WO2015050184A1 - ヘパロサン生産細菌及びヘパロサンの製造法 - Google Patents
ヘパロサン生産細菌及びヘパロサンの製造法 Download PDFInfo
- Publication number
- WO2015050184A1 WO2015050184A1 PCT/JP2014/076357 JP2014076357W WO2015050184A1 WO 2015050184 A1 WO2015050184 A1 WO 2015050184A1 JP 2014076357 W JP2014076357 W JP 2014076357W WO 2015050184 A1 WO2015050184 A1 WO 2015050184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- nucleotide sequence
- heparosan
- positions
- dna
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0075—Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
Definitions
- the present invention relates to a heparosan-producing bacterium and a method for producing heparosan.
- Heparosan (also called N-acetylheparosan) is a disaccharide repeating structure consisting of glucuronic acid (GlcUA) and N-acetyl-D-glucosamine (GlcNAc) residues [ ⁇ 4) - ⁇ -GlcUA- (1 ⁇ 4) A polysaccharide composed of - ⁇ -GlcNAc- (1 ⁇ ).
- heparosan is produced as a capsular polysaccharide by the Escherichia coli K5 strain and the Pasteurella multocida type D strain (Non-patent Document 1). These heparosan-producing bacteria exhibit pathogenicity such as urinary tract infections and atrophic rhinitis in mammals.
- heparosan biosynthesis requires two types of heparosan synthase glucosyltransferase and six types of heparosan excretion carriers. That is, first, GlcNAc and GlcUA are alternately added to the sugar chain non-reducing end by glucosyltransferase (KfiA and KfiC), and the heparosan chain is elongated (Non-patent Document 2).
- Non-patent Document 3 heparosan excretion carriers
- Non-patent Document 4 The heparosan chain is thought to be immobilized on the phosphatidic acid molecule in the outer membrane of Escherichia coli on the cell surface via lipid substitution at the reducing end.
- the heparosan synthase gene and the heparosan excretion carrier gene form a cluster on the chromosome.
- the cluster is divided into Regions 1 to 3, and Region 2 located in the center of the cluster encodes four proteins (KfiA, KfiB, KfiC, KfiD) including heparosan synthase.
- Pasteurella multocidae type D strain has PmHS1 as heparosan synthase (glucosyltransferase) (Non-patent Document 5).
- PmHS1 has an active domain homologous to both KfiA and KfiC derived from Escherichia coli K5 strain, and catalyzes the polymerization reaction using both UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates.
- the heparosan excretion carrier of Pasteurella multocida type D strain has not been clarified yet.
- Heparin is an anticoagulant and is used to treat thromboembolism and disseminated intravascular coagulation (DIC), as well as to prevent blood coagulation during dialysis and extracorporeal circulation. It is done.
- Heparosan is a sugar chain skeleton of heparin, and can be converted into a heparin-like polysaccharide through steps such as deacetylation, isomerization, sulfation, and molecular weight adjustment (Non-Patent Documents 6 and 7).
- Heparin exhibits an anticoagulant effect through the activation of antithrombin III, an anticoagulant factor.
- Antithrombin III inhibits thrombin, factor Xa (an active form of factor X), and other serine proteases by binding to their active serine sites.
- Thrombin is a blood coagulation factor
- factor Xa is a factor involved in thrombin maturation. Heparin binds to this antithrombin III and changes its structure to activate the inhibitory action.
- Thrombin has a higher affinity for the heparin-antithrombin III complex than factor Xa.
- low molecular weight heparin with an average molecular weight of 4000-6000 Da obtained by enzymatic / chemical treatment and fractionation of heparin has few bleeding side effects and has recently been used more frequently.
- Low molecular weight heparin has a short sugar chain and can bind to antithrombin III, but can hardly bind to thrombin.
- thrombin needs to bind to heparin, whereas in the inhibition of factor Xa by the heparin-antithrombin III complex, factor Xa becomes heparin. There is no need to join. Therefore, low molecular weight heparin hardly inhibits the action of thrombin, whereas it can inhibit the action of factor Xa.
- Non-patent Documents 6 and 7 Heparosan can be used in various applications other than the production of heparin.
- Non-patent Document 8 Patent Document 2
- heparosan As a raw material for heparin production on an industrial scale, it is necessary to scale up to 100,000 L scale, but there are problems such as an increase in substrate consumption rate and an increase in oxygen supply to the fermenter.
- Non-patent Document 9 heparosan-producing bacteria using the non-pathogenic Escherichia coli BL21 (DE3) strain as a host were reported (Non-patent Document 9). That is, four heparosan biosynthetic genes kfiA, kfiB, kfiC, and kfiD constituting Region 2 derived from Escherichia coli K5 strain are loaded on the expression vector pETDuet-1 and introduced into the BL21 strain, thereby 334 mg / L in flask culture. Of heparosan has been confirmed.
- An object of the present invention is to develop a novel technique for improving the ability of bacteria to produce heparosan and to provide an efficient method for producing heparosan.
- the present inventors have improved heparosan-producing ability by increasing the expression of one or more genes selected from the genes listed in Tables 1 to 3 in bacteria having heparosan-producing ability.
- the present invention has been completed.
- the bacterium wherein the expression of the gene is increased by increasing the copy number of the gene and / or modifying the expression regulatory sequence of the gene.
- the rbsB gene comprises DNA comprising a base sequence shown at positions 800-1690 of SEQ ID NO: 29, or a base sequence having 90% or more identity with the base sequence shown at positions 800-1690 of SEQ ID NO: 29; DNA having the property of increasing the heparosan-producing ability of the bacterium when the expression level is increased in an Escherichia bacterium having the ability to produce heparosan;
- the rbsK gene comprises DNA comprising a base sequence shown at positions 1816 to 2745 of SEQ ID NO: 29, or a base sequence having 90% or more identity with the base sequence shown at positions 1816 to 2745 of SEQ ID NO: 29; DNA having the property of increasing the heparosan-producing ability of the bacterium when the expression level is increased
- a method for producing heparosan comprising culturing the bacterium in a medium, producing and accumulating heparosan in the medium, and collecting heparosan from the medium.
- Heparin comprising culturing the bacterium in a medium and producing and accumulating heparosan in the medium, chemically and / or enzymatically treating the heparosan to produce heparin, and recovering the heparin Manufacturing method.
- RbsR, RbsK, and RbsB are factors involved in D-ribose uptake and utilization.
- RbsR is a repressor of ribose metabolism and negatively regulates the transcription of the rbs operon, which encodes a protein involved in ribose catabolism (Laikova ON et al. (2001) ”Computational analysis of the transcriptional regulation of pentose utilization) systems in the gamma subdivision of Proteobacteria. "FEMS Microbiol Lett. 205 (2): 315-22).
- RbsK is a ribokinase that catalyzes phosphorylation of D-ribose (Bork P et al.
- RbsB is one of the subunits that make up the ribose ABC transporter.
- the ribose ABC transporter takes up D-ribose (Iida A. et al. (1984) "Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. "J Bacteriol. 158 (2): 674-82). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- HsrA is an inner membrane protein presumed to be a member of the major facilitator superfamily (MFS) (Pao SS et al. (1998) “Major facilitator superfamily.” Microbiol Mol Biol Rev. 62 (1): 1 -34). Although HsrA is presumed to have a proton-driven drug efflux system function based on sequence homology, its actual function has not been identified. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- MFS major facilitator superfamily
- GlgB and GlgX are enzymes involved in glycogen biosynthesis and degradation, respectively.
- GlgB is a glycogen branching enzyme (1,4- ⁇ -glucan branching enzyme) that introduces branching into the polyglucose chain by the formation of ⁇ -1,6-glycosidic bonds during glycogen biosynthesis. and Preiss (1977) "Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli b alpha-1,4, -glucan: alpha-1,4-glucan 6-glycosyltansferase.” J Biochemistry. 16 (16): 3693- 9).
- GlgX is a glycogen debranching enzyme that hydrolyzes ⁇ -1,6-glycosidic bonds in units of 3 or 4 glucose residues to eliminate glycogen branching (Dauvillee D et al. (2005)) Role of the Escherichia coli glgX gene in glycogen metabolism. "J Bacteriol. 187 (4): 1465-73). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- micF is an antisense RNA involved in the suppression of OmpF expression, and is known to function especially under osmotic conditions (Ramani N et al. (1994) "micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. "J. Bacteriol 176: 5005-5010). There is no finding at all indicating the relationship between this nucleotide chain and heparosan production.
- RcsB is a transcriptional regulator found in bacteria belonging to the genus Escherichia, Salmonella, Klebsiella, etc., and biosynthesis of colanic acid (Colanic acid), which is mainly a capsular component (Majdalani N et al. (2005) “The Rcs phosphorelay: a complex signal transduction system.” Anuu. Rev. Microbiol. 59: 379-405).
- RcsB is Vi polysaccharide expression of Citrobacter freundii (Houng HS et al. (1992) "Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and Biad (J.
- Bacteriol 174: 5910-5915) and Klebsiella spp.K2 ⁇ expression (Rochaporn W et al. (1992) "Involvement of rcsB in Klebsiella K2 Capsule Synthesis in Escherichia coli K-12" J. Bacteriol 174: )
- RcsB overexpression of RcsB is known to increase the production of K30 capsular polysaccharide, but RcsB is not involved in the transcription of csp cluster encoding K30 capsular polysaccharide polymerizing enzyme and is a precursor.
- RcsD is a sensor protein having a histidine kinase, and is known to transmit a phosphate group to RcsB in response to an external stimulus.
- YbiX, YbiI, YbiJ, YbiC, and YbiB are factors whose functions are unknown. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
- RfaH is a transcription factor required for biosynthesis of lipopolysaccharide, secretion of ⁇ -hemolysin, and production of factor F in Escherichia coli and Salmonella typhimurium (Leeds JA and Welch RA (1996) "RfaH enhances elongation). of Escherichia coli hlyCABD mRNA. "J Bacteriol. 178 (7): 1850-7.). In Escherichia coli K5, RfaH is required for K5 capsule formation (Stevens MP et.al.
- NusG is a transcription factor and is thought to regulate transcription by interacting with RNA polymerase (Li J. et al. (1992) J Biol Chem 267 (9): 6012-6019). Moreover, NusG has been reported to be involved in capsule biosynthesis of Bacteroides fragilis (Livanis M. et al. (2009) J Bacteriol 191 (23): 7288-7295). However, there has been no report on the involvement of heparosan biosynthesis so far. NusG is a homologue of RfaH, and NusG has a common domain with RfaH (BaileyBM. Et al. (1996) Mol Microbiol 22 (4): 7729-737). However, in any of Escherichia coli K-12 strain, K5 strain, and B strain, the homology of the amino acid sequence between NusG and RfaH is about 20%, and it cannot be said that both have high homology.
- PcoR, PcoS, and PcoE are factors involved in copper resistance.
- PcoR and PcoS are highly homologous to activators of the pco operon and sensor proteins of two-component regulatory systems that respond to environmental stimuli (Cooksey DA (2006) Copper uptake and resistance in bacteria. "Mol Microbiol. 7 ( 1): 1-5).
- PcoE is a copper binding protein. There is no knowledge that indicates the relationship between these proteins and heparosan production.
- YhcN is a factor involved in bacterial response to hydrogen peroxide stress.
- strains deficient in the yhcN gene sensitivity to hydrogen peroxide increases and biofilm formation increases (Lee ⁇ ⁇ J. et al. (2010) ”Identification of stress-related proteins in Escherichia coli using the pollutant cis- dichloroethylene. "J Appl Microbiol. Jun; 108 (6): 2088-102.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YhcO has homology with an inhibitor of barnase, a toxic RNase derived from Bacillus amyloliquefaciens.
- Escherichia bacteria do not have the RNase of the barnase family, and the function of YhcO is not clear. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- AaeB and AaeA are 4-hydroxybenzoic acid excretion carrier subunits.
- AaeX is also estimated to be an exhaust carrier, but the actual function is unknown.
- the g1455 and g1453 genes are genes found only in the Esherichia coli K5 strain, and the functions of the proteins encoded by these genes are unknown. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
- AlpA is an expression regulator of the intA gene encoding prophage integrase, and has the function of complementing the deletion of the Lon prosthesis through increased intA expression (Trempy JE et al. (1994) "Alp suppression of Lon : Dependence on the slpA gene. "J Bacteriol. 176 (7): 2061-7).
- AlpA may be associated with biofilm formation and capsule formation (Herzberg M. et al. (2006) “YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport.” J Bacteriol. 188 (2): 587-98), there is no finding that indicates the relationship between AlpA and heparosan production.
- YrbA (also known as IbaG) is a factor that is presumed to be a DNA-binding transcription factor, and its expression increases under acidic stress conditions (Guinote IB et al. (2012) “Characterization of the BolA homolog IbaG: a new gene involved in acid resistance. "J Microbiol Biotechnol. 22 (4): 484-93.). There is no finding at all indicating the relationship between this protein and heparosan production.
- MlaB, MlaC, MlaD, MlaE, and MlaF are components of the phospholipid ABC transporter and are involved in phospholipid transport and lipid asymmetry maintenance (MalinvernilinJC and Silhavy TJ (2009) "An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. "Proc Natl Acad Sci U S A. 106 (19): 8009-14.). There is no finding at all indicating the relevance of these proteins to heparosan production.
- YrbG is a five-transmembrane inner membrane protein, and is predicted to be a Na + / Ca 2+ exchange transporter based on sequence homology. However, the ability of YrbG to regulate intracellular Ca 2+ levels has not been confirmed, and the actual function is unknown (Naseem R. et al. (2008) "pH and monovalent cations regulate cytosolic free Ca (2+) in E. coli. "Biochim Biophys Acta. 1778 (6): 1415-22). Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- NorW is a NO reductase expressed in response to nitric oxide (NO) stress (Gardner AM et al. (2003) “Role of NorR and sigma54 in the nitric oxide stress response.” J Biol Chem. 278 ( 12): 10081-6.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YbjI is a flavin mononucleotide (FMN) kinase belonging to the haloacid dehalogenase-like hydrolase family (Kuznetsova E. et al. (2006) “Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. "J Biol Chem. 281 (47): 36149-61). There is no finding at all indicating the relationship between this protein and heparosan production.
- FMN flavin mononucleotide
- YbjJ and YbjK are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
- RybB is a small RNA expressed in response to sigma factor ⁇ E activated in response to cell surface stress, and suppresses the synthesis of sigma factor ⁇ E (Thompson KM et al. (2007) "SigmaE regulates and is regulated by a small RNA in Escherichia coli. "J Bacteriol. 189 (11): 4243-56).
- RybB is also involved in the suppression of OmpC and OmpW expression (Johansen J. et al. (2006) "Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins.” J Mol Biol. 364 (1): 1-8). There is no finding at all indicating the relationship between RybB and heparosan production.
- YjjY is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- YjtD is presumed to be a kind of RNA methyltransferase, but its actual function is unknown (Anantharaman V. et al. (2002) "SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol. ⁇ ⁇ ⁇ 4 (1): 71-5) Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- ThrB, ThrA, and ThrL are enzymes of the threonine biosynthesis pathway.
- ThrB is a homoserine kinase that catalyzes the conversion reaction of homoserine to O-phospho-L-homoserine and is involved in the biosynthesis of threonine (Burr B. et al. (1976) "Homoserine kinase from Escherichia coli K12.") Eur J Biochem. 62 (3): 519-26.).
- ThrA is an enzyme having two functions, aspartate kinase I and homoserine dehydrogenase I.
- ThrA is involved in biosynthesis of lysine and methionine (Clark RB, Ogilvie JW et al. (1972)) Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12. Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding. "Biochemistry. 11 (7): 1278-82.).
- ThrL is a thrLABC operon leader peptide that attenuates the expression of thrLABC operon depending on the concentration of threonine and isoleucine (Lynn SP et al.
- FruA is a fructose PTS permease and has II (PriorCTI and Kornberg HL (1988) "Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphomaschine “J Gen Microbiol. 134 (10): 2757-68.). There is no finding at all indicating the relationship between this protein and heparosan production.
- PsuK is a pseudouridine kinase that is involved in catabolism of pseudouridine, a modified RNA commonly found in the T ⁇ C loop of tRNA (Solomon LR and Breitman TR (1971) "Pseudouridine kinase of escherichia coli: a new enzyme.” Biochem Biophys Res Commun. 44 (2): 299-304.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YtfT and YjfF are presumed to be membrane constituents of the galactose ABC transport carrier, but the actual function is unknown. Therefore, there is no knowledge showing the relationship between these proteins and heparosan production.
- Fbp is a fructose-1,6-bisphosphatase that catalyzes the reaction of fructose-1,6-diphosphate to fructose-6-phosphate in the gluconeogenic pathway.
- Fraenkel DG and Horecker BL (1965) "Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli.” J Bacteriol. 90 (4): 837-42.
- YagU is presumed to be an inner membrane protein, but its function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- PaoA and PaoB are components of the aldehyde oxidoreductase YagTSR.
- PaoA is an iron-binding subunit
- PaoB is a flavin adenine dinucleotide (FAD) -binding subunit.
- FAD flavin adenine dinucleotide
- GsiC and GsiD are components of glutathione ABC transport carrier. GsiC and GsiD are localized in the inner membrane (Moussatova A. et al. (2008) "ATP-binding cassette transporters in Escherichia coli.” Biochim Biophys Acta.1778 (9): 1757-71.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- YliE is presumed to be a c-di-GMP-specific phosphodiesterase and promotes biofilm formation by overexpression (Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress.” Mol Microbiol. 72 (6): 1500-16.). There is no finding at all indicating the relationship between this protein and heparosan production.
- Irp2 and Irp1 are nonribosomal peptide synthases that are involved in iron uptake (Pelludat C. et. Al. (1998) "The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation.” J Bacteriol. 180 (3): 538-46.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- BhsA (aka YcfR) is presumed to be an outer membrane protein and is involved in biofilm formation and stress response (ZhangZXS et al. (2007) "YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity.” J Bacteriol. 189 (8): 3051-62.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YcfS is a kind of L, D-transpeptidase.
- YcfS catalyzes a reaction of removing a D-alanine residue from a meso-diaminopimelic acid (DAP) residue of peptidoglycan and binding a C-terminal lysine residue of brown lipoprotein to the meso-DAP residue.
- DAP meso-diaminopimelic acid
- This reaction causes peptidoglycan to covalently bind to the outer membrane via brown lipoproteins (Magnet S. et al. (2007) "Identification of the L, D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. "J Bacteriol.189 (10): 3927-31). There is no finding at all indicating the relationship between this protein and heparosan production.
- LepB is a signal peptidase that removes the N-terminal leader peptide from secreted proteins (Dalbey R.E. (1991) Leader peptidase.aseMol Microbiol. 5 (12): 2855-60.). There is no finding at all indicating the relationship between this protein and heparosan production.
- Rnc is an RNase III that cleaves double-stranded RNA to generate a 5 ′ phosphate group and a hydroxyl group, and is required for the processing of rRNA and phage mRNA.
- the main role of Rnc is regulation of gene expression and functionalization of antisense RNA (Robertson HD and Dunn JJ (1975) "Ribonucleic acid processing activity of Escherichia coli ribonuclease III.” J Biol Chem. 25; 250 (8 ): 3050-6). There is no finding at all indicating the relationship between this protein and heparosan production.
- Era is an essential factor for survival (Takiff HE et al. (1992) Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon. "J Bacteriol. 174 (5): 1544-53). Era is known to interact with MazG by the Yeast two-hybrid method (Zhang J. and Inouye M. (2002) "MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J Bacteriol. 184 (19): 5323-9). There is no finding at all indicating the relationship between this protein and heparosan production.
- DapA is 4-hydroxy-tetrahydrodipicolinate synthase.
- 4-hydroxy-tetrahydrodipicolinate synthase is one of the lysine biosynthetic enzymes, from pyruvate and L-aspartate ⁇ -semialdehyde to (2S, 4S) -4-Hydroxy-2,3,4,5-tetrahydrodipicolinate Catalyze the reaction of The reaction is thought to be the rate-limiting step in lysine biosynthesis after aspartate kinase III (Laber B. et al. (1992) "Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization.” Biochem J. 288 (Pt 2): 691-5). There is no finding at all indicating the relationship between this protein and heparosan production.
- GcvR is a protein presumed to be a transcriptional regulatory factor and is involved in the expression of glycine biosynthesis genes. In the absence of glycine, GcvR directly binds to GcvA to form a GlvR / GlvA complex and inhibits the expression of glycine-degrading genes. In the presence of glycine, glycine binds to GcvR and inhibits the formation of GlvR / GlvA complex (Ghrist AC et al. (2001) "GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon.” Microbiology 147 (Pt 8): 2215-21.). There is no finding at all indicating the relationship between this protein and heparosan production.
- Bcp is a thioredoxin-1-dependent thiol peroxidase (Clarke DJ et al. (2009) “Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectr 18): 3904-14). There is no finding at all indicating the relationship between this protein and heparosan production.
- HyfA has four 4Fe-4S clusters and is presumed to be involved in electron transport (Andrews (SC et al. (1997) "A 12-cistron Escherichia coli operon (hyf) encoding a putative proton -translocating formate hydrogenlyase system. "Microbiology. 143 (Pt 11): 3633-47.). There is no finding at all indicating the relationship between this protein and heparosan production.
- RpoE is a kind of sigma factor that functions as a subunit of RNA polymerase, sigma E ( ⁇ E ). RpoE regulates the expression of proteases in membrane and intermembrane proteins in response to heat shock and stress (Ades SE et al. (2003) "Regulation of the alternative sigma factor sigma (E) during initiation, adaptation , and shutoff of the extracytoplasmic heat shock response in Escherichia coli. "J Bacteriol. 185 (8): 2512-9.). There is no finding at all indicating the relationship between this protein and heparosan production.
- L-aspartate oxidase is the first enzyme in the de novo NAD biosynthetic pathway and catalyzes the reaction from L-aspartate to iminoaspartate in an FAD-dependent manner (Mortarino M. et al. (1996) “L- aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. ”Eur J Biochem. 239 (2): 418-26.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YfiC is a methyltransferase that methylates N at position 6 of A37 (adenine at position 37) of valine tRNA (Golovina AY et al. (2009) RNA. "The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val (cmo5UAC). "15 (6): 1134-41.). The base at position 37 of tRNA is adjacent to the anticodon triplet and is often modified. There is no finding at all indicating the relationship between this protein and heparosan production.
- SrmB is a DEAD-box RNA helicase that promotes early-stage reactions in the ribosomal 50S subunit assembly (CharollaisaiJ. Et al. (2003) "The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. "Mol Microbiol. 48 (5): 1253-65.). There is no finding at all indicating the relationship between this protein and heparosan production.
- G1414 and G1413 are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
- NuoE, NuoF, and NuoG are soluble fragments of NADH dehydrogenase I and function as an electron entrance to the electron transport system (BraunraM. Et al. (1998) "Characterization of the overproduced NADH dehydrogenase fragment of the NADH: ubiquinone oxidoreductase (complex I) from Escherichia coli. "Biochemistry. 37 (7): 1861-7.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- GlmZ is a small RNA that regulates glmS ⁇ ⁇ mRNA expression and translation by post-transcriptional modification in response to intracellular glucosamine-6-phosphate concentration (Kalamorz F. et al. (2007) “Feedback control of glucosamine) -6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. ”Mol Microbiol. 65 (6): 1518-33.).
- GlmZ directly binds to the 5'-UTR of glmS mRNA and activates the translation of glmS mRNA by freeing the SD region of glmS mRNA that had a loop structure (Urban JH and Vogel J.et al . (2008) "Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation.” PLoS Biol. 6 (3): e64). GlmS is L-glutamine: D-fructose-6-phosphate aminotransferase.
- D-fructose-6-phosphate aminotransferase is the first enzyme in the supply pathway of UDP-N-acetylglucosamine, a precursor of heparosan, from fructose-6-phosphate to glucosamine-6-phosphate Catalyze the reaction to
- UDP-N-acetylglucosamine a precursor of heparosan
- fructose-6-phosphate to glucosamine-6-phosphate
- HemY, HemX, and HemD are enzymes in the biosynthesis pathway of heme and choline.
- HemY is a protoporphyrinogen oxidase that oxidizes protoporphyrinogen IX in the heme biosynthetic pathway to produce protoporphyrin IX (Dailey TA et al. (1994) "Expression of a cloned protoporphyrinogen oxidase.” The Journal of Biological Chemistry, 269: 813-815.).
- HemX is presumed to be uroporphyrinogen III methylase that methylates uroporphyrinogen III in the choline biosynthetic pathway to produce precholine II, but the actual function is unknown (Sasarman A. et al. (1988 ) "Nucleotide sequence of the hemX gene, the third member of the Uro operon of Escherichia coli K12." Nucleic Acids Res. 16 (24): 11835).
- HemD is a uroporphyrinogen III synthase that produces uroporphyrinogen III, a common final metabolic intermediate in the biosynthesis pathway of heme and choline (Jordan PM and Woodcock SC (1991) "Mutagenesis of arginine residues in) the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. "Biochem J. 280 (Pt 2): 445-9.). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- RlmL (also known as RlmKL) is a methyltransferase that methylates 23S445rRNA G2445 and G2069 (Kimura S. et al. (2012) "Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity.” Nucleic Acids Res. 40 (9): 4071-85.).
- RlmL is a fusion protein, and in particular, the N-terminal domain may be referred to as RlmL and the C-terminal domain may be referred to as RlmK. There is no finding at all indicating the relationship between this protein and heparosan production.
- ArtQ, ArtM, and ArtJ are subunits of the arginine ABC transporter (Linton KJ and Higgins CF (1998) "The Escherichia coli ATP-binding cassette (ABC) proteins.” Mol Microbiol. 28 (1): 5- 13.). ArtJ is presumed to be localized in the periplasm. Since ArtM and Art are hydrophobic proteins, it is presumed that they are localized in the inner membrane and function as an arginine inner membrane permeation device in cooperation with ArtP, which is an ATPase. There is no knowledge that indicates the relationship between these proteins and heparosan production.
- RlmC (aka RumB) is a methyltransferase that methylates U747 of 23S23rRNA (Madsen CT et al. (2003) “Identifying the methyltransferases for m (5) U747 and m (5) U1939 in 23S rRNA using MALDI mass) spectrometry. "Nucleic Acids Res. 31 (16): 4738-46.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YbjO is presumed to be an inner membrane protein, but its function is unknown (Rapp M. et al. (2004) “Experimentally based topology models for E. coli inner membrane proteins.” Protein Sci. 13 ( 4): 937-45.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YejO is an outer membrane protein with the function of phase-variable protein export (Henderson IR and Owen P. (1999) "The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. "J Bacteriol. 181 (7): 2132-41.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YejM is presumed to be a type of hydrolase, but its actual function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- YejL is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- RpoS is a type of sigma factor that functions as a subunit of RNA polymerase, sigma S ( ⁇ S ). RpoS globally regulates gene expression in response to stress (Maciag A. et al. (2011) “In vitro transcription profiling of the ⁇ S subunit of bacterial RNA polymerase: re-definition of the ⁇ S regulon and identification of ⁇ S-specific promoter sequence elements. ”Nucleic Acids Res. 39 (13): 5338-55.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YgbN is a protein presumed to be a transporter belonging to the Gnt family involved in gluconate transport, and has been suggested to be a proton-driven metabolite uptake carrier (Peekhaus N. et al. (1997)) Characterization of a novel transporter family that includes multi Escherichia coli gluconate transporters and their homologues. "FEMS Microbiol Lett. 147 (2): 233-8.). There is no finding at all indicating the relationship between this protein and heparosan production.
- YgbM is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- YbgL is presumed to be a kind of aldolase, but its actual function is unknown. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- G3798 is a protein presumed to be SOS-response transcriptional repressor (RecA-mediated autopeptidase).
- G3794 is a protein presumed to be Superinfection exclusion protein B.
- G3793 is a protein presumed to be restrictionreinhibitor protein ral (Antirestriction protein). There is no knowledge that indicates the relationship between these proteins and heparosan production.
- G3797, G3796, G3795, and G3792 are proteins with unknown functions. Therefore, there is no knowledge that indicates the relationship between these proteins and heparosan production.
- RyjA is a small RNA of about 140 nt (Wassarman K.M. et al. (2001) "Identification of novel small RNAs using comparative genomics and microarrays.” Genes Dev. 15 (13): 1637-51.). There is no knowledge that indicates the relationship between this RNA and heparosan.
- SoxRS is a transcriptional regulator that is involved in oxidative stress response. SoxR is activated by oxidative stress and induces SoxS expression, and SoxRS induces SoxRS regulon gene expression (Gu M. and Imlay JA (2011) "The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. "Mol Microbiol. 79 (5): 1136-50 .; Touati D. (2000)" Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS Rep. IV 5 (5): 287-93.).
- SoxRS is known to be involved in the production of lipopolysaccharide (Lee JH et al. (2009) "SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli.” J Bacteriol. 191 (13): 4441-50.), However, there is no finding at all indicating an association between these proteins and heparosan production.
- YjcC is a c-di-GMP specific phosphodiesterase (Boehm A. et al. (2009) "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress.” Mol Microbiol. 72 (6): 1500-16. ). Although overexpression of YjcC is known to reduce biofilm formation, there is no finding at all indicating an association between this protein and heparosan production.
- YjcB is a protein with unknown function. Therefore, there is no knowledge showing the relationship between this protein and heparosan production.
- EfeU and EfeO are components of the divalent iron ion transport carrier EfeUOB.
- EfeU functions as a permease and EfeO functions as a protein localized in the periplasm
- EfeUOB YcdNOB
- EfeUOB YcdNOB
- YcdNOB acid-induced and CpxAR-regulated, low-pH Fe2 + transporter that iscryptic in Escherichia coli K-12 but functional in E. coli O157: H7.
- Mem Microbiol 65: 857? 875 There is no knowledge that indicates the relationship between these proteins and heparosan production.
- the figure which shows the structure of a wild type nlpD promoter (Pnlp0).
- the base sequence in the figure is shown in SEQ ID NO: 165.
- variant nlpD promoter (Pnlp8).
- the base sequence in the figure is shown in SEQ ID NO: 168.
- the bacterium of the present invention is a bacterium belonging to the genus Escherichia having the ability to produce heparosan, so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
- a modified bacterium is a bacterium belonging to the genus Escherichia having the ability to produce heparosan, so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
- Bacteria having heparosan-producing ability have the ability to produce heparosan and accumulate it in the medium to the extent that it can be recovered when cultured in the medium. It refers to bacteria.
- the bacterium having the ability to produce heparosan may be a bacterium that can accumulate a larger amount of the desired heparosan in the medium than the unmodified strain.
- Non-modified strains include wild strains and parent strains.
- the bacterium having heparosan-producing ability may be, for example, a bacterium that can accumulate heparosan in an amount of 50 mg / L or more, 100 mg / L or more, 200 mg / L or more, or 300 mg / L or more. .
- the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
- Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
- Neidhardt et al. Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
- F. D. Nehard ed.
- Salmonella Cellular, and Molecular, Biology / Second Edition
- Escherichia coli examples include, for example, Escherichia coli K-12 strain such as W3110 strain (ATCC 32525) and MG1655 strain (ATCC 47076); Escherichia coli K5 strain (ATCC 23506); Coli B strains; and their derivatives.
- Escherichia coli K-12 strain such as W3110 strain (ATCC 32525) and MG1655 strain (ATCC 47076); Escherichia coli K5 strain (ATCC 23506); Coli B strains; and their derivatives.
- strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
- the BL21 (DE3) strain is available, for example, from Life Technologies (product number C6000-03).
- the bacterium of the present invention may inherently have heparosan-producing ability or may be modified to have heparosan-producing ability. Bacteria having heparosan-producing ability can be obtained, for example, by imparting heparosan-producing ability to the bacteria as described above.
- Heparosan production ability can be imparted by introducing a gene encoding a protein involved in heparosan production.
- proteins involved in heparosan production include glycosyltransferases and heparosan excretion carrier proteins.
- one kind of gene may be introduced, or two or more kinds of genes may be introduced.
- the gene can be introduced in the same manner as the method for increasing the number of gene copies described below.
- glycosyltransferase as used herein has the activity of catalyzing the reaction of extending the heparosan chain by adding N-acetyl-D-glucosamine (GlcNAc) and / or glucuronic acid (GlcUA) to the non-reducing end of the sugar chain. It refers to protein. This activity is also referred to as “glycosyltransferase activity”. Examples of the gene encoding glycosyltransferase include kfiA gene, kfiC gene, and pmHS1 gene.
- Examples of kfiA gene and kfiC gene include kfiA gene and kfiC gene of Escherichia coli K5 strain.
- KfiA protein encoded by the kfiA gene of Escherichia coli K5 strain adds GlcNAc to the non-reducing end of the sugar chain using UDP-GlcNAc as a substrate.
- KfiC protein encoded by the kfiC gene of Escherichia coli K5 strain adds GlcUA to the non-reducing end of the sugar chain using UDP-GlcUA as a substrate.
- the kfiA and kfiC genes of Escherichia coli K5 strain together with the kfiB and kfiD genes constitute the kfiABCD operon (also referred to as Region 2).
- the base sequence of the region containing the kfiABCD operon of Escherichia coli K5 strain is shown in SEQ ID NO: 24.
- the kfiA, kfiB, kfiC, and kfiD genes correspond to the sequence at positions 445 to 1164, the sequence at positions 1593 to 3284, the sequence at positions 4576 to 6138, and the sequence at positions 6180 to 7358, respectively.
- the amino acid sequences of KfiA, KfiB, KfiC, and KfiD proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 25 to 28, respectively.
- PmHS1 gene includes pmHS1 gene of Pasteurella multocidae type D strain.
- the PmHS1 protein encoded by the pmHS1 gene of Pasteurella multocida type D strain adds GlcNAc and GlcUA alternately to the non-reducing sugar chain using both UDP-GlcNAc and UDP-GlcUA as substrates.
- the nucleotide sequence of the pmHS1 gene of Pasteurella multocida type D strain and the amino acid sequence of the protein encoded by the gene are obtained from public databases such as NCBI (http://www.ncbi.nlm.nih.gov/). it can.
- heparosan excretion carrier protein refers to a protein having an activity to excrete heparosan chains out of the cell membrane. This activity is also referred to as “heparosan excretion activity”. Examples of genes encoding heparosan efflux carrier protein include kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes.
- Examples of the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes include kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes of Escherichia coli K5 strain and Escherichia coli B strain.
- the kpsC, kpsD, kpsE, and kpsS genes of these strains together with the kpsF and kpsU genes constitute the kpsFEDUCS operon (also referred to as Region 1).
- the kpsM and kpsT genes of these strains constitute the kpsMT operon (also referred to as Region 3).
- the nucleotide sequences of the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes of these strains and the amino acid sequences of the proteins encoded by these genes are, for example, NCBI (http://www.ncbi.nlm.nih.gov Can be obtained from public databases such as /).
- the gene to be introduced can be appropriately selected according to the type of bacteria used.
- Escherichia coli B strain has a gene encoding a heparosan efflux carrier protein, but does not have a gene encoding a glycosyltransferase. Therefore, the ability to produce heparosan can be imparted to the Escherichia coli B strain by introducing a gene encoding a glycosyltransferase.
- Escherichia coli K-12 strain does not have both a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein.
- heparosan-producing ability can be imparted to Escherichia coli K-12 strain.
- Escherichia bacterium having heparosan-producing ability for example, Escherichia coli K5 strain; a strain obtained by introducing the kfiA gene and kfiC gene derived from Escherichia coli K5 strain into Escherichia coli B strain such as BL21 (DE3) strain ; Escherichia coli K-12 strains such as W3110 and MG1655 strains, kfiA and kfiC genes from Escherichia coli K5 strain, and kpsC, kpsD, kpsE, kpsM from Escherichia coli K5 strain or Escherichia coli B strain; Strains into which the kpsS, kpsS, and kpsT genes have been introduced; and derivatives thereof.
- Escherichia coli K5 strain a strain obtained by introducing the kfiA gene and kfiC gene derived from Escherich
- strains obtained by introducing the kfiA gene and kfiC gene derived from Escherichia coli K5 strain into Escherichia coli B strain include, for example, Escherichia coli BL21 (DE3) / pVK9-region2 described in Examples. .
- a bacterium having heparosan-producing ability may be modified so that expression of a gene originally possessed by the bacterium among genes encoding proteins involved in heparosan production is enhanced. That is, for example, Escherichia coli K5 strain may be modified so that the expression of one or more genes encoding proteins involved in heparosan production is enhanced. Also, for example, Escherichia coli B strain may be modified so that expression of one or more genes encoding heparosan excretion carrier protein is enhanced.
- the bacterium having heparosan-producing ability may be modified in other ways as long as the heparosan-producing ability is not impaired.
- a bacterium having the ability to produce heparosan may be modified to enhance the expression of one or more genes selected from the kfiB, kfiD, kpsF, and kpsU genes. That is, for example, when introducing a gene encoding a glycosyltransferase, Region 2 may be introduced together, and when introducing a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein, Region 1 may be introduced.
- ⁇ 3 may be introduced together.
- the gene used for modification of bacteria such as imparting heparosan production ability, encodes a protein in which the original function is maintained, it is not limited to the above-exemplified genes and genes having a known base sequence. It may be. “The original function was maintained” means that, for example, in the case of glycosyltransferase, a variant of the protein has glycosyltransferase activity, and in the case of a heparosan excretion carrier protein, the variant of the protein has heparosan excretion activity. It means having.
- a gene used for modification of bacteria such as imparting heparosan production ability
- one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having an amino acid sequence.
- gene and protein variants the descriptions of the genes described in Tables 1 to 3 and conservative variants of the proteins encoded by them can be applied mutatis mutandis.
- the bacterium of the present invention is modified so that the expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
- the bacterium of the present invention can be obtained by modifying a bacterium having heparosan-producing ability so that expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased.
- the bacterium of the present invention can also be obtained by imparting heparosan-producing ability after modifying the bacterium so that expression of one or more genes selected from the genes listed in Tables 1 to 3 is increased. Can do.
- the bacterium of the present invention may be one that has acquired heparosan-producing ability by being modified so as to increase the expression of one or more genes selected from the genes listed in Tables 1 to 3. Good.
- the modification for constructing the bacterium of the present invention can be performed in any order.
- the “genes listed in Tables 1 to 3” means rbsR, rbsK, rbsB, hsrA, glgB, glgX, micF, rcsD, rcsB, ybiX, ybiI, ybiJ, ybiC, ybiB, rfaH, nusG, pcoR, pcoS, pcoE, yhcN, yhcO, aaeB, aaeA, aaeX, g1455, alpA, g1453, yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, yrbG, norW, ybjI, ybjJ, ybjK, rybBy, j thrL, thrA, thrB, fruA, psuK
- RbsR, rbsK, and rbsB genes are genes encoding factors involved in D-ribose uptake.
- the rbsR gene encodes a repressor of the rbs operon.
- the rbsK gene encodes ribokinase.
- the rbsB gene encodes one of the subunits that make up the ribose ABC transporter.
- the rbsR, rbsK, and rbsB genes of the Escherichia coli K-12 MG1655 strain are the 3,936,250-3,937,242 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. 3,935,317 to 3,936,246, and 3,934,301 to 3,935,191.
- RbsR, RbsK, and RbsB proteins of the MG1655 strain are GenBank accession NP_418209 (version NP_418209.1 GI: 16131621), GenBank accession NP_418208 (version NP_418208.1 GI: 16131620), and GenBank accession NP_418207 (version NP_418207. 1 GI: 16131619).
- the hsrA gene is a gene encoding an inner membrane protein presumed to be a member of the major facilitator superfamily (MFS).
- MFS major facilitator superfamily
- the hsrA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of the 3,937,208-3,938,635 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the HsrA protein of the MG1655 strain is registered as GenBank accession NP_418210 (version NP_418210.1 GI: 16131622).
- the base sequence of the region containing the rbsB, rbsK, rbsR, and hsrA genes of Escherichia coli K5 strain is shown in SEQ ID NO: 29.
- the rbsB, rbsK, and rbsR genes correspond to the sequence at positions 800 to 1690, the sequence at positions 1816 to 2745, and the sequence at positions 2749 to 3741, respectively.
- the hsrA gene corresponds to a complementary sequence to the sequences at positions 3707-5134.
- the amino acid sequences of the RbsR, RbsK, RbsB, and HsrA proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 30 to 33, respectively.
- the glgB gene is a gene encoding a glycogen branching enzyme (1,4- ⁇ -glucan branching enzyme).
- the glgX gene is a gene encoding glycogen debranching enzyme.
- the glgB and glgX genes of Escherichia coli K-12 MG1655 strain are complementary to the sequences of 3,569,339-3,571,525 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. And the sequence complementary to the sequence at positions 3,567,369-3,569,342.
- GlgB and GlgX proteins of the MG1655 strain are registered as GenBank accession NP_417890 (version NP_417890.1 GI: 16131306) and GenBank accession NP_417889 (version NP_417889.1 GI: 16131305), respectively.
- the base sequence of the region containing the glgB and glgX genes of Escherichia coli K5 strain is shown in SEQ ID NO: 34.
- the glgB and glgX genes correspond to the 989 to 3175 position and the 3172 to 5145 position sequences, respectively.
- the amino acid sequences of GlgB and GlgX proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 35 and 36, respectively.
- the micF gene is a gene encoding an antisense RNA involved in the suppression of OmpF expression.
- the micF gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,311,106 to 2,311,198 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- RcsD and rcsB genes are genes that encode transcription factors.
- the rcsD and rcsB genes of Escherichia coli K-12 MG1655 strain are 2,311,510-2,314,182 and 2,314,199-2,314,849, respectively, in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- RcsD and RcsB proteins of the MG1655 strain are registered as GenBank accession NP_416720 (version NP_416720.1 GI: 16130153) and GenBank accession NP_416721 (version NP_416721.1 GI: 16130154), respectively.
- the base sequence of the region containing the rcsB, rcsD, and micF genes of Escherichia coli K5 strain is shown in SEQ ID NO: 43.
- the rcsB, rcsD, and micF genes correspond to the 3312 to 3962 sequence, the 623 to 3295 sequence, and the 219 to 311 sequence, respectively.
- the amino acid sequences of RcsB and RcsD proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 44 and 45, respectively.
- YbiX, ybiI, ybiJ, ybiC, and ybiB genes are genes whose functions are unknown.
- the ybiX, ybiI, ybiJ, ybiC and ybiB genes of Escherichia coli K-12 MG1655 strain are 837,753 ⁇ in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively.
- YbiX, YbiI, YbiJ, YbiC and YbiB proteins of the MG1655 strain are GenBank accession NP_415325 (version NP_415325.4 GI: 90111170), GenBank accession NP_415324 (version NP_415324.1 GI: 16128771), GenBank accession NP_415323, respectively. version NP_415323.1 GI: 16128770), GenBank accession NP_415322 (version NP_415322.1 GI: 16128769), and GenBank accession NP_415321 (version NP_415321.1 GI: 16128768).
- the base sequence of the region containing the ybiX, ybiI, ybiJ, ybiC and ybiB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 37.
- the ybiX, ybiI, and ybiJ genes correspond to the sequence at positions 718 to 1395, the sequence at positions 1469 to 1735, and the sequence at positions 2000 to 2260, respectively.
- the ybiC and ybiB genes correspond to a complementary sequence of the sequence at positions 2488 to 3574 and a complementary sequence of the sequence at positions 3715 to 4677.
- the amino acid sequences of the YbiX, YbiI, YbiJ, YbiC, and YbiB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 38 to 42, respectively.
- RfaH and nusG genes are genes encoding transcription factors.
- the rfaH and nusG genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the 4,022,356-4,022,844 sequences in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. And corresponds to the sequence at positions 4,175,766-4,176,311.
- GenBank accession NP_418284 version NP_418284.1 GI: 16131688
- GenBank accession NP_418409 version NP_418409.1 GI: 16131812
- the base sequence of the rfaH gene of Escherichia coli BL21 (DE3) strain is shown in SEQ ID NO: 46, and the amino acid sequence of the RfaH protein encoded by the same gene is shown in SEQ ID NO: 47, respectively.
- the nucleotide sequence of the nusG gene of Escherichia coli BL21 (DE3) strain is shown in SEQ ID NO: 48, and the amino acid sequence of the NusG protein encoded by the same gene is shown in SEQ ID NO: 49.
- the pcoR, pcoS, and pcoE genes are genes that encode factors involved in copper resistance.
- the pcoR gene encodes a protein that is homologous to the activator of the pco operon.
- the pcoS gene encodes a protein that is homologous to a sensor protein of a two-component regulatory system.
- the pcoE gene encodes a copper binding protein. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
- the base sequence of the region containing the pcoR, pcoS, and pcoE genes of Escherichia coli K5 strain is shown in SEQ ID NO: 50.
- the pcoR, pcoS, and pcoE genes correspond to the 128th to 808th positions, the 805th to 2205th positions, and the 2423 to 2857th positions, respectively.
- the amino acid sequences of the PcoR, PcoS, and PcoE proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 51 to 53, respectively.
- YhcN gene is a gene encoding a factor involved in stress response.
- the yhcN gene of Escherichia coli K-12 MG1655 strain corresponds to the 3,383,560 to 3,383,823 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YhcN protein of the MG1655 strain is registered as GenBank accession NP_417705 (version NP_417705.2 GI: 90111561).
- YhcO gene is a gene encoding a protein homologous to an inhibitor of RNase.
- the yhcO gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 3,383,879-3,384,151 in the genome sequence registered as GenBank accessionGenNC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accessionGenNC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YhcO protein of the MG1655 strain is registered as GenBank accession NP_417706 (version NP_417706.1 GI: 16131129).
- the aaeB and aaeA genes are genes encoding subunits of 4-hydroxybenzoic acid excretion carrier.
- the aaeX gene is a gene encoding a protein presumed to be an excretion carrier.
- the aaeB, aaeA, and aaeX genes of Escherichia coli K-12 MG1655 strain are sequenced at positions 3,384,243-3,386,210 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- AaeB, AaeA, and AaeX proteins of the MG1655 strain are GenBank accession NP_417707 (version NP_417707.1 GI: 16131130), GenBank accession NP_417708 (version NP_417708.1 GI: 16131131), and GenBank accession NP_417709 (version NP_417709. 2 GI: 90111562).
- SEQ ID NO: 54 shows the base sequence of the region containing the yhcN, yhcO, aaeB, aaeA, and aaeX genes of Escherichia coli K5 strain.
- the yhcN, yhcO, aaeB, aaeA, and aaeX genes are, respectively, a sequence at positions 63 to 326, a complementary sequence at positions 382 to 654, and a complementary sequence at positions 746 to 2713 , Corresponding to the sequence complementary to the sequence of positions 2719 to 3651 and the sequence complementary to the sequence of positions 3659 to 3931.
- the amino acid sequences of the YhcN, YhcO, AaeB, AaeA, and AaeX proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 55 to 59, respectively.
- the g1455 and g1453 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
- the alpA gene is a gene encoding an intA gene expression regulator.
- the alpA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,756,666 to 2,756,878 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the AlpA protein of MG1655 strain is registered as GenBank accession NP_417113 (version NP_417113.1 GI: 16130542).
- the base sequence of the region containing the g1455, alpA, and g1453 genes of Escherichia coli K5 strain is shown in SEQ ID NO: 60.
- the g1455, alpA, and g1453 genes correspond to the complementary sequence of the sequence at positions 568 to 1140, the complementary sequence of the sequence at positions 1226 to 1486, and the sequence at positions 2389 to 2529, respectively.
- the amino acid sequences of the G1455, AlpA, and G1453 proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 61 to 63, respectively.
- YrbA gene (also known as ibaG) is a gene encoding a protein presumed to be a DNA-binding transcription factor.
- the yrbA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 3,334,571 to 3,334,825 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YrbA protein of the MG1655 strain is registered as GenBank accession NP_417657 (version NP_417657.2 GI: 90111555).
- the mlaB, mlaC, mlaD, mlaE, and mlaF genes are genes encoding phospholipid ABC transporter components.
- the mlaB, mlaC, mlaD, mlaE, and mlaF genes of Escherichia coli K-12 MG1655 strain are 3,334,985 ⁇ in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
- MlaB, MlaC, MlaD, MlaE, and MlaF proteins of MG1655 strain are GenBank accession NP_417658 (version NP_417658.4 GI: 90111556), GenBank accession NP_417659 (version NP_417659.1 GI: 16131082), GenBank accession NP_417660 version NP_417660.1 GI: 16131083), GenBank accession NP_417661 (version NP_417661.1 GI: 16131084), and GenBank accession NP_417662 (version NP_417662.1 GI: 16131085).
- the yrbG gene encodes a protein presumed to be a Na + / Ca 2+ exchanger.
- the yrbG gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 3,338,297 to 3,339,274 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YrbG protein of the MG1655 strain is registered as GenBank accession NP_417663 (version NP_417663.1 GI: 16131086).
- the base sequence of the region containing the yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, and yrbG genes of Escherichia coli K5 strain is shown in SEQ ID NO: 64.
- the yrbA, mlaB, mlaC, mlaD, mlaE, mlaF and yrbG genes are respectively complementary to the 977 to 1246 sequence, 1391 to 1780 sequence, 1684 to It corresponds to the complementary sequence of the 2319 position, the complementary sequence of the 2338 to 2889 sequence, the complementary sequence of the 2894 to 3676 sequence, the complementary sequence of the 3684 to 4493 sequence, and the 4703 to 5680 sequence.
- the amino acid sequences of the YrbA, MlaB, MlaC, MlaD, MlaE, MlaF, and YrbG proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 65 to 71, respectively.
- the norW gene is a gene encoding NO reductase.
- the norW gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 2,831,934 to 2,833,067 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the NorW protein of MG1655 strain is registered as GenBank accession NP_417191 (version NP_417191.1 GI: 16130618).
- the base sequence of the region containing the norW gene of Escherichia coli K5 strain is shown in SEQ ID NO: 72.
- the norW gene corresponds to the sequence at positions 1201 to 2334.
- the amino acid sequence of the NorW protein of Escherichia coli K5 strain is shown in SEQ ID NO: 73.
- YbjI gene is a gene encoding flavin mononucleotide (FMN) phosphorylase.
- the ybjI gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 884,539 to 885,354 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YbjI protein of the MG1655 strain is registered as GenBank accession NP_415365 (version NP_415365.4 GI: 90111176).
- YbjJ and ybjK genes are genes whose functions are unknown.
- the ybjJ and ybjK genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the sequences 885,354 to 886,562 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. And corresponds to the sequence at positions 886,646 to 887,182.
- GenBank accession NP_415366 version NP_415366.1 GI: 16128813
- GenBank accession NP_415367 version NP_415367.1 GI: 16128814
- the rybB gene is a gene encoding a small RNA involved in suppression of OmpC and OmpW expression.
- the rybB gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of positions 887, 199 to 887,277 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
- the base sequence of the region containing the ybjI, ybjJ, ybjK, and rybB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 74.
- the ybjI, ybjJ, ybjK, and rybB genes are respectively the complementary sequence of the sequence at positions 117-932, the complementary sequence of the sequence at positions 932-2140, the sequence at positions 2224-2760, 2777 Corresponds to the complementary sequence of the sequence at position ⁇ 2855.
- the amino acid sequences of the YbjI, YbjJ, and YbjK proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 75 to 77, respectively.
- YjjY gene is a gene whose function is unknown.
- the yjjY gene of Escherichia coli K-12 MG1655 strain corresponds to the 4,638,425-4,638,565 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YjjY protein of the MG1655 strain is registered as GenBank accession NP_418819 (version NP_418819.1 GI: 16132219).
- the yjtD gene is a gene encoding a protein presumed to be a kind of RNA methyltransferase.
- the yjtD gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 4,638,965 to 4,639,651 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YjtD protein of the MG1655 strain is registered as GenBank accession NP_418820 (version NP_418820.1 GI: 16132220).
- ThrL, thrA, and thrB genes are genes that encode enzymes of the threonine biosynthesis pathway.
- the thrB gene encodes homoserine kinase.
- the thrA gene encodes an enzyme having two functions, aspartate kinase I and homoserine dehydrogenase I.
- the thrL gene encodes the leader peptide of the thrLABC operon.
- the thrL, thrA, and thrB genes of Escherichia coli K-12 MG1655 strain are the 190-255th sequence in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- ThrL, ThrA, and ThrB proteins of the MG1655 strain are respectively GenBank accession NP_414542 (version NP_414542.1161GI: 16127995), GenBank accession NP_414543 (version NP_414543.1 GI: 16127996), and GenBank accession NP_414544 (version NP_414544. 1 GI: 16127997).
- SEQ ID NO: 78 shows the base sequence of the region containing the yjjY, yjtD, thrL, thrA, and thrB genes of Escherichia coli K5 strain.
- the yjjY, yjtD, thrL, thrA, and thrB genes are the 124-264 position sequence, the 664-1350 position sequence, the 1564-1629 position sequence, and the 1711-4173 position, respectively.
- the amino acid sequences of the YjjY, YjtD, ThrL, ThrA, and ThrB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 79 to 83, respectively.
- the fruA gene is a gene encoding fructose PTS permease.
- the fruA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,257,741 to 2,259,432 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the FruA protein of the MG1655 strain is registered as GenBank accession NP_416672 (version NP_416672.1 GI: 16130105).
- the psuK gene is a gene encoding pseudouridine kinase.
- the psuK gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,256,377 to 2,257,318 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the PsuK protein of the MG1655 strain is registered as GenBank accession NP_416671 (version NP_416671.1 GI: 16130104).
- the base sequence of the region containing the fruA and psuK genes of Escherichia coli K5 strain is shown in SEQ ID NO: 84.
- the fruA and psuK genes correspond to the sequences of positions 897 to 2588 and 3165 to 3953, respectively.
- the amino acid sequences of the FruA and PsuK proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 85 and 86, respectively.
- YtfT and yjfF genes are genes encoding proteins presumed to be membrane constituents of galactose ABC transport carriers.
- the ytfT and yjfF genes of Escherichia coli K-12 MG1655 strain are the 4,450,594-4,451,619th sequence and the 4,451,606-position, respectively, in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Corresponds to the 4,452,601 sequence.
- GenBank ⁇ ⁇ ⁇ accession NP_418651 (version NP_418651.3 GI: 145698343) and GenBank accession NP_418652 (version NP_418652.2 GI: 90111710), respectively.
- the fbp gene is a gene encoding fructose-1,6-bisphosphate phosphatase.
- the fbp gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 4,452,634 to 4,453,632 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the Fbp protein of the MG1655 strain is registered as GenBank accession NP_418653 (version NP_418653.1 GI: 16132054).
- the base sequence of the region containing the ytfT, yjfF, and fbp genes of Escherichia coli K5 strain is shown in SEQ ID NO: 87.
- the ytfT, yjfF, and fbp genes correspond to the sequences of positions 252 to 1277, positions 1264 to 2259, and sequences complementary to positions 2292 to 3290, respectively.
- the amino acid sequences of the YtfT, YjfF, and Fbp proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 88 to 90, respectively.
- the yagU gene is a gene encoding a protein presumed to be an inner membrane protein.
- the yagU gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 302, 215 to 302,829 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990). Further, the YagU protein of the MG1655 strain is registered as GenBank accession NP_414821 (version NP_414821.1 GI: 16128272).
- the paoA gene also known as yagT
- the paoB gene also known as yagS
- the paoA and paoB genes of Escherichia coli K-12 MG1655 strain are complementary sequences of the 301,108 to 301,797 sequences in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. And corresponds to the complementary sequence of positions 300,155 to 301,111.
- the PaoA and PaoB proteins of the MG1655 strain are registered as GenBankGenaccession NP_414820 (version NP_414820.1 GI: 16128271) and GenBank accession NP_414819 (version NP_414819.1 GI: 16128270), respectively.
- the base sequence of the region containing the yagU, paoA, and paoB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 91.
- the yagU, paoA, and paoB genes correspond to the complementary sequence of the 117th to 731st positions, the 1149th to 1838th positions, and the 1835th to 2791th positions, respectively.
- the amino acid sequences of the YagU, PaoA, and PaoB proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 92 to 94, respectively.
- the gsiC and gsiD genes are genes that encode a component of glutathione ABC transporter.
- the gsiC and gsiD genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 870,190 to 871,110 and 871,113 to the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. Corresponds to the sequence at positions 872,024.
- GenBankGenaccession NP_415352 version NP_415352.1 GI: 16128799
- GenBank accession NP_415353 version NP_415353.1 GI: 16128800
- the yliE gene is a gene encoding a protein presumed to be a c-di-GMP-specific phosphodiesterase.
- the yliE gene of Escherichia coli K-12 MG1655 strain corresponds to the sequences 872, 202 to 874,550 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YliE protein of the MG1655 strain is registered as GenBank accession NP_415354 (version NP_415354.1 GI: 16128801).
- SEQ ID NO: 95 shows the base sequence of the region containing the gsiC, gsiD, and yliE genes of Escherichia coli K5 strain.
- the gsiC, gsiD, and yliE genes correspond to the sequence at positions 264 to 1184, the sequence at positions 1187 to 2098, and the sequence at positions 2276 to 4624, respectively.
- the amino acid sequences of the GsiC, GsiD, and YliE proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 96 to 98, respectively.
- the irp2 and irp1 genes are genes encoding nonribosomal peptide synthase. In the genome of Escherichia coli ⁇ K-12 MG1655 strain, the irp2 and irp1 genes are not annotated. In the present invention, the irp2 and irp1 genes are sometimes collectively referred to as “irp genes”.
- the base sequence of the region containing a part of the irp gene of Escherichia coli K5 strain is shown in SEQ ID NO: 99.
- the same region consists of the latter half of the irp2 gene (the length of 2781-6108 of the total length of 6108 bp; equivalent to about 54% of the total length) and the first half of the irp1 gene (the portion of the total length of 9492 bp, positions 1 to 2530; the full length Equivalent to about 27%).
- the base sequence of the irp2 gene of Escherichia coli K5 strain is shown in SEQ ID NO: 100
- the amino acid sequence of the Irp2 protein encoded by the same gene is shown in SEQ ID NO: 101.
- the base sequence of the irp1 gene of Escherichia coli K5 strain is shown in SEQ ID NO: 102
- the amino acid sequence of the Irp1 protein encoded by the same gene is shown in SEQ ID NO: 103.
- the bhsA gene (also known as ycfR) is a gene encoding a protein presumed to be an outer membrane protein.
- the bhsA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 1,168,296 to 1,168,553 in the genome sequence registered in the NCBI database as GenBank_accession NC_000913 (VERSION NC_000913.249GI: 49175990).
- the BhsA protein of MG1655 strain is registered as GenBank accession NP_415630 (version NP_415630.1 GI: 16129075).
- YcfS gene is a gene encoding a kind of L, D-transpeptidase.
- the ycfS gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 1,168,635-1169,597 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YcfS protein of the MG1655 strain is registered as GenBank accession NP_415631 (version NP_415631.1 GI: 16129076).
- SEQ ID NO: 104 shows the base sequence of the region containing the bhsA and ycfS genes of Escherichia coli K5 strain.
- the bhsA and ycfS genes correspond to sequences complementary to the sequences of positions 440-697 and positions 779-1741, respectively.
- the amino acid sequences of the BhsA and YcfS proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 105 and 106, respectively.
- the lepB gene is a gene encoding a signal peptidase.
- the lepB gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,702,357 to 2,703,331 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- Rnc gene is a gene encoding RNaseIII.
- the rnc gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,701,405 to 2,702,085 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the Rnc protein of MG1655 strain is registered as GenBank accession NP_417062 (version NP_417062.1 GI: 16130492).
- Era gene is a gene encoding a factor essential for survival.
- the era gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,700,503 to 2,701,408 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the Era protein of the MG1655 strain is registered as GenBank accession NP_417061 (version NP_417061.1 GI: 16130491).
- the base sequence of the region containing lepB, rnc and era genes of Escherichia coli K5 strain is shown in SEQ ID NO: 107.
- the lepB, rnc, and era genes correspond to the sequence at positions 1344 to 2318, the sequence at positions 2590 to 3270, and the sequence at positions 3267 to 4172, respectively.
- the amino acid sequences of the LepB, Rnc, and Era proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 108 to 110, respectively.
- the dapA gene is a gene encoding 4-hydroxy-tetrahydrodipicolinate synthase.
- the dapA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,596,904 to 2,597,782 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the DapA protein of MG1655 strain is registered as GenBank accession NP_416973 (version NP_416973.1 GI: 16130403).
- the gcvR gene is a gene encoding a protein presumed to be a transcriptional regulatory factor.
- the gcvR gene of Escherichia coli K-12 MG1655 strain corresponds to the sequences of positions 2,597, 928 to 2,598,500 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the GcvR protein of the MG1655 strain is registered as GenBank accession NP_416974 (version NP_416974.4 GI: 90111443).
- the bcp gene is a gene encoding thiol peroxidase.
- the bcp gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,598,500 to 2,598,970 in the genome sequence registered as GenBank Accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the Bcp protein of the MG1655 strain is registered as GenBank accession NP_416975 (version NP_416975.1 GI: 16130405).
- the hyfA gene encodes a protein presumed to be involved in electron transport.
- the hyfA gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,599,223 to 2,599,840 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
- the hyfA protein of the MG1655 strain is registered as GenBank accession NP_416976 (version NP_416976.4 GI: 90111444).
- the base sequence of the region containing the dapA, gcvR, bcp, and hyfA genes of Escherichia coli K5 strain is shown in SEQ ID NO: 111.
- the dapA, gcvR, bcp, and hyfA genes are respectively complementary to the sequences from positions 858 to 1736, sequences from 1882 to 2454, sequences from 2454 to 2924, and 3177 to 3794. Corresponds to the sequence of positions.
- the amino acid sequences of the DapA, GcvR, Bcp, and HyfA proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 112 to 115, respectively.
- the rpoE gene is a gene encoding sigma E ( ⁇ E ).
- the rpoE gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 2,707,459 to 2,708,034 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the RpoE protein of MG1655 strain is registered as GenBank accession NP_417068 (version NP_417068.1 GI: 16130498).
- the nadB gene is a gene encoding L-aspartate oxidase.
- the nadB gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,708,442 to 2,710,064 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the NadB protein of the MG1655 strain is registered as GenBank accession NP_417069 (version NP_417069.1 GI: 16130499).
- the yfiC gene is a gene encoding a methyltransferase that methylates N at position 6 of A37 (adenine at position 37) of valine tRNA.
- the yfiC gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of sequences 2,710,049 to 2,710,786 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YfiC protein of MG1655 strain is registered as GenBank accession NP_417070 (version NP_417070.2 GI: 90111461).
- SrmB gene is a gene encoding DEAD-box type RNA helicase.
- the srmB gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,710,918-2,712,252 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the SrmB protein of MG1655 strain is registered as GenBank accession NP_417071 (version NP_417071.1 GI: 16130501).
- the base sequence of the region containing the rpoE, nadB, yfiC, and srmB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 116.
- the rpoE, nadB, yfiC, and srmB genes are respectively the complementary sequence of the sequence at positions 355 to 930, the sequence at positions 1338 to 2960, the complementary sequence of the sequences at positions 2945 to 3682, and Corresponds to sequence 3814-5148.
- the base sequence of the rpoE gene of Escherichia coli K5 strain is shown in SEQ ID NO: 174.
- the amino acid sequences of RpoE, NadB, YfiC, and SrmB proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 117 to 120, respectively.
- the g1414 and g1413 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
- SEQ ID NO: 121 shows the base sequence of the region containing the g1414 and g1413 genes of Escherichia coli K5 strain.
- the g1414 and g1413 genes correspond to the 28th to 699th positions and the 831 to 1157th positions, respectively.
- the amino acid sequences of G1414 and G1413 proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 122 and 123, respectively.
- the nuoE, nuoF, and nuoG genes encode a soluble fragment of NADH dehydrogenase I.
- the nuoE, nuoF, and nuoG genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 2,399,574-2,400,074 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- NuoE, NuoF, and NuoG proteins of MG1655 strain are GenBank accession NP_416788 (version NP_416788.1 GI: 16130220), GenBank accession NP_416787 (version_NP_416787.1 GI: 16130219), and GenBank accession NP_416786 (version NP. 4 GI: 145698290).
- the base sequence of the region containing the nuoE, nuoF, and nuoG genes of Escherichia coli K5 strain is shown in SEQ ID NO: 124.
- the nuoE, nuoF, and nuoG genes are respectively complementary to the sequence of positions 796 to 1296, complementary to the sequence of positions 1293 to 2630, and complementary to the sequences of positions 2683 to 5409, respectively. It corresponds to.
- the amino acid sequences of NuoE, NuoF, and NuoG proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 125 to 127, respectively.
- the glmZ gene is a gene encoding a low molecular weight RNA.
- the glmZ gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 3,984,455-3,984,626 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- HemY, hemX, and hemD genes encode enzymes in the biosynthesis pathway of heme and choline.
- the hemY gene encodes protoporphyrinogen oxidase.
- the hemX gene encodes a protein presumed to be uroporphyrinogen III methylase.
- the hemD gene encodes uroporphyrinogen III synthase.
- the hemY, hemX, and hemD genes of K-12 MG1655 strain are complementary to the sequences of positions 3,984,709-3,985,905 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the HemY, HemX, and HemD proteins of the MG1655 strain are GenBank accession NP_418246 (version NP_418246.1 GI: 16131654), GenBank accession NP_418247 (version NP_418247.1 GI: 16131655), GenBank accession NP_4182488.1 (version NP_418248.1). GI: 16131656).
- the base sequence of the region containing the glmZ, hemY, hemX, and hemD genes of Escherichia coli K5 strain is shown in SEQ ID NO: 128.
- the glmZ, hemY, hemX, and hemD genes are the sequences of positions 357 to 563, sequences of positions 611 to 1807, sequences of positions 1810 to 2991, and sequences of positions 3013 to 3753, respectively. It corresponds to.
- the amino acid sequences of the HemY, HemX, and HemD proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 129 to 131, respectively.
- RlmL gene (also known as rlmKL) is a gene encoding a methyltransferase that methylates 23S rRNA G2445 and G2069.
- the rlmL gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of positions 1,007,067 to 1,009,175 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the RlmL protein of the MG1655 strain is registered as GenBank accession NP_415468 (version NP_415468.1 GI: 16128915).
- the base sequence of the region containing the rlmL gene of Escherichia coli K5 strain is shown in SEQ ID NO: 132.
- the rlmL gene corresponds to the sequence at positions 571 to 2679.
- the amino acid sequence of the RlmL protein of Escherichia coli K5 strain is shown in SEQ ID NO: 133.
- the artQ, artM, and artJ genes encode arginine ABC transporter subunits.
- the artQ, artM and artJ genes of Escherichia coli K-12 MG1655 strain are the sequences of positions 900, 757 to 901,473 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- ArtQ, ArtM, and ArtJ proteins of MG1655 strain are GenBank accession NP_415383 (version NP_415383.1 GI: 16128830), GenBank accession NP_415382 (version NP_415382.1 GI: 16128829), and GenBank accession NP_415381 (version NP_415381. 1 GI: 16128828).
- the rlmC gene (also known as rumB) is a gene encoding a methyltransferase that methylates U747 of 23S rRNA.
- the rlmC gene of Escherichia coli K-12 MG1655 strain corresponds to 897,741 to 898,868 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the RlmC protein of the MG1655 strain is registered as GenBank accession NP_415380 (version NP_415380.1 GI: 16128827).
- the ybjO gene is a gene encoding a protein presumed to be an inner membrane protein.
- the ybjO gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 897, 212 to 897,700 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
- the YbjO protein of the MG1655 strain is registered as GenBank accession NP_415379 (version NP_415379.1 GI: 16128826).
- the base sequence of the region containing the artQ, artM, artJ, rlmC, and ybjO genes of Escherichia coli K5 strain is shown in SEQ ID NO: 134.
- the artQ, artM, artJ, rlmC, and ybjO genes are the sequences of positions 386 to 1102, 1102 to 1770, sequences 2061 to 2792, and positions 2991 to 4118, respectively. It corresponds to the complementary sequence of the sequence and the complementary sequence of the sequences from 4159 to 4647.
- the amino acid sequences of the ArtQ, ArtM, ArtJ, RlmC, and YbjO proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 135 to 139, respectively.
- YejO gene is a gene encoding an outer membrane protein.
- the yejO gene of Escherichia coli K-12 MG1655 strain is the sequence of 2,284,412-2,286,936 and the sequence of 2,288,136-2,288,202 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. It corresponds to the complementary sequence of the sequence bound by.
- the yejO gene of MG1655 strain is considered to be a pseudogene.
- the yejM gene is a gene encoding a protein presumed to be one type of hydrolase.
- the yejM gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,282,398-2,284,158 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YejM protein of the MG1655 strain is registered as GenBank accession NP_416693 (version NP_416693.1 GI: 16130126).
- YejL gene is a gene whose function is unknown.
- the yejL gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,282,151 to 2,282,378 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YejL protein of the MG1655 strain is registered as GenBank accession NP_416692 (version NP_416692.1 GI: 16130125).
- the base sequence of the region containing the yejO, yejM, and yejL genes of Escherichia coli K5 strain is shown in SEQ ID NO: 140.
- the genes yejO, yejM, and yejL correspond to the sequences at positions 216 to 2807, the complementary sequences at positions 3061 to 4821, and the complementary sequences to the sequences at positions 4841 to 5068, respectively.
- the amino acid sequences of the YejO, YejM, and YejL proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 141 to 143, respectively.
- the rpoS gene is a gene encoding sigma S ( ⁇ S ).
- the rpoS gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 2,864,581 to 2,865,573 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. Further, the RpoS protein of the MG1655 strain is registered as GenBank accession NP_417221 (version NP_417221.1 GI: 16130648).
- the ygbN gene encodes a protein presumed to be a transporter belonging to the Gnt family.
- the ygbN gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,863,123 to 2,864,487 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YgbN protein of the MG1655 strain is registered as GenBank accession NP_417220 (version NP_417220.1 GI: 16130647).
- YgbM gene is a gene whose function is unknown.
- the ygbM gene of Escherichia coli K-12 MG1655 strain corresponds to sequences 2,862,258 to 2,863,034 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990
- the YgbM protein of the MG1655 strain is registered as GenBank accession NP_417219 (version NP_417219.1 GI: 16130646).
- the ygbL gene encodes a protein presumed to be a kind of aldolase.
- the ygbL gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence at positions 2,861,615 to 2,862,253 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YgbL protein of the MG1655 strain is registered as GenBank accession NP_417218 (version NP_417218.1 GI: 16130645).
- the base sequence of the region containing the rpoS, ygbN, ygbM, and ygbL genes of Escherichia coli K5 strain is shown in SEQ ID NO: 144.
- the rpoS, ygbN, ygbM, and ygbL genes are respectively a sequence at positions 318-1310, a complementary sequence at positions 1404-2768, a complementary sequence at positions 2857-3363, and It corresponds to the complementary sequence of the sequence from 3638 to 4276.
- the amino acid sequences of the RpoS, YgbN, YgbM, and YgbL proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 145 to 148, respectively.
- the g3798 gene is a gene encoding a protein presumed to be SOS-response transcriptional repressor (RecA-mediated autopeptidase).
- the g3794 gene is a gene encoding a protein presumed to be Superinfectioncexclusion protein B.
- the g3793 gene encodes a protein presumed to be restriction ⁇ inhibitor protein ral (Antirestriction protein).
- the g3797, g3796, g3795, and g3792 genes are genes whose functions are unknown. In the genome of Escherichia ⁇ ⁇ ⁇ coli K-12 MG1655, these genes are not annotated.
- the base sequence of the region containing the g3798, g3797, g3796, g3795, g3794, g3793, and g3792 genes of Escherichia coli K5 strain is shown in SEQ ID NO: 149.
- the g3798, g3797, g3796, g3795, g3794, g3793, and g3792 genes are respectively a sequence at positions 615 to 1268, a sequence at positions 1368 to 2219, a sequence at positions 2257 to 2748, 3021 Corresponds to the sequence at position ⁇ 3203, the complementary sequence of the sequence at positions 3470 to 4051, the sequence at positions 4280 to 4480, and the sequence at positions 4520 to 4717.
- the amino acid sequences of the G3798, G3797, G3796, G3795, G3794, G3793, and G3792 proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 150 to 156, respectively.
- RyjA gene is a gene encoding low molecular RNA.
- the ryjA gene of Escherichia coli K-12 MG1655 strain corresponds to the complementary sequence of the 4,275,950-4,276,089 sequence in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the soxR and soxS genes are genes that encode transcriptional regulatory factors.
- the soxR and soxS genes of Escherichia coli K-12 MG1655 strain are sequenced at positions 4,275,492-4,275,956 and 4,275,083 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, respectively. It corresponds to the complementary sequence of the sequence at positions 4,275,406.
- SoxR and SoxS proteins of the MG1655 strain are registered as GenBankGenaccession NP_418487 (version NP_418487.1 GI: 16131889) and GenBank accession NP_418486 (version NP_418486.1 GI: 16131888), respectively.
- the yjcC gene is a gene encoding c-di-GMP-specific phosphodiesterase.
- the yjcC gene of Escherichia coli K-12 MG1655 strain corresponds to the 4,273,494-4,275,080-position in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
- the YjcC protein of the MG1655 strain is registered as GenBank accession NP_418485 (version NP_418485.1 GI: 16131887).
- YjcB gene is a gene whose function is unknown.
- the yjcB gene of Escherichia coli K-12 MG1655 strain corresponds to a complementary sequence of sequences 4,272,783 to 4,273,064 in the genome sequence registered in the NCBI database as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990).
- GenBank accession NC_000913 VERSION NC_000913.2 GI: 49175990.
- the YjcB protein of the MG1655 strain is registered as GenBank accession NP_418484 (version NP_418484.4 GI: 90111681).
- the base sequence of the region containing the ryjA, soxR, soxS, yjcC, and yjcB genes of Escherichia coli K5 strain is shown in SEQ ID NO: 157.
- the ryjA, soxR, soxS, yjcC, and yjcB genes are respectively a sequence at positions 657-796, a complementary sequence at positions 790-1254, a sequence at positions 1340-1663, 1666- It corresponds to the sequence complementary to the sequence at position 3252 and the sequence from position 3682 to 3963.
- the amino acid sequences of the SoxR, SoxS, YjcC, and YjcB proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 158 to 161, respectively.
- the efeU and efeO genes are genes that encode components of the divalent iron ion transport carrier.
- the efeU and efeO genes of Escherichia coli K-12 MG1655 strain are the genome sequences registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database, and the sequences of positions 1,080,579 to 1,081,408 and 1,081,466- Corresponds to the sequence at position 1,082,593.
- the efeU gene of MG1655 strain is considered to be a pseudogene.
- the EfeO protein of MG1655 strain is registered as GenBank accession NP_415537 (version NP_415537.1 GI: 16128982).
- the base sequence of the region containing the efeU and efeO genes of Escherichia coli K5 strain is shown in SEQ ID NO: 162.
- the efeU and efeO genes correspond to the 753 to 1583 position sequences and the 1641 to 2768 position sequences, respectively.
- the amino acid sequences of the EfeU and EfeO proteins of the Escherichia coli K5 strain are shown in SEQ ID NOs: 163 and 164, respectively.
- the bacterium of the present invention may be modified, for example, to increase at least the expression of rfaH gene among the genes in Tables 1 to 3, and to increase the expression of one or more genes other than at least rfaH gene. It may be modified.
- the bacterium of the present invention may be modified so that, for example, among the genes in Tables 1 to 3, the expression of the rfaH gene and the expression of one or more genes other than the rfaH gene are increased.
- the bacterium of the present invention specifically includes, for example, the expression of the rfaH gene in Tables 1 to 3, rbsR, rbsK, rbsB, hsrA, glgB, glgX, micF, rcsD, rcsB, ybiX, ybiI, ybiJ, ybiC, ybiB, nusG, pcoR, pcoS, pcoE, yhcN, yhcO, aaeB, aaeA, aaeX, g1455, alpA, g1453, yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, yrbG, norW, jbjI, b 1 selected from ybjK, rybB, yjjY, yjtD, thrL,
- the bacterium of the present invention may be modified so that, for example, at least the rpoE gene expression in the genes shown in Tables 1 to 3 is increased.
- the combination of genes in Tables 1 to 3 that increase expression is not particularly limited. As a combination, the combination as described in the Example mentioned later is mentioned, for example.
- the expression of the genes in Tables 1 to 3 is represented by SEQ ID NOs: 29, 34, 37, 43, 50, 54, 60, 64, 72, 74, 78, 84, 87, 91, 95, 99, 104, 107,
- Increasing the number of copies of DNA containing the genes in Tables 1 to 3, such as DNA having the base sequence shown in 111, 116, 121, 124, 128, 132, 134, 140, 144, 149, 157, or 162 May be increased.
- the number of copies of DNA containing a part of the irp gene such as DNA having the base sequence shown in SEQ ID NO: 99, may be increased.
- the DNA that increases the copy number as described above is SEQ ID NO: 29, 34, 37, 43, 50, 54, 60, 64, 72, 74, 78, 84, 87, 91, 95, 99, 104, 107, It may be a variant of DNA having the base sequence shown in 111, 116, 121, 124, 128, 132, 134, 140, 144, 149, 157, or 162.
- the descriptions of conservative variants of the genes described in Tables 1 to 3 can be applied mutatis mutandis.
- genes can be obtained by PCR using the chromosomes of strains holding these genes as templates and oligonucleotides prepared based on these known gene sequences as primers.
- the genes in Tables 1 to 3 may be gene variants exemplified above as long as the original function is maintained.
- the protein encoded by the genes in Tables 1 to 3 may be a variant of the protein exemplified above as long as the original function is maintained.
- Such a variant in which the original function is maintained may be referred to as a “conservative variant”.
- the gene specified by the above gene name and the protein specified by the name corresponding thereto include the conservative variant in addition to the above exemplified gene and protein, respectively.
- the term “rpoE gene” includes conservative variants in addition to the above-exemplified rpoE gene (the rpoE gene of Escherichia coli K-12 MG1655 strain or Escherichia coli K5 strain).
- the term “RpoE protein” encompasses the conservative variants thereof in addition to the RpoE protein exemplified above (RpoE protein of Escherichia coli K-12 MG1655 strain or Escherichia coli K5 strain). Examples of conservative variants include homologues and artificially modified genes and proteins exemplified above.
- the original function is maintained means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein.
- the original function is maintained means that in the genes shown in Tables 1 to 3, when the variant of the gene increases the expression level in the genus Escherichia having heparosan-producing ability, It has the property of increasing the ability to produce heparosan.
- “the original function is maintained” may mean that the gene variant encodes a protein in which the original function is maintained. That is, the genes shown in Tables 1 to 3 may encode conservative variants of the proteins exemplified above.
- the original function is maintained means that in the proteins encoded by the genes in Tables 1 to 3, the variant of the protein increases the expression level in Escherichia bacteria having the ability to produce heparosan. It has the property of increasing the heparosan-producing ability of the same bacterium. “The original function is maintained” means that in the proteins encoded by the genes in Tables 1 to 3, if the variant of the protein is a function of the protein, for example, RpoE protein, sigma E ( ⁇ E ) as a function.
- Whether a variant of a gene or protein has the property of increasing the heparosan-producing ability of the bacterium belonging to the genus Escherichia having the ability to produce heparosan is determined by whether the gene encoding the same gene or protein Is introduced into an Escherichia bacterium having heparosan-producing ability, and whether or not heparosan-producing ability is improved can be confirmed.
- the homologues of the genes shown in Tables 1 to 3 can be easily obtained from a public database by, for example, a BLAST search or FASTA search using the base sequence of the gene exemplified above as a query sequence.
- the homologues of the genes shown in Tables 1 to 3 can be obtained, for example, by PCR using a chromosome of a microorganism such as bacteria as a template and oligonucleotides prepared based on these known gene sequences as primers.
- the genes shown in Tables 1 to 3 are amino acid sequences in which one or several amino acids at one or several positions are substituted, deleted, inserted or added as long as the original function is maintained. It may encode a protein having For example, the encoded protein may have its N-terminus and / or C-terminus extended or shortened.
- the above “one or several” varies depending on the position and type of the amino acid residue in the three-dimensional structure of the protein, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, Preferably, it means 1-20, more preferably 1-10, even more preferably 1-5, particularly preferably 1-3.
- substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
- a typical conservative mutation is a conservative substitution.
- Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
- substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
- genes shown in Tables 1 to 3 are 80% or more, preferably 90% or more, more preferably 95% or more, and still more preferably 97% of the whole amino acid sequence as long as the original function is maintained. As described above, it may be a gene encoding a protein having a homology of 99% or more. In the present specification, “homology” may refer to “identity”.
- the genes shown in Tables 1 to 3 are subjected to stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to the whole or a part of the base sequence, as long as the original function is maintained. It may be DNA that hybridizes. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
- the probe used for the hybridization may be a part of a complementary sequence of a gene.
- a probe can be prepared by PCR using an oligonucleotide prepared based on a known gene sequence as a primer and a DNA fragment containing the genes shown in Tables 1 to 3 as a template.
- a DNA fragment having a length of about 300 bp can be used as the probe.
- hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
- the genes in Tables 1 to 3 may be those obtained by replacing any codon with an equivalent codon as long as the original function is maintained.
- the genes in Tables 1 to 3 may be modified to have optimal codons depending on the codon usage frequency of the host to be used.
- Variants of the genes in Tables 1-3 include the coding region of a gene such that, for example, by site-directed mutagenesis, amino acid residues at specific sites of the encoded protein include substitutions, deletions, insertions or additions. It can be obtained by modifying.
- the variants of the genes in Tables 1 to 3 can also be obtained by, for example, mutation treatment.
- Mutation treatment includes a method of treating DNA molecules having the nucleotide sequences of Tables 1 to 3 in vitro with hydroxylamine or the like, a microorganism having a gene of Tables 1 to 3 such as a microorganism belonging to the family Enterobacteriaceae, A method of treating with a ray, ultraviolet light, or a mutant such as N-methyl-N′-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), methylmethanesulfonate (MMS), error Prone PCR (Cadwell, RC PCR Meth. Appl. 2, 28 (1992)), DNA shuffling (Stemmer, WP Nature 370, 389 (1994)), StEP-PCR (Zhao, H. Nature Biotechnol. 16, 258 (1998) )) A method such as cocoon.
- NTG N-methyl-N′-nitro-N-nitrosoguanidine
- EMS eth
- the gene expression may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
- “increasing gene expression” means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene. Note that “increasing gene expression” is also referred to as “enhanced gene expression”.
- An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
- Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
- Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced.
- multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
- homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance.
- Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used.
- the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
- An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host.
- a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
- a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
- the vector a vector capable of autonomous replication in a host cell can be used.
- the vector is preferably a multicopy vector.
- the vector preferably has a marker such as an antibiotic resistance gene.
- the vector may be equipped with a promoter or terminator for expressing the inserted gene.
- the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
- vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), wide host range Vector RSF1010 is mentioned.
- the gene may be retained in the bacterium of the present invention so that it can be expressed.
- the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
- the promoter may be a host-derived promoter or a heterologous promoter.
- the promoter may be a native promoter of a gene to be introduced or a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
- a transcription terminator can be placed downstream of the gene.
- the terminator is not particularly limited as long as it functions in the bacterium of the present invention.
- the terminator may be a host-derived terminator or a heterologous terminator.
- the terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator.
- the vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
- each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold
- the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
- the introduced gene may be a host-derived gene or a heterologous gene.
- the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template.
- the introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)).
- each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
- the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
- Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
- strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Can be mentioned.
- a highly active promoter of a conventional promoter may be obtained by using various reporter genes.
- the promoter activity can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
- the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
- the increase in gene expression can be achieved by improving the translation efficiency of the gene.
- Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence.
- SD Shine-Dalgarno
- RBS ribosome binding site
- a stronger SD sequence is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence.
- RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235).
- substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
- a site that affects gene expression such as a promoter, an SD sequence, and a spacer region between the RBS and the start codon is also collectively referred to as an “expression control region”.
- the expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX.
- GENETYX gene analysis software
- These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
- Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
- Escherichia coli, etc. there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein.
- Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA.
- site-directed mutagenesis a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W.
- the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
- the method of transformation is not particularly limited, and a conventionally known method can be used.
- recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
- DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
- Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
- an electric pulse method Japanese Patent Laid-Open No. 2-207791 as reported for coryneform bacteria can also be used.
- the increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
- the increase in gene expression can be confirmed by confirming that the activity of the protein expressed from the gene has increased.
- the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
- Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning A Laboratory Manual / Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA ), 2001).
- the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
- the amount of protein can be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
- the increase in protein activity can be confirmed by measuring the activity of the protein.
- the activity of the protein may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
- the above-described technique for increasing the expression of a gene can be used to enhance the expression of an arbitrary gene, for example, the genes shown in Tables 1 to 3 or genes encoding proteins involved in heparosan production.
- the method for producing heparosan of the present invention includes culturing the bacterium of the present invention in a medium to produce and accumulate heparosan in the medium, and collecting heparosan from the medium. It is a manufacturing method.
- the medium used is not particularly limited as long as the bacterium of the present invention can grow and heparosan is produced and accumulated.
- a normal medium used for bacterial culture can be used.
- Specific examples of the medium include, but are not limited to, LB medium (including Luria-Bertani medium; Bacto-tryptone 10.0 g, Bacto-yeast extract 5.0 g, and NaCl 5.0 g per liter).
- LB medium including Luria-Bertani medium; Bacto-tryptone 10.0 g, Bacto-yeast extract 5.0 g, and NaCl 5.0 g per liter.
- a medium containing a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other components selected from various organic components and inorganic components as necessary can be used.
- a person skilled in the art may appropriately set the type and concentration of the medium component.
- the carbon source is not particularly limited as long as the bacterium of the present invention can be assimilated to produce heparosan.
- Specific examples of carbon sources include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste molasses, starch hydrolysate, biomass hydrolyzate, and other sugars, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol, crude glycerol and ethanol, and fatty acids.
- one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
- the nitrogen source examples include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, soybean protein degradation product, ammonia, and urea.
- ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate
- organic nitrogen sources such as peptone, yeast extract, meat extract, soybean protein degradation product, ammonia, and urea.
- one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
- the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
- phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
- phosphate polymers such as pyrophosphoric acid.
- the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
- the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
- the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
- organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
- inorganic salts such as sodium chloride and potassium chloride
- trace metals such as iron, manganese, magnesium and calcium
- vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
- vitamins such as acid, nicotinamide, and vitamin B12
- amino acids amino acids
- nucleic acids amino acids
- organic components such as peptone, casamino acid, yeast extract, and soybean
- an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium.
- a gene is introduced using a vector carrying an antibiotic resistance gene, it is preferable to add an antibiotic corresponding to the medium.
- Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and heparosan is produced and accumulated.
- the culture can be performed, for example, under ordinary conditions used for bacterial culture. Culture conditions may be appropriately set by those skilled in the art.
- Culturing can be performed aerobically, for example, by aeration culture or shaking culture using a liquid medium.
- the culture temperature may be, for example, 30 to 37 ° C.
- the culture period may be, for example, 16 to 72 hours.
- the culture can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof.
- cultivation may be performed by dividing into preculture and main culture.
- the preculture may be performed using, for example, a flat plate medium or a liquid medium.
- the method for recovering heparosan from the culture solution is not particularly limited as long as heparosan can be recovered.
- Examples of the method for recovering heparosan from the culture solution include the methods described in Examples. Specifically, for example, the culture supernatant is separated from the culture solution, and then heparosan in the supernatant can be precipitated by ethanol precipitation.
- the amount of ethanol to be added may be, for example, 2.5 to 3.5 times the amount of the supernatant.
- For precipitation of heparosan not only ethanol but also an organic solvent arbitrarily mixed with water can be used.
- an organic solvent in addition to ethanol, methanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, acetone, DMF, DMSO, N-methylpyrrolidone, pyridine 1,2-dimethoxyethane, 1,4-dioxane, THF.
- the precipitated heparosan can be dissolved with, for example, twice the amount of the original supernatant.
- the recovered heparosan may contain components such as bacterial cells, medium components, moisture, and bacterial metabolic byproducts in addition to heparosan.
- Heparosan may be purified to the desired degree.
- the purity of heparosan is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (w / w) Or 95% (w / w) or more.
- Heparosan can be detected and quantified by a known method. Specifically, for example, heparosan can be detected and quantified by a carbazole method.
- the carbazole method is a widely used method for the determination of uronic acid, and heparosan is detected and detected by measuring the absorption at 530 nm by the colored substance produced by thermal reaction of heparosan with carbazole in the presence of sulfuric acid.
- Can be quantified (Bitter T. and Muir HM, (1962) "A modified uronic acid carbazole reaction.” Analytical Biochemistry, 4 (4): 330? 334).
- heparosan can be detected and quantified by treating heparosan with heparinase III, which is a heparosan degrading enzyme, and performing disaccharide composition analysis.
- Method for producing heparin can be produced using heparosan produced by the bacterium of the present invention. That is, in the method for producing heparin of the present invention, the bacterium of the present invention is cultured in a medium to produce and accumulate heparosan in the medium, and the heparosan is chemically and / or enzymatically produced to produce heparin. And a method for producing heparin, comprising recovering the heparin. Heparin has anticoagulant activity and can be used as a pharmaceutical ingredient.
- a method for producing heparin from heparosan has already been reported. Specifically, for example, using heparosan as a starting material, (1) N-deacetylation, (2) N-sulfation, (3) C5 epimerization, (4) 2-O-sulfation, (5) Through the steps of 6-O-sulfation and (6) 3-O-sulfation, heparin with anticoagulant activity can be produced. Heparin and Its Precursors. "J Am Chem Soc., 130 (39): 12998? 13007.).
- the method for producing heparin may further include a step of reducing the molecular weight.
- the process of producing heparin from such heparosan is also collectively referred to as “heparin generation treatment”.
- the order of performing each step in the heparin production process is not particularly limited as long as heparin having desired properties is obtained.
- Heparosan may be used for heparin production while contained in the medium, or may be collected from the medium and then used for heparin production.
- heparosan may be subjected to a heparin production process after appropriate pretreatment.
- the pretreatment include purification, dilution, concentration, drying, and dissolution. These pretreatments may be appropriately combined.
- the culture solution containing heparosan may be used as it is or after being purified to a desired degree for heparin production.
- N-deacetylation can be performed chemically using, for example, sodium hydroxide.
- Reaction conditions can be appropriately set by those skilled in the art. For example, refer to the conditions of the previous report (Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.” J Biol Chem., 278 (52): 52613-52621.) Can do.
- N-sulfation can be chemically performed using, for example, sulfur trioxide / trimethylamine complex.
- Reaction conditions can be appropriately set by those skilled in the art. For example, refer to the conditions of the previous report (Kuberan B. et al., (2003) "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.” J Biol Chem., 278 (52): 52613-52621.) Can do.
- C5 epimerization can be performed enzymatically using, for example, C5-epimerase.
- C5-epimerase is not particularly limited as long as it can catalyze the isomerization of a glucuronic acid (GlcUA) residue to an iduronic acid (IdoA) residue.
- GlcUA glucuronic acid
- IdoA iduronic acid
- C5-epimerase having an appropriate substrate specificity may be selected and used.
- C5-epimerase may be derived from any source such as animals, plants, and microorganisms. As C5-epimerase, for example, human C5-epimerase can be used.
- Reaction conditions can be appropriately set by those skilled in the art.
- the conditions of previous reports Choen J, et al., "Enzymatic redesigning of biologically active heparan sulfate.” J Biol Chem. 2005 Dec 30; 280 (52): 42817-25.) Can be referred to.
- 2-O-sulfation can be enzymatically performed using, for example, 2-O-sulfating enzyme (2-OST).
- 2-OST is not particularly limited as long as it can catalyze the sulfation at the O-2 position of the IdoA residue.
- 2-OST may be selected and used.
- 2-OST may be derived from any of animals, plants, microorganisms and the like. As the 2-OST, for example, hamster 2-OST can be used. Reaction conditions can be appropriately set by those skilled in the art.
- 6-O-sulfation can be enzymatically performed using, for example, 6-O-sulfating enzyme (6-OST).
- 6-OST is not particularly limited as long as it can catalyze the sulfation at the O-6 position of an N-sulfated glucosamine (GlcNS) residue.
- GlcNS N-sulfated glucosamine
- 6-O-sulfation has an appropriate substrate specificity.
- OST may be selected and used.
- 6-OST may be derived from any of animals, plants, microorganisms and the like.
- 6-OST for example, hamster 6-OST-1 or mouse 6-OST-3 can be used.
- Reaction conditions can be appropriately set by those skilled in the art.
- the conditions of previous reports Choen J, et al., "Enzymatic redesigning of biologically active heparan sulfate.” J Biol Chem. 2005 Dec 30; 280 (52): 42817-25.) Can be referred to.
- 3-O-sulfation can be performed enzymatically using, for example, 3-O-sulfating enzyme (3-OST).
- the 3-OST is not particularly limited as long as it can catalyze the sulfation of the O-3 position of the N-sulfated / 6-O-sulfated glucosamine residue.
- 3-OST may be selected and used.
- 3-OST may be derived from any of animals, plants, microorganisms and the like. As 3-OST, for example, mouse 3-OST-1 can be used. Reaction conditions can be appropriately set by those skilled in the art.
- the molecular weight reduction can be performed, for example, using sulfurous acid or by a photolysis method.
- the degree of molecular weight reduction is not particularly limited.
- the molecular weight reduction may be performed, for example, such that heparin having a molecular weight of 1000 to 35000 Da is produced.
- the produced heparin can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination.
- the recovered heparin may contain components used for the heparin production process and components such as moisture in addition to heparin. Heparin may be purified to the desired extent. The purity of heparin is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (w / w) Or 95% (w / w) or more.
- the obtained heparin can be further fractionated to obtain low molecular weight heparin.
- Low molecular weight heparin refers to, for example, a fraction having a molecular weight of 1000 to 10,000 Da (average molecular weight of 4000 to 6000 Da).
- Low molecular weight heparin has the advantage of fewer bleeding side effects compared to unfractionated heparin.
- Example 1 Construction of heparosan production strain from Escherichia coli BL21 (DE3) strain (1-1) Construction of expression plasmid of kfiABCD gene of Escherichia coli K5 strain kfiABCD gene (kfiABCD operon) from Escherichia coli K5 (ATCC 23506) ) was cloned into a pVK9 vector (SEQ ID NO: 1, US Patent Application Publication No. 20050196846) to construct an expression plasmid pVK9-kfiABCD for the kfiABCD gene.
- PCR was performed using PrimeStar polymerase (TaKaRa) with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 8 minutes for 30 cycles.
- a DNA fragment of pVK9 was obtained by PCR using pVK9 as template DNA and oligonucleotides of SEQ ID NO: 4 and SEQ ID NO: 5 as primers. PCR was performed using PrimeStar polymerase with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 6 minutes for 30 cycles. Both obtained DNA fragments were ligated using an In-Fusion (registered trademark) HD cloning kit (Clontech) to construct an expression plasmid pVK9-kfiABCD for the kfiABCD gene.
- SEQ ID NO: 24 shows the base sequence containing the cloned kfiABCD gene and about 450 bp upstream thereof.
- the bacterial cells on the plate were scraped off and inoculated into a production medium with 2 mL in a test tube. Cultivation culture was performed at 37 ° C. for 40 hours, and the culture was terminated when glycerol in the medium was completely consumed.
- composition of the production medium is shown below.
- [Production medium] The concentration of each component is the final concentration
- Ingredient 1 Glycerol 10 g / L
- Ingredient 2 MOPS (3-N-morpholino-propanesulphonic acid) 41.9 g / L
- Ingredient 3 Tryptone 8.8 g / L East Extract 4.4 g / L Sodium chloride 8.8 g / L
- Component 1 and component 3 were each autoclaved at 120 ° C. for 20 minutes, and component 2 was filter sterilized. After cooling to room temperature, the three were mixed.
- the culture supernatant was recovered from the culture solution (fermentation broth) by centrifugation.
- 500 ⁇ L of 100% ethanol was added, and the polysaccharide component was precipitated by centrifugation.
- the obtained precipitate was air-dried, and the precipitate was dissolved with 300 ⁇ L of 0.2 N aqueous sodium hydroxide solution.
- 30 ⁇ L of the obtained sample (dissolved material) was gently added to 150 ⁇ L of a cooled 0.025 ⁇ M tetraboronic acid / sulfuric acid aqueous solution and heated at 100 ° C. for 10 minutes.
- Example 2 Structural analysis of produced polysaccharide (2-1) Nuclear magnetic resonance (NMR) spectrum analysis
- the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
- 31 g of the obtained filtrate was concentrated to 1.1 g using a 100 KDa UF membrane (Amicon-15K 5000 rpm).
- the concentrate was further washed twice with 40 mL of water.
- the washed concentrated solution was concentrated under reduced pressure using an evaporator, and 600 ⁇ L of heavy water was added to the residue solution to prepare a solution, and then 1 H-NMR measurement was performed.
- Example 2 Disaccharide composition analysis by liquid chromatograph mass spectrometry (LC-MS)
- LC-MS liquid chromatograph mass spectrometry
- the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
- 40 mL of the obtained filtrate was concentrated to 4 mL using a 100 KDa UF membrane (Amicon-15K 5000 rpm). The concentrate was further washed twice with 40 mL of water.
- the polymer component obtained from the culture broth of BL21 (DE3) / pVK9-kfiABCD strain was identified as the target heparosan. Therefore, the value obtained by multiplying the glucuronic acid concentration by the coefficient 2.067 was used as the heparosan concentration determined by the carbazole method.
- Example 2 (2-3) Gel Filtration Chromatography (GPC) Analysis
- the fermentation broth obtained in Example 1 was sterilized by centrifugation, and the supernatant was filtered through a 0.45 ⁇ m MF membrane.
- 31 g of the obtained filtrate was concentrated to 1.1 g using a 100 KDa UF membrane (Amicon-15K 5000 rpm).
- the concentrate was further washed twice with 40 mL of water. GPC measurement of the washed concentrate was performed.
- Example 3 Screening of Factors that Improve Heparosan Production
- a genomic library of Escherichia coli K5 strain was introduced into a heparosan production strain to screen for factors that improve heparosan production capability.
- the rfaH gene expression-enhanced strain has a strong tac promoter (Amann E. et al., (1983) “Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. ”Gene., 25 (2-3): 167-78.).
- the replacement of the rfaH promoter by the tac promoter is a method developed by Datsenko and Wanner called “Red-driven integration” (“One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products . "," Proc. "Natl.” Acad. "Sci.” USA, "2000,” 97 (12), “6640-6645)”. According to this technique, a strain in which a DNA fragment amplified by PCR is inserted into genomic DNA can be obtained.
- a DNA fragment for promoter replacement was obtained by PCR using the genome DNA of Pantoea ananatis NA1 ⁇ c1129 strain (WO2010 / 027022A1) as a template and using the primer rfaH-attL Fw (SEQ ID NO: 6) and primer rfaH-Ptac Rv (SEQ ID NO: 7).
- PrimeStar polymerase is used for PCR, and the PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 3 minutes for 30 cycles.
- the primer rfaH-attL Fw (SEQ ID NO: 6) has homology with both the region located upstream of the rfaH gene and the region adjacent to the gene conferring kanamycin (Km) resistance present in the genomic DNA of NA1 ⁇ c1129 strain.
- the Km resistance gene kan present in the genomic DNA of the NA1 ⁇ c1129 strain is inserted between the attL and attR genes, which are attachment sites of ⁇ phage, and further, the tac promoter (Ptac; SEQ ID NO: 8) is attL- Inserted in the order kan-attR-Ptac.
- the primer rfaH-Ptac Rv (SEQ ID NO: 7) has homology with both the rfaH region and the region located downstream of the tac promoter of the NA1 ⁇ c1129 genomic DNA.
- a plasmid pKD46 (Datsenko and Wanner, ⁇ ⁇ Proc. Natl. Acad. Sci. USA, 2000, 97:12 :) having a temperature-sensitive replication origin in Escherichia coli BL21 (DE3) strain (Life Technologies, Inc., C6000-03):
- the PCR product obtained above was introduced into BL21 (DE3) / pKD46 strain into which 6640-45) was introduced by electroporation, and the promoter region was replaced.
- the plasmid pKD46 contains a gene of ⁇ -Red homologous recombination system ( ⁇ , ⁇ , exo gene) under the control of an arabinose-inducible ParaB promoter, and 2154 bases (31088-33241) of phage ⁇ (GenBank accession number J02459). ) DNA fragment. Plasmid pKD46 is required for integration of the PCR product into the BL21 (DE3) strain chromosome. Escherichia coli BL21 (DE3) / pKD46 strain was grown overnight at 30 ° C. in an LB medium containing ampicillin (100 mg / L).
- This culture was diluted 100-fold with 100 mL of LB medium containing ampicillin and L-arabinose (1 mM). The cells were aerated at 30 ° C. until the OD 600 reached about 0.3, then concentrated 100 times, and washed three times with an ice-cooled glycerol aqueous solution (10%) to make it electrocompetent. Electroporation was performed using 70 ⁇ L of cells and about 100 ng of PCR product. After electroporation, the cells were incubated at 37 ° C. for 2.5 hours in 1 mL of SOC medium (Sambrook® et al., “Molecular Cloning Laboratory Manual, Second Edition” (Cold® Spring® Laboratory Laboratory Press (1989)). Plated on top and grown at 37 ° C., Km resistant strains were selected.
- the replacement of the rfaH promoter with the tac promoter was confirmed by PCR using primers rfaH-CF (SEQ ID NO: 9) and primer rfaH-CR (SEQ ID NO: 10) specific to the base sequence after promoter replacement.
- PrimeStar polymerase was used for PCR.
- the PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 2 minutes for 30 cycles. A strain in which amplification of a 1.6-kbp DNA fragment was confirmed was designated as BL21 (DE3) -Ptac-rfaH (KmR).
- a plasmid pMW118-int-xis (ampicillin resistance (AmpR)) was introduced (WO2005 / 010175).
- AmpR clones were grown on LB agar plates containing 150 mg / L ampicillin at 30 ° C. Dozens of AmpR clones were picked and Km sensitive strains were selected. The resulting Km sensitive strain was incubated on an LB agar plate at 42 ° C. to remove the plasmid pMW118-int-xis from the Km sensitive strain.
- the obtained Amp sensitive strain was designated as BL21 (DE3) -Ptac-rfaH strain.
- the plasmid pVK9-kfiABCD prepared in Example 1 was introduced into BL21 (DE3) -Ptac-rfaH strain by electroporation to obtain BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain.
- Test tube culture was performed using the same medium and culture method as shown in Example 1, and the amount of heparosan produced was quantified by the carbazole method.
- Table 4 shows the amount of heparosan produced by the BL21 (DE3) / pVK9- kfiABCD strain in which the expression of rfaH gene is not enhanced and the BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain in which the expression of rfaH gene is enhanced.
- genomic DNA of Escherichia coli K5 strain was randomly fragmented using a DNA fragmentation apparatus (Hydroshare, Gene machine) and fractionated by agarose electrophoresis. A fragment containing about 3-5 kb of DNA was excised from an agarose gel, and the DNA was extracted and purified, followed by blunt end treatment.
- 50 ng of plasmid vector pSTV28 (TaKaRa) digested with HincII and dephosphorylated with Alkaline Phosphatase (E. coli C75) (TaKaRa) was ligated with the above genomic DNA fragment.
- Escherichia coli HST08 strain (TaKaRa) was transformed with the ligation product by electroporation. More than 70% of the transformants obtained contained an insert of about 3-5 kb. The transformant was cultured, and the plasmid was extracted to obtain a genomic library.
- Heparosan production culture was performed according to the following procedure. First, transformants were inoculated one by one in a 96-well plate (MEDISCAN) overlaid with 750 ⁇ l of seed medium, and cultured with shaking at 37 ° C. overnight with a shaking device (Tytec). Subsequently, 20 ⁇ l of the seed culture solution is inoculated into 2 ⁇ mL of the production medium in a test tube, and cultured with shaking at 37 ° C. for 30 hours. When the glycerol in the medium is completely consumed, culture is performed. Ended. To retain the plasmid, kanamycin (25 mg / L) and chloramphenicol (25 mg / L) were added during the entire culture process.
- kanamycin 25 mg / L
- chloramphenicol 25 mg / L
- Heparosan produced in the medium was quantified by the carbazole method (Bitter, T. and Murir H. M., Anal. Biochem. 1962; 4: 330-334). A clone with an increased heparosan accumulation amount was isolated compared to the control vector (pSTV28) -introduced strain that was cultured at the same time.
- the base sequence of the inserted DNA fragment was determined using the primer pSTV Fw (SEQ ID NO: 12) and primer pSTV Rv (SEQ ID NO: 13).
- plasmids were rbsBKR-hsrA, glgBX, ybiXIJCB, rcsBD-micF, pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjY-y fruA-psuK, ytfT-yjfF-fbp, yagU-paoAB, gsiCD-yliE, irp (partial), bhsA-ycfS, lepB-rnc-era, dapA-gcvR-bcp-hyfA, rpoE-nadB-yfiC-srmB, Clearly contains g1414-g1413, nuoEFG, gl
- the irp (part) is a part of the irp2 gene and a part of the irp1 gene.
- Example 4 Heparosan production by rbsBKR-hsrA, glgBX, ybiXIJCB, rcsBD-micF gene enhanced strains (1)
- the Escherichia coli BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-rbsBKR-hsrA, pSTV28-glgBX, pSTV28-ybiXIJCB, and pSTV28-rcsBD isolated in Example 3.
- -Strains into which micF and pSTV28 were introduced as controls were constructed.
- strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
- Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
- Table 5 shows the average values and standard deviations of the quantified heparosan concentrations.
- Example 5 Production of heparosan by rbsBKR-hsrA, glgBX, ybiXIJCB and rcsBD-micF gene-enhanced strains (2)
- the Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-rbsBKR-hsrA, pSTV28-glgBX, pSTV28-ybiXIJCB, pSTV28-rcsBD-micF isolated in Example 3, and As controls, strains into which pSTV28 had been introduced were constructed.
- strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
- Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
- Table 6 shows the average value and standard deviation of the quantified heparosan concentration.
- Example 6 Production of heparosan by rfaH gene-enhanced strain (6-1) Construction of rfaH gene expression plasmid of Escherichia coli B strain The rfaH gene was cloned into pMIV-Pnlp0-ter from Escherichia coli BL21 (DE3) strain Then, an expression plasmid pMIV-Pnlp0-rfaH for the rfaH gene was constructed.
- pMIV-Pnlp0-ter incorporates a strong nlp0 promoter (Pnlp0) and rrnB terminator, and can function as an expression unit by inserting a target gene between the promoter and the terminator.
- Pnlp0 represents the promoter of the wild-type nlpD gene derived from the Escherichia coli K-12 strain.
- the obtained fragment was treated with SalI and PaeI and inserted into the SalI-PaeI site of pMIV-5JS (Japanese Patent Laid-Open No. 2008-99668) to obtain plasmid pMIV-Pnlp0.
- the base sequence of the PaeI-SalI fragment of the Pnlp0 promoter inserted into this pMIV-Pnlp0 plasmid is as shown in SEQ ID NO: 16.
- a DNA fragment (SEQ ID NO: 19) containing about 300 bp of the terminator region of the rrnB gene was obtained by PCR using primer P3 (SEQ ID NO: 17) and primer P4 (SEQ ID NO: 18). did. Restriction enzymes XbaI and BamHI sites are designed at the 5 'ends of these primers, respectively.
- the PCR cycle is as follows.
- an rfaH gene fragment was obtained by PCR using primers rfaH Fw (SEQ ID NO: 20) and primer rfaH Rv (SEQ ID NO: 21) using the chromosomal DNA of Escherichia coli BL21 (DE3) as a template. Restriction enzyme SalI and XbaI sites are designed at the 5 'ends of these primers, respectively.
- PrimeStar polymerase is used for PCR, and the PCR cycle is as follows. After 94 ° C for 5 minutes, heat for 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 4 minutes for 30 cycles.
- the obtained fragment was treated with SalI and XbaI and inserted into the SalI-XbaI site of pMIV-Pnlp0-ter to obtain plasmid pMIV-Pnlp0-rfaH.
- an expression unit of rfaH was constructed in which the nlpD promoter, rfaH gene, and rrnB terminator were connected in this order on the pMIV-5JS vector.
- the nucleotide sequence of the rfaH gene of Escherichia coli BL21 (DE3) cloned this time is shown in SEQ ID NO: 46.
- Example 7 Production of heparosan by nusG gene enhanced expression strain (7-1) Construction of expression plasmid of nusG gene of Escherichia coli B strain Using chromosomal DNA of Escherichia coli BL21 (DE3) strain as a template, primer nusG Fw ( The nusG gene fragment was obtained by PCR using SEQ ID NO: 22) and primer nusG Rv (SEQ ID NO: 23). Restriction enzymes SalI and XbaI are designed at the 5 ′ ends of these primers, respectively. PrimeStar polymerase is used for PCR, and the PCR cycle is as follows.
- the obtained fragment was treated with SalI and XbaI and inserted into the SalI-XbaI site of pMIV-Pnlp0-ter treated with the same restriction enzymes to obtain a plasmid pMIV-Pnlp0-nusG in which the nusG gene was cloned.
- the nucleotide sequence of the nusG gene of the Escherichia coli BL21 (DE3) strain cloned this time is shown in SEQ ID NO: 48.
- Example 8 pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjtD-yjjY, fruA-psuK, ytfT-yjfF-fbp, yagUpai Heparosan production by yliE, irp (partial) and bhsA-ycfS gene-enhanced strains (1) The Escherichia coli BL21 (DE3) -Ptac-rfaH / pVK9-kfiABCD strain constructed in Example 1 was added to the pSTV28-pcoESR, pSTV28-yhcNO-aaeBAX, and pSTV28-g1455-alpA-g1453 isolated in Example 3.
- strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
- Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
- Table 9 shows the average values and standard deviations of the quantified heparosan concentrations.
- Example 9 pcoESR, yhcNO-aaeBAX, g1455-alpA-g1453, yrbA-mlaBCDEF-yrbG, norW, ybjIJK-rybB, thrBAL-yjtD-yjjY, fruA-psuK, ytfT-yjfF-fbp, yagUpai Heparosan production by yliE, irp (partial) and bhsA-ycfS gene-enhanced strains (2) The Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain constructed in Example 1 was added to pSTV28-pcoESR, pSTV28-yhcNO-aaeBAX, pSTV28-g1455-alpA-g1453, pSTV28-yrbA isolated in Example 3.
- strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
- Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
- Table 10 shows the average value and standard deviation of the quantified heparosan concentration.
- Example 10 lepB-rnc-era, dapA-gcvR-bcp-hyfA, rpoE-nadB-yfiC-srmB, g1414-g1413, nuoEFG, glmZ-hemYXD, rlmL, artQMJ-rlmC-ybjO, yejOML, rpoS-ygbNML g3798-g3797-g3796-g3795-g3794-g3793-g3792, ryjA-soxRS-yjcCB, heparosan production by expression enhanced strain of efeUO gene Escherichia coli BL21 (DE3) / pVK9-kfiABCD constructed in Example 1 PSTV28-lepB-rnc-era, pSTV28-dapA-gcvR-bcp-hyfA, pSTV28-rp
- strains were fermentatively produced and cultured, and the amount of heparosan produced was compared.
- Each strain was cultured in quadruplicate using the same medium and culture method as shown in Example 1, and heparosan was quantified by the carbazole method.
- Tables 11 and 12 show the mean values and standard deviations of the quantified heparosan concentrations.
- Example 11 Production of heparosan by rpoE gene-enhanced strain (11-1) Construction of rpoE gene expression plasmid of Escherichia coli K5 strain The rpoE gene was cloned into pMIV-Pnlp8-ter from Escherichia coli K5 strain, The gene expression plasmid pMIV-Pnlp8-rpoE was constructed. pMIV-Pnlp8-ter incorporates a strong nlp8 promoter (Pnlp8), and can function as an expression unit by inserting the gene of interest between the promoter and terminator. “Pnlp8” represents a promoter of a mutant nlpD gene derived from Escherichia coli K-12 strain.
- the wild-type nlpD promoter region (FIG. 1; SEQ ID NO: 165) has two regions presumed to function as promoters, which are indicated as Pnlp1 and Pnlp2 in the figure, respectively.
- PCR was performed on the 3 ′ end side of the wild-type nlpD promoter (Pnlp0) by PCR using the primer P1 (SEQ ID NO: 14) and primer P7 (SEQ ID NO: 166).
- a DNA fragment obtained by randomizing the -10 region (-10 (Pnlp1)) contained was obtained.
- the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
- the plasmid pMIV-Pnlp0-ter is used as a template and is contained in the 5 ′ end of the wild-type nlpD promoter (Pnlp0) by PCR using primer P2 (SEQ ID NO: 15) and primer P8 (SEQ ID NO: 167) ⁇ A DNA fragment in which 10 regions (-10 (Pnlp2)) were randomized was obtained.
- the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
- the resulting 3 'end and 5' end fragments were joined together by the BglII sites designed for primers P7 and P8, and a DNA fragment containing the full length of the mutant nlpD promoter with two -10 regions randomized. Built.
- a DNA fragment containing the full-length mutant nlpD promoter was amplified by PCR using primers P1 and P2.
- the PCR cycle is as follows. 95 ° C for 3 minutes, 95 ° C for 60 seconds, 50 ° C for 30 seconds, 72 ° C for 40 seconds, 2 cycles, 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 15 seconds, and finally 72 ° C for 5 minutes.
- a DNA fragment of pMIV-Pnlp8-ter was obtained by PCR using pMIV-Pnlp8-ter as template DNA and the oligonucleotides of SEQ ID NO: 172 and SEQ ID NO: 173 as primers. PCR was performed using PrimeStar polymerase with the reaction composition described in the protocol. The PCR cycle is as follows. After 94 ° C for 5 minutes, 98 ° C for 5 seconds, 55 ° C for 10 seconds, and 72 ° C for 6 minutes for 30 cycles.
- Both obtained DNA fragments were ligated using an In-FusionRHD cloning kit (Clontech) to construct an expression plasmid pMIV-Pnlp8-rpoE for the rpoE gene.
- the base sequence of the cloned rpoE gene is shown in SEQ ID NO: 174.
- the ability of bacteria to produce heparosan can be improved, and heparosan can be produced efficiently.
- SEQ ID NO: 84 The nucleotide sequence of the region containing the fruA-psuK gene of Escherichia coli K5 strain SEQ ID NO: 85: The amino acid sequence of FruA protein of Escherichia coli K5 strain SEQ ID NO: 86: Escherichia Amino acid sequence of the PsuK protein of the Kori K5 strain SEQ ID NO: 87: A nucleotide sequence of the region containing the ytfT-yjfF-fbp gene of the Escherichia coli K5 strain SEQ ID NO: 88: Amino acid sequence of the YtfT protein of the Escherichia coli K5 strain Amino acid sequence of the YjfF protein of Escherichia coli K5 strain SEQ ID NO: 90 The amino acid sequence of the Fbp protein of E.
- coli K5 strain SEQ ID NO: 91 The nucleotide sequence of the region containing the yagU-paoAB gene of Escherichia coli K5 strain SEQ ID NO: 92: The amino acid sequence of YagU protein of Escherichia coli K5 strain SEQ ID NO: 93: The amino acid sequence of the PaoA protein of Escherichia coli K5 strain SEQ ID NO: 94: The amino acid sequence of the PaoB protein of Escherichia coli K5 strain SEQ ID NO: 95: The nucleotide sequence of the region containing the gsiCD-yliE gene of Escherichia coli K5 strain SEQ ID NO: 96: Amino acid sequence of the GsiC protein of Escherichia coli K5 strain SEQ ID NO: 97: Amino acid sequence of the GsiD protein of Escherichia coli K5 strain SEQ ID NO: 98: Amino acid sequence of the Y
- coli K5 strain SEQ ID NO: 127 Amino acid sequence of NuoG protein of E. coli K5 strain SEQ ID NO: 128: Base sequence of the region containing the glmZ-hemYXD gene of E. coli K5 strain SEQ ID NO: 129: Escherichia Amino acid sequence of the HemY protein of Kori K5 strain 30: Amino acid sequence of the HemX protein of Escherichia coli K5 strain SEQ ID NO: 131: Amino acid sequence of the HemD protein of Escherichia coli K5 strain SEQ ID NO: 132: Base sequence of the region containing the rlmL gene of Escherichia coli K5 strain SEQ ID NO: 133: Amino acid sequence of the RlmL protein of Escherichia coli K5 strain SEQ ID NO: 134: A nucleotide sequence of the region containing the artQMJ-rlmC-ybjO gene of Escherichia
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Polymers & Plastics (AREA)
- Gastroenterology & Hepatology (AREA)
- Materials Engineering (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
[1]
ヘパロサン生産能を有するエシェリヒア属細菌であって、
rpoE、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されていることを特徴とする、細菌。
[2]
少なくともrpoE遺伝子の発現が増大するように改変されている、前記細菌。
[3]
少なくともrfaH遺伝子の発現が増大するように改変されている、前記細菌。
[4]
さらに、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、およびycfS遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されている、前記細菌。
[5]
前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって増大した、前記細菌。
[6]
エシェリヒア・コリである、前記細菌。
[7]
前記rbsB遺伝子が、配列番号29の800~1690位に示す塩基配列を含むDNA、または、配列番号29の800~1690位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rbsK遺伝子が、配列番号29の1816~2745位に示す塩基配列を含むDNA、または、配列番号29の1816~2745位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rbsR遺伝子が、配列番号29の2749~3741位に示す塩基配列を含むDNA、または、配列番号29の2749~3741位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hsrA遺伝子が、配列番号29の3707~5134位に示す塩基配列の相補配列を含むDNA、または、配列番号29の3707~5134位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glgB遺伝子が、配列番号34の989~3175位に示す塩基配列を含むDNA、または、配列番号34の989~3175位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glgX遺伝子が、配列番号34の3172~5145位に示す塩基配列を含むDNA、または、配列番号34の3172~5145位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rcsB遺伝子が、配列番号43の3312~3962位に示す塩基配列を含むDNA、または、配列番号43の3312~3962位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rcsD遺伝子が、配列番号43の623~3295位に示す塩基配列を含むDNA、または、配列番号43の623~3295位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記micF遺伝子が、配列番号43の219~311位に示す塩基配列を含むDNA、または、配列番号43の219~311位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiX遺伝子が、配列番号37の718~1395位に示す塩基配列を含むDNA、または、配列番号37の718~1395位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiI遺伝子が、配列番号37の1469~1735位に示す塩基配列を含むDNA、または、配列番号37の1469~1735位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiJ遺伝子が、配列番号37の2000~2260位に示す塩基配列を含むDNA、または、配列番号37の2000~2260位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiC遺伝子が、配列番号37の2488~3574位に示す塩基配列の相補配列を含むDNA、または、配列番号37の2488~3574位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiB遺伝子が、配列番号37の3715~4677位に示す塩基配列の相補配列を含むDNA、または、配列番号37の3715~4677位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rfaH遺伝子が、配列番号46に示す塩基配列を含むDNA、または、配列番号46に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nusG遺伝子が、配列番号48に示す塩基配列を含むDNA、または、配列番号48に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoR遺伝子が、配列番号50の128~808位に示す塩基配列を含むDNA、または、配列番号50の128~808位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoS遺伝子が、配列番号50の805~2205位に示す塩基配列を含むDNA、または、配列番号50の805~2205位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoE遺伝子が、配列番号50の2423~2857位に示す塩基配列を含むDNA、または、配列番号50の2423~2857位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yhcN遺伝子が、配列番号54の63~326位に示す塩基配列を含むDNA、または、配列番号54の63~326位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yhcO遺伝子が、配列番号54の382~654位に示す塩基配列の相補配列を含むDNA、または、配列番号54の382~654位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeB遺伝子が、配列番号54の746~2713位に示す塩基配列の相補配列を含むDNA、または、配列番号54の746~2713位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeA遺伝子が、配列番号54の2719~3651位に示す塩基配列の相補配列を含むDNA、または、配列番号54の2719~3651位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeX遺伝子が、配列番号54の3659~3931位に示す塩基配列の相補配列を含むDNA、または、配列番号54の3659~3931位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1455遺伝子が、配列番号60の568~1140位に示す塩基配列の相補配列を含むDNA、または、配列番号60の568~1140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記alpA遺伝子が、配列番号60の1226~1486位に示す塩基配列の相補配列を含むDNA、または、配列番号60の1226~1486位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1453遺伝子が、配列番号60の2389~2529位に示す塩基配列を含むDNA、または、配列番号60の2389~2529位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yrbA遺伝子が、配列番号64の977~1246位に示す塩基配列の相補配列を含むDNA、または、配列番号64の977~1246位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaB遺伝子が、配列番号64の1391~1780位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1391~1780位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaC遺伝子が、配列番号64の1684~2319位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1684~2319位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaD遺伝子が、配列番号64の2338~2889位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2338~2889位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaE遺伝子が、配列番号64の2894~3676位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2894~3676位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaF遺伝子が、配列番号64の3684~4493位に示す塩基配列の相補配列を含むDNA、または、配列番号64の3684~4493位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yrbG遺伝子が、配列番号64の4703~5680位に示す塩基配列を含むDNA、または、配列番号64の4703~5680位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記norW遺伝子が、配列番号72の1201~2334位に示す塩基配列を含むDNA、または、配列番号72の1201~2334位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjI遺伝子が、配列番号74の117~932位に示す塩基配列の相補配列を含むDNA、または、配列番号74の117~932位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjJ遺伝子が、配列番号74の932~2140位に示す塩基配列の相補配列を含むDNA、または、配列番号74の932~2140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjK遺伝子が、配列番号74の2224~2760位に示す塩基配列を含むDNA、または、配列番号74の2224~2760位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rybB遺伝子が、配列番号74の2777~2855位に示す塩基配列の相補配列を含むDNA、または、配列番号74の2777~2855位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjjY遺伝子が、配列番号78の124~264位に示す塩基配列を含むDNA、または、配列番号78の124~264位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjtD遺伝子が、配列番号78の664~1350位に示す塩基配列を含むDNA、または、配列番号78の664~1350位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrL遺伝子が、配列番号78の1564~1629位に示す塩基配列を含むDNA、または、配列番号78の1564~1629位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrA遺伝子が、配列番号78の1711~4173位に示す塩基配列を含むDNA、または、配列番号78の1711~4173位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrB遺伝子が、配列番号78の4175~5107位に示す塩基配列を含むDNA、または、配列番号78の4175~5107位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記fruA遺伝子が、配列番号84の897~2588位に示す塩基配列を含むDNA、または、配列番号84の897~2588位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記psuK遺伝子が、配列番号84の3165~3953位に示す塩基配列を含むDNA、または、配列番号84の3165~3953位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ytfT遺伝子が、配列番号87の252~1277位に示す塩基配列を含むDNA、または、配列番号87の252~1277位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjfF遺伝子が、配列番号87の1264~2259位に示す塩基配列を含むDNA、または、配列番号87の1264~2259位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記fbp遺伝子が、配列番号87の2292~3290位に示す塩基配列の相補配列を含むDNA、または、配列番号87の2292~3290位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yagU遺伝子が、配列番号91の117~731位に示す塩基配列の相補配列を含むDNA、または、配列番号91の117~731位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記paoA遺伝子が、配列番号91の1149~1838位に示す塩基配列を含むDNA、または、配列番号91の1149~1838位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記paoB遺伝子が、配列番号91の1835~2791位に示す塩基配列を含むDNA、または、配列番号91の1835~2791位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gsiC遺伝子が、配列番号95の264~1184位に示す塩基配列を含むDNA、または、配列番号95の264~1184位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gsiD遺伝子が、配列番号95の1187~2098位に示す塩基配列を含むDNA、または、配列番号95の1187~2098位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yliE遺伝子が、配列番号95の2276~4624位に示す塩基配列を含むDNA、または、配列番号95の2276~4624位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記irp2遺伝子が、配列番号100に示す塩基配列を含むDNA、または、配列番号100に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記irp1遺伝子が、配列番号102に示す塩基配列を含むDNA、または、配列番号102に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記bhsA遺伝子が、配列番号104の440~697位に示す塩基配列を含むDNA、または、配列番号104の440~697位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ycfS遺伝子が、配列番号104の779~1741位に示す塩基配列の相補配列を含むDNA、または、配列番号104の779~1741位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記lepB遺伝子が、配列番号107の1344~2318位に示す塩基配列を含むDNA、または、配列番号107の1344~2318位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rnc遺伝子が、配列番号107の2590~3270位に示す塩基配列を含むDNA、または、配列番号107の2590~3270位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記era遺伝子が、配列番号107の3267~4172位に示す塩基配列を含むDNA、または、配列番号107の3267~4172位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記dapA遺伝子が、配列番号111の858~1736位に示す塩基配列の相補配列を含むDNA、または、配列番号111の858~1736位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gcvR遺伝子が、配列番号111の1882~2454位に示す塩基配列を含むDNA、または、配列番号111の1882~2454位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記bcp遺伝子が、配列番号111の2454~2924位に示す塩基配列を含むDNA、または、配列番号111の2454~2924位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hyfA遺伝子が、配列番号111の3177~3794位に示す塩基配列を含むDNA、または、配列番号111の3177~3794位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rpoE遺伝子が、配列番号116の355~930位に示す塩基配列の相補配列を含むDNA、または、配列番号116の355~930位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nadB遺伝子が、配列番号116の1338~2960位に示す塩基配列を含むDNA、または、配列番号116の1338~2960位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yfiC遺伝子が、配列番号116の2945~3682位に示す塩基配列の相補配列を含むDNA、または、配列番号116の2945~3682位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記srmB遺伝子が、配列番号116の3814~5148位に示す塩基配列を含むDNA、または、配列番号116の3814~5148位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1414遺伝子が、配列番号121の28~699位に示す塩基配列を含むDNA、または、配列番号121の28~699位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1413遺伝子が、配列番号121の831~1157位に示す塩基配列を含むDNA、または、配列番号121の831~1157位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoE遺伝子が、配列番号124の796~1296位に示す塩基配列の相補配列を含むDNA、または、配列番号124の796~1296位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoF遺伝子が、配列番号124の1293~2630位に示す塩基配列の相補配列を含むDNA、または、配列番号124の1293~2630位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoG遺伝子が、配列番号124の2683~5409位に示す塩基配列の相補配列を含むDNA、または、配列番号124の2683~5409位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glmZ遺伝子が、配列番号128の357~563位に示す塩基配列を含むDNA、または、配列番号128の357~563位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemY遺伝子が、配列番号128の611~1807位に示す塩基配列を含むDNA、または、配列番号128の611~1807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemX遺伝子が、配列番号128の1810~2991位に示す塩基配列を含むDNA、または、配列番号128の1810~2991位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemD遺伝子が、配列番号128の3013~3753位に示す塩基配列を含むDNA、または、配列番号128の3013~3753位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rlmL遺伝子が、配列番号132の571~2679位に示す塩基配列を含むDNA、または、配列番号132の571~2679位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artQ遺伝子が、配列番号134の386~1102位に示す塩基配列を含むDNA、または、配列番号134の386~1102位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artM遺伝子が、配列番号134の1102~1770位に示す塩基配列を含むDNA、または、配列番号134の1102~1770位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artJ遺伝子が、配列番号134の2061~2792位に示す塩基配列を含むDNA、または、配列番号134の2061~2792位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rlmC遺伝子が、配列番号134の2991~4118位に示す塩基配列の相補配列を含むDNA、または、配列番号134の2991~4118位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjO遺伝子が、配列番号134の4159~4647位に示す塩基配列の相補配列を含むDNA、または、配列番号134の4159~4647位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejO遺伝子が、配列番号140の216~2807位に示す塩基配列を含むDNA、または、配列番号140の216~2807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejM遺伝子が、配列番号140の3061~4821位に示す塩基配列の相補配列を含むDNA、または、配列番号140の3061~4821位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejL遺伝子が、配列番号140の4841~5068位に示す塩基配列の相補配列を含むDNA、または、配列番号140の4841~5068位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rpoS遺伝子が、配列番号144の318~1310位に示す塩基配列を含むDNA、または、配列番号144の318~1310位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbN遺伝子が、配列番号144の1404~2768位に示す塩基配列の相補配列を含むDNA、または、配列番号144の1404~2768位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbM遺伝子が、配列番号144の2857~3633位に示す塩基配列の相補配列を含むDNA、または、配列番号144の2857~3633位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbL遺伝子が、配列番号144の3638~4276位に示す塩基配列の相補配列を含むDNA、または、配列番号144の3638~4276位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3798遺伝子が、配列番号149の615~1268位に示す塩基配列を含むDNA、または、配列番号149の615~1268位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3797遺伝子が、配列番号149の1368~2219位に示す塩基配列を含むDNA、または、配列番号149の1368~2219位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3796遺伝子が、配列番号149の2257~2748位に示す塩基配列を含むDNA、または、配列番号149の2257~2748位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3795遺伝子が、配列番号149の3021~3203位に示す塩基配列を含むDNA、または、配列番号149の3021~3203位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3794遺伝子が、配列番号149の3470~4051位に示す塩基配列の相補配列を含むDNA、または、配列番号149の3470~4051位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3793遺伝子が、配列番号149の4280~4480位に示す塩基配列を含むDNA、または、配列番号149の4280~4480位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3792遺伝子が、配列番号149の4520~4717位に示す塩基配列を含むDNA、または、配列番号149の4520~4717位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ryjA遺伝子が、配列番号157の657~796位に示す塩基配列を含むDNA、または、配列番号157の657~796位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記soxR遺伝子が、配列番号157の790~1254位に示す塩基配列の相補配列を含むDNA、または、配列番号157の790~1254位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記soxS遺伝子が、配列番号157の1340~1663位に示す塩基配列を含むDNA、または、配列番号157の1340~1663位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjcC遺伝子が、配列番号157の1666~3252位に示す塩基配列の相補配列を含むDNA、または、配列番号157の1666~3252位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjcB遺伝子が、配列番号157の3682~3963位に示す塩基配列を含むDNA、または、配列番号157の3682~3963位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記efeU遺伝子が、配列番号162の753~1583位に示す塩基配列を含むDNA、または、配列番号162の753~1583位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記efeO遺伝子が、配列番号162の1641~2768位に示す塩基配列を含むDNA、または、配列番号162の1641~2768位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAである、前記細菌。
[8]
前記細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取すること、を含むヘパロサンの製造法。
[9]
前記細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収すること、を含むヘパリンの製造法。
本発明の細菌は、ヘパロサン生産能を有するエシェリヒア属細菌であって、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変された細菌である。
本発明において、「ヘパロサン生産能を有する細菌」とは、培地で培養したときに、ヘパロサンを生成し、回収できる程度に培地中に蓄積する能力を有する細菌をいう。ヘパロサン生産能を有する細菌は、非改変株よりも多い量の目的とするヘパロサンを培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、ヘパロサン生産能を有する細菌は、例えば、50mg/L以上、100mg/L以上、200mg/L以上、または300mg/L以上の量のヘパロサンを培地に蓄積することができる細菌であってもよい。
本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変されている。本発明の細菌は、ヘパロサン生産能を有する細菌を、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変することによって得ることができる。また、本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように細菌を改変した後に、ヘパロサン生産能を付与することによっても得ることができる。なお、本発明の細菌は、表1~3に記載の遺伝子から選択される1またはそれ以上の遺伝子の発現が増大するように改変されたことにより、ヘパロサン生産能を獲得したものであってもよい。本発明において、本発明の細菌を構築するための改変は、任意の順番で行うことができる。
以下に、遺伝子の発現を増大(上昇)させる手法について説明する。
本発明のヘパロサンの製造法は、本発明の細菌を培地で培養してヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取することを含む、ヘパロサンの製造法である。
本発明の細菌により生産されるヘパロサンを利用して、ヘパリンを製造することができる。すなわち、本発明のヘパリンの製造法は、本発明の細菌を培地で培養してヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収することを含む、ヘパリンの製造法である。ヘパリンは抗凝固活性を有し、医薬品の成分として利用できる。
(1-1)エシェリヒア・コリ K5株のkfiABCD遺伝子の発現プラスミドの構築
エシェリヒア・コリ K5(ATCC 23506)よりkfiABCD遺伝子(kfiABCDオペロン)をpVK9ベクター(配列番号1、米国特許出願公開20050196846号)にクローニングし、kfiABCD遺伝子の発現プラスミドpVK9-kfiABCDを構築した。
kfiABCD遺伝子の発現プラスミドpVK9-kfiABCDをエシェリヒア・コリBL21(DE3)株(ライフテクノロジーズ社)へエレクトロポレーション(Cell; 80μL, 200Ω, 25μF, 1.8 kV、キュベット;0.1 mL)により導入し、エシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株を得た。この株を25μg/mL カナマイシン添加LB寒天培地に塗り広げ、37℃で一晩前培養を行った。その後、プレート上の菌体を掻き取り、試験管に2 mL張りこんだ生産培地中に植菌した。37℃にて40時間振とう培養を行い、培地中のグリセロールが完全に消費された時点で培養を終了した。
〔生産培地〕(各成分の濃度は最終濃度)
成分1:
グリセロール 10 g/L
成分2:
MOPS(3-N-morpholino-propanesulphonic acid) 41.9 g/L
成分3:
トリプトン 8.8 g/L
イーストエクストラクト 4.4 g/L
塩化ナトリウム 8.8 g/L
成分1および成分3は、それぞれ120℃、20分のオートクレーブ滅菌し、成分2はフィルター滅菌した。室温に冷却後、3者を混合した。
カルバゾール法(Bitter, T. and Murir H. M., Anal. Biochem. 1962;4:330-334)により、生成した多糖の定量を行った。手順を以下に示す。
(2-1)核磁気共鳴(NMR)スペクトル解析
実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液31 gを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて1.1 gまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液をエバポレーターで減圧濃縮し、その残渣液に重水600μLを添加して溶解液を調製後、1H-NMR測定を行った。
(A)装置名 Bruker製 AVANCE400 1H; 400 MHz
(B)溶媒 重水
(C)温度 室温
(D)測定回数 16回
実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液40 mLを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて4 mLまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液50μLに、Tri-buffer(200 mM Tri-HCl、1 M NaCl、15 mM CaCl2;35%塩酸でpH7(25℃)に調整)10μL、ヘパリナーゼIII 10μL(0.005 unit/mL、Iduron製)、および水30μLを添加し、37℃で16時間酵素処理を行った。得られた酵素処理液に900μLの水を添加し、LC-MS分析を行った。
(A)装置名 島津製作所製 LC-MS 2010
(B)カラム UG80(SCX 資生堂) 2.0 mm * 250 mm 粒子径:5μm
(C)移動相 CH3CN/10 mM ギ酸=8/2
(D)流速 0.2 mL/min
(E)カラム温度 40℃
(F)注入量 10μL
(G)UV(PDA) 200-600 nm
(H)MS(ESI) 100-2000(ポジ、ネガ)
実施例1で得られた発酵ブロスを遠心除菌し、上清を0.45μmのMF膜でろ過した。得られたろ過液31 gを100 KDaのUF膜(Amicon-15K 5000 rpm)を用いて1.1 gまで濃縮した。濃縮液を更に40 mLの水で2回洗浄した。洗浄済み濃縮液のGPC測定を行った。
(A)装置名 島津製HPLC
(B)カラム Asahipak GS520HQ 7.5 mm * 300 mm
(C)移動相 100 mM KH2PO4
(D)流速 0.6 mL/min
(E)カラム温度 40℃
(F)注入量 20μL
(G)UV 200 nm
(H)分子量標準試料 プルラン(昭和電工製 P-82)
本実施例では、ヘパロサン生産株にエシェリヒア・コリK5株のゲノムライブラリーを導入し、ヘパロサン生産能を向上させる因子のスクリーニングを行った。
ゲノムライブラリーを導入するためのヘパロサン生産株として、kfiABCD遺伝子が導入され、且つ、rfaH遺伝子の発現が増強されたエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株を、以下の手順で構築した。
エシェリヒア・コリK5株のゲノムDNAの断片をpSTV28ベクター(配列番号11、TaKaRa社)にクローニングし、ゲノムライブラリーを構築した。
BL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株にゲノムライブラリーまたはコントロールとしてpSTV28をエレクトロポレーション法により導入した。得られたゲノムライブラリートランスフォーマントより1クローンずつ選び、発酵生産培養に供した。培養には下記組成の培地を用いた。
〔シード培地〕(各成分の濃度は最終濃度)
トリプトン 10 g/L
イーストエクストラクト 5 g/L
塩化ナトリウム 10 g/L
シード培地は、120℃、20分のオートクレーブ滅菌した。
〔生産培地〕(各成分の濃度は最終濃度)
成分1:
グリセロール 10 g/L
成分2:
MOPS(3-N-morpholino-propanesulphonic acid) 41.9 g/L
成分3:
トリプトン 8.8 g/L
イーストエクストラクト 4.4 g/L
塩化ナトリウム 8.8 g/L
成分1および成分3は、それぞれ120℃、20分のオートクレーブ滅菌し、成分2はフィルター滅菌した。室温に冷却後、3者を混合した。
実施例1にて構築したエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-rbsBKR-hsrA、pSTV28-glgBX、pSTV28-ybiXIJCB、pSTV28-rcsBD-micF、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表5に示した。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-rbsBKR-hsrA、pSTV28-glgBX、pSTV28-ybiXIJCB、pSTV28-rcsBD-micF、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表6に示した。
(6-1)エシェリヒア・コリB株のrfaH遺伝子の発現プラスミドの構築
エシェリヒア・コリBL21(DE3)株よりrfaH遺伝子をpMIV-Pnlp0-terにクローニングし、rfaH遺伝子の発現プラスミドpMIV-Pnlp0-rfaHを構築した。pMIV-Pnlp0-terには強力なnlp0プロモーター(Pnlp0)とrrnBターミネーターが組み込まれており、プロモーターとターミネーターの間に目的の遺伝子を挿入することで発現ユニットとして機能させることができる。「Pnlp0」はエシェリヒア・コリ K-12株由来の野生型nlpD遺伝子のプロモーターを示す。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp0-rfaH及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサン濃度について各平均値と標準偏差を表7に示した。
(7-1)エシェリヒア・コリB株のnusG遺伝子の発現プラスミドの構築
エシェリヒア・コリBL21(DE3)株の染色体DNAをテンプレートとして、プライマーnusG Fw(配列番号22)およびプライマーnusG Rv(配列番号23)を用いたPCRによって、nusG遺伝子断片を取得した。これらプライマーの5’末端には制限酵素SalI及びXbaIのサイトがそれぞれデザインされている。PCRにはPrimeStarポリメラーゼを用い、PCRサイクルは次の通りである。94℃ 5分の後、98℃ 5秒、55℃ 10秒、72℃ 4分を30サイクル、最後に4℃保温。得られた断片をSalI及びXbaIで処理し、同制限酵素で処理したpMIV-Pnlp0-terのSalI-XbaIサイトに挿入し、nusG遺伝子がクローニングされたプラスミドpMIV-Pnlp0-nusGを取得した。今回クローニングされたエシェリヒア・コリBL21(DE3)株のnusG遺伝子の塩基配列を配列番号48に示す。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp0-nusG及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサンについて各平均値と標準偏差を表8に示した。
実施例1にて構築したエシェリヒア・コリBL21(DE3)-Ptac-rfaH/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-pcoESR、pSTV28-yhcNO-aaeBAX、pSTV28-g1455-alpA-g1453、pSTV28-yrbA-mlaBCDEF-yrbG、pSTV28-norW、pSTV28-ybjIJK-rybB、pSTV28-thrBAL-yjtD-yjjY、pSTV28-fruA-psuK、pSTV28-ytfT-yjfF-fbp、pSTV28-yagU-paoAB、pSTV28-gsiCD-yliE、pSTV28-irp、pSTV28-bhsA-ycfS、及びコントロールとしてpSTV28をそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表9に示した。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-pcoESR、pSTV28-yhcNO-aaeBAX、pSTV28-g1455-alpA-g1453、pSTV28-yrbA-mlaBCDEF-yrbG、pSTV28-norW、pSTV28-ybjIJK-rybB、pSTV28-thrBAL-yjtD-yjjY、pSTV28-fruA-psuK、pSTV28-ytfT-yjfF-fbp、pSTV28-yagU-paoAB、pSTV28-gsiCD-yliE、pSTV28-irp、pSTV28-bhsA-ycfS、及びコントロールとしてpSTV28を導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表10に示した。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、実施例3にて単離したpSTV28-lepB-rnc-era、pSTV28-dapA-gcvR-bcp-hyfA、pSTV28-rpoE-nadB-yfiC-srmB、pSTV28-g1414-g1413、pSTV28-nuoEFG、pSTV28-glmZ-hemYXD、pSTV28-rlmL、pSTV28-artQMJ-rlmC-ybjO、pSTV28-yejOML、pSTV28-rpoS-ygbNML、pSTV28-g3798-g3797-g3796-g3795-g3794-g3793-g3792、pSTV28-ryjA-soxRS-yjcCB、pSTV28-efeUO、及びコントロールとしてpSTV28を導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。実施例1に示すのと同じ培地および培養方法で各株とも4連で試験管培養を行ない、カルバゾール法によってヘパロサンを定量した。定量したヘパロサン濃度について各平均値と標準偏差を表11および表12に示した。
(11-1)エシェリヒア・コリK5株のrpoE遺伝子の発現プラスミドの構築
エシェリヒア・コリK5株よりrpoE遺伝子をpMIV-Pnlp8-terにクローニングし、rpoE遺伝子の発現プラスミドpMIV-Pnlp8-rpoEを構築した。pMIV-Pnlp8-terには強力なnlp8プロモーター(Pnlp8)が組み込まれており、プロモーターとターミネーターの間に目的の遺伝子を挿入することで発現ユニットとして機能させることができる。「Pnlp8」はエシェリヒア・コリ K-12株由来の変異型nlpD遺伝子のプロモーターを示す。
実施例1にて構築したエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株に、pMIV-Pnlp8-rpoE及びコントロールとしてpMIV-5JSをそれぞれ導入した菌株を構築した。これらの菌株の発酵生産培養を行い、ヘパロサンの生産量を比較した。培地、培養方法、及びヘパロサンの定量方法は前述の手法に準じた。定量したヘパロサンについて各平均値と標準偏差を表13に示した。
配列番号1:pVK9の塩基配列
配列番号2~7:プライマー
配列番号8:tacプロモーターの塩基配列
配列番号9、10:プライマー
配列番号11:pSTV28の塩基配列
配列番号12~15:プライマー
配列番号16:野生型nlpDプロモーター(Pnlp0)を含むPaeI-SalI断片の塩基配列
配列番号17、18:プライマー
配列番号19:rrnBターミネーターの塩基配列
配列番号20~23:プライマー
配列番号24:エシェリヒア・コリK5株のkfiABCDオペロンの塩基配列
配列番号25:エシェリヒア・コリK5株のKfiAタンパク質のアミノ酸配列
配列番号26:エシェリヒア・コリK5株のKfiBタンパク質のアミノ酸配列
配列番号27:エシェリヒア・コリK5株のKfiCタンパク質のアミノ酸配列
配列番号28:エシェリヒア・コリK5株のKfiDタンパク質のアミノ酸配列
配列番号29:エシェリヒア・コリK5株のrbsBKR-hsrA遺伝子を含む領域の塩基配列
配列番号30:エシェリヒア・コリK5株のRbsBタンパク質のアミノ酸配列
配列番号31:エシェリヒア・コリK5株のRbsKタンパク質のアミノ酸配列
配列番号32:エシェリヒア・コリK5株のRbsRタンパク質のアミノ酸配列
配列番号33:エシェリヒア・コリK5株のHsrAタンパク質のアミノ酸配列
配列番号34:エシェリヒア・コリK5株のglgBX遺伝子を含む領域の塩基配列
配列番号35:エシェリヒア・コリK5株のGlgBタンパク質のアミノ酸配列
配列番号36:エシェリヒア・コリK5株のGlgXタンパク質のアミノ酸配列
配列番号37:エシェリヒア・コリK5株のybiXIJCB遺伝子を含む領域の塩基配列
配列番号38:エシェリヒア・コリK5株のYbiXタンパク質のアミノ酸配列
配列番号39:エシェリヒア・コリK5株のYbiIタンパク質のアミノ酸配列
配列番号40:エシェリヒア・コリK5株のYbiJタンパク質のアミノ酸配列
配列番号41:エシェリヒア・コリK5株のYbiCタンパク質のアミノ酸配列
配列番号42:エシェリヒア・コリK5株のYbiBタンパク質のアミノ酸配列
配列番号43:エシェリヒア・コリK5株のrcsBD-micF遺伝子を含む領域の塩基配列
配列番号44:エシェリヒア・コリK5株のRcsBタンパク質のアミノ酸配列
配列番号45:エシェリヒア・コリK5株のRcsDタンパク質のアミノ酸配列
配列番号46:エシェリヒア・コリBL21(DE3)株のrfaH遺伝子の塩基配列
配列番号47:エシェリヒア・コリBL21(DE3)株のRfaHタンパク質のアミノ酸配列
配列番号48:エシェリヒア・コリBL21(DE3)株のnusG遺伝子の塩基配列
配列番号49:エシェリヒア・コリBL21(DE3)株のNusGタンパク質のアミノ酸配列
配列番号50:エシェリヒア・コリK5株のpcoRSE遺伝子を含む領域の塩基配列
配列番号51:エシェリヒア・コリK5株のPcoRタンパク質のアミノ酸配列
配列番号52:エシェリヒア・コリK5株のPcoSタンパク質のアミノ酸配列
配列番号53:エシェリヒア・コリK5株のPcoEタンパク質のアミノ酸配列
配列番号54:エシェリヒア・コリK5株のyhcNO-aaeBAX遺伝子を含む領域の塩基配列
配列番号55:エシェリヒア・コリK5株のYchNタンパク質のアミノ酸配列
配列番号56:エシェリヒア・コリK5株のYchOタンパク質のアミノ酸配列
配列番号57:エシェリヒア・コリK5株のAaeBタンパク質のアミノ酸配列
配列番号58:エシェリヒア・コリK5株のAaeAタンパク質のアミノ酸配列
配列番号59:エシェリヒア・コリK5株のAaeXタンパク質のアミノ酸配列
配列番号60:エシェリヒア・コリK5株のg1455-alpA-g1453遺伝子を含む領域の塩基配列
配列番号61:エシェリヒア・コリK5株のG1455タンパク質のアミノ酸配列
配列番号62:エシェリヒア・コリK5株のAlpAタンパク質のアミノ酸配列
配列番号63:エシェリヒア・コリK5株のG1453タンパク質のアミノ酸配列
配列番号64:エシェリヒア・コリK5株のyrbA-mlaBCDEF-yrbG遺伝子を含む領域の塩基配列
配列番号65:エシェリヒア・コリK5株のYrbAタンパク質のアミノ酸配列
配列番号66:エシェリヒア・コリK5株のMlaBタンパク質のアミノ酸配列
配列番号67:エシェリヒア・コリK5株のMlaCタンパク質のアミノ酸配列
配列番号68:エシェリヒア・コリK5株のMlaDタンパク質のアミノ酸配列
配列番号69:エシェリヒア・コリK5株のMlaEタンパク質のアミノ酸配列
配列番号70:エシェリヒア・コリK5株のMlaFタンパク質のアミノ酸配列
配列番号71:エシェリヒア・コリK5株のYrbGタンパク質のアミノ酸配列
配列番号72:エシェリヒア・コリK5株のnorW遺伝子を含む領域の塩基配列
配列番号73:エシェリヒア・コリK5株のNorWタンパク質のアミノ酸配列
配列番号74:エシェリヒア・コリK5株のybjIJK-rybB遺伝子を含む領域の塩基配列
配列番号75:エシェリヒア・コリK5株のYbjIタンパク質のアミノ酸配列
配列番号76:エシェリヒア・コリK5株のYbjJタンパク質のアミノ酸配列
配列番号77:エシェリヒア・コリK5株のYbjKタンパク質のアミノ酸配列
配列番号78:エシェリヒア・コリK5株のyjjY-yjtD-thrLAB遺伝子を含む領域の塩基配列
配列番号79:エシェリヒア・コリK5株のYjjYタンパク質のアミノ酸配列
配列番号80:エシェリヒア・コリK5株のYjtDタンパク質のアミノ酸配列
配列番号81:エシェリヒア・コリK5株のThrLタンパク質のアミノ酸配列
配列番号82:エシェリヒア・コリK5株のThrAタンパク質のアミノ酸配列
配列番号83:エシェリヒア・コリK5株のThrBタンパク質のアミノ酸配列
配列番号84:エシェリヒア・コリK5株のfruA-psuK遺伝子を含む領域の塩基配列
配列番号85:エシェリヒア・コリK5株のFruAタンパク質のアミノ酸配列
配列番号86:エシェリヒア・コリK5株のPsuKタンパク質のアミノ酸配列
配列番号87:エシェリヒア・コリK5株のytfT-yjfF-fbp遺伝子を含む領域の塩基配列
配列番号88:エシェリヒア・コリK5株のYtfTタンパク質のアミノ酸配列
配列番号89:エシェリヒア・コリK5株のYjfFタンパク質のアミノ酸配列
配列番号90:エシェリヒア・コリK5株のFbpタンパク質のアミノ酸配列
配列番号91:エシェリヒア・コリK5株のyagU-paoAB遺伝子を含む領域の塩基配列
配列番号92:エシェリヒア・コリK5株のYagUタンパク質のアミノ酸配列
配列番号93:エシェリヒア・コリK5株のPaoAタンパク質のアミノ酸配列
配列番号94:エシェリヒア・コリK5株のPaoBタンパク質のアミノ酸配列
配列番号95:エシェリヒア・コリK5株のgsiCD-yliE遺伝子を含む領域の塩基配列
配列番号96:エシェリヒア・コリK5株のGsiCタンパク質のアミノ酸配列
配列番号97:エシェリヒア・コリK5株のGsiDタンパク質のアミノ酸配列
配列番号98:エシェリヒア・コリK5株のYliEタンパク質のアミノ酸配列
配列番号99:エシェリヒア・コリK5株のirp遺伝子の一部を含む領域の塩基配列
配列番号100:エシェリヒア・コリK5株のirp2遺伝子の塩基配列
配列番号101:エシェリヒア・コリK5株のIrp2タンパク質のアミノ酸配列
配列番号102:エシェリヒア・コリK5株のirp1遺伝子の塩基配列
配列番号103:エシェリヒア・コリK5株のIrp1タンパク質のアミノ酸配列
配列番号104:エシェリヒア・コリK5株のbhsA-ycfS遺伝子を含む領域の塩基配列
配列番号105:エシェリヒア・コリK5株のBhsAタンパク質のアミノ酸配列
配列番号106:エシェリヒア・コリK5株のYcfSタンパク質のアミノ酸配列
配列番号107:エシェリヒア・コリK5株のlepB-rnc-era遺伝子を含む領域の塩基配列
配列番号108:エシェリヒア・コリK5株のLepBタンパク質のアミノ酸配列
配列番号109:エシェリヒア・コリK5株のRncタンパク質のアミノ酸配列
配列番号110:エシェリヒア・コリK5株のEraタンパク質のアミノ酸配列
配列番号111:エシェリヒア・コリK5株のdapA-gcvR-bcp-hyfA遺伝子を含む領域の塩基配列
配列番号112:エシェリヒア・コリK5株のDapAタンパク質のアミノ酸配列
配列番号113:エシェリヒア・コリK5株のGcvRタンパク質のアミノ酸配列
配列番号114:エシェリヒア・コリK5株のBcpタンパク質のアミノ酸配列
配列番号115:エシェリヒア・コリK5株のHyfAタンパク質のアミノ酸配列
配列番号116:エシェリヒア・コリK5株のrpoE-nadB-yfiC-srmB遺伝子を含む領域の塩基配列
配列番号117:エシェリヒア・コリK5株のRpoEタンパク質のアミノ酸配列
配列番号118:エシェリヒア・コリK5株のNadBタンパク質のアミノ酸配列
配列番号119:エシェリヒア・コリK5株のYfiCタンパク質のアミノ酸配列
配列番号120:エシェリヒア・コリK5株のSrmBタンパク質のアミノ酸配列
配列番号121:エシェリヒア・コリK5株のg1414-g1413遺伝子を含む領域の塩基配列
配列番号122:エシェリヒア・コリK5株のG1414タンパク質のアミノ酸配列
配列番号123:エシェリヒア・コリK5株のG1413タンパク質のアミノ酸配列
配列番号124:エシェリヒア・コリK5株のnuoEFG遺伝子を含む領域の塩基配列
配列番号125:エシェリヒア・コリK5株のNuoEタンパク質のアミノ酸配列
配列番号126:エシェリヒア・コリK5株のNuoFタンパク質のアミノ酸配列
配列番号127:エシェリヒア・コリK5株のNuoGタンパク質のアミノ酸配列
配列番号128:エシェリヒア・コリK5株のglmZ-hemYXD遺伝子を含む領域の塩基配列
配列番号129:エシェリヒア・コリK5株のHemYタンパク質のアミノ酸配列
配列番号130:エシェリヒア・コリK5株のHemXタンパク質のアミノ酸配列
配列番号131:エシェリヒア・コリK5株のHemDタンパク質のアミノ酸配列
配列番号132:エシェリヒア・コリK5株のrlmL遺伝子を含む領域の塩基配列
配列番号133:エシェリヒア・コリK5株のRlmLタンパク質のアミノ酸配列
配列番号134:エシェリヒア・コリK5株のartQMJ-rlmC-ybjO遺伝子を含む領域の塩基配列
配列番号135:エシェリヒア・コリK5株のArtQタンパク質のアミノ酸配列
配列番号136:エシェリヒア・コリK5株のArtMタンパク質のアミノ酸配列
配列番号137:エシェリヒア・コリK5株のArtJタンパク質のアミノ酸配列
配列番号138:エシェリヒア・コリK5株のRlmCタンパク質のアミノ酸配列
配列番号139:エシェリヒア・コリK5株のYbjOタンパク質のアミノ酸配列
配列番号140:エシェリヒア・コリK5株のyejOML遺伝子を含む領域の塩基配列
配列番号141:エシェリヒア・コリK5株のYejOタンパク質のアミノ酸配列
配列番号142:エシェリヒア・コリK5株のYejMタンパク質のアミノ酸配列
配列番号143:エシェリヒア・コリK5株のYejLタンパク質のアミノ酸配列
配列番号144:エシェリヒア・コリK5株のrpoS-ygbNML遺伝子を含む領域の塩基配列
配列番号145:エシェリヒア・コリK5株のRpoSタンパク質のアミノ酸配列
配列番号146:エシェリヒア・コリK5株のYgbNタンパク質のアミノ酸配列
配列番号147:エシェリヒア・コリK5株のYgbMタンパク質のアミノ酸配列
配列番号148:エシェリヒア・コリK5株のYgbLタンパク質のアミノ酸配列
配列番号149:エシェリヒア・コリK5株のg3798-g3797-g3796-g3795-g3794-g3793-g3792遺伝子を含む領域の塩基配列
配列番号150:エシェリヒア・コリK5株のG3798タンパク質のアミノ酸配列
配列番号151:エシェリヒア・コリK5株のG3797タンパク質のアミノ酸配列
配列番号152:エシェリヒア・コリK5株のG3796タンパク質のアミノ酸配列
配列番号153:エシェリヒア・コリK5株のG3795タンパク質のアミノ酸配列
配列番号154:エシェリヒア・コリK5株のG3794タンパク質のアミノ酸配列
配列番号155:エシェリヒア・コリK5株のG3793タンパク質のアミノ酸配列
配列番号156:エシェリヒア・コリK5株のG3792タンパク質のアミノ酸配列
配列番号157:エシェリヒア・コリK5株のryjA-soxRS-yjcCB遺伝子を含む領域の塩基配列
配列番号158:エシェリヒア・コリK5株のSoxRタンパク質のアミノ酸配列
配列番号159:エシェリヒア・コリK5株のSoxSタンパク質のアミノ酸配列
配列番号160:エシェリヒア・コリK5株のYjcCタンパク質のアミノ酸配列
配列番号161:エシェリヒア・コリK5株のYjcBタンパク質のアミノ酸配列
配列番号162:エシェリヒア・コリK5株のefeUO遺伝子を含む領域の塩基配列
配列番号163:エシェリヒア・コリK5株のEfeUタンパク質のアミノ酸配列
配列番号164:エシェリヒア・コリK5株のEfeOタンパク質のアミノ酸配列
配列番号165:野生型nlpDプロモーター(Pnlp0)の塩基配列
配列番号166、167:プライマー
配列番号168:変異型nlpDプロモーター(Pnlp8)の塩基配列
配列番号169:変異型nlpDプロモーター(Pnlp8)を含むPaeI-SalI断片の塩基配列
配列番号170~173:プライマー
配列番号174:エシェリヒア・コリK5株のrpoE遺伝子の塩基配列
Claims (9)
- ヘパロサン生産能を有するエシェリヒア属細菌であって、
rpoE、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、およびefeO遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されていることを特徴とする、細菌。 - 少なくともrpoE遺伝子の発現が増大するように改変されている、請求項1に記載の細菌。
- 少なくともrfaH遺伝子の発現が増大するように改変されている、請求項1に記載の細菌。
- さらに、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、およびycfS遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現が増大するように改変されている、請求項3に記載の細菌。
- 前記遺伝子の発現が、該遺伝子のコピー数を高めること、及び/又は該遺伝子の発現調節配列を改変することによって増大した、請求項1~4のいずれか1項に記載の細菌。
- エシェリヒア・コリである、請求項1~5のいずれか1項に記載の細菌。
- 前記rbsB遺伝子が、配列番号29の800~1690位に示す塩基配列を含むDNA、または、配列番号29の800~1690位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rbsK遺伝子が、配列番号29の1816~2745位に示す塩基配列を含むDNA、または、配列番号29の1816~2745位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rbsR遺伝子が、配列番号29の2749~3741位に示す塩基配列を含むDNA、または、配列番号29の2749~3741位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hsrA遺伝子が、配列番号29の3707~5134位に示す塩基配列の相補配列を含むDNA、または、配列番号29の3707~5134位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glgB遺伝子が、配列番号34の989~3175位に示す塩基配列を含むDNA、または、配列番号34の989~3175位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glgX遺伝子が、配列番号34の3172~5145位に示す塩基配列を含むDNA、または、配列番号34の3172~5145位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rcsB遺伝子が、配列番号43の3312~3962位に示す塩基配列を含むDNA、または、配列番号43の3312~3962位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rcsD遺伝子が、配列番号43の623~3295位に示す塩基配列を含むDNA、または、配列番号43の623~3295位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記micF遺伝子が、配列番号43の219~311位に示す塩基配列を含むDNA、または、配列番号43の219~311位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiX遺伝子が、配列番号37の718~1395位に示す塩基配列を含むDNA、または、配列番号37の718~1395位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiI遺伝子が、配列番号37の1469~1735位に示す塩基配列を含むDNA、または、配列番号37の1469~1735位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiJ遺伝子が、配列番号37の2000~2260位に示す塩基配列を含むDNA、または、配列番号37の2000~2260位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiC遺伝子が、配列番号37の2488~3574位に示す塩基配列の相補配列を含むDNA、または、配列番号37の2488~3574位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybiB遺伝子が、配列番号37の3715~4677位に示す塩基配列の相補配列を含むDNA、または、配列番号37の3715~4677位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rfaH遺伝子が、配列番号46に示す塩基配列を含むDNA、または、配列番号46に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nusG遺伝子が、配列番号48に示す塩基配列を含むDNA、または、配列番号48に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoR遺伝子が、配列番号50の128~808位に示す塩基配列を含むDNA、または、配列番号50の128~808位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoS遺伝子が、配列番号50の805~2205位に示す塩基配列を含むDNA、または、配列番号50の805~2205位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記pcoE遺伝子が、配列番号50の2423~2857位に示す塩基配列を含むDNA、または、配列番号50の2423~2857位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yhcN遺伝子が、配列番号54の63~326位に示す塩基配列を含むDNA、または、配列番号54の63~326位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yhcO遺伝子が、配列番号54の382~654位に示す塩基配列の相補配列を含むDNA、または、配列番号54の382~654位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeB遺伝子が、配列番号54の746~2713位に示す塩基配列の相補配列を含むDNA、または、配列番号54の746~2713位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeA遺伝子が、配列番号54の2719~3651位に示す塩基配列の相補配列を含むDNA、または、配列番号54の2719~3651位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記aaeX遺伝子が、配列番号54の3659~3931位に示す塩基配列の相補配列を含むDNA、または、配列番号54の3659~3931位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1455遺伝子が、配列番号60の568~1140位に示す塩基配列の相補配列を含むDNA、または、配列番号60の568~1140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記alpA遺伝子が、配列番号60の1226~1486位に示す塩基配列の相補配列を含むDNA、または、配列番号60の1226~1486位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1453遺伝子が、配列番号60の2389~2529位に示す塩基配列を含むDNA、または、配列番号60の2389~2529位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yrbA遺伝子が、配列番号64の977~1246位に示す塩基配列の相補配列を含むDNA、または、配列番号64の977~1246位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaB遺伝子が、配列番号64の1391~1780位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1391~1780位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaC遺伝子が、配列番号64の1684~2319位に示す塩基配列の相補配列を含むDNA、または、配列番号64の1684~2319位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaD遺伝子が、配列番号64の2338~2889位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2338~2889位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaE遺伝子が、配列番号64の2894~3676位に示す塩基配列の相補配列を含むDNA、または、配列番号64の2894~3676位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記mlaF遺伝子が、配列番号64の3684~4493位に示す塩基配列の相補配列を含むDNA、または、配列番号64の3684~4493位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yrbG遺伝子が、配列番号64の4703~5680位に示す塩基配列を含むDNA、または、配列番号64の4703~5680位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記norW遺伝子が、配列番号72の1201~2334位に示す塩基配列を含むDNA、または、配列番号72の1201~2334位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjI遺伝子が、配列番号74の117~932位に示す塩基配列の相補配列を含むDNA、または、配列番号74の117~932位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjJ遺伝子が、配列番号74の932~2140位に示す塩基配列の相補配列を含むDNA、または、配列番号74の932~2140位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjK遺伝子が、配列番号74の2224~2760位に示す塩基配列を含むDNA、または、配列番号74の2224~2760位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rybB遺伝子が、配列番号74の2777~2855位に示す塩基配列の相補配列を含むDNA、または、配列番号74の2777~2855位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjjY遺伝子が、配列番号78の124~264位に示す塩基配列を含むDNA、または、配列番号78の124~264位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjtD遺伝子が、配列番号78の664~1350位に示す塩基配列を含むDNA、または、配列番号78の664~1350位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrL遺伝子が、配列番号78の1564~1629位に示す塩基配列を含むDNA、または、配列番号78の1564~1629位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrA遺伝子が、配列番号78の1711~4173位に示す塩基配列を含むDNA、または、配列番号78の1711~4173位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記thrB遺伝子が、配列番号78の4175~5107位に示す塩基配列を含むDNA、または、配列番号78の4175~5107位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記fruA遺伝子が、配列番号84の897~2588位に示す塩基配列を含むDNA、または、配列番号84の897~2588位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記psuK遺伝子が、配列番号84の3165~3953位に示す塩基配列を含むDNA、または、配列番号84の3165~3953位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ytfT遺伝子が、配列番号87の252~1277位に示す塩基配列を含むDNA、または、配列番号87の252~1277位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjfF遺伝子が、配列番号87の1264~2259位に示す塩基配列を含むDNA、または、配列番号87の1264~2259位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記fbp遺伝子が、配列番号87の2292~3290位に示す塩基配列の相補配列を含むDNA、または、配列番号87の2292~3290位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yagU遺伝子が、配列番号91の117~731位に示す塩基配列の相補配列を含むDNA、または、配列番号91の117~731位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記paoA遺伝子が、配列番号91の1149~1838位に示す塩基配列を含むDNA、または、配列番号91の1149~1838位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記paoB遺伝子が、配列番号91の1835~2791位に示す塩基配列を含むDNA、または、配列番号91の1835~2791位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gsiC遺伝子が、配列番号95の264~1184位に示す塩基配列を含むDNA、または、配列番号95の264~1184位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gsiD遺伝子が、配列番号95の1187~2098位に示す塩基配列を含むDNA、または、配列番号95の1187~2098位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yliE遺伝子が、配列番号95の2276~4624位に示す塩基配列を含むDNA、または、配列番号95の2276~4624位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記irp2遺伝子が、配列番号100に示す塩基配列を含むDNA、または、配列番号100に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記irp1遺伝子が、配列番号102に示す塩基配列を含むDNA、または、配列番号102に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記bhsA遺伝子が、配列番号104の440~697位に示す塩基配列を含むDNA、または、配列番号104の440~697位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ycfS遺伝子が、配列番号104の779~1741位に示す塩基配列の相補配列を含むDNA、または、配列番号104の779~1741位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記lepB遺伝子が、配列番号107の1344~2318位に示す塩基配列を含むDNA、または、配列番号107の1344~2318位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rnc遺伝子が、配列番号107の2590~3270位に示す塩基配列を含むDNA、または、配列番号107の2590~3270位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記era遺伝子が、配列番号107の3267~4172位に示す塩基配列を含むDNA、または、配列番号107の3267~4172位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記dapA遺伝子が、配列番号111の858~1736位に示す塩基配列の相補配列を含むDNA、または、配列番号111の858~1736位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記gcvR遺伝子が、配列番号111の1882~2454位に示す塩基配列を含むDNA、または、配列番号111の1882~2454位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記bcp遺伝子が、配列番号111の2454~2924位に示す塩基配列を含むDNA、または、配列番号111の2454~2924位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hyfA遺伝子が、配列番号111の3177~3794位に示す塩基配列を含むDNA、または、配列番号111の3177~3794位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rpoE遺伝子が、配列番号116の355~930位に示す塩基配列の相補配列を含むDNA、または、配列番号116の355~930位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nadB遺伝子が、配列番号116の1338~2960位に示す塩基配列を含むDNA、または、配列番号116の1338~2960位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yfiC遺伝子が、配列番号116の2945~3682位に示す塩基配列の相補配列を含むDNA、または、配列番号116の2945~3682位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記srmB遺伝子が、配列番号116の3814~5148位に示す塩基配列を含むDNA、または、配列番号116の3814~5148位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1414遺伝子が、配列番号121の28~699位に示す塩基配列を含むDNA、または、配列番号121の28~699位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g1413遺伝子が、配列番号121の831~1157位に示す塩基配列を含むDNA、または、配列番号121の831~1157位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoE遺伝子が、配列番号124の796~1296位に示す塩基配列の相補配列を含むDNA、または、配列番号124の796~1296位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoF遺伝子が、配列番号124の1293~2630位に示す塩基配列の相補配列を含むDNA、または、配列番号124の1293~2630位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記nuoG遺伝子が、配列番号124の2683~5409位に示す塩基配列の相補配列を含むDNA、または、配列番号124の2683~5409位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記glmZ遺伝子が、配列番号128の357~563位に示す塩基配列を含むDNA、または、配列番号128の357~563位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemY遺伝子が、配列番号128の611~1807位に示す塩基配列を含むDNA、または、配列番号128の611~1807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemX遺伝子が、配列番号128の1810~2991位に示す塩基配列を含むDNA、または、配列番号128の1810~2991位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記hemD遺伝子が、配列番号128の3013~3753位に示す塩基配列を含むDNA、または、配列番号128の3013~3753位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rlmL遺伝子が、配列番号132の571~2679位に示す塩基配列を含むDNA、または、配列番号132の571~2679位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artQ遺伝子が、配列番号134の386~1102位に示す塩基配列を含むDNA、または、配列番号134の386~1102位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artM遺伝子が、配列番号134の1102~1770位に示す塩基配列を含むDNA、または、配列番号134の1102~1770位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記artJ遺伝子が、配列番号134の2061~2792位に示す塩基配列を含むDNA、または、配列番号134の2061~2792位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rlmC遺伝子が、配列番号134の2991~4118位に示す塩基配列の相補配列を含むDNA、または、配列番号134の2991~4118位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ybjO遺伝子が、配列番号134の4159~4647位に示す塩基配列の相補配列を含むDNA、または、配列番号134の4159~4647位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejO遺伝子が、配列番号140の216~2807位に示す塩基配列を含むDNA、または、配列番号140の216~2807位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejM遺伝子が、配列番号140の3061~4821位に示す塩基配列の相補配列を含むDNA、または、配列番号140の3061~4821位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yejL遺伝子が、配列番号140の4841~5068位に示す塩基配列の相補配列を含むDNA、または、配列番号140の4841~5068位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記rpoS遺伝子が、配列番号144の318~1310位に示す塩基配列を含むDNA、または、配列番号144の318~1310位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbN遺伝子が、配列番号144の1404~2768位に示す塩基配列の相補配列を含むDNA、または、配列番号144の1404~2768位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbM遺伝子が、配列番号144の2857~3633位に示す塩基配列の相補配列を含むDNA、または、配列番号144の2857~3633位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ygbL遺伝子が、配列番号144の3638~4276位に示す塩基配列の相補配列を含むDNA、または、配列番号144の3638~4276位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3798遺伝子が、配列番号149の615~1268位に示す塩基配列を含むDNA、または、配列番号149の615~1268位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3797遺伝子が、配列番号149の1368~2219位に示す塩基配列を含むDNA、または、配列番号149の1368~2219位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3796遺伝子が、配列番号149の2257~2748位に示す塩基配列を含むDNA、または、配列番号149の2257~2748位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3795遺伝子が、配列番号149の3021~3203位に示す塩基配列を含むDNA、または、配列番号149の3021~3203位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3794遺伝子が、配列番号149の3470~4051位に示す塩基配列の相補配列を含むDNA、または、配列番号149の3470~4051位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3793遺伝子が、配列番号149の4280~4480位に示す塩基配列を含むDNA、または、配列番号149の4280~4480位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記g3792遺伝子が、配列番号149の4520~4717位に示す塩基配列を含むDNA、または、配列番号149の4520~4717位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記ryjA遺伝子が、配列番号157の657~796位に示す塩基配列を含むDNA、または、配列番号157の657~796位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記soxR遺伝子が、配列番号157の790~1254位に示す塩基配列の相補配列を含むDNA、または、配列番号157の790~1254位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記soxS遺伝子が、配列番号157の1340~1663位に示す塩基配列を含むDNA、または、配列番号157の1340~1663位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjcC遺伝子が、配列番号157の1666~3252位に示す塩基配列の相補配列を含むDNA、または、配列番号157の1666~3252位に示す塩基配列の相補配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記yjcB遺伝子が、配列番号157の3682~3963位に示す塩基配列を含むDNA、または、配列番号157の3682~3963位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記efeU遺伝子が、配列番号162の753~1583位に示す塩基配列を含むDNA、または、配列番号162の753~1583位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAであり;
前記efeO遺伝子が、配列番号162の1641~2768位に示す塩基配列を含むDNA、または、配列番号162の1641~2768位に示す塩基配列と90%以上の同一性を有する塩基配列を含み、且つ、ヘパロサン生産能を有するエシェリヒア属細菌において発現量を増大させた際に同細菌のヘパロサン生産能を増大させる性質を有するDNAである、請求項1~6のいずれか1項に記載の細菌。 - 請求項1~7のいずれか1項に記載の細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、および該培地よりヘパロサンを採取すること、を含むヘパロサンの製造法。
- 請求項1~7のいずれか1項に記載の細菌を培地で培養し、ヘパロサンを該培地中に生成蓄積すること、該ヘパロサンを化学的および/または酵素的に処理してヘパリンを生産すること、および該ヘパリンを回収すること、を含むヘパリンの製造法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19197639.8A EP3620525A1 (en) | 2013-10-02 | 2014-10-02 | Heparosan-producing bacterium and heparosan manufacturing method |
EP14850420.2A EP3054005B1 (en) | 2013-10-02 | 2014-10-02 | Heparosan-producing bacterium and heparosan manufacturing method |
JP2015540532A JP6569530B2 (ja) | 2013-10-02 | 2014-10-02 | ヘパロサン生産細菌及びヘパロサンの製造法 |
US15/082,464 US9975928B2 (en) | 2013-10-02 | 2016-03-28 | Heparosan-producing bacterium and heparosan manufacturing method |
US15/958,354 US10611804B2 (en) | 2013-10-02 | 2018-04-20 | Heparosan-producing bacterium and heparosan manufacturing method |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013207003 | 2013-10-02 | ||
JP2013-207003 | 2013-10-02 | ||
JP2013-259621 | 2013-12-16 | ||
JP2013-259620 | 2013-12-16 | ||
JP2013259620 | 2013-12-16 | ||
JP2013259621 | 2013-12-16 | ||
JP2014039250 | 2014-02-28 | ||
JP2014-039250 | 2014-02-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/082,464 Continuation US9975928B2 (en) | 2013-10-02 | 2016-03-28 | Heparosan-producing bacterium and heparosan manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015050184A1 true WO2015050184A1 (ja) | 2015-04-09 |
Family
ID=52778771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076357 WO2015050184A1 (ja) | 2013-10-02 | 2014-10-02 | ヘパロサン生産細菌及びヘパロサンの製造法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9975928B2 (ja) |
EP (2) | EP3054005B1 (ja) |
JP (1) | JP6569530B2 (ja) |
WO (1) | WO2015050184A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115674A1 (ja) * | 2015-12-28 | 2017-07-06 | 味の素株式会社 | 抗凝固活性を有するヘパラン硫酸の製造法 |
WO2017115675A1 (ja) * | 2015-12-28 | 2017-07-06 | 味の素株式会社 | グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 |
WO2018135027A1 (ja) | 2017-01-19 | 2018-07-26 | 味の素株式会社 | ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法 |
WO2019050051A1 (en) | 2017-09-05 | 2019-03-14 | Ajinomoto Co., Inc. | MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE |
WO2020013346A1 (en) | 2018-07-11 | 2020-01-16 | Ajinomoto Co., Inc. | Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family enterobacteriaceae |
EP3986909A4 (en) * | 2019-06-21 | 2023-08-02 | Inscripta, Inc. | GENOME-WIDE RATIONAL DESIGNED MUTATIONS LEADING TO INCREASED LYSINE PRODUCTION IN E. COLI |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6569530B2 (ja) * | 2013-10-02 | 2019-09-04 | 味の素株式会社 | ヘパロサン生産細菌及びヘパロサンの製造法 |
SG11202009631WA (en) | 2018-03-31 | 2020-10-29 | Pebble Labs Usa Inc | Systems, methods and composition of using rnase iii mutants to produce srna to control host pathogen infection |
CN109456961A (zh) * | 2018-12-18 | 2019-03-12 | 成都雅途生物技术有限公司 | 一种高产yt-011a菌株诱变选育方法及其发酵培养基 |
US11471497B1 (en) | 2019-03-13 | 2022-10-18 | David Gordon Bermudes | Copper chelation therapeutics |
WO2020219937A1 (en) * | 2019-04-25 | 2020-10-29 | University Of Utah Research Foundation | E-coli strains for the production of heparosan and heparosan oligosaccharides |
WO2021199444A1 (en) | 2020-04-03 | 2021-10-07 | Rensselaer Polytechnic Institute | Method for producing heparosan and bacterium of genus escherichia having heparosan-producing ability |
CN114763518B (zh) * | 2021-09-10 | 2023-04-28 | 江南大学 | 发酵生产肝素的酵母工程菌的构建及其应用 |
WO2023192368A1 (en) * | 2022-03-30 | 2023-10-05 | The Regents Of The University Of California | Hydrogelated cells |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
JPH02207791A (ja) | 1989-02-07 | 1990-08-17 | Ajinomoto Co Inc | 微生物の形質転換法 |
US5882888A (en) | 1995-01-23 | 1999-03-16 | Novo Nordisk A/S | DNA integration by transposition |
WO2000018935A1 (fr) | 1998-09-25 | 2000-04-06 | Ajinomoto Co.,Inc. | Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
US20050196846A1 (en) | 2004-03-04 | 2005-09-08 | Yoshihiko Hara | L-glutamic acid-producing microorganism and a method for producing L-glutamic acid |
RU2006134574A (ru) | 2006-09-29 | 2008-04-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea |
JP2008099668A (ja) | 2006-09-13 | 2008-05-01 | Ajinomoto Co Inc | 変異型アセト乳酸合成酵素及び分岐鎖l−アミノ酸の製造方法 |
WO2009014559A2 (en) | 2007-03-30 | 2009-01-29 | The Board Of Regents Of The University Of Oklahoma | Heparosan-based biomaterials and coatings and methods of production and use thereof |
WO2010027045A1 (ja) | 2008-09-08 | 2010-03-11 | 味の素株式会社 | L-アミノ酸を生産する微生物及びl-アミノ酸の製造法 |
WO2010027022A1 (ja) | 2008-09-05 | 2010-03-11 | 味の素株式会社 | L-アミノ酸生産菌及びl-アミノ酸の製造法 |
WO2010136435A1 (en) * | 2009-05-25 | 2010-12-02 | Altergon S.A. | Biotechnological production of chondroitin |
US20110111458A1 (en) * | 2008-03-18 | 2011-05-12 | Kyowa Hakko Kirin Co., Ltd. | Industrially useful microorganism |
JP2013503606A (ja) | 2009-09-01 | 2013-02-04 | レンセラー ポリテクニック インスティチュート | K5ヘパロサン発酵および精製 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6875574B1 (en) * | 1999-01-27 | 2005-04-05 | The Regents Of The University Of California | Assays for sensory modulators using a sensory cell specific G-protein alpha subunit |
WO2003008606A2 (en) * | 2001-07-18 | 2003-01-30 | Degussa Ag | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced phob or phor gene |
US20050181464A1 (en) * | 2002-04-04 | 2005-08-18 | Affinium Pharmaceuticals, Inc. | Novel purified polypeptides from bacteria |
US7176028B2 (en) * | 2002-10-08 | 2007-02-13 | Centre For Dna Fingerprinting And Diagnostics (Cdfd) | Method of altering levels of plasmids |
RU2460793C2 (ru) | 2010-01-15 | 2012-09-10 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) | Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae |
WO2011153344A2 (en) * | 2010-06-02 | 2011-12-08 | University Of Delaware | Engineering complex microbial phenotypes with transcription enhancement |
US9234223B2 (en) | 2011-04-01 | 2016-01-12 | Ajinomoto Co., Inc. | Method for producing L-cysteine |
JP6569530B2 (ja) * | 2013-10-02 | 2019-09-04 | 味の素株式会社 | ヘパロサン生産細菌及びヘパロサンの製造法 |
-
2014
- 2014-10-02 JP JP2015540532A patent/JP6569530B2/ja active Active
- 2014-10-02 EP EP14850420.2A patent/EP3054005B1/en active Active
- 2014-10-02 EP EP19197639.8A patent/EP3620525A1/en active Pending
- 2014-10-02 WO PCT/JP2014/076357 patent/WO2015050184A1/ja active Application Filing
-
2016
- 2016-03-28 US US15/082,464 patent/US9975928B2/en active Active
-
2018
- 2018-04-20 US US15/958,354 patent/US10611804B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
JPH02207791A (ja) | 1989-02-07 | 1990-08-17 | Ajinomoto Co Inc | 微生物の形質転換法 |
US5882888A (en) | 1995-01-23 | 1999-03-16 | Novo Nordisk A/S | DNA integration by transposition |
EP0805867B1 (en) | 1995-01-23 | 2003-12-17 | Novozymes A/S | Dna integration by transposition |
WO2000018935A1 (fr) | 1998-09-25 | 2000-04-06 | Ajinomoto Co.,Inc. | Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
US20050196846A1 (en) | 2004-03-04 | 2005-09-08 | Yoshihiko Hara | L-glutamic acid-producing microorganism and a method for producing L-glutamic acid |
JP2008099668A (ja) | 2006-09-13 | 2008-05-01 | Ajinomoto Co Inc | 変異型アセト乳酸合成酵素及び分岐鎖l−アミノ酸の製造方法 |
RU2006134574A (ru) | 2006-09-29 | 2008-04-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea |
WO2009014559A2 (en) | 2007-03-30 | 2009-01-29 | The Board Of Regents Of The University Of Oklahoma | Heparosan-based biomaterials and coatings and methods of production and use thereof |
US20110111458A1 (en) * | 2008-03-18 | 2011-05-12 | Kyowa Hakko Kirin Co., Ltd. | Industrially useful microorganism |
WO2010027022A1 (ja) | 2008-09-05 | 2010-03-11 | 味の素株式会社 | L-アミノ酸生産菌及びl-アミノ酸の製造法 |
WO2010027045A1 (ja) | 2008-09-08 | 2010-03-11 | 味の素株式会社 | L-アミノ酸を生産する微生物及びl-アミノ酸の製造法 |
WO2010136435A1 (en) * | 2009-05-25 | 2010-12-02 | Altergon S.A. | Biotechnological production of chondroitin |
JP2013503606A (ja) | 2009-09-01 | 2013-02-04 | レンセラー ポリテクニック インスティチュート | K5ヘパロサン発酵および精製 |
Non-Patent Citations (120)
Title |
---|
"Genetic Engineering", vol. 8, 1987, KYORITSU SHUPPAN CO., LTD, article "Fundamental Microbiology" |
"Molecular Cloning", 2001, COLD SPRING HARBOR LABORATORY PRESS |
ADES S.E. ET AL.: "Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli", J. BACTERIOL., vol. 185, no. 8, 2003, pages 2512 - 9 |
AMANN E. ET AL.: "Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli", GENE, vol. 25, no. 2-3, 1983, pages 167 - 78, XP023599405, DOI: doi:10.1016/0378-1119(83)90222-6 |
ANANTHARAMAN V ET AL.: "SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases", J. MOL. MICROBIOL. BIOTECHNOL., vol. 4, no. 1, 2002, pages 71 - 5 |
ANDREA RAHN ET AL.: "Transcriptional organization and regulation of The Escherichia coli", MOL. MICROBIOL., vol. 47, 2003, pages 1045 - 1060 |
ANDREWS S.C. ET AL.: "A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system", MICROBIOLOGY, vol. 143, 1997, pages 3633 - 47 |
BACKMANN B.J.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, article "Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12", pages: 2460 - 2488 |
BAILEY M. ET AL., MOL. MICROBIOL., vol. 22, no. 4, 1996, pages 7729 - 737 |
BAILEY M.J.A. ET AL.: "RfaH and the ops element, components of a novel system controlling bacterial transcription elongation.", MOLECULAR MICROBIOLOGY, vol. 26, no. 5, 1997, pages 845 - 851, XP055333969 * |
BIBB, M.J.; WARD, J.M; HOPWOOD, O.A., NATURE, vol. 274, 1978, pages 398 - 400 |
BITTER T.; MUIR H.M.: "A modified uronic acid carbazole reaction", ANALYTICAL BIOCHEMISTRY, vol. 4, no. 4, 1962, pages 330 - 334, XP024827447, DOI: doi:10.1016/0003-2697(62)90095-7 |
BITTER, T.; MURIR H.M., ANAL. BIOCHEM., vol. 4, 1962, pages 330 - 334 |
BOEHM A ET AL.: "Second messenger signaling governs Escherichia coli biofilm induction upon ribosomal stress", MOL. MICROBIOL., vol. 72, no. 6, 2009, pages 1500 - 16 |
BOEHM A ET AL.: "Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress", MOL. MICROBIOL., vol. 72, no. 6, 2009, pages 1500 - 16 |
BORK P. ET AL.: "Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases", PROTEIN SCI., vol. 2, no. 1, 1993, pages 31 - 40 |
BOYER C.; PREISS: "Biosynthesis of bacterial glycogen: Purification and properties of the Escherichia coli b alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase", J. BIOCHEMISTRY, vol. 16, no. 16, 1977, pages 3693 - 9, XP002995361, DOI: doi:10.1021/bi00635a029 |
BRAUN M ET AL.: "Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli", BIOCHEMISTRY, vol. 37, no. 7, 1998, pages 1861 - 7 |
BURR B. ET AL.: "Homoserine kinase from Escherichia coli K12", EUR. J. BIOCHEM., vol. 62, no. 3, 1976, pages 519 - 26 |
CADWELL, R.C., PCR METH. APPL., vol. 2, 1992, pages 28 |
CAO J. ET AL.: "EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that iscryptic in Escherichia coli K-12 but functional in E. coli 0-157:H7", MOL. MICROBIOL., vol. 65, 2007, pages 857 - 875 |
CARTER, P., METH. IN ENZYMOL., vol. 154, 1987, pages 382 |
CHANG, S; CHOEN, S.N., MOL. GEN. GENET., vol. 168, 1979, pages 111 - 115 |
CHAROLLAIS J. ET AL.: "The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli", MOL. MICROBIOL., vol. 48, no. 5, 2003, pages 1253 - 65 |
CHEN J. ET AL.: "Enzymatic redesigning of biologically active heparan sulfate", J. BIOL. CHEM., vol. 280, no. 52, 30 December 2005 (2005-12-30), pages 42817 - 25, XP002609045, DOI: doi:10.1074/JBC.M504338200 |
CLARK R.B.; OGILVIE J.W. ET AL.: "Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12: Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding", BIOCHEMISTRY, vol. 11, no. 7, 1972, pages 1278 - 82 |
CLARKE D.J. ET AL.: "Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry", BIOCHEMISTRY, vol. 48, no. 18, 2009, pages 3904 - 14 |
COOKSEY D.A.: "Copper uptake and resistance in bacteria", MOL. MICROBIOL., vol. 7, no. 1, 2006, pages 1 - 5 |
DAILEY T.A. ET AL.: "Expression of a cloned protoporphyrinogen oxidase", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, 1994, pages 813 - 815 |
DALBEY R.E.: "Leader peptidase", MOL. MICROBIOL., vol. 5, no. 12, 1991, pages 2855 - 60 |
DATSENKO, K.A.; WANNER, B.L: "Proc. Natl. Acad. Sci. USA", vol. 97, 2000, pages: 6640 - 6645 |
DATSENKO; WANNER, PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 45 |
DATSENKO; WANNER: "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645, XP002210218, DOI: doi:10.1073/pnas.120163297 |
DAUVILLEE D ET AL.: "Role of the Escherichia coli glgX gene in glycogen metabolism", J. BACTERIOL., vol. 187, no. 4, 2005, pages 1465 - 73 |
DUNCAN, C.H.; WILSON, G.A; YOUNG, F.E., GENE, vol. 1, 1977, pages 153 - 167 |
FRAENKEL D.G; HORECKER B.L.: "Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli", J. BACTERIOL., vol. 90, no. 4, 1965, pages 837 - 42 |
GARDNER A.M. ET AL.: "Role of NorR and sigma54 in the nitric oxide stress response", J. BIOL. CHEM., vol. 278, no. 12, 2003, pages 10081 - 6 |
GENE, vol. 60, no. 1, 1987, pages 115 - 127 |
GHRIST A.C. ET AL.: "GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon", MICROBIOLOGY, vol. 147, 2001, pages 2215 - 21 |
GOLDSTEIN ET AL.: "Prokaryotic Promoters in Biotechnology", BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128, XP008038474 |
GOLOVINA A.Y. ET AL., THE YFIC GENE OF E. COLI ENCODES AN ADENINE-N6 METHYLTRANSFERASE THAT SPECIFICALLY MODIFIES A37 OF TRNALVAL(CMO5UAC, vol. 15, no. 6, 2009, pages 1134 - 41 |
GU M.; IMLAY J.A.: "The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide", MOL. MICROBIOL., vol. 79, no. 5, 2011, pages 1136 - 50 |
GUINOTE I.B. ET AL.: "Characterization of the BolA homolog IbaG: a new gene involved in acid resistance", J. MICROBIOL. BIOTECHNOL, vol. 22, no. 4, 2012, pages 484 - 93 |
HENDERSON I.R; OWEN P.: "The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR", J. BACTERIOL., vol. 181, no. 7, 1999, pages 2132 - 41 |
HERZBERG M. ET AL.: "YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport", J. BACTERIOL., vol. 188, no. 2, 2006, pages 587 - 98 |
HIGUCHI, R.: "PCR Technology", vol. 61, 1989, STOCKTON PRESS |
HINNEN, A.; HICKS, J.B.; FINK, G.R., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929 - 1933 |
HODSON N. ET AL., J. BIOL. CHEM., vol. 275, no. 35, 2000, pages 27311 - 27315 |
HOUNG H.S ET AL.: "Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and identity of ViaA with RcsB", J. BACTERIOL., vol. 174, 1992, pages 5910 - 5915 |
IIDA A. ET AL.: "Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12", J. BACTERIOL., vol. 158, no. 2, 1984, pages 674 - 82 |
JANN B.; JANN K., CURR. TOP MICROBIOL. IMMUNOL., vol. 150, 1990, pages 19 - 42 |
JOHANSEN J. ET AL.: "Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins", J. MOL. BIOL., vol. 364, no. 1, 2006, pages 1 - 8 |
JORDAN P.M.; WOODCOCK S.C.: "Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation", BIOCHEM. J., vol. 280, 1991, pages 445 - 9 |
KALAMORZ F. ET AL.: "Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli", MOL. MICROBIOL., vol. 65, no. 6, 2007, pages 1518 - 33 |
KANE T.A. ET AL., J. BIOL. CHEM., vol. 281, no. 44, 3 November 2006 (2006-11-03), pages 33192 - 33197 |
KANE, J.F., CURR. OPIN. BIOTECHNOL., vol. 6, no. 5, 1995, pages 494 - 500 |
KANG M.J. ET AL.: "Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method.", BIOTECHNOLOGY AND BIOENGINEERING, vol. 91, 2005, pages 636 - 642, XP055333964 * |
KIMURA S ET AL.: "Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity", NUCLEIC ACIDS RES., vol. 40, no. 9, 2012, pages 4071 - 85 |
KRAMER, W.; FRITS, H.J., METH. IN ENZYMOL, vol. 154, 1987, pages 350 |
KUBERAN B. ET AL.: "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides", J. BIOL. CHEM., vol. 278, 2003, pages 52613 - 52621 |
KUBERAN B. ET AL.: "Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides", J. BIOL. CHEM., vol. 278, no. 52, 2003, pages 52613 - 52621 |
KUNKEL, T.A. ET AL., METH. IN ENZYMOL., vol. 154, 1987, pages 367 |
KUZNETSOVA E. ET AL.: "Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family", J. BIOL. CHEM., vol. 281, no. 47, 2006, pages 36149 - 61, XP055038714, DOI: doi:10.1074/jbc.M605449200 |
LABER B ET AL.: "Escherichia coli dihydrodipicolinate synthase: Identification of the active site and crystallization", BIOCHEM. J., vol. 288, 1992, pages 691 - 5, XP009035909 |
LAIKOVA O.N. ET AL.: "Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria", FEMS MICROBIOL LETT., vol. 205, no. 2, 2001, pages 315 - 22, XP027360432 |
LEE J. ET AL.: "Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene", J. APPL. MICROBIOL., vol. 108, no. 6, June 2010 (2010-06-01), pages 2088 - 102 |
LEE J.H ET AL.: "SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli", J. BACTERIOL., vol. 191, no. 13, 2009, pages 4441 - 50 |
LEEDS J.A.; D WELCH R.A.: "RfaH enhances elongation of Escherichia coli hlyCABD mRNA", J. BACTERIOL., vol. 178, no. 7, 1996, pages 1850 - 7, XP002472460 |
LI J. ET AL., J. BIOL. CHEM., vol. 267, no. 9, 1992, pages 6012 - 6019 |
LINDAHL U ET AL., J. BIOL. CHEM., vol. 273, no. 39, 1998, pages 24979 - 24982 |
LINDAHL U. ET AL., J. MED. CHEM., vol. 48, no. 2, 2005, pages 349 - 352 |
LINTON K.J.; HIGGINS C.F.: "The Escherichia coli ATP-binding cassette (ABC) proteins", MOL. MICROBIOL., vol. 28, no. 1, 1998, pages 5 - 13 |
LIVANIS M ET AL., J. BACTERIOL., vol. 191, no. 23, 2009, pages 7288 - 7295 |
LYNN S.P. ET AL.: "Attenuation regulation in the thr operon of Escherichia coli K-12: molecular cloning and transcription of the controlling region", J. BACTERIOL., vol. 152, no. L, 1982, pages 363 - 71 |
MACIAG A ET AL.: "In vitro transcription profiling of the cyS subunit of bacterial RNA polymerase: Re-definition of the ?S regulon and identification of oS-specific promoter sequence elements", NUCLEIC ACIDS RES., vol. 39, no. 13, 2011, pages 5338 - 55 |
MADSEN C.T. ET AL.: "Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry", NUCLEIC ACIDS RES., vol. 31, no. 16, 2003, pages 4738 - 46 |
MAGNET S. ET AL.: "Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan", J. BACTERIOL., vol. 189, no. 10, 2007, pages 3927 - 31 |
MAJDALANI N. ET AL.: "The Rcs phosphorelay: a complex signal transduction system", ANUU. REV. MICROBIOL., vol. 59, 2005, pages 379 - 405 |
MALINVERNI J.C.; SILHAVY T.J: "An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane", PROC. NATL. ACAD. SCI. USA, vol. 106, no. 19, 2009, pages 8009 - 14 |
MANDEL, M.; HIGA, A., J. MOL. BIOL., vol. 53, 1970, pages 159 - 162 |
MCNULTY C. ET AL., MOL. MICROBIOL., vol. 59, no. 3, 2006, pages 907 - 22 |
MILLER, J.H.: "Experiments in Molecular Genetics", 1972, COLD SPRING HARBOR LABORATORY |
MORTARINO M ET AL.: "L-aspartate oxidase from Escherichia coli, I. Characterization of coenzyme binding and product inhibition", EUR. J. BIOCHEM., vol. 239, no. 2, 1996, pages 418 - 26, XP055153570, DOI: doi:10.1111/j.1432-1033.1996.0418u.x |
MOUSSATOVA A. ET AL.: "ATP-binding cassette transporters in Escherichia coli", BIOCHIM. BIOPHYS. ACTA, vol. 1778, no. 9, 2008, pages 1757 - 71, XP025408804, DOI: doi:10.1016/j.bbamem.2008.06.009 |
NAKAMURA, Y ET AL., NUCL. ACIDS RES., vol. 28, 2000, pages 292 |
NASEEM R ET AL.: "pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli", BIOCHIM. BIOPHYS. ACTA, vol. 1778, no. 6, 2008, pages 1415 - 22, XP022673952, DOI: doi:10.1016/j.bbamem.2008.02.006 |
NEUMANN M. ET AL.: "A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli", FEBS J., vol. 276, no. 10, 2009, pages 2762 - 74 |
OLINS P.O. ET AL., GENE, vol. 73, 1988, pages 227 - 235 |
PAO S.S ET AL.: "Major facilitator superfamily", MICROBIOL. MOL. BIOL. REV., vol. 62, no. 1, 1998, pages 1 - 34, XP002203285 |
PEEKHAUS N. ET AL.: "Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues", FEMS MICROBIOL. LETT., vol. 147, no. 2, 1997, pages 233 - 8, XP002204792, DOI: doi:10.1016/S0378-1097(96)00532-0 |
PELLUDAT C ET AL.: "The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation", J. BACTERIOL., vol. 180, no. 3, 1998, pages 538 - 46 |
PRIOR T.I.; KORNBERG H.L.: "Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K12", J. GEN. MICROBIOL., vol. 134, no. 10, 1988, pages 2757 - 68, XP002937888 |
RAMANI N.: "micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli", J. BACTERIOL., vol. 176, 1994, pages 5005 - 5010 |
RAPP M. ET AL.: "Experimentally based topology models for E. coli inner membrane proteins", PROTEIN SCI., vol. 13, no. 4, 2004, pages 937 - 45 |
ROBERTSON H.D; DUNN J.J.: "Ribonucleic acid processing activity of Escherichia coli ribonuclease III", J. BIOL. CHEM., vol. 250, no. 8, 25 December 1974 (1974-12-25), pages 3050 - 6 |
ROCHAPORN W. ET AL.: "Involvement of rcsB in Klebsiella K2 Capsule Synthesis in Escherichia coli K-12", J. BACTERIOL., vol. 174, 1992, pages 1063 - 1067 |
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, 2nd ed.", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, 3rd ed.", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SANTOS C.N.S. ET AL.: "Rational, combinatorial, and genomic approaches for engineering tyrosine production in Escherichia coli.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 109, no. 34, 2012, pages 13538 - 13543, XP055333965 * |
SASARMAN A ET AL.: "Nucleotide sequence of the hemX gene, the third member of the Uro operon of Escherichia coli K12", NUCLEIC ACIDS RES., vol. 16, no. 24, 1988, pages 11835 |
SOLOMON L.R; BREITMAN T.R: "Pseudouridine kinase of Escherichia coli: a new enzyme", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 44, no. 2, 1971, pages 299 - 304, XP024778957, DOI: doi:10.1016/0006-291X(71)90599-7 |
STEMMER, W.P., NATURE, vol. 370, 1994, pages 389 |
TAKIFF H.E ET AL.: "Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon", J. BACTERIOL., vol. 174, no. 5, 1992, pages 1544 - 53, XP000673194 |
TEVENS M.P ET AL.: "Regulation of Escherichia coli K5 capsular polysaccharide expression: Evidence for involvement of RfaH in the expression of group II capsules", FEMS MICROBIOL. LETT., vol. 124, no. 1, 1994, pages 93 - 98 |
THOMPSON K.M. ET AL.: "SigmaE regulates and is regulated by a small RNA in Escherichia coli", J. BACTERIOL., vol. 189, no. 11, 2007, pages 4243 - 56 |
TOUATI D.: "Sensing and protecting against superoxide stress in Escherichia coli -- how many ways are there to trigger soxRS response?", REDOX REP., vol. 5, no. 5, 2000, pages 287 - 93 |
TREMPY J.E. ET AL.: "Alp suppression of Lon: dependence on the slpA gene", J. BACTERIOL., vol. 176, no. 7, 1994, pages 2061 - 7, XP000938361 |
URBAN J.H.; VOGEL J. ET AL.: "Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation", PLOS BIOL., vol. 6, no. 3, 2008, pages E64 |
VAN DYK T.K. ET AL.: "Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?", J. BACTERIOL., vol. 186, 2004, pages 7196 - 7204 |
WANG Z. ET AL., BIOTECHNOL. BIOENG, vol. 107, no. 6, 2010, pages 964 - 973 |
WASSARMAN K.M. ET AL.: "Identification of novel small RNAs using comparative genomics and microarrays", GENES, DEV., vol. 15, no. 13, 2001, pages 1637 - 51, XP002223289, DOI: doi:10.1101/gad.901001 |
WENDY J. KEENLEYSIDE ET AL.: "Coexpression of Colanic Acid and Serotype-Specific Capsular Polysaccharides in Escherichia coli Strains with Group II K Antigens", J. BACTERIOL., vol. 175, 1993, pages 6725 - 6730, XP000579304 |
XUE P. ET AL.: "Regulation of expression of the region 3 promoter of the Escherichia coli K5 capsule gene cluster involves H-NS, SlyA, and a large 5' untranslated region", J. BACTERIOL., vol. 191, no. 6, 2009, pages 1838 - 1846 |
ZANG C ET AL., METABOLIC ENGINEERING, vol. 14, no. 5, 2012, pages 521 - 527 |
ZHANG C. ET AL.: "Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor.", METABOLIC ENGINEERING, vol. 14, 2012, pages 521 - 527, XP055144554 * |
ZHANG J.; INOUYE M.: "MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli", J. BACTERIOL., vol. 184, no. 19, 2002, pages 5323 - 9 |
ZHANG X.S. ET AL.: "YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity", J. BACTERIOL., vol. 189, no. 8, 2007, pages 3051 - 62 |
ZHANG Z. ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 39, 2008, pages 12998 - 13007 |
ZHANG Z. ET AL.: "Solution Structures of Chemoenzymatically Synthesized Heparin and Its Precursors", J. AM. CHEM. SOC., vol. 130, no. 39, 2008, pages 12998 - 13007, XP055237054, DOI: doi:10.1021/ja8026345 |
ZHAO, H., NATURE BIOTECHNOL., vol. 16, 1998, pages 258 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7006275B2 (ja) | 2015-12-28 | 2022-02-10 | 味の素株式会社 | グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 |
WO2017115675A1 (ja) * | 2015-12-28 | 2017-07-06 | 味の素株式会社 | グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 |
CN108699580B (zh) * | 2015-12-28 | 2022-09-23 | 味之素株式会社 | 在氨基葡萄糖残基中具有高3-o-硫酸化比率的硫酸乙酰肝素 |
US10704068B2 (en) | 2015-12-28 | 2020-07-07 | Ajinomoto Co., Inc. | Method of producing heparan sulfate having anticoagulant activity |
JPWO2017115675A1 (ja) * | 2015-12-28 | 2018-10-18 | 味の素株式会社 | グルコサミン残基の3−o−硫酸化率が高いヘパラン硫酸 |
CN108699580A (zh) * | 2015-12-28 | 2018-10-23 | 味之素株式会社 | 在氨基葡萄糖残基中具有高3-o-硫酸化比率的硫酸乙酰肝素 |
WO2017115674A1 (ja) * | 2015-12-28 | 2017-07-06 | 味の素株式会社 | 抗凝固活性を有するヘパラン硫酸の製造法 |
US10889656B2 (en) | 2015-12-28 | 2021-01-12 | Ajinomoto Co., Inc. | Heparan sulfate having high 3-O-sulfation rate in glucosamine residues |
JPWO2017115674A1 (ja) * | 2015-12-28 | 2018-10-18 | 味の素株式会社 | 抗凝固活性を有するヘパラン硫酸の製造法 |
WO2018135027A1 (ja) | 2017-01-19 | 2018-07-26 | 味の素株式会社 | ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法 |
CN110191958A (zh) * | 2017-01-19 | 2019-08-30 | 味之素株式会社 | 生产具有经异构化的己糖醛酸残基的肝素前体化合物的方法 |
JP7088026B2 (ja) | 2017-01-19 | 2022-06-21 | 味の素株式会社 | ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法 |
US11639513B2 (en) | 2017-01-19 | 2023-05-02 | Ajinomoto Co., Inc. | Method for producing heparosan compound having isomerized hexuronic acid residue |
JPWO2018135027A1 (ja) * | 2017-01-19 | 2019-11-07 | 味の素株式会社 | ヘキスロン酸残基が異性化されたヘパロサン化合物の製造方法 |
WO2019050051A1 (en) | 2017-09-05 | 2019-03-14 | Ajinomoto Co., Inc. | MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE |
EP4050036A1 (en) | 2017-09-05 | 2022-08-31 | Ajinomoto Co., Inc. | 3-o-sulfation enzyme mutant, and method for using same |
WO2020013346A1 (en) | 2018-07-11 | 2020-01-16 | Ajinomoto Co., Inc. | Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family enterobacteriaceae |
EP3986909A4 (en) * | 2019-06-21 | 2023-08-02 | Inscripta, Inc. | GENOME-WIDE RATIONAL DESIGNED MUTATIONS LEADING TO INCREASED LYSINE PRODUCTION IN E. COLI |
Also Published As
Publication number | Publication date |
---|---|
US20160201103A1 (en) | 2016-07-14 |
US20180237479A1 (en) | 2018-08-23 |
US9975928B2 (en) | 2018-05-22 |
EP3054005A4 (en) | 2017-09-13 |
EP3054005B1 (en) | 2019-11-20 |
JPWO2015050184A1 (ja) | 2017-03-09 |
EP3620525A1 (en) | 2020-03-11 |
US10611804B2 (en) | 2020-04-07 |
JP6569530B2 (ja) | 2019-09-04 |
EP3054005A1 (en) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6569530B2 (ja) | ヘパロサン生産細菌及びヘパロサンの製造法 | |
US12104193B2 (en) | Method for enzymatic sulfurylation of alcohols and amines using bacterium of the family Enterobacteriaceae | |
EP3399045B1 (en) | Heparan sulfate having high 3-o-sulfation rate of glucosamine residues | |
JP2023171870A (ja) | 硫酸化多糖の製造方法及びpapsの製造方法 | |
JP2020532278A (ja) | 2−o−硫酸化酵素変異体、および3−o−硫酸化酵素変異体、ならびにそれらを用いる方法 | |
JP7464921B2 (ja) | ヘパロサンの製造方法及びヘパロサン生産能を有するエシェリヒア属細菌 | |
RU2823674C1 (ru) | Способ продукции гепаросана и бактерия из рода escherichia, имеющая способность к продукции гепаросана | |
TWI851587B (zh) | 使用腸桿菌科(Enterobacteriaceae)之細菌使醇和胺經酶催化性磺醯化之方法 | |
RU2811941C1 (ru) | Способ продукции сульфатированного полисахарида и способ продукции paps | |
JP2024060562A (ja) | ヘパロサン生産微生物、ヘパロサンの製造方法及びヘパロサン由来化合物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14850420 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014850420 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014850420 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015540532 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |