WO2015050184A1 - ヘパロサン生産細菌及びヘパロサンの製造法 - Google Patents

ヘパロサン生産細菌及びヘパロサンの製造法 Download PDF

Info

Publication number
WO2015050184A1
WO2015050184A1 PCT/JP2014/076357 JP2014076357W WO2015050184A1 WO 2015050184 A1 WO2015050184 A1 WO 2015050184A1 JP 2014076357 W JP2014076357 W JP 2014076357W WO 2015050184 A1 WO2015050184 A1 WO 2015050184A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleotide sequence
heparosan
positions
dna
Prior art date
Application number
PCT/JP2014/076357
Other languages
English (en)
French (fr)
Inventor
山崎 俊介
朋子 清水
森 健一
外内 尚人
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to EP19197639.8A priority Critical patent/EP3620525A1/en
Priority to EP14850420.2A priority patent/EP3054005B1/en
Priority to JP2015540532A priority patent/JP6569530B2/ja
Publication of WO2015050184A1 publication Critical patent/WO2015050184A1/ja
Priority to US15/082,464 priority patent/US9975928B2/en
Priority to US15/958,354 priority patent/US10611804B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • the present invention relates to a heparosan-producing bacterium and a method for producing heparosan.
  • Heparosan (also called N-acetylheparosan) is a disaccharide repeating structure consisting of glucuronic acid (GlcUA) and N-acetyl-D-glucosamine (GlcNAc) residues [ ⁇ 4) - ⁇ -GlcUA- (1 ⁇ 4) A polysaccharide composed of - ⁇ -GlcNAc- (1 ⁇ ).
  • heparosan is produced as a capsular polysaccharide by the Escherichia coli K5 strain and the Pasteurella multocida type D strain (Non-patent Document 1). These heparosan-producing bacteria exhibit pathogenicity such as urinary tract infections and atrophic rhinitis in mammals.
  • heparosan biosynthesis requires two types of heparosan synthase glucosyltransferase and six types of heparosan excretion carriers. That is, first, GlcNAc and GlcUA are alternately added to the sugar chain non-reducing end by glucosyltransferase (KfiA and KfiC), and the heparosan chain is elongated (Non-patent Document 2).
  • Non-patent Document 3 heparosan excretion carriers
  • Non-patent Document 4 The heparosan chain is thought to be immobilized on the phosphatidic acid molecule in the outer membrane of Escherichia coli on the cell surface via lipid substitution at the reducing end.
  • the heparosan synthase gene and the heparosan excretion carrier gene form a cluster on the chromosome.
  • the cluster is divided into Regions 1 to 3, and Region 2 located in the center of the cluster encodes four proteins (KfiA, KfiB, KfiC, KfiD) including heparosan synthase.
  • Pasteurella multocidae type D strain has PmHS1 as heparosan synthase (glucosyltransferase) (Non-patent Document 5).
  • PmHS1 has an active domain homologous to both KfiA and KfiC derived from Escherichia coli K5 strain, and catalyzes the polymerization reaction using both UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates.
  • the heparosan excretion carrier of Pasteurella multocida type D strain has not been clarified yet.
  • Heparin is an anticoagulant and is used to treat thromboembolism and disseminated intravascular coagulation (DIC), as well as to prevent blood coagulation during dialysis and extracorporeal circulation. It is done.
  • Heparosan is a sugar chain skeleton of heparin, and can be converted into a heparin-like polysaccharide through steps such as deacetylation, isomerization, sulfation, and molecular weight adjustment (Non-Patent Documents 6 and 7).
  • Heparin exhibits an anticoagulant effect through the activation of antithrombin III, an anticoagulant factor.
  • Antithrombin III inhibits thrombin, factor Xa (an active form of factor X), and other serine proteases by binding to their active serine sites.
  • Thrombin is a blood coagulation factor
  • factor Xa is a factor involved in thrombin maturation. Heparin binds to this antithrombin III and changes its structure to activate the inhibitory action.
  • Thrombin has a higher affinity for the heparin-antithrombin III complex than factor Xa.
  • low molecular weight heparin with an average molecular weight of 4000-6000 Da obtained by enzymatic / chemical treatment and fractionation of heparin has few bleeding side effects and has recently been used more frequently.
  • Low molecular weight heparin has a short sugar chain and can bind to antithrombin III, but can hardly bind to thrombin.
  • thrombin needs to bind to heparin, whereas in the inhibition of factor Xa by the heparin-antithrombin III complex, factor Xa becomes heparin. There is no need to join. Therefore, low molecular weight heparin hardly inhibits the action of thrombin, whereas it can inhibit the action of factor Xa.
  • Non-patent Documents 6 and 7 Heparosan can be used in various applications other than the production of heparin.
  • Non-patent Document 8 Patent Document 2
  • heparosan As a raw material for heparin production on an industrial scale, it is necessary to scale up to 100,000 L scale, but there are problems such as an increase in substrate consumption rate and an increase in oxygen supply to the fermenter.
  • Non-patent Document 9 heparosan-producing bacteria using the non-pathogenic Escherichia coli BL21 (DE3) strain as a host were reported (Non-patent Document 9). That is, four heparosan biosynthetic genes kfiA, kfiB, kfiC, and kfiD constituting Region 2 derived from Escherichia coli K5 strain are loaded on the expression vector pETDuet-1 and introduced into the BL21 strain, thereby 334 mg / L in flask culture. Of heparosan has been confirmed.
  • An object of the present invention is to develop a novel technique for improving the ability of bacteria to produce heparosan and to provide an efficient method for producing heparosan.
  • the present inventors have improved heparosan-producing ability by increasing the expression of one or more genes selected from the genes listed in Tables 1 to 3 in bacteria having heparosan-producing ability.
  • the present invention has been completed.
  • the bacterium wherein the expression of the gene is increased by increasing the copy number of the gene and / or modifying the expression regulatory sequence of the gene.
  • the rbsB gene comprises DNA comprising a base sequence shown at positions 800-1690 of SEQ ID NO: 29, or a base sequence having 90% or more identity with the base sequence shown at positions 800-1690 of SEQ ID NO: 29; DNA having the property of increasing the heparosan-producing ability of the bacterium when the expression level is increased in an Escherichia bacterium having the ability to produce heparosan;
  • the rbsK gene comprises DNA comprising a base sequence shown at positions 1816 to 2745 of SEQ ID NO: 29, or a base sequence having 90% or more identity with the base sequence shown at positions 1816 to 2745 of SEQ ID NO: 29; DNA having the property of increasing the heparosan-producing ability of the bacterium when the expression level is increased
  • a method for producing heparosan comprising culturing the bacterium in a medium, producing and accumulating heparosan in the medium, and collecting heparosan from the medium.
  • Heparin comprising culturing the bacterium in a medium and producing and accumulating heparosan in the medium, chemically and / or enzymatically treating the heparosan to produce heparin, and recovering the heparin Manufacturing method.
  • RbsR, RbsK, and RbsB are factors involved in D-ribose uptake and utilization.
  • RbsR is a repressor of ribose metabolism and negatively regulates the transcription of the rbs operon, which encodes a protein involved in ribose catabolism (Laikova ON et al. (2001) ”Computational analysis of the transcriptional regulation of pentose utilization) systems in the gamma subdivision of Proteobacteria. "FEMS Microbiol Lett. 205 (2): 315-22).
  • RbsK is a ribokinase that catalyzes phosphorylation of D-ribose (Bork P et al.
  • RbsB is one of the subunits that make up the ribose ABC transporter.
  • the ribose ABC transporter takes up D-ribose (Iida A. et al. (1984) "Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. "J Bacteriol. 158 (2): 674-82). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • HsrA is an inner membrane protein presumed to be a member of the major facilitator superfamily (MFS) (Pao SS et al. (1998) “Major facilitator superfamily.” Microbiol Mol Biol Rev. 62 (1): 1 -34). Although HsrA is presumed to have a proton-driven drug efflux system function based on sequence homology, its actual function has not been identified. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • MFS major facilitator superfamily
  • GlgB and GlgX are enzymes involved in glycogen biosynthesis and degradation, respectively.
  • GlgB is a glycogen branching enzyme (1,4- ⁇ -glucan branching enzyme) that introduces branching into the polyglucose chain by the formation of ⁇ -1,6-glycosidic bonds during glycogen biosynthesis. and Preiss (1977) "Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli b alpha-1,4, -glucan: alpha-1,4-glucan 6-glycosyltansferase.” J Biochemistry. 16 (16): 3693- 9).
  • GlgX is a glycogen debranching enzyme that hydrolyzes ⁇ -1,6-glycosidic bonds in units of 3 or 4 glucose residues to eliminate glycogen branching (Dauvillee D et al. (2005)) Role of the Escherichia coli glgX gene in glycogen metabolism. "J Bacteriol. 187 (4): 1465-73). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • micF is an antisense RNA involved in the suppression of OmpF expression, and is known to function especially under osmotic conditions (Ramani N et al. (1994) "micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. "J. Bacteriol 176: 5005-5010). There is no finding at all indicating the relationship between this nucleotide chain and heparosan production.
  • RcsB is a transcriptional regulator found in bacteria belonging to the genus Escherichia, Salmonella, Klebsiella, etc., and biosynthesis of colanic acid (Colanic acid), which is mainly a capsular component (Majdalani N et al. (2005) “The Rcs phosphorelay: a complex signal transduction system.” Anuu. Rev. Microbiol. 59: 379-405).
  • RcsB is Vi polysaccharide expression of Citrobacter freundii (Houng HS et al. (1992) "Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and Biad (J.
  • Bacteriol 174: 5910-5915) and Klebsiella spp.K2 ⁇ expression (Rochaporn W et al. (1992) "Involvement of rcsB in Klebsiella K2 Capsule Synthesis in Escherichia coli K-12" J. Bacteriol 174: )
  • RcsB overexpression of RcsB is known to increase the production of K30 capsular polysaccharide, but RcsB is not involved in the transcription of csp cluster encoding K30 capsular polysaccharide polymerizing enzyme and is a precursor.
  • RcsD is a sensor protein having a histidine kinase, and is known to transmit a phosphate group to RcsB in response to an external stimulus.
  • YbiX, YbiI, YbiJ, YbiC, and YbiB are factors whose functions are unknown. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
  • RfaH is a transcription factor required for biosynthesis of lipopolysaccharide, secretion of ⁇ -hemolysin, and production of factor F in Escherichia coli and Salmonella typhimurium (Leeds JA and Welch RA (1996) "RfaH enhances elongation). of Escherichia coli hlyCABD mRNA. "J Bacteriol. 178 (7): 1850-7.). In Escherichia coli K5, RfaH is required for K5 capsule formation (Stevens MP et.al.
  • NusG is a transcription factor and is thought to regulate transcription by interacting with RNA polymerase (Li J. et al. (1992) J Biol Chem 267 (9): 6012-6019). Moreover, NusG has been reported to be involved in capsule biosynthesis of Bacteroides fragilis (Livanis M. et al. (2009) J Bacteriol 191 (23): 7288-7295). However, there has been no report on the involvement of heparosan biosynthesis so far. NusG is a homologue of RfaH, and NusG has a common domain with RfaH (BaileyBM. Et al. (1996) Mol Microbiol 22 (4): 7729-737). However, in any of Escherichia coli K-12 strain, K5 strain, and B strain, the homology of the amino acid sequence between NusG and RfaH is about 20%, and it cannot be said that both have high homology.
  • PcoR, PcoS, and PcoE are factors involved in copper resistance.
  • PcoR and PcoS are highly homologous to activators of the pco operon and sensor proteins of two-component regulatory systems that respond to environmental stimuli (Cooksey DA (2006) Copper uptake and resistance in bacteria. "Mol Microbiol. 7 ( 1): 1-5).
  • PcoE is a copper binding protein. There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • YhcN is a factor involved in bacterial response to hydrogen peroxide stress.
  • strains deficient in the yhcN gene sensitivity to hydrogen peroxide increases and biofilm formation increases (Lee ⁇ ⁇ J. et al. (2010) ”Identification of stress-related proteins in Escherichia coli using the pollutant cis- dichloroethylene. "J Appl Microbiol. Jun; 108 (6): 2088-102.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YhcO has homology with an inhibitor of barnase, a toxic RNase derived from Bacillus amyloliquefaciens.
  • Escherichia bacteria do not have the RNase of the barnase family, and the function of YhcO is not clear. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • AaeB and AaeA are 4-hydroxybenzoic acid excretion carrier subunits.
  • AaeX is also estimated to be an exhaust carrier, but the actual function is unknown.
  • the g1455 and g1453 genes are genes found only in the Esherichia coli K5 strain, and the functions of the proteins encoded by these genes are unknown. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
  • AlpA is an expression regulator of the intA gene encoding prophage integrase, and has the function of complementing the deletion of the Lon prosthesis through increased intA expression (Trempy JE et al. (1994) "Alp suppression of Lon : Dependence on the slpA gene. "J Bacteriol. 176 (7): 2061-7).
  • AlpA may be associated with biofilm formation and capsule formation (Herzberg M. et al. (2006) “YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport.” J Bacteriol. 188 (2): 587-98), there is no finding that indicates the relationship between AlpA and heparosan production.
  • YrbA (also known as IbaG) is a factor that is presumed to be a DNA-binding transcription factor, and its expression increases under acidic stress conditions (Guinote IB et al. (2012) “Characterization of the BolA homolog IbaG: a new gene involved in acid resistance. "J Microbiol Biotechnol. 22 (4): 484-93.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • MlaB, MlaC, MlaD, MlaE, and MlaF are components of the phospholipid ABC transporter and are involved in phospholipid transport and lipid asymmetry maintenance (MalinvernilinJC and Silhavy TJ (2009) "An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. "Proc Natl Acad Sci U S A. 106 (19): 8009-14.). There is no finding at all indicating the relevance of these proteins to heparosan production.
  • YrbG is a five-transmembrane inner membrane protein, and is predicted to be a Na + / Ca 2+ exchange transporter based on sequence homology. However, the ability of YrbG to regulate intracellular Ca 2+ levels has not been confirmed, and the actual function is unknown (Naseem R. et al. (2008) "pH and monovalent cations regulate cytosolic free Ca (2+) in E. coli. "Biochim Biophys Acta. 1778 (6): 1415-22). Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • NorW is a NO reductase expressed in response to nitric oxide (NO) stress (Gardner AM et al. (2003) “Role of NorR and sigma54 in the nitric oxide stress response.” J Biol Chem. 278 ( 12): 10081-6.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YbjI is a flavin mononucleotide (FMN) kinase belonging to the haloacid dehalogenase-like hydrolase family (Kuznetsova E. et al. (2006) “Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. "J Biol Chem. 281 (47): 36149-61). There is no finding at all indicating the relationship between this protein and heparosan production.
  • FMN flavin mononucleotide
  • YbjJ and YbjK are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
  • RybB is a small RNA expressed in response to sigma factor ⁇ E activated in response to cell surface stress, and suppresses the synthesis of sigma factor ⁇ E (Thompson KM et al. (2007) "SigmaE regulates and is regulated by a small RNA in Escherichia coli. "J Bacteriol. 189 (11): 4243-56).
  • RybB is also involved in the suppression of OmpC and OmpW expression (Johansen J. et al. (2006) "Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins.” J Mol Biol. 364 (1): 1-8). There is no finding at all indicating the relationship between RybB and heparosan production.
  • YjjY is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • YjtD is presumed to be a kind of RNA methyltransferase, but its actual function is unknown (Anantharaman V. et al. (2002) "SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol. ⁇ ⁇ ⁇ 4 (1): 71-5) Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • ThrB, ThrA, and ThrL are enzymes of the threonine biosynthesis pathway.
  • ThrB is a homoserine kinase that catalyzes the conversion reaction of homoserine to O-phospho-L-homoserine and is involved in the biosynthesis of threonine (Burr B. et al. (1976) "Homoserine kinase from Escherichia coli K12.") Eur J Biochem. 62 (3): 519-26.).
  • ThrA is an enzyme having two functions, aspartate kinase I and homoserine dehydrogenase I.
  • ThrA is involved in biosynthesis of lysine and methionine (Clark RB, Ogilvie JW et al. (1972)) Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12. Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding. "Biochemistry. 11 (7): 1278-82.).
  • ThrL is a thrLABC operon leader peptide that attenuates the expression of thrLABC operon depending on the concentration of threonine and isoleucine (Lynn SP et al.
  • FruA is a fructose PTS permease and has II (PriorCTI and Kornberg HL (1988) "Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphomaschine “J Gen Microbiol. 134 (10): 2757-68.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • PsuK is a pseudouridine kinase that is involved in catabolism of pseudouridine, a modified RNA commonly found in the T ⁇ C loop of tRNA (Solomon LR and Breitman TR (1971) "Pseudouridine kinase of escherichia coli: a new enzyme.” Biochem Biophys Res Commun. 44 (2): 299-304.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YtfT and YjfF are presumed to be membrane constituents of the galactose ABC transport carrier, but the actual function is unknown. Therefore, there is no knowledge showing the relationship between these proteins and heparosan production.
  • Fbp is a fructose-1,6-bisphosphatase that catalyzes the reaction of fructose-1,6-diphosphate to fructose-6-phosphate in the gluconeogenic pathway.
  • Fraenkel DG and Horecker BL (1965) "Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli.” J Bacteriol. 90 (4): 837-42.
  • YagU is presumed to be an inner membrane protein, but its function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • PaoA and PaoB are components of the aldehyde oxidoreductase YagTSR.
  • PaoA is an iron-binding subunit
  • PaoB is a flavin adenine dinucleotide (FAD) -binding subunit.
  • FAD flavin adenine dinucleotide
  • GsiC and GsiD are components of glutathione ABC transport carrier. GsiC and GsiD are localized in the inner membrane (Moussatova A. et al. (2008) "ATP-binding cassette transporters in Escherichia coli.” Biochim Biophys Acta.1778 (9): 1757-71.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • YliE is presumed to be a c-di-GMP-specific phosphodiesterase and promotes biofilm formation by overexpression (Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress.” Mol Microbiol. 72 (6): 1500-16.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • Irp2 and Irp1 are nonribosomal peptide synthases that are involved in iron uptake (Pelludat C. et. Al. (1998) "The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation.” J Bacteriol. 180 (3): 538-46.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • BhsA (aka YcfR) is presumed to be an outer membrane protein and is involved in biofilm formation and stress response (ZhangZXS et al. (2007) "YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity.” J Bacteriol. 189 (8): 3051-62.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YcfS is a kind of L, D-transpeptidase.
  • YcfS catalyzes a reaction of removing a D-alanine residue from a meso-diaminopimelic acid (DAP) residue of peptidoglycan and binding a C-terminal lysine residue of brown lipoprotein to the meso-DAP residue.
  • DAP meso-diaminopimelic acid
  • This reaction causes peptidoglycan to covalently bind to the outer membrane via brown lipoproteins (Magnet S. et al. (2007) "Identification of the L, D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. "J Bacteriol.189 (10): 3927-31). There is no finding at all indicating the relationship between this protein and heparosan production.
  • LepB is a signal peptidase that removes the N-terminal leader peptide from secreted proteins (Dalbey R.E. (1991) Leader peptidase.aseMol Microbiol. 5 (12): 2855-60.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • Rnc is an RNase III that cleaves double-stranded RNA to generate a 5 ′ phosphate group and a hydroxyl group, and is required for the processing of rRNA and phage mRNA.
  • the main role of Rnc is regulation of gene expression and functionalization of antisense RNA (Robertson HD and Dunn JJ (1975) "Ribonucleic acid processing activity of Escherichia coli ribonuclease III.” J Biol Chem. 25; 250 (8 ): 3050-6). There is no finding at all indicating the relationship between this protein and heparosan production.
  • Era is an essential factor for survival (Takiff HE et al. (1992) Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon. "J Bacteriol. 174 (5): 1544-53). Era is known to interact with MazG by the Yeast two-hybrid method (Zhang J. and Inouye M. (2002) "MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J Bacteriol. 184 (19): 5323-9). There is no finding at all indicating the relationship between this protein and heparosan production.
  • DapA is 4-hydroxy-tetrahydrodipicolinate synthase.
  • 4-hydroxy-tetrahydrodipicolinate synthase is one of the lysine biosynthetic enzymes, from pyruvate and L-aspartate ⁇ -semialdehyde to (2S, 4S) -4-Hydroxy-2,3,4,5-tetrahydrodipicolinate Catalyze the reaction of The reaction is thought to be the rate-limiting step in lysine biosynthesis after aspartate kinase III (Laber B. et al. (1992) "Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization.” Biochem J. 288 (Pt 2): 691-5). There is no finding at all indicating the relationship between this protein and heparosan production.
  • GcvR is a protein presumed to be a transcriptional regulatory factor and is involved in the expression of glycine biosynthesis genes. In the absence of glycine, GcvR directly binds to GcvA to form a GlvR / GlvA complex and inhibits the expression of glycine-degrading genes. In the presence of glycine, glycine binds to GcvR and inhibits the formation of GlvR / GlvA complex (Ghrist AC et al. (2001) "GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon.” Microbiology 147 (Pt 8): 2215-21.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • Bcp is a thioredoxin-1-dependent thiol peroxidase (Clarke DJ et al. (2009) “Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectr 18): 3904-14). There is no finding at all indicating the relationship between this protein and heparosan production.
  • HyfA has four 4Fe-4S clusters and is presumed to be involved in electron transport (Andrews (SC et al. (1997) "A 12-cistron Escherichia coli operon (hyf) encoding a putative proton -translocating formate hydrogenlyase system. "Microbiology. 143 (Pt 11): 3633-47.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • RpoE is a kind of sigma factor that functions as a subunit of RNA polymerase, sigma E ( ⁇ E ). RpoE regulates the expression of proteases in membrane and intermembrane proteins in response to heat shock and stress (Ades SE et al. (2003) "Regulation of the alternative sigma factor sigma (E) during initiation, adaptation , and shutoff of the extracytoplasmic heat shock response in Escherichia coli. "J Bacteriol. 185 (8): 2512-9.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • L-aspartate oxidase is the first enzyme in the de novo NAD biosynthetic pathway and catalyzes the reaction from L-aspartate to iminoaspartate in an FAD-dependent manner (Mortarino M. et al. (1996) “L- aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. ”Eur J Biochem. 239 (2): 418-26.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YfiC is a methyltransferase that methylates N at position 6 of A37 (adenine at position 37) of valine tRNA (Golovina AY et al. (2009) RNA. "The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val (cmo5UAC). "15 (6): 1134-41.). The base at position 37 of tRNA is adjacent to the anticodon triplet and is often modified. There is no finding at all indicating the relationship between this protein and heparosan production.
  • SrmB is a DEAD-box RNA helicase that promotes early-stage reactions in the ribosomal 50S subunit assembly (CharollaisaiJ. Et al. (2003) "The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. "Mol Microbiol. 48 (5): 1253-65.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • G1414 and G1413 are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
  • NuoE, NuoF, and NuoG are soluble fragments of NADH dehydrogenase I and function as an electron entrance to the electron transport system (BraunraM. Et al. (1998) "Characterization of the overproduced NADH dehydrogenase fragment of the NADH: ubiquinone oxidoreductase (complex I) from Escherichia coli. "Biochemistry. 37 (7): 1861-7.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • GlmZ is a small RNA that regulates glmS ⁇ ⁇ mRNA expression and translation by post-transcriptional modification in response to intracellular glucosamine-6-phosphate concentration (Kalamorz F. et al. (2007) “Feedback control of glucosamine) -6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. ”Mol Microbiol. 65 (6): 1518-33.).
  • GlmZ directly binds to the 5'-UTR of glmS mRNA and activates the translation of glmS mRNA by freeing the SD region of glmS mRNA that had a loop structure (Urban JH and Vogel J.et al . (2008) "Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation.” PLoS Biol. 6 (3): e64). GlmS is L-glutamine: D-fructose-6-phosphate aminotransferase.
  • D-fructose-6-phosphate aminotransferase is the first enzyme in the supply pathway of UDP-N-acetylglucosamine, a precursor of heparosan, from fructose-6-phosphate to glucosamine-6-phosphate Catalyze the reaction to
  • UDP-N-acetylglucosamine a precursor of heparosan
  • fructose-6-phosphate to glucosamine-6-phosphate
  • HemY, HemX, and HemD are enzymes in the biosynthesis pathway of heme and choline.
  • HemY is a protoporphyrinogen oxidase that oxidizes protoporphyrinogen IX in the heme biosynthetic pathway to produce protoporphyrin IX (Dailey TA et al. (1994) "Expression of a cloned protoporphyrinogen oxidase.” The Journal of Biological Chemistry, 269: 813-815.).
  • HemX is presumed to be uroporphyrinogen III methylase that methylates uroporphyrinogen III in the choline biosynthetic pathway to produce precholine II, but the actual function is unknown (Sasarman A. et al. (1988 ) "Nucleotide sequence of the hemX gene, the third member of the Uro operon of Escherichia coli K12." Nucleic Acids Res. 16 (24): 11835).
  • HemD is a uroporphyrinogen III synthase that produces uroporphyrinogen III, a common final metabolic intermediate in the biosynthesis pathway of heme and choline (Jordan PM and Woodcock SC (1991) "Mutagenesis of arginine residues in) the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. "Biochem J. 280 (Pt 2): 445-9.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • RlmL (also known as RlmKL) is a methyltransferase that methylates 23S445rRNA G2445 and G2069 (Kimura S. et al. (2012) "Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity.” Nucleic Acids Res. 40 (9): 4071-85.).
  • RlmL is a fusion protein, and in particular, the N-terminal domain may be referred to as RlmL and the C-terminal domain may be referred to as RlmK. There is no finding at all indicating the relationship between this protein and heparosan production.
  • ArtQ, ArtM, and ArtJ are subunits of the arginine ABC transporter (Linton KJ and Higgins CF (1998) "The Escherichia coli ATP-binding cassette (ABC) proteins.” Mol Microbiol. 28 (1): 5- 13.). ArtJ is presumed to be localized in the periplasm. Since ArtM and Art are hydrophobic proteins, it is presumed that they are localized in the inner membrane and function as an arginine inner membrane permeation device in cooperation with ArtP, which is an ATPase. There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • RlmC (aka RumB) is a methyltransferase that methylates U747 of 23S23rRNA (Madsen CT et al. (2003) “Identifying the methyltransferases for m (5) U747 and m (5) U1939 in 23S rRNA using MALDI mass) spectrometry. "Nucleic Acids Res. 31 (16): 4738-46.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YbjO is presumed to be an inner membrane protein, but its function is unknown (Rapp M. et al. (2004) “Experimentally based topology models for E. coli inner membrane proteins.” Protein Sci. 13 ( 4): 937-45.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YejO is an outer membrane protein with the function of phase-variable protein export (Henderson IR and Owen P. (1999) "The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. "J Bacteriol. 181 (7): 2132-41.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YejM is presumed to be a type of hydrolase, but its actual function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • YejL is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • RpoS is a type of sigma factor that functions as a subunit of RNA polymerase, sigma S ( ⁇ S ). RpoS globally regulates gene expression in response to stress (Maciag A. et al. (2011) “In vitro transcription profiling of the ⁇ S subunit of bacterial RNA polymerase: re-definition of the ⁇ S regulon and identification of ⁇ S-specific promoter sequence elements. ”Nucleic Acids Res. 39 (13): 5338-55.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YgbN is a protein presumed to be a transporter belonging to the Gnt family involved in gluconate transport, and has been suggested to be a proton-driven metabolite uptake carrier (Peekhaus N. et al. (1997)) Characterization of a novel transporter family that includes multi Escherichia coli gluconate transporters and their homologues. "FEMS Microbiol Lett. 147 (2): 233-8.). There is no finding at all indicating the relationship between this protein and heparosan production.
  • YgbM is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • YbgL is presumed to be a kind of aldolase, but its actual function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • G3798 is a protein presumed to be SOS-response transcriptional repressor (RecA-mediated autopeptidase).
  • G3794 is a protein presumed to be Superinfection exclusion protein B.
  • G3793 is a protein presumed to be restrictionreinhibitor protein ral (Antirestriction protein). There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • G3797, G3796, G3795, and G3792 are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
  • RyjA is a small RNA of about 140 nt (Wassarman K.M. et al. (2001) "Identification of novel small RNAs using comparative genomics and microarrays.” Genes Dev. 15 (13): 1637-51.). There is no knowledge that indicates the relationship between this RNA and heparosan.
  • SoxRS is a transcriptional regulator that is involved in oxidative stress response. SoxR is activated by oxidative stress and induces SoxS expression, and SoxRS induces SoxRS regulon gene expression (Gu M. and Imlay JA (2011) "The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. "Mol Microbiol. 79 (5): 1136-50 .; Touati D. (2000)" Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS Rep. IV 5 (5): 287-93.).
  • SoxRS is known to be involved in the production of lipopolysaccharide (Lee JH et al. (2009) "SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli.” J Bacteriol. 191 (13): 4441-50.), However, there is no finding at all indicating an association between these proteins and heparosan production.
  • YjcC is a c-di-GMP specific phosphodiesterase (Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress.” Mol Microbiol. 72 (6): 1500-16. ). Although overexpression of YjcC is known to reduce biofilm formation, there is no finding at all indicating an association between this protein and heparosan production.
  • YjcB is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
  • EfeU and EfeO are components of the divalent iron ion transport carrier EfeUOB.
  • EfeU functions as a permease and EfeO functions as a protein localized in the periplasm
  • EfeUOB YcdNOB
  • EfeUOB YcdNOB
  • YcdNOB acid-induced and CpxAR-regulated, low-pH Fe2 + transporter that iscryptic in Escherichia coli K-12 but functional in E. coli O157: H7.
  • Mem Microbiol 65: 857? 875 There is no knowledge that indicates the relationship between these proteins and heparosan production.
  • the figure which shows the structure of a wild type nlpD promoter (Pnlp0).
  • the base sequence in the figure is shown in SEQ ID NO: 165.
  • variant nlpD promoter (Pnlp8).
  • the base sequence in the figure is shown in SEQ ID NO: 168.
  • the bacterium of the present invention is a bacterium belonging to the genus Escherichia having the ability to produce heparosan, so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
  • a modified bacterium is a bacterium belonging to the genus Escherichia having the ability to produce heparosan, so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
  • Bacteria having heparosan-producing ability have the ability to produce heparosan and accumulate it in the medium to the extent that it can be recovered when cultured in the medium. It refers to bacteria.
  • the bacterium having the ability to produce heparosan may be a bacterium that can accumulate a larger amount of the desired heparosan in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having heparosan-producing ability may be, for example, a bacterium that can accumulate heparosan in an amount of 50 mg / L or more, 100 mg / L or more, 200 mg / L or more, or 300 mg / L or more. .
  • the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
  • Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • Neidhardt et al. Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Nehard ed.
  • Salmonella Cellular, and Molecular, Biology / Second Edition
  • Escherichia coli examples include, for example, Escherichia coli K-12 strain such as W3110 strain (ATCC 32525) and MG1655 strain (ATCC 47076); Escherichia coli K5 strain (ATCC 23506); Coli B strains; and their derivatives.
  • Escherichia coli K-12 strain such as W3110 strain (ATCC 32525) and MG1655 strain (ATCC 47076); Escherichia coli K5 strain (ATCC 23506); Coli B strains; and their derivatives.
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the BL21 (DE3) strain is available, for example, from Life Technologies (product number C6000-03).
  • the bacterium of the present invention may inherently have heparosan-producing ability or may be modified to have heparosan-producing ability. Bacteria having heparosan-producing ability can be obtained, for example, by imparting heparosan-producing ability to the bacteria as described above.
  • Heparosan production ability can be imparted by introducing a gene encoding a protein involved in heparosan production.
  • proteins involved in heparosan production include glycosyltransferases and heparosan excretion carrier proteins.
  • one kind of gene may be introduced, or two or more kinds of genes may be introduced.
  • the gene can be introduced in the same manner as the method for increasing the number of gene copies described below.
  • glycosyltransferase as used herein has the activity of catalyzing the reaction of extending the heparosan chain by adding N-acetyl-D-glucosamine (GlcNAc) and / or glucuronic acid (GlcUA) to the non-reducing end of the sugar chain. It refers to protein. This activity is also referred to as “glycosyltransferase activity”. Examples of the gene encoding glycosyltransferase include kfiA gene, kfiC gene, and pmHS1 gene.
  • Examples of kfiA gene and kfiC gene include kfiA gene and kfiC gene of Escherichia coli K5 strain.
  • KfiA protein encoded by the kfiA gene of Escherichia coli K5 strain adds GlcNAc to the non-reducing end of the sugar chain using UDP-GlcNAc as a substrate.
  • KfiC protein encoded by the kfiC gene of Escherichia coli K5 strain adds GlcUA to the non-reducing end of the sugar chain using UDP-GlcUA as a substrate.
  • the kfiA and kfiC genes of Escherichia coli K5 strain together with the kfiB and kfiD genes constitute the kfiABCD operon (also referred to as Region 2).
  • the base sequence of the region containing the kfiABCD operon of Escherichia coli K5 strain is shown in SEQ ID NO: 24.
  • the kfiA, kfiB, kfiC, and kfiD genes correspond to the sequence at positions 445 to 1164, the sequence at positions 1593 to 3284, the sequence at positions 4576 to 6138, and the sequence at positions 6180 to 7358, respectively.
  • the amino acid sequences of KfiA, KfiB, KfiC, and KfiD proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 25 to 28, respectively.
  • PmHS1 gene includes pmHS1 gene of Pasteurella multocidae type D strain.
  • the PmHS1 protein encoded by the pmHS1 gene of Pasteurella multocida type D strain adds GlcNAc and GlcUA alternately to the non-reducing sugar chain using both UDP-GlcNAc and UDP-GlcUA as substrates.
  • the nucleotide sequence of the pmHS1 gene of Pasteurella multocida type D strain and the amino acid sequence of the protein encoded by the gene are obtained from public databases such as NCBI (http://www.ncbi.nlm.nih.gov/). it can.
  • heparosan excretion carrier protein refers to a protein having an activity to excrete heparosan chains out of the cell membrane. This activity is also referred to as “heparosan excretion activity”. Examples of genes encoding heparosan efflux carrier protein include kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes.
  • Examples of the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes include kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes of Escherichia coli K5 strain and Escherichia coli B strain.
  • the kpsC, kpsD, kpsE, and kpsS genes of these strains together with the kpsF and kpsU genes constitute the kpsFEDUCS operon (also referred to as Region 1).
  • the kpsM and kpsT genes of these strains constitute the kpsMT operon (also referred to as Region 3).
  • the nucleotide sequences of the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes of these strains and the amino acid sequences of the proteins encoded by these genes are, for example, NCBI (http://www.ncbi.nlm.nih.gov Can be obtained from public databases such as /).
  • the gene to be introduced can be appropriately selected according to the type of bacteria used.
  • Escherichia coli B strain has a gene encoding a heparosan efflux carrier protein, but does not have a gene encoding a glycosyltransferase. Therefore, the ability to produce heparosan can be imparted to the Escherichia coli B strain by introducing a gene encoding a glycosyltransferase.
  • Escherichia coli K-12 strain does not have both a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein.
  • heparosan-producing ability can be imparted to Escherichia coli K-12 strain.
  • Escherichia bacterium having heparosan-producing ability for example, Escherichia coli K5 strain; a strain obtained by introducing the kfiA gene and kfiC gene derived from Escherichia coli K5 strain into Escherichia coli B strain such as BL21 (DE3) strain ; Escherichia coli K-12 strains such as W3110 and MG1655 strains, kfiA and kfiC genes from Escherichia coli K5 strain, and kpsC, kpsD, kpsE, kpsM from Escherichia coli K5 strain or Escherichia coli B strain; Strains into which the kpsS, kpsS, and kpsT genes have been introduced; and derivatives thereof.
  • Escherichia coli K5 strain a strain obtained by introducing the kfiA gene and kfiC gene derived from Escherich
  • strains obtained by introducing the kfiA gene and kfiC gene derived from Escherichia coli K5 strain into Escherichia coli B strain include, for example, Escherichia coli BL21 (DE3) / pVK9-region2 described in Examples. .
  • a bacterium having heparosan-producing ability may be modified so that expression of a gene originally possessed by the bacterium among genes encoding proteins involved in heparosan production is enhanced. That is, for example, Escherichia coli K5 strain may be modified so that the expression of one or more genes encoding proteins involved in heparosan production is enhanced. Also, for example, Escherichia coli B strain may be modified so that expression of one or more genes encoding heparosan excretion carrier protein is enhanced.
  • the bacterium having heparosan-producing ability may be modified in other ways as long as the heparosan-producing ability is not impaired.
  • a bacterium having the ability to produce heparosan may be modified to enhance the expression of one or more genes selected from the kfiB, kfiD, kpsF, and kpsU genes. That is, for example, when introducing a gene encoding a glycosyltransferase, Region 2 may be introduced together, and when introducing a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein, Region 1 may be introduced.
  • ⁇ 3 may be introduced together.
  • the gene used for modification of bacteria such as imparting heparosan production ability, encodes a protein in which the original function is maintained, it is not limited to the above-exemplified genes and genes having a known base sequence. It may be. “The original function was maintained” means that, for example, in the case of glycosyltransferase, a variant of the protein has glycosyltransferase activity, and in the case of a heparosan excretion carrier protein, the variant of the protein has heparosan excretion activity. It means having.
  • a gene used for modification of bacteria such as imparting heparosan production ability
  • one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having an amino acid sequence.
  • gene and protein variants the descriptions of the genes described in Tables 1 to 3 and conservative variants of the proteins encoded by them can be applied mutatis mutandis.
  • the bacterium of the present invention is modified so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
  • the bacterium of the present invention can be obtained by modifying a bacterium having heparosan-producing ability so that expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
  • the bacterium of the present invention can also be obtained by imparting heparosan-producing ability after modifying the bacterium so that expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased. Can do.
  • the bacterium of the present invention may be one that has acquired heparosan-producing ability by being modified so as to increase the expression of one or more genes selected from the genes listed in Tables 1 to 3. Good.
  • the modification for constructing the bacterium of the present invention can be performed in any order.
  • the “genes listed in Tables 1 to 3” means rbsR, rbsK, rbsB, hsrA, glgB, glgX, micF, rcsD, rcsB, ybiX, ybiI, ybiJ, ybiC, ybiB, rfaH, nusG, pcoR, pcoS, pcoE, yhcN, yhcO, aaeB, aaeA, aaeX, g1455, alpA, g1453, yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, yrbG, norW, ybjI, ybjJ, ybjK, rybBy, j thrL, thrA, thrB, fruA, psuK
  • RbsR, rbsK, and rbsB genes are genes encoding factors involved in D-ribose uptake.
  • the rbsR gene encodes a repressor of the rbs operon.
  • the rbsK gene encodes ribokinase.
  • the rbsB gene encodes one of the subunits that make up the ribose ABC transporter.
  • the rbsR, rbsK, and rbsB genes of the Escherichia coli K-12 MG1655 strain are the 3,936,250-3,937,242 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. 3,935,317 to 3,936,246, and 3,934,301 to 3,935,191.
  • RbsR, RbsK, and RbsB proteins of the MG1655 strain are GenBank accession NP_418209 (version NP_418209.1 GI: 16131621), GenBank accession NP_418208 (version NP_418208.1 GI: 16131620), and GenBank accession NP_418207 (version NP_418207. 1 GI: 16131619).
  • the hsrA gene is a gene encoding an inner membrane protein presumed to be a member of the major facilitator superfamily (MFS).
  • MFS major facilitator superfamily
  • the hsrA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of the 3,937,208-3,938,635 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the HsrA protein of the MG1655 strain is registered as GenBank accession NP_418210 (version NP_418210.1 GI: 16131622).
  • the base sequence of the region containing the rbsB, rbsK, rbsR, and hsrA genes of Escherichia coli K5 strain is shown in SEQ ID NO: 29.
  • the rbsB, rbsK, and rbsR genes correspond to the sequence at positions 800 to 1690, the sequence at positions 1816 to 2745, and the sequence at positions 2749 to 3741, respectively.
  • the hsrA gene corresponds to a complementary sequence to the sequences at positions 3707-5134.
  • the amino acid sequences of the RbsR, RbsK, RbsB, and HsrA proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 30 to 33, respectively.
  • the glgB gene is a gene encoding a glycogen branching enzyme (1,4- ⁇ -glucan branching enzyme).
  • the glgX gene is a gene encoding glycogen debranching enzyme.
  • the glgB and glgX genes of Escherichia coli K-12 MG1655 strain are complementary to the sequences of 3,569,339-3,571,525 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. And the sequence complementary to the sequence at positions 3,567,369-3,569,342.
  • GlgB and GlgX proteins of the MG1655 strain are registered as GenBank accession NP_417890 (version NP_417890.1 GI: 16131306) and GenBank accession NP_417889 (version NP_417889.1 GI: 16131305), respectively.
  • the base sequence of the region containing the glgB and glgX genes of Escherichia coli K5 strain is shown in SEQ ID NO: 34.
  • the glgB and glgX genes correspond to the 989 to 3175 position and the 3172 to 5145 position sequences, respectively.
  • the amino acid sequences of GlgB and GlgX proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 35 and 36, respectively.
  • the micF gene is a gene encoding an antisense RNA involved in the suppression of OmpF expression.
  • the micF gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,311,106 to 2,311,198 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • RcsD and rcsB genes are genes that encode transcription factors.
  • the rcsD and rcsB genes of Escherichia coli K-12 MG1655 strain are 2,311,510-2,314,182 and 2,314,199-2,314,849, respectively, in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • RcsD and RcsB proteins of the MG1655 strain are registered as GenBank accession NP_416720 (version NP_416720.1 GI: 16130153) and GenBank accession NP_416721 (version NP_416721.1 GI: 16130154), respectively.
  • the base sequence of the region containing the rcsB, rcsD, and micF genes of Escherichia coli K5 strain is shown in SEQ ID NO: 43.
  • the rcsB, rcsD, and micF genes correspond to the 3312 to 3962 sequence, the 623 to 3295 sequence, and the 219 to 311 sequence, respectively.
  • the amino acid sequences of RcsB and RcsD proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 44 and 45, respectively.
  • YbiX, ybiI, ybiJ, ybiC, and ybiB genes are genes whose functions are unknown.
  • the ybiX, ybiI, ybiJ, ybiC and ybiB genes of Escherichia coli K-12 MG1655 strain are 837,753 ⁇ in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively.
  • YbiX, YbiI, YbiJ, YbiC and YbiB proteins of the MG1655 strain are GenBank accession NP_415325 (version NP_415325.4 GI: 90111170), GenBank accession NP_415324 (version NP_415324.1 GI: 16128771), GenBank accession NP_415323, respectively. version NP_415323.1 GI: 16128770), GenBank accession NP_415322 (version NP_415322.1 GI: 16128769), and GenBank accession NP_415321 (version NP_415321.1 GI: 16128768).
  • the base sequence of the region containing the ybiX, ybiI, ybiJ, ybiC and ybiB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 37.
  • the ybiX, ybiI, and ybiJ genes correspond to the sequence at positions 718 to 1395, the sequence at positions 1469 to 1735, and the sequence at positions 2000 to 2260, respectively.
  • the ybiC and ybiB genes correspond to a complementary sequence of the sequence at positions 2488 to 3574 and a complementary sequence of the sequence at positions 3715 to 4677.
  • the amino acid sequences of the YbiX, YbiI, YbiJ, YbiC, and YbiB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 38 to 42, respectively.
  • RfaH and nusG genes are genes encoding transcription factors.
  • the rfaH and nusG genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the 4,022,356-4,022,844 sequences in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. And corresponds to the sequence at positions 4,175,766-4,176,311.
  • GenBank accession NP_418284 version NP_418284.1 GI: 16131688
  • GenBank accession NP_418409 version NP_418409.1 GI: 16131812
  • the base sequence of the rfaH gene of Escherichia coli BL21 (DE3) strain is shown in SEQ ID NO: 46, and the amino acid sequence of the RfaH protein encoded by the same gene is shown in SEQ ID NO: 47, respectively.
  • the nucleotide sequence of the nusG gene of Escherichia coli BL21 (DE3) strain is shown in SEQ ID NO: 48, and the amino acid sequence of the NusG protein encoded by the same gene is shown in SEQ ID NO: 49.
  • the pcoR, pcoS, and pcoE genes are genes that encode factors involved in copper resistance.
  • the pcoR gene encodes a protein that is homologous to the activator of the pco operon.
  • the pcoS gene encodes a protein that is homologous to a sensor protein of a two-component regulatory system.
  • the pcoE gene encodes a copper binding protein. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
  • the base sequence of the region containing the pcoR, pcoS, and pcoE genes of Escherichia coli K5 strain is shown in SEQ ID NO: 50.
  • the pcoR, pcoS, and pcoE genes correspond to the 128th to 808th positions, the 805th to 2205th positions, and the 2423 to 2857th positions, respectively.
  • the amino acid sequences of the PcoR, PcoS, and PcoE proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 51 to 53, respectively.
  • YhcN gene is a gene encoding a factor involved in stress response.
  • the yhcN gene of Escherichia coli K-12 MG1655 strain corresponds to the 3,383,560 to 3,383,823 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YhcN protein of the MG1655 strain is registered as GenBank accession NP_417705 (version NP_417705.2 GI: 90111561).
  • YhcO gene is a gene encoding a protein homologous to an inhibitor of RNase.
  • the yhcO gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 3,383,879-3,384,151 in the genome sequence registered as GenBank accessionGenNC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accessionGenNC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YhcO protein of the MG1655 strain is registered as GenBank accession NP_417706 (version NP_417706.1 GI: 16131129).
  • the aaeB and aaeA genes are genes encoding subunits of 4-hydroxybenzoic acid excretion carrier.
  • the aaeX gene is a gene encoding a protein presumed to be an excretion carrier.
  • the aaeB, aaeA, and aaeX genes of Escherichia coli K-12 MG1655 strain are sequenced at positions 3,384,243-3,386,210 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • AaeB, AaeA, and AaeX proteins of the MG1655 strain are GenBank accession NP_417707 (version NP_417707.1 GI: 16131130), GenBank accession NP_417708 (version NP_417708.1 GI: 16131131), and GenBank accession NP_417709 (version NP_417709. 2 GI: 90111562).
  • SEQ ID NO: 54 shows the base sequence of the region containing the yhcN, yhcO, aaeB, aaeA, and aaeX genes of Escherichia coli K5 strain.
  • the yhcN, yhcO, aaeB, aaeA, and aaeX genes are, respectively, a sequence at positions 63 to 326, a complementary sequence at positions 382 to 654, and a complementary sequence at positions 746 to 2713 , Corresponding to the sequence complementary to the sequence of positions 2719 to 3651 and the sequence complementary to the sequence of positions 3659 to 3931.
  • the amino acid sequences of the YhcN, YhcO, AaeB, AaeA, and AaeX proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 55 to 59, respectively.
  • the g1455 and g1453 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
  • the alpA gene is a gene encoding an intA gene expression regulator.
  • the alpA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,756,666 to 2,756,878 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the AlpA protein of MG1655 strain is registered as GenBank accession NP_417113 (version NP_417113.1 GI: 16130542).
  • the base sequence of the region containing the g1455, alpA, and g1453 genes of Escherichia coli K5 strain is shown in SEQ ID NO: 60.
  • the g1455, alpA, and g1453 genes correspond to the complementary sequence of the sequence at positions 568 to 1140, the complementary sequence of the sequence at positions 1226 to 1486, and the sequence at positions 2389 to 2529, respectively.
  • the amino acid sequences of the G1455, AlpA, and G1453 proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 61 to 63, respectively.
  • YrbA gene (also known as ibaG) is a gene encoding a protein presumed to be a DNA-binding transcription factor.
  • the yrbA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 3,334,571 to 3,334,825 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YrbA protein of the MG1655 strain is registered as GenBank accession NP_417657 (version NP_417657.2 GI: 90111555).
  • the mlaB, mlaC, mlaD, mlaE, and mlaF genes are genes encoding phospholipid ABC transporter components.
  • the mlaB, mlaC, mlaD, mlaE, and mlaF genes of Escherichia coli K-12 MG1655 strain are 3,334,985 ⁇ in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
  • MlaB, MlaC, MlaD, MlaE, and MlaF proteins of MG1655 strain are GenBank accession NP_417658 (version NP_417658.4 GI: 90111556), GenBank accession NP_417659 (version NP_417659.1 GI: 16131082), GenBank accession NP_417660 version NP_417660.1 GI: 16131083), GenBank accession NP_417661 (version NP_417661.1 GI: 16131084), and GenBank accession NP_417662 (version NP_417662.1 GI: 16131085).
  • the yrbG gene encodes a protein presumed to be a Na + / Ca 2+ exchanger.
  • the yrbG gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 3,338,297 to 3,339,274 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YrbG protein of the MG1655 strain is registered as GenBank accession NP_417663 (version NP_417663.1 GI: 16131086).
  • the base sequence of the region containing the yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, and yrbG genes of Escherichia coli K5 strain is shown in SEQ ID NO: 64.
  • the yrbA, mlaB, mlaC, mlaD, mlaE, mlaF and yrbG genes are respectively complementary to the 977 to 1246 sequence, 1391 to 1780 sequence, 1684 to It corresponds to the complementary sequence of the 2319 position, the complementary sequence of the 2338 to 2889 sequence, the complementary sequence of the 2894 to 3676 sequence, the complementary sequence of the 3684 to 4493 sequence, and the 4703 to 5680 sequence.
  • the amino acid sequences of the YrbA, MlaB, MlaC, MlaD, MlaE, MlaF, and YrbG proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 65 to 71, respectively.
  • the norW gene is a gene encoding NO reductase.
  • the norW gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 2,831,934 to 2,833,067 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the NorW protein of MG1655 strain is registered as GenBank accession NP_417191 (version NP_417191.1 GI: 16130618).
  • the base sequence of the region containing the norW gene of Escherichia coli K5 strain is shown in SEQ ID NO: 72.
  • the norW gene corresponds to the sequence at positions 1201 to 2334.
  • the amino acid sequence of the NorW protein of Escherichia coli K5 strain is shown in SEQ ID NO: 73.
  • YbjI gene is a gene encoding flavin mononucleotide (FMN) phosphorylase.
  • the ybjI gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 884,539 to 885,354 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YbjI protein of the MG1655 strain is registered as GenBank accession NP_415365 (version NP_415365.4 GI: 90111176).
  • YbjJ and ybjK genes are genes whose functions are unknown.
  • the ybjJ and ybjK genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the sequences 885,354 to 886,562 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. And corresponds to the sequence at positions 886,646 to 887,182.
  • GenBank accession NP_415366 version NP_415366.1 GI: 16128813
  • GenBank accession NP_415367 version NP_415367.1 GI: 16128814
  • the rybB gene is a gene encoding a small RNA involved in suppression of OmpC and OmpW expression.
  • the rybB gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of positions 887, 199 to 887,277 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
  • the base sequence of the region containing the ybjI, ybjJ, ybjK, and rybB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 74.
  • the ybjI, ybjJ, ybjK, and rybB genes are respectively the complementary sequence of the sequence at positions 117-932, the complementary sequence of the sequence at positions 932-2140, the sequence at positions 2224-2760, 2777 Corresponds to the complementary sequence of the sequence at position ⁇ 2855.
  • the amino acid sequences of the YbjI, YbjJ, and YbjK proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 75 to 77, respectively.
  • YjjY gene is a gene whose function is unknown.
  • the yjjY gene of Escherichia coli K-12 MG1655 strain corresponds to the 4,638,425-4,638,565 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YjjY protein of the MG1655 strain is registered as GenBank accession NP_418819 (version NP_418819.1 GI: 16132219).
  • the yjtD gene is a gene encoding a protein presumed to be a kind of RNA methyltransferase.
  • the yjtD gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 4,638,965 to 4,639,651 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YjtD protein of the MG1655 strain is registered as GenBank accession NP_418820 (version NP_418820.1 GI: 16132220).
  • ThrL, thrA, and thrB genes are genes that encode enzymes of the threonine biosynthesis pathway.
  • the thrB gene encodes homoserine kinase.
  • the thrA gene encodes an enzyme having two functions, aspartate kinase I and homoserine dehydrogenase I.
  • the thrL gene encodes the leader peptide of the thrLABC operon.
  • the thrL, thrA, and thrB genes of Escherichia coli K-12 MG1655 strain are the 190-255th sequence in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • ThrL, ThrA, and ThrB proteins of the MG1655 strain are respectively GenBank accession NP_414542 (version NP_414542.1161GI: 16127995), GenBank accession NP_414543 (version NP_414543.1 GI: 16127996), and GenBank accession NP_414544 (version NP_414544. 1 GI: 16127997).
  • SEQ ID NO: 78 shows the base sequence of the region containing the yjjY, yjtD, thrL, thrA, and thrB genes of Escherichia coli K5 strain.
  • the yjjY, yjtD, thrL, thrA, and thrB genes are the 124-264 position sequence, the 664-1350 position sequence, the 1564-1629 position sequence, and the 1711-4173 position, respectively.
  • the amino acid sequences of the YjjY, YjtD, ThrL, ThrA, and ThrB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 79 to 83, respectively.
  • the fruA gene is a gene encoding fructose PTS permease.
  • the fruA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,257,741 to 2,259,432 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the FruA protein of the MG1655 strain is registered as GenBank accession NP_416672 (version NP_416672.1 GI: 16130105).
  • the psuK gene is a gene encoding pseudouridine kinase.
  • the psuK gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,256,377 to 2,257,318 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the PsuK protein of the MG1655 strain is registered as GenBank accession NP_416671 (version NP_416671.1 GI: 16130104).
  • the base sequence of the region containing the fruA and psuK genes of Escherichia coli K5 strain is shown in SEQ ID NO: 84.
  • the fruA and psuK genes correspond to the sequences of positions 897 to 2588 and 3165 to 3953, respectively.
  • the amino acid sequences of the FruA and PsuK proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 85 and 86, respectively.
  • YtfT and yjfF genes are genes encoding proteins presumed to be membrane constituents of galactose ABC transport carriers.
  • the ytfT and yjfF genes of Escherichia coli K-12 MG1655 strain are the 4,450,594-4,451,619th sequence and the 4,451,606-position, respectively, in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Corresponds to the 4,452,601 sequence.
  • GenBank ⁇ ⁇ ⁇ accession NP_418651 (version NP_418651.3 GI: 145698343) and GenBank accession NP_418652 (version NP_418652.2 GI: 90111710), respectively.
  • the fbp gene is a gene encoding fructose-1,6-bisphosphate phosphatase.
  • the fbp gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 4,452,634 to 4,453,632 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the Fbp protein of the MG1655 strain is registered as GenBank accession NP_418653 (version NP_418653.1 GI: 16132054).
  • the base sequence of the region containing the ytfT, yjfF, and fbp genes of Escherichia coli K5 strain is shown in SEQ ID NO: 87.
  • the ytfT, yjfF, and fbp genes correspond to the sequences of positions 252 to 1277, positions 1264 to 2259, and sequences complementary to positions 2292 to 3290, respectively.
  • the amino acid sequences of the YtfT, YjfF, and Fbp proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 88 to 90, respectively.
  • the yagU gene is a gene encoding a protein presumed to be an inner membrane protein.
  • the yagU gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 302, 215 to 302,829 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990). Further, the YagU protein of the MG1655 strain is registered as GenBank accession NP_414821 (version NP_414821.1 GI: 16128272).
  • the paoA gene also known as yagT
  • the paoB gene also known as yagS
  • the paoA and paoB genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the 301,108 to 301,797 sequences in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. And corresponds to the complementary sequence of positions 300,155 to 301,111.
  • the PaoA and PaoB proteins of the MG1655 strain are registered as GenBankGenaccession NP_414820 (version NP_414820.1 GI: 16128271) and GenBank accession NP_414819 (version NP_414819.1 GI: 16128270), respectively.
  • the base sequence of the region containing the yagU, paoA, and paoB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 91.
  • the yagU, paoA, and paoB genes correspond to the complementary sequence of the 117th to 731st positions, the 1149th to 1838th positions, and the 1835th to 2791th positions, respectively.
  • the amino acid sequences of the YagU, PaoA, and PaoB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 92 to 94, respectively.
  • the gsiC and gsiD genes are genes that encode a component of glutathione ABC transporter.
  • the gsiC and gsiD genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 870,190 to 871,110 and 871,113 to the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. Corresponds to the sequence at positions 872,024.
  • GenBankGenaccession NP_415352 version NP_415352.1 GI: 16128799
  • GenBank accession NP_415353 version NP_415353.1 GI: 16128800
  • the yliE gene is a gene encoding a protein presumed to be a c-di-GMP-specific phosphodiesterase.
  • the yliE gene of Escherichia coli K-12 MG1655 strain corresponds to the sequences 872, 202 to 874,550 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YliE protein of the MG1655 strain is registered as GenBank accession NP_415354 (version NP_415354.1 GI: 16128801).
  • SEQ ID NO: 95 shows the base sequence of the region containing the gsiC, gsiD, and yliE genes of Escherichia coli K5 strain.
  • the gsiC, gsiD, and yliE genes correspond to the sequence at positions 264 to 1184, the sequence at positions 1187 to 2098, and the sequence at positions 2276 to 4624, respectively.
  • the amino acid sequences of the GsiC, GsiD, and YliE proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 96 to 98, respectively.
  • the irp2 and irp1 genes are genes encoding nonribosomal peptide synthase. In the genome of Escherichia coli ⁇ K-12 MG1655 strain, the irp2 and irp1 genes are not annotated. In the present invention, the irp2 and irp1 genes are sometimes collectively referred to as “irp genes”.
  • the base sequence of the region containing a part of the irp gene of Escherichia coli K5 strain is shown in SEQ ID NO: 99.
  • the same region consists of the latter half of the irp2 gene (the length of 2781-6108 of the total length of 6108 bp; equivalent to about 54% of the total length) and the first half of the irp1 gene (the portion of the total length of 9492 bp, positions 1 to 2530; the full length Equivalent to about 27%).
  • the base sequence of the irp2 gene of Escherichia coli K5 strain is shown in SEQ ID NO: 100
  • the amino acid sequence of the Irp2 protein encoded by the same gene is shown in SEQ ID NO: 101.
  • the base sequence of the irp1 gene of Escherichia coli K5 strain is shown in SEQ ID NO: 102
  • the amino acid sequence of the Irp1 protein encoded by the same gene is shown in SEQ ID NO: 103.
  • the bhsA gene (also known as ycfR) is a gene encoding a protein presumed to be an outer membrane protein.
  • the bhsA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 1,168,296 to 1,168,553 in the genome sequence registered in the NCBI database as GenBank_accession NC_000913 (VERSION NC_000913.249GI: 49175990).
  • the BhsA protein of MG1655 strain is registered as GenBank accession NP_415630 (version NP_415630.1 GI: 16129075).
  • YcfS gene is a gene encoding a kind of L, D-transpeptidase.
  • the ycfS gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 1,168,635-1169,597 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YcfS protein of the MG1655 strain is registered as GenBank accession NP_415631 (version NP_415631.1 GI: 16129076).
  • SEQ ID NO: 104 shows the base sequence of the region containing the bhsA and ycfS genes of Escherichia coli K5 strain.
  • the bhsA and ycfS genes correspond to sequences complementary to the sequences of positions 440-697 and positions 779-1741, respectively.
  • the amino acid sequences of the BhsA and YcfS proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 105 and 106, respectively.
  • the lepB gene is a gene encoding a signal peptidase.
  • the lepB gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,702,357 to 2,703,331 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • Rnc gene is a gene encoding RNaseIII.
  • the rnc gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,701,405 to 2,702,085 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the Rnc protein of MG1655 strain is registered as GenBank accession NP_417062 (version NP_417062.1 GI: 16130492).
  • Era gene is a gene encoding a factor essential for survival.
  • the era gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,700,503 to 2,701,408 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the Era protein of the MG1655 strain is registered as GenBank accession NP_417061 (version NP_417061.1 GI: 16130491).
  • the base sequence of the region containing lepB, rnc and era genes of Escherichia coli K5 strain is shown in SEQ ID NO: 107.
  • the lepB, rnc, and era genes correspond to the sequence at positions 1344 to 2318, the sequence at positions 2590 to 3270, and the sequence at positions 3267 to 4172, respectively.
  • the amino acid sequences of the LepB, Rnc, and Era proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 108 to 110, respectively.
  • the dapA gene is a gene encoding 4-hydroxy-tetrahydrodipicolinate synthase.
  • the dapA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,596,904 to 2,597,782 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the DapA protein of MG1655 strain is registered as GenBank accession NP_416973 (version NP_416973.1 GI: 16130403).
  • the gcvR gene is a gene encoding a protein presumed to be a transcriptional regulatory factor.
  • the gcvR gene of Escherichia coli K-12 MG1655 strain corresponds to the sequences of positions 2,597, 928 to 2,598,500 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the GcvR protein of the MG1655 strain is registered as GenBank accession NP_416974 (version NP_416974.4 GI: 90111443).
  • the bcp gene is a gene encoding thiol peroxidase.
  • the bcp gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,598,500 to 2,598,970 in the genome sequence registered as GenBank Accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the Bcp protein of the MG1655 strain is registered as GenBank accession NP_416975 (version NP_416975.1 GI: 16130405).
  • the hyfA gene encodes a protein presumed to be involved in electron transport.
  • the hyfA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,599,223 to 2,599,840 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
  • the hyfA protein of the MG1655 strain is registered as GenBank accession NP_416976 (version NP_416976.4 GI: 90111444).
  • the base sequence of the region containing the dapA, gcvR, bcp, and hyfA genes of Escherichia coli K5 strain is shown in SEQ ID NO: 111.
  • the dapA, gcvR, bcp, and hyfA genes are respectively complementary to the sequences from positions 858 to 1736, sequences from 1882 to 2454, sequences from 2454 to 2924, and 3177 to 3794. Corresponds to the sequence of positions.
  • the amino acid sequences of the DapA, GcvR, Bcp, and HyfA proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 112 to 115, respectively.
  • the rpoE gene is a gene encoding sigma E ( ⁇ E ).
  • the rpoE gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 2,707,459 to 2,708,034 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the RpoE protein of MG1655 strain is registered as GenBank accession NP_417068 (version NP_417068.1 GI: 16130498).
  • the nadB gene is a gene encoding L-aspartate oxidase.
  • the nadB gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,708,442 to 2,710,064 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the NadB protein of the MG1655 strain is registered as GenBank accession NP_417069 (version NP_417069.1 GI: 16130499).
  • the yfiC gene is a gene encoding a methyltransferase that methylates N at position 6 of A37 (adenine at position 37) of valine tRNA.
  • the yfiC gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,710,049 to 2,710,786 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YfiC protein of MG1655 strain is registered as GenBank accession NP_417070 (version NP_417070.2 GI: 90111461).
  • SrmB gene is a gene encoding DEAD-box type RNA helicase.
  • the srmB gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,710,918-2,712,252 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the SrmB protein of MG1655 strain is registered as GenBank accession NP_417071 (version NP_417071.1 GI: 16130501).
  • the base sequence of the region containing the rpoE, nadB, yfiC, and srmB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 116.
  • the rpoE, nadB, yfiC, and srmB genes are respectively the complementary sequence of the sequence at positions 355 to 930, the sequence at positions 1338 to 2960, the complementary sequence of the sequences at positions 2945 to 3682, and Corresponds to sequence 3814-5148.
  • the base sequence of the rpoE gene of Escherichia coli K5 strain is shown in SEQ ID NO: 174.
  • the amino acid sequences of RpoE, NadB, YfiC, and SrmB proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 117 to 120, respectively.
  • the g1414 and g1413 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
  • SEQ ID NO: 121 shows the base sequence of the region containing the g1414 and g1413 genes of Escherichia coli K5 strain.
  • the g1414 and g1413 genes correspond to the 28th to 699th positions and the 831 to 1157th positions, respectively.
  • the amino acid sequences of G1414 and G1413 proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 122 and 123, respectively.
  • the nuoE, nuoF, and nuoG genes encode a soluble fragment of NADH dehydrogenase I.
  • the nuoE, nuoF, and nuoG genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 2,399,574-2,400,074 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • NuoE, NuoF, and NuoG proteins of MG1655 strain are GenBank accession NP_416788 (version NP_416788.1 GI: 16130220), GenBank accession NP_416787 (version_NP_416787.1 GI: 16130219), and GenBank accession NP_416786 (version NP. 4 GI: 145698290).
  • the base sequence of the region containing the nuoE, nuoF, and nuoG genes of Escherichia coli K5 strain is shown in SEQ ID NO: 124.
  • the nuoE, nuoF, and nuoG genes are respectively complementary to the sequence of positions 796 to 1296, complementary to the sequence of positions 1293 to 2630, and complementary to the sequences of positions 2683 to 5409, respectively. It corresponds to.
  • the amino acid sequences of NuoE, NuoF, and NuoG proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 125 to 127, respectively.
  • the glmZ gene is a gene encoding a low molecular weight RNA.
  • the glmZ gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 3,984,455-3,984,626 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • HemY, hemX, and hemD genes encode enzymes in the biosynthesis pathway of heme and choline.
  • the hemY gene encodes protoporphyrinogen oxidase.
  • the hemX gene encodes a protein presumed to be uroporphyrinogen III methylase.
  • the hemD gene encodes uroporphyrinogen III synthase.
  • the hemY, hemX, and hemD genes of K-12 MG1655 strain are complementary to the sequences of positions 3,984,709-3,985,905 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the HemY, HemX, and HemD proteins of the MG1655 strain are GenBank accession NP_418246 (version NP_418246.1 GI: 16131654), GenBank accession NP_418247 (version NP_418247.1 GI: 16131655), GenBank accession NP_4182488.1 (version NP_418248.1). GI: 16131656).
  • the base sequence of the region containing the glmZ, hemY, hemX, and hemD genes of Escherichia coli K5 strain is shown in SEQ ID NO: 128.
  • the glmZ, hemY, hemX, and hemD genes are the sequences of positions 357 to 563, sequences of positions 611 to 1807, sequences of positions 1810 to 2991, and sequences of positions 3013 to 3753, respectively. It corresponds to.
  • the amino acid sequences of the HemY, HemX, and HemD proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 129 to 131, respectively.
  • RlmL gene (also known as rlmKL) is a gene encoding a methyltransferase that methylates 23S rRNA G2445 and G2069.
  • the rlmL gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 1,007,067 to 1,009,175 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the RlmL protein of the MG1655 strain is registered as GenBank accession NP_415468 (version NP_415468.1 GI: 16128915).
  • the base sequence of the region containing the rlmL gene of Escherichia coli K5 strain is shown in SEQ ID NO: 132.
  • the rlmL gene corresponds to the sequence at positions 571 to 2679.
  • the amino acid sequence of the RlmL protein of Escherichia coli K5 strain is shown in SEQ ID NO: 133.
  • the artQ, artM, and artJ genes encode arginine ABC transporter subunits.
  • the artQ, artM and artJ genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 900, 757 to 901,473 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • ArtQ, ArtM, and ArtJ proteins of MG1655 strain are GenBank accession NP_415383 (version NP_415383.1 GI: 16128830), GenBank accession NP_415382 (version NP_415382.1 GI: 16128829), and GenBank accession NP_415381 (version NP_415381. 1 GI: 16128828).
  • the rlmC gene (also known as rumB) is a gene encoding a methyltransferase that methylates U747 of 23S rRNA.
  • the rlmC gene of Escherichia coli K-12 MG1655 strain corresponds to 897,741 to 898,868 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the RlmC protein of the MG1655 strain is registered as GenBank accession NP_415380 (version NP_415380.1 GI: 16128827).
  • the ybjO gene is a gene encoding a protein presumed to be an inner membrane protein.
  • the ybjO gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 897, 212 to 897,700 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
  • the YbjO protein of the MG1655 strain is registered as GenBank accession NP_415379 (version NP_415379.1 GI: 16128826).
  • the base sequence of the region containing the artQ, artM, artJ, rlmC, and ybjO genes of Escherichia coli K5 strain is shown in SEQ ID NO: 134.
  • the artQ, artM, artJ, rlmC, and ybjO genes are the sequences of positions 386 to 1102, 1102 to 1770, sequences 2061 to 2792, and positions 2991 to 4118, respectively. It corresponds to the complementary sequence of the sequence and the complementary sequence of the sequences from 4159 to 4647.
  • the amino acid sequences of the ArtQ, ArtM, ArtJ, RlmC, and YbjO proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 135 to 139, respectively.
  • YejO gene is a gene encoding an outer membrane protein.
  • the yejO gene of Escherichia coli K-12 MG1655 strain is the sequence of 2,284,412-2,286,936 and the sequence of 2,288,136-2,288,202 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. It corresponds to the complementary sequence of the sequence bound by.
  • the yejO gene of MG1655 strain is considered to be a pseudogene.
  • the yejM gene is a gene encoding a protein presumed to be one type of hydrolase.
  • the yejM gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,282,398-2,284,158 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YejM protein of the MG1655 strain is registered as GenBank accession NP_416693 (version NP_416693.1 GI: 16130126).
  • YejL gene is a gene whose function is unknown.
  • the yejL gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,282,151 to 2,282,378 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YejL protein of the MG1655 strain is registered as GenBank accession NP_416692 (version NP_416692.1 GI: 16130125).
  • the base sequence of the region containing the yejO, yejM, and yejL genes of Escherichia coli K5 strain is shown in SEQ ID NO: 140.
  • the genes yejO, yejM, and yejL correspond to the sequences at positions 216 to 2807, the complementary sequences at positions 3061 to 4821, and the complementary sequences to the sequences at positions 4841 to 5068, respectively.
  • the amino acid sequences of the YejO, YejM, and YejL proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 141 to 143, respectively.
  • the rpoS gene is a gene encoding sigma S ( ⁇ S ).
  • the rpoS gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 2,864,581 to 2,865,573 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the RpoS protein of the MG1655 strain is registered as GenBank accession NP_417221 (version NP_417221.1 GI: 16130648).
  • the ygbN gene encodes a protein presumed to be a transporter belonging to the Gnt family.
  • the ygbN gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,863,123 to 2,864,487 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YgbN protein of the MG1655 strain is registered as GenBank accession NP_417220 (version NP_417220.1 GI: 16130647).
  • YgbM gene is a gene whose function is unknown.
  • the ygbM gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,862,258 to 2,863,034 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
  • the YgbM protein of the MG1655 strain is registered as GenBank accession NP_417219 (version NP_417219.1 GI: 16130646).
  • the ygbL gene encodes a protein presumed to be a kind of aldolase.
  • the ygbL gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence at positions 2,861,615 to 2,862,253 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YgbL protein of the MG1655 strain is registered as GenBank accession NP_417218 (version NP_417218.1 GI: 16130645).
  • the base sequence of the region containing the rpoS, ygbN, ygbM, and ygbL genes of Escherichia coli K5 strain is shown in SEQ ID NO: 144.
  • the rpoS, ygbN, ygbM, and ygbL genes are respectively a sequence at positions 318-1310, a complementary sequence at positions 1404-2768, a complementary sequence at positions 2857-3363, and It corresponds to the complementary sequence of the sequence from 3638 to 4276.
  • the amino acid sequences of the RpoS, YgbN, YgbM, and YgbL proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 145 to 148, respectively.
  • the g3798 gene is a gene encoding a protein presumed to be SOS-response transcriptional repressor (RecA-mediated autopeptidase).
  • the g3794 gene is a gene encoding a protein presumed to be Superinfectioncexclusion protein B.
  • the g3793 gene encodes a protein presumed to be restriction ⁇ inhibitor protein ral (Antirestriction protein).
  • the g3797, g3796, g3795, and g3792 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
  • the base sequence of the region containing the g3798, g3797, g3796, g3795, g3794, g3793, and g3792 genes of Escherichia coli K5 strain is shown in SEQ ID NO: 149.
  • the g3798, g3797, g3796, g3795, g3794, g3793, and g3792 genes are respectively a sequence at positions 615 to 1268, a sequence at positions 1368 to 2219, a sequence at positions 2257 to 2748, 3021 Corresponds to the sequence at position ⁇ 3203, the complementary sequence of the sequence at positions 3470 to 4051, the sequence at positions 4280 to 4480, and the sequence at positions 4520 to 4717.
  • the amino acid sequences of the G3798, G3797, G3796, G3795, G3794, G3793, and G3792 proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 150 to 156, respectively.
  • RyjA gene is a gene encoding low molecular RNA.
  • the ryjA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of the 4,275,950-4,276,089 sequence in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the soxR and soxS genes are genes that encode transcriptional regulatory factors.
  • the soxR and soxS genes of Escherichia coli K-12 MG1655 strain are sequenced at positions 4,275,492-4,275,956 and 4,275,083 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. It corresponds to the complementary sequence of the sequence at positions 4,275,406.
  • SoxR and SoxS proteins of the MG1655 strain are registered as GenBankGenaccession NP_418487 (version NP_418487.1 GI: 16131889) and GenBank accession NP_418486 (version NP_418486.1 GI: 16131888), respectively.
  • the yjcC gene is a gene encoding c-di-GMP-specific phosphodiesterase.
  • the yjcC gene of Escherichia coli K-12 MG1655 strain corresponds to the 4,273,494-4,275,080-position in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the YjcC protein of the MG1655 strain is registered as GenBank accession NP_418485 (version NP_418485.1 GI: 16131887).
  • YjcB gene is a gene whose function is unknown.
  • the yjcB gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 4,272,783 to 4,273,064 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
  • GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
  • the YjcB protein of the MG1655 strain is registered as GenBank accession NP_418484 (version NP_418484.4 GI: 90111681).
  • the base sequence of the region containing the ryjA, soxR, soxS, yjcC, and yjcB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 157.
  • the ryjA, soxR, soxS, yjcC, and yjcB genes are respectively a sequence at positions 657-796, a complementary sequence at positions 790-1254, a sequence at positions 1340-1663, 1666- It corresponds to the sequence complementary to the sequence at position 3252 and the sequence from position 3682 to 3963.
  • the amino acid sequences of the SoxR, SoxS, YjcC, and YjcB proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 158 to 161, respectively.
  • the efeU and efeO genes are genes that encode components of the divalent iron ion transport carrier.
  • the efeU and efeO genes of Escherichia coli K-12 MG1655 strain are the genome sequences registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, and the sequences of positions 1,080,579 to 1,081,408 and 1,081,466- Corresponds to the sequence at position 1,082,593.
  • the efeU gene of MG1655 strain is considered to be a pseudogene.
  • the EfeO protein of MG1655 strain is registered as GenBank accession NP_415537 (version NP_415537.1 GI: 16128982).
  • the base sequence of the region containing the efeU and efeO genes of Escherichia coli K5 strain is shown in SEQ ID NO: 162.
  • the efeU and efeO genes correspond to the 753 to 1583 position sequences and the 1641 to 2768 position sequences, respectively.
  • the amino acid sequences of the EfeU and EfeO proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 163 and 164, respectively.
  • the bacterium of the present invention may be modified, for example, to increase at least the expression of rfaH gene among the genes in Tables 1 to 3, and to increase the expression of one or more genes other than at least rfaH gene. It may be modified.
  • the bacterium of the present invention may be modified so that, for example, among the genes in Tables 1 to 3, the expression of the rfaH gene and the expression of one or more genes other than the rfaH gene are increased.
  • the bacterium of the present invention specifically includes, for example, the expression of the rfaH gene in Tables 1 to 3, rbsR, rbsK, rbsB, hsrA, glgB, glgX, micF, rcsD, rcsB, ybiX, ybiI, ybiJ, ybiC, ybiB, nusG, pcoR, pcoS, pcoE, yhcN, yhcO, aaeB, aaeA, aaeX, g1455, alpA, g1453, yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, yrbG, norW, jbjI, b 1 selected from ybjK, rybB, yjjY, yjtD, thrL,
  • the bacterium of the present invention may be modified so that, for example, at least the rpoE gene expression in the genes shown in Tables 1 to 3 is increased.
  • the combination of genes in Tables 1 to 3 that increase expression is not particularly limited. As a combination, the combination as described in the Example mentioned later is mentioned, for example.
  • the expression of the genes in Tables 1 to 3 is represented by SEQ ID NOs: 29, 34, 37, 43, 50, 54, 60, 64, 72, 74, 78, 84, 87, 91, 95, 99, 104, 107,
  • Increasing the number of copies of DNA containing the genes in Tables 1 to 3, such as DNA having the base sequence shown in 111, 116, 121, 124, 128, 132, 134, 140, 144, 149, 157, or 162 May be increased.
  • the number of copies of DNA containing a part of the irp gene such as DNA having the base sequence shown in SEQ ID NO: 99, may be increased.
  • the DNA that increases the copy number as described above is SEQ ID NO: 29, 34, 37, 43, 50, 54, 60, 64, 72, 74, 78, 84, 87, 91, 95, 99, 104, 107, It may be a variant of DNA having the base sequence shown in 111, 116, 121, 124, 128, 132, 134, 140, 144, 149, 157, or 162.
  • the descriptions of conservative variants of the genes described in Tables 1 to 3 can be applied mutatis mutandis.
  • genes can be obtained by PCR using the chromosomes of strains holding these genes as templates and oligonucleotides prepared based on these known gene sequences as primers.
  • the genes in Tables 1 to 3 may be gene variants exemplified above as long as the original function is maintained.
  • the protein encoded by the genes in Tables 1 to 3 may be a variant of the protein exemplified above as long as the original function is maintained.
  • Such a variant in which the original function is maintained may be referred to as a “conservative variant”.
  • the gene specified by the above gene name and the protein specified by the name corresponding thereto include the conservative variant in addition to the above exemplified gene and protein, respectively.
  • the term “rpoE gene” includes conservative variants in addition to the above-exemplified rpoE gene (the rpoE gene of Escherichia coli K-12 MG1655 strain or Escherichia coli K5 strain).
  • the term “RpoE protein” encompasses the conservative variants thereof in addition to the RpoE protein exemplified above (RpoE protein of Escherichia coli K-12 MG1655 strain or Escherichia coli K5 strain). Examples of conservative variants include homologues and artificially modified genes and proteins exemplified above.
  • the original function is maintained means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein.
  • the original function is maintained means that in the genes shown in Tables 1 to 3, when the variant of the gene increases the expression level in the genus Escherichia having heparosan-producing ability, It has the property of increasing the ability to produce heparosan.
  • “the original function is maintained” may mean that the gene variant encodes a protein in which the original function is maintained. That is, the genes shown in Tables 1 to 3 may encode conservative variants of the proteins exemplified above.
  • the original function is maintained means that in the proteins encoded by the genes in Tables 1 to 3, the variant of the protein increases the expression level in Escherichia bacteria having the ability to produce heparosan. It has the property of increasing the heparosan-producing ability of the same bacterium. “The original function is maintained” means that in the proteins encoded by the genes in Tables 1 to 3, if the variant of the protein is a function of the protein, for example, RpoE protein, sigma E ( ⁇ E ) as a function.
  • Whether a variant of a gene or protein has the property of increasing the heparosan-producing ability of the bacterium belonging to the genus Escherichia having the ability to produce heparosan is determined by whether the gene encoding the same gene or protein Is introduced into an Escherichia bacterium having heparosan-producing ability, and whether or not heparosan-producing ability is improved can be confirmed.
  • the homologues of the genes shown in Tables 1 to 3 can be easily obtained from a public database by, for example, a BLAST search or FASTA search using the base sequence of the gene exemplified above as a query sequence.
  • the homologues of the genes shown in Tables 1 to 3 can be obtained, for example, by PCR using a chromosome of a microorganism such as bacteria as a template and oligonucleotides prepared based on these known gene sequences as primers.
  • the genes shown in Tables 1 to 3 are amino acid sequences in which one or several amino acids at one or several positions are substituted, deleted, inserted or added as long as the original function is maintained. It may encode a protein having For example, the encoded protein may have its N-terminus and / or C-terminus extended or shortened.
  • the above “one or several” varies depending on the position and type of the amino acid residue in the three-dimensional structure of the protein, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, Preferably, it means 1-20, more preferably 1-10, even more preferably 1-5, particularly preferably 1-3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • genes shown in Tables 1 to 3 are 80% or more, preferably 90% or more, more preferably 95% or more, and still more preferably 97% of the whole amino acid sequence as long as the original function is maintained. As described above, it may be a gene encoding a protein having a homology of 99% or more. In the present specification, “homology” may refer to “identity”.
  • the genes shown in Tables 1 to 3 are subjected to stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to the whole or a part of the base sequence, as long as the original function is maintained. It may be DNA that hybridizes. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
  • the probe used for the hybridization may be a part of a complementary sequence of a gene.
  • a probe can be prepared by PCR using an oligonucleotide prepared based on a known gene sequence as a primer and a DNA fragment containing the genes shown in Tables 1 to 3 as a template.
  • a DNA fragment having a length of about 300 bp can be used as the probe.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the genes in Tables 1 to 3 may be those obtained by replacing any codon with an equivalent codon as long as the original function is maintained.
  • the genes in Tables 1 to 3 may be modified to have optimal codons depending on the codon usage frequency of the host to be used.
  • Variants of the genes in Tables 1-3 include the coding region of a gene such that, for example, by site-directed mutagenesis, amino acid residues at specific sites of the encoded protein include substitutions, deletions, insertions or additions. It can be obtained by modifying.
  • the variants of the genes in Tables 1 to 3 can also be obtained by, for example, mutation treatment.
  • Mutation treatment includes a method of treating DNA molecules having the nucleotide sequences of Tables 1 to 3 in vitro with hydroxylamine or the like, a microorganism having a gene of Tables 1 to 3 such as a microorganism belonging to the family Enterobacteriaceae, A method of treating with a ray, ultraviolet light, or a mutant such as N-methyl-N′-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), methylmethanesulfonate (MMS), error Prone PCR (Cadwell, RC PCR Meth. Appl. 2, 28 (1992)), DNA shuffling (Stemmer, WP Nature 370, 389 (1994)), StEP-PCR (Zhao, H. Nature Biotechnol. 16, 258 (1998) )) A method such as cocoon.
  • NTG N-methyl-N′-nitro-N-nitrosoguanidine
  • EMS eth
  • the gene expression may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • “increasing gene expression” means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene. Note that “increasing gene expression” is also referred to as “enhanced gene expression”.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced.
  • multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance.
  • Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
  • An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
  • the vector a vector capable of autonomous replication in a host cell can be used.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be equipped with a promoter or terminator for expressing the inserted gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
  • vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), wide host range Vector RSF1010 is mentioned.
  • the gene may be retained in the bacterium of the present invention so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a native promoter of a gene to be introduced or a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
  • a transcription terminator can be placed downstream of the gene.
  • the terminator is not particularly limited as long as it functions in the bacterium of the present invention.
  • the terminator may be a host-derived terminator or a heterologous terminator.
  • the terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator.
  • the vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
  • each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template.
  • the introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)).
  • each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Can be mentioned.
  • a highly active promoter of a conventional promoter may be obtained by using various reporter genes.
  • the promoter activity can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
  • the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene.
  • Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • a stronger SD sequence is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence.
  • RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235).
  • substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
  • a site that affects gene expression such as a promoter, an SD sequence, and a spacer region between the RBS and the start codon is also collectively referred to as an “expression control region”.
  • the expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX.
  • GENETYX gene analysis software
  • These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • Escherichia coli, etc. there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein.
  • Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA.
  • site-directed mutagenesis a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
  • Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
  • an electric pulse method Japanese Patent Laid-Open No. 2-207791 as reported for coryneform bacteria can also be used.
  • the increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the increase in gene expression can be confirmed by confirming that the activity of the protein expressed from the gene has increased.
  • the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning A Laboratory Manual / Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA ), 2001).
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the amount of protein can be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the activity of the protein may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
  • the above-described technique for increasing the expression of a gene can be used to enhance the expression of an arbitrary gene, for example, the genes shown in Tables 1 to 3 or genes encoding proteins involved in heparosan production.
  • the method for producing heparosan of the present invention includes culturing the bacterium of the present invention in a medium to produce and accumulate heparosan in the medium, and collecting heparosan from the medium. It is a manufacturing method.
  • the medium used is not particularly limited as long as the bacterium of the present invention can grow and heparosan is produced and accumulated.
  • a normal medium used for bacterial culture can be used.
  • Specific examples of the medium include, but are not limited to, LB medium (including Luria-Bertani medium; Bacto-tryptone 10.0 g, Bacto-yeast extract 5.0 g, and NaCl 5.0 g per liter).
  • LB medium including Luria-Bertani medium; Bacto-tryptone 10.0 g, Bacto-yeast extract 5.0 g, and NaCl 5.0 g per liter.
  • a medium containing a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other components selected from various organic components and inorganic components as necessary can be used.
  • a person skilled in the art may appropriately set the type and concentration of the medium component.
  • the carbon source is not particularly limited as long as the bacterium of the present invention can be assimilated to produce heparosan.
  • Specific examples of carbon sources include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste molasses, starch hydrolysate, biomass hydrolyzate, and other sugars, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol, crude glycerol and ethanol, and fatty acids.
  • one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the nitrogen source examples include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, soybean protein degradation product, ammonia, and urea.
  • ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate
  • organic nitrogen sources such as peptone, yeast extract, meat extract, soybean protein degradation product, ammonia, and urea.
  • one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • inorganic salts such as sodium chloride and potassium chloride
  • trace metals such as iron, manganese, magnesium and calcium
  • vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • vitamins such as acid, nicotinamide, and vitamin B12
  • amino acids amino acids
  • nucleic acids amino acids
  • organic components such as peptone, casamino acid, yeast extract, and soybean
  • an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium.
  • a gene is introduced using a vector carrying an antibiotic resistance gene, it is preferable to add an antibiotic corresponding to the medium.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and heparosan is produced and accumulated.
  • the culture can be performed, for example, under ordinary conditions used for bacterial culture. Culture conditions may be appropriately set by those skilled in the art.
  • Culturing can be performed aerobically, for example, by aeration culture or shaking culture using a liquid medium.
  • the culture temperature may be, for example, 30 to 37 ° C.
  • the culture period may be, for example, 16 to 72 hours.
  • the culture can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • cultivation may be performed by dividing into preculture and main culture.
  • the preculture may be performed using, for example, a flat plate medium or a liquid medium.
  • the method for recovering heparosan from the culture solution is not particularly limited as long as heparosan can be recovered.
  • Examples of the method for recovering heparosan from the culture solution include the methods described in Examples. Specifically, for example, the culture supernatant is separated from the culture solution, and then heparosan in the supernatant can be precipitated by ethanol precipitation.
  • the amount of ethanol to be added may be, for example, 2.5 to 3.5 times the amount of the supernatant.
  • For precipitation of heparosan not only ethanol but also an organic solvent arbitrarily mixed with water can be used.
  • an organic solvent in addition to ethanol, methanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, acetone, DMF, DMSO, N-methylpyrrolidone, pyridine 1,2-dimethoxyethane, 1,4-dioxane, THF.
  • the precipitated heparosan can be dissolved with, for example, twice the amount of the original supernatant.
  • the recovered heparosan may contain components such as bacterial cells, medium components, moisture, and bacterial metabolic byproducts in addition to heparosan.
  • Heparosan may be purified to the desired degree.
  • the purity of heparosan is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (w / w) Or 95% (w / w) or more.
  • Heparosan can be detected and quantified by a known method. Specifically, for example, heparosan can be detected and quantified by a carbazole method.
  • the carbazole method is a widely used method for the determination of uronic acid, and heparosan is detected and detected by measuring the absorption at 530 nm by the colored substance produced by thermal reaction of heparosan with carbazole in the presence of sulfuric acid.
  • Can be quantified (Bitter T. and Muir HM, (1962) "A modified uronic acid carbazole reaction.” Analytical Biochemistry, 4 (4): 330? 334).
  • heparosan can be detected and quantified by treating heparosan with heparinase III, which is a heparosan degrading enzyme, and performing disaccharide composition analysis.
  • Method for producing heparin can be produced using heparosan produced by the bacterium of the present invention. That is, in the method for producing heparin of the present invention, the bacterium of the present invention is cultured in a medium to produce and accumulate heparosan in the medium, and the heparosan is chemically and / or enzymatically produced to produce heparin. And a method for producing heparin, comprising recovering the heparin. Heparin has anticoagulant activity and can be used as a pharmaceutical ingredient.
  • a method for producing heparin from heparosan has already been reported. Specifically, for example, using heparosan as a starting material, (1) N-deacetylation, (2) N-sulfation, (3) C5 epimerization, (4) 2-O-sulfation, (5) Through the steps of 6-O-sulfation and (6) 3-O-sulfation, heparin with anticoagulant activity can be produced. Heparin and Its Precursors. "J Am Chem Soc., 130 (39): 12998? 13007.).
  • the method for producing heparin may further include a step of reducing the molecular weight.
  • the process of producing heparin from such heparosan is also collectively referred to as “heparin generation treatment”.
  • the order of performing each step in the heparin production process is not particularly limited as long as heparin having desired properties is obtained.
  • Heparosan may be used for heparin production while contained in the medium, or may be collected from the medium and then used for heparin production.
  • heparosan may be subjected to a heparin production process after appropriate pretreatment.
  • the pretreatment include purification, dilution, concentration, drying, and dissolution. These pretreatments may be appropriately combined.
  • the culture solution containing heparosan may be used as it is or after being purified to a desired degree for heparin production.
  • N-deacetylation can be performed chemically using, for example, sodium hydroxide.
  • Reaction conditions can be appropriately set by those skilled in the art. For example, refer to the conditions of the previous report (Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.” J Biol Chem., 278 (52): 52613-52621.) Can do.
  • N-sulfation can be chemically performed using, for example, sulfur trioxide / trimethylamine complex.
  • Reaction conditions can be appropriately set by those skilled in the art. For example, refer to the conditions of the previous report (Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.” J Biol Chem., 278 (52): 52613-52621.) Can do.
  • C5 epimerization can be performed enzymatically using, for example, C5-epimerase.
  • C5-epimerase is not particularly limited as long as it can catalyze the isomerization of a glucuronic acid (GlcUA) residue to an iduronic acid (IdoA) residue.
  • GlcUA glucuronic acid
  • IdoA iduronic acid
  • C5-epimerase having an appropriate substrate specificity may be selected and used.
  • C5-epimerase may be derived from any source such as animals, plants, and microorganisms. As C5-epimerase, for example, human C5-epimerase can be used.
  • Reaction conditions can be appropriately set by those skilled in the art.
  • the conditions of previous reports Choen J, et al., "Enzymatic redesigning of biologically active heparan sulfate.” J Biol Chem. 2005 Dec 30; 280 (52): 42817-25.) Can be referred to.
  • 2-O-sulfation can be enzymatically performed using, for example, 2-O-sulfating enzyme (2-OST).
  • 2-OST is not particularly limited as long as it can catalyze the sulfation at the O-2 position of the IdoA residue.
  • 2-OST may be selected and used.
  • 2-OST may be derived from any of animals, plants, microorganisms and the like. As the 2-OST, for example, hamster 2-OST can be used. Reaction conditions can be appropriately set by those skilled in the art.
  • 6-O-sulfation can be enzymatically performed using, for example, 6-O-sulfating enzyme (6-OST).
  • 6-OST is not particularly limited as long as it can catalyze the sulfation at the O-6 position of an N-sulfated glucosamine (GlcNS) residue.
  • GlcNS N-sulfated glucosamine
  • 6-O-sulfation has an appropriate substrate specificity.
  • OST may be selected and used.
  • 6-OST may be derived from any of animals, plants, microorganisms and the like.
  • 6-OST for example, hamster 6-OST-1 or mouse 6-OST-3 can be used.
  • Reaction conditions can be appropriately set by those skilled in the art.
  • the conditions of previous reports Choen J, et al., "Enzymatic redesigning of biologically active heparan sulfate.” J Biol Chem. 2005 Dec 30; 280 (52): 42817-25.) Can be referred to.
  • 3-O-sulfation can be performed enzymatically using, for example, 3-O-sulfating enzyme (3-OST).
  • the 3-OST is not particularly limited as long as it can catalyze the sulfation of the O-3 position of the N-sulfated / 6-O-sulfated glucosamine residue.
  • 3-OST may be selected and used.
  • 3-OST may be derived from any of animals, plants, microorganisms and the like. As 3-OST, for example, mouse 3-OST-1 can be used. Reaction conditions can be appropriately set by those skilled in the art.
  • the molecular weight reduction can be performed, for example, using sulfurous acid or by a photolysis method.
  • the degree of molecular weight reduction is not particularly limited.
  • the molecular weight reduction may be performed, for example, such that heparin having a molecular weight of 1000 to 35000 Da is produced.
  • the produced heparin can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination.
  • the recovered heparin may contain components used for the heparin production process and components such as moisture in addition to heparin. Heparin may be purified to the desired extent. The purity of heparin is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (w / w) Or 95% (w / w) or more.
  • the obtained heparin can be further fractionated to obtain low molecular weight heparin.
  • Low molecular weight heparin refers to, for example, a fraction having a molecular weight of 1000 to 10,000 Da (average molecular weight of 4000 to 6000 Da).
  • Low molecular weight heparin has the advantage of fewer bleeding side effects compared to unfractionated heparin.
  • Example 1 Construction of heparosan production strain from Escherichia coli BL21 (DE3) strain (1-1) Construction of expression plasmid of kfiABCD gene of Escherichia coli K5 strain kfiABCD gene (kfiABCD operon) from Escherichia coli K5 (ATCC 23506) ) was cloned into a pVK9 vector (SEQ ID NO: 1, US Patent Application Publication No. 20050196846) to construct an expression plasmid pVK9-kfiABCD for the kfiABCD gene.
  • PCR was performed using PrimeStar polymerase (TaKaRa) with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 8 minutes for 30 cycles.
  • a DNA fragment of pVK9 was obtained by PCR using pVK9 as template DNA and oligonucleotides of SEQ ID NO: 4 and SEQ ID NO: 5 as primers. PCR was performed using PrimeStar polymerase with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 6 minutes for 30 cycles. Both obtained DNA fragments were ligated using an In-Fusion (registered trademark) HD cloning kit (Clontech) to construct an expression plasmid pVK9-kfiABCD for the kfiABCD gene.
  • SEQ ID NO: 24 shows the base sequence containing the cloned kfiABCD gene and about 450 bp upstream thereof.
  • the bacterial cells on the plate were scraped off and inoculated into a production medium with 2 mL in a test tube. Cultivation culture was performed at 37 ° C. for 40 hours, and the culture was terminated when glycerol in the medium was completely consumed.
  • composition of the production medium is shown below.
  • [Production medium] The concentration of each component is the final concentration
  • Ingredient 1 Glycerol 10 g / L
  • Ingredient 2 MOPS (3-N-morpholino-propanesulphonic acid) 41.9 g / L
  • Ingredient 3 Tryptone 8.8 g / L East Extract 4.4 g / L Sodium chloride 8.8 g / L
  • Component 1 and component 3 were each autoclaved at 120 ° C. for 20 minutes, and component 2 was filter sterilized. After cooling to room temperature, the three were mixed.
  • the culture supernatant was recovered from the culture solution (fermentation broth) by centrifugation.
  • 500 ⁇ L of 100% ethanol was added, and the polysaccharide component was precipitated by centrifugation.
  • the obtained precipitate was air-dried, and the precipitate was dissolved with 300 ⁇ L of 0.2 N aqueous sodium hydroxide solution.
  • 30 ⁇ L of the obtained sample (dissolved material) was gently added to 150 ⁇ L of a cooled 0.025 ⁇ M tetraboronic acid / sulfuric acid aqueous solution and heated at 100 ° C. for 10 minutes.
  • Example 2 Structural analysis of produced polysaccharide (2-1) Nuclear magnetic resonance (NMR) spectrum analysis
  • the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
  • 31 g of the obtained filtrate was concentrated to 1.1 g using a 100 KDa UF membrane (Amicon-15K 5000 rpm).
  • the concentrate was further washed twice with 40 mL of water.
  • the washed concentrated solution was concentrated under reduced pressure using an evaporator, and 600 ⁇ L of heavy water was added to the residue solution to prepare a solution, and then 1 H-NMR measurement was performed.
  • Example 2 Disaccharide composition analysis by liquid chromatograph mass spectrometry (LC-MS)
  • LC-MS liquid chromatograph mass spectrometry
  • the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
  • 40 mL of the obtained filtrate was concentrated to 4 mL using a 100 KDa UF membrane (Amicon-15K 5000 rpm). The concentrate was further washed twice with 40 mL of water.
  • the polymer component obtained from the culture broth of BL21 (DE3) / pVK9-kfiABCD strain was identified as the target heparosan. Therefore, the value obtained by multiplying the glucuronic acid concentration by the coefficient 2.067 was used as the heparosan concentration determined by the carbazole method.
  • Example 2 (2-3) Gel Filtration Chromatography (GPC) Analysis
  • the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
  • 31 g of the obtained filtrate was concentrated to 1.1 g using a 100 KDa UF membrane (Amicon-15K 5000 rpm).
  • the concentrate was further washed twice with 40 mL of water. GPC measurement of the washed concentrate was performed.
  • Example 3 Screening of Factors that Improve Heparosan Production
  • a genomic library of Escherichia coli K5 strain was introduced into a heparosan production strain to screen for factors that improve heparosan production capability.
  • the rfaH gene expression-enhanced strain has a strong tac promoter (Amann E. et al., (1983) “Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. ”Gene., 25 (2-3): 167-78.).
  • the replacement of the rfaH promoter by the tac promoter is a method developed by Datsenko and Wanner called “Red-driven integration” (“One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products . "," Proc. "Natl.” Acad. "Sci.” USA, "2000,” 97 (12), “6640-6645)”. According to this technique, a strain in which a DNA fragment amplified by PCR is inserted into genomic DNA can be obtained.
  • a DNA fragment for promoter replacement was obtained by PCR using the genome DNA of Pantoea ananatis NA1 ⁇ c1129 strain (WO2010 / 027022A1) as a template and using the primer rfaH-attL Fw (SEQ ID NO: 6) and primer rfaH-Ptac Rv (SEQ ID NO: 7).
  • PrimeStar polymerase is used for PCR, and the PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 3 minutes for 30 cycles.
  • the primer rfaH-attL Fw (SEQ ID NO: 6) has homology with both the region located upstream of the rfaH gene and the region adjacent to the gene conferring kanamycin (Km) resistance present in the genomic DNA of NA1 ⁇ c1129 strain.
  • the Km resistance gene kan present in the genomic DNA of the NA1 ⁇ c1129 strain is inserted between the attL and attR genes, which are attachment sites of ⁇ phage, and further, the tac promoter (Ptac; SEQ ID NO: 8) is attL- Inserted in the order kan-attR-Ptac.
  • the primer rfaH-Ptac Rv (SEQ ID NO: 7) has homology with both the rfaH region and the region located downstream of the tac promoter of the NA1 ⁇ c1129 genomic DNA.
  • a plasmid pKD46 (Datsenko and Wanner, ⁇ ⁇ Proc. Natl. Acad. Sci. USA, 2000, 97:12 :) having a temperature-sensitive replication origin in Escherichia coli BL21 (DE3) strain (Life Technologies, Inc., C6000-03):
  • the PCR product obtained above was introduced into BL21 (DE3) / pKD46 strain into which 6640-45) was introduced by electroporation, and the promoter region was replaced.
  • the plasmid pKD46 contains a gene of ⁇ -Red homologous recombination system ( ⁇ , ⁇ , exo gene) under the control of an arabinose-inducible ParaB promoter, and 2154 bases (31088-33241) of phage ⁇ (GenBank accession number J02459). ) DNA fragment. Plasmid pKD46 is required for integration of the PCR product into the BL21 (DE3) strain chromosome. Escherichia coli BL21 (DE3) / pKD46 strain was grown overnight at 30 ° C. in an LB medium containing ampicillin (100 mg / L).
  • This culture was diluted 100-fold with 100 mL of LB medium containing ampicillin and L-arabinose (1 mM). The cells were aerated at 30 ° C. until the OD 600 reached about 0.3, then concentrated 100 times, and washed three times with an ice-cooled glycerol aqueous solution (10%) to make it electrocompetent. Electroporation was performed using 70 ⁇ L of cells and about 100 ng of PCR product. After electroporation, the cells were incubated at 37 ° C. for 2.5 hours in 1 mL of SOC medium (Sambrook® et al., “Molecular Cloning Laboratory Manual, Second Edition” (Cold® Spring® Laboratory Laboratory Press (1989)). Plated on top and grown at 37 ° C., Km resistant strains were selected.
  • the replacement of the rfaH promoter with the tac promoter was confirmed by PCR using primers rfaH-CF (SEQ ID NO: 9) and primer rfaH-CR (SEQ ID NO: 10) specific to the base sequence after promoter replacement.
  • PrimeStar polymerase was used for PCR.
  • the PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 2 minutes for 30 cycles. A strain in which amplification of a 1.6-kbp DNA fragment was confirmed was designated as BL21 (DE3) -Ptac-rfaH (KmR).
  • a plasmid pMW118-int-xis (ampicillin resistance (AmpR)) was introduced (WO2005 / 010175).
  • AmpR clones were grown on LB agar plates containing 150 mg / L ampicillin at 30 ° C. Dozens of AmpR clones were picked and Km sensitive strains were selected. The resulting Km sensitive strain was incubated on an LB agar plate at 42 ° C. to remove the plasmid pMW118-int-xis from the Km sensitive strain.
  • the obtained Amp sensitive strain was designated as BL21 (DE3) -Ptac-rfaH strain.
  • the plasmid pVK9-kfiABCD prepared in Example 1 was introduced into BL21 (DE3) -Ptac-rfaH strain by electroporation to obtain BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain.
  • Test tube culture was performed using the same medium and culture method as shown in Example 1, and the amount of heparosan produced was quantified by the carbazole method.
  • Table 4 shows the amount of heparosan produced by the BL21 (DE3) / pVK9- kfiABCD strain in which the expression of rfaH gene is not enhanced and the BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain in which the expression of rfaH gene is enhanced.
  • genomic DNA of Escherichia coli K5 strain was randomly fragmented using a DNA fragmentation apparatus (Hydroshare, Gene machine) and fractionated by agarose electrophoresis. A fragment containing about 3-5 kb of DNA was excised from an agarose gel, and the DNA was extracted and purified, followed by blunt end treatment.
  • 50 ng of plasmid vector pSTV28 (TaKaRa) digested with HincII and dephosphorylated with Alkaline Phosphatase (E. coli C75) (TaKaRa) was ligated with the above genomic DNA fragment.
  • Escherichia coli HST08 strain (TaKaRa) was transformed with the ligation product by electroporation. More than 70% of the transformants obtained contained an insert of about 3-5 kb. The transformant was cultured, and the plasmid was extracted to obtain a genomic library.
  • Heparosan production culture was performed according to the following procedure. First, transformants were inoculated one by one in a 96-well plate (MEDISCAN) overlaid with 750 ⁇ l of seed medium, and cultured with shaking at 37 ° C. overnight with a shaking device (Tytec). Subsequently, 20 ⁇ l of the seed culture solution is inoculated into 2 ⁇ mL of the production medium in a test tube, and cultured with shaking at 37 ° C. for 30 hours. When the glycerol in the medium is completely consumed, culture is performed. Ended. To retain the plasmid, kanamycin (25 mg / L) and chloramphenicol (25 mg / L) were added during the entire culture process.
  • kanamycin 25 mg / L
  • chloramphenicol 25 mg / L
  • Heparosan produced in the medium was quantified by the carbazole method (Bitter, T. and Murir H. M., Anal. Biochem. 1962; 4: 330-334). A clone with an increased heparosan accumulation amount was isolated compared to the control vector (pSTV28) -introduced strain that was cultured at the same time.
  • the base sequence of the inserted DNA fragment was determined using the primer pSTV Fw (SEQ ID NO: 12) and primer pSTV Rv (SEQ ID NO: 13).
  • plasmids were rbsBKR-hsrA, glgBX, ybiXIJCB, rcsBD-micF, pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjY-y fruA-psuK, ytfT-yjfF-fbp, yagU-paoAB, gsiCD-yliE, irp (partial), bhsA-ycfS, lepB-rnc-era, dapA-gcvR-bcp-hyfA, rpoE-nadB-yfiC-srmB, Clearly contains g1414-g1413, nuoEFG, gl
  • the irp (part) is a part of the irp2 gene and a part of the irp1 gene.
  • Example 4 Heparosan production by rbsBKR-hsrA, glgBX, ybiXIJCB, rcsBD-micF gene enhanced strains (1)
  • the Escherichia coli BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-rbsBKR-hsrA, pSTV28-glgBX, pSTV28-ybiXIJCB, and pSTV28-rcsBD isolated in Example 3.
  • -Strains into which micF and pSTV28 were introduced as controls were constructed.
  • strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
  • Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
  • Table 5 shows the average values and standard deviations of the quantified heparosan concentrations.
  • Example 5 Production of heparosan by rbsBKR-hsrA, glgBX, ybiXIJCB and rcsBD-micF gene-enhanced strains (2)
  • the Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-rbsBKR-hsrA, pSTV28-glgBX, pSTV28-ybiXIJCB, pSTV28-rcsBD-micF isolated in Example 3, and As controls, strains into which pSTV28 had been introduced were constructed.
  • strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
  • Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
  • Table 6 shows the average value and standard deviation of the quantified heparosan concentration.
  • Example 6 Production of heparosan by rfaH gene-enhanced strain (6-1) Construction of rfaH gene expression plasmid of Escherichia coli B strain The rfaH gene was cloned into pMIV-Pnlp0-ter from Escherichia coli BL21 (DE3) strain Then, an expression plasmid pMIV-Pnlp0-rfaH for the rfaH gene was constructed.
  • pMIV-Pnlp0-ter incorporates a strong nlp0 promoter (Pnlp0) and rrnB terminator, and can function as an expression unit by inserting a target gene between the promoter and the terminator.
  • Pnlp0 represents the promoter of the wild-type nlpD gene derived from the Escherichia coli K-12 strain.
  • the obtained fragment was treated with SalI and PaeI and inserted into the SalI-PaeI site of pMIV-5JS (Japanese Patent Laid-Open No. 2008-99668) to obtain plasmid pMIV-Pnlp0.
  • the base sequence of the PaeI-SalI fragment of the Pnlp0 promoter inserted into this pMIV-Pnlp0 plasmid is as shown in SEQ ID NO: 16.
  • a DNA fragment (SEQ ID NO: 19) containing about 300 bp of the terminator region of the rrnB gene was obtained by PCR using primer P3 (SEQ ID NO: 17) and primer P4 (SEQ ID NO: 18). did. Restriction enzymes XbaI and BamHI sites are designed at the 5 'ends of these primers, respectively.
  • the PCR cycle is as follows.
  • an rfaH gene fragment was obtained by PCR using primers rfaH Fw (SEQ ID NO: 20) and primer rfaH Rv (SEQ ID NO: 21) using the chromosomal DNA of Escherichia coli BL21 (DE3) as a template. Restriction enzyme SalI and XbaI sites are designed at the 5 'ends of these primers, respectively.
  • PrimeStar polymerase is used for PCR, and the PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 4 minutes for 30 cycles.
  • the obtained fragment was treated with SalI and XbaI and inserted into the SalI-XbaI site of pMIV-Pnlp0-ter to obtain plasmid pMIV-Pnlp0-rfaH.
  • an expression unit of rfaH was constructed in which the nlpD promoter, rfaH gene, and rrnB terminator were connected in this order on the pMIV-5JS vector.
  • the nucleotide sequence of the rfaH gene of Escherichia coli BL21 (DE3) cloned this time is shown in SEQ ID NO: 46.
  • Example 7 Production of heparosan by nusG gene enhanced expression strain (7-1) Construction of expression plasmid of nusG gene of Escherichia coli B strain Using chromosomal DNA of Escherichia coli BL21 (DE3) strain as a template, primer nusG Fw ( The nusG gene fragment was obtained by PCR using SEQ ID NO: 22) and primer nusG Rv (SEQ ID NO: 23). Restriction enzymes SalI and XbaI are designed at the 5 ′ ends of these primers, respectively. PrimeStar polymerase is used for PCR, and the PCR cycle is as follows.
  • the obtained fragment was treated with SalI and XbaI and inserted into the SalI-XbaI site of pMIV-Pnlp0-ter treated with the same restriction enzymes to obtain a plasmid pMIV-Pnlp0-nusG in which the nusG gene was cloned.
  • the nucleotide sequence of the nusG gene of the Escherichia coli BL21 (DE3) strain cloned this time is shown in SEQ ID NO: 48.
  • Example 8 pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjtD-yjjY, fruA-psuK, ytfT-yjfF-fbp, yagUpai Heparosan production by yliE, irp (partial) and bhsA-ycfS gene-enhanced strains (1) The Escherichia coli BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain constructed in Example 1 was added to the pSTV28-pcoESR, pSTV28-yhcNO-aaeBAX, and pSTV28-g1455-alpA-g1453 isolated in Example 3.
  • strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
  • Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
  • Table 9 shows the average values and standard deviations of the quantified heparosan concentrations.
  • Example 9 pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjtD-yjjY, fruA-psuK, ytfT-yjfF-fbp, yagUpai Heparosan production by yliE, irp (partial) and bhsA-ycfS gene-enhanced strains (2) The Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-pcoESR, pSTV28-yhcNO-aaeBAX, pSTV28-g1455-alpA-g1453, pSTV28-yrbA isolated in Example 3.
  • strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
  • Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
  • Table 10 shows the average value and standard deviation of the quantified heparosan concentration.
  • Example 10 lepB-rnc-era, dapA-gcvR-bcp-hyfA, rpoE-nadB-yfiC-srmB, g1414-g1413, nuoEFG, glmZ-hemYXD, rlmL, artQMJ-rlmC-ybjO, yejOML, rpoS-ygbNML g3798-g3797-g3796-g3795-g3794-g3793-g3792, ryjA-soxRS-yjcCB, heparosan production by expression enhanced strain of efeUO gene Escherichia coli BL21 (DE3) / pVK9-kfiABCD constructed in Example 1 PSTV28-lepB-rnc-era, pSTV28-dapA-gcvR-bcp-hyfA, pSTV28-rp
  • strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
  • Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
  • Tables 11 and 12 show the mean values and standard deviations of the quantified heparosan concentrations.
  • Example 11 Production of heparosan by rpoE gene-enhanced strain (11-1) Construction of rpoE gene expression plasmid of Escherichia coli K5 strain The rpoE gene was cloned into pMIV-Pnlp8-ter from Escherichia coli K5 strain, The gene expression plasmid pMIV-Pnlp8-rpoE was constructed. pMIV-Pnlp8-ter incorporates a strong nlp8 promoter (Pnlp8), and can function as an expression unit by inserting the gene of interest between the promoter and terminator. “Pnlp8” represents a promoter of a mutant nlpD gene derived from Escherichia coli K-12 strain.
  • the wild-type nlpD promoter region (FIG. 1; SEQ ID NO: 165) has two regions presumed to function as promoters, which are indicated as Pnlp1 and Pnlp2 in the figure, respectively.
  • PCR was performed on the 3 ′ end side of the wild-type nlpD promoter (Pnlp0) by PCR using the primer P1 (SEQ ID NO: 14) and primer P7 (SEQ ID NO: 166).
  • a DNA fragment obtained by randomizing the -10 region (-10 (Pnlp1)) contained was obtained.
  • the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
  • the plasmid pMIV-Pnlp0-ter is used as a template and is contained in the 5 ′ end of the wild-type nlpD promoter (Pnlp0) by PCR using primer P2 (SEQ ID NO: 15) and primer P8 (SEQ ID NO: 167) ⁇ A DNA fragment in which 10 regions (-10 (Pnlp2)) were randomized was obtained.
  • the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
  • the resulting 3 'end and 5' end fragments were joined together by the BglII sites designed for primers P7 and P8, and a DNA fragment containing the full length of the mutant nlpD promoter with two -10 regions randomized. Built.
  • a DNA fragment containing the full-length mutant nlpD promoter was amplified by PCR using primers P1 and P2.
  • the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
  • a DNA fragment of pMIV-Pnlp8-ter was obtained by PCR using pMIV-Pnlp8-ter as template DNA and the oligonucleotides of SEQ ID NO: 172 and SEQ ID NO: 173 as primers. PCR was performed using PrimeStar polymerase with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 6 minutes for 30 cycles.
  • Both obtained DNA fragments were ligated using an In-FusionRHD cloning kit (Clontech) to construct an expression plasmid pMIV-Pnlp8-rpoE for the rpoE gene.
  • the base sequence of the cloned rpoE gene is shown in SEQ ID NO: 174.
  • the ability of bacteria to produce heparosan can be improved, and heparosan can be produced efficiently.
  • SEQ ID NO: 84 The nucleotide sequence of the region containing the fruA-psuK gene of Escherichia coli K5 strain SEQ ID NO: 85: The amino acid sequence of FruA protein of Escherichia coli K5 strain SEQ ID NO: 86: Escherichia Amino acid sequence of the PsuK protein of the Kori K5 strain SEQ ID NO: 87: A nucleotide sequence of the region containing the ytfT-yjfF-fbp gene of the Escherichia coli K5 strain SEQ ID NO: 88: Amino acid sequence of the YtfT protein of the Escherichia coli K5 strain Amino acid sequence of the YjfF protein of Escherichia coli K5 strain SEQ ID NO: 90 The amino acid sequence of the Fbp protein of E.
  • coli K5 strain SEQ ID NO: 91 The nucleotide sequence of the region containing the yagU-paoAB gene of Escherichia coli K5 strain SEQ ID NO: 92: The amino acid sequence of YagU protein of Escherichia coli K5 strain SEQ ID NO: 93: The amino acid sequence of the PaoA protein of Escherichia coli K5 strain SEQ ID NO: 94: The amino acid sequence of the PaoB protein of Escherichia coli K5 strain SEQ ID NO: 95: The nucleotide sequence of the region containing the gsiCD-yliE gene of Escherichia coli K5 strain SEQ ID NO: 96: Amino acid sequence of the GsiC protein of Escherichia coli K5 strain SEQ ID NO: 97: Amino acid sequence of the GsiD protein of Escherichia coli K5 strain SEQ ID NO: 98: Amino acid sequence of the Y
  • coli K5 strain SEQ ID NO: 127 Amino acid sequence of NuoG protein of E. coli K5 strain SEQ ID NO: 128: Base sequence of the region containing the glmZ-hemYXD gene of E. coli K5 strain SEQ ID NO: 129: Escherichia Amino acid sequence of the HemY protein of Kori K5 strain 30: Amino acid sequence of the HemX protein of Escherichia coli K5 strain SEQ ID NO: 131: Amino acid sequence of the HemD protein of Escherichia coli K5 strain SEQ ID NO: 132: Base sequence of the region containing the rlmL gene of Escherichia coli K5 strain SEQ ID NO: 133: Amino acid sequence of the RlmL protein of Escherichia coli K5 strain SEQ ID NO: 134: A nucleotide sequence of the region containing the artQMJ-rlmC-ybjO gene of Escherichia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Polymers & Plastics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Materials Engineering (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 ヘパロサンの製造法を提供する。rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、rpoE、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されたヘパロサン生産能を有するエシェリヒア属細菌を培地で培養し、該培地よりヘパロサンを回収することにより、ヘパロサンを製造する。

Description

ヘパロサン生産細菌及びヘパロサンの製造法
 本発明は、ヘパロサン生産細菌及びヘパロサンの製造法に関する。
 ヘパロサン(N-アセチルヘパロサンともいう)は、グルクロン酸(GlcUA)残基とN-アセチル-D-グルコサミン(GlcNAc)残基からなる二糖の繰り返し構造[→4)-β-GlcUA-(1→4)-α-GlcNAc-(1→]より構成される多糖である。
 自然界において、ヘパロサンは、エシェリヒア・コリ(Escherichia coli)K5株およびパスツレラ・ムルトシダ(Pasteurella multocida)タイプD株により莢膜多糖として産生される(非特許文献1)。これらのヘパロサン生産細菌は、哺乳動物に対して尿路感染症や萎縮性鼻炎等の病原性を示す。
 エシェリヒア・コリK5株において、ヘパロサンの生合成には、ヘパロサン合成酵素であるグルコシルトランスフェラーゼ2種、およびヘパロサン排出担体6種が必要である。すなわち、まず、グルコシルトランスフェラーゼ(KfiAおよびKfiC)によってGlcNAcおよびGlcUAが糖鎖非還元末端へ交互に付加され、ヘパロサン鎖が伸長される(非特許文献2)。その後、ヘパロサン鎖は、ヘパロサン排出担体(KpsC、KpsD、KpsE、KpsM、KpsS、およびKpsT)を介して細胞表面上に輸送される(非特許文献3)。ヘパロサン鎖は、その還元末端での脂質置換を介して、細胞表面上でエシェリヒア・コリの外膜中のホスファチジン酸分子に固定されると考えられる(非特許文献4)。
 エシェリヒア・コリK5株では、ヘパロサン合成酵素遺伝子およびヘパロサン排出担体遺伝子は染色体上でクラスターを形成している。クラスターは、Region1~3に区分され、クラスターの中央に位置するRegion2が、ヘパロサン合成酵素を含む4つのタンパク質(KfiA、KfiB、KfiC、KfiD)をコードする。
 また、パスツレラ・ムルトシダ タイプD株は、ヘパロサン合成酵素(グルコシルトランスフェラーゼ)としてPmHS1を有する(非特許文献5)。PmHS1はエシェリヒア・コリK5株由来のKfiAおよびKfiCの両方と相同性のある活性ドメインを有しており、UDP-グルクロン酸およびUDP-N-アセチルグルコサミンの両方を基質として重合反応を触媒する。パスツレラ・ムルトシダ タイプD株のヘパロサン排出担体は未だ明らかにされていない。
 ヘパリン(heparin)は抗凝固薬の一つであり、血栓塞栓症(thromboembolism)や播種性血管内凝固症候群(disseminated intravascular coagulation;DIC)の治療、人工透析や体外循環での血液凝固防止などに用いられる。ヘパロサンはヘパリンの糖鎖骨格であり、脱アセチル化、異性化、硫酸化、分子量調整等の工程を経ることによってヘパリン類似多糖類へと変換できる(非特許文献6、7)。
 ヘパリンは、抗凝固因子であるアンチトロンビンIIIの活性化を通じて、抗凝固作用を示す。アンチトロンビンIIIは、トロンビン、第Xa因子(第X因子の活性型)、およびその他のセリンプロテアーゼを、その活性セリン部位と結合することで阻害する。なお、トロンビンは血液凝固因子であり、第Xa因子はトロンビンの成熟に関与する因子である。ヘパリンは、このアンチトロンビンIIIと結合し、その構造を変化させて阻害作用を活性化する。トロンビンは、ヘパリン-アンチトロンビンIII複合体に対して、第Xa因子よりも高い親和性を有する。
 また、ヘパリンを酵素/化学処理および分画して得られる平均分子量4000-6000Daの低分子ヘパリンは、出血の副作用が少なく、近年使用頻度が増えてきている。低分子ヘパリンは、糖鎖が短いため、アンチトロンビンIIIとは結合できるが、トロンビンとはほとんど結合できない。ここで、ヘパリン-アンチトロンビンIII複合体によるトロンビンの阻害では、トロンビンがヘパリンに結合する必要があるのに対し、ヘパリン-アンチトロンビンIII複合体による第Xa因子の阻害では、第Xa因子がヘパリンに結合する必要はない。そのため、低分子ヘパリンは、トロンビンの作用をほとんど阻害しないのに対し、第Xa因子の作用は阻害できる。
 現在、大部分のヘパリン製剤は、豚腸粘膜からの抽出品である。しかしながら、2008年に不純物混入を原因とする死亡事故が発生したことから、品質管理された非動物由来ヘパリンの製造開発が検討されてきた。
 近年、実験室規模の研究により、エシェリヒア・コリK5株から得られるヘパロサンを、ヘパリンに類似する抗凝固多糖類に酵素的に変換することができることが示された(非特許文献6、7)。また、ヘパロサンは、ヘパリンの製造以外にも、様々な用途において用いることができる(特許文献1)。
 ヘパロサンの大規模生産検討はエシェリヒア・コリK5株を用いて行われており、7 L発酵槽にて15 g/Lのヘパロサンが生成されたとの報告がある(非特許文献8、特許文献2)。ヘパリン製造の原料としてヘパロサンを工業化規模で供給するためには、100,000 L 規模へのスケールアップが必要であるが、基質消費速度向上や発酵槽の酸素供給増加などの課題が挙げられている。
 さらに、ごく最近、非病原性エシェリヒア・コリBL21(DE3)株を宿主としたヘパロサン生産細菌が報告された(非特許文献9)。すなわち、エシェリヒア・コリK5株由来Region2を構成する4つのヘパロサン生合成遺伝子kfiA, kfiB, kfiC, kfiDを発現ベクターpETDuet-1に搭載しBL21株へ導入することにより、フラスコ培養にて334 mg/Lのヘパロサン生成が確認されている。
 ヘパロサン生産に必要な因子は明らかとなっているが、ヘパロサン生産細菌においてヘパロサン生産能を向上させる因子は知られていない。
WO 2009/014559 特表2013-503606
Lindahl U. et al. (1998) J Biol Chem 273(39): 24979-24982 Hodson N. et al. (2000) J Biol Chem 275(35): 27311-27315 McNulty C. et al. (2006) Mol Microbiol 59(3): 907-22 Jann B, Jann K. (1990) Curr Top Microbiol Immunol 150: 19-42 Kane T.A. et al. (2006) J Biol Chem Nov 3; 281(44): 33192-33197 Lindahl U. et al. (2005) J Med Chem 48(2): 349-352 Zhang Z. et al. (2008) Journal of the American Chemical Society 130(39): 12998-13007 Wang Z. et al. (2010) Biotechnol Bioeng. 107(6): 964?973 Zang C. et al. (2012) Metabolic Engineering 14(5): 521?527
 本発明は、細菌のヘパロサン生産能を向上させる新規な技術を開発し、効率的なヘパロサンの製造法を提供することを課題とする。
 本願発明者らは、鋭意検討の結果、ヘパロサン生産能を有する細菌において、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現を増大させることによって、ヘパロサン生産能を向上させることができることを見出し、本発明を完成させた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 すなわち、本発明は以下の通り例示できる。
[1]
 ヘパロサン生産能を有するエシェリヒア属細菌であって、
 rpoE、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されていることを特徴とする、細菌。
[2]
 少なくともrpoE遺伝子の発現が増大するように改変されている、前記細菌。
[3]
 少なくともrfaH遺伝子の発現が増大するように改変されている、前記細菌。
[4]
 さらに、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、およびycfS遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されている、前記細菌。
[5]
 前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって増大した、前記細菌。
[6]
 エシェリヒア・コリである、前記細菌。
[7]
 前記rbsB遺伝子が、配列番号29の800~1690位に示す塩基配列を含むDNA、または、配列番号29の800~1690位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rbsK遺伝子が、配列番号29の1816~2745位に示す塩基配列を含むDNA、または、配列番号29の1816~2745位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rbsR遺伝子が、配列番号29の2749~3741位に示す塩基配列を含むDNA、または、配列番号29の2749~3741位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記hsrA遺伝子が、配列番号29の3707~5134位に示す塩基配列の相補配列を含むDNA、または、配列番号29の3707~5134位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記glgB遺伝子が、配列番号34の989~3175位に示す塩基配列を含むDNA、または、配列番号34の989~3175位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記glgX遺伝子が、配列番号34の3172~5145位に示す塩基配列を含むDNA、または、配列番号34の3172~5145位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rcsB遺伝子が、配列番号43の3312~3962位に示す塩基配列を含むDNA、または、配列番号43の3312~3962位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rcsD遺伝子が、配列番号43の623~3295位に示す塩基配列を含むDNA、または、配列番号43の623~3295位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記micF遺伝子が、配列番号43の219~311位に示す塩基配列を含むDNA、または、配列番号43の219~311位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybiX遺伝子が、配列番号37の718~1395位に示す塩基配列を含むDNA、または、配列番号37の718~1395位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybiI遺伝子が、配列番号37の1469~1735位に示す塩基配列を含むDNA、または、配列番号37の1469~1735位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybiJ遺伝子が、配列番号37の2000~2260位に示す塩基配列を含むDNA、または、配列番号37の2000~2260位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybiC遺伝子が、配列番号37の2488~3574位に示す塩基配列の相補配列を含むDNA、または、配列番号37の2488~3574位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybiB遺伝子が、配列番号37の3715~4677位に示す塩基配列の相補配列を含むDNA、または、配列番号37の3715~4677位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rfaH遺伝子が、配列番号46に示す塩基配列を含むDNA、または、配列番号46に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記nusG遺伝子が、配列番号48に示す塩基配列を含むDNA、または、配列番号48に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記pcoR遺伝子が、配列番号50の128~808位に示す塩基配列を含むDNA、または、配列番号50の128~808位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記pcoS遺伝子が、配列番号50の805~2205位に示す塩基配列を含むDNA、または、配列番号50の805~2205位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記pcoE遺伝子が、配列番号50の2423~2857位に示す塩基配列を含むDNA、または、配列番号50の2423~2857位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yhcN遺伝子が、配列番号54の63~326位に示す塩基配列を含むDNA、または、配列番号54の63~326位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yhcO遺伝子が、配列番号54の382~654位に示す塩基配列の相補配列を含むDNA、または、配列番号54の382~654位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記aaeB遺伝子が、配列番号54の746~2713位に示す塩基配列の相補配列を含むDNA、または、配列番号54の746~2713位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記aaeA遺伝子が、配列番号54の2719~3651位に示す塩基配列の相補配列を含むDNA、または、配列番号54の2719~3651位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記aaeX遺伝子が、配列番号54の3659~3931位に示す塩基配列の相補配列を含むDNA、または、配列番号54の3659~3931位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g1455遺伝子が、配列番号60の568~1140位に示す塩基配列の相補配列を含むDNA、または、配列番号60の568~1140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記alpA遺伝子が、配列番号60の1226~1486位に示す塩基配列の相補配列を含むDNA、または、配列番号60の1226~1486位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g1453遺伝子が、配列番号60の2389~2529位に示す塩基配列を含むDNA、または、配列番号60の2389~2529位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yrbA遺伝子が、配列番号64の977~1246位に示す塩基配列の相補配列を含むDNA、または、配列番号64の977~1246位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記mlaB遺伝子が、配列番号64の1391~1780位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1391~1780位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記mlaC遺伝子が、配列番号64の1684~2319位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1684~2319位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記mlaD遺伝子が、配列番号64の2338~2889位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2338~2889位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記mlaE遺伝子が、配列番号64の2894~3676位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2894~3676位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記mlaF遺伝子が、配列番号64の3684~4493位に示す塩基配列の相補配列を含むDNA、または、配列番号64の3684~4493位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yrbG遺伝子が、配列番号64の4703~5680位に示す塩基配列を含むDNA、または、配列番号64の4703~5680位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記norW遺伝子が、配列番号72の1201~2334位に示す塩基配列を含むDNA、または、配列番号72の1201~2334位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybjI遺伝子が、配列番号74の117~932位に示す塩基配列の相補配列を含むDNA、または、配列番号74の117~932位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybjJ遺伝子が、配列番号74の932~2140位に示す塩基配列の相補配列を含むDNA、または、配列番号74の932~2140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybjK遺伝子が、配列番号74の2224~2760位に示す塩基配列を含むDNA、または、配列番号74の2224~2760位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rybB遺伝子が、配列番号74の2777~2855位に示す塩基配列の相補配列を含むDNA、または、配列番号74の2777~2855位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yjjY遺伝子が、配列番号78の124~264位に示す塩基配列を含むDNA、または、配列番号78の124~264位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yjtD遺伝子が、配列番号78の664~1350位に示す塩基配列を含むDNA、または、配列番号78の664~1350位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記thrL遺伝子が、配列番号78の1564~1629位に示す塩基配列を含むDNA、または、配列番号78の1564~1629位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記thrA遺伝子が、配列番号78の1711~4173位に示す塩基配列を含むDNA、または、配列番号78の1711~4173位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記thrB遺伝子が、配列番号78の4175~5107位に示す塩基配列を含むDNA、または、配列番号78の4175~5107位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記fruA遺伝子が、配列番号84の897~2588位に示す塩基配列を含むDNA、または、配列番号84の897~2588位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記psuK遺伝子が、配列番号84の3165~3953位に示す塩基配列を含むDNA、または、配列番号84の3165~3953位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ytfT遺伝子が、配列番号87の252~1277位に示す塩基配列を含むDNA、または、配列番号87の252~1277位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yjfF遺伝子が、配列番号87の1264~2259位に示す塩基配列を含むDNA、または、配列番号87の1264~2259位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記fbp遺伝子が、配列番号87の2292~3290位に示す塩基配列の相補配列を含むDNA、または、配列番号87の2292~3290位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yagU遺伝子が、配列番号91の117~731位に示す塩基配列の相補配列を含むDNA、または、配列番号91の117~731位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記paoA遺伝子が、配列番号91の1149~1838位に示す塩基配列を含むDNA、または、配列番号91の1149~1838位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記paoB遺伝子が、配列番号91の1835~2791位に示す塩基配列を含むDNA、または、配列番号91の1835~2791位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記gsiC遺伝子が、配列番号95の264~1184位に示す塩基配列を含むDNA、または、配列番号95の264~1184位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記gsiD遺伝子が、配列番号95の1187~2098位に示す塩基配列を含むDNA、または、配列番号95の1187~2098位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yliE遺伝子が、配列番号95の2276~4624位に示す塩基配列を含むDNA、または、配列番号95の2276~4624位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記irp2遺伝子が、配列番号100に示す塩基配列を含むDNA、または、配列番号100に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記irp1遺伝子が、配列番号102に示す塩基配列を含むDNA、または、配列番号102に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記bhsA遺伝子が、配列番号104の440~697位に示す塩基配列を含むDNA、または、配列番号104の440~697位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ycfS遺伝子が、配列番号104の779~1741位に示す塩基配列の相補配列を含むDNA、または、配列番号104の779~1741位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記lepB遺伝子が、配列番号107の1344~2318位に示す塩基配列を含むDNA、または、配列番号107の1344~2318位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rnc遺伝子が、配列番号107の2590~3270位に示す塩基配列を含むDNA、または、配列番号107の2590~3270位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記era遺伝子が、配列番号107の3267~4172位に示す塩基配列を含むDNA、または、配列番号107の3267~4172位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記dapA遺伝子が、配列番号111の858~1736位に示す塩基配列の相補配列を含むDNA、または、配列番号111の858~1736位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記gcvR遺伝子が、配列番号111の1882~2454位に示す塩基配列を含むDNA、または、配列番号111の1882~2454位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記bcp遺伝子が、配列番号111の2454~2924位に示す塩基配列を含むDNA、または、配列番号111の2454~2924位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記hyfA遺伝子が、配列番号111の3177~3794位に示す塩基配列を含むDNA、または、配列番号111の3177~3794位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rpoE遺伝子が、配列番号116の355~930位に示す塩基配列の相補配列を含むDNA、または、配列番号116の355~930位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記nadB遺伝子が、配列番号116の1338~2960位に示す塩基配列を含むDNA、または、配列番号116の1338~2960位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yfiC遺伝子が、配列番号116の2945~3682位に示す塩基配列の相補配列を含むDNA、または、配列番号116の2945~3682位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記srmB遺伝子が、配列番号116の3814~5148位に示す塩基配列を含むDNA、または、配列番号116の3814~5148位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g1414遺伝子が、配列番号121の28~699位に示す塩基配列を含むDNA、または、配列番号121の28~699位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g1413遺伝子が、配列番号121の831~1157位に示す塩基配列を含むDNA、または、配列番号121の831~1157位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記nuoE遺伝子が、配列番号124の796~1296位に示す塩基配列の相補配列を含むDNA、または、配列番号124の796~1296位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記nuoF遺伝子が、配列番号124の1293~2630位に示す塩基配列の相補配列を含むDNA、または、配列番号124の1293~2630位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記nuoG遺伝子が、配列番号124の2683~5409位に示す塩基配列の相補配列を含むDNA、または、配列番号124の2683~5409位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記glmZ遺伝子が、配列番号128の357~563位に示す塩基配列を含むDNA、または、配列番号128の357~563位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記hemY遺伝子が、配列番号128の611~1807位に示す塩基配列を含むDNA、または、配列番号128の611~1807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記hemX遺伝子が、配列番号128の1810~2991位に示す塩基配列を含むDNA、または、配列番号128の1810~2991位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記hemD遺伝子が、配列番号128の3013~3753位に示す塩基配列を含むDNA、または、配列番号128の3013~3753位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rlmL遺伝子が、配列番号132の571~2679位に示す塩基配列を含むDNA、または、配列番号132の571~2679位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記artQ遺伝子が、配列番号134の386~1102位に示す塩基配列を含むDNA、または、配列番号134の386~1102位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記artM遺伝子が、配列番号134の1102~1770位に示す塩基配列を含むDNA、または、配列番号134の1102~1770位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記artJ遺伝子が、配列番号134の2061~2792位に示す塩基配列を含むDNA、または、配列番号134の2061~2792位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rlmC遺伝子が、配列番号134の2991~4118位に示す塩基配列の相補配列を含むDNA、または、配列番号134の2991~4118位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ybjO遺伝子が、配列番号134の4159~4647位に示す塩基配列の相補配列を含むDNA、または、配列番号134の4159~4647位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yejO遺伝子が、配列番号140の216~2807位に示す塩基配列を含むDNA、または、配列番号140の216~2807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yejM遺伝子が、配列番号140の3061~4821位に示す塩基配列の相補配列を含むDNA、または、配列番号140の3061~4821位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yejL遺伝子が、配列番号140の4841~5068位に示す塩基配列の相補配列を含むDNA、または、配列番号140の4841~5068位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記rpoS遺伝子が、配列番号144の318~1310位に示す塩基配列を含むDNA、または、配列番号144の318~1310位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ygbN遺伝子が、配列番号144の1404~2768位に示す塩基配列の相補配列を含むDNA、または、配列番号144の1404~2768位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ygbM遺伝子が、配列番号144の2857~3633位に示す塩基配列の相補配列を含むDNA、または、配列番号144の2857~3633位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ygbL遺伝子が、配列番号144の3638~4276位に示す塩基配列の相補配列を含むDNA、または、配列番号144の3638~4276位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3798遺伝子が、配列番号149の615~1268位に示す塩基配列を含むDNA、または、配列番号149の615~1268位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3797遺伝子が、配列番号149の1368~2219位に示す塩基配列を含むDNA、または、配列番号149の1368~2219位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3796遺伝子が、配列番号149の2257~2748位に示す塩基配列を含むDNA、または、配列番号149の2257~2748位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3795遺伝子が、配列番号149の3021~3203位に示す塩基配列を含むDNA、または、配列番号149の3021~3203位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3794遺伝子が、配列番号149の3470~4051位に示す塩基配列の相補配列を含むDNA、または、配列番号149の3470~4051位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3793遺伝子が、配列番号149の4280~4480位に示す塩基配列を含むDNA、または、配列番号149の4280~4480位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記g3792遺伝子が、配列番号149の4520~4717位に示す塩基配列を含むDNA、または、配列番号149の4520~4717位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記ryjA遺伝子が、配列番号157の657~796位に示す塩基配列を含むDNA、または、配列番号157の657~796位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記soxR遺伝子が、配列番号157の790~1254位に示す塩基配列の相補配列を含むDNA、または、配列番号157の790~1254位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記soxS遺伝子が、配列番号157の1340~1663位に示す塩基配列を含むDNA、または、配列番号157の1340~1663位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yjcC遺伝子が、配列番号157の1666~3252位に示す塩基配列の相補配列を含むDNA、または、配列番号157の1666~3252位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記yjcB遺伝子が、配列番号157の3682~3963位に示す塩基配列を含むDNA、または、配列番号157の3682~3963位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記efeU遺伝子が、配列番号162の753~1583位に示す塩基配列を含むDNA、または、配列番号162の753~1583位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
 前記efeO遺伝子が、配列番号162の1641~2768位に示す塩基配列を含むDNA、または、配列番号162の1641~2768位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAである、前記細菌。
[8]
 前記細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取すること、を含むヘパロサンの製造法。
[9]
 前記細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収すること、を含むヘパリンの製造法。
 表1~3に記載した各遺伝子の遺伝子産物の機能およびヘパロサン生産との関連について以下に述べる。
 RbsR、RbsK、およびRbsBは、D-リボースの取り込みと利用に関与する因子である。RbsRは、リボース代謝のリプレッサーであり、リボースの異化反応に関与するタンパク質をコードするrbsオペロンの転写を負に制御する (Laikova ON et al. (2001) "Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria." FEMS Microbiol Lett. 205(2):315-22)。RbsKは、リボキナーゼであり、D-リボースのリン酸化を触媒する (Bork P et al. (1993) "Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases."Protein Sci. 2(1):31-40)。RbsBは、リボースABCトランスポーターを構成するサブユニットの1つであり、リボースABCトランスポーターはD-リボースの取り込みを行う (Iida A. et al. (1984) "Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12." J Bacteriol. 158(2):674-82)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 HsrAは、メジャー・ファシリテーター・スーパーファミリー(MFS)の1種と推定される内膜タンパク質である (Pao SS et al. (1998) "Major facilitator superfamily." Microbiol Mol Biol Rev. 62(1):1-34)。HsrAは、配列相同性よりプロトン駆動性の薬剤排出システムの機能を有すると推定されるが、その実際の機能は同定されていない。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 GlgBおよびGlgXは、それぞれ、グリコーゲンの生合成および分解に関与する酵素である。GlgBは、グリコーゲン分枝酵素(1,4-α-グルカン分枝酵素)であり、グリコーゲン生合成過程において、α-1,6-グリコシド結合の形成によりポリグルコース鎖に分岐を導入する (Boyer C and Preiss (1977) "Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli b alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase." J Biochemistry. 16(16):3693-9)。GlgXは、グリコーゲン脱分枝酵素であり、3または4個のグルコース残基単位でα-1,6-グリコシド結合を加水分解し、グリコーゲンの分岐を解消する (Dauvillee D et al. (2005) "Role of the Escherichia coli glgX gene in glycogen metabolism." J Bacteriol. 187(4):1465-73)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 micFは、OmpFの発現抑制に関与するアンチセンスRNAであり、特に浸透圧条件下で機能することが知られている (Ramani Nら(1994)"micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli." J. Bacteriol 176:5005-5010)。このヌクレオチド鎖とヘパロサン生産との関連性を示す知見は全く存在しない。
 RcsBは、エシェリヒア(Escherichia)属、サルモネラ(Salmonella)属、クレブシエラ(Klebsiella)属等に属する細菌に見られる転写制御因子であり、主に莢膜構成成分であるコラン酸(Colanic acid)の生合成を制御していると考えられている (Majdalani Nら(2005)"The Rcs phosphorelay: a complex signal transduction system." Anuu. Rev. Microbiol. 59:379-405)。また、RcsBは、シトロバクター・フロインディ(Citrobacter freundii)のVi多糖発現 (Houng HSら (1992) "Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and identity of ViaA with RcsB" J. Bacteriol 174:5910-5915) やクレブシエラ属細菌のK2莢膜の発現 (Rochaporn Wら (1992) "Involvement of rcsB in Klebsiella K2 Capsule Synthesis in Escherichia coli K-12" J. Bacteriol 174:1063-1067) に関与するとの報告がある。また、RcsBの過剰発現はK30莢膜多糖の生産を増大させることが知られているが、RcsBは、K30莢膜多糖の重合化酵素をコードするcspクラスターの転写には関与せず、前駆体であるUDP-グルコースの生合成酵素をコードするgalF遺伝子の発現を正に制御するとの報告がある (Andrea Rahnら (2003) "Transcriptional organization and regulation of The Escherichia coli" Mol. Microbiol. 47:1045-1060)。一方、RcsBの過剰発現は、K5莢膜多糖(ヘパロサン)やK1莢膜多糖の生産を増大させないと報告されている (Wendy J. Keenleysideら (1993) "Coexpression of Colanic Acid and Serotype-Specific Capsular Polysaccharides in Escherichia coli Strains with Group II K Antigens" J. Bacteriol 175:6725-6730)。RcsDは、ヒスチジンキナーセを有するセンサー蛋白質であり、外部からの刺激に応答してリン酸基をRcsBに伝達することが知られている。
 YbiX、YbiI、YbiJ、YbiC、およびYbiBは機能未知の因子である。従って、これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RfaHは、エシェリヒア・コリおよびサルモネラ・ティフィムリウムにおいてリポ多糖の生合成、α-ヘモリシンの分泌、およびF因子の産生に必要な転写因子である (Leeds JA and Welch RA (1996) "RfaH enhances elongation of Escherichia coli hlyCABD mRNA." J Bacteriol. 178(7):1850-7.)。また、エシェリヒア・コリK5株においては、K5莢膜形成にRfaHが必要であること (Stevens MP et al. (1994) "Regulation of Escherichia coli K5 capsular polysaccharide expression: evidence for involvement of RfaH in the expression of group II capsules" FEMS Microbiol Lett. 124(1):93-98.)、および、RfaHは、Region3(kpsM, kpsT)のプロモーター領域に結合し、Region3だけでなく下流のRegion2(kfiA, kfiB, kfiC, kfiD)の転写を正に制御することが知られている (Xue P. et al.(2009) "Regulation of expression of the region 3 promoter of the Escherichia coli K5 capsule gene cluster involves H-NS, SlyA, and a large 5' untranslated region." J Bacteriol. 191(6):1838-1846.)。しかしながら、エシェリヒア・コリK5株や他のヘパロサン生産細菌において、rfaH遺伝子の発現増強によるヘパロサン生産量への影響は調べられていなかった。
 NusGは転写因子であり、RNAポリメラーゼと相互作用することで転写を制御していると考えられている(Li J. et al. (1992) J Biol Chem 267(9): 6012-6019)。また、NusGは、バクテロイデス・フラジリス(Bacteroides fragilis)の莢膜生合成に関与しているとの報告がある(Livanis M. et al. (2009) J Bacteriol 191(23): 7288-7295)。しかし、いずれもこれまでにヘパロサン生合成との関与については報告がない。なお、NusGはRfaHのホモログであり、NusGはRfaHと共通のドメインを持つとされる(Bailey M. et al. (1996) Mol Microbiol 22(4): 7729-737)。しかしながら、エシェリヒア・コリK-12株、K5株、B株のいずれにおいても、NusGとRfaH間でのアミノ酸配列の相同性は20%程度であり、両者が高い相同性を有するとは言えない。
 PcoR、PcoS、およびPcoEは、銅耐性に関与する因子である。PcoRおよびPcoSは、それぞれ、pcoオペロンのアクチベーターおよび環境刺激に応答する二成分制御系のセンサータンパク質に相同性が高い (Cooksey D.A. (2006) "Copper uptake and resistance in bacteria." Mol Microbiol. 7(1):1-5)。PcoEは、銅結合タンパク質である。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YhcNは、過酸化水素ストレスに対する菌体応答に関与する因子である。yhcN遺伝子の欠損株においては、過酸化水素への感受性が向上し、バイオフィルム形成量が増加する (Lee J. et al. (2010) "Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene." J Appl Microbiol. Jun;108(6):2088-102.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YhcOは、Bacillus amyloliquefaciens由来の有毒なRNaseであるバルナーゼの阻害因子と相同性がある。しかしながら、エシェリヒア(Escherichia)属細菌はバルナーゼファミリーのRNaseを有しておらず、YhcOの機能は明らかではない。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 AaeBおよびAaeAは、4-ヒドロキシ安息香酸の排出担体のサブユニットである。AaeXも排出担体と推定されるが、実際の機能は未知である (Van Dyk T.K. et al. (2004) "Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?" J. Bacteriol. 186:7196-7204)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 g1455およびg1453遺伝子は、Esherichia coli K5株のみに見出された遺伝子であり、これらの遺伝子にコードされるタンパク質の機能は未知である。従って、これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 AlpAは、プロファージインテグラーゼをコードするintA遺伝子の発現調節因子であり、intAの発現増加を介してLonプロテーゼの欠損を相補する働きを有する (Trempy J.E. et al. (1994) "Alp suppression of Lon: dependence on the slpA gene." J Bacteriol. 176(7):2061-7)。AlpAは、バイオフィルム形成や莢膜生成と関連がある可能性はあるものの (Herzberg M. et al. (2006) "YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport." J Bacteriol. 188(2):587-98)、AlpAとヘパロサン生産との関連性を示す知見は全く存在しない。
 YrbA(別名IbaG)は、DNA結合型転写因子と推定される因子であり、酸性ストレス条件下で発現量が増加する (Guinote I.B. et al. (2012) "Characterization of the BolA homolog IbaG: a new gene involved in acid resistance." J Microbiol Biotechnol. 22(4):484-93.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 MlaB、MlaC、MlaD、MlaE、およびMlaFは、リン脂質ABCトランスポーターの構成因子であり、リン脂質の輸送および脂質非対称性の維持に関与する (Malinverni J.C. and Silhavy T.J. (2009) "An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane." Proc Natl Acad Sci U S A. 106(19):8009-14.)。これらのタンパク質のヘパロサン生産との関連性を示す知見は全く存在しない。
 YrbGは、5回膜貫通型の内膜タンパク質であり、配列相同性からNa+/Ca2+交換輸送体と推定されている。しかしながら、YrbGの菌体内Ca2+レベル調節能は確認されておらず、実際の機能は未知である (Naseem R. et al. (2008) "pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli." Biochim Biophys Acta. 1778(6):1415-22)。従って、このタンパク質とヘパロサン生産との関連性を示す知見も全く存在しない。
 NorWは、一酸化窒素(NO)ストレスに応答して発現するNO還元酵素である (Gardner A.M. et al. (2003) "Role of NorR and sigma54 in the nitric oxide stress response." J Biol Chem. 278(12):10081-6.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YbjIは、ハロ酸脱ハロゲン化酵素様の加水分解酵素ファミリーに属するフラビンモノヌクレオチド(FMN)リン酸化酵素である (Kuznetsova E. et al. (2006) "Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family." J Biol Chem. 281(47):36149-61)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YbjJおよびYbjKは、機能未知のタンパク質である。従って、これらのタンパク質とヘパロサン生成との関連性を示す知見も全く存在しない。
 RybBは、細胞表層ストレスに応答して活性化されるシグマ因子σEに依存して発現する低分子RNAであり、シグマ因子σEの合成を抑制する (Thompson K.M. et al. (2007) "SigmaE regulates and is regulated by a small RNA in Escherichia coli."J Bacteriol. 189(11):4243-56)。また、RybBは、OmpCおよびOmpWの発現抑制にも関与する (Johansen J. et al. (2006) "Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins." J Mol Biol. 364(1):1-8)。RybBとヘパロサン生成との関連性を示す知見は全く存在しない。
 YjjYは、機能未知のタンパク質である。従って、このタンパク質とヘパロサン生産との関連性を示す知見も全く存在しない。
 YjtDは、RNAメチルトランスフェラーゼの一種と推定されるが、実際の機能は未知である (Anantharaman V. et al. (2002) "SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol. 4(1):71-5)。従って、このタンパク質とヘパロサン生産との関連性を示す知見も全く存在しない。
 ThrB、ThrA、およびThrLは、スレオニン生合成経路の酵素である。ThrBは、ホモセリンからO‐ホスホ‐L‐ホモセリンへの変換反応を触媒するホモセリンキナーゼであり、スレオニンの生合成に関与する (Burr B. et al. (1976) "Homoserine kinase from Escherichia coli K12." Eur J Biochem.62(3):519-26.)。ThrAは、アスパラギン酸キナーゼIおよびホモセリン脱水素酵素Iの二つの機能を有する酵素であり、スレオニンに加えて、リジンおよびメチオニンの生合成に関与する (Clark RB, Ogilvie J.W. et al. (1972) "Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 . Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding." Biochemistry. 11(7):1278-82.)。また、ThrLは、thrLABCオペロンのリーダーペプチドであり、スレオニンおよびイソロイシンの濃度に応じてthrLABCオペロンの発現を弱化する (Lynn S.P. et al. (1982) "Attenuation regulation in the thr operon of Escherichia coli K-12: molecular cloning and transcription of the controlling region."J Bacteriol. 152(1):363-71.)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 FruAは、フルクトースPTS透過酵素であり、IIBドメインおよびIICドメインを有する (Prior T.I. and Kornberg H.L. (1988) "Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K12." J Gen Microbiol. 134(10): 2757-68.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 PsuKは、シュードウリジンキナーゼであり、tRNAのTΨCループによく見られる修飾RNAであるシュードウリジンの異化に関与する (Solomon L.R. and Breitman T.R. (1971) "Pseudouridine kinase of escherichia coli: a new enzyme." Biochem Biophys Res Commun.44(2):299-304.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YtfTおよびYjfFは、ガラクトースABC輸送担体の膜構成成分であると推測されるが、実際の機能は未知である。従って、これらのタンパク質とヘパロサン生産との関連性を示す知見も全く存在しない。
 Fbpは、糖新生経路においてフルクトース-1,6-二リン酸からフルクトース-6-リン酸への反応を触媒するフルクトース-1,6-二リン酸脱リン酸化酵素(fructose-1,6-bisphosphatase)である (Fraenkel D.G. and Horecker B.L. (1965) "Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli."J Bacteriol. 90(4):837-42.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YagUは、内膜タンパク質と推定されるが、その機能は未知である。従って、このタンパク質とヘパロサン生産との関連性を示す知見も全く存在しない。
 PaoA(別名YagT)およびPaoB(別名YagS)は、アルデヒド酸化還元酵素YagTSRの構成因子である。PaoAは鉄結合サブユニット、PaoBはフラビンアデニンジヌクレオチド(FAD)結合サブユニットである (Neumann M. et al. (2009) "A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli." FEBS J. 276(10):2762-74)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 GsiCおよびGsiDは、グルタチオンABC輸送担体の構成因子である。GsiCおよびGsiDは内膜に局在する (Moussatova A. et al. (2008) "ATP-binding cassette transporters in Escherichia coli." Biochim Biophys Acta.1778(9):1757-71.)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YliEは、c-di-GMP-特異的ホスホジエステラーゼと推定され、過剰発現によりバイオフィルム形成を促進する (Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress." Mol Microbiol. 72(6):1500-16.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 Irp2およびIrp1は、ノンリボソーマルペプチド合成酵素であり、鉄取込みに関与する (Pelludat C. et. al. (1998) "The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation." J Bacteriol. 180(3):538-46.)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 BhsA(別名YcfR)は、外膜タンパク質と推定され、バイオフィルム形成およびストレス応答に関与する (Zhang X.S. et al. (2007) "YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity." J Bacteriol. 189(8):3051-62.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YcfSは、L,D-トランスペプチダーゼの一種である。YcfSは、ペプチドグリカンのmeso-ジアミノピメリン酸(DAP)残基からD-アラニン残基を除去し、当該meso-DAP残基にブラウンリポタンパク質のC末端のリジン残基を結合する反応を触媒する。この反応によって、ペプチドグリカンはブラウンリポタンパク質を介して外膜へ共有結合的に結合する (Magnet S. et al. (2007) "Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan." J Bacteriol.189(10):3927-31)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 LepBは、分泌タンパク質からN末端リーダーペプチドを除去するシグナルペプチダーゼである(Dalbey R.E. (1991) "Leader peptidase." Mol Microbiol. 5(12):2855-60.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 Rncは、二本鎖RNAを切断して5'リン酸基およびヒドロキシル基を生じるRNaseIIIであり、rRNAやファージmRNAのプロセシングに必要である。Rncの主な役割は、遺伝子発現の調節とアンチセンスRNAの機能化である(Robertson H.D. and Dunn J.J. (1975) "Ribonucleic acid processing activity of Escherichia coli ribonuclease III." J Biol Chem. 25;250(8):3050-6)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 Eraは、生存に必須な因子である(Takiff HE et al. (1992) "Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon." J Bacteriol. 174(5):1544-53)。Eraは、Yeast two-hybrid 法によりMazGと相互作用することが分かっている(Zhang J. and Inouye M. (2002) "MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli." J Bacteriol. 184(19):5323-9)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 DapAは、4-hydroxy-tetrahydrodipicolinate synthaseである。4-hydroxy-tetrahydrodipicolinate synthaseは、リジン生合成酵素の1つであり、ピルビン酸とL-アスパラギン酸β-セミアルデヒドから(2S,4S)-4-Hydroxy-2,3,4,5-tetrahydrodipicolinateへの反応を触媒する。同反応は、アスパラギン酸キナーゼIIIの後のリジン生合成において律速段階であると考えられている(Laber B. et al. (1992) "Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization." Biochem J. 288 (Pt 2):691-5)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 GcvRは、転写調節因子と推定されるタンパク質であり、グリシンの生合成遺伝子の発現に関与する。GcvRは、グリシン不在下では、直接GcvAと結合してGlvR/GlvA複合体を形成し、グリシン分解遺伝子群の発現を阻害する。グリシン存在下では、グリシンがGcvRに結合し、GlvR/GlvA複合体の形成を阻害する(Ghrist A.C. et al. (2001)"GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon." Microbiology 147(Pt 8):2215-21.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 Bcpは、チオレドキシン-1依存性のチオールペルオキシダーゼである(Clarke D.J. et al. (2009) “Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry.” Biochemistry. 48(18):3904-14)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 HyfAは、4つの4Fe-4Sクラスターを有しており、電子輸送に関与すると推定されるタンパク質である(Andrews S.C. et al. (1997) "A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system." Microbiology. 143 (Pt 11):3633-47.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RpoEは、RNAポリメラーゼのサブユニットとして機能するシグマ因子の一種、シグマE(σE)である。RpoEは、熱ショックやストレスに応答して膜および膜間部のタンパク質でのプロテアーゼの発現を調節する(Ades S.E. et al. (2003) "Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli." J Bacteriol. 185(8):2512-9.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 NadBは、L-アスパラギン酸オキシダーゼである。L-アスパラギン酸オキシダーゼは、de novo NAD生合成経路における初発酵素であり、FAD依存的にL-アスパラギン酸からイミノアスパラギン酸への反応を触媒する(Mortarino M. et al. (1996) “L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition.” Eur J Biochem. 239(2):418-26.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YfiCは、バリンtRNAのA37(37位のアデニン)の6位のNをメチル化するメチルトランスフェラーゼである(Golovina A.Y. et al. (2009)RNA. "The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC)." 15(6):1134-41.)。tRNAの37位の塩基はアンチコドン・トリプレットに隣接しており、しばしば修飾される。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 SrmBは、リボソームの50Sサブユニット集合において初期段階の反応を促進するDEAD-box型RNAヘリカーゼである(Charollais J. et al. (2003) "The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli." Mol Microbiol. 48(5):1253-65.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 G1414およびG1413は、機能未知のタンパク質である。従って、これらのタンパク質とヘパロサン生成との関連性を示す知見も全く存在しない。
 NuoE、NuoF、およびNuoGは、NADHデヒドロゲナーゼIの可溶性フラグメントであり、電子伝達系への電子の入り口として機能する(Braun M. et al. (1998) "Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli." Biochemistry. 37(7):1861-7.)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 GlmZは、菌体内グルコサミン-6-リン酸の濃度に反応してglmS mRNAの発現および翻訳を転写後修飾によって調節する低分子RNAである(Kalamorz F. et al. (2007) “Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli.” Mol Microbiol. 65(6):1518-33.)。GlmZは、glmS mRNAの5'-UTRに直接結合し、ループ構造をとっていたglmS mRNAのSD領域を自由にすることにより、glmS mRNAの翻訳を活性化する(Urban J.H. and Vogel J.et al. (2008) "Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation." PLoS Biol. 6(3):e64)。GlmSは、L-グルタミン:D-フルクトース-6-リン酸アミノトランスフェラーゼである。L-グルタミン:D-フルクトース-6-リン酸アミノトランスフェラーゼは、ヘパロサンの前駆体であるUDP-N-アセチルグルコサミン供給経路の第一酵素であり、フルクトース-6-リン酸からグルコサミン-6-リン酸への反応を触媒する。しかしながら、GlmSの活性強化とヘパロサン生成能の関連性を示す知見は存在せず、GlmZとヘパロサン生産との関連性を示す知見も全く存在しない。
 HemY、HemX、およびHemDは、ヘムとコリンの生合成経路の酵素である。HemYは、ヘム生合成経路でプロトポルフィリノゲンIXを酸化してプロトポルフィリンIXを生成するプロトポルフィリノゲンオキシダーゼである(Dailey T.A. et al. (1994) "Expression of a cloned protoporphyrinogen oxidase." The Journal of Biological Chemistry, 269:813-815.)。HemXは、コリン生合成経路でウロポルフィリノゲンIIIをメチル化しプレコリンIIを生成するウロポルフィリノゲンIIIメチラーゼと推定されているが、実際の機能は未知である(Sasarman A. et al. (1988) "Nucleotide sequence of the hemX gene, the third member of the Uro operon of Escherichia coli K12." Nucleic Acids Res. 16(24):11835)。HemDは、ヘムとコリンの生合成経路における共通の最終代謝中間体であるウロポルフィリノゲンIIIを生成するウロポルフィリノゲンIIIシンターゼである(Jordan P.M. and Woodcock S.C. (1991) "Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation." Biochem J. 280 (Pt 2):445-9.)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RlmL(別名RlmKL)は、23S rRNAのG2445およびG2069をメチル化するメチルトランスフェラーゼである(Kimura S. et al. (2012) "Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity." Nucleic Acids Res. 40(9):4071-85.)。RlmLは、融合タンパク質であり、特に、N末側のドメインをRlmL、C末側のドメインをRlmKと呼ぶ場合がある。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 ArtQ、ArtM、およびArtJは、アルギニンABCトランスポーターのサブユニットである(Linton K.J. and Higgins C.F. (1998) "The Escherichia coli ATP-binding cassette (ABC) proteins." Mol Microbiol. 28(1):5-13.)。ArtJはペリプラズムに局在すると推測されている。ArtMおよびArtは、疎水性タンパク質であることから、内膜に局在し、ATPaseであるArtPと協同してアルギニンの内膜透過装置として機能すると推測されている。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RlmC(別名RumB)は、23S rRNAのU747をメチル化するメチルトランスフェラーゼである(Madsen C.T. et al. (2003) “Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry." Nucleic Acids Res. 31(16):4738-46.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YbjOは、内膜タンパク質であると推定されているが、その機能は未知である(Rapp M. et al. (2004) “Experimentally based topology models for E. coli inner membrane proteins.” Protein Sci. 13(4):937-45.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YejOは、外膜タンパク質であり、フェーズ可変的なタンパク質排出の機能を持つ(Henderson I.R. and Owen P. (1999) "The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR." J Bacteriol. 181(7):2132-41.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YejMは、ハイドロラーゼの1種と推定されているが、実際の機能は未知である。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YejLは、機能未知のタンパク質である。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RpoSは、RNAポリメラーゼのサブユニットとして機能するシグマ因子の一種、シグマS(σS)である。RpoSは、ストレスに応答してグローバルに遺伝子の発現調節を行なう(Maciag A. et al. (2011) “In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements.” Nucleic Acids Res. 39(13):5338-55.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YgbNは、グルコン酸輸送に関与するGntファミリーに属するトランスポーターと推定されるタンパク質であり、プロトン駆動型代謝物質取込み担体である可能性が示唆されている(Peekhaus N. et al. (1997) "Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues." FEMS Microbiol Lett. 147(2):233-8.)。このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YgbMは、機能未知のタンパク質である。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YbgLは、アルドラーゼの1種と推定されているが、実際の機能は未知である。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 G3798は、SOS-response transcriptional repressor (RecA-mediated autopeptidase)と推定されるタンパク質である。G3794は、Superinfection exclusion protein Bと推定されるタンパク質である。G3793は、restriction inhibitor protein ral (Antirestriction protein)と推定されるタンパク質である。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 G3797、G3796、G3795、およびG3792は、機能未知のタンパク質である。従って、これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 RyjAは、約140ntの低分子RNAである(Wassarman K.M. et al. (2001) "Identification of novel small RNAs using comparative genomics and microarrays." Genes Dev. 15(13): 1637-51.)。このRNAとヘパロサンとの関連性を示す知見は全く存在しない。
 SoxRSは、酸化ストレス応答に関与する転写制御因子である。SoxRは酸化ストレスにより活性化されてSoxSの発現を誘導し、SoxRSはSoxRSレギュロン遺伝子の発現を誘導する(Gu M. and Imlay J.A. (2011) "The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide." Mol Microbiol. 79(5):1136-50.; Touati D. (2000) "Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response?" Redox Rep. 5(5):287-93.)。SoxRSは、リポポリサッカライドの生成に関与することが知られている(Lee J.H. et al. (2009) "SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli." J Bacteriol. 191(13):4441-50.)が、これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YjcCは、c-di-GMP特異的なホスホジエステラーゼである(Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress." Mol Microbiol. 72(6):1500-16.)。YjcCの過剰発現によりバイオフィルム形成を減少することが知られているが、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 YjcBは、機能未知タンパク質である。従って、このタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
 EfeUおよびEfeOは、二価鉄イオン輸送担体EfeUOBのコンポーネントである。EfeUは透過酵素として、EfeOはペリプラズムに局在するタンパク質として、それぞれ機能する(Cao J. et al. (2007) “EfeUOB (YcdNOB) is a tripartite, acid-inducedand CpxAR-regulated, low-pH Fe2+ transporter that iscryptic in Escherichia coli K-12 but functional in E. coli O157:H7." Mol Microbiol 65:857?875)。これらのタンパク質とヘパロサン生産との関連性を示す知見は全く存在しない。
野生型nlpDプロモーター(Pnlp0)の構造を示す図。図中の塩基配列を配列番号165に示す。 変異型nlpDプロモーター(Pnlp8)の構造を示す図。図中の塩基配列を配列番号168に示す。
 以下、本発明を詳説する。
<1>本発明の細菌
 本発明の細菌は、ヘパロサン生産能を有するエシェリヒア属細菌であって、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変された細菌である。
<1-1>ヘパロサン生産能を有する細菌
 本発明において、「ヘパロサン生産能を有する細菌」とは、培地で培養したときに、ヘパロサンを生成し、回収できる程度に培地中に蓄積する能力を有する細菌をいう。ヘパロサン生産能を有する細菌は、非改変株よりも多い量の目的とするヘパロサンを培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、ヘパロサン生産能を有する細菌は、例えば、50mg/L以上、100mg/L以上、200mg/L以上、または300mg/L以上の量のヘパロサンを培地に蓄積することができる細菌であってもよい。
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとしては、例えば、W3110株(ATCC 27325)やMG1655株(ATCC 47076)等のエシェリヒア・コリK-12株;エシェリヒア・コリK5株(ATCC 23506);BL21(DE3)株等のエシェリヒア・コリB株;およびそれらの派生株が挙げられる。
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。また、BL21(DE3)株は、例えば、ライフテクノロジーズ社より入手可能である(製品番号 C6000-03)。
 本発明の細菌は、本来的にヘパロサン生産能を有するものであってもよく、ヘパロサン生産能を有するように改変されたものであってもよい。ヘパロサン生産能を有する細菌は、例えば、上記のような細菌にヘパロサン生産能を付与することにより取得できる。
 ヘパロサン生産能は、ヘパロサン生産に関与するタンパク質をコードする遺伝子を導入することにより、付与できる。ヘパロサン生産に関与するタンパク質としては、グリコシルトランスフェラーゼやヘパロサン排出担体タンパク質が挙げられる。本発明においては、1種の遺伝子を導入してもよく、2種またはそれ以上の遺伝子を導入してもよい。遺伝子の導入は、後述する遺伝子のコピー数を増加させる手法と同様に行うことができる。
 ここでいう「グリコシルトランスフェラーゼ」とは、N-アセチル-D-グルコサミン(GlcNAc)および/またはグルクロン酸(GlcUA)を糖鎖非還元末端に付加し、ヘパロサン鎖を伸長する反応を触媒する活性を有するタンパク質をいう。また、同活性を、「グリコシルトランスフェラーゼ活性」ともいう。グリコシルトランスフェラーゼをコードする遺伝子としては、kfiA遺伝子、kfiC遺伝子、pmHS1遺伝子が挙げられる。
 kfiA遺伝子およびkfiC遺伝子としては、エシェリヒア・コリK5株のkfiA遺伝子およびkfiC遺伝子が挙げられる。エシェリヒア・コリK5株のkfiA遺伝子がコードするKfiAタンパク質は、UDP-GlcNAcを基質として、GlcNAcを糖鎖非還元末端に付加する。エシェリヒア・コリK5株のkfiC遺伝子がコードするKfiCタンパク質は、UDP-GlcUAを基質として、GlcUAを糖鎖非還元末端に付加する。エシェリヒア・コリK5株のkfiAおよびkfiC遺伝子は、kfiBおよびkfiD遺伝子とともに、kfiABCDオペロン(Region2ともいう)を構成する。エシェリヒア・コリK5株のkfiABCDオペロンを含む領域の塩基配列を配列番号24に示す。配列番号24に示す塩基配列中、kfiA、kfiB、kfiC、kfiD遺伝子は、それぞれ、445~1164位の配列、1593~3284位の配列、4576~6138位の配列、6180~7358位の配列に相当する。エシェリヒア・コリK5株のKfiA、KfiB、KfiC、KfiDタンパク質のアミノ酸配列を、それぞれ、配列番号25~28に示す。
 pmHS1遺伝子としては、パスツレラ・ムルトシダ タイプD株のpmHS1遺伝子が挙げられる。パスツレラ・ムルトシダ タイプD株のpmHS1遺伝子がコードするPmHS1タンパク質は、UDP-GlcNAcおよびUDP-GlcUAの両方を基質として、GlcNAcおよびGlcUAを交互に糖鎖非還元末端に付加する。パスツレラ・ムルトシダ タイプD株のpmHS1遺伝子の塩基配列、及び同遺伝子がコードするタンパク質のアミノ酸配列は、例えば、NCBI(http://www.ncbi.nlm.nih.gov/)等の公用データベースから取得できる。
 ここでいう「ヘパロサン排出担体タンパク質」とは、細胞膜を通してヘパロサン鎖を細胞外へ排出する活性を有するタンパク質をいう。また、同活性を、「ヘパロサン排出活性」ともいう。ヘパロサン排出担体タンパク質をコードする遺伝子としては、kpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子が挙げられる。kpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子としては、エシェリヒア・コリK5株やエシェリヒア・コリB株のkpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子が挙げられる。これらの株のkpsC、kpsD、kpsE、およびkpsS遺伝子は、kpsFおよびkpsU遺伝子とともに、kpsFEDUCSオペロン(Region1ともいう)を構成する。また、これらの株のkpsMおよびkpsT遺伝子は、kpsMTオペロン(Region3ともいう)を構成する。これらの株のkpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子の塩基配列、及び同遺伝子がコードするタンパク質のアミノ酸配列は、例えば、NCBI(http://www.ncbi.nlm.nih.gov/)等の公用データベースから取得できる。
 導入する遺伝子は、用いる細菌の種類等に応じて適宜選択できる。例えば、エシェリヒア・コリB株は、ヘパロサン排出担体タンパク質をコードする遺伝子を有するが、グリコシルトランスフェラーゼをコードする遺伝子を有さない。よって、グリコシルトランスフェラーゼをコードする遺伝子を導入することにより、エシェリヒア・コリB株にヘパロサン生産能を付与することができる。また、例えば、エシェリヒア・コリK-12株は、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の両方を有さない。よって、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の両方を導入することにより、エシェリヒア・コリK-12株にヘパロサン生産能を付与することができる。
 すなわち、ヘパロサン生産能を有するエシェリヒア属細菌としては、例えば、エシェリヒア・コリK5株;BL21(DE3)株等のエシェリヒア・コリB株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子を導入した株;W3110株やMG1655株等のエシェリヒア・コリK-12株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子、ならびにエシェリヒア・コリK5株またはエシェリヒア・コリB株由来のkpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子を導入した株;ならびにそれらの派生株が挙げられる。エシェリヒア・コリB株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子を導入した株として、具体的には、例えば、実施例に記載のエシェリヒア・コリBL21(DE3)/pVK9-region2が挙げられる。
 また、ヘパロサン生産能を有する細菌は、ヘパロサン生産に関与するタンパク質をコードする遺伝子の内、同細菌がもともと有する遺伝子の発現が増強されるよう改変されていてもよい。すなわち、例えば、エシェリヒア・コリK5株を、ヘパロサン生産に関与するタンパク質をコードする1またはそれ以上の遺伝子の発現が増強されるよう改変してもよい。また、例えば、エシェリヒア・コリB株を、ヘパロサン排出担体タンパク質をコードする1またはそれ以上の遺伝子の発現が増強されるよう改変してもよい。
 また、ヘパロサン生産能を有する細菌は、ヘパロサン生産能を損なわない限り、その他の改変がなされていてもよい。例えば、ヘパロサン生産能を有する細菌は、kfiB、kfiD、kpsF、およびkpsU遺伝子から選択される1またはそれ以上の遺伝子の発現が増強されるよう改変されていてもよい。すなわち、例えば、グリコシルトランスフェラーゼをコードする遺伝子の導入の際には、Region2をまとめて導入してもよく、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の導入の際には、Region1~3をまとめて導入してもよい。
 なお、ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。「元の機能が維持された」とは、例えば、グリコシルトランスフェラーゼにあっては、タンパク質のバリアントがグリコシルトランスフェラーゼ活性を有することをいい、ヘパロサン排出担体タンパク質にあっては、タンパク質のバリアントがヘパロサン排出活性を有することをいう。例えば、ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、表1~3に記載の遺伝子およびそれらがコードするタンパク質の保存的バリアントに関する記載を準用できる。
<1-2>表1~3に記載の遺伝子の発現の増大
 本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変されている。本発明の細菌は、ヘパロサン生産能を有する細菌を、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変することによって得ることができる。また、本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように細菌を改変した後に、ヘパロサン生産能を付与することによっても得ることができる。なお、本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変されたことにより、ヘパロサン生産能を獲得したものであってもよい。本発明において、本発明の細菌を構築するための改変は、任意の順番で行うことができる。
 「表1~3に記載の遺伝子」とは、具体的には、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、rpoE、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子をいう。なお、表1~3に記載の遺伝子を「表1~3の遺伝子」ともいう。
 rbsR、rbsK、およびrbsB遺伝子は、D-リボースの取り込みに関与する因子をコードする遺伝子である。rbsR遺伝子は、rbsオペロンのリプレッサーをコードする。rbsK遺伝子は、リボキナーゼをコードする。rbsB遺伝子は、リボースABCトランスポーターを構成するサブユニットの1つをコードする。Escherichia coli K-12 MG1655株のrbsR、rbsK、およびrbsB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、3,936,250~3,937,242位の配列、3,935,317~3,936,246位の配列、および3,934,301~3,935,191位の配列に相当する。また、MG1655株のRbsR、RbsK、およびRbsBタンパク質は、それぞれ、GenBank accession NP_418209 (version NP_418209.1 GI:16131621)、GenBank accession NP_418208 (version NP_418208.1 GI:16131620)、およびGenBank accession NP_418207 (version NP_418207.1 GI:16131619)として登録されている。
 hsrA遺伝子は、メジャー・ファシリテーター・スーパーファミリー(MFS)の1種と推定される内膜タンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のhsrA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,937,208~3,938,635位の配列の相補配列に相当する。また、MG1655株のHsrAタンパク質は、GenBank accession NP_418210 (version NP_418210.1 GI:16131622)として登録されている。
 エシェリヒア・コリK5株のrbsB、rbsK、rbsR、hsrA遺伝子を含む領域の塩基配列を配列番号29に示す。配列番号29に示す塩基配列中、rbsB、rbsK、rbsR遺伝子は、それぞれ、800~1690位の配列、1816~2745位の配列、2749~3741位の配列に相当する。また、配列番号29に示す塩基配列中、hsrA遺伝子は、3707~5134位の配列の相補配列に相当する。エシェリヒア・コリK5株のRbsR、RbsK、RbsB、HsrAタンパク質のアミノ酸配列を、それぞれ、配列番号30~33に示す。
 glgB遺伝子は、グリコーゲン分枝酵素(1,4-α-グルカン分枝酵素)をコードする遺伝子である。glgX遺伝子は、グリコーゲン脱分枝酵素をコードする遺伝子である。Escherichia coli K-12 MG1655株のglgBおよびglgX遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、3,569,339~3,571,525位の配列の相補配列および3,567,369~3,569,342位の配列の相補配列に相当する。また、MG1655株のGlgBおよびGlgXタンパク質は、それぞれ、GenBank accession NP_417890 (version NP_417890.1 GI:16131306)およびGenBank accession NP_417889 (version NP_417889.1 GI:16131305)として登録されている。
 エシェリヒア・コリK5株のglgBおよびglgX遺伝子を含む領域の塩基配列を配列番号34に示す。配列番号34に示す塩基配列中、glgBおよびglgX遺伝子は、それぞれ、989~3175位の配列および3172~5145位の配列に相当する。エシェリヒア・コリK5株のGlgBおよびGlgXタンパク質のアミノ酸配列を、それぞれ、配列番号35および36に示す。
 micF遺伝子は、OmpFの発現抑制に関与するアンチセンスRNAをコードする遺伝子である。Escherichia coli K-12 MG1655株のmicF遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,311,106~2,311,198位の配列に相当する。
 rcsDおよびrcsB遺伝子は、転写因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のrcsDおよびrcsB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、2,311,510~2,314,182位および2,314,199~2,314,849位の配列に相当する。また、MG1655株のRcsDおよびRcsBタンパク質は、それぞれ、GenBank accession NP_416720 (version NP_416720.1 GI:16130153)およびGenBank accession NP_416721 (version NP_416721.1 GI:16130154)として登録されている。
 エシェリヒア・コリK5株のrcsB、rcsD、およびmicF遺伝子を含む領域の塩基配列を配列番号43に示す。配列番号43に示す塩基配列中、rcsB、rcsD、およびmicF遺伝子は、それぞれ、3312~3962位の配列、623~3295位の配列、219~311位の配列に相当する。エシェリヒア・コリK5株のRcsBおよびRcsDタンパク質のアミノ酸配列を、それぞれ、配列番号44および45に示す。
 ybiX、ybiI、ybiJ、ybiC、およびybiB遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のybiX、ybiI、ybiJ、ybiC、およびybiB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、837,753~838,430位の配列の相補配列、837,413~837,679位の配列の相補配列、836,888~837,148位の配列の相補配列、835,574~836,659位の配列、および834,471~835,433位の配列に相当する。また、MG1655株のYbiX、YbiI、YbiJ、YbiC、およびYbiBタンパク質は、それぞれ、GenBank accession NP_415325 (version NP_415325.4 GI:90111170)、GenBank accession NP_415324 (version NP_415324.1 GI:16128771)、GenBank accession NP_415323 (version NP_415323.1 GI:16128770)、GenBank accession NP_415322 (version NP_415322.1 GI:16128769)、およびGenBank accession NP_415321 (version NP_415321.1 GI:16128768)として登録されている。
 エシェリヒア・コリK5株のybiX、ybiI、ybiJ、ybiC、ybiB遺伝子を含む領域の塩基配列を配列番号37に示す。配列番号37に示す塩基配列中、ybiX、ybiI、ybiJ遺伝子は、それぞれ、718~1395位の配列、1469~1735位の配列、2000~2260位の配列に相当する。また、配列番号37に示す塩基配列中、ybiCおよびybiB遺伝子は、2488~3574位の配列の相補配列および3715~4677位の配列の相補配列に相当する。エシェリヒア・コリK5株のYbiX、YbiI、YbiJ、YbiC、YbiBタンパク質のアミノ酸配列を、それぞれ、配列番号38~42に示す。
 rfaHおよびnusG遺伝子は、転写因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のrfaHおよびnusG遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、4,022,356~4,022,844位の配列の相補配列および4,175,766~4,176,311位の配列に相当する。また、MG1655株のRfaHおよびNusGタンパク質は、それぞれ、GenBank accession NP_418284 (version NP_418284.1 GI:16131688)およびGenBank accession NP_418409 (version NP_418409.1 GI:16131812)として登録されている。
 エシェリヒア・コリBL21(DE3)株のrfaH遺伝子の塩基配列を配列番号46に、同遺伝子がコードするRfaHタンパク質のアミノ酸配列を配列番号47に、それぞれ示す。エシェリヒア・コリBL21(DE3)株のnusG遺伝子の塩基配列を配列番号48に、同遺伝子がコードするNusGタンパク質のアミノ酸配列を配列番号49に、それぞれ示す。
 pcoR、pcoS、およびpcoE遺伝子は、銅耐性に関与する因子をコードする遺伝子である。pcoR遺伝子は、pcoオペロンのアクチベーターに相同なタンパク質をコードする。pcoS遺伝子は、二成分制御系のセンサータンパク質に相同なタンパク質をコードする。pcoE遺伝子は、銅結合タンパク質をコードする。Escherichia coli K-12 MG1655株のゲノムにおいて、これらの遺伝子はアノテートされていない。
 エシェリヒア・コリK5株のpcoR、pcoS、およびpcoE遺伝子を含む領域の塩基配列を配列番号50に示す。配列番号50に示す塩基配列中、pcoR、pcoS、およびpcoE遺伝子は、それぞれ、128~808位の配列、805~2205位の配列、2423~2857位の配列に相当する。エシェリヒア・コリK5株のPcoR、PcoS、およびPcoEタンパク質のアミノ酸配列を、それぞれ、配列番号51~53に示す。
 yhcN遺伝子は、ストレス応答に関与する因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のyhcN遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,383,560~3,383,823位の配列に相当する。また、MG1655株のYhcNタンパク質は、GenBank accession NP_417705 (version NP_417705.2 GI:90111561)として登録されている。
 yhcO遺伝子は、RNaseの阻害因子に相同なタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyhcO遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,383,879~3,384,151位の配列の相補配列に相当する。また、MG1655株のYhcOタンパク質は、GenBank accession NP_417706 (version NP_417706.1 GI:16131129)として登録されている。
 aaeBおよびaaeA遺伝子は、4-ヒドロキシ安息香酸の排出担体のサブユニットをコードする遺伝子である。aaeX遺伝子は、排出担体と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のaaeB、aaeA、およびaaeX遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、3,384,243~3,386,210位の配列の相補配列、3,386,216~3,387,148位の配列の相補配列、および3,387,156~3,387,359位の配列の相補配列に相当する。また、MG1655株のAaeB、AaeA、およびAaeXタンパク質は、それぞれ、GenBank accession NP_417707 (version NP_417707.1 GI:16131130)、GenBank accession NP_417708 (version NP_417708.1 GI:16131131)、およびGenBank accession NP_417709 (version NP_417709.2 GI:90111562)として登録されている。
 エシェリヒア・コリK5株のyhcN、yhcO、aaeB、aaeA、およびaaeX遺伝子を含む領域の塩基配列を配列番号54に示す。配列番号54に示す塩基配列中、yhcN、yhcO、aaeB、aaeA、およびaaeX遺伝子は、それぞれ、63~326位の配列、382~654位の配列の相補配列、746~2713位の配列の相補配列、2719~3651位の配列の相補配列、3659~3931位の配列の相補配列に相当する。エシェリヒア・コリK5株のYhcN、YhcO、AaeB、AaeA、およびAaeXタンパク質のアミノ酸配列を、それぞれ、配列番号55~59に示す。
 g1455およびg1453遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のゲノムにおいて、これらの遺伝子はアノテートされていない。
 alpA遺伝子は、intA遺伝子の発現調節因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のalpA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,756,666~2,756,878位の配列に相当する。また、MG1655株のAlpAタンパク質は、GenBank accession NP_417113 (version NP_417113.1 GI:16130542)として登録されている。
 エシェリヒア・コリK5株のg1455、alpA、およびg1453遺伝子を含む領域の塩基配列を配列番号60に示す。配列番号60に示す塩基配列中、g1455、alpA、およびg1453遺伝子は、それぞれ、568~1140位の配列の相補配列、1226~1486位の配列の相補配列、2389~2529位の配列に相当する。エシェリヒア・コリK5株のG1455、AlpA、およびG1453タンパク質のアミノ酸配列を、それぞれ、配列番号61~63に示す。
 yrbA遺伝子(別名ibaG)は、DNA結合型転写因子と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyrbA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,334,571~3,334,825位の配列の相補配列に相当する。また、MG1655株のYrbAタンパク質は、GenBank accession NP_417657 (version NP_417657.2 GI:90111555)として登録されている。
 mlaB、mlaC、mlaD、mlaE、およびmlaF遺伝子は、リン脂質ABCトランスポーターの構成因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のmlaB、mlaC、mlaD、mlaE、およびmlaF遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、3,334,985~3,335,278位の配列の相補配列、3,335,278~3,335,913位の配列の相補配列、3,335,932~3,336,483位の配列の相補配列、3,336,488~3,337,270位の配列の相補配列、および3,337,278~3,338,087位の配列の相補配列に相当する。また、MG1655株のMlaB、MlaC、MlaD、MlaE、およびMlaFタンパク質は、それぞれ、GenBank accession NP_417658 (version NP_417658.4 GI:90111556)、GenBank accession NP_417659 (version NP_417659.1 GI:16131082)、GenBank accession NP_417660 (version NP_417660.1 GI:16131083)、GenBank accession NP_417661 (version NP_417661.1 GI:16131084)、およびGenBank accession NP_417662 (version NP_417662.1 GI:16131085)として登録されている。
 yrbG遺伝子は、Na+/Ca2+交換輸送体と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyrbG遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,338,297~3,339,274位の配列に相当する。また、MG1655株のYrbGタンパク質は、GenBank accession NP_417663 (version NP_417663.1 GI:16131086)として登録されている。
 エシェリヒア・コリK5株のyrbA、mlaB、mlaC、mlaD、mlaE、mlaF、およびyrbG遺伝子を含む領域の塩基配列を配列番号64に示す。配列番号64に示す塩基配列中、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、およびyrbG遺伝子は、それぞれ、977~1246位の配列の相補配列、1391~1780位の配列の相補配列、1684~2319位の配列の相補配列、2338~2889位の配列の相補配列、2894~3676位の配列の相補配列、3684~4493位の配列の相補配列、4703~5680位の配列に相当する。エシェリヒア・コリK5株のYrbA、MlaB、MlaC、MlaD、MlaE、MlaF、およびYrbGタンパク質のアミノ酸配列を、それぞれ、配列番号65~71に示す。
 norW遺伝子は、NO還元酵素をコードする遺伝子である。Escherichia coli K-12 MG1655株のnorW遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,831,934~2,833,067位の配列に相当する。また、MG1655株のNorWタンパク質は、GenBank accession NP_417191 (version NP_417191.1 GI:16130618)として登録されている。
 エシェリヒア・コリK5株のnorW遺伝子を含む領域の塩基配列を配列番号72に示す。配列番号72に示す塩基配列中、norW遺伝子は、1201~2334位の配列に相当する。エシェリヒア・コリK5株のNorWタンパク質のアミノ酸配列を、配列番号73に示す。
 ybjI遺伝子は、フラビンモノヌクレオチド(FMN)リン酸化酵素をコードする遺伝子である。Escherichia coli K-12 MG1655株のybjI遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、884,539~885,354位の配列の相補配列に相当する。また、MG1655株のYbjIタンパク質は、GenBank accession NP_415365 (version NP_415365.4 GI:90111176)として登録されている。
 ybjJおよびybjK遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のybjJおよびybjK遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、885,354~886,562位の配列の相補配列および886,646~887,182位の配列に相当する。また、MG1655株のYbjJおよびYbjKタンパク質は、それぞれ、GenBank accession NP_415366 (version NP_415366.1 GI:16128813)およびGenBank accession NP_415367 (version NP_415367.1 GI:16128814)として登録されている。
 rybB遺伝子は、OmpCおよびOmpWの発現抑制に関与する低分子RNAをコードする遺伝子である。Escherichia coli K-12 MG1655株のrybB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、887,199~887,277位の配列の相補配列に相当する。
 エシェリヒア・コリK5株のybjI、ybjJ、ybjK、およびrybB遺伝子を含む領域の塩基配列を配列番号74に示す。配列番号74に示す塩基配列中、ybjI、ybjJ、ybjK、およびrybB遺伝子は、それぞれ、117~932位の配列の相補配列、932~2140位の配列の相補配列、2224~2760位の配列、2777~2855位の配列の相補配列に相当する。エシェリヒア・コリK5株のYbjI、YbjJ、およびYbjKタンパク質のアミノ酸配列を、それぞれ、配列番号75~77に示す。
 yjjY遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のyjjY遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,638,425~4,638,565位の配列に相当する。また、MG1655株のYjjYタンパク質は、GenBank accession NP_418819 (version NP_418819.1 GI:16132219)として登録されている。
 yjtD遺伝子は、RNAメチルトランスフェラーゼの一種と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyjtD遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,638,965~4,639,651位の配列に相当する。また、MG1655株のYjtDタンパク質は、GenBank accession NP_418820 (version NP_418820.1 GI:16132220)として登録されている。
 thrL、thrA、およびthrB遺伝子は、スレオニン生合成経路の酵素をコードする遺伝子である。thrB遺伝子は、ホモセリンキナーゼをコードする。thrA遺伝子は、アスパラギン酸キナーゼIおよびホモセリン脱水素酵素Iの二つの機能を有する酵素をコードする。thrL遺伝子は、thrLABCオペロンのリーダーペプチドをコードする。Escherichia coli K-12 MG1655株のthrL、thrA、およびthrB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、190~255位の配列、337~2,799位の配列、および2,801~3,733位の配列に相当する。また、MG1655株のThrL、ThrA、およびThrBタンパク質は、それぞれ、GenBank accession NP_414542 (version NP_414542.1 GI:16127995)、GenBank accession NP_414543 (version NP_414543.1 GI:16127996)、およびGenBank accession NP_414544 (version NP_414544.1 GI:16127997)として登録されている。
 エシェリヒア・コリK5株のyjjY、yjtD、thrL、thrA、およびthrB遺伝子を含む領域の塩基配列を配列番号78に示す。配列番号78に示す塩基配列中、yjjY、yjtD、thrL、thrA、およびthrB遺伝子は、それぞれ、124~264位の配列、664~1350位の配列、1564~1629位の配列、1711~4173位の配列、4175~5107位の配列に相当する。エシェリヒア・コリK5株のYjjY、YjtD、ThrL、ThrA、およびThrBタンパク質のアミノ酸配列を、それぞれ、配列番号79~83に示す。
 fruA遺伝子は、フルクトースPTS透過酵素をコードする遺伝子である。Escherichia coli K-12 MG1655株のfruA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,257,741~2,259,432位の配列の相補配列に相当する。また、MG1655株のFruAタンパク質は、GenBank accession NP_416672 (version NP_416672.1 GI:16130105)として登録されている。
 psuK遺伝子は、シュードウリジンキナーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のpsuK遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,256,377~2,257,318位の配列の相補配列に相当する。また、MG1655株のPsuKタンパク質は、GenBank accession NP_416671 (version NP_416671.1 GI:16130104)として登録されている。
 エシェリヒア・コリK5株のfruAおよびpsuK遺伝子を含む領域の塩基配列を配列番号84に示す。配列番号84に示す塩基配列中、fruAおよびpsuK遺伝子は、それぞれ、897~2588位の配列および3165~3953位の配列に相当する。エシェリヒア・コリK5株のFruAおよびPsuKタンパク質のアミノ酸配列を、それぞれ、配列番号85および86に示す。
 ytfTおよびyjfF遺伝子は、ガラクトースABC輸送担体の膜構成成分と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のytfTおよびyjfF遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、4,450,594~4,451,619位の配列および4,451,606~4,452,601位の配列に相当する。また、MG1655株のYtfTおよびYjfFタンパク質は、それぞれ、GenBank accession NP_418651 (version NP_418651.3 GI:145698343)およびGenBank accession NP_418652 (version NP_418652.2 GI:90111710)として登録されている。
 fbp遺伝子は、フルクトース-1,6-二リン酸脱リン酸化酵素(fructose-1,6-bisphosphatase)をコードする遺伝子である。Escherichia coli K-12 MG1655株のfbp遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,452,634~4,453,632位の配列の相補配列に相当する。また、MG1655株のFbpタンパク質は、GenBank accession NP_418653 (version NP_418653.1 GI:16132054)として登録されている。
 エシェリヒア・コリK5株のytfT、yjfF、およびfbp遺伝子を含む領域の塩基配列を配列番号87に示す。配列番号87に示す塩基配列中、ytfT、yjfF、およびfbp遺伝子は、それぞれ、252~1277位の配列、1264~2259位の配列、2292~3290位の配列の相補配列に相当する。エシェリヒア・コリK5株のYtfT、YjfF、およびFbpタンパク質のアミノ酸配列を、それぞれ、配列番号88~90に示す。
 yagU遺伝子は、内膜タンパク質と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyagU遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、302,215~302,829位の配列に相当する。また、MG1655株のYagUタンパク質は、GenBank accession NP_414821 (version NP_414821.1 GI:16128272)として登録されている。
 paoA遺伝子(別名yagT)およびpaoB遺伝子(別名yagS)は、アルデヒド酸化還元酵素の構成因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のpaoAおよびpaoB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、301,108~301,797位の配列の相補配列および300,155~301,111位の配列の相補配列に相当する。また、MG1655株のPaoAおよびPaoBタンパク質は、それぞれ、GenBank accession NP_414820 (version NP_414820.1 GI:16128271)およびGenBank accession NP_414819 (version NP_414819.1 GI:16128270)として登録されている。
 エシェリヒア・コリK5株のyagU、paoA、およびpaoB遺伝子を含む領域の塩基配列を配列番号91に示す。配列番号91に示す塩基配列中、yagU、paoA、およびpaoB遺伝子は、それぞれ、117~731位の配列の相補配列、1149~1838位の配列、1835~2791位の配列に相当する。エシェリヒア・コリK5株のYagU、PaoA、およびPaoBタンパク質のアミノ酸配列を、それぞれ、配列番号92~94に示す。
 gsiCおよびgsiD遺伝子は、グルタチオンABC輸送担体の構成因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のgsiCおよびgsiD遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、870,190~871,110位の配列および871,113~872,024位の配列に相当する。また、MG1655株のGsiCおよびGsiDタンパク質は、それぞれ、GenBank accession NP_415352 (version NP_415352.1 GI:16128799)およびGenBank accession NP_415353 (version NP_415353.1 GI:16128800)として登録されている。
 yliE遺伝子は、c-di-GMP-特異的ホスホジエステラーゼと推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyliE遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、872,202~874,550位の配列に相当する。また、MG1655株のYliEタンパク質は、GenBank accession NP_415354 (version NP_415354.1 GI:16128801)として登録されている。
 エシェリヒア・コリK5株のgsiC、gsiD、およびyliE遺伝子を含む領域の塩基配列を配列番号95に示す。配列番号95に示す塩基配列中、gsiC、gsiD、およびyliE遺伝子は、それぞれ、264~1184位の配列、1187~2098位の配列、2276~4624位の配列に相当する。エシェリヒア・コリK5株のGsiC、GsiD、およびYliEタンパク質のアミノ酸配列を、それぞれ、配列番号96~98に示す。
 irp2およびirp1遺伝子は、ノンリボソーマルペプチド合成酵素をコードする遺伝子である。Escherichia coli K-12 MG1655株のゲノムにおいて、irp2およびirp1遺伝子はアノテートされていない。本発明においては、irp2およびirp1遺伝子を総称して「irp遺伝子」という場合がある。
 エシェリヒア・コリK5株のirp遺伝子の一部を含む領域の塩基配列を配列番号99に示す。同領域は、irp2遺伝子の後半部分(全長6108bpの内、2781~6108位の部分;全長の約54%に相当)とirp1遺伝子の前半部分(全長9492bpの内、1~2530位の部分;全長の約27%に相当)を含む。また、エシェリヒア・コリK5株のirp2遺伝子の塩基配列を配列番号100に、同遺伝子がコードするIrp2タンパク質のアミノ酸配列を配列番号101に、それぞれ示す。また、エシェリヒア・コリK5株のirp1遺伝子の塩基配列を配列番号102に、同遺伝子がコードするIrp1タンパク質のアミノ酸配列を配列番号103に、それぞれ示す。
 bhsA遺伝子(別名ycfR)は、外膜タンパク質と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のbhsA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1,168,296~1,168,553位の配列に相当する。また、MG1655株のBhsAタンパク質は、GenBank accession NP_415630 (version NP_415630.1 GI:16129075)として登録されている。
 ycfS遺伝子は、L,D-トランスペプチダーゼの一種をコードする遺伝子である。Escherichia coli K-12 MG1655株のycfS遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1,168,635~1,169,597位の配列の相補配列に相当する。また、MG1655株のYcfSタンパク質は、GenBank accession NP_415631 (version NP_415631.1 GI:16129076)として登録されている。
 エシェリヒア・コリK5株のbhsAおよびycfS遺伝子を含む領域の塩基配列を配列番号104に示す。配列番号104に示す塩基配列中、bhsAおよびycfS遺伝子は、それぞれ、440~697位の配列および779~1741位の配列の相補配列に相当する。エシェリヒア・コリK5株のBhsAおよびYcfSタンパク質のアミノ酸配列を、それぞれ、配列番号105および106に示す。
 lepB遺伝子は、シグナルペプチダーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のlepB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,702,357~2,703,331位の配列の相補配列に相当する。また、MG1655株のLepBタンパク質は、GenBank accession NP_417063 (version =NP_417063.1 GI:16130493)として登録されている。
 rnc遺伝子は、RNaseIIIをコードする遺伝子である。Escherichia coli K-12 MG1655株のrnc遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,701,405~2,702,085位の配列の相補配列に相当する。また、MG1655株のRncタンパク質は、GenBank accession NP_417062 (version NP_417062.1 GI:16130492)として登録されている。
 era遺伝子は、生存に必須な因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のera遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,700,503~2,701,408位の配列の相補配列に相当する。また、MG1655株のEraタンパク質は、GenBank accession NP_417061 (version NP_417061.1 GI:16130491)として登録されている。
 エシェリヒア・コリK5株のlepB、rnc、およびera遺伝子を含む領域の塩基配列を配列番号107に示す。配列番号107に示す塩基配列中、lepB、rnc、およびera遺伝子は、それぞれ、1344~2318位の配列、2590~3270位の配列、および3267~4172位の配列に相当する。エシェリヒア・コリK5株のLepB、Rnc、およびEraタンパク質のアミノ酸配列を、それぞれ、配列番号108~110に示す。
 dapA遺伝子は、4-hydroxy-tetrahydrodipicolinate synthaseをコードする遺伝子である。Escherichia coli K-12 MG1655株のdapA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,596,904~2,597,782位の配列の相補配列に相当する。また、MG1655株のDapAタンパク質は、GenBank accession NP_416973 (version NP_416973.1 GI:16130403)として登録されている。
 gcvR遺伝子は、転写調節因子と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のgcvR遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,597,928~2,598,500位の配列に相当する。また、MG1655株のGcvRタンパク質は、GenBank accession NP_416974 (version NP_416974.4 GI:90111443)として登録されている。
 bcp遺伝子は、チオールペルオキシダーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のbcp遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,598,500~2,598,970位の配列に相当する。また、MG1655株のBcpタンパク質は、GenBank accession NP_416975 (version NP_416975.1 GI:16130405)として登録されている。
 hyfA遺伝子は、電子輸送に関与すると推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のhyfA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,599,223~2,599,840位の配列に相当する。また、MG1655株のhyfAタンパク質は、GenBank accession NP_416976 (version NP_416976.4 GI:90111444)として登録されている。
 エシェリヒア・コリK5株のdapA、gcvR、bcp、およびhyfA遺伝子を含む領域の塩基配列を配列番号111に示す。配列番号111に示す塩基配列中、dapA、gcvR、bcp、およびhyfA遺伝子は、それぞれ、858~1736位の配列の相補配列、1882~2454位の配列、2454~2924位の配列、および3177~3794位の配列に相当する。エシェリヒア・コリK5株のDapA、GcvR、Bcp、およびHyfAタンパク質のアミノ酸配列を、それぞれ、配列番号112~115に示す。
 rpoE遺伝子は、シグマE(σE)をコードする遺伝子である。Escherichia coli K-12 MG1655株のrpoE遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,707,459~2,708,034位の配列の相補配列に相当する。また、MG1655株のRpoEタンパク質は、GenBank accession NP_417068 (version NP_417068.1 GI:16130498)として登録されている。
 nadB遺伝子は、L-アスパラギン酸オキシダーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のnadB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,708,442~2,710,064位の配列に相当する。また、MG1655株のNadBタンパク質は、GenBank accession NP_417069 (version NP_417069.1 GI:16130499)として登録されている。
 yfiC遺伝子は、バリンtRNAのA37(37位のアデニン)の6位のNをメチル化するメチルトランスフェラーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のyfiC遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,710,049~2,710,786位の配列の相補配列に相当する。また、MG1655株のYfiCタンパク質は、GenBank accession NP_417070 (version NP_417070.2 GI:90111461)として登録されている。
 srmB遺伝子は、DEAD-box型RNAヘリカーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のsrmB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,710,918~2,712,252位の配列に相当する。また、MG1655株のSrmBタンパク質は、GenBank accession NP_417071 (version NP_417071.1 GI:16130501)として登録されている。
 エシェリヒア・コリK5株のrpoE、nadB、yfiC、およびsrmB遺伝子を含む領域の塩基配列を配列番号116に示す。配列番号116に示す塩基配列中、rpoE、nadB、yfiC、およびsrmB遺伝子は、それぞれ、355~930位の配列の相補配列、1338~2960位の配列、2945~3682位の配列の相補配列、および3814~5148位の配列に相当する。特に、エシェリヒア・コリK5株のrpoE遺伝子の塩基配列を配列番号174に示す。エシェリヒア・コリK5株のRpoE、NadB、YfiC、およびSrmBタンパク質のアミノ酸配列を、それぞれ、配列番号117~120に示す。
 g1414およびg1413遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のゲノムにおいて、これらの遺伝子はアノテートされていない。
 エシェリヒア・コリK5株のg1414およびg1413遺伝子を含む領域の塩基配列を配列番号121に示す。配列番号121に示す塩基配列中、g1414およびg1413遺伝子は、それぞれ、28~699位の配列および831~1157位の配列に相当する。エシェリヒア・コリK5株のG1414およびG1413タンパク質のアミノ酸配列を、それぞれ、配列番号122および123に示す。
 nuoE、nuoF、およびnuoG遺伝子は、NADHデヒドロゲナーゼIの可溶性フラグメントをコードする遺伝子である。Escherichia coli K-12 MG1655株のnuoE、nuoF、およびnuoG遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、2,399,574~2,400,074位の配列の相補配列、2,398,240~2,399,577位の配列の相補配列、および2,395,461~2,398,187位の配列の相補配列に相当する。また、MG1655株のNuoE、NuoF、およびNuoGタンパク質は、それぞれ、GenBank accession NP_416788 (version NP_416788.1 GI:16130220)、GenBank accession NP_416787 (version NP_416787.1 GI:16130219)、およびGenBank accession NP_416786 (version NP_416786.4 GI:145698290)として登録されている。
 エシェリヒア・コリK5株のnuoE、nuoF、およびnuoG遺伝子を含む領域の塩基配列を配列番号124に示す。配列番号124に示す塩基配列中、nuoE、nuoF、およびnuoG遺伝子は、それぞれ、796~1296位の配列の相補配列、1293~2630位の配列の相補配列、および2683~5409位の配列の相補配列に相当する。エシェリヒア・コリK5株のNuoE、NuoF、およびNuoGタンパク質のアミノ酸配列を、それぞれ、配列番号125~127に示す。
 glmZ遺伝子は、低分子RNAをコードする遺伝子である。Escherichia coli K-12 MG1655株のglmZ遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、3,984,455~3,984,626位の配列に相当する。
 hemY、hemX、およびhemD遺伝子は、ヘムとコリンの生合成経路の酵素をコードする遺伝子である。hemY遺伝子は、プロトポルフィリノゲンオキシダーゼをコードする。hemX遺伝子は、ウロポルフィリノゲンIIIメチラーゼと推定されるタンパク質をコードする。hemD遺伝子は、ウロポルフィリノゲンIIIシンターゼをコードする。K-12 MG1655株のhemY、hemX、およびhemD遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、3,984,709~3,985,905位の配列の相補配列、3,985,908~3,987,089位の配列の相補配列、および3,987,111~3,987,851位の配列の相補配列に相当する。また、MG1655株のHemY、HemX、およびHemDタンパク質は、それぞれ、GenBank accession NP_418246 (version NP_418246.1 GI:16131654)、GenBank accession NP_418247 (version NP_418247.1 GI:16131655)、GenBank accession NP_418248 (version NP_418248.1 GI:16131656)として登録されている。
 エシェリヒア・コリK5株のglmZ、hemY、hemX、およびhemD遺伝子を含む領域の塩基配列を配列番号128に示す。配列番号128に示す塩基配列中、glmZ、hemY、hemX、およびhemD遺伝子は、それぞれ、357~563位の配列、611~1807位の配列、1810~2991位の配列、および3013~3753位の配列に相当する。エシェリヒア・コリK5株のHemY、HemX、およびHemDタンパク質のアミノ酸配列を、それぞれ、配列番号129~131に示す。
 rlmL遺伝子(別名rlmKL)は、23S rRNAのG2445およびG2069をメチル化するメチルトランスフェラーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のrlmL遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1,007,067~1,009,175位の配列に相当する。また、MG1655株のRlmLタンパク質は、GenBank accession NP_415468 (version NP_415468.1 GI:16128915)として登録されている。
 エシェリヒア・コリK5株のrlmL遺伝子を含む領域の塩基配列を配列番号132に示す。配列番号132に示す塩基配列中、rlmL遺伝子は、571~2679位の配列に相当する。エシェリヒア・コリK5株のRlmLタンパク質のアミノ酸配列を、配列番号133に示す。
 artQ、artM、およびartJ遺伝子は、アルギニンABCトランスポーターのサブユニットをコードする遺伝子である。Escherichia coli K-12 MG1655株のartQ、artM、およびartJ遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、900,757~901,473位の配列の相補配列、900,089~900,757位の配列の相補配列、および899,067~899,798位の配列の相補配列に相当する。また、MG1655株のArtQ、ArtM、およびArtJタンパク質は、それぞれ、GenBank accession NP_415383 (version NP_415383.1 GI:16128830)、GenBank accession NP_415382 (version NP_415382.1 GI:16128829)、およびGenBank accession NP_415381 (version NP_415381.1 GI:16128828)として登録されている。
 rlmC遺伝子(別名rumB)は、23S rRNAのU747をメチル化するメチルトランスフェラーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のrlmC遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、897,741~898,868に相当する。また、MG1655株のRlmCタンパク質は、GenBank accession NP_415380 (version NP_415380.1 GI:16128827)として登録されている。
 ybjO遺伝子は、内膜タンパク質と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のybjO遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、897,212~897,700位の配列に相当する。また、MG1655株のYbjOタンパク質は、GenBank accession NP_415379 (version NP_415379.1 GI:16128826)として登録されている。
 エシェリヒア・コリK5株のartQ、artM、artJ、rlmC、およびybjO遺伝子を含む領域の塩基配列を配列番号134に示す。配列番号134に示す塩基配列中、artQ、artM、artJ、rlmC、およびybjO遺伝子は、それぞれ、386~1102位の配列、1102~1770位の配列、2061~2792位の配列、2991~4118位の配列の相補配列、および4159~4647位の配列の相補配列に相当する。エシェリヒア・コリK5株のArtQ、ArtM、ArtJ、RlmC、およびYbjOタンパク質のアミノ酸配列を、それぞれ、配列番号135~139に示す。
 yejO遺伝子は、外膜タンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyejO遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,284,412~2,286,936位の配列と2,288,136~2,288,202位の配列を結合した配列の相補配列に相当する。MG1655株のyejO遺伝子は、偽遺伝子(pseudogene)であると考えられる。
 yejM遺伝子は、ハイドロラーゼの1種と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のyejM遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,282,398~2,284,158位の配列に相当する。また、MG1655株のYejMタンパク質は、GenBank accession NP_416693 (version NP_416693.1 GI:16130126)として登録されている。
 yejL遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のyejL遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,282,151~2,282,378位の配列に相当する。また、MG1655株のYejLタンパク質は、GenBank accession NP_416692 (version NP_416692.1 GI:16130125)として登録されている。
 エシェリヒア・コリK5株のyejO、yejM、およびyejL遺伝子を含む領域の塩基配列を配列番号140に示す。配列番号140に示す塩基配列中、yejO、yejM、およびyejL遺伝子は、それぞれ、216~2807位の配列、3061~4821位の配列の相補配列、および4841~5068位の配列の相補配列に相当する。エシェリヒア・コリK5株のYejO、YejM、およびYejLタンパク質のアミノ酸配列を、それぞれ、配列番号141~143に示す。
 rpoS遺伝子は、シグマS(σS)をコードする遺伝子である。Escherichia coli K-12 MG1655株のrpoS遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,864,581~2,865,573位の配列の相補配列に相当する。また、MG1655株のRpoSタンパク質は、GenBank accession NP_417221 (version NP_417221.1 GI:16130648)として登録されている。
 ygbN遺伝子は、Gntファミリーに属するトランスポーターと推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のygbN遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,863,123~2,864,487位の配列に相当する。また、MG1655株のYgbNタンパク質は、GenBank accession NP_417220 (version NP_417220.1 GI:16130647)として登録されている。
 ygbM遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のygbM遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,862,258~2,863,034位の配列に相当する。また、MG1655株のYgbMタンパク質は、GenBank accession NP_417219 (version NP_417219.1 GI:16130646)として登録されている。
 ygbL遺伝子は、アルドラーゼの1種と推定されるタンパク質をコードする遺伝子である。Escherichia coli K-12 MG1655株のygbL遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、2,861,615~2,862,253位の配列に相当する。また、MG1655株のYgbLタンパク質は、GenBank accession NP_417218 (version NP_417218.1 GI:16130645)として登録されている。
 エシェリヒア・コリK5株のrpoS、ygbN、ygbM、およびygbL遺伝子を含む領域の塩基配列を配列番号144に示す。配列番号144に示す塩基配列中、rpoS、ygbN、ygbM、およびygbL遺伝子は、それぞれ、318~1310位の配列、1404~2768位の配列の相補配列、2857~3633位の配列の相補配列、および3638~4276位の配列の相補配列に相当する。エシェリヒア・コリK5株のRpoS、YgbN、YgbM、およびYgbLタンパク質のアミノ酸配列を、それぞれ、配列番号145~148に示す。
 g3798遺伝子は、SOS-response transcriptional repressor (RecA-mediated autopeptidase)と推定されるタンパク質をコードする遺伝子である。g3794遺伝子は、Superinfection exclusion protein Bと推定されるタンパク質をコードする遺伝子である。g3793遺伝子は、restriction inhibitor protein ral (Antirestriction protein)と推定されるタンパク質をコードする遺伝子である。g3797、g3796、g3795、およびg3792遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のゲノムにおいて、これらの遺伝子はアノテートされていない。
 エシェリヒア・コリK5株のg3798、g3797、g3796、g3795、g3794、g3793、およびg3792遺伝子を含む領域の塩基配列を配列番号149に示す。配列番号149に示す塩基配列中、g3798、g3797、g3796、g3795、g3794、g3793、およびg3792遺伝子は、それぞれ、615~1268位の配列、1368~2219位の配列、2257~2748位の配列、3021~3203位の配列、3470~4051位の配列の相補配列、4280~4480位の配列、および4520~4717位の配列に相当する。エシェリヒア・コリK5株のG3798、G3797、G3796、G3795、G3794、G3793、およびG3792タンパク質のアミノ酸配列を、それぞれ、配列番号150~156に示す。
 ryjA遺伝子は、低分子RNAをコードする遺伝子である。Escherichia coli K-12 MG1655株のryjA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,275,950~4,276,089位の配列の相補配列に相当する。
 soxRおよびsoxS遺伝子は、転写制御因子をコードする遺伝子である。Escherichia coli K-12 MG1655株のsoxRおよびsoxS遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、4,275,492~4,275,956位の配列および4,275,083~4,275,406位の配列の相補配列に相当する。また、MG1655株のSoxRおよびSoxSタンパク質は、それぞれ、GenBank accession NP_418487 (version NP_418487.1 GI:16131889)およびGenBank accession NP_418486 (version NP_418486.1 GI:16131888)として登録されている。
 yjcC遺伝子は、c-di-GMP特異的なホスホジエステラーゼをコードする遺伝子である。Escherichia coli K-12 MG1655株のyjcC遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,273,494~4,275,080位の配列に相当する。また、MG1655株のYjcCタンパク質は、GenBank accession NP_418485 (version NP_418485.1 GI:16131887)として登録されている。
 yjcB遺伝子は、機能未知の遺伝子である。Escherichia coli K-12 MG1655株のyjcB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、4,272,783~4,273,064位の配列の相補配列に相当する。また、MG1655株のYjcBタンパク質は、GenBank accession NP_418484 (version NP_418484.4 GI:90111681)として登録されている。
 エシェリヒア・コリK5株のryjA、soxR、soxS、yjcC、およびyjcB遺伝子を含む領域の塩基配列を配列番号157に示す。配列番号157に示す塩基配列中、ryjA、soxR、soxS、yjcC、およびyjcB遺伝子は、それぞれ、657~796位の配列、790~1254位の配列の相補配列、1340~1663位の配列、1666~3252位の配列の相補配列、および3682~3963位の配列に相当する。エシェリヒア・コリK5株のSoxR、SoxS、YjcC、およびYjcBタンパク質のアミノ酸配列を、それぞれ、配列番号158~161に示す。
 efeUおよびefeO遺伝子は、二価鉄イオン輸送担体のコンポーネントをコードする遺伝子である。Escherichia coli K-12 MG1655株のefeUおよびefeO遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、それぞれ、1,080,579~1,081,408位の配列および1,081,466~1,082,593位の配列に相当する。MG1655株のefeU遺伝子は、偽遺伝子(pseudogene)であると考えられる。また、MG1655株のEfeOタンパク質は、GenBank accession NP_415537 (version NP_415537.1 GI:16128982)として登録されている。
 エシェリヒア・コリK5株のefeUおよびefeO遺伝子を含む領域の塩基配列を配列番号162に示す。配列番号162に示す塩基配列中、efeUおよびefeO遺伝子は、それぞれ、753~1583位の配列および1641~2768位の配列に相当する。エシェリヒア・コリK5株のEfeUおよびEfeOタンパク質のアミノ酸配列を、それぞれ、配列番号163および164に示す。
 本発明の細菌は、例えば、表1~3の遺伝子の内、少なくともrfaH遺伝子の発現が増大するよう改変されていてもよく、少なくともrfaH遺伝子以外の1またはそれ以上の遺伝子の発現が増大するよう改変されていてもよい。また、本発明の細菌は、例えば、表1~3の遺伝子の内、rfaH遺伝子の発現とrfaH遺伝子以外の1またはそれ以上の遺伝子の発現とが増大するよう改変されていてもよい。本発明の細菌は、具体的には、例えば、表1~3の遺伝子の内、rfaH遺伝子の発現と、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、およびycfS遺伝子から選択される1またはそれ以上の遺伝子の発現とが増大するよう改変されていてもよい。また、本発明の細菌は、例えば、表1~3の遺伝子の内、少なくともrpoE遺伝子の発現が増大するよう改変されていてもよい。発現が増大する表1~3の遺伝子の組み合わせは特に制限されない。組み合わせとしては、例えば、後述する実施例に記載の組み合わせが挙げられる。
 遺伝子の発現を増大させる手法については後述する。例えば、表1~3の遺伝子の発現は、配列番号29、34、37、43、50、54、60、64、72、74、78、84、87、91、95、99、104、107、111、116、121、124、128、132、134、140、144、149、157、または162に示す塩基配列を有するDNA等の、表1~3の遺伝子を含むDNAのコピー数を増加させることにより、増大させてよい。また、irp遺伝子にあっては、配列番号99に示す塩基配列を有するDNA等の、irp遺伝子の一部を含むDNAのコピー数を増加させてもよい。上記のようなコピー数を増加させるDNAは、配列番号29、34、37、43、50、54、60、64、72、74、78、84、87、91、95、99、104、107、111、116、121、124、128、132、134、140、144、149、157、または162に示す塩基配列を有するDNAのバリアントであってもよい。DNAのバリアントについては、表1~3に記載の遺伝子の保存的バリアントに関する記載を準用できる。すなわち、例えば、配列番号29、34、37、43、50、54、60、64、72、74、78、84、87、91、95、99、104、107、111、116、121、124、128、132、134、140、144、149、157、または162に示す塩基配列に対して90%以上の相同性を有するDNAのコピー数を増加させてもよい。
 これらの遺伝子は、これらの遺伝子を保持する株の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
 表1~3の遺伝子は、元の機能が維持されている限り、上記例示した遺伝子のバリアントであってもよい。同様に、表1~3の遺伝子にコードされるタンパク質は、元の機能が維持されている限り、上記例示したタンパク質のバリアントであってもよい。そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。本発明において、上記遺伝子名で特定される遺伝子およびそれに対応する名称で特定されるタンパク質には、それぞれ、上記例示した遺伝子およびタンパク質に加えて、その保存的バリアントが含まれるものとする。すなわち、例えば、「rpoE遺伝子」という用語は、上記例示したrpoE遺伝子(Escherichia coli K-12 MG1655株やEscherichia coli K5株のrpoE遺伝子)に加えて、その保存的バリアントを包含するものとする。同様に、例えば、「RpoEタンパク質」という用語は、上記例示したRpoEタンパク質(Escherichia coli K-12 MG1655株やEscherichia coli K5株のRpoEタンパク質)に加えて、その保存的バリアントを包含するものとする。保存的バリアントとしては、例えば、上記例示した遺伝子およびタンパク質のホモログや人為的な改変体が挙げられる。
 「元の機能が維持されている」とは、遺伝子またはタンパク質のバリアントが、元の遺伝子またはタンパク質の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。
 すなわち、「元の機能が維持されている」とは、表1~3の遺伝子にあっては、遺伝子のバリアントが、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有することをいう。また、「元の機能が維持されている」とは、表1~3の遺伝子にあっては、遺伝子のバリアントが、元の機能が維持されたタンパク質をコードすることであってもよい。すなわち、表1~3の遺伝子は、上記例示したタンパク質の保存的バリアントをコードするものであってもよい。
 同様に、「元の機能が維持されている」とは、表1~3の遺伝子にコードされるタンパク質にあっては、タンパク質のバリアントが、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有することをいう。また、「元の機能が維持されている」とは、表1~3の遺伝子にコードされるタンパク質にあっては、タンパク質のバリアントが、上記タンパク質の機能、例えばRpoEタンパク質であればシグマE(σE)としての機能、を有することであってもよい。
 遺伝子またはタンパク質のバリアントが、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するか否かは、同遺伝子または同タンパク質をコードする遺伝子をヘパロサン生産能を有するエシェリヒア属細菌に導入し、ヘパロサンの生産能が向上するか否かを確認することにより、確認できる。
 表1~3の遺伝子のホモログは、例えば、上記例示した遺伝子の塩基配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、表1~3の遺伝子のホモログは、例えば、細菌等の微生物の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
 表1~3の遺伝子は、元の機能が維持されている限り、上記アミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入または付加されたアミノ酸配列を有するタンパク質をコードするものであってもよい。例えば、コードされるタンパク質は、そのN末端および/またはC末端が、延長または短縮されていてもよい。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には、例えば、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
 また、表1~3の遺伝子は、元の機能が維持されている限り、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を指すことがある。
 また、表1~3の遺伝子は、元の機能が維持されている限り、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、表1~3の遺伝子を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
 また、宿主によってコドンの縮重性が異なるので、表1~3の遺伝子は、元の機能が維持されている限り、任意のコドンをそれと等価のコドンに置換したものであってもよい。例えば、表1~3の遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。
 表1~3の遺伝子のバリアントは、例えば、部位特異的変異法によって、コードされるタンパク質の特定の部位のアミノ酸残基が置換、欠失、挿入または付加を含むように、遺伝子のコード領域を改変することによって取得することができる。また、表1~3の遺伝子のバリアントは、例えば、変異処理によっても取得され得る。変異処理としては、表1~3の遺伝子の塩基配列を有するDNA分子をヒドロキシルアミン等でインビトロ処理する方法、表1~3の遺伝子を保持する微生物、例えば腸内細菌科に属する微生物を、X線、紫外線、またはN-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤によって処理する方法、エラ-プローンPCR (Cadwell,R.C. PCR Meth. Appl. 2, 28(1992))、DNA shuffling(Stemmer,W.P. Nature 370, 389(1994))、StEP-PCR (Zhao,H. Nature Biotechnol. 16, 258(1998)) などの方法が挙げられる。
<1-3>遺伝子の発現を増大させる手法
 以下に、遺伝子の発現を増大(上昇)させる手法について説明する。
 遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。相同組み換えは、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、またはファージを用いたtransduction法により行うことができる。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。
 また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、広宿主域ベクターRSF1010が挙げられる。
 遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。
 遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、本発明の細菌において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。
 各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する場合」としては、例えば、2またはそれ以上の酵素をそれぞれコードする遺伝子を導入する場合、単一の酵素を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、およびそれらの組み合わせが挙げられる。
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が目的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。
 また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
 本発明においては、プロモーター、SD配列、およびRBSと開始コドンとの間のスペーサー領域等の遺伝子の発現に影響する部位を総称して「発現調節領域」ともいう。発現調節領域は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節領域の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。エシェリヒア・コリ等において、mRNA分子の集団内に見出される61種のアミノ酸コドン間には明らかなコドンの偏りが存在し、あるtRNAの存在量は、対応するコドンの使用頻度と直接比例するようである(Kane, J.F., Curr. Opin. Biotechnol., 6(5), 494-500 (1995))。すなわち、過剰のレアコドンを含むmRNAが大量に存在すると翻訳の問題が生じうる。近年の研究によれば、特に、AGG/AGA、CUA、AUA、CGA、又はCCCコドンのクラスターが、合成されたタンパク質の量および質の両方を低下させ得ることが示唆されている。このような問題は、特に異種遺伝子の発現の際に生じうる。よって、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気パルス法(特開平2-207791)を利用することもできる。
 遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。また、遺伝子の発現が上昇したことは、同遺伝子から発現するタンパク質の活性が増大したことを確認することにより確認できる。
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning A Laboratory Manual/Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。タンパク質の活性は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 上記した遺伝子の発現を増大させる手法は、任意の遺伝子、例えば表1~3の遺伝子やヘパロサン生産に関与するタンパク質をコードする遺伝子、の発現増強に利用できる。
<2>ヘパロサンの製造法
 本発明のヘパロサンの製造法は、本発明の細菌を培地で培養してヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取することを含む、ヘパロサンの製造法である。
 使用する培地は、本発明の細菌が増殖でき、ヘパロサンが生成蓄積される限り、特に制限されない。培地としては、例えば、細菌の培養に用いられる通常の培地を用いることができる。培地として、具体的には、例えば、LB培地(Luria-Bertani培地;1リットルあたりBacto-tryptone 10.0 g、Bacto-yeast extract 5.0 g、及びNaCl 5.0 gを含む)が挙げられるが、これらに限定されない。培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有する培地を用いることができる。培地成分の種類や濃度は、当業者が適宜設定してよい。
 炭素源は、本発明の細菌が資化してヘパロサンを生成し得るものであれば、特に限定されない。炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸、リンゴ酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類、脂肪酸類が挙げられる。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。また、抗生物質耐性遺伝子を搭載するベクターを用いて遺伝子を導入した際は、培地に対応する抗生物質を添加するのが好ましい。
 培養条件は、本発明の細菌が増殖でき、ヘパロサンが生成蓄積される限り、特に制限されない。培養は、例えば、細菌の培養に用いられる通常の条件で行うことができる。培養条件は、当業者が適宜設定してよい。
 培養は、例えば、液体培地を用いて、通気培養または振盪培養により、好気的に行うことができる。培養温度は、例えば、30~37℃であってよい。培養期間は、例えば、16~72時間であってよい。培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。また、培養は、前培養と本培養とに分けて行われてもよい。前培養は、例えば、平板培地や液体培地を用いて行ってよい。
 上記のようにして本発明の細菌を培養することにより、培地中にヘパロサンが蓄積する。
 培養液からヘパロサンを回収する方法は、ヘパロサンが回収されうる限り、特に制限されない。培養液からヘパロサンを回収する方法としては、例えば、実施例に記載する方法が挙げられる。具体的には、例えば、培養液から培養上清を分離し、次いで、エタノール沈殿によって上清中のヘパロサンを沈降させることができる。添加するエタノールの量は、例えば、上清液量の2.5~3.5倍量であってよい。ヘパロサンの沈降には、エタノールに限られず、水と任意に混和する有機溶媒を使用することができる。そのような有機溶媒としては、エタノールに加えて、メタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール、sec-ブタノール、プロピレングリコール、アセトニトリル、アセトン、DMF、DMSO、N-メチルピロリドン、ピリジン、1,2-ジメトキシエタン、1,4-ジオキサン、THFが挙げられる。沈殿したヘパロサンは、例えば、元の上清液量の2倍量の水で溶解させることができる。回収されるヘパロサンは、ヘパロサン以外に、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。ヘパロサンは、所望の程度に精製されていてよい。ヘパロサンの純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。
 ヘパロサンの検出および定量は、公知の手法により行うことができる。具体的には、例えば、ヘパロサンは、カルバゾール法にて検出および定量することができる。カルバゾール法は、ウロン酸の定量方法として広く用いられる手法であり、ヘパロサンを硫酸の存在下でカルバゾールと熱反応させ、生成した呈色物質による530 nmの吸収を測定することにより、ヘパロサンを検出及び定量することができる (Bitter T. and Muir H.M., (1962) "A modified uronic acid carbazole reaction."Analytical Biochemistry, 4(4): 330?334)。また、例えば、ヘパロサンをヘパロサン分解酵素であるヘパリナーゼIIIで処理し、二糖組成分析を行うことによって、ヘパロサンを検出及び定量することができる。
<3>ヘパリンの製造法
 本発明の細菌により生産されるヘパロサンを利用して、ヘパリンを製造することができる。すなわち、本発明のヘパリンの製造法は、本発明の細菌を培地で培養してヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収することを含む、ヘパリンの製造法である。ヘパリンは抗凝固活性を有し、医薬品の成分として利用できる。
 ヘパロサンからのヘパリンの製造法は既に報告されている。具体的には、例えば、ヘパロサンを出発物質として、(1)N-脱アセチル化、(2)N-硫酸化、(3)C5エピマー化、(4)2-O-硫酸化、(5)6-O-硫酸化、および(6)3-O-硫酸化の工程を経ることにより、抗凝固活性を有するヘパリンを生成できる (Zhang Z. et al., (2008) "Solution Structures of Chemoenzymatically Synthesized Heparin and Its Precursors." J Am Chem Soc., 130(39): 12998?13007.)。ヘパリンの製造法は、さらに、低分子化の工程を含んでいてもよい。このようなヘパロサンからヘパリンを製造する工程を総称して「ヘパリン生成処理」ともいう。ヘパリン生成処理における各工程の実施順序は、所望の性質を有するヘパリンが得られる限り、特に制限されない。
 ヘパロサンは、培地に含まれたままヘパリン生成処理に供してもよく、培地から回収してからヘパリン生成処理に供してもよい。また、ヘパロサンは、適宜前処理を行ってからヘパリン生成処理に供してもよい。前処理としては、例えば、精製、希釈、濃縮、乾燥、溶解等が挙げられる。これらの前処理は、適宜組み合わせて行ってもよい。例えば、ヘパロサンを含有する培養液をそのまま、あるいは所望の程度に精製して、ヘパリン生成処理に供してよい。
 N-脱アセチル化は、例えば、水酸化ナトリウムを利用して化学的に行うことができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides." J Biol Chem., 278(52): 52613-52621.)の条件を参照することができる。
 N-硫酸化は、例えば、三酸化硫黄・トリメチルアミン錯体を利用して化学的に行うことができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides." J Biol Chem., 278(52): 52613-52621.)の条件を参照することができる。
 C5エピマー化は、例えば、C5-エピメラーゼを利用して酵素的に行うことができる。C5-エピメラーゼは、グルクロン酸(GlcUA)残基のイズロン酸(IdoA)残基への異性化を触媒できるものであれば特に制限されない。また、C5エピマー化と、N-脱アセチル化および/またはO-硫酸化の順序によっては、適切な基質特異性を有するC5-エピメラーゼを選択して用いてもよい。C5-エピメラーゼは、動物、植物、微生物等、いずれの由来であってもよい。C5-エピメラーゼとしては、例えば、ヒトのC5-エピメラーゼを利用することができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Chen J, et al., "Enzymatic redesigning of biologically active heparan sulfate." J Biol Chem. 2005 Dec 30;280(52):42817-25.)の条件を参照することができる。
 2-O-硫酸化は、例えば、2-O-硫酸化酵素(2-OST)を利用して酵素的に行うことができる。2-OSTは、IdoA残基のO-2位の硫酸化を触媒できるものであれば特に制限されない。また、2-O-硫酸化と、N-脱アセチル化、C5エピマー化、6-O-硫酸化、および/または3-O-硫酸化の順序によっては、適切な基質特異性を有する2-OSTを選択して用いてもよい。2-OSTは、動物、植物、微生物等、いずれの由来であってもよい。2-OSTとしては、例えば、ハムスターの2-OSTを利用することができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Chen J, et al., "Enzymatic redesigning of biologically active heparan sulfate." J Biol Chem. 2005 Dec 30;280(52):42817-25.)の条件を参照することができる。
 6-O-硫酸化は、例えば、6-O-硫酸化酵素(6-OST)を利用して酵素的に行うことができる。6-OSTは、N-硫酸化グルコサミン(GlcNS)残基のO-6位の硫酸化を触媒できるものであれば特に制限されない。また、6-O-硫酸化と、N-脱アセチル化、C5エピマー化、2-O-硫酸化、および/または3-O-硫酸化の順序によっては、適切な基質特異性を有する6-OSTを選択して用いてもよい。6-OSTは、動物、植物、微生物等、いずれの由来であってもよい。6-OSTとしては、例えば、ハムスターの6-OST-1やマウスの6-OST-3を利用することができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Chen J, et al., "Enzymatic redesigning of biologically active heparan sulfate." J Biol Chem. 2005 Dec 30;280(52):42817-25.)の条件を参照することができる。
 3-O-硫酸化は、例えば、3-O-硫酸化酵素(3-OST)を利用して酵素的に行うことができる。3-OSTは、N-硫酸化・6-O-硫酸化グルコサミン残基のO-3位の硫酸化を触媒できるものであれば特に制限されない。また、3-O-硫酸化と、N-脱アセチル化、C5エピマー化、2-O-硫酸化、および/または6-O-硫酸化の順序によっては、適切な基質特異性を有する3-OSTを選択して用いてもよい。3-OSTは、動物、植物、微生物等、いずれの由来であってもよい。3-OSTとしては、例えば、マウスの3-OST-1を利用することができる。反応条件は、当業者が適宜設定することができる。例えば、既報(Chen J, et al., "Enzymatic redesigning of biologically active heparan sulfate." J Biol Chem. 2005 Dec 30;280(52):42817-25.)の条件を参照することができる。
 低分子化は、例えば、亜硫酸を用いて、または光分解法により、行うことができる。低分子化の程度は特に制限されない。低分子化は、例えば、分子量1000~35000 Daのヘパリンが製造されるように実施されてもよい。
 生成したヘパリンの回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。回収されるヘパリンは、ヘパリン以外に、ヘパリン生成処理に用いられた成分や水分等の成分を含んでいてもよい。ヘパリンは、所望の程度に精製されていてよい。ヘパリンの純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。
 得られたヘパリンは、さらに分画して、低分子ヘパリンを取得することもできる。低分子ヘパリンとは、例えば、分子量1000~10000 Da(平均分子量4000-6000 Da)の画分をいう。低分子ヘパリンは、未分画ヘパリンと比較して、出血の副作用が少ないという利点を有する。
 以下、実施例をもとに、本発明をより具体的に説明する。
実施例1:エシェリヒア・コリBL21(DE3)株からのヘパロサン生産株構築
(1-1)エシェリヒア・コリ K5株のkfiABCD遺伝子の発現プラスミドの構築
 エシェリヒア・コリ K5(ATCC 23506)よりkfiABCD遺伝子(kfiABCDオペロン)をpVK9ベクター(配列番号1、米国特許出願公開20050196846号)にクローニングし、kfiABCD遺伝子の発現プラスミドpVK9-kfiABCDを構築した。
 発現プラスミドの構築の詳細を以下に示す。エシェリヒア・コリK5の染色体DNAをテンプレートとして、プライマーKfiABCD-kpnF(配列番号2)及びプライマーKfiABCD-xbaR(配列番号3)を用いたPCRによって、kfiABCD遺伝子及びその上流約450 bpを含むDNA断片を取得した。PCRにはPrimeStarポリメラーゼ(TaKaRa社)を用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 8分を30サイクル、最後に4℃保温。また、pVK9をテンプレートDNAとし、配列番号4及び配列番号5のオリゴヌクレオチドをプライマーとして用いたPCRによって、pVK9のDNA断片を得た。PCRにはPrimeStarポリメラーゼを用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 6分を30サイクル、最後に4℃保温。得られた両DNA断片をIn-Fusion(登録商標)HDクローニングキット(クロンテック社製)を用いて連結し、kfiABCD遺伝子の発現プラスミドpVK9-kfiABCDを構築した。クローニングされたkfiABCD遺伝子及びその上流約450 bpを含む塩基配列を配列番号24に示す。
(1-2)エシェリヒア・コリBL21(DE3)株のkfiABCD遺伝子発現株の構築
 kfiABCD遺伝子の発現プラスミドpVK9-kfiABCDをエシェリヒア・コリBL21(DE3)株(ライフテクノロジーズ社)へエレクトロポレーション(Cell; 80μL, 200Ω, 25μF, 1.8 kV、キュベット;0.1 mL)により導入し、エシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株を得た。この株を25μg/mL カナマイシン添加LB寒天培地に塗り広げ、37℃で一晩前培養を行った。その後、プレート上の菌体を掻き取り、試験管に2 mL張りこんだ生産培地中に植菌した。37℃にて40時間振とう培養を行い、培地中のグリセロールが完全に消費された時点で培養を終了した。
 生産培地の組成を以下に示す。
〔生産培地〕(各成分の濃度は最終濃度)
成分1:
 グリセロール                     10 g/L
成分2:
 MOPS(3-N-morpholino-propanesulphonic acid)     41.9 g/L
成分3:
 トリプトン                       8.8 g/L
 イーストエクストラクト                 4.4 g/L
 塩化ナトリウム                     8.8 g/L
 成分1および成分3は、それぞれ120℃、20分のオートクレーブ滅菌し、成分2はフィルター滅菌した。室温に冷却後、3者を混合した。
(1-3)カルバゾール法による多糖の定量
 カルバゾール法(Bitter, T. and Murir H. M., Anal. Biochem. 1962;4:330-334)により、生成した多糖の定量を行った。手順を以下に示す。
 培養液(発酵ブロス)から遠心分離により培養上清を回収した。150μLの培養上清に500μLの100% エタノールを加え、遠心分離によって多糖成分を沈降させた。得られた沈殿を風乾させ、300μLの0.2 N 水酸化ナトリウム水溶液で沈殿を溶解した。得られたサンプル(溶解物)30μLを、冷却した0.025 M 四ホウ素酸・硫酸水溶液150μLに静かに加え、100℃で10分加熱した。室温に冷却後、0.025% カルバゾール溶液(カルバゾール 0.125 gを100% エタノール 100 mLで溶解したもの)30μLを添加した。100℃で15分加熱した後、室温まで冷却し、吸光度530 nmを測定した。D-グルクロン酸を標準曲線として定量した結果、サンプル(溶解物)に含まれる多糖濃度はグルクロン酸濃度に換算して140.5 mg/Lと算出された。
実施例2:生成多糖の構造解析
(2-1)核磁気共鳴(NMR)スペクトル解析
 実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液31 gを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて1.1 gまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液をエバポレーターで減圧濃縮し、その残渣液に重水600μLを添加して溶解液を調製後、1H-NMR測定を行った。
 分析条件を以下に示す。
(A)装置名  Bruker製  AVANCE400  1H; 400 MHz
(B)溶媒  重水
(C)温度  室温
(D)測定回数 16回
 結果、1H-NMR(D2O)σ:1.9(N-アセチル基のメチルプロトン)、3.3-4.5(C2からC6のメチレン及びメチンプロトン)、5.3(C1のメチンプロトン)のスペクトルが観察された。これらのスペクトルは、Iduron製ヘパロサン(ロット番号:B.N.4)の1H-NMRスペクトルと同一であった。
(2-2)液体クロマトグラフ質量分析(LC-MS)による二糖組成分析
 実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液40 mLを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて4 mLまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液50μLに、Tri-buffer(200 mM Tri-HCl、1 M NaCl、15 mM CaCl2;35%塩酸でpH7(25℃)に調整)10μL、ヘパリナーゼIII 10μL(0.005 unit/mL、Iduron製)、および水30μLを添加し、37℃で16時間酵素処理を行った。得られた酵素処理液に900μLの水を添加し、LC-MS分析を行った。
 分析条件を以下に示す。
(A)装置名  島津製作所製 LC-MS  2010
(B)カラム  UG80(SCX  資生堂) 2.0 mm * 250 mm  粒子径:5μm
(C)移動相  CH3CN/10 mM ギ酸=8/2
(D)流速 0.2 mL/min
(E)カラム温度 40℃
(F)注入量 10μL
(G)UV(PDA)  200-600 nm
(H)MS(ESI)  100-2000(ポジ、ネガ)
 結果、リテンションタイム:6 minに、[m/z]=362(M+H-H2O), 380(M+H), 418(M+K)のフラグメントイオンを検出した。酵素処理液のリテンションタイム及びフラグメントパターンは、ヘパリンおよびヘパラン硫酸のヘパリナーゼ消化産物であるΔGlcUA-GlcNAc標品(Heparin disaccharide IV-A sodium salt, Sigma-Aldrich社)のリテンションタイム及びフラグメントパターンと一致した。ΔGlcUA-GlcNAc標品の構造式を下記式(I)に示した。
Figure JPOXMLDOC01-appb-C000004
 上記のNMR及びLC-MSの結果から、BL21(DE3)/pVK9-kfiABCD株の培養ブロスより得られた高分子成分は目的とするヘパロサンであると同定した。従って、カルバゾール法にて定量されるヘパロサン濃度として、グルクロン酸濃度に係数2.067を乗算した値を用いることとした。
(2-3)ゲルろ過クロマトグラフィー(GPC)分析
 実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液31 gを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて1.1 gまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液のGPC測定を行った。
 分析条件を以下に示す。
(A)装置名  島津製HPLC
(B)カラム  Asahipak GS520HQ  7.5 mm * 300 mm
(C)移動相  100 mM KH2PO4
(D)流速 0.6 mL/min
(E)カラム温度 40℃
(F)注入量 20μL
(G)UV  200 nm
(H)分子量標準試料 プルラン(昭和電工製 P-82)
 結果、リテンションタイム(ピークトップ):8.3 min、数平均分子量(Mn):240,000、重量平均分子量(Mw):320,000、Mw/Mn=1.3であることが確認された。
実施例3:ヘパロサン生産能を向上させる因子のスクリーニング
 本実施例では、ヘパロサン生産株にエシェリヒア・コリK5株のゲノムライブラリーを導入し、ヘパロサン生産能を向上させる因子のスクリーニングを行った。
(3-1)エシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株の構築
 ゲノムライブラリーを導入するためのヘパロサン生産株として、kfiABCD遺伝子が導入され、且つ、rfaH遺伝子の発現が増強されたエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株を、以下の手順で構築した。
 rfaH遺伝子の発現増強株は、染色体上のrfaH遺伝子の天然のプロモーター領域を強力なtacプロモーター(Amann E. et al.,(1983) “Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli.” Gene., 25(2-3):167-78.)へ置換することによって取得した。tacプロモーターによるrfaHプロモーターの置換は、「Red駆動型組込み(Red-driven integration)」と呼ばれるDatsenko及びWannerによって初めて開発された方法 (“One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.”, Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6640-6645) を用いて行った。この手法に従い、PCRによって増幅されたDNA断片がゲノムDNAへ挿入された菌株を取得できる。
 まず、Pantoea ananatis NA1Δc1129株(WO2010/027022A1)のゲノムDNAをテンプレートとし、プライマーrfaH-attL Fw(配列番号6)およびプライマーrfaH-Ptac Rv(配列番号7)を用いたPCRにより、プロモーター置換用DNA断片を増幅した。PCRにはPrimeStarポリメラーゼを用い、PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 3分を30サイクル、最後に4℃保温。プライマーrfaH-attL Fw(配列番号6)は、rfaH遺伝子の上流に位置する領域及びNA1Δc1129株のゲノムDNAに存在するカナマイシン(Km)耐性を付与する遺伝子に隣接する領域の両者と相同性を有する。NA1Δc1129株のゲノムDNAに存在するKm耐性遺伝子kanは、λファージのアタッチメントサイトであるattL及びattR遺伝子の間に挿入されており、さらにその下流にはtacプロモーター(Ptac;配列番号8)がattL-kan-attR-Ptacの順で挿入されている。プライマーrfaH-Ptac Rv(配列番号7)は、rfaH領域及びNA1Δc1129株のゲノムDNA のtacプロモーターの下流に位置する領域の両者と相同性を有する。
 次いで、エシェリヒア・コリBL21(DE3)株(ライフテクノロジーズ社, C6000-03)に温度感受性の複製起点を有するプラスミドpKD46(Datsenko and Wanner, Proc. Natl. Acad. Sci. USA, 2000, 97:12:6640-45)を導入したBL21(DE3)/pKD46株に、上記で得られたPCR産物をエレクトロポレーションにより導入し、プロモーター領域の置換を行った。プラスミドpKD46は、アラビノース誘導性のParaBプロモーター制御下にあるλ-Red相同組換え系の遺伝子(γ、β、エキソ遺伝子)を含み、ファージλ(GenBankアクセッション番号J02459)の2154塩基(31088-33241)のDNAフラグメントを含む。プラスミドpKD46は、PCR産物をBL21(DE3)株の染色体に組込むのに必要である。エシェリヒア・コリBL21(DE3)/pKD46株をアンピシリン(100 mg/L)含有LB培地において30℃で一晩生育させた。この培養物を、アンピシリン及びL-アラビノース(1 mM)を含有するLB培地100 mLで100倍に希釈した。菌体を30℃で通気しながらOD 600が約0.3になるまで生育させ、それから100倍に濃縮し、氷冷したグリセロール水溶液(10%)で3回洗浄することによりエレクトロコンピテント化した。菌体70μL及びPCR産物約100 ngを使用して、エレクトロポレーションを行った。エレクトロポレーション後に、菌体をSOC培地(Sambrook et al.著「モレキュラークローニング実験室マニュアル、第2版」(Cold Spring Harbor Laboratory Press(1989))1 mLで37℃ 2.5時間インキュベートし、LB寒天培地上にプレーティングし、37℃で生育させ、Km耐性株を選抜した。
 rfaHプロモーターがtacプロモーターに置換されたことは、プロモーター置換後の塩基配列に特異的なプライマーrfaH CF(配列番号9)及びプライマーrfaH CR(配列番号10)によるPCRによって確認した。PCRには、PrimeStarポリメラーゼを用いた。PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 2分を30サイクル、最後に4℃保温。1.6 kbpのDNA断片の増幅が確認できた株をBL21(DE3)-Ptac-rfaH(KmR)株とした。
 BL21(DE3)-Ptac-rfaH(KmR)株からKm耐性マーカーを除去するために、プラスミドpMW118-int-xis(アンピシリン耐性(AmpR))を導入した(WO2005/010175)。AmpRクローンを、30℃で150 mg/Lのアンピシリンを含むLB寒天プレート上で生育させた。数十個のAmpRクローンを拾い、Km感受性株を選抜した。得られたKm感受性株をLB寒天プレート上で、42℃でインキュベートすることにより、プラスミドpMW118-int-xisをKm感受性株から除去した。得られたAmp感受性株をBL21(DE3)-Ptac-rfaH株とした。BL21(DE3)-Ptac-rfaH株に実施例1で作製したプラスミドpVK9-kfiABCDをエレクトロポレーション法によって導入し、BL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株を取得した。実施例1に示すのと同じ培地および培養方法で試験管培養を行ない、カルバゾール法によってヘパロサン生産量を定量した。rfaH遺伝子の発現を増強していないBL21(DE3)/pVK9- kfiABCD株およびrfaH遺伝子の発現を増強したBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株のヘパロサン生産量を表4に示す。
Figure JPOXMLDOC01-appb-T000005
(3-2)エシェリヒア・コリK5株のゲノムライブラリーの構築
 エシェリヒア・コリK5株のゲノムDNAの断片をpSTV28ベクター(配列番号11、TaKaRa社)にクローニングし、ゲノムライブラリーを構築した。
 ゲノムライブラリーの構築の詳細を以下に示す。エシェリヒア・コリK5株のゲノムDNA 3μgをDNA断片化装置(ハイドロシェアー、Gene machine社)を用いてランダムに断片化し、アガロース電気泳動によって分画した。アガロースゲルから約3-5 kbのDNAを含む断片を切り出して、DNAを抽出、精製した後、平滑末端処理を行った。次に、HincIIで消化し、Alkaline Phosphatase(E. coli C75)(TaKaRa社)により脱リン酸化した50 ngのプラスミドベクターpSTV28(TaKaRa社)と上記のゲノムDNA断片とをライゲーションした。エレクトロポレーション法により、ライゲーション産物で大腸菌HST08株(TaKaRa社)を形質転換した。得られた形質転換体の70%以上が約3-5 kbのインサートを含んでいた。形質転換体を培養して、プラスミドを抽出し、ゲノムライブラリーとした。
(3-3)ゲノムライブラリー導入によるヘパロサン生産能向上株の選別
 BL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株にゲノムライブラリーまたはコントロールとしてpSTV28をエレクトロポレーション法により導入した。得られたゲノムライブラリートランスフォーマントより1クローンずつ選び、発酵生産培養に供した。培養には下記組成の培地を用いた。
〔シード培地〕(各成分の濃度は最終濃度)
 トリプトン                       10 g/L
 イーストエクストラクト                 5 g/L
 塩化ナトリウム                    10 g/L
 シード培地は、120℃、20分のオートクレーブ滅菌した。

〔生産培地〕(各成分の濃度は最終濃度)
成分1:
 グリセロール                     10 g/L
成分2:
 MOPS(3-N-morpholino-propanesulphonic acid)     41.9 g/L
成分3:
 トリプトン                       8.8 g/L
 イーストエクストラクト                 4.4 g/L
 塩化ナトリウム                     8.8 g/L
 成分1および成分3は、それぞれ120℃、20分のオートクレーブ滅菌し、成分2はフィルター滅菌した。室温に冷却後、3者を混合した。
 ヘパロサン生産培養は以下の手順で行った。まずは750μlのシード培地を張りこんだ96穴プレート(MEDISCAN社)にトランスフォーマントを1コロニーずつ植菌し、振とう装置(タイテック社)にて37℃で一晩振とう培養を行った。続いて、シード培養液を、試験管に2 mL張りこんだ生産培地中に20μl植菌し、37℃にて30時間振とう培養を行い、培地中のグリセロールが完全に消費された時点で培養を終了した。プラスミドを保持させるため、全培養行程でカナマイシン(25 mg/L)及びクロラムフェニコール(25 mg/L)を添加した。培地中に生産されたヘパロサンの定量は、カルバゾール法(Bitter, T. and Murir H. M., Anal. Biochem. 1962;4:330-334)により行った。同時に培養を行ったコントロールベクター(pSTV28)導入株と比較し、ヘパロサン蓄積量が上昇したクローンを単離した。単離されたクローンが保持するプラスミドに挿入された遺伝子を同定するため、プライマーpSTV Fw(配列番号12)及びプライマーpSTV Rv(配列番号13)を用い挿入されたDNA断片の塩基配列を決定した。その結果、プラスミドは、各々、rbsBKR-hsrA、glgBX、ybiXIJCB、rcsBD-micF、pcoESR、yhcNO-aaeBAX、g1455-alpA-g1453、yrbA-mlaBCDEF-yrbG、norW、ybjIJK-rybB、thrBAL-yjtD-yjjY、fruA-psuK、ytfT-yjfF-fbp、yagU-paoAB、gsiCD-yliE、irp(一部)、bhsA-ycfS、lepB-rnc-era、dapA-gcvR-bcp-hyfA、rpoE-nadB-yfiC-srmB、g1414-g1413、nuoEFG、glmZ-hemYXD、rlmL、artQMJ-rlmC-ybjO、yejOML、rpoS-ygbNML、g3798-g3797-g3796-g3795-g3794-g3793-g3792、ryjA-soxRS-yjcCB、efeUOを含むことが明らかになった。なお、irp(一部)とは、irp2遺伝子の一部およびirp1遺伝子の一部である。rbsBKR-hsrA、glgBX、ybiXIJCB、rcsBD-micF、pcoESR、yhcNO-aaeBAX、g1455-alpA-g1453、yrbA-mlaBCDEF-yrbG、norW、ybjIJK-rybB、thrBAL-yjtD-yjjY、fruA-psuK、ytfT-yjfF-fbp、yagU-paoAB、gsiCD-yliE、irp(一部)、bhsA-ycfS、lepB-rnc-era、dapA-gcvR-bcp-hyfA、rpoE-nadB-yfiC-srmB、g1414-g1413、nuoEFG、glmZ-hemYXD、rlmL、artQMJ-rlmC-ybjO、yejOML、rpoS-ygbNML、g3798-g3797-g3796-g3795-g3794-g3793-g3792、ryjA-soxRS-yjcCB、efeUOを含む挿入断片の塩基配列を、それぞれ、配列番号29、34、37、43、50、54、60、64、72、74、78、84、87、91、95、99、104、107、111、116、121、124、128、132、134、140、144、149、157、162に示す。単離されたクローンよりプラスミドpSTV28-rbsBKR-hsrA、pSTV28-glgBX、pSTV28-ybiXIJCB、pSTV28-rcsBD-micF、pSTV28-pcoESR、pSTV28-yhcNO-aaeBAX、pSTV28-g1455-alpA-g1453、pSTV28-yrbA-mlaBCDEF-yrbG、pSTV28-norW、pSTV28-ybjIJK-rybB、pSTV28-thrBAL-yjtD-yjjY、pSTV28-fruA-psuK、pSTV28-ytfT-yjfF-fbp、pSTV28-yagU-paoAB、pSTV28-gsiCD-yliE、pSTV28-irp、pSTV28-bhsA-ycfS、pSTV28-lepB-rnc-era、pSTV28-dapA-gcvR-bcp-hyfA、pSTV28-rpoE-nadB-yfiC-srmB、pSTV28-g1414-g1413、pSTV28-nuoEFG、pSTV28-glmZ-hemYXD、pSTV28-rlmL、pSTV28-artQMJ-rlmC-ybjO、pSTV28-yejOML、pSTV28-rpoS-ygbNML、pSTV28-g3798-g3797-g3796-g3795-g3794-g3793-g3792、pSTV28-ryjA-soxRS-yjcCB、pSTV28-efeUOを抽出した。
実施例4: rbsBKR-hsrA、glgBX、ybiXIJCB、rcsBD-micF遺伝子の発現増強株によるヘパロサン生産(1)
 実施例1にて構築したエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-rbsBKR-hsrA、pSTV28-glgBX、pSTV28-ybiXIJCB、pSTV28-rcsBD-micF、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表5に示した。
Figure JPOXMLDOC01-appb-T000006
実施例5:rbsBKR-hsrA、glgBX、ybiXIJCB、rcsBD-micF遺伝子の発現増強株によるヘパロサン生産(2)
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-rbsBKR-hsrA、pSTV28-glgBX、pSTV28-ybiXIJCB、pSTV28-rcsBD-micF、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表6に示した。
Figure JPOXMLDOC01-appb-T000007
実施例6:rfaH遺伝子の発現増強株によるヘパロサン生産
(6-1)エシェリヒア・コリB株のrfaH遺伝子の発現プラスミドの構築
 エシェリヒア・コリBL21(DE3)株よりrfaH遺伝子をpMIV-Pnlp0-terにクローニングし、rfaH遺伝子の発現プラスミドpMIV-Pnlp0-rfaHを構築した。pMIV-Pnlp0-terには強力なnlp0プロモーター(Pnlp0)とrrnBターミネーターが組み込まれており、プロモーターとターミネーターの間に目的の遺伝子を挿入することで発現ユニットとして機能させることができる。「Pnlp0」はエシェリヒア・コリ K-12株由来の野生型nlpD遺伝子のプロモーターを示す。
 発現プラスミドの構築の詳細を以下に示す。エシェリヒア・コリMG1655の染色体DNAをテンプレートとして、プライマーP1(配列番号14)及びプライマーP2(配列番号15)を用いたPCRによって、nlpD遺伝子のプロモーター領域(以下、野生型nlpD遺伝子プロモーターを「Pnlp0」と記載する。)約300 bpを含むDNA断片を取得した。これらプライマーの5’末端には制限酵素SalI及びPaeIのサイトがそれぞれデザインされている。PCRサイクルは次の通りである。95℃ 3分の後、95℃ 60秒、50℃ 30秒、72℃ 40秒を2サイクル、94℃ 20秒、55℃ 20秒、72℃ 15秒を25サイクル、最後に72℃ 5分。得られた断片をSalI及びPaeIで処理し、pMIV-5JS(特開2008-99668)のSalI-PaeIサイトに挿入し、プラスミドpMIV-Pnlp0を取得した。このpMIV-Pnlp0プラスミドに挿入されたPnlp0プロモーターのPaeI-SalI断片の塩基配列は配列番号16に示したとおりである。
 次に、MG1655の染色体DNAをテンプレートとして、プライマーP3(配列番号17)及びプライマーP4(配列番号18)を用いたPCRによってrrnB遺伝子のターミネーター領域約300 bpを含むDNA断片(配列番号19)を取得した。これらプライマーの5’末端には制限酵素XbaI及びBamHIのサイトがそれぞれデザインされている。PCRサイクルは次の通りである。95℃ 3分の後、95℃60秒、50℃ 30秒、72℃ 40秒を2サイクル、94℃ 20秒、59℃ 20秒、72℃ 15秒を25サイクル、最後に72℃ 5分。得られた断片をXbaI及びBamHIで処理し、pMIV-Pnlp0のXbaI-BamHIサイトに挿入し、プラスミドpMIV-Pnlp0-terを取得した。
 続いてエシェリヒア・コリBL21(DE3)株の染色体DNAをテンプレートとして、プライマーrfaH Fw(配列番号20)およびプライマーrfaH Rv(配列番号21)を用いたPCRによって、rfaH遺伝子断片を取得した。これらプライマーの5’末端には制限酵素SalI及びXbaIのサイトがそれぞれデザインされている。PCRにはPrimeStarポリメラーゼを用い、PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 4分を30サイクル、最後に4℃保温。得られた断片をSalI及びXbaIで処理し、pMIV-Pnlp0-terのSalI-XbaIサイトに挿入しプラスミドpMIV-Pnlp0-rfaHを取得した。こうして、pMIV-5JSベクター上に、nlpDプロモーター、rfaH遺伝子、及びrrnBターミネーターが、この順に繋がったrfaHの発現ユニットが構築された。今回クローニングされたエシェリヒア・コリBL21(DE3)株のrfaH遺伝子の塩基配列を配列番号46に示す。
(6-2)rfaH遺伝子の発現増強株によるヘパロサン生産
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp0-rfaH及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサン濃度について各平均値と標準偏差を表7に示した。
Figure JPOXMLDOC01-appb-T000008
実施例7:nusG遺伝子の発現増強株によるヘパロサン生産
(7-1)エシェリヒア・コリB株のnusG遺伝子の発現プラスミドの構築
 エシェリヒア・コリBL21(DE3)株の染色体DNAをテンプレートとして、プライマーnusG Fw(配列番号22)およびプライマーnusG Rv(配列番号23)を用いたPCRによって、nusG遺伝子断片を取得した。これらプライマーの5’末端には制限酵素SalI及びXbaIのサイトがそれぞれデザインされている。PCRにはPrimeStarポリメラーゼを用い、PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 4分を30サイクル、最後に4℃保温。得られた断片をSalI及びXbaIで処理し、同制限酵素で処理したpMIV-Pnlp0-terのSalI-XbaIサイトに挿入し、nusG遺伝子がクローニングされたプラスミドpMIV-Pnlp0-nusGを取得した。今回クローニングされたエシェリヒア・コリBL21(DE3)株のnusG遺伝子の塩基配列を配列番号48に示す。
(7-2)nusG遺伝子の発現増強株によるヘパロサン生産
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp0-nusG及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサンについて各平均値と標準偏差を表8に示した。
Figure JPOXMLDOC01-appb-T000009
実施例8:pcoESR、yhcNO-aaeBAX、g1455-alpA-g1453、yrbA-mlaBCDEF-yrbG、norW、ybjIJK-rybB、thrBAL-yjtD-yjjY、fruA-psuK、ytfT-yjfF-fbp、yagU-paoAB、gsiCD-yliE、irp(一部)、bhsA-ycfS遺伝子の発現増強株によるヘパロサン生産(1)
 実施例1にて構築したエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-pcoESR、pSTV28-yhcNO-aaeBAX、pSTV28-g1455-alpA-g1453、pSTV28-yrbA-mlaBCDEF-yrbG、pSTV28-norW、pSTV28-ybjIJK-rybB、pSTV28-thrBAL-yjtD-yjjY、pSTV28-fruA-psuK、pSTV28-ytfT-yjfF-fbp、pSTV28-yagU-paoAB、pSTV28-gsiCD-yliE、pSTV28-irp、pSTV28-bhsA-ycfS、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表9に示した。
Figure JPOXMLDOC01-appb-T000010
実施例9:pcoESR、yhcNO-aaeBAX、g1455-alpA-g1453、yrbA-mlaBCDEF-yrbG、norW、ybjIJK-rybB、thrBAL-yjtD-yjjY、fruA-psuK、ytfT-yjfF-fbp、yagU-paoAB、gsiCD-yliE、irp(一部)、bhsA-ycfS遺伝子の発現増強株によるヘパロサン生産(2)
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-pcoESR、pSTV28-yhcNO-aaeBAX、pSTV28-g1455-alpA-g1453、pSTV28-yrbA-mlaBCDEF-yrbG、pSTV28-norW、pSTV28-ybjIJK-rybB、pSTV28-thrBAL-yjtD-yjjY、pSTV28-fruA-psuK、pSTV28-ytfT-yjfF-fbp、pSTV28-yagU-paoAB、pSTV28-gsiCD-yliE、pSTV28-irp、pSTV28-bhsA-ycfS、及びコントロールとしてpSTV28を導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表10に示した。
Figure JPOXMLDOC01-appb-T000011
実施例10:lepB-rnc-era、dapA-gcvR-bcp-hyfA、rpoE-nadB-yfiC-srmB、g1414-g1413、nuoEFG、glmZ-hemYXD、rlmL、artQMJ-rlmC-ybjO、yejOML、rpoS-ygbNML、g3798-g3797-g3796-g3795-g3794-g3793-g3792、ryjA-soxRS-yjcCB、efeUO遺伝子の発現増強株によるヘパロサン生産
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-lepB-rnc-era、pSTV28-dapA-gcvR-bcp-hyfA、pSTV28-rpoE-nadB-yfiC-srmB、pSTV28-g1414-g1413、pSTV28-nuoEFG、pSTV28-glmZ-hemYXD、pSTV28-rlmL、pSTV28-artQMJ-rlmC-ybjO、pSTV28-yejOML、pSTV28-rpoS-ygbNML、pSTV28-g3798-g3797-g3796-g3795-g3794-g3793-g3792、pSTV28-ryjA-soxRS-yjcCB、pSTV28-efeUO、及びコントロールとしてpSTV28を導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表11および表12に示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
実施例11:rpoE遺伝子の発現増強株によるヘパロサン生産
(11-1)エシェリヒア・コリK5株のrpoE遺伝子の発現プラスミドの構築
 エシェリヒア・コリK5株よりrpoE遺伝子をpMIV-Pnlp8-terにクローニングし、rpoE遺伝子の発現プラスミドpMIV-Pnlp8-rpoEを構築した。pMIV-Pnlp8-terには強力なnlp8プロモーター(Pnlp8)が組み込まれており、プロモーターとターミネーターの間に目的の遺伝子を挿入することで発現ユニットとして機能させることができる。「Pnlp8」はエシェリヒア・コリ K-12株由来の変異型nlpD遺伝子のプロモーターを示す。
 発現ベクターpMIV-Pnlp8-terの構築の詳細を以下に示す。野生型nlpDプロモーター(Pnlp0)の-10領域を改変することでより強力なプロモーターとするため、以下の手法で-10領域のランダム化を行った。野生型nlpDプロモーター領域(図1;配列番号165)には、プロモーターとして機能すると推定される2箇所の領域が存在し、それぞれ図中ではPnlp1およびPnlp2と示してある。実施例6で構築したプラスミドpMIV-Pnlp0-terをテンプレートとして、プライマーP1(配列番号14)及びプライマーP7(配列番号166)を用いたPCRによって、野生型nlpDプロモーター(Pnlp0)の3'末端側に含まれる-10領域(-10(Pnlp1))をランダム化したDNA断片を取得した。PCRサイクルは次の通りである。95℃ 3分の後、95℃ 60秒、50℃ 30秒、72℃ 40秒を2サイクル、94℃ 20秒、60℃ 20秒、72℃ 15秒を25サイクル、最後に72℃ 5分。
 同様に、プラスミドpMIV-Pnlp0-terをテンプレートとして、プライマーP2(配列番号15)及びプライマーP8(配列番号167)を用いたPCRによって、野生型nlpDプロモーター(Pnlp0)の5'末端側に含まれる-10領域(-10(Pnlp2))をランダム化したDNA断片を取得した。PCRサイクルは次の通りである。95℃ 3分の後、95℃ 60秒、50℃ 30秒、72℃ 40秒を2サイクル、94℃ 20秒、60℃ 20秒、72℃ 15秒を25サイクル、最後に72℃ 5分。
 得られた3'末端側と5'末端側の断片を、プライマーP7とP8にデザインされたBglIIサイトによってつなぎ合わせ、2箇所の-10領域がランダム化された変異型nlpDプロモーター全長を含むDNA断片を構築した。このDNA断片をテンプレートとして、プライマーP1及びプライマーP2を用いたPCRによって、変異型nlpDプロモーター全長を含むDNA断片を増幅した。PCRサイクルは次の通りである。95℃ 3分の後、95℃ 60秒、50℃ 30秒、72℃ 40秒を2サイクル、94℃ 20秒、60℃ 20秒、72℃ 15秒を12サイクル、最後に72℃ 5分。
 増幅した変異型nlpDプロモーター全長を含むDNA断片を、プライマーの5'末端にデザインされている制限酵素SalI及びPaeIで処理し、同じくSalI及びPaeIで処理したプラスミドpMIV-Pnlp0-terに挿入することで、プラスミド上の野生型nlpDプロモーター(Pnlp0)を変異型nlpDプロモーターと置き換えた。こうして得られたプラスミドの内、図2に示すプロモーター配列(Pnlp8;配列番号168)を有するものを選び、pMIV-Pnlp8-terとした。このプラスミドに挿入されたPnlp8プロモーターのPaeI-SalI断片の塩基配列は配列番号169に示したとおりである。
 rpoE遺伝子の発現プラスミドpMIV-Pnlp8-rpoEの構築の詳細を以下に示す。エシェリヒア・コリK5の染色体DNAをテンプレートとして、プライマーrpoE-SalI Fw(配列番号170)及びプライマーrpoE-xba Rv(配列番号171)を用いたPCRによって、rpoE遺伝子のDNA断片を取得した。PCRにはPrimeStarポリメラーゼ(TaKaRa社)を用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 2分を30サイクル、最後に4℃保温。また、pMIV-Pnlp8-terをテンプレートDNAとし、配列番号172及び配列番号173のオリゴヌクレオチドをプライマーとして用いたPCRによって、pMIV-Pnlp8-terのDNA断片を得た。PCRにはPrimeStarポリメラーゼを用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 6分を30サイクル、最後に4℃保温。得られた両DNA断片をIn-FusionRHDクローニングキット(クロンテック社製)を用いて連結し、rpoE遺伝子の発現プラスミドpMIV-Pnlp8-rpoEを構築した。クローニングされたrpoE遺伝子の塩基配列を配列番号174に示す。
(11-2)rpoE遺伝子の発現増強株によるヘパロサン生産
 実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp8-rpoE及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサンについて各平均値と標準偏差を表13に示した。
Figure JPOXMLDOC01-appb-T000014
 本発明によれば、細菌のヘパロサン生産能を向上させることができ、ヘパロサンを効率よく製造することができる。
<配列表の説明>
配列番号1:pVK9の塩基配列
配列番号2~7:プライマー
配列番号8:tacプロモーターの塩基配列
配列番号9、10:プライマー
配列番号11:pSTV28の塩基配列
配列番号12~15:プライマー
配列番号16:野生型nlpDプロモーター(Pnlp0)を含むPaeI-SalI断片の塩基配列
配列番号17、18:プライマー
配列番号19:rrnBターミネーターの塩基配列
配列番号20~23:プライマー
配列番号24:エシェリヒア・コリK5株のkfiABCDオペロンの塩基配列
配列番号25:エシェリヒア・コリK5株のKfiAタンパク質のアミノ酸配列
配列番号26:エシェリヒア・コリK5株のKfiBタンパク質のアミノ酸配列
配列番号27:エシェリヒア・コリK5株のKfiCタンパク質のアミノ酸配列
配列番号28:エシェリヒア・コリK5株のKfiDタンパク質のアミノ酸配列
配列番号29:エシェリヒア・コリK5株のrbsBKR-hsrA遺伝子を含む領域の塩基配列
配列番号30:エシェリヒア・コリK5株のRbsBタンパク質のアミノ酸配列
配列番号31:エシェリヒア・コリK5株のRbsKタンパク質のアミノ酸配列
配列番号32:エシェリヒア・コリK5株のRbsRタンパク質のアミノ酸配列
配列番号33:エシェリヒア・コリK5株のHsrAタンパク質のアミノ酸配列
配列番号34:エシェリヒア・コリK5株のglgBX遺伝子を含む領域の塩基配列
配列番号35:エシェリヒア・コリK5株のGlgBタンパク質のアミノ酸配列
配列番号36:エシェリヒア・コリK5株のGlgXタンパク質のアミノ酸配列
配列番号37:エシェリヒア・コリK5株のybiXIJCB遺伝子を含む領域の塩基配列
配列番号38:エシェリヒア・コリK5株のYbiXタンパク質のアミノ酸配列
配列番号39:エシェリヒア・コリK5株のYbiIタンパク質のアミノ酸配列
配列番号40:エシェリヒア・コリK5株のYbiJタンパク質のアミノ酸配列
配列番号41:エシェリヒア・コリK5株のYbiCタンパク質のアミノ酸配列
配列番号42:エシェリヒア・コリK5株のYbiBタンパク質のアミノ酸配列
配列番号43:エシェリヒア・コリK5株のrcsBD-micF遺伝子を含む領域の塩基配列
配列番号44:エシェリヒア・コリK5株のRcsBタンパク質のアミノ酸配列
配列番号45:エシェリヒア・コリK5株のRcsDタンパク質のアミノ酸配列
配列番号46:エシェリヒア・コリBL21(DE3)株のrfaH遺伝子の塩基配列
配列番号47:エシェリヒア・コリBL21(DE3)株のRfaHタンパク質のアミノ酸配列
配列番号48:エシェリヒア・コリBL21(DE3)株のnusG遺伝子の塩基配列
配列番号49:エシェリヒア・コリBL21(DE3)株のNusGタンパク質のアミノ酸配列
配列番号50:エシェリヒア・コリK5株のpcoRSE遺伝子を含む領域の塩基配列
配列番号51:エシェリヒア・コリK5株のPcoRタンパク質のアミノ酸配列
配列番号52:エシェリヒア・コリK5株のPcoSタンパク質のアミノ酸配列
配列番号53:エシェリヒア・コリK5株のPcoEタンパク質のアミノ酸配列
配列番号54:エシェリヒア・コリK5株のyhcNO-aaeBAX遺伝子を含む領域の塩基配列
配列番号55:エシェリヒア・コリK5株のYchNタンパク質のアミノ酸配列
配列番号56:エシェリヒア・コリK5株のYchOタンパク質のアミノ酸配列
配列番号57:エシェリヒア・コリK5株のAaeBタンパク質のアミノ酸配列
配列番号58:エシェリヒア・コリK5株のAaeAタンパク質のアミノ酸配列
配列番号59:エシェリヒア・コリK5株のAaeXタンパク質のアミノ酸配列
配列番号60:エシェリヒア・コリK5株のg1455-alpA-g1453遺伝子を含む領域の塩基配列
配列番号61:エシェリヒア・コリK5株のG1455タンパク質のアミノ酸配列
配列番号62:エシェリヒア・コリK5株のAlpAタンパク質のアミノ酸配列
配列番号63:エシェリヒア・コリK5株のG1453タンパク質のアミノ酸配列
配列番号64:エシェリヒア・コリK5株のyrbA-mlaBCDEF-yrbG遺伝子を含む領域の塩基配列
配列番号65:エシェリヒア・コリK5株のYrbAタンパク質のアミノ酸配列
配列番号66:エシェリヒア・コリK5株のMlaBタンパク質のアミノ酸配列
配列番号67:エシェリヒア・コリK5株のMlaCタンパク質のアミノ酸配列
配列番号68:エシェリヒア・コリK5株のMlaDタンパク質のアミノ酸配列
配列番号69:エシェリヒア・コリK5株のMlaEタンパク質のアミノ酸配列
配列番号70:エシェリヒア・コリK5株のMlaFタンパク質のアミノ酸配列
配列番号71:エシェリヒア・コリK5株のYrbGタンパク質のアミノ酸配列
配列番号72:エシェリヒア・コリK5株のnorW遺伝子を含む領域の塩基配列
配列番号73:エシェリヒア・コリK5株のNorWタンパク質のアミノ酸配列
配列番号74:エシェリヒア・コリK5株のybjIJK-rybB遺伝子を含む領域の塩基配列
配列番号75:エシェリヒア・コリK5株のYbjIタンパク質のアミノ酸配列
配列番号76:エシェリヒア・コリK5株のYbjJタンパク質のアミノ酸配列
配列番号77:エシェリヒア・コリK5株のYbjKタンパク質のアミノ酸配列
配列番号78:エシェリヒア・コリK5株のyjjY-yjtD-thrLAB遺伝子を含む領域の塩基配列
配列番号79:エシェリヒア・コリK5株のYjjYタンパク質のアミノ酸配列
配列番号80:エシェリヒア・コリK5株のYjtDタンパク質のアミノ酸配列
配列番号81:エシェリヒア・コリK5株のThrLタンパク質のアミノ酸配列
配列番号82:エシェリヒア・コリK5株のThrAタンパク質のアミノ酸配列
配列番号83:エシェリヒア・コリK5株のThrBタンパク質のアミノ酸配列
配列番号84:エシェリヒア・コリK5株のfruA-psuK遺伝子を含む領域の塩基配列
配列番号85:エシェリヒア・コリK5株のFruAタンパク質のアミノ酸配列
配列番号86:エシェリヒア・コリK5株のPsuKタンパク質のアミノ酸配列
配列番号87:エシェリヒア・コリK5株のytfT-yjfF-fbp遺伝子を含む領域の塩基配列
配列番号88:エシェリヒア・コリK5株のYtfTタンパク質のアミノ酸配列
配列番号89:エシェリヒア・コリK5株のYjfFタンパク質のアミノ酸配列
配列番号90:エシェリヒア・コリK5株のFbpタンパク質のアミノ酸配列
配列番号91:エシェリヒア・コリK5株のyagU-paoAB遺伝子を含む領域の塩基配列
配列番号92:エシェリヒア・コリK5株のYagUタンパク質のアミノ酸配列
配列番号93:エシェリヒア・コリK5株のPaoAタンパク質のアミノ酸配列
配列番号94:エシェリヒア・コリK5株のPaoBタンパク質のアミノ酸配列
配列番号95:エシェリヒア・コリK5株のgsiCD-yliE遺伝子を含む領域の塩基配列
配列番号96:エシェリヒア・コリK5株のGsiCタンパク質のアミノ酸配列
配列番号97:エシェリヒア・コリK5株のGsiDタンパク質のアミノ酸配列
配列番号98:エシェリヒア・コリK5株のYliEタンパク質のアミノ酸配列
配列番号99:エシェリヒア・コリK5株のirp遺伝子の一部を含む領域の塩基配列
配列番号100:エシェリヒア・コリK5株のirp2遺伝子の塩基配列
配列番号101:エシェリヒア・コリK5株のIrp2タンパク質のアミノ酸配列
配列番号102:エシェリヒア・コリK5株のirp1遺伝子の塩基配列
配列番号103:エシェリヒア・コリK5株のIrp1タンパク質のアミノ酸配列
配列番号104:エシェリヒア・コリK5株のbhsA-ycfS遺伝子を含む領域の塩基配列
配列番号105:エシェリヒア・コリK5株のBhsAタンパク質のアミノ酸配列
配列番号106:エシェリヒア・コリK5株のYcfSタンパク質のアミノ酸配列
配列番号107:エシェリヒア・コリK5株のlepB-rnc-era遺伝子を含む領域の塩基配列
配列番号108:エシェリヒア・コリK5株のLepBタンパク質のアミノ酸配列
配列番号109:エシェリヒア・コリK5株のRncタンパク質のアミノ酸配列
配列番号110:エシェリヒア・コリK5株のEraタンパク質のアミノ酸配列
配列番号111:エシェリヒア・コリK5株のdapA-gcvR-bcp-hyfA遺伝子を含む領域の塩基配列
配列番号112:エシェリヒア・コリK5株のDapAタンパク質のアミノ酸配列
配列番号113:エシェリヒア・コリK5株のGcvRタンパク質のアミノ酸配列
配列番号114:エシェリヒア・コリK5株のBcpタンパク質のアミノ酸配列
配列番号115:エシェリヒア・コリK5株のHyfAタンパク質のアミノ酸配列
配列番号116:エシェリヒア・コリK5株のrpoE-nadB-yfiC-srmB遺伝子を含む領域の塩基配列
配列番号117:エシェリヒア・コリK5株のRpoEタンパク質のアミノ酸配列
配列番号118:エシェリヒア・コリK5株のNadBタンパク質のアミノ酸配列
配列番号119:エシェリヒア・コリK5株のYfiCタンパク質のアミノ酸配列
配列番号120:エシェリヒア・コリK5株のSrmBタンパク質のアミノ酸配列
配列番号121:エシェリヒア・コリK5株のg1414-g1413遺伝子を含む領域の塩基配列
配列番号122:エシェリヒア・コリK5株のG1414タンパク質のアミノ酸配列
配列番号123:エシェリヒア・コリK5株のG1413タンパク質のアミノ酸配列
配列番号124:エシェリヒア・コリK5株のnuoEFG遺伝子を含む領域の塩基配列
配列番号125:エシェリヒア・コリK5株のNuoEタンパク質のアミノ酸配列
配列番号126:エシェリヒア・コリK5株のNuoFタンパク質のアミノ酸配列
配列番号127:エシェリヒア・コリK5株のNuoGタンパク質のアミノ酸配列
配列番号128:エシェリヒア・コリK5株のglmZ-hemYXD遺伝子を含む領域の塩基配列
配列番号129:エシェリヒア・コリK5株のHemYタンパク質のアミノ酸配列
配列番号130:エシェリヒア・コリK5株のHemXタンパク質のアミノ酸配列
配列番号131:エシェリヒア・コリK5株のHemDタンパク質のアミノ酸配列
配列番号132:エシェリヒア・コリK5株のrlmL遺伝子を含む領域の塩基配列
配列番号133:エシェリヒア・コリK5株のRlmLタンパク質のアミノ酸配列
配列番号134:エシェリヒア・コリK5株のartQMJ-rlmC-ybjO遺伝子を含む領域の塩基配列
配列番号135:エシェリヒア・コリK5株のArtQタンパク質のアミノ酸配列
配列番号136:エシェリヒア・コリK5株のArtMタンパク質のアミノ酸配列
配列番号137:エシェリヒア・コリK5株のArtJタンパク質のアミノ酸配列
配列番号138:エシェリヒア・コリK5株のRlmCタンパク質のアミノ酸配列
配列番号139:エシェリヒア・コリK5株のYbjOタンパク質のアミノ酸配列
配列番号140:エシェリヒア・コリK5株のyejOML遺伝子を含む領域の塩基配列
配列番号141:エシェリヒア・コリK5株のYejOタンパク質のアミノ酸配列
配列番号142:エシェリヒア・コリK5株のYejMタンパク質のアミノ酸配列
配列番号143:エシェリヒア・コリK5株のYejLタンパク質のアミノ酸配列
配列番号144:エシェリヒア・コリK5株のrpoS-ygbNML遺伝子を含む領域の塩基配列
配列番号145:エシェリヒア・コリK5株のRpoSタンパク質のアミノ酸配列
配列番号146:エシェリヒア・コリK5株のYgbNタンパク質のアミノ酸配列
配列番号147:エシェリヒア・コリK5株のYgbMタンパク質のアミノ酸配列
配列番号148:エシェリヒア・コリK5株のYgbLタンパク質のアミノ酸配列
配列番号149:エシェリヒア・コリK5株のg3798-g3797-g3796-g3795-g3794-g3793-g3792遺伝子を含む領域の塩基配列
配列番号150:エシェリヒア・コリK5株のG3798タンパク質のアミノ酸配列
配列番号151:エシェリヒア・コリK5株のG3797タンパク質のアミノ酸配列
配列番号152:エシェリヒア・コリK5株のG3796タンパク質のアミノ酸配列
配列番号153:エシェリヒア・コリK5株のG3795タンパク質のアミノ酸配列
配列番号154:エシェリヒア・コリK5株のG3794タンパク質のアミノ酸配列
配列番号155:エシェリヒア・コリK5株のG3793タンパク質のアミノ酸配列
配列番号156:エシェリヒア・コリK5株のG3792タンパク質のアミノ酸配列
配列番号157:エシェリヒア・コリK5株のryjA-soxRS-yjcCB遺伝子を含む領域の塩基配列
配列番号158:エシェリヒア・コリK5株のSoxRタンパク質のアミノ酸配列
配列番号159:エシェリヒア・コリK5株のSoxSタンパク質のアミノ酸配列
配列番号160:エシェリヒア・コリK5株のYjcCタンパク質のアミノ酸配列
配列番号161:エシェリヒア・コリK5株のYjcBタンパク質のアミノ酸配列
配列番号162:エシェリヒア・コリK5株のefeUO遺伝子を含む領域の塩基配列
配列番号163:エシェリヒア・コリK5株のEfeUタンパク質のアミノ酸配列
配列番号164:エシェリヒア・コリK5株のEfeOタンパク質のアミノ酸配列
配列番号165:野生型nlpDプロモーター(Pnlp0)の塩基配列
配列番号166、167:プライマー
配列番号168:変異型nlpDプロモーター(Pnlp8)の塩基配列
配列番号169:変異型nlpDプロモーター(Pnlp8)を含むPaeI-SalI断片の塩基配列
配列番号170~173:プライマー
配列番号174:エシェリヒア・コリK5株のrpoE遺伝子の塩基配列

Claims (9)

  1.  ヘパロサン生産能を有するエシェリヒア属細菌であって、
     rpoE、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されていることを特徴とする、細菌。
  2.  少なくともrpoE遺伝子の発現が増大するように改変されている、請求項1に記載の細菌。
  3.  少なくともrfaH遺伝子の発現が増大するように改変されている、請求項1に記載の細菌。
  4.  さらに、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、およびycfS遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されている、請求項3に記載の細菌。
  5.  前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって増大した、請求項1~4のいずれか1項に記載の細菌。
  6.  エシェリヒア・コリである、請求項1~5のいずれか1項に記載の細菌。
  7.  前記rbsB遺伝子が、配列番号29の800~1690位に示す塩基配列を含むDNA、または、配列番号29の800~1690位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rbsK遺伝子が、配列番号29の1816~2745位に示す塩基配列を含むDNA、または、配列番号29の1816~2745位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rbsR遺伝子が、配列番号29の2749~3741位に示す塩基配列を含むDNA、または、配列番号29の2749~3741位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記hsrA遺伝子が、配列番号29の3707~5134位に示す塩基配列の相補配列を含むDNA、または、配列番号29の3707~5134位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記glgB遺伝子が、配列番号34の989~3175位に示す塩基配列を含むDNA、または、配列番号34の989~3175位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記glgX遺伝子が、配列番号34の3172~5145位に示す塩基配列を含むDNA、または、配列番号34の3172~5145位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rcsB遺伝子が、配列番号43の3312~3962位に示す塩基配列を含むDNA、または、配列番号43の3312~3962位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rcsD遺伝子が、配列番号43の623~3295位に示す塩基配列を含むDNA、または、配列番号43の623~3295位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記micF遺伝子が、配列番号43の219~311位に示す塩基配列を含むDNA、または、配列番号43の219~311位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybiX遺伝子が、配列番号37の718~1395位に示す塩基配列を含むDNA、または、配列番号37の718~1395位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybiI遺伝子が、配列番号37の1469~1735位に示す塩基配列を含むDNA、または、配列番号37の1469~1735位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybiJ遺伝子が、配列番号37の2000~2260位に示す塩基配列を含むDNA、または、配列番号37の2000~2260位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybiC遺伝子が、配列番号37の2488~3574位に示す塩基配列の相補配列を含むDNA、または、配列番号37の2488~3574位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybiB遺伝子が、配列番号37の3715~4677位に示す塩基配列の相補配列を含むDNA、または、配列番号37の3715~4677位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rfaH遺伝子が、配列番号46に示す塩基配列を含むDNA、または、配列番号46に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記nusG遺伝子が、配列番号48に示す塩基配列を含むDNA、または、配列番号48に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記pcoR遺伝子が、配列番号50の128~808位に示す塩基配列を含むDNA、または、配列番号50の128~808位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記pcoS遺伝子が、配列番号50の805~2205位に示す塩基配列を含むDNA、または、配列番号50の805~2205位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記pcoE遺伝子が、配列番号50の2423~2857位に示す塩基配列を含むDNA、または、配列番号50の2423~2857位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yhcN遺伝子が、配列番号54の63~326位に示す塩基配列を含むDNA、または、配列番号54の63~326位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yhcO遺伝子が、配列番号54の382~654位に示す塩基配列の相補配列を含むDNA、または、配列番号54の382~654位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記aaeB遺伝子が、配列番号54の746~2713位に示す塩基配列の相補配列を含むDNA、または、配列番号54の746~2713位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記aaeA遺伝子が、配列番号54の2719~3651位に示す塩基配列の相補配列を含むDNA、または、配列番号54の2719~3651位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記aaeX遺伝子が、配列番号54の3659~3931位に示す塩基配列の相補配列を含むDNA、または、配列番号54の3659~3931位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g1455遺伝子が、配列番号60の568~1140位に示す塩基配列の相補配列を含むDNA、または、配列番号60の568~1140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記alpA遺伝子が、配列番号60の1226~1486位に示す塩基配列の相補配列を含むDNA、または、配列番号60の1226~1486位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g1453遺伝子が、配列番号60の2389~2529位に示す塩基配列を含むDNA、または、配列番号60の2389~2529位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yrbA遺伝子が、配列番号64の977~1246位に示す塩基配列の相補配列を含むDNA、または、配列番号64の977~1246位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記mlaB遺伝子が、配列番号64の1391~1780位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1391~1780位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記mlaC遺伝子が、配列番号64の1684~2319位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1684~2319位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記mlaD遺伝子が、配列番号64の2338~2889位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2338~2889位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記mlaE遺伝子が、配列番号64の2894~3676位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2894~3676位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記mlaF遺伝子が、配列番号64の3684~4493位に示す塩基配列の相補配列を含むDNA、または、配列番号64の3684~4493位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yrbG遺伝子が、配列番号64の4703~5680位に示す塩基配列を含むDNA、または、配列番号64の4703~5680位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記norW遺伝子が、配列番号72の1201~2334位に示す塩基配列を含むDNA、または、配列番号72の1201~2334位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybjI遺伝子が、配列番号74の117~932位に示す塩基配列の相補配列を含むDNA、または、配列番号74の117~932位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybjJ遺伝子が、配列番号74の932~2140位に示す塩基配列の相補配列を含むDNA、または、配列番号74の932~2140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybjK遺伝子が、配列番号74の2224~2760位に示す塩基配列を含むDNA、または、配列番号74の2224~2760位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rybB遺伝子が、配列番号74の2777~2855位に示す塩基配列の相補配列を含むDNA、または、配列番号74の2777~2855位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yjjY遺伝子が、配列番号78の124~264位に示す塩基配列を含むDNA、または、配列番号78の124~264位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yjtD遺伝子が、配列番号78の664~1350位に示す塩基配列を含むDNA、または、配列番号78の664~1350位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記thrL遺伝子が、配列番号78の1564~1629位に示す塩基配列を含むDNA、または、配列番号78の1564~1629位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記thrA遺伝子が、配列番号78の1711~4173位に示す塩基配列を含むDNA、または、配列番号78の1711~4173位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記thrB遺伝子が、配列番号78の4175~5107位に示す塩基配列を含むDNA、または、配列番号78の4175~5107位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記fruA遺伝子が、配列番号84の897~2588位に示す塩基配列を含むDNA、または、配列番号84の897~2588位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記psuK遺伝子が、配列番号84の3165~3953位に示す塩基配列を含むDNA、または、配列番号84の3165~3953位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ytfT遺伝子が、配列番号87の252~1277位に示す塩基配列を含むDNA、または、配列番号87の252~1277位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yjfF遺伝子が、配列番号87の1264~2259位に示す塩基配列を含むDNA、または、配列番号87の1264~2259位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記fbp遺伝子が、配列番号87の2292~3290位に示す塩基配列の相補配列を含むDNA、または、配列番号87の2292~3290位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yagU遺伝子が、配列番号91の117~731位に示す塩基配列の相補配列を含むDNA、または、配列番号91の117~731位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記paoA遺伝子が、配列番号91の1149~1838位に示す塩基配列を含むDNA、または、配列番号91の1149~1838位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記paoB遺伝子が、配列番号91の1835~2791位に示す塩基配列を含むDNA、または、配列番号91の1835~2791位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記gsiC遺伝子が、配列番号95の264~1184位に示す塩基配列を含むDNA、または、配列番号95の264~1184位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記gsiD遺伝子が、配列番号95の1187~2098位に示す塩基配列を含むDNA、または、配列番号95の1187~2098位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yliE遺伝子が、配列番号95の2276~4624位に示す塩基配列を含むDNA、または、配列番号95の2276~4624位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記irp2遺伝子が、配列番号100に示す塩基配列を含むDNA、または、配列番号100に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記irp1遺伝子が、配列番号102に示す塩基配列を含むDNA、または、配列番号102に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記bhsA遺伝子が、配列番号104の440~697位に示す塩基配列を含むDNA、または、配列番号104の440~697位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ycfS遺伝子が、配列番号104の779~1741位に示す塩基配列の相補配列を含むDNA、または、配列番号104の779~1741位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記lepB遺伝子が、配列番号107の1344~2318位に示す塩基配列を含むDNA、または、配列番号107の1344~2318位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rnc遺伝子が、配列番号107の2590~3270位に示す塩基配列を含むDNA、または、配列番号107の2590~3270位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記era遺伝子が、配列番号107の3267~4172位に示す塩基配列を含むDNA、または、配列番号107の3267~4172位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記dapA遺伝子が、配列番号111の858~1736位に示す塩基配列の相補配列を含むDNA、または、配列番号111の858~1736位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記gcvR遺伝子が、配列番号111の1882~2454位に示す塩基配列を含むDNA、または、配列番号111の1882~2454位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記bcp遺伝子が、配列番号111の2454~2924位に示す塩基配列を含むDNA、または、配列番号111の2454~2924位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記hyfA遺伝子が、配列番号111の3177~3794位に示す塩基配列を含むDNA、または、配列番号111の3177~3794位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rpoE遺伝子が、配列番号116の355~930位に示す塩基配列の相補配列を含むDNA、または、配列番号116の355~930位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記nadB遺伝子が、配列番号116の1338~2960位に示す塩基配列を含むDNA、または、配列番号116の1338~2960位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yfiC遺伝子が、配列番号116の2945~3682位に示す塩基配列の相補配列を含むDNA、または、配列番号116の2945~3682位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記srmB遺伝子が、配列番号116の3814~5148位に示す塩基配列を含むDNA、または、配列番号116の3814~5148位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g1414遺伝子が、配列番号121の28~699位に示す塩基配列を含むDNA、または、配列番号121の28~699位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g1413遺伝子が、配列番号121の831~1157位に示す塩基配列を含むDNA、または、配列番号121の831~1157位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記nuoE遺伝子が、配列番号124の796~1296位に示す塩基配列の相補配列を含むDNA、または、配列番号124の796~1296位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記nuoF遺伝子が、配列番号124の1293~2630位に示す塩基配列の相補配列を含むDNA、または、配列番号124の1293~2630位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記nuoG遺伝子が、配列番号124の2683~5409位に示す塩基配列の相補配列を含むDNA、または、配列番号124の2683~5409位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記glmZ遺伝子が、配列番号128の357~563位に示す塩基配列を含むDNA、または、配列番号128の357~563位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記hemY遺伝子が、配列番号128の611~1807位に示す塩基配列を含むDNA、または、配列番号128の611~1807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記hemX遺伝子が、配列番号128の1810~2991位に示す塩基配列を含むDNA、または、配列番号128の1810~2991位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記hemD遺伝子が、配列番号128の3013~3753位に示す塩基配列を含むDNA、または、配列番号128の3013~3753位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rlmL遺伝子が、配列番号132の571~2679位に示す塩基配列を含むDNA、または、配列番号132の571~2679位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記artQ遺伝子が、配列番号134の386~1102位に示す塩基配列を含むDNA、または、配列番号134の386~1102位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記artM遺伝子が、配列番号134の1102~1770位に示す塩基配列を含むDNA、または、配列番号134の1102~1770位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記artJ遺伝子が、配列番号134の2061~2792位に示す塩基配列を含むDNA、または、配列番号134の2061~2792位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rlmC遺伝子が、配列番号134の2991~4118位に示す塩基配列の相補配列を含むDNA、または、配列番号134の2991~4118位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ybjO遺伝子が、配列番号134の4159~4647位に示す塩基配列の相補配列を含むDNA、または、配列番号134の4159~4647位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yejO遺伝子が、配列番号140の216~2807位に示す塩基配列を含むDNA、または、配列番号140の216~2807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yejM遺伝子が、配列番号140の3061~4821位に示す塩基配列の相補配列を含むDNA、または、配列番号140の3061~4821位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yejL遺伝子が、配列番号140の4841~5068位に示す塩基配列の相補配列を含むDNA、または、配列番号140の4841~5068位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記rpoS遺伝子が、配列番号144の318~1310位に示す塩基配列を含むDNA、または、配列番号144の318~1310位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ygbN遺伝子が、配列番号144の1404~2768位に示す塩基配列の相補配列を含むDNA、または、配列番号144の1404~2768位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ygbM遺伝子が、配列番号144の2857~3633位に示す塩基配列の相補配列を含むDNA、または、配列番号144の2857~3633位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ygbL遺伝子が、配列番号144の3638~4276位に示す塩基配列の相補配列を含むDNA、または、配列番号144の3638~4276位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3798遺伝子が、配列番号149の615~1268位に示す塩基配列を含むDNA、または、配列番号149の615~1268位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3797遺伝子が、配列番号149の1368~2219位に示す塩基配列を含むDNA、または、配列番号149の1368~2219位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3796遺伝子が、配列番号149の2257~2748位に示す塩基配列を含むDNA、または、配列番号149の2257~2748位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3795遺伝子が、配列番号149の3021~3203位に示す塩基配列を含むDNA、または、配列番号149の3021~3203位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3794遺伝子が、配列番号149の3470~4051位に示す塩基配列の相補配列を含むDNA、または、配列番号149の3470~4051位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3793遺伝子が、配列番号149の4280~4480位に示す塩基配列を含むDNA、または、配列番号149の4280~4480位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記g3792遺伝子が、配列番号149の4520~4717位に示す塩基配列を含むDNA、または、配列番号149の4520~4717位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記ryjA遺伝子が、配列番号157の657~796位に示す塩基配列を含むDNA、または、配列番号157の657~796位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記soxR遺伝子が、配列番号157の790~1254位に示す塩基配列の相補配列を含むDNA、または、配列番号157の790~1254位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記soxS遺伝子が、配列番号157の1340~1663位に示す塩基配列を含むDNA、または、配列番号157の1340~1663位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yjcC遺伝子が、配列番号157の1666~3252位に示す塩基配列の相補配列を含むDNA、または、配列番号157の1666~3252位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記yjcB遺伝子が、配列番号157の3682~3963位に示す塩基配列を含むDNA、または、配列番号157の3682~3963位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記efeU遺伝子が、配列番号162の753~1583位に示す塩基配列を含むDNA、または、配列番号162の753~1583位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
     前記efeO遺伝子が、配列番号162の1641~2768位に示す塩基配列を含むDNA、または、配列番号162の1641~2768位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAである、請求項1~6のいずれか1項に記載の細菌。
  8.  請求項1~7のいずれか1項に記載の細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取すること、を含むヘパロサンの製造法。
  9.  請求項1~7のいずれか1項に記載の細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収すること、を含むヘパリンの製造法。
PCT/JP2014/076357 2013-10-02 2014-10-02 ヘパロサン生産細菌及びヘパロサンの製造法 WO2015050184A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19197639.8A EP3620525A1 (en) 2013-10-02 2014-10-02 Heparosan-producing bacterium and heparosan manufacturing method
EP14850420.2A EP3054005B1 (en) 2013-10-02 2014-10-02 Heparosan-producing bacterium and heparosan manufacturing method
JP2015540532A JP6569530B2 (ja) 2013-10-02 2014-10-02 ヘパロサン生産細菌及びヘパロサンの製造法
US15/082,464 US9975928B2 (en) 2013-10-02 2016-03-28 Heparosan-producing bacterium and heparosan manufacturing method
US15/958,354 US10611804B2 (en) 2013-10-02 2018-04-20 Heparosan-producing bacterium and heparosan manufacturing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013207003 2013-10-02
JP2013-207003 2013-10-02
JP2013-259621 2013-12-16
JP2013-259620 2013-12-16
JP2013259620 2013-12-16
JP2013259621 2013-12-16
JP2014039250 2014-02-28
JP2014-039250 2014-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/082,464 Continuation US9975928B2 (en) 2013-10-02 2016-03-28 Heparosan-producing bacterium and heparosan manufacturing method

Publications (1)

Publication Number Publication Date
WO2015050184A1 true WO2015050184A1 (ja) 2015-04-09

Family

ID=52778771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076357 WO2015050184A1 (ja) 2013-10-02 2014-10-02 ヘパロサン生産細菌及びヘパロサンの製造法

Country Status (4)

Country Link
US (2) US9975928B2 (ja)
EP (2) EP3054005B1 (ja)
JP (1) JP6569530B2 (ja)
WO (1) WO2015050184A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115674A1 (ja) * 2015-12-28 2017-07-06 味の素株式会社 抗凝固活性を有するヘパラン硫酸の製造法
WO2017115675A1 (ja) * 2015-12-28 2017-07-06 味の素株式会社 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
WO2018135027A1 (ja) 2017-01-19 2018-07-26 味の素株式会社 ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法
WO2019050051A1 (en) 2017-09-05 2019-03-14 Ajinomoto Co., Inc. MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE
WO2020013346A1 (en) 2018-07-11 2020-01-16 Ajinomoto Co., Inc. Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family enterobacteriaceae
EP3986909A4 (en) * 2019-06-21 2023-08-02 Inscripta, Inc. GENOME-WIDE RATIONAL DESIGNED MUTATIONS LEADING TO INCREASED LYSINE PRODUCTION IN E. COLI

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569530B2 (ja) * 2013-10-02 2019-09-04 味の素株式会社 ヘパロサン生産細菌及びヘパロサンの製造法
SG11202009631WA (en) 2018-03-31 2020-10-29 Pebble Labs Usa Inc Systems, methods and composition of using rnase iii mutants to produce srna to control host pathogen infection
CN109456961A (zh) * 2018-12-18 2019-03-12 成都雅途生物技术有限公司 一种高产yt-011a菌株诱变选育方法及其发酵培养基
US11471497B1 (en) 2019-03-13 2022-10-18 David Gordon Bermudes Copper chelation therapeutics
WO2020219937A1 (en) * 2019-04-25 2020-10-29 University Of Utah Research Foundation E-coli strains for the production of heparosan and heparosan oligosaccharides
WO2021199444A1 (en) 2020-04-03 2021-10-07 Rensselaer Polytechnic Institute Method for producing heparosan and bacterium of genus escherichia having heparosan-producing ability
CN114763518B (zh) * 2021-09-10 2023-04-28 江南大学 发酵生产肝素的酵母工程菌的构建及其应用
WO2023192368A1 (en) * 2022-03-30 2023-10-05 The Regents Of The University Of California Hydrogelated cells

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109985A (ja) 1988-02-22 1990-04-23 Eurolysine 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌
JPH02207791A (ja) 1989-02-07 1990-08-17 Ajinomoto Co Inc 微生物の形質転換法
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
US20050196846A1 (en) 2004-03-04 2005-09-08 Yoshihiko Hara L-glutamic acid-producing microorganism and a method for producing L-glutamic acid
RU2006134574A (ru) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
JP2008099668A (ja) 2006-09-13 2008-05-01 Ajinomoto Co Inc 変異型アセト乳酸合成酵素及び分岐鎖l−アミノ酸の製造方法
WO2009014559A2 (en) 2007-03-30 2009-01-29 The Board Of Regents Of The University Of Oklahoma Heparosan-based biomaterials and coatings and methods of production and use thereof
WO2010027045A1 (ja) 2008-09-08 2010-03-11 味の素株式会社 L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2010136435A1 (en) * 2009-05-25 2010-12-02 Altergon S.A. Biotechnological production of chondroitin
US20110111458A1 (en) * 2008-03-18 2011-05-12 Kyowa Hakko Kirin Co., Ltd. Industrially useful microorganism
JP2013503606A (ja) 2009-09-01 2013-02-04 レンセラー ポリテクニック インスティチュート K5ヘパロサン発酵および精製

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875574B1 (en) * 1999-01-27 2005-04-05 The Regents Of The University Of California Assays for sensory modulators using a sensory cell specific G-protein alpha subunit
WO2003008606A2 (en) * 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced phob or phor gene
US20050181464A1 (en) * 2002-04-04 2005-08-18 Affinium Pharmaceuticals, Inc. Novel purified polypeptides from bacteria
US7176028B2 (en) * 2002-10-08 2007-02-13 Centre For Dna Fingerprinting And Diagnostics (Cdfd) Method of altering levels of plasmids
RU2460793C2 (ru) 2010-01-15 2012-09-10 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae
WO2011153344A2 (en) * 2010-06-02 2011-12-08 University Of Delaware Engineering complex microbial phenotypes with transcription enhancement
US9234223B2 (en) 2011-04-01 2016-01-12 Ajinomoto Co., Inc. Method for producing L-cysteine
JP6569530B2 (ja) * 2013-10-02 2019-09-04 味の素株式会社 ヘパロサン生産細菌及びヘパロサンの製造法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109985A (ja) 1988-02-22 1990-04-23 Eurolysine 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌
JPH02207791A (ja) 1989-02-07 1990-08-17 Ajinomoto Co Inc 微生物の形質転換法
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
EP0805867B1 (en) 1995-01-23 2003-12-17 Novozymes A/S Dna integration by transposition
WO2000018935A1 (fr) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
US20050196846A1 (en) 2004-03-04 2005-09-08 Yoshihiko Hara L-glutamic acid-producing microorganism and a method for producing L-glutamic acid
JP2008099668A (ja) 2006-09-13 2008-05-01 Ajinomoto Co Inc 変異型アセト乳酸合成酵素及び分岐鎖l−アミノ酸の製造方法
RU2006134574A (ru) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
WO2009014559A2 (en) 2007-03-30 2009-01-29 The Board Of Regents Of The University Of Oklahoma Heparosan-based biomaterials and coatings and methods of production and use thereof
US20110111458A1 (en) * 2008-03-18 2011-05-12 Kyowa Hakko Kirin Co., Ltd. Industrially useful microorganism
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2010027045A1 (ja) 2008-09-08 2010-03-11 味の素株式会社 L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2010136435A1 (en) * 2009-05-25 2010-12-02 Altergon S.A. Biotechnological production of chondroitin
JP2013503606A (ja) 2009-09-01 2013-02-04 レンセラー ポリテクニック インスティチュート K5ヘパロサン発酵および精製

Non-Patent Citations (120)

* Cited by examiner, † Cited by third party
Title
"Genetic Engineering", vol. 8, 1987, KYORITSU SHUPPAN CO., LTD, article "Fundamental Microbiology"
"Molecular Cloning", 2001, COLD SPRING HARBOR LABORATORY PRESS
ADES S.E. ET AL.: "Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli", J. BACTERIOL., vol. 185, no. 8, 2003, pages 2512 - 9
AMANN E. ET AL.: "Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli", GENE, vol. 25, no. 2-3, 1983, pages 167 - 78, XP023599405, DOI: doi:10.1016/0378-1119(83)90222-6
ANANTHARAMAN V ET AL.: "SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases", J. MOL. MICROBIOL. BIOTECHNOL., vol. 4, no. 1, 2002, pages 71 - 5
ANDREA RAHN ET AL.: "Transcriptional organization and regulation of The Escherichia coli", MOL. MICROBIOL., vol. 47, 2003, pages 1045 - 1060
ANDREWS S.C. ET AL.: "A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system", MICROBIOLOGY, vol. 143, 1997, pages 3633 - 47
BACKMANN B.J.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, article "Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12", pages: 2460 - 2488
BAILEY M. ET AL., MOL. MICROBIOL., vol. 22, no. 4, 1996, pages 7729 - 737
BAILEY M.J.A. ET AL.: "RfaH and the ops element, components of a novel system controlling bacterial transcription elongation.", MOLECULAR MICROBIOLOGY, vol. 26, no. 5, 1997, pages 845 - 851, XP055333969 *
BIBB, M.J.; WARD, J.M; HOPWOOD, O.A., NATURE, vol. 274, 1978, pages 398 - 400
BITTER T.; MUIR H.M.: "A modified uronic acid carbazole reaction", ANALYTICAL BIOCHEMISTRY, vol. 4, no. 4, 1962, pages 330 - 334, XP024827447, DOI: doi:10.1016/0003-2697(62)90095-7
BITTER, T.; MURIR H.M., ANAL. BIOCHEM., vol. 4, 1962, pages 330 - 334
BOEHM A ET AL.: "Second messenger signaling governs Escherichia coli biofilm induction upon ribosomal stress", MOL. MICROBIOL., vol. 72, no. 6, 2009, pages 1500 - 16
BOEHM A ET AL.: "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress", MOL. MICROBIOL., vol. 72, no. 6, 2009, pages 1500 - 16
BORK P. ET AL.: "Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases", PROTEIN SCI., vol. 2, no. 1, 1993, pages 31 - 40
BOYER C.; PREISS: "Biosynthesis of bacterial glycogen: Purification and properties of the Escherichia coli b alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase", J. BIOCHEMISTRY, vol. 16, no. 16, 1977, pages 3693 - 9, XP002995361, DOI: doi:10.1021/bi00635a029
BRAUN M ET AL.: "Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli", BIOCHEMISTRY, vol. 37, no. 7, 1998, pages 1861 - 7
BURR B. ET AL.: "Homoserine kinase from Escherichia coli K12", EUR. J. BIOCHEM., vol. 62, no. 3, 1976, pages 519 - 26
CADWELL, R.C., PCR METH. APPL., vol. 2, 1992, pages 28
CAO J. ET AL.: "EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that iscryptic in Escherichia coli K-12 but functional in E. coli 0-157:H7", MOL. MICROBIOL., vol. 65, 2007, pages 857 - 875
CARTER, P., METH. IN ENZYMOL., vol. 154, 1987, pages 382
CHANG, S; CHOEN, S.N., MOL. GEN. GENET., vol. 168, 1979, pages 111 - 115
CHAROLLAIS J. ET AL.: "The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli", MOL. MICROBIOL., vol. 48, no. 5, 2003, pages 1253 - 65
CHEN J. ET AL.: "Enzymatic redesigning of biologically active heparan sulfate", J. BIOL. CHEM., vol. 280, no. 52, 30 December 2005 (2005-12-30), pages 42817 - 25, XP002609045, DOI: doi:10.1074/JBC.M504338200
CLARK R.B.; OGILVIE J.W. ET AL.: "Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12: Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding", BIOCHEMISTRY, vol. 11, no. 7, 1972, pages 1278 - 82
CLARKE D.J. ET AL.: "Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry", BIOCHEMISTRY, vol. 48, no. 18, 2009, pages 3904 - 14
COOKSEY D.A.: "Copper uptake and resistance in bacteria", MOL. MICROBIOL., vol. 7, no. 1, 2006, pages 1 - 5
DAILEY T.A. ET AL.: "Expression of a cloned protoporphyrinogen oxidase", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, 1994, pages 813 - 815
DALBEY R.E.: "Leader peptidase", MOL. MICROBIOL., vol. 5, no. 12, 1991, pages 2855 - 60
DATSENKO, K.A.; WANNER, B.L: "Proc. Natl. Acad. Sci. USA", vol. 97, 2000, pages: 6640 - 6645
DATSENKO; WANNER, PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 45
DATSENKO; WANNER: "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645, XP002210218, DOI: doi:10.1073/pnas.120163297
DAUVILLEE D ET AL.: "Role of the Escherichia coli glgX gene in glycogen metabolism", J. BACTERIOL., vol. 187, no. 4, 2005, pages 1465 - 73
DUNCAN, C.H.; WILSON, G.A; YOUNG, F.E., GENE, vol. 1, 1977, pages 153 - 167
FRAENKEL D.G; HORECKER B.L.: "Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli", J. BACTERIOL., vol. 90, no. 4, 1965, pages 837 - 42
GARDNER A.M. ET AL.: "Role of NorR and sigma54 in the nitric oxide stress response", J. BIOL. CHEM., vol. 278, no. 12, 2003, pages 10081 - 6
GENE, vol. 60, no. 1, 1987, pages 115 - 127
GHRIST A.C. ET AL.: "GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon", MICROBIOLOGY, vol. 147, 2001, pages 2215 - 21
GOLDSTEIN ET AL.: "Prokaryotic Promoters in Biotechnology", BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128, XP008038474
GOLOVINA A.Y. ET AL., THE YFIC GENE OF E. COLI ENCODES AN ADENINE-N6 METHYLTRANSFERASE THAT SPECIFICALLY MODIFIES A37 OF TRNALVAL(CMO5UAC, vol. 15, no. 6, 2009, pages 1134 - 41
GU M.; IMLAY J.A.: "The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide", MOL. MICROBIOL., vol. 79, no. 5, 2011, pages 1136 - 50
GUINOTE I.B. ET AL.: "Characterization of the BolA homolog IbaG: a new gene involved in acid resistance", J. MICROBIOL. BIOTECHNOL, vol. 22, no. 4, 2012, pages 484 - 93
HENDERSON I.R; OWEN P.: "The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR", J. BACTERIOL., vol. 181, no. 7, 1999, pages 2132 - 41
HERZBERG M. ET AL.: "YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport", J. BACTERIOL., vol. 188, no. 2, 2006, pages 587 - 98
HIGUCHI, R.: "PCR Technology", vol. 61, 1989, STOCKTON PRESS
HINNEN, A.; HICKS, J.B.; FINK, G.R., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929 - 1933
HODSON N. ET AL., J. BIOL. CHEM., vol. 275, no. 35, 2000, pages 27311 - 27315
HOUNG H.S ET AL.: "Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and identity of ViaA with RcsB", J. BACTERIOL., vol. 174, 1992, pages 5910 - 5915
IIDA A. ET AL.: "Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12", J. BACTERIOL., vol. 158, no. 2, 1984, pages 674 - 82
JANN B.; JANN K., CURR. TOP MICROBIOL. IMMUNOL., vol. 150, 1990, pages 19 - 42
JOHANSEN J. ET AL.: "Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins", J. MOL. BIOL., vol. 364, no. 1, 2006, pages 1 - 8
JORDAN P.M.; WOODCOCK S.C.: "Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation", BIOCHEM. J., vol. 280, 1991, pages 445 - 9
KALAMORZ F. ET AL.: "Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli", MOL. MICROBIOL., vol. 65, no. 6, 2007, pages 1518 - 33
KANE T.A. ET AL., J. BIOL. CHEM., vol. 281, no. 44, 3 November 2006 (2006-11-03), pages 33192 - 33197
KANE, J.F., CURR. OPIN. BIOTECHNOL., vol. 6, no. 5, 1995, pages 494 - 500
KANG M.J. ET AL.: "Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method.", BIOTECHNOLOGY AND BIOENGINEERING, vol. 91, 2005, pages 636 - 642, XP055333964 *
KIMURA S ET AL.: "Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity", NUCLEIC ACIDS RES., vol. 40, no. 9, 2012, pages 4071 - 85
KRAMER, W.; FRITS, H.J., METH. IN ENZYMOL, vol. 154, 1987, pages 350
KUBERAN B. ET AL.: "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides", J. BIOL. CHEM., vol. 278, 2003, pages 52613 - 52621
KUBERAN B. ET AL.: "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides", J. BIOL. CHEM., vol. 278, no. 52, 2003, pages 52613 - 52621
KUNKEL, T.A. ET AL., METH. IN ENZYMOL., vol. 154, 1987, pages 367
KUZNETSOVA E. ET AL.: "Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family", J. BIOL. CHEM., vol. 281, no. 47, 2006, pages 36149 - 61, XP055038714, DOI: doi:10.1074/jbc.M605449200
LABER B ET AL.: "Escherichia coli dihydrodipicolinate synthase: Identification of the active site and crystallization", BIOCHEM. J., vol. 288, 1992, pages 691 - 5, XP009035909
LAIKOVA O.N. ET AL.: "Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria", FEMS MICROBIOL LETT., vol. 205, no. 2, 2001, pages 315 - 22, XP027360432
LEE J. ET AL.: "Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene", J. APPL. MICROBIOL., vol. 108, no. 6, June 2010 (2010-06-01), pages 2088 - 102
LEE J.H ET AL.: "SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli", J. BACTERIOL., vol. 191, no. 13, 2009, pages 4441 - 50
LEEDS J.A.; D WELCH R.A.: "RfaH enhances elongation of Escherichia coli hlyCABD mRNA", J. BACTERIOL., vol. 178, no. 7, 1996, pages 1850 - 7, XP002472460
LI J. ET AL., J. BIOL. CHEM., vol. 267, no. 9, 1992, pages 6012 - 6019
LINDAHL U ET AL., J. BIOL. CHEM., vol. 273, no. 39, 1998, pages 24979 - 24982
LINDAHL U. ET AL., J. MED. CHEM., vol. 48, no. 2, 2005, pages 349 - 352
LINTON K.J.; HIGGINS C.F.: "The Escherichia coli ATP-binding cassette (ABC) proteins", MOL. MICROBIOL., vol. 28, no. 1, 1998, pages 5 - 13
LIVANIS M ET AL., J. BACTERIOL., vol. 191, no. 23, 2009, pages 7288 - 7295
LYNN S.P. ET AL.: "Attenuation regulation in the thr operon of Escherichia coli K-12: molecular cloning and transcription of the controlling region", J. BACTERIOL., vol. 152, no. L, 1982, pages 363 - 71
MACIAG A ET AL.: "In vitro transcription profiling of the cyS subunit of bacterial RNA polymerase: Re-definition of the ?S regulon and identification of oS-specific promoter sequence elements", NUCLEIC ACIDS RES., vol. 39, no. 13, 2011, pages 5338 - 55
MADSEN C.T. ET AL.: "Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry", NUCLEIC ACIDS RES., vol. 31, no. 16, 2003, pages 4738 - 46
MAGNET S. ET AL.: "Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan", J. BACTERIOL., vol. 189, no. 10, 2007, pages 3927 - 31
MAJDALANI N. ET AL.: "The Rcs phosphorelay: a complex signal transduction system", ANUU. REV. MICROBIOL., vol. 59, 2005, pages 379 - 405
MALINVERNI J.C.; SILHAVY T.J: "An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane", PROC. NATL. ACAD. SCI. USA, vol. 106, no. 19, 2009, pages 8009 - 14
MANDEL, M.; HIGA, A., J. MOL. BIOL., vol. 53, 1970, pages 159 - 162
MCNULTY C. ET AL., MOL. MICROBIOL., vol. 59, no. 3, 2006, pages 907 - 22
MILLER, J.H.: "Experiments in Molecular Genetics", 1972, COLD SPRING HARBOR LABORATORY
MORTARINO M ET AL.: "L-aspartate oxidase from Escherichia coli, I. Characterization of coenzyme binding and product inhibition", EUR. J. BIOCHEM., vol. 239, no. 2, 1996, pages 418 - 26, XP055153570, DOI: doi:10.1111/j.1432-1033.1996.0418u.x
MOUSSATOVA A. ET AL.: "ATP-binding cassette transporters in Escherichia coli", BIOCHIM. BIOPHYS. ACTA, vol. 1778, no. 9, 2008, pages 1757 - 71, XP025408804, DOI: doi:10.1016/j.bbamem.2008.06.009
NAKAMURA, Y ET AL., NUCL. ACIDS RES., vol. 28, 2000, pages 292
NASEEM R ET AL.: "pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli", BIOCHIM. BIOPHYS. ACTA, vol. 1778, no. 6, 2008, pages 1415 - 22, XP022673952, DOI: doi:10.1016/j.bbamem.2008.02.006
NEUMANN M. ET AL.: "A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli", FEBS J., vol. 276, no. 10, 2009, pages 2762 - 74
OLINS P.O. ET AL., GENE, vol. 73, 1988, pages 227 - 235
PAO S.S ET AL.: "Major facilitator superfamily", MICROBIOL. MOL. BIOL. REV., vol. 62, no. 1, 1998, pages 1 - 34, XP002203285
PEEKHAUS N. ET AL.: "Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues", FEMS MICROBIOL. LETT., vol. 147, no. 2, 1997, pages 233 - 8, XP002204792, DOI: doi:10.1016/S0378-1097(96)00532-0
PELLUDAT C ET AL.: "The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation", J. BACTERIOL., vol. 180, no. 3, 1998, pages 538 - 46
PRIOR T.I.; KORNBERG H.L.: "Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K12", J. GEN. MICROBIOL., vol. 134, no. 10, 1988, pages 2757 - 68, XP002937888
RAMANI N.: "micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli", J. BACTERIOL., vol. 176, 1994, pages 5005 - 5010
RAPP M. ET AL.: "Experimentally based topology models for E. coli inner membrane proteins", PROTEIN SCI., vol. 13, no. 4, 2004, pages 937 - 45
ROBERTSON H.D; DUNN J.J.: "Ribonucleic acid processing activity of Escherichia coli ribonuclease III", J. BIOL. CHEM., vol. 250, no. 8, 25 December 1974 (1974-12-25), pages 3050 - 6
ROCHAPORN W. ET AL.: "Involvement of rcsB in Klebsiella K2 Capsule Synthesis in Escherichia coli K-12", J. BACTERIOL., vol. 174, 1992, pages 1063 - 1067
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, 2nd ed.", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, 3rd ed.", 2001, COLD SPRING HARBOR LABORATORY PRESS
SANTOS C.N.S. ET AL.: "Rational, combinatorial, and genomic approaches for engineering tyrosine production in Escherichia coli.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 109, no. 34, 2012, pages 13538 - 13543, XP055333965 *
SASARMAN A ET AL.: "Nucleotide sequence of the hemX gene, the third member of the Uro operon of Escherichia coli K12", NUCLEIC ACIDS RES., vol. 16, no. 24, 1988, pages 11835
SOLOMON L.R; BREITMAN T.R: "Pseudouridine kinase of Escherichia coli: a new enzyme", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 44, no. 2, 1971, pages 299 - 304, XP024778957, DOI: doi:10.1016/0006-291X(71)90599-7
STEMMER, W.P., NATURE, vol. 370, 1994, pages 389
TAKIFF H.E ET AL.: "Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon", J. BACTERIOL., vol. 174, no. 5, 1992, pages 1544 - 53, XP000673194
TEVENS M.P ET AL.: "Regulation of Escherichia coli K5 capsular polysaccharide expression: Evidence for involvement of RfaH in the expression of group II capsules", FEMS MICROBIOL. LETT., vol. 124, no. 1, 1994, pages 93 - 98
THOMPSON K.M. ET AL.: "SigmaE regulates and is regulated by a small RNA in Escherichia coli", J. BACTERIOL., vol. 189, no. 11, 2007, pages 4243 - 56
TOUATI D.: "Sensing and protecting against superoxide stress in Escherichia coli -- how many ways are there to trigger soxRS response?", REDOX REP., vol. 5, no. 5, 2000, pages 287 - 93
TREMPY J.E. ET AL.: "Alp suppression of Lon: dependence on the slpA gene", J. BACTERIOL., vol. 176, no. 7, 1994, pages 2061 - 7, XP000938361
URBAN J.H.; VOGEL J. ET AL.: "Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation", PLOS BIOL., vol. 6, no. 3, 2008, pages E64
VAN DYK T.K. ET AL.: "Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?", J. BACTERIOL., vol. 186, 2004, pages 7196 - 7204
WANG Z. ET AL., BIOTECHNOL. BIOENG, vol. 107, no. 6, 2010, pages 964 - 973
WASSARMAN K.M. ET AL.: "Identification of novel small RNAs using comparative genomics and microarrays", GENES, DEV., vol. 15, no. 13, 2001, pages 1637 - 51, XP002223289, DOI: doi:10.1101/gad.901001
WENDY J. KEENLEYSIDE ET AL.: "Coexpression of Colanic Acid and Serotype-Specific Capsular Polysaccharides in Escherichia coli Strains with Group II K Antigens", J. BACTERIOL., vol. 175, 1993, pages 6725 - 6730, XP000579304
XUE P. ET AL.: "Regulation of expression of the region 3 promoter of the Escherichia coli K5 capsule gene cluster involves H-NS, SlyA, and a large 5' untranslated region", J. BACTERIOL., vol. 191, no. 6, 2009, pages 1838 - 1846
ZANG C ET AL., METABOLIC ENGINEERING, vol. 14, no. 5, 2012, pages 521 - 527
ZHANG C. ET AL.: "Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor.", METABOLIC ENGINEERING, vol. 14, 2012, pages 521 - 527, XP055144554 *
ZHANG J.; INOUYE M.: "MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli", J. BACTERIOL., vol. 184, no. 19, 2002, pages 5323 - 9
ZHANG X.S. ET AL.: "YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity", J. BACTERIOL., vol. 189, no. 8, 2007, pages 3051 - 62
ZHANG Z. ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 39, 2008, pages 12998 - 13007
ZHANG Z. ET AL.: "Solution Structures of Chemoenzymatically Synthesized Heparin and Its Precursors", J. AM. CHEM. SOC., vol. 130, no. 39, 2008, pages 12998 - 13007, XP055237054, DOI: doi:10.1021/ja8026345
ZHAO, H., NATURE BIOTECHNOL., vol. 16, 1998, pages 258

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006275B2 (ja) 2015-12-28 2022-02-10 味の素株式会社 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
WO2017115675A1 (ja) * 2015-12-28 2017-07-06 味の素株式会社 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
CN108699580B (zh) * 2015-12-28 2022-09-23 味之素株式会社 在氨基葡萄糖残基中具有高3-o-硫酸化比率的硫酸乙酰肝素
US10704068B2 (en) 2015-12-28 2020-07-07 Ajinomoto Co., Inc. Method of producing heparan sulfate having anticoagulant activity
JPWO2017115675A1 (ja) * 2015-12-28 2018-10-18 味の素株式会社 グルコサミン残基の3−o−硫酸化率が高いヘパラン硫酸
CN108699580A (zh) * 2015-12-28 2018-10-23 味之素株式会社 在氨基葡萄糖残基中具有高3-o-硫酸化比率的硫酸乙酰肝素
WO2017115674A1 (ja) * 2015-12-28 2017-07-06 味の素株式会社 抗凝固活性を有するヘパラン硫酸の製造法
US10889656B2 (en) 2015-12-28 2021-01-12 Ajinomoto Co., Inc. Heparan sulfate having high 3-O-sulfation rate in glucosamine residues
JPWO2017115674A1 (ja) * 2015-12-28 2018-10-18 味の素株式会社 抗凝固活性を有するヘパラン硫酸の製造法
WO2018135027A1 (ja) 2017-01-19 2018-07-26 味の素株式会社 ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法
CN110191958A (zh) * 2017-01-19 2019-08-30 味之素株式会社 生产具有经异构化的己糖醛酸残基的肝素前体化合物的方法
JP7088026B2 (ja) 2017-01-19 2022-06-21 味の素株式会社 ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法
US11639513B2 (en) 2017-01-19 2023-05-02 Ajinomoto Co., Inc. Method for producing heparosan compound having isomerized hexuronic acid residue
JPWO2018135027A1 (ja) * 2017-01-19 2019-11-07 味の素株式会社 ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法
WO2019050051A1 (en) 2017-09-05 2019-03-14 Ajinomoto Co., Inc. MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE
EP4050036A1 (en) 2017-09-05 2022-08-31 Ajinomoto Co., Inc. 3-o-sulfation enzyme mutant, and method for using same
WO2020013346A1 (en) 2018-07-11 2020-01-16 Ajinomoto Co., Inc. Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family enterobacteriaceae
EP3986909A4 (en) * 2019-06-21 2023-08-02 Inscripta, Inc. GENOME-WIDE RATIONAL DESIGNED MUTATIONS LEADING TO INCREASED LYSINE PRODUCTION IN E. COLI

Also Published As

Publication number Publication date
US20160201103A1 (en) 2016-07-14
US20180237479A1 (en) 2018-08-23
US9975928B2 (en) 2018-05-22
EP3054005A4 (en) 2017-09-13
EP3054005B1 (en) 2019-11-20
JPWO2015050184A1 (ja) 2017-03-09
EP3620525A1 (en) 2020-03-11
US10611804B2 (en) 2020-04-07
JP6569530B2 (ja) 2019-09-04
EP3054005A1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6569530B2 (ja) ヘパロサン生産細菌及びヘパロサンの製造法
US12104193B2 (en) Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family Enterobacteriaceae
EP3399045B1 (en) Heparan sulfate having high 3-o-sulfation rate of glucosamine residues
JP2023171870A (ja) 硫酸化多糖の製造方法及びpapsの製造方法
JP2020532278A (ja) 2−o−硫酸化酵素変異体、および3−o−硫酸化酵素変異体、ならびにそれらを用いる方法
JP7464921B2 (ja) ヘパロサンの製造方法及びヘパロサン生産能を有するエシェリヒア属細菌
RU2823674C1 (ru) Способ продукции гепаросана и бактерия из рода escherichia, имеющая способность к продукции гепаросана
TWI851587B (zh) 使用腸桿菌科(Enterobacteriaceae)之細菌使醇和胺經酶催化性磺醯化之方法
RU2811941C1 (ru) Способ продукции сульфатированного полисахарида и способ продукции paps
JP2024060562A (ja) ヘパロサン生産微生物、ヘパロサンの製造方法及びヘパロサン由来化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850420

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014850420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850420

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015540532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE