat pump system is in the partial heating mode, the first control valve 480 is in the closed state, and the second piston 264 does not participate in the compression of the refrigerant, that is, the refrigerant can be pressed by the first piston 263 only in the first compression chamber. Shrink.
- the refrigerant is still circulated according to the above-described flow mode, except that the first control valve 480 is in an open state at this time, so that the refrigerant entering the flasher 450 is subjected to gas-liquid separation in the flasher 450.
- the gaseous refrigerant can be drawn into the second compression chamber from the gaseous refrigerant outlet 460 at the top of the flasher 450 through the bypass line 470 and the second suction port 246, and the second piston 264 can enter the second compression chamber.
- the refrigerant is compressed to increase the total displacement of the compressor 100 and increase the heating effect.
- the dryness of the refrigerant entering the outdoor heat exchanger 400 is further lowered after being separated by the flasher 450, more heat can be absorbed in the outdoor heat exchanger 400, thereby increasing the heat generation of the heat pump system.
- the heat pump system according to the embodiment of the present invention is provided with a flasher 450, and the flasher 450 is connected to the second suction port 246, so that when the heat pump system is in the heating mode, it can be based on the indoor air temperature and the preset temperature.
- the size and/or outdoor air temperature comprehensively controls the heating efficiency of the heat pump system. For example, when the heating capacity needs to be increased, the second compression chamber can participate in the work, thereby improving the heating effect of the heat pump system.
- the heat pump system according to an embodiment of the present invention can improve its heating effect in a low temperature environment such as winter.
- the gaseous refrigerant outlet 460 is located above the flasher 450 to prevent liquid refrigerant in the flasher 450 from being drawn into the second compression chamber through the bypass line 470 for liquid compression.
- the gaseous refrigerant outlet 460 can be located in the upper portion of the side wall of the flasher 450, and can of course also be located on the top wall of the flasher 450.
- the first control valve 480 is a solenoid valve. It will be appreciated that one of ordinary skill in the art, in conjunction with the general knowledge in the field of valves, can design the first control valve 480 into other valve configurations or valve assemblies as long as control of the bypass line 470 can be accomplished. . It is within the scope of the present invention to provide equivalent equivalents to the purpose of setting the solenoid valve and the effects obtained.
- the refrigeration throttling device 330 is a capillary tube and the heating throttling device 430 is also a capillary tube.
- the cooling throttle device 330 may also be a thermal expansion valve or an electronic expansion valve
- the heating throttle device 430 may also be a thermal force. Expansion valve and electronic expansion valve.
- the heat pump system further includes a refrigeration check valve 340 and a heating check valve 440, and the refrigeration check valve 340 is disposed on the refrigeration line 310 for moving along the outdoor heat exchanger 400 toward the indoor heat exchanger 300.
- the direction is directed to the refrigeration line 310 such that the refrigerant can be prevented from flowing directly from the indoor heat exchanger 300 through the refrigeration throttle 330 when the heat pump system is in the heating mode.
- the heating check valve 440 is disposed on the heating pipe 410 for unidirectionally heating the heating pipe 410 along the direction of the indoor heat exchanger 300 toward the outdoor heat exchanger 400, so that the refrigerant can be prevented from being outdoor when the heat pump system is in the cooling mode.
- the heat exchanger 400 flows directly through the flasher 450 and the heating and throttling device 430.
- the refrigeration check valve 340 may be located between the refrigeration throttle device 330 and the outdoor heat exchanger 400, and the heating check valve 440 may be located between the flasher 450 and the outdoor heat exchanger 400.
- the invention includes, but is not limited to, this.
- the trailing end of the second vane slot 241 is in direct communication with the interior of the housing.
- the trailing end of the second vane groove 241 can be understood as the end of the second vane groove 241 which is far from the second compression chamber. Since the trailing end of the second vane groove 241 is directly in communication with the inside of the casing, the pressure at the end of the second vane groove 241 is a high pressure exhaust pressure.
- the tail end of the second vane groove 241 is in a high pressure state, and at this time, the second suction is performed.
- the internal pressure of the flasher 450 in which the port 246 is connected (the heat pump system is in the full heating mode), that is, the suction pressure of the second compression chamber is the low pressure side pressure, so that the pressure acting on the second vane 242 is different, and the pressure is different.
- the spring force of the conventional slide spring is the same, so that the front end of the second slide 242 will abut against the outer peripheral surface of the second piston 264, so that the second piston 264 compresses the refrigerant entering the second compression chamber. .
- both the first compression chamber and the second compression chamber of the compression mechanism are involved in operation, i.e., the respective pistons compress the refrigerant entering the respective compression chambers.
- the present invention is not limited thereto, and according to another embodiment of the present invention, as shown in FIG. 3, the second slider groove 241 The rear end is provided with a magnetic member 248 adapted to magnetically attract the second sliding piece 242.
- the second sliding piece 242 is made of a material that can be magnetically attracted, for example, a second
- the slider 242 can be a low carbon steel slide.
- the heat pump system further includes a connecting pipe 500, the connecting pipe 500 communicates the bypass pipe 470 with the inside of the casing, and the connecting pipe 500 is provided with a second control.
- the valve 510 and the second control valve 510 are used to control the opening and closing of the connecting line 500.
- the first control valve 480 can be in the closed state, and the second control valve 510 can be in the open state, so that the gaseous refrigerant in the flasher 450 does not pass through the bypass pipe.
- the road 470 enters the second compression chamber, and the second compression chamber communicates with the interior of the housing through the bypass line 470 and the connecting line 500, so that the pressure in the second compression chamber and the second slide groove 241
- the pressures at the ends are substantially equal, that is, both are the exhaust pressure inside the casing, so that the second vane 242 can be adsorbed by the magnetic member 248, so that the tip end of the second vane 242 is separated from the outer peripheral surface of the second piston 264, thereby The second piston 264 idles as the crankshaft 26 rotates.
- the first control valve 480 can be opened and the second control valve 510 can be closed, such that the second compression chamber communicates with the low-pressure side flasher 450, and the second slide groove 241
- the tail end is still in communication with the high pressure exhaust gas in the housing, such that the second sliding piece 242 abuts against the outer peripheral surface of the second piston 264 under the pressure difference, so that the second piston 264 can enter the second compression
- the refrigerant in the chamber is compressed.
- an exhaust pipe 27 is disposed at the top of the casing, and one end of the connecting pipe 500 communicates with the exhaust pipe 27.
- the connecting line 500 can also extend directly into the interior of the housing without regard to the sealing problem and cost.
- the second control valve 510 is a solenoid valve. It will be appreciated that one of ordinary skill in the art, in conjunction with the general knowledge in the field of valves, can design the second control valve 510 into other valve configurations or valve assemblies as long as the control connection line 500 can be opened and closed. It is within the scope of the present invention to provide equivalent equivalents to the purpose of setting the electromagnetic valve and the effects obtained.
- the magnetic member 248 is a permanent magnet. According to another embodiment of the invention, the magnetic member 248 is an electromagnet.
- the first compression chamber of the compression mechanism can be always engaged, and the second compression chamber can selectively participate in the work, for example, when the heat pump system is in the full heating mode, the second compression The cavity can participate in the work.
- the exhaust capacity of the first compression chamber and/or the second compression chamber is variable.
- the exhaust capacity of the first compression chamber is variable, and the exhaust capacity of the second compression chamber is not variable.
- the exhaust capacity of the first compression chamber is not variable, and the exhaust capacity of the second compression chamber is variable.
- the exhaust capacities of the first compression chamber and the second compression chamber are both variable.
- a first variable opening 223 is formed on the first cylinder 22 , and the first variable opening 223 is in communication with the first compression chamber and between the first variable opening 223 and the first intake port 226 .
- a first varactor line 224 is connected, and a third control valve 225 is disposed on the first varactor line 224, and the third control valve 225 is used to control the on and off of the first varactor line 224.
- the refrigerant when the first cylinder 22 is in operation, the refrigerant is drawn into the first compression chamber from the first intake port 226, and if the third control valve 225 is in the open state, the portion entering the first compression chamber is entered.
- the refrigerant will flow back to the first suction port 226 through the first variable volume 223 and the first varactor line 224, and then sucked into the first compression chamber from the first suction port 226, and the refrigerant will not be
- the first piston 263 is compressed, so that the amount of exhaust of the first compression chamber can be reduced.
- the third control valve 225 When the third control valve 225 is closed, the first varactor line 224 is in an open state, and the refrigerant entering the first compression chamber from the first suction port 226 is all compressed by the first piston 263. Thereby increasing the amount of exhaust of the first compression chamber.
- the third control valve 225 is a solenoid valve. It will be appreciated that one of ordinary skill in the art, in conjunction with the general knowledge in the field of valves, may design the third control valve 225 as another valve structure or valve assembly as long as control of the opening and closing of the first varactor line 224 can be achieved. Just fine. It is within the scope of the present invention to provide equivalent equivalents to the purpose of setting the solenoid valve and the effects obtained.
- the radial dimension of the first variable opening 223 is smaller than the radial dimension of the first suction port 226.
- the third control valve 225 when the third control valve 225 is opened, only a small portion of the refrigerant passes through the first var. 223 and the first varactor 224 having a smaller size, thereby preventing most of the refrigerant from passing through the first var.
- the flow back to the first suction port 226 affects the amount of exhaust of the first compression chamber.
- the second cylinder 24 is further formed with a second variable opening 243, and the second variable opening 243 is in communication with the second compression chamber and the second variable opening 243
- a second varactor line 244 is connected between the second suction port 246, and a fourth control valve 245 is disposed on the second varactor line 244.
- the fourth control valve 245 is used to control the second varactor line 244. On and off.
- the refrigerant when the second cylinder 24 is in operation, the refrigerant is drawn into the second compression chamber from the second intake port 246, and if the fourth control valve 245 is in the open state, the portion entering the second compression chamber is entered.
- the refrigerant will flow back to the second suction port 246 through the second varactor 243 and the second varactor line 244, and then sucked into the second compression chamber from the second suction port 246, and the refrigerant will not be
- the second piston 264 is compressed so that the amount of exhaust of the second compression chamber can be reduced.
- the second varactor line 244 When the fourth control valve 245 is closed, the second varactor line 244 is in an open state, and the refrigerant entering the second compression chamber from the second suction port 246 is all compressed by the second piston 264. , thereby increasing the amount of exhaust of the second compression chamber.
- the fourth control valve 245 is a solenoid valve. It will be appreciated that those skilled in the art can design the fourth control valve 245 into other valve configurations or valve assemblies in conjunction with the general knowledge of the valve art, as long as the control of the second variable line 244 can be controlled. Just fine. It is within the scope of the present invention to provide equivalent equivalents to the purpose of setting the solenoid valve and the effects obtained.
- the radial dimension of the second variable opening 243 is smaller than the radial dimension of the second suction port 246.
- the valve 245 is opened, only a small portion of the refrigerant passes through the second var. 243 and the second varactor 244, so that most of the refrigerant can be prevented from flowing back to the second through the second var.
- the gas port 246, which affects the row of the second compression chamber, should be understood that there are various variations of the first compression chamber and the second compression chamber, and only one of the alternatives is schematically described above. It is within the scope of the present invention for those skilled in the art to have the same or similar variability or obvious modification to the above-described variability mode.
- a combination of various condensation temperatures and evaporation temperatures may occur due to variations in indoor and outdoor temperature differences, which may result in a mass ratio of gaseous refrigerant to liquid refrigerant in the flasher 450.
- the mass ratio of gaseous refrigerant to liquid refrigerant in the flash evaporator 450 is about 80%, but when the evaporation temperature is increased At -10 ° C, the mass ratio of gaseous refrigerant to liquid refrigerant in flasher 450 is about 60%.
- the mass ratio of gaseous refrigerant to liquid refrigerant in flasher 450 is also changed. Thereby the energy efficiency of the compressor 100 is reduced.
- the venting capacity of the first compression chamber is 0. 5 times -0. 8 times. It will be understood that when the exhaust capacity of the first compression chamber or the second compression chamber is variable, the exhaust capacity herein can be understood as the maximum exhaust capacity. Thereby, a reasonable distribution of the refrigerant flow rate in the heating pipe 410 and the bypass pipe 470 can be realized, and the compressor 100 has high energy efficiency, which contributes to the heating effect of the heat pump system.
- the tip end of the first slider 222 is adapted to abut against the outer peripheral surface of the first piston 263 (when the first compression chamber is operated)
- the second The leading end of the slider 242 is adapted to abut against the outer peripheral surface of the second piston 264 (when operating in the second compression chamber).
- the first piston 263 and the first sliding piece 222 are of a split structure
- the second piston 264 and the second sliding piece 242 are also of a split structure.
- the tip end of the first slider 222 is fixed to the outer peripheral surface of the first piston 263, for example, the first slider 222 and the first piston 263 are integrally formed. That is, in this embodiment, the first piston 263 and the first slider 222 are of a rocking structure.
- the front end of the second sliding piece 242 is fixed on the outer circumferential surface of the second piston 264, for example, the second sliding piece 242 and the second piston 264 are integrally formed, that is, in this embodiment, the second piston 264 is The second slider 242 is a rocking structure. It should be understood that in this embodiment, since the first slider 222 and the first piston 263 and the second slider 242 and the second piston 264 are both fixed, the compression mechanism in this embodiment is non-variable compression. mechanism.
- the front end of the first sliding piece 222 is adapted to abut against the outer peripheral surface of the first piston 263 (when the first compression chamber is operated), and the tip end of the second sliding piece 242 is fixed at the The outer peripheral surface of the second piston 264, that is, in this embodiment, the compression mechanism can still be a variable capacity compression mechanism.
- the front end of the first sliding piece 222 is fixed to the outer circumferential surface of the first piston 263, and the front end of the second sliding piece 242 is adapted to abut against the outer circumferential surface of the second piston 264 (at the When the two compression chambers are working), that is,
- the compression mechanism can still be a variable capacity compression mechanism.
- tip end of the respective slider described above refers to one end that projects into the corresponding compression chamber and that fits the outer peripheral surface of the piston, which should be readily understood by those skilled in the art.
- the heat pump system in a low temperature environment, such as in winter, can greatly improve the heat generation, thereby improving the heating efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种热泵系统,包括压缩机(100)、室内换热器(300)、室外换热器(400)、制冷节流装置(330)、制热节流装置(430)、闪蒸器(450)和第一控制阀(480)。压缩机(100)包括压缩机构,压缩机构包括第一压缩腔和第二压缩腔,第二压缩腔具有第二吸气口(246),室内换热器(300)和室外换热器(400)分别通过四通阀(200)与压缩机(100)相连,室内换热器(300)与室外换热器(400)之间设置有制冷管路(310)和制热管路(410),制冷节流装置(330)设在制冷管路(310)上,制热节流装置(430)设在制热管路上(410),闪蒸器(450)设在制热管路(410)上且具有气态冷媒出口(460),气态冷媒出口(460)与第二吸气口(246)之间连接有旁通管路(470),第一控制阀(480)设在旁通管路(470)上用于控制旁通管路(470)的通断。
Description
热泵系统 技术领域
本发明涉及一种热泵系统。 背景技术
在冬季由于室内外温差大,空调系统在低温环境下制热能力将大幅度衰减,无法达到用 户需热量的需求。 原因如下: 第一: 低温环境下, 压縮机吸气口处制冷剂密度较小, 导致 制冷剂吸入量降低, 进而影响空调系统的制热量。 第二: 由于室内外温差较大, 空调系统 蒸发温度与冷凝温度差异悬殊, 节流后会闪发出大量气体, 导致蒸发器不同流路间制冷剂 分配不均匀, 影响蒸发器换热效率, 同时由于这些闪发气体进入蒸发器吸收的热量较小, 而挤占蒸发器管道空间却很大, 使管道很大表面积失去液体传导的功能, 进一步影响了蒸 发器的换热效率。 发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明的一个目的在于提出一种热泵系统,该热泵系统在低温环境下的制热效率 得到有效改善。
根据本发明实施例的热泵系统, 包括: 压縮机, 所述压縮机包括壳体和压縮机构, 所述 压縮机构设在所述壳体内, 所述压縮机构包括第一压縮腔和第二压縮腔, 所述第一压縮腔 具有第一吸气口, 所述第二压縮腔具有第二吸气口; 室内换热器和室外换热器, 所述室内 换热器和所述室外换热器分别通过四通阀与所述压縮机相连, 所述室内换热器与所述室外 换热器之间设置有制冷管路和制热管路; 制冷节流装置, 所述制冷节流装置设在所述制冷 管路上; 制热节流装置, 所述制热节流装置设在所述制热管路上; 闪蒸器, 所述闪蒸器设 在所述制热管路上且位于所述制热节流装置与所述室外换热器之间, 所述闪蒸器具有气态 冷媒出口, 所述气态冷媒出口与所述第二吸气口之间连接有旁通管路; 以及第一控制阀, 所述第一控制阀设在所述旁通管路上用于控制所述旁通管路的通断。
根据本发明实施例的热泵系统由于设置有闪蒸器, 闪蒸器与第二吸气口相连,从而在热 泵系统处于制热模式时, 可以根据室内空气温度与预设温度的大小和 /或室外空气温度综合 控制热泵系统的制热效率, 例如在需要增大制热量时第二压縮腔可参与工作, 从而改善热 泵系统的制热效果。 简言之, 根据本发明实施例的热泵系统可以改善其在低温环境下例如 冬季时的制热效果。
另外, 根据本发明实施例的热泵系统, 还可以具有如下附加技术特征:
根据本发明的一些实施例,所述气态冷媒出口位于所述闪蒸器的上部。这样可以避免闪 蒸器内的液态冷媒通过旁通管路被吸入到第二压縮腔内而发生液压縮现象。
根据本发明的一些实施例, 所述第一控制阀为电磁阀。
根据本发明的一些实施例,所述制冷节流装置为毛细管、热力膨胀阀和电子膨胀阀中的 其中一种, 所述制热节流装置为毛细管、 热力膨胀阀和电子膨胀阀中的其中一种。
根据本发明的一些实施例,所述热泵系统还包括:室内换热器共用管路和室外换热器共 用管路, 所述制冷管路的一端和所述制热管路的一端均通过所述室内换热器共用管路与所 述室内换热器相连, 所述制冷管路的另一端和所述制热管路的另一端均通过所述室外换热 器共用管路与所述室外换热器相连。
根据本发明的一些实施例, 所述热泵系统还包括: 制冷单向阀和制热单向阀, 所述制冷 单向阀设在所述制冷管路上用于沿所述室外换热器朝向所述室内换热器的方向单向导通所 述制冷管路, 所述制热单向阀设在所述制热管路上用于沿所述室内换热器朝向所述室外换 热器的方向单向导通所述制热管路。
根据本发明的一些实施例, 所述第一吸气口与所述四通阀之间设置有储液器。
根据本发明的一些实施例, 所述压縮机构包括:
第一气缸和第二气缸,所述第一气缸与所述第二气缸之间夹设有中间隔板,所述第一气 缸上形成有第一滑片槽且所述第一吸气口形成在所述第一气缸上, 所述第二气缸上形成有 第二滑片槽且所述第二吸气口形成在所述第二气缸上;
第一滑片和第二滑片,所述第一滑片可移动地设在所述第一滑片槽内且所述第二滑片可 移动地设在所述第二滑片槽内;
主轴承, 所述主轴承设在所述第一气缸的上面, 所述主轴承、所述第一气缸与所述中间 隔板限定出所述第一压縮腔;
副轴承, 所述副轴承设在所述第二气缸的下面, 所述中间隔板、所述第二气缸与所述副 轴承之间限定出所述第二压縮腔; 以及
曲轴, 所述曲轴贯穿所述主轴承、所述第一气缸、所述中间隔板、所述第二气缸和所述 副轴承, 所述曲轴上具有第一偏心部和第二偏心部, 所述第一偏心部位于所述第一压縮腔 内且套设有第一活塞, 所述第二偏心部位于所述第二压縮腔内且套设有第二活塞。
根据本发明的一些实施例, 所述第二滑片槽的尾端与所述壳体内部直接连通。
根据本发明的一些实施例,所述第二滑片槽的尾端设置有磁性件,所述磁性件适于通过 磁力吸附所述第二滑片; 所述热泵系统还包括: 连接管路, 所述连接管路将所述旁通管路 与所述壳体内部连通, 所述连接管路上设置有第二控制阀, 所述第二控制阀用于控制所述 连接管路的通断。
根据本发明的一些实施例,所述壳体的顶部设置有排气管,所述连接管路的一端连通所 述排气管。
根据本发明的一些实施例, 所述第二控制阀为电磁阀。
根据本发明的一些实施例, 所述磁性件为永磁铁。
根据本发明的一些实施例, 所述磁性件为电磁铁。
根据本发明的一些实施例, 所述第一压縮腔和 /或所述第二压縮腔的排气容量可变。 根据本发明的一些实施例,所述第一气缸上还形成有第一变容口,所述第一变容口与所 述第一压縮腔连通且所述第一变容口与所述第一吸气口之间连接有第一变容管路, 所述第 一变容管路上设置有第三控制阀, 所述第三控制阀用于控制所述第一变容管路的通断。
根据本发明的一些实施例, 所述第三控制阀为电磁阀。
根据本发明的一些实施例, 所述第一变容口的径向尺寸小于所述第一吸气口的径向尺 寸。
根据本发明的一些实施例,所述第二气缸上还形成有第二变容口,所述第二变容口与所 述第二压縮腔连通且所述第二变容口与所述第二吸气口之间连接有第二变容管路, 所述第 二变容管路上设置有第四控制阀, 所述第四控制阀用于控制所述第二变容管路的通断。
根据本发明的一些实施例, 所述第四控制阀为电磁阀。
根据本发明的一些实施例, 所述第二变容口的径向尺寸小于所述第二吸气口的径向尺 寸。
根据本发明的一些实施例, 所述第一滑片的先端适于抵靠在所述第一活塞的外周面上, 所述第二滑片的先端抵靠在所述第二活塞的外周面上。
根据本发明的一些实施例,所述第一滑片的先端固定在所述第一活塞的外周面上,所述 第二滑片的先端适于抵靠在所述第二活塞的外周面上; 或者所述第一滑片的先端适于抵靠 在所述第一活塞的外周面上, 所述第二滑片的先端固定在所述第二活塞的外周面上; 或者 所述第一滑片的先端固定在所述第一活塞的外周面上, 所述第二滑片的先端固定在所述第 二活塞的外周面上。
根据本发明的一些实施例,所述第二压縮腔的排气容量为所述第一压縮腔的排气容量的
0. 5倍 -0. 8倍。
由此, 可以实现制热管路与旁通管路内冷媒流量的合理分配, 保证压縮机具有较高的能 效, 有助于提高热泵系统的制热效果。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1是根据本发明一个实施例热泵系统的示意图;
图 2是根据本发明一个实施例的压縮机的示意图;
图 3是根据本发明另一个实施例的压縮机的示意图;
图 4是根据本发明一个实施例的压縮机构的第一气缸处的截面示意图;
图 5是根据本发明一个实施例的压縮机构的第二气缸处的截面示意图。 附图标记:
压縮机 100;
四通阀 200, 排气接口 210, 吸气接口 220, 室内换热器接口 230, 室外换热器接口 240; 室内换热器 300, 制冷管路 310, 室内换热器共用管路 320, 制冷节流装置 330, 制冷单 向阀 340;
室外换热器 400, 制热管路 410, 室外换热器共用管路 420, 制热节流装置 430, 制热单 向阀 440, 闪蒸器 450, 气态冷媒出口 460, 旁通管路 470, 第一控制阀 480;
连接管路 500, 第二控制阀 510;
储液器 600;
上壳体 11, 主壳体 12, 下壳体 13;
主轴承 21, 主消音器 211 ; 第一气缸 22, 第一滑片槽 221, 第一滑片 222, 第一变容口 223, 第一变容管路 224, 第三控制阀 225, 第一吸气口 226, 第一排气口 227; 中间隔板 23; 第二气缸 24, 第二滑片槽 241, 第二滑片 242, 第二变容口 243, 第二变容管路 244, 第四 控制阀 245, 第二吸气口 246, 第二排气口 247, 磁性件 248; 副轴承 25, 副消音器 251 ; 曲轴 26, 第一偏心部 261, 第二偏心部 262, 第一活塞 263, 第二活塞 264; 排气管 27; 定子 31, 转子 32。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"中心"、 "上"、 "下"、 "前"、 "后"、
"左" 、 "右" 、 "竖直" 、 "水平" 、 "顶" 、 "底" "内" 、 "外"等指示的方位 或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作,
因此不能理解为对本发明的限制。
需要说明的是, 术语 "第一" 、 "第二 "仅用于描述目的, 而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。
下面参考图 1-图 5详细描述根据本发明实施例的热泵系统, 该热泵系统具有制冷 和制热功能。
如图 1所示, 根据本发明一个实施例的热泵系统可以包括压縮机 100、 室内换热器 300、 室外换热器 400、 制冷节流装置 330、 制热节流装置 430、 闪蒸器 450和第一控制 阀 480。
压縮机 100可以包括壳体、 驱动电机和压縮机构。 根据本发明的一个实施例, 如图 2 和图 3所示, 壳体可以包括主壳体 12、 上壳体 11和下壳体 13, 主壳体 12可形成为顶部和 底部均敞开的环状, 上壳体 11设在主壳体 12的上面, 上壳体 11与主壳体 12可焊接成一 体, 下壳体 13设在主壳体 12的下面, 下壳体 13与主壳体 12可焊接成一体, 上壳体 11、 主壳体 12和下壳体 13合围成一密闭的安装空腔, 其中压縮机 100的主要构件如压縮机构、 驱动电机等均设置于该安装空腔内部。 但是, 应当理解的是, 根据本发明一个实施例的壳 体的结构不限于此。
根据本发明的一个实施例, 压縮机构可以包括第一气缸 22、 第二气缸 24、 中间隔 板 23、 主轴承 21、 副轴承 25、 第一滑片 222、 第二滑片 242、 曲轴 26、 第一活塞 263 和第二活塞 264。
下面对根据本发明一个实施例的压縮机构参照附图 2-图 5进行详细描述。
第一气缸 22和第二气缸 24之间夹设有中间隔板 23, 换言之, 第一气缸 22设在中 间隔板 23的上面, 第二气缸 24设在中间隔板 23的下面。
参照图 4所示, 第一气缸 22内形成有第一吸气口 226、 第一排气口 227和第一滑 片槽 221, 第一吸气口 226在曲轴 26的旋转方向上(图 4和图 5的逆时针方向, 即图 4 和图 5中的箭头方向)位于第一滑片槽 221的下游侧且优选邻近第一滑片槽 221, 第一 排气口 227在曲轴 26的旋转方向上位于第一吸气口 226的下游侧且优选邻近第一滑片 槽 221, 换言之, 第一吸气口 226和第一排气口 227分别位于第一滑片槽 221的两侧。
同样, 参照图 5所示, 第二气缸 24内形成有第二吸气口 246、 第二排气口 247和 第二滑片槽 241, 第二吸气口 246在曲轴 26的旋转方向上位于第二滑片槽 241的下游 侧且优选邻近第二滑片槽 241, 第二排气口 247在曲轴 26的旋转方向上位于第二吸气 口 246的下游侧且优选邻近第二滑片槽 241,换言之,第二吸气口 246和第二排气口 247 分别位于第二滑片槽 241的两侧。
第一滑片 222可移动地设在第一滑片槽 221内,第二滑片 242可移动地设在第二滑 片槽 241内。 主轴承 21设在第一气缸 22的上面, 主轴承 21、 第一气缸 22与中间隔板 23限定出第一压縮腔, 第一吸气口 226和第一排气口 227分别与第一压縮腔连通, 冷 媒从第一吸气口 226被吸入到第一压縮腔内后,经过第一活塞 263的压縮后从第一排气 口 227排出, 第一排气口 227处可设置有第一排气阀, 第一排气阀用于控制第一排气口 227的通断。
副轴承 25设在第二气缸 24的下面, 中间隔板 23、 第二气缸 24与副轴承 25之间 限定出第二压縮腔, 第二吸气口 246和第二排气口 247分别与第二压縮腔连通, 冷媒从 第二吸气口 246被吸入到第二压縮腔内后, 经过第二活塞 264 的压縮后从第二排气口 247排出,第二排气口 247处可设置有第二排气阀,第二排气阀用于控制第二排气口 247 的通断。
由此, 根据本发明一个实施例的压縮机构具有第一压縮腔和第二压縮腔, 因此根据 本发明一个实施例的压縮机构为双缸结构。
如图 2和图 3所示, 曲轴 26贯穿主轴承 21、 第一气缸 22、 中间隔板 23、 第二气 缸 24和副轴承 25, 曲轴 26上具有第一偏心部 261和第二偏心部 262, 第一偏心部 261 位于第一压縮腔内, 第一活塞 263套在第一偏心部 261上, 第二偏心部 262位于第二压 縮腔内, 第二活塞 264套在第二偏心部 262上。
主轴承 21、第一气缸 22、 中间隔板 23、第二气缸 24和副轴承 25可通过螺栓紧固。 主轴承 21 的外面可套设有主消音器 21 1, 经过第一活塞 263压縮后的冷媒可通过主轴 承 21排入到主消音器 21 1内, 最后从主消音器 21 1排入到壳体内部。副轴承 25的外面 套设有副消音器 251, 经过第二活塞 264压縮后的冷媒可通过副轴承 25排入到副消音 器 251内, 这部分冷媒可通过压縮机构内的通道排入到主消音器 21 1内, 最后从主消音 器 21 1内排入壳体内。
简言之, 根据本发明一个实施例的压縮机 100, 经过压縮机构压縮后的冷媒都是排 入到壳体内部的, 因此根据本发明一个实施例的压縮机 100 也可称之为高背压压縮机 100。
根据本发明一个实施例的压縮机 100的压縮机构, 在压縮机 100正常运行时, 例如 热泵系统处于制冷模式时, 可以是第一压縮腔单独工作。再如当热泵系统处于制热模式 时, 可以是第一压縮腔单独工作, 当然也可以是第一压縮腔和第二压縮腔同时工作。 但 是, 应当理解, 本发明包括但不限于此。
另外, 关于第一滑片 222与第一活塞 263 的配合方式、 第二滑片 242与第二活塞 264的配合方式等将在下面给出详细说明, 这里不再赘述。
在压縮机构的顶部, 可以设置有驱动电机, 驱动电机可以包括定子 31和转子 32, 转子 32可以固定在壳体例如主壳体 12的内壁面上, 转子 32可转动地设在定子 31的内侧, 转子 32与曲轴 26的上部固定从而带动曲轴 26绕曲轴 26的中心轴线转动。驱动电机的接线端子 可以设置在驱动电机的顶部, 接线端子可穿过上壳体 11向外伸出以适于连接电源。
参照图 1所示, 室内换热器 300和室外换热器 400分别通过四通阀 200与压縮机
100相连。 具体地, 四通阀 200具有吸气接口 220、 排气接口 210、 室内换热器接口 230 和室外换热器接口 240, 压縮机 100的壳体的排气管 27与排气接口 210相连, 压縮机 100的第一吸气口 226与吸气接口 220相连, 室内换热器 300的一端与室内换热器接口 230相连, 室外换热器 400的一端与室外换热器接口 240相连。
这里, 需要说明一点, 压縮机 100的第一吸气口 226与吸气接口 220相连应当作广 义理解, 例如, 第一吸气口 226与四通阀 200的吸气接口 220可以直接通过管路相连。 当然, 优选地, 第一吸气口 226与四通阀 200的吸气接口 220也可以通过储液器 600 间接相连, 换言之, 在该实施例中, 热泵系统还可以包括储液器 600, 吸气接口 220可 与储液器 600的进口相连, 储液器 600 的出口则与第一吸气口 226相连, 储液器 600 的出口与第一吸气口 226之间可连接有介质管。
四通阀 200可以是电磁四通阀, 应当理解, 电磁四通阀 200的具体构造和工作原理 均已为现有技术。
例如电磁四通阀 200可以具有上电模式和掉电模式,在电磁四通阀 200处于掉电模 式时,排气接口 210可与室内换热器接口 230连通且吸气接口 220可与室外换热器接口 240连通。
对应地, 在四通阀 200处于上电模式时, 排气接口 210与室外换热器接口 240连通 且吸气接口 220可与室内换热器接口 230连通,通过切换电磁四通阀 200的上电与掉电 状态, 从而可以方便地控制热泵系统以制冷模式或制热模式运行。
室内换热器 300与室外换热器 400之间设置有制冷管路 310和制热管路 410, 制冷 管路 310和制热管路 410并联设置。 例如, 根据本发明的一个优选实施例, 热泵系统还 包括室内换热器共用管路 320和室外换热器共用管路 420, 制冷管路 310的一端和制热 管路 410的一端均通过该室内换热器共用管路 320与室内换热器 300相连, 制冷管路 310 的另一端和制热管路 410 的另一端均通过室外换热器共用管路 420与室外换热器 400相连。
换言之, 在该实施例中, 制冷管路 310和制热管路 410是通过相应共用管路间接与 室内换热器 300和室外换热器 400相连。 当然, 可以理解的是, 制冷管路 310和制热管 路 410也可以是直接与室内换热器 300和室外换热器 400相连。
其中, 在热泵系统处于制冷模式时, 冷媒会流经制冷管路 310。 在热泵系统处于制 热模式时, 冷媒会流经制热管路 410。 制冷节流装置 330设在制冷管路 310上, 制冷节 流装置 330具有节流降压作用。制热节流装置 430设在制热管路 410上, 制热节流装置 430具有节流降压作用。
闪蒸器 450设在制热管路 410上且位于制热节流装置 430与室外换热器 400之间, 闪蒸器 450具有气态冷媒出口 460, 气态冷媒出口 460与第二吸气口 246之间连接有旁 通管路 470。 闪蒸器 450具有气液分离功能, 换言之, 进入到闪蒸器 450内的冷媒在闪 蒸器 450内部可分离成液态冷媒和气态冷媒, 液态冷媒位于闪蒸器 450的内底部, 气态 冷媒位于液态冷媒的上部。
这样, 在热泵系统处于制热模式时, 冷媒通过室内换热器 300 以及制热节流装置
430后进入到闪蒸器 450内, 在闪蒸器 450内进行气液分离, 气态的冷媒可以通过旁通 管路 470从第二吸气口 246被吸入到第二压縮腔内, 从而可在第二压縮腔内被压縮, 增 加压縮机 100在热泵系统处于制热模式时的排气量, 从而改善制热效果。 而且, 由于经 过闪蒸器 450分离之后, 进入室外换热器 400的冷媒的干度进一步降低, 可以在室外换 热器 400中吸收更多的热量, 从而增加了热泵系统的制热量。
可以理解,闪蒸器 450的具体构造和工作原理已为现有技术且为本领域的普通技术 人员所熟知, 因此这里不再详细描述。
第一控制阀 480设在旁通管路 470上用于控制旁通管路 470的通断, 换言之, 第一 控制阀 480可以具有打开和关闭状态, 在第一控制阀 480处于打开状态时, 气态冷媒可 从闪蒸器 450通过旁通管路 470被吸入到第二压縮腔内。而在第一控制阀 480处于关闭 时, 则闪蒸器 450与第二压縮腔隔离开, 气态冷媒无法在二者间流通。
下面参照附图 1描述根据本发明一个实施例的热泵系统的制冷模式和制热模式,其 中图 1中的实线箭头表示热泵系统处于制冷模式时冷媒在系统内的流动示意图,虚线箭 头表示热泵系统处于制热模式时冷媒在系统内的流动示意图。
在热泵系统处于制冷模式时,经过压縮机 100的压縮机构压縮后的高温高压冷媒经 过四通阀 200的排气接口 210和室外换热器接口 240进入到室外换热器 400中,冷媒在 室外换热器 400中可以被冷却成高压过冷液体,再经过制冷节流装置 330降压后进入到 室内换热器 300内, 在室内换热器 300中吸收周围空气中的热量从而蒸发成气态, 变为 过热气态冷媒, 最后可通过室内换热器接口 230、 吸气接口 220后从第一吸气口 226被 吸入到第一压縮腔内, 由第一活塞 263对其进行压縮, 形成循环。 可以理解, 在热泵系 统处于制冷模式时,第一控制阀 480处于关闭状态,同时第二活塞 264不参与压縮冷媒, 即冷媒可以只在第一压縮腔内由第一活塞 263压縮。
在热泵系统处于制热模式时, 具体可分为部分制热模式和全部制热模式, 对于该两 种模式的切换, 可以根据室内空气温度与预设温度的大小和 /或室外空气温度来判断, 例如在室内空气温度高于设定温度时和 /或室外温度高于零度时, 可以采用部分制热模 式。 而在室内空气温度低于设定温度时和 /或室外温度低于零度时, 可以采用全部制热 模式。
在热泵系统处于部分制热模式时,经过压縮机 100的压縮机构压縮后的高温高压冷 媒经过四通阀 200的排气接口 210和室内换热器接口 230进入到室内换热器 300中,冷 媒在室内换热器 300中被冷却成高压过冷液体,再经过制热节流装置 430降压后进入到 闪蒸器 450内, 冷媒从闪蒸器 450排出后进入到室外换热器 400内, 在室外换热器 400 内从室外空气中吸收热量从而变为过热气态冷媒, 最后可通过室外换热器接口 240、 吸 气接口 220后从第一吸气口 226被吸入到第一压縮腔内,由第一活塞 263对其进行压縮, 形成循环。可以理解,在热泵系统处于部分制热模式时,第一控制阀 480处于关闭状态, 同时第二活塞 264不参与压縮冷媒,即冷媒可以只在第一压縮腔内由第一活塞 263压縮。
在热泵系统处于全部制热模式时, 冷媒仍然按照上述流动方式循环, 区别在于, 此 时第一控制阀 480处于打开状态,从而进入到闪蒸器 450内的冷媒在闪蒸器 450内进行 气液分离,气态冷媒可从闪蒸器 450顶部的气态冷媒出口 460通过旁通管路 470以及第 二吸气口 246被吸入到第二压縮腔内,第二活塞 264可对进入第二压縮腔内的冷媒进行 压縮, 从而提高压縮机 100的总排气量, 增加制热效果。 同时, 由于经过闪蒸器 450分离 之后, 进入室外换热器 400内的冷媒的干度进一步降低, 可以在室外换热器 400中吸收更 多的热量, 从而增加了热泵系统的制热量。
由此, 根据本发明实施例的热泵系统由于设置有闪蒸器 450, 闪蒸器 450与第二吸气口 246相连, 从而在热泵系统处于制热模式时, 可以根据室内空气温度与预设温度的大小和 / 或室外空气温度综合控制热泵系统的制热效率, 例如在需要增大制热量时第二压縮腔可参 与工作, 从而改善热泵系统的制热效果。 简言之, 根据本发明实施例的热泵系统可以改善 其在低温环境下例如冬季时的制热效果。
参照图 1所示, 气态冷媒出口 460位于闪蒸器 450的上部, 这样可以避免闪蒸器 450 内的液态冷媒通过旁通管路 470被吸入到第二压縮腔内而发生液压縮现象。 气态冷媒出口 460可以位于闪蒸器 450的侧壁的上部, 当然也可以位于闪蒸器 450的顶壁上。
根据本发明的一个实施例, 第一控制阀 480为电磁阀。可以理解, 对于本领域的普通技 术人员而言, 可以结合阀门领域的普通知识, 将第一控制阀 480设计成其它阀结构或阀门 组件, 只要可以实现控制旁通管路 470 的通断即可。 对于这些与电磁阀的设置目的以及获 得的效果基本相同的等同替换方式, 均落入本发明的保护范围之内。
根据本发明的一个实施例,参照图 1所示,制冷节流装置 330为毛细管且制热节流装置 430也为毛细管。 但是, 可以理解的是, 本发明并不限于此, 在本发明的另一些实施例中, 制冷节流装置 330还可以是热力膨胀阀或电子膨胀阀, 制热节流装置 430也可以是热力膨 胀阀和电子膨胀阀。
参照图 1所示, 热泵系统还包括制冷单向阀 340和制热单向阀 440, 制冷单向阀 340设 在制冷管路 310上用于沿室外换热器 400朝向室内换热器 300的方向单向导通制冷管路 310, 这样在热泵系统处于制热模式时可以避免冷媒从室内换热器 300 直接流经制冷节流装置 330。
制热单向阀 440设在制热管路 410上用于沿室内换热器 300朝向室外换热器 400的方向 单向导通制热管路 410,这样在热泵系统处于制冷模式时可以避免冷媒从室外换热器 400直 接流经闪蒸器 450和制热节流装置 430。
这里, 需要说明的是, 对于本领域的普通技术人员而言, 在阅读了说明书此处关于制冷 单向阀 340和制热单向阀 440的内容基础之上, 显然可以结合阀门领域的普通知识, 对制 冷单向阀 340和 /或制热单向阀 440作简单地修改和 /或替换, 例如可将单向阀替换为可控 制相应管路通断的电磁阀或者阀组件, 对于这些与制冷单向阀 340和 /或制热单向阀 440设 置目的和获得的效果基本相同的等同替换方式, 显然是落入本发明保护范围之内的。
进一步,制冷单向阀 340可以位于制冷节流装置 330与室外换热器 400之间,制热单向 阀 440可以位于闪蒸器 450与室外换热器 400之间。 但是, 应当理解, 本发明包括但并不 限于此。
参照图 2所示,根据本发明的一个实施例,第二滑片槽 241的尾端与壳体内部直接连通。 这里, 第二滑片槽 241的尾端可以理解为是第二滑片槽 241的距离第二压縮腔较远的一端。 由于第二滑片槽 241 的尾端直接与壳体内部连通, 因此第二滑片槽 241尾端的压力为高压 排气压力。
由此, 在压縮机 100运行一段时间 (大约几秒钟)) 从而壳体内部的排气压力建立后, 第二滑片槽 241的尾端处于高压状态, 而此时与第二吸气口 246连通的闪蒸器 450 (热泵系 统处于全部制热模式) 的内部压力即第二压縮腔的吸气压力为低压侧压力, 这样作用在第 二滑片 242 上的压力不同, 该压力与传统滑片弹簧的弹力的方向相同, 从而第二滑片 242 的先端将抵靠在第二活塞 264的外周面上, 从而使得第二活塞 264对进入第二压縮腔内的 冷媒进行压縮。
在该实施例中,压縮机构的第一压縮腔和第二压縮腔均参与工作, 即由相应活塞对进入 相应压縮腔内的冷媒进行压縮。
但是, 本发明并不限于此, 根据本发明的另一个实施例, 如图 3所示, 第二滑片槽 241
的尾端设置有磁性件 248, 磁性件 248适于通过磁力吸附第二滑片 242, 应当理解, 在该实 施例中, 第二滑片 242由可被磁力吸附的材料制成, 例如第二滑片 242可为低碳钢滑片。
并且, 在该实施例中, 如图 3所示, 热泵系统还包括连接管路 500, 连接管路 500将旁 通管路 470与壳体内部连通, 且连接管路 500上设置有第二控制阀 510, 第二控制阀 510用 于控制连接管路 500的通断。
由此, 在热泵系统处于制冷模式或部分制热模式时, 第一控制阀 480可处于关闭状态, 第二控制阀 510可处于打开状态, 这样闪蒸器 450内的气态冷媒不会通过旁通管路 470进 入到第二压縮腔内, 第二压縮腔通过旁通管路 470、 连接管路 500与壳体内部连通, 这样第 二压縮腔内的压力与第二滑片槽 241尾端的压力基本是相等的, 即都为壳体内部排气压力, 从而第二滑片 242可被磁性件 248吸附, 这样第二滑片 242的先端将与第二活塞 264的外 周面分离, 从而在曲轴 26旋转时第二活塞 264空转。
而在热泵系统处于全部制热模式时,第一控制阀 480可以打开且第二控制阀 510可以关 闭, 这样第二压縮腔与低压侧的闪蒸器 450连通, 而第二滑片槽 241 的尾端仍与壳体内的 高压排气连通, 这样第二滑片 242在压力差的作用下会抵靠在第二活塞 264的外周面上, 从而第二活塞 264可对进入到第二压縮腔内的冷媒进行压縮。
参照图 3所示, 壳体的顶部设置有排气管 27, 连接管路 500的一端连通排气管 27。 当 然, 可以理解的是, 在不考虑密封问题以及成本的前提下, 连接管路 500也可直接伸入到 壳体内部。
根据本发明的一个实施例, 第二控制阀 510为电磁阀。可以理解, 对于本领域的普通技 术人员而言, 可以结合阀门领域的普通知识, 将第二控制阀 510设计成其它阀结构或阀门 组件, 只要可以实现控制连接管路 500 的通断即可。 对于这些与电磁阀的设置目的以及获 得的效果基本相同的等同替换方式, 均落入本发明的保护范围之内。
根据本发明的一个实施例, 磁性件 248为永磁铁。根据本发明的另一个实施例, 磁性件 248为电磁铁。
在该实施例中,压縮机构的第一压縮腔可以是一直参与工作的,而第二压縮腔可选择性 地参与工作, 例如在热泵系统处于全部制热模式时, 第二压縮腔可参与工作。
根据本发明的一些实施例, 第一压縮腔和 /或第二压縮腔的排气容量可变。 换言之, 根 据本发明的一个实施例, 第一压縮腔的排气容量可变, 第二压縮腔的排气容量不可变。 根 据本发明的另一个实施例, 第一压縮腔的排气容量不可变, 第二压縮腔的排气容量可变。 根据本发明的又一个实施例, 第一压縮腔和第二压縮腔的排气容量均可变。
由此, 通过采用排气容量可变的第一压縮腔和第二压縮腔, 从而可以更好地适应、满足 热泵系统的制冷和制热运行要求, 保证制冷和制热效率。
参照图 4所示, 第一气缸 22上还形成有第一变容口 223, 第一变容口 223与第一压縮 腔连通且第一变容口 223与第一吸气口 226之间连接有第一变容管路 224, 第一变容管路 224上设置有第三控制阀 225, 第三控制阀 225用于控制第一变容管路 224的通断。
由此, 在第一气缸 22工作时, 冷媒从第一吸气口 226被吸入到第一压縮腔内, 若第三 控制阀 225处于打开状态, 则进入到第一压縮腔内的部分冷媒会通过第一变容口 223 以及 第一变容管路 224回流至第一吸气口 226, 再从第一吸气口 226被吸入到第一压縮腔内, 这 部分冷媒不会被第一活塞 263压縮, 从而可以降低第一压縮腔的排气量。
而在第三控制阀 225关闭时, 则第一变容管路 224处于断开状态, 此时从第一吸气口 226进入到第一压縮腔内的冷媒全部由第一活塞 263压縮,从而增加了第一压縮腔的排气量。
根据本发明的一个实施例, 第三控制阀 225为电磁阀。可以理解, 对于本领域的普通技 术人员而言, 可以结合阀门领域的普通知识, 将第三控制阀 225 设计成其它阀结构或阀门 组件, 只要可以实现控制第一变容管路 224 的通断即可。 对于这些与电磁阀的设置目的以 及获得的效果基本相同的等同替换方式, 均落入本发明的保护范围之内。
优选地, 如图 4所示, 第一变容口 223的径向尺寸小于第一吸气口 226的径向尺寸。这 样, 在第三控制阀 225打开时, 只有很少部分的冷媒通过尺寸较小第一变容口 223和第一 变容管路 224, 由此可以避免大部分冷媒通过第一变容口 223回流至第一吸气口 226, 影响 第一压縮腔的排气量。
根据本发明的另一个实施例, 如图 5所示, 第二气缸 24上还形成有第二变容口 243, 第二变容口 243与第二压縮腔连通且第二变容口 243与第二吸气口 246之间连接有第二变 容管路 244, 第二变容管路 244上设置有第四控制阀 245, 第四控制阀 245用于控制第二变 容管路 244的通断。
由此, 在第二气缸 24工作时, 冷媒从第二吸气口 246被吸入到第二压縮腔内, 若第四 控制阀 245处于打开状态, 则进入到第二压縮腔内的部分冷媒会通过第二变容口 243 以及 第二变容管路 244回流至第二吸气口 246, 再从第二吸气口 246被吸入到第二压縮腔内, 这 部分冷媒不会被第二活塞 264压縮, 从而可以降低第二压縮腔的排气量。
而在第四控制阀 245关闭时, 则第二变容管路 244处于断开状态, 此时从第二吸气口 246进入到第二压縮腔内的冷媒全部由第二活塞 264压縮,从而增加了第二压縮腔的排气量。
根据本发明的一个实施例, 第四控制阀 245为电磁阀。可以理解, 对于本领域的普通技 术人员而言, 可以结合阀门领域的普通知识, 将第四控制阀 245 设计成其它阀结构或阀门 组件, 只要可以实现控制第二变容管路 244 的通断即可。 对于这些与电磁阀的设置目的以 及获得的效果基本相同的等同替换方式, 均落入本发明的保护范围之内。
优选地, 第二变容口 243的径向尺寸小于第二吸气口 246的径向尺寸。这样, 在第四控
制阀 245打开时, 只有很少部分的冷媒通过尺寸较小第二变容口 243和第二变容管路 244, 由此可以避免大部分冷媒通过第二变容口 243回流至第二吸气口 246,影响第二压縮腔的排 应当理解,第一压縮腔和第二压縮腔的变容方式有多种,上面仅是示意性地对其中一种 可选方式进行了描述, 对于本领域的普通技术人员而言, 对于与上述变容方式原理相同或 相近的等同变容方式或明显变型方式, 均落入本发明的保护范围内。
根据本发明的一个实施例, 考虑到制热模式下, 由于室内外温差的变化, 会出现多种冷 凝温度与蒸发温度的组合, 从而可能导致闪蒸器 450 内气态冷媒和液体冷媒的质量比例出 现多种组合, 例如以 R32冷媒为例, 若冷凝温度为 55 °C, 蒸发温度为 -30°C时, 闪蒸器 450 内气态冷媒与液态冷媒的质量比例大约为 80%, 但是当蒸发温度提升到 -10°C, 闪蒸器 450 内气态冷媒与液态冷媒的质量比例大约为 60%, 另外由于热泵系统的过冷度的差异, 也会改 变闪蒸器 450内气态冷媒与液态冷媒的质量比例, 从而降低压縮机 100的能效。
有鉴于此, 优选地, 第二压縮腔的排气容量为第一压縮腔的排气容量的 0. 5倍 -0. 8倍。 可以理解, 对于第一压縮腔或第二压縮腔的排气容量可变时, 这里的排气容量可以理解为 是最大排气容量。 由此, 可以实现制热管路 410与旁通管路 470内冷媒流量的合理分配, 保证压縮机 100具有较高的能效, 有助于提高热泵系统的制热效果。
根据本发明的一些实施例,如图 4和图 5所示,第一滑片 222的先端适于抵靠在第一活 塞 263的外周面上 (在第一压縮腔工作时), 第二滑片 242的先端适于抵靠在第二活塞 264 的外周面上(在第二压縮腔工作时)。换言之,在该实施例中,第一活塞 263与第一滑片 222 是分体式结构, 第二活塞 264与第二滑片 242也为分体式结构。
但是, 本发明并不限于此, 在本发明的另一个实施例, 第一滑片 222的先端固定在第一 活塞 263的外周面上, 例如第一滑片 222与第一活塞 263作成一体结构, 也就是说, 在该 实施例中, 第一活塞 263与第一滑片 222为摇摆式结构。 同样, 第二滑片 242的先端固定 在第二活塞 264的外周面上, 例如第二滑片 242与第二活塞 264作成一体结构, 也就是说, 在该实施例中, 第二活塞 264与第二滑片 242为摇摆式结构。 应当理解, 在该实施例中, 由于第一滑片 222与第一活塞 263以及第二滑片 242与第二活塞 264均固定, 因此该实施 例中的压縮机构为非变容式压縮机构。
根据本发明的另一个实施例,第一滑片 222的先端适于抵靠在第一活塞 263的外周面上 (在第一压縮腔工作时),第二滑片 242的先端固定在第二活塞 264的外周面上,也就是说, 在该实施例中, 其压縮机构仍可为变容式压縮机构。
根据本发明的再一个实施例,第一滑片 222的先端固定在第一活塞 263的外周面上,第 二滑片 242的先端适于抵靠在第二活塞 264的外周面上(在第二压縮腔工作时),也就是说,
在该实施例中, 其压縮机构仍可为变容式压縮机构。
应当理解,上述的相应滑片的先端指的是伸入到相应压縮腔内且与活塞的外周面适配的 一端, 这对于本领域的普通技术人员而言, 应当是容易理解的。
综上, 根据本发明的一个优选实施例的热泵系统, 在低温环境下, 例如在冬季, 该热泵 系统可以大大改善制热量, 从而提高制热效率。
在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本 发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明 的范围由权利要求及其等同物限定。
Claims
1、 一种热泵系统, 其特征在于, 包括:
压縮机, 所述压縮机包括壳体和压縮机构, 所述压縮机构设在所述壳体内, 所述压縮机 构包括第一压縮腔和第二压縮腔, 所述第一压縮腔具有第一吸气口, 所述第二压縮腔具有 第二吸气口;
室内换热器和室外换热器,所述室内换热器和所述室外换热器分别通过四通阀与所述压 縮机相连, 所述室内换热器与所述室外换热器之间设置有制冷管路和制热管路;
制冷节流装置, 所述制冷节流装置设在所述制冷管路上;
制热节流装置, 所述制热节流装置设在所述制热管路上;
闪蒸器,所述闪蒸器设在所述制热管路上且位于所述制热节流装置与所述室外换热器之 间, 所述闪蒸器具有气态冷媒出口, 所述气态冷媒出口与所述第二吸气口之间连接有旁通 管路; 以及
第一控制阀, 所述第一控制阀设在所述旁通管路上用于控制所述旁通管路的通断。
2、 根据权利要求 1所述的热泵系统, 其特征在于, 所述气态冷媒出口位于所述闪蒸器 的上部。
3、 根据权利要求 1所述的热泵系统, 其特征在于, 所述第一控制阀为电磁阀。
4、 根据权利要求 1所述的热泵系统, 其特征在于, 所述制冷节流装置为毛细管、 热力 膨胀阀和电子膨胀阀中的其中一种, 所述制热节流装置为毛细管、 热力膨胀阀和电子膨胀 阀中的其中一种。
5、 根据权利要求 1所述的热泵系统, 其特征在于, 还包括:
室内换热器共用管路和室外换热器共用管路,所述制冷管路的一端和所述制热管路的一 端均通过所述室内换热器共用管路与所述室内换热器相连, 所述制冷管路的另一端和所述 制热管路的另一端均通过所述室外换热器共用管路与所述室外换热器相连。
6、根据权利要求 5所述的热泵系统, 其特征在于, 还包括: 制冷单向阀和制热单向阀, 所述制冷单向阀设在所述制冷管路上用于沿所述室外换热器朝向所述室内换热器的方向单 向导通所述制冷管路, 所述制热单向阀设在所述制热管路上用于沿所述室内换热器朝向所 述室外换热器的方向单向导通所述制热管路。
7、 根据权利要求 1所述的热泵系统, 其特征在于, 所述第一吸气口与所述四通阀之间 设置有储液器。
8、 根据权利要求 1-7中任一项所述的热泵系统, 其特征在于, 所述压縮机构包括: 第一气缸和第二气缸,所述第一气缸与所述第二气缸之间夹设有中间隔板,所述第一气
缸上形成有第一滑片槽且所述第一吸气口形成在所述第一气缸上, 所述第二气缸上形成有 第二滑片槽且所述第二吸气口形成在所述第二气缸上;
第一滑片和第二滑片,所述第一滑片设在所述第一滑片槽内且所述第二滑片设在所述第 二滑片槽内;
主轴承, 所述主轴承设在所述第一气缸的上面, 所述主轴承、所述第一气缸与所述中间 隔板限定出所述第一压縮腔;
副轴承, 所述副轴承设在所述第二气缸的下面, 所述中间隔板、所述第二气缸与所述副 轴承之间限定出所述第二压縮腔; 以及
曲轴, 所述曲轴贯穿所述主轴承、所述第一气缸、所述中间隔板、所述第二气缸和所述 副轴承, 所述曲轴上具有第一偏心部和第二偏心部, 所述第一偏心部位于所述第一压縮腔 内且套设有第一活塞, 所述第二偏心部位于所述第二压縮腔内且套设有第二活塞。
9、 根据权利要求 8所述的热泵系统, 其特征在于, 所述第二滑片槽的尾端与所述壳体 内部直接连通。
10、根据权利要求 9所述的热泵系统, 其特征在于, 所述第二滑片槽的尾端设置有磁性 件, 所述磁性件适于通过磁力吸附所述第二滑片;
所述热泵系统还包括: 连接管路, 所述连接管路将所述旁通管路与所述壳体内部连通, 所述连接管路上设置有第二控制阀, 所述第二控制阀用于控制所述连接管路的通断。
11、 根据权利要求 10所述的热泵系统, 其特征在于, 所述壳体的顶部设置有排气管, 所述连接管路的一端连通所述排气管。
12、 根据权利要求 10所述的热泵系统, 其特征在于, 所述第二控制阀为电磁阀。
13、 根据权利要求 10所述的热泵系统, 其特征在于, 所述磁性件为永磁铁。
14、 根据权利要求 10所述的热泵系统, 其特征在于, 所述磁性件为电磁铁。
15、 根据权利要求 8所述的热泵系统, 其特征在于, 所述第一压縮腔和 /或所述第二压 縮腔的排气容量可变。
16、 根据权利要求 15所述的热泵系统, 其特征在于, 所述第一气缸上还形成有第一变 容口, 所述第一变容口与所述第一压縮腔连通且所述第一变容口与所述第一吸气口之间连 接有第一变容管路, 所述第一变容管路上设置有第三控制阀, 所述第三控制阀用于控制所 述第一变容管路的通断。
17、 根据权利要求 16所述的热泵系统, 其特征在于, 所述第三控制阀为电磁阀。
18、 根据权利要求 16所述的热泵系统, 其特征在于, 所述第一变容口的径向尺寸小于 所述第一吸气口的径向尺寸。
19、 根据权利要求 15所述的热泵系统, 其特征在于, 所述第二气缸上还形成有第二变
容口, 所述第二变容口与所述第二压縮腔连通且所述第二变容口与所述第二吸气口之间连 接有第二变容管路, 所述第二变容管路上设置有第四控制阀, 所述第四控制阀用于控制所 述第二变容管路的通断。
20、 根据权利要求 19所述的热泵系统, 其特征在于, 所述第四控制阀为电磁阀。
21、 根据权利要求 19所述的热泵系统, 其特征在于, 所述第二变容口的径向尺寸小于 所述第二吸气口的径向尺寸。
22、根据权利要求 8所述的热泵系统, 其特征在于, 所述第一滑片的先端适于抵靠在所 述第一活塞的外周面上, 所述第二滑片的先端适于抵靠在所述第二活塞的外周面上。
23、根据权利要求 8所述的热泵系统, 其特征在于, 所述第一滑片的先端固定在所述第 一活塞的外周面上, 所述第二滑片的先端适于抵靠在所述第二活塞的外周面上; 或者
所述第一滑片的先端适于抵靠在所述第一活塞的外周面上,所述第二滑片的先端固定在 所述第二活塞的外周面上; 或者
所述第一滑片的先端固定在所述第一活塞的外周面上,所述第二滑片的先端固定在所述 第二活塞的外周面上。
24、 根据权利要求 8所述的热泵系统, 其特征在于, 所述第二压縮腔的排气容量为所 述第一压縮腔的排气容量的 0. 5倍 -0. 8倍。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/085066 WO2015051540A1 (zh) | 2013-10-11 | 2013-10-11 | 热泵系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/085066 WO2015051540A1 (zh) | 2013-10-11 | 2013-10-11 | 热泵系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015051540A1 true WO2015051540A1 (zh) | 2015-04-16 |
Family
ID=52812459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/085066 WO2015051540A1 (zh) | 2013-10-11 | 2013-10-11 | 热泵系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015051540A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105091430A (zh) * | 2015-09-15 | 2015-11-25 | 珠海格力电器股份有限公司 | 一种闪蒸器及具有该闪蒸器的空调系统 |
CN106225295A (zh) * | 2016-08-31 | 2016-12-14 | 广东美芝制冷设备有限公司 | 制冷系统 |
CN108800384A (zh) * | 2018-06-27 | 2018-11-13 | 广东Tcl智能暖通设备有限公司 | 空调系统和空调器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10148412A (ja) * | 1996-11-20 | 1998-06-02 | Daikin Ind Ltd | 冷凍装置 |
CN2879058Y (zh) * | 2006-01-13 | 2007-03-14 | 海信集团有限公司 | 带补气回路的新型热泵空调系统 |
CN201043823Y (zh) * | 2007-02-14 | 2008-04-02 | 珠海格力电器股份有限公司 | 一种空调系统 |
EP1975414A2 (en) * | 2007-03-30 | 2008-10-01 | Fujitsu General Limited | Injectible two-staged rotary compressor and heat pump system |
CN101520042A (zh) * | 2008-02-27 | 2009-09-02 | 东芝开利株式会社 | 密闭型压缩机和制冷循环装置 |
CN102022332A (zh) * | 2009-09-15 | 2011-04-20 | 广东美芝制冷设备有限公司 | 能力控制式双缸旋转压缩机及其控制方法 |
CN102562594A (zh) * | 2010-12-30 | 2012-07-11 | 广东美芝制冷设备有限公司 | 变容旋转式压缩机 |
-
2013
- 2013-10-11 WO PCT/CN2013/085066 patent/WO2015051540A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10148412A (ja) * | 1996-11-20 | 1998-06-02 | Daikin Ind Ltd | 冷凍装置 |
CN2879058Y (zh) * | 2006-01-13 | 2007-03-14 | 海信集团有限公司 | 带补气回路的新型热泵空调系统 |
CN201043823Y (zh) * | 2007-02-14 | 2008-04-02 | 珠海格力电器股份有限公司 | 一种空调系统 |
EP1975414A2 (en) * | 2007-03-30 | 2008-10-01 | Fujitsu General Limited | Injectible two-staged rotary compressor and heat pump system |
CN101520042A (zh) * | 2008-02-27 | 2009-09-02 | 东芝开利株式会社 | 密闭型压缩机和制冷循环装置 |
CN102022332A (zh) * | 2009-09-15 | 2011-04-20 | 广东美芝制冷设备有限公司 | 能力控制式双缸旋转压缩机及其控制方法 |
CN102562594A (zh) * | 2010-12-30 | 2012-07-11 | 广东美芝制冷设备有限公司 | 变容旋转式压缩机 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105091430A (zh) * | 2015-09-15 | 2015-11-25 | 珠海格力电器股份有限公司 | 一种闪蒸器及具有该闪蒸器的空调系统 |
CN105091430B (zh) * | 2015-09-15 | 2018-03-09 | 珠海格力电器股份有限公司 | 一种闪蒸器及具有该闪蒸器的空调系统 |
CN106225295A (zh) * | 2016-08-31 | 2016-12-14 | 广东美芝制冷设备有限公司 | 制冷系统 |
CN108800384A (zh) * | 2018-06-27 | 2018-11-13 | 广东Tcl智能暖通设备有限公司 | 空调系统和空调器 |
CN108800384B (zh) * | 2018-06-27 | 2020-09-22 | 广东Tcl智能暖通设备有限公司 | 空调系统和空调器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4820180B2 (ja) | 冷凍装置 | |
CN107842486B (zh) | 压缩机以及具有其的空调系统 | |
TW200526912A (en) | Refrigerator | |
WO2016201623A1 (zh) | 制冷循环装置 | |
CN107560210B (zh) | 一种制冷系统 | |
CN107740765B (zh) | 空调系统 | |
CN103557628A (zh) | 热泵系统 | |
CN106568225B (zh) | 压缩机和具有其的制冷装置 | |
JP6349417B2 (ja) | 二段回転式コンプレッサーおよび冷却サイクル装置 | |
CN104879942A (zh) | 制冷制热循环系统 | |
CN108071590B (zh) | 气缸、压缩机构及压缩机 | |
CN107084133B (zh) | 压缩机和具有其的制冷装置 | |
WO2015051540A1 (zh) | 热泵系统 | |
JP6446542B2 (ja) | 可変容量型圧縮機及びこれを備える冷凍装置 | |
WO2015051537A1 (zh) | 冷冻循环装置 | |
CN106369863B (zh) | 制冷装置 | |
JP5515289B2 (ja) | 冷凍装置 | |
CN105570138A (zh) | 变容式压缩机和具有其的制冷装置 | |
CN105570133A (zh) | 变容式压缩机和具有其的制冷装置 | |
JP5599514B2 (ja) | 二段圧縮機及びヒートポンプ装置 | |
JP5144897B2 (ja) | 冷凍サイクル装置 | |
WO2017031669A1 (zh) | 旋转式压缩机和具有其的冷冻循环装置 | |
CN107816816B (zh) | 制冷装置 | |
CN114046248A (zh) | 泵体结构、压缩机和空调系统 | |
JP2013096602A (ja) | 冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13895415 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13895415 Country of ref document: EP Kind code of ref document: A1 |