WO2015050064A1 - 端末装置 - Google Patents

端末装置 Download PDF

Info

Publication number
WO2015050064A1
WO2015050064A1 PCT/JP2014/075709 JP2014075709W WO2015050064A1 WO 2015050064 A1 WO2015050064 A1 WO 2015050064A1 JP 2014075709 W JP2014075709 W JP 2014075709W WO 2015050064 A1 WO2015050064 A1 WO 2015050064A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
nack
ack
base station
terminal device
Prior art date
Application number
PCT/JP2014/075709
Other languages
English (en)
French (fr)
Inventor
淳悟 後藤
中村 理
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015050064A1 publication Critical patent/WO2015050064A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information

Definitions

  • the present invention relates to retransmission control of a terminal device that performs communication between terminals.
  • LTE Long Term Evolution
  • Rel.8 and Rel.9 Long Term Evolution
  • the LTE-A also referred to as LTE-Advanced, IMT-A, etc.
  • IMT-A Long Term Evolution-Advanced
  • a CA Carrier Aggregation
  • CC also called Component Carrier and Serving Cell
  • a terminal apparatus user apparatus, UE, mobile station apparatus
  • CA can perform data transmission and data reception in a plurality of CCs, in which case one CC is set as a primary cell, and the other CCs are set as secondary cells. Is set.
  • the terminal apparatus When receiving data from a plurality of CCs, the terminal apparatus transmits ACK / NACK (Acknowledgement / Negative Acknowledgment) to each CC as one HARQ (Hybrid Automatic Repeat Request) control with a single control information PUCCH (Physical Uplink Control). (CHannel).
  • PUCCH Physical Uplink Control
  • PUCCH Format1b with channel selection or Format3 is used.
  • the base station devices eNB; evolved Node B
  • the terminal device transmits ACK / NACK at one CC and CSI (Channel State Information or CQI: CQI: periodically or aperiodically transmitted at the other CC.
  • CQI Channel State Information
  • the timing of transmitting (Channel Quality Indicator) is duplicated, it is transmitted to the primary cell using one PUCCH format (Format2a or Format2b). As described above, the Rel.
  • LTE-A system Rel. 12 a non-ideal backhaul scenario in which there is a delay in communication between base stations is being studied.
  • the terminal apparatus does not transmit a plurality of control information in only one format to the primary cell, but transmits a plurality of control information on PUCCHs of different CCs. Introduction of connectivity technology is under consideration.
  • Non-Patent Document 1 LTE-A system Rel. 12, introduction of inter-terminal communication (also called Device-To-Device Communication, also called D2D Communication) technology is also being studied (see Non-Patent Document 1).
  • D2D Communication also called Device-To-Device Communication
  • a terminal device that receives data by D2D communication can receive downlink data (PDSCH; Physical Downlink Shared CHannel) transmitted from the base station device and data of D2D communication.
  • PDSCH Physical Downlink Shared CHannel
  • the terminal apparatus transmits ACK / NACK for PDSCH and ACK / NACK for D2D communication.
  • the terminal device transmits ACK / NACK for PDSCH and D2D communication.
  • the first is the Rel.
  • the terminal apparatus transmits ACK / NACK to the base station apparatus using one control information format.
  • the second is the Rel. 12
  • the terminal device transmits ACK / NACK for the PDSCH and D2D communication to the base station device and the terminal device, respectively, using the PUCCH of the control information channel.
  • the base station apparatus when the base station apparatus receives control information from the terminal apparatus and the control information includes ACK / NACK for D2D communication, the base station apparatus transmits ACK to the terminal apparatus that has transmitted data by D2D communication. / NACK needs to be notified, which increases the overhead.
  • the transmission power required for ACK / NACK for PDSCH and D2D communication differs greatly.
  • the transmission power of ACK / NACK for D2D communication is determined based on the path loss between the base station apparatus and the terminal apparatus, it is not preferable from the viewpoint of the power efficiency of the terminal apparatus, and is based on the path loss between terminal apparatuses that perform D2D communication.
  • the plurality of terminal apparatuses are multiplexed with spreading codes, there is a possibility that inter-code interference to other multiplexed terminal apparatuses increases. Therefore, there has been a problem that ACK / NACK cannot be efficiently transmitted when receiving a data signal from the base station apparatus and a data signal of D2D communication.
  • the present invention has been made in view of the above points, and a terminal device that receives a data signal from a base station device and a data signal of D2D communication has a transmission method and transmission power depending on a transmission destination of ACK / NACK.
  • a terminal device for switching is provided.
  • the present invention has been made to solve the above problems, and one aspect of the present invention receives data signals transmitted from the base station apparatus and other terminal apparatuses and transmits ACK / NACK.
  • the second terminal device includes a control information transmission processing unit that transmits ACK / NACK to the base station device and the other terminal device, and the control information transmission processing unit Is a transmission destination of the ACK / NACK when at least part of a plurality of transmission timings of the ACK / NACK overlaps and the transmission destination of the ACK / NACK includes the base station apparatus and the other terminal apparatus Based on the information indicating the resource used for transmission of the ACK / NACK is determined by the resource index information of the control information transmitted from the base station apparatus, or other To send switching whether the source.
  • the resource for transmitting the ACK / NACK uses PUCCH when transmitting to the base station apparatus, and the base station apparatus when transmitting to the other terminal apparatus.
  • a part of PUSCH specified more is used.
  • the resource for transmitting the ACK / NACK is specified by a resource that has received data from the other terminal device or the base station device when transmitting to the terminal device. This is determined based on at least one of the resource, RNTI, or cell ID.
  • the resource that transmits the ACK / NACK is the same frequency resource as a resource that has received data from the other terminal device.
  • the control information transmission processing unit uses a path loss value used for determining transmission power used for transmitting the ACK / NACK, and the transmission destination of the ACK / NACK is the base station. In the case of a device, it is determined based on a downlink reference signal, and in the case where the transmission destination of the ACK / NACK is the other terminal device, it is calculated using a signal transmitted using uplink resources.
  • control information transmission processing unit is configured so that the base station apparatus and the other are based on a parameter that indicates whether or not simultaneous transmission of PUCCH and PUSCH is notified from the base station apparatus. Whether to transmit ACK / NACK to the terminal device at the same time.
  • control information transmission processing unit is configured to perform the base transmission when the base station apparatus cannot perform simultaneous transmission according to the parameter indicating whether or not simultaneous transmission of PUCCH and PUSCH is possible. Only the ACK / NACK to be transmitted to the station apparatus is transmitted.
  • the control information transmission processing unit is capable of simultaneous transmission using the parameter indicating whether or not simultaneous transmission of PUCCH and PUSCH notified from the base station apparatus is possible, and the same subframe.
  • the transmission power of the ACK / NACK transmitted to the other terminal apparatus is given priority.
  • the remaining transmission power is set as the transmission power to the base station apparatus.
  • control information transmission processing unit may be configured to perform simultaneous transmission according to the parameter indicating whether or not simultaneous transmission of PUCCH and PUSCH notified from the base station apparatus is possible and the other When the ACK / NACK to the terminal device and the CSI transmission to the base station device are the same subframe, only the ACK / NACK to the other terminal device is transmitted.
  • control information transmission processing unit has performed PUSCH resource allocation from the base station apparatus in a subframe in which the ACK / NACK is transmitted to the other terminal apparatus.
  • the ACK / NACK to the other terminal apparatus is transmitted using the PUSCH resource.
  • a terminal device that receives a data signal from a base station device and a data signal of D2D communication switches a transmission method and transmission power based on information to a transmission destination, thereby efficiently transmitting ACK / NACK. Therefore, it is possible to improve frequency utilization efficiency, increase system throughput, and efficiently allocate transmission power.
  • 1 is a schematic diagram of an example of a system according to the present invention.
  • 1 is a schematic diagram of an example of a system according to the present invention. It is a schematic block diagram which shows an example of a structure of the base station apparatus eNB which concerns on this invention. It is a schematic block diagram which shows an example of a structure of the 1st terminal device which concerns on this invention. It is a schematic block diagram which shows an example of a structure of the 2nd terminal device which concerns on this invention. It is a schematic block diagram which shows an example of a structure of DL resource signal detection part 303 which concerns on this invention. It is a schematic block diagram which shows an example of a structure of the received signal detection part 405 which concerns on this invention.
  • a first terminal device that transmits data by a base station device (eNB; evolved Node B) and terminal-to-terminal communication (also referred to as Device To Device ⁇ Communication or D2D Communication) (User device, UE, mobile station device), and a second terminal device that receives PDSCH and D2D communication data and transmits ACK / NACK (Acknowledgement / Negative Acknowledgement).
  • the base station apparatus that performs data transmission may be a small base station (small eNB or pico eNB), and may be CH when the cluster head (CH) operates like a base station.
  • the present invention will be described based on the LTE system, the present invention may be applied to other systems such as a wireless LAN and mobile WiMAX (IEEE802.16e).
  • FIG. 1 shows a schematic diagram of a system according to the present invention.
  • a base station apparatus eNB that performs downlink data transmission
  • a first terminal apparatus UE1 that can transmit inter-terminal communication
  • any of the base station apparatus eNB and the first terminal apparatus UE1 or It is comprised from 2nd terminal device UE2 and UE3 which receive the data from both.
  • the terminal devices UE2 and UE3 can receive data from both the base station device eNB and the first terminal device UE1, and may receive data at the same timing.
  • the second terminal apparatus UE2 transmits ACK / NACK for the received data to the data transmission source.
  • the second terminal apparatus UE2 may overlap at least part of the timing of transmitting ACK / NACK to the base station apparatus eNB and the first terminal apparatus UE1.
  • the first terminal device UE1 is within the coverage of the base station device eNB, but may be within the coverage of another base station device or outside the coverage of any base station device.
  • FIG. 2 shows a case where there is no base station apparatus eNB with which the terminal apparatuses UE1, UE2, and UE3 can communicate.
  • the Cluster Head instead of the base station apparatus eNB, and the Cluster Head may perform control such as resource allocation like the base station apparatus.
  • FIG. 3 shows a schematic block diagram illustrating an example of the configuration of the base station apparatus eNB according to the present embodiment.
  • the base station apparatus eNB receives the control information transmitted from the terminal apparatus by PUCCH (Physical Uplink Control CHannel) by the reception antenna 110.
  • the receiving unit 111 down-converts the received signal to a baseband frequency, performs A / D (Analog / Digital) conversion, and outputs a signal obtained by removing CP from the digital signal.
  • PUCCH Physical Uplink Control CHannel
  • the receiving unit 111 extracts ACK / NACK (Acknowledgement / Negative Acknowledgment) information and CSI (Channel State Information or CQI: Channel Quality Indicator) information from the control information after the CP is removed, and performs retransmission control respectively.
  • the control information determination unit 112 schedules frequency resources used for downlink data transmission based on CSI of a plurality of terminal apparatuses, and determines precoding used for data transmission.
  • the control information determination unit 112 outputs the frequency resource allocation information to the signal allocation units 104-1 to 104-M, generates control information including the frequency resource allocation information, and generates the control signal multiplexing units 106-1 to 106-.
  • M is output to M, and the precoding information is output to the precoding unit 103.
  • Retransmission control unit 100 receives a data bit sequence for data transmission in the downlink, and outputs the data bit sequence transmitted at the previous transmission timing to encoding units 101-1 to 101-L based on ACK / NACK information. Or whether to output a new data bit string to the encoding units 101-1 to 101-L, and outputs a data bit string.
  • Encoding sections 101-1 to 101-L perform error correction code encoding on the input data bit string. For example, a turbo code, an LDPC (Low Density Parity Check) code, a convolutional code, or the like is used as the error correction code.
  • the types of error correction codes applied by encoding sections 101-1 to 101-L may be determined in advance by the transmission / reception apparatus, or may be notified as control information for each transmission / reception opportunity.
  • Encoding sections 101-1 to 101-L puncture the encoded bit sequence based on the coding rate included in MCS (Modulation and Coding Scheme) notified to the terminal device by PDCCH (Physical Downlink Control and CHannel). Do.
  • Encoding sections 101-1 to 101-L output punctured encoded bit strings to modulation sections 102-1 to 102-L.
  • Modulation sections 102-1 to 102-L receive the modulation scheme notified to the terminal device via PDCCH (not shown), and modulate the encoded bit string input from encoding sections 101-1 to 101-L. To generate a modulation symbol string. Examples of the modulation scheme include QPSK (Quaternary Phase Shift Keying), 16 QAM (16-ary Quadrature Amplitude Modulation), and 64 QAM. Modulation sections 102-1 to 102-L output the generated modulation symbol sequence to precoding section 103. Precoding section 103 multiplies the input modulation symbol sequence by a precoding matrix, generates a signal for each antenna port, and outputs the signal to signal allocation sections 104-1 to 104-M. If the antenna port has a configuration that does not require the receiving apparatus to recognize that there are a plurality of antennas, the number of antenna ports is set to one.
  • the signal allocation unit 104-1 arranges the signal sequence input from the precoding unit 103 in the frequency band based on the frequency resource allocation information input from the control information determination unit 112, and sends it to the reference signal multiplexing unit 105-1.
  • the reference signal multiplexing unit 105-1 receives the frequency domain data signal sequence from the signal allocation unit 104-1, receives the reference signal sequence from the reference signal generation unit 113, and multiplexes these signal sequences for transmission. Generate a frame of signals.
  • Control signal multiplexing section 106-1 multiplexes control information to be transmitted with respect to the frame of the transmission signal.
  • the IFFT unit 107-1 receives a frame of the transmission signal in the frequency domain from the control signal multiplexing unit 106-1, and performs inverse fast Fourier transform on each OFDM symbol unit, thereby converting the frequency domain signal sequence into the time domain signal sequence. To do.
  • the time domain signal sequence is output to transmission processing section 108-1.
  • the transmission processing unit 108-1 inserts a CP (Cyclic Prefix) into the time domain signal sequence, converts it into an analog signal by D / A (Digital / Analog) conversion, and converts the signal after conversion. Upconvert the signal to the radio frequency used for transmission.
  • the transmission processing unit 108-1 amplifies the up-converted signal with a PA (Power-Amplifier), and transmits the amplified signal via the transmission antenna 109-1.
  • the signal allocating units 104-2 to 104-M to the transmitting antennas 109-2 to 109-M perform the same processing as described above.
  • the number of antenna ports may be one.
  • FIG. 4 is a schematic block diagram showing an example of the configuration of the first terminal device according to the present invention.
  • the first terminal device receives control information transmitted from the base station device via PDCCH (Physical Downlink Control CHannel) or the like, or control information transmitted from the second terminal device via PUSCH (Physical Uplink Shared CHannel) or the like.
  • the receiving unit 210 down-converts the received signal to a baseband frequency, and generates a digital signal by performing A / D conversion on the down-converted signal. Further, receiving section 210 outputs a signal obtained by removing CP from the digital signal to transmission parameter extracting section 211.
  • the transmission parameter includes at least a part of information such as retransmission control information, MCS and frequency resource allocation information, transmission power control information, uplink transmission permission to the base station apparatus or transmission permission for communication between terminals.
  • the transmission parameter extraction unit 211 outputs the coding rate information included in the MCS to the coding unit 201 from the received control information, and outputs the modulation scheme information included in the MCS to the modulation unit 202 although not shown. Then, frequency resource allocation information is output to signal allocation section 204, and ACK / NACK for transmission at the previous transmission timing is output to retransmission control section 200.
  • ACK / NACK input to retransmission control section 200 is at least one of ACK / NACK for inter-terminal communication transmitted from the second terminal apparatus or ACK / NACK for uplink transmission transmitted from the base station apparatus.
  • MCS and frequency resources may store transmission parameters at the previous transmission timing and use them during retransmission, or share transmission parameters for retransmission in advance between transmission and reception.
  • the transmission parameter may be included in the control information at the time of retransmission request.
  • retransmission control section 200 Based on the ACK / NACK information, retransmission control section 200 outputs the data bit string transmitted at the previous transmission timing to encoding section 201 or outputs a new data bit string to encoding section 201. Determine whether to output the data bit string.
  • Encoding section 201 and modulation section 202 apply the same processing to data bit strings as encoding sections 101-1 to 101-L and modulation sections 102-1 to 102-L, respectively, to obtain modulation symbol strings.
  • the DFT unit 203 converts the modulation symbol sequence from the time domain signal sequence to the frequency domain signal sequence and outputs the signal sequence to the signal allocation unit 204.
  • the signal allocation unit 204 allocates a frequency domain signal sequence based on the frequency resource allocation information input from the transmission parameter extraction unit 211 and outputs the signal sequence to the reference signal multiplexing unit 205.
  • DFTS-OFDM Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing, also called SC-FDMA
  • SC-FDMA Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing
  • the reference signal multiplexing unit 205 receives the frequency domain data signal sequence from the signal allocating unit 204, receives the reference signal sequence from the reference signal generation unit 212, and multiplexes these signal sequences to thereby convert the frame of the transmission signal. Generate.
  • the IFFT unit 206 receives a frame of a transmission signal in the frequency domain, and converts the frequency domain signal sequence into a time domain signal sequence by performing inverse fast Fourier transform on each OFDM symbol basis.
  • the time domain signal sequence is output to the transmission processing unit 207.
  • the transmission processing unit 207 inserts a CP into the time domain signal sequence, converts it to an analog signal by D / A conversion, and up-converts the converted signal to a radio frequency used for transmission.
  • the transmission processing unit 207 amplifies the up-converted signal with PA, and transmits the amplified signal via the transmission antenna 208. Moreover, although the 2nd terminal device demonstrated the case where data transmission was performed by making the number of antenna ports into 1, you may have two or more antenna ports.
  • FIG. 5 is a schematic block diagram showing an example of the configuration of the second terminal device according to the present invention.
  • N is the number of receiving antennas used for data reception.
  • N is an integer of 1 or more.
  • the second terminal apparatus receives signals by reception antennas 301-1 to 301-N, and outputs the received signals to reception processing sections 302-1 to 302-N, respectively.
  • Reception processing units 302-1 to 302-N downconvert the received signal to a baseband frequency, and perform A / D conversion on the downconverted signal to generate a digital signal.
  • reception processing sections 302-1 to 302-N output signals obtained by removing CP from the digital signal to DL resource signal detection section 303 and UL transmission band signal detection section 304, respectively.
  • FIG. 6 is a schematic block diagram showing an example of the configuration of the DL resource signal detection unit 303 according to the present invention.
  • the DL resource signal detection unit 303 receives a downlink signal.
  • the downlink signal means a frequency signal for downlink in the case of FDD (FrequencyequDivision Duplex), and means a signal of a downlink subframe in the case of TDD (Time Division Duplex).
  • the DL resource signal detection unit 303 outputs the input signal to the FFT units 401-1 to 401 -N. Since the FFT units 401-1 to 401 -N to the allocation signal extraction units 404-1 to 404 -N perform the same processing, only the processing of the FFT unit 401-1 to the allocation signal extraction unit 404-1 will be described.
  • the FFT unit 401-1 converts the input received signal sequence from the time domain signal sequence to the frequency domain signal sequence by fast Fourier transform, and outputs the frequency domain signal sequence to the control information separation unit 402-1.
  • Control information separation section 402-1 extracts the PDCCH signal and outputs it to control information identification section 410.
  • the control information identification unit 410 extracts transmission parameters used for downlink data transmission and outputs them to the reception signal detection unit 405.
  • the reference signal separation unit 402-1 receives a signal from which control information is separated, and separates the reference signal sequence from the input frequency domain signal sequence.
  • the reference signal separation unit 402-1 inputs the separated reference signal sequence to the propagation path estimation unit 408, and inputs the remaining received signal sequence obtained by separating the reference signal sequence to the allocation signal extraction unit 404-1.
  • the propagation path estimation unit 408 receives a reference signal sequence such as CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DMRS (De-Modulation Reference Signal), and mainly CRS and CSI.
  • the frequency response estimated with RS is used to generate CSI
  • the frequency response estimated with DMRS is used for demodulation of the data signal.
  • the propagation path estimation unit 408 outputs the CSI to the control information output unit 409, and outputs the estimated frequency response for demodulation to the reception signal detection unit 405.
  • Allocation signal extraction section 404-1 receives frequency resource allocation information used for downlink data transmission from control information identification section 410 (not shown), and is transmitted from the base station apparatus from the frequency domain signal sequence. A data signal sequence is extracted and input to the received signal detector 405.
  • FIG. 7 is a schematic block diagram showing an example of the configuration of the received signal detection unit 405 according to the present invention.
  • the reception signal detection unit 405 performs OFDM signal reception processing in order to receive a downlink signal.
  • Reception signal detection section 405 outputs the signal sequence input from allocation signal extraction sections 404-1 to 404 -N to MIMO separation section 4051.
  • the MIMO separation unit 4051 generates an equalization weight based on the MMSE norm from the frequency response of the propagation path input from the propagation path estimation unit 408, and multiplies the input frequency domain data signal sequence by the weight.
  • a MIMO multiplexed signal is separated.
  • the MIMO separation unit 4051 inputs the separated signal sequence to the demodulation units 4053-1 to 4053-L.
  • L is an integer of 1 or more.
  • Other criteria spatial filtering such as ZF (Zero Forcing) criterion or other detection methods such as MLD (Maximum Likelihood Detection) may be applied.
  • Demodulation sections 4053-1 to 4053-L receive modulation method information from control information identification section 410, perform demodulation processing on the received signal sequence in the time domain, and perform bit sequence LLR (Log Likelihood Ratio), that is, Get the LLR sequence.
  • Demodulating sections 4053-1 to 4053-L output LLR sequences obtained by demodulation to decoding sections 4054-1 to 4054-L.
  • Decoding sections 4054-1 to 4054-L are input to the coding rate information from control information identifying section 410, and perform decoding processing on the LLR sequence.
  • Decoding sections 4054-1 to 4054-L output the decoded LLR sequence to error determination section 406.
  • the error determination unit 406 makes a hard decision on the input decoded LLR sequence for each codeword, and obtains a bit sequence as transmission data when there is no error. Information on the presence / absence of an error for each codeword is output to the control information output unit 409 for notification as ACK / NACK.
  • FIG. 8 is a schematic block diagram showing an example of the configuration of the UL resource signal detection unit 304 according to the present invention. This figure is the same as FIG. 6 except for the control information separation units 502-1 to 502-N, the allocation signal extraction units 504-1 to 504-N, the received signal detection unit 505, and the control information identification unit 510. Omitted.
  • the UL resource signal detection unit 304 receives an uplink signal.
  • the uplink signal means an uplink frequency signal in the case of FDD (Frequency Division Duplex), and means an uplink subframe signal in the case of TDD (Time Division Duplex).
  • Control information demultiplexing sections 502-1 to 502-N demultiplex control information for terminal-to-terminal communication included in uplink signals, and outputs the demultiplexed control information to control information identifying section 510, and the remaining signal sequence
  • the signal is output to the reference signal separation units 403-1 to 403-N.
  • Allocation signal extraction units 504-1 to 504-N receive frequency resource allocation information used for terminal-to-terminal communication from control information identification unit 410 (not shown), and receive the first terminal device from the frequency domain signal sequence.
  • the transmitted data signal sequence is extracted and input to the received signal detection unit 505.
  • whether it is a DFTS-OFDM signal or a Clustered DFTS-OFDM signal is determined depending on whether the frequency resource allocation information is continuous or discontinuous.
  • FIG. 9 is a schematic block diagram showing an example of the configuration of the received signal detection unit 505 according to the present invention.
  • the reception signal detection unit 505 performs reception processing of a DFTS-OFDM signal or a Clustered DFTS-OFDM signal in order to receive an inter-terminal communication signal.
  • This figure is the same as FIG. 7 except that the IDFT units 4052-1 to 4052-L are added, and the description thereof will be omitted.
  • the IDFT units 4052-1 to 4052-L convert the input signal sequence from the frequency domain to the time domain, and output them to the demodulation units 4053-1 to 4053-N, respectively.
  • the control information transmission processing unit 300 in FIG. 5 will be described.
  • the control information generation unit 305 receives CSI and ACK / NACK for downlink data transmission from the DL resource signal detection unit 303 and the control information output unit 409 of the UL resource signal detection unit 304, and from the control information identification units 410 and 510.
  • Information on whether the resource used for data transmission is downlink or uplink is input.
  • whether the downlink or the uplink is determined may be whether the data reception is PDSCH or PUSCH.
  • the control information generation unit 305 converts the control information of the signal transmitted on the downlink into the PUCCH format.
  • the control information generation unit 305 converts the control information of the signal transmitted on the uplink into an ACK / NACK notification format by communication between terminals.
  • control information to be transmitted to a base station apparatus that is relatively far away has a CP length that is long and control to be transmitted to a first terminal apparatus that is relatively close to the distance.
  • the information may be transmitted efficiently by shortening the CP length or without inserting the CP.
  • the control information generation unit 305 outputs the generated control information and information indicating whether the received resource is a downlink or an uplink to the transmission destination determination unit 307.
  • the transmission destination determination unit 307 determines that the signal received by the downlink resource is the signal transmitted from the base station apparatus, and places the generated control information on the PUCCH.
  • the allocation to the PUCCH means that the PDCCH, which is control information transmitted by the base station apparatus to specify a downlink resource, is a resource calculated based on the smallest index of the CCE (Control Channel Element) that has been allocated. Means.
  • the transmission destination determination unit 307 determines that the signal received by the uplink resource is a signal transmitted from the first terminal apparatus, and uses the generated control information as information other than the index of the smallest CCE in which the PDCCH is arranged ( The resource is calculated from the resource index information). For example, the terminal device arranges control information on a PUSCH resource that is not used by other terminal devices for PUCCH transmission. However, PUSCH resources used for transmission of control information for inter-terminal communication may be determined in advance or specified by the base station apparatus. In addition, when there is PUSCH resource allocation at the timing when the control information is transmitted from the base station apparatus, the control information is arranged in the designated resource, and there is no PUSCH resource allocation at the timing when the control information is transmitted from the base station apparatus.
  • the transmission destination determination unit 307 determines whether the control information is arranged as PUCCH or PUSCH based on information indicating whether the received resource is a downlink or an uplink, but is not limited to this example. For example, the transmission destination determination unit 307 arranges control information on the PUCCH when data is received on either the downlink or uplink resources, and the resource calculation method differs depending on the information indicating whether it is a downlink or an uplink. What is necessary is just to use the resource from which PUCCH differs.
  • each control information is arrange
  • the control information transmission unit 308 converts the signal into an analog signal by D / A conversion, up-converts the converted signal to a radio frequency used for transmission, amplifies the signal by PA, and transmits the signal via the transmission antenna 309.
  • the transmission destination of the control information is determined depending on whether the resource used for data transmission is the downlink or the uplink, and the transmission method of the control information is changed, but other methods may be used.
  • the transmission destination of the control information may be determined based on the cell ID or RNTI (Radio Network Temporary Identifier) information of the source that received the data, the DMRS series, the frequency resource that received the data, and the like.
  • the PUSCH resource used for transmission of ACK / NACK for terminal-to-terminal communication and other control information is not limited to resources determined in advance or specified by the base station apparatus. At least a part of the received frequency resource allocation may be used.
  • the example in which the control information to be transmitted to the first terminal device is arranged on the PUSCH is shown, but it may be a part of the PUSCH.
  • the lowest allocation unit of PUSCH is 1 RB, and 1 RB is composed of 12 subcarriers and 14 OFDM symbols. Therefore, a part of PUSCH may be used for transmission of control information for transmitting less than 12 subcarriers to the first terminal apparatus or may be a part of 1RB OFDM symbols.
  • it is defined as one subframe with 14 OFDM symbols, and data transmission on PUSCH can be scheduled for each subframe, but control information to be transmitted to the first terminal apparatus is assigned only to a specific subframe number. It may be possible.
  • the transmission source is determined and the control information generation method and transmission method are changed.
  • an appropriate uplink resource can be used according to the transmission destination of the control information, and transmission efficiency is improved.
  • the information on the transmission destination of the control information is discriminated from the received signal, an increase in overhead can be suppressed without increasing the control information.
  • FIG. 10 is a schematic block diagram showing an example of the configuration of the second terminal device according to the second embodiment. Compared with FIG. 5, the diagram includes a DL resource signal detection unit 603, a UL resource signal detection unit 604, and transmission power control units 310 and 311. FIG. 10 is the same as FIG. In the second terminal apparatus, reception processing sections 302-1 to 302-N output signals obtained by removing CPs from digital signals to DL resource signal detection section 603 and UL transmission band signal detection section 604, respectively.
  • FIG. 11 is a schematic block diagram illustrating an example of the configuration of the DL resource signal detection unit 603 according to the second embodiment.
  • the DL resource signal detection unit 603 receives a downlink signal.
  • the downlink signal is a signal having a frequency for downlink in the case of FDD, and is a signal in a downlink subframe in the case of TDD. Since only the path loss measurement unit 6032 is added to FIG. 6 from FIG. 6 of the previous embodiment, only the path loss measurement unit 6032 will be described.
  • the path loss measuring unit 6032 receives a CRS or CSI-RS that is a reference signal separated from the received signal sequence. In addition, the path loss measurement unit 6032 is notified of and stores the transmission power information used by the base station apparatus for downlink data transmission.
  • the path loss measuring unit 6032 calculates a path loss value PL DL from the received reception power of the reference signal and the stored transmission power of the base station apparatus.
  • the path loss measurement unit 6032 may average and use values calculated in a plurality of subframes and frequencies so as not to be affected by the frequency variation and time variation of the propagation path gain.
  • the calculated downlink path loss value is output to transmission power control section 310.
  • FIG. 12 is a schematic block diagram showing an example of the configuration of the UL resource signal detection unit 604 according to the second embodiment.
  • the UL resource signal detection unit 604 receives an uplink signal.
  • the uplink signal means an uplink frequency signal in the case of FDD, and means an uplink subframe signal in the case of TDD.
  • a PL measurement signal separation unit 6041-1 to 6041-N and a path loss measurement unit 6042 are added to FIG. 8 of the previous embodiment.
  • the UL resource signal detection unit 604 in FIG. 12 has the same configuration as that in FIG. 8 and performs the same processing, and thus the description thereof is omitted.
  • the PL measurement signal separation units 6041-1 to 6041-N receive the reception signal from which the reference signal is separated, separate the discovery signal used for inter-terminal communication from the input reception signal, and pass it to the path loss measurement unit 6042. Output.
  • the discovery signal is a signal used for finding a terminal capable of communication between terminals or for synchronization.
  • the path loss measuring unit 6042 holds information on transmission power that is input with a discovery signal and is predetermined or notified from a transmission source of the discovery signal.
  • the path loss measurement unit 6042 calculates a path loss value PL D2D from the received power of the discovery signal and the held transmission power information, and outputs the path loss value PL D2D to the transmission power control unit 311.
  • the control information transmission processing unit 600 in FIG. 10 will be described.
  • the transmission power control units 310 and 311 receive control information to be transmitted and measured path loss values PL DL and PL D2D , respectively.
  • the transmission power control unit 310 performs transmission power control P PUCCH on the input control information signal using the following equation.
  • P CMAX, c is the allowable maximum transmission power of the second terminal apparatus in the c-th CC (serving cell)
  • P 0_PUCCH is the target received power in the base station apparatus
  • PL DL compensates for path loss.
  • H (n CQI , n HARQ , n SR ) is a value depending on the number of transmission bits in the specified format
  • ⁇ F_PUCCH (F) is a value depending on the format of PUCCH
  • ⁇ TxD (F ′ ) Is a value depending on the number of antenna ports used for transmission of a PUCCH signal notified from an upper layer
  • g is a value of closed-loop transmission power control.
  • the transmission power control unit 311 performs transmission power control P D2D_ACK_NACK with the following equation for the input control information signal.
  • P 0_D2D is a target reception power in communication between terminals
  • PL D2D is a value for compensating for path loss
  • h (n CQI , n HARQ , n SR ) is a transmission bit in a specified format.
  • ⁇ F_D2D (F) is a value that depends on the format of control information for inter-terminal communication
  • ⁇ TxD (F ′) is the number of antenna ports used for transmission of PUCCH signals reported from higher layers.
  • g is a value for closed-loop transmission power control. However, 0 is set when closed-loop transmission power control is not performed in inter-terminal communication.
  • the transmission power control units 310 and 311 output a signal subjected to transmission power control to the transmission destination determination 307. Thereafter, the transmission destination determination 307 and the subsequent steps are the same as in the previous embodiment.
  • the path loss value PL D2D in inter-terminal communication has been described as a discovery signal, but a reference signal may be used.
  • the transmission destination determination unit 307 is the same as that in the previous embodiment, the transmission destination of the control information may be determined based on the magnitude of the path loss value. For example, when the path loss value is large, the base station apparatus may be used, and when the path loss value is small, the first base station apparatus may be used.
  • the path loss value is calculated with a different signal according to the resource used for transmission of the received signal, and the path loss value used for transmission power control of the control information is changed according to the transmission destination of the control information.
  • an appropriate transmission power can be set.
  • the second terminal device uses the minimum necessary transmission power, low power consumption can be achieved, and further, inter-cell interference and interference between the cellular system uplink and inter-terminal communication can be reduced. . As a result, frequency utilization efficiency and throughput can be improved.
  • FIG. 13 is a schematic block diagram showing an example of the configuration of the second terminal apparatus according to the third embodiment.
  • the transmission power control unit 700, the simultaneous transmission control unit 701, and the DL resource signal detection unit 703 are changed as compared with FIG. 10 of the previous embodiment.
  • FIG. 13 is the same as FIG.
  • reception processing sections 302-1 to 302-N output signals obtained by removing CPs from the digital signals to DL resource signal detection section 703 and UL transmission band signal detection section 604, respectively.
  • FIG. 14 is a schematic block diagram illustrating an example of the configuration of the DL resource signal detection unit 703 according to the third embodiment.
  • the DL resource signal detection unit 703 receives a downlink signal.
  • the downlink signal is a signal having a frequency for downlink in the case of FDD, and is a signal in a downlink subframe in the case of TDD. Since the control information identifying unit 7031 and the path loss measuring unit 7032 are changed from FIG. 11 of the previous embodiment, only the control information identifying unit 7031 and the path loss measuring unit 7032 will be described.
  • the control information identification unit 7031 extracts the transmission parameter used for downlink data transmission and outputs it to the received signal detection unit 405.
  • control information identification unit 7031 outputs information on whether the resource used for transmission of the received signal is a downlink or an uplink to the control information generation unit 305.
  • the control information identifying unit 7031 includes a parameter indicating whether or not simultaneous transmission of PUSCH and PUCCH is included by RRC (Radio Resource Control) signaling transmitted from the base station apparatus, and determines whether or not simultaneous transmission of PUSCH and PUCCH is possible.
  • the indicated parameter is output to the simultaneous transmission control unit 701.
  • the path loss measurement unit 7032 calculates the path loss from the CRS or CSI-RS and downlink transmission power information as in the previous embodiment, and outputs the path loss to the transmission power control unit 700.
  • the configuration of the UL resource signal detection unit 604 according to the third embodiment is the same as that of FIG. 12 of the previous embodiment, except that the path loss output destination calculated by the path loss measurement unit 6042 is the transmission power control unit 700. Is the same.
  • Transmission power control section 700 determines transmission power of control information to be transmitted to the base station apparatus and control information to be transmitted to the first terminal apparatus according to expressions (1) and (2).
  • transmission power control section 700 receives a parameter indicating whether or not simultaneous transmission of PUSCH and PUCCH is possible from DL resource signal detection section 703.
  • transmission of Expression (4) is performed when P PUCCH and P D2D_ACK_NACK calculated by Expression (1) and Expression (2) satisfy the following expression: Determine power distribution.
  • PCMAX in equation (3) is the maximum transmission power of the second terminal device.
  • transmission power of control information to be transmitted to the first terminal apparatus is determined based on Expression (2), and transmission power of control information to be transmitted to the base station apparatus is based on Expression (4).
  • Means to decide This is because the second terminal device is assumed to be geographically closer to the first terminal device than the base station device, and the required transmission power may be reduced because the path loss is small.
  • the transmission power of P ′ PUCCH is not greatly reduced, and the influence of transmission characteristics is small.
  • the transmission power is not limited to this transmission power determination method, and transmission power at which the terminal device transmits a plurality of control information using Expression (5) or Expression (6) according to the case specified by the control information or QoS, etc. May be adjusted below the maximum transmission power.
  • transmission power of control information to be transmitted to the base station apparatus is determined based on Expression (1), and transmission power of control information to be transmitted to the first terminal apparatus is based on Expression (5).
  • Means to decide. This method has an effect of ensuring the required transmission power when the priority of control information to be transmitted to the base station apparatus is high, and not degrading the transmission characteristics of the control information to be transmitted to the base station apparatus.
  • Formula (6) is a transmission power at which the terminal device transmits a plurality of control information by uniformly reducing the transmission power of the control information transmitted to the base station device and the transmission power of the control information transmitted to the first terminal device. Is adjusted below the maximum transmission power.
  • the scaling method is not limited to Equation (6), and transmission power may be adjusted by multiplying P PUCCH and P D2D_ACK_NACK by different scaling factors. In this case, since the transmission power is uniformly reduced, the reduction amounts of both P PUCCH and P D2D_ACK_NACK are reduced, and the deterioration amount of the transmission characteristics of both control information can be reduced.
  • the transmission power control unit 700 outputs a signal after transmission power control to the transmission destination determination unit 307.
  • the transmission destination determination unit 307 performs the same process as in the previous embodiment.
  • the simultaneous transmission control unit 701 receives a parameter indicating whether or not simultaneous transmission of PUSCH and PUCCH is possible from the control information identification unit 7031.
  • the base station apparatus Only ACK / NACK is transmitted, and only the ACK / NACK signal is output to the control information transmitting unit 308 only to the base station apparatus.
  • the present invention is not limited to this example, and the base station apparatus performs simultaneous transmission by transmitting an ACK / NACK signal only to the first terminal apparatus according to the case specified by the control information or according to QoS. ACK / NACK transmission to the first terminal device may be avoided.
  • the simultaneous transmission control unit 701 cannot simultaneously transmit PUSCH and PUCCH, and transmits ACK / NACK to one of the base station apparatus or the first terminal apparatus and periodic CSI or aperiodic CSI to the other transmission source.
  • the transmission timing is the same, only ACK / NACK is transmitted.
  • simultaneous transmission control unit 701 cannot simultaneously transmit PUSCH and PUCCH, it transmits ACK / NACK to the first terminal apparatus on PUSCH and transmits periodic CSI or aperiodic CSI at the same timing. In this case, the transmission may be multiplexed on the PUSCH.
  • the second terminal apparatus determines whether or not simultaneous transmission of PUSCH and PUCCH is possible. Whether to transmit a plurality of ACKs / NACKs is determined based on the parameter indicating. As a result, there is no need for new control information indicating whether a plurality of ACK / NACK transmissions are possible, so overhead does not increase.
  • the terminal device and a part of the base station device may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” here is a computer system built in a terminal device or a base station device, and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • Each functional block of the terminal apparatus or the base station apparatus may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology may be used.
  • DESCRIPTION OF SYMBOLS 100 ... Retransmission control part 101-1 to 101-L ... Encoding part 102-1 to 102-L ... Modulation part 103 ... Precoding part 104-1 to 104-M ... Signal allocation part 105-1 to 105-M ... Reference signal multiplexing units 106-1 to 106-M ... control information multiplexing units 107-1 to 107-M ... IFFT units 108-1 to 108-M ... transmission processing units 109-1 to 109-M ... transmission antennas 110 ... reception Antenna 111 ... Receiving unit 112 ... Control information determining unit 113 ... Reference signal generating unit 200 ... Retransmission control unit 201 ... Encoding unit 202 ...
  • Modulating unit 203 ... DFT unit 204 ... Signal allocating unit 205 ... Reference signal multiplexing unit 206 ... IFFT unit 207 ... Transmission processing unit 208 ... Transmission antenna 209 ... Reception antenna 210 ... Reception unit 211 ... Transmission parameter extraction unit 212 ... Reference signal generation unit 300
  • Control information separating unit 403-1 to 403-N Reference signal demultiplexing unit 404-1 to 404-N ... Allocation signal extraction unit 405 ... Received signal detection unit 406 ... Error determination unit 408 ... Propagation path estimation unit 409 ... Control information output unit 410 ... Control information identification unit 4051 ... MIMO separators 4052-1 to 4052-L ... IDFT parts 4053-1 to 4053-L ... Demodulators 4054-1 to 4054-L ... Decoding unit 502-1 to 502-N ... Control information separating unit 504-1 to 504-N ... Assigned signal extracting unit 505 ... Received signal detecting unit 510 ... Control information identifying unit 600 ...
  • Control information transmission processing unit 603 ... DL resource signal Detection unit 604 ... UL resource signal detection unit 6032 ... Path loss measurement unit 6041 ... PL measurement signal separation unit 6042 ... Path loss measurement unit 700 ... Transmission power control unit 701 ... Simultaneous transmission control unit 703 ... DL resource signal detection unit 7031 ... Control information Identification unit 7032 ... Path loss measurement unit 800 ... Control information transmission processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局装置からのデータ信号とD2D通信のデータ受信時に、効率的にACK/NACKを送信することができない問題があった。基地局装置と他の端末装置からの送信信号を受信してACK/NACKを送信する第2の端末装置であって、前記第2の端末装置は、前記基地局装置と前記他の端末装置へACK/NACKを送信する制御情報送信処理部を有し、前記制御情報送信処理部は、複数の前記ACK/NACKの送信タイミングの少なくとも一部が重複するかつ、前記ACK/NACKの送信先に前記基地局装置と前記他の端末装置が含まれる場合、前記ACK/NACKの送信先を示す情報に基づいて、前記ACK/NACKの送信に用いるリソースを前記基地局装置より送信された制御情報のリソースインデックス情報により決定されるリソースか、その他のリソースとするかを切り替えて送信する。

Description

端末装置
 本発明は、端末間通信を行う端末装置の再送制御に関する。
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システム(Rel.8およびRel.9)の標準化が完了し、現在は第4世代の無線通信システムの1つとして、LTEシステムをより発展させたLTE-A(LTE-Advanced、IMT-Aなどとも呼称される)システム(REl.10以降)の標準化が行われている。
 LTE-AシステムのRel.10では、LTEシステム(Rel.8)の帯域をCC(Component Carrier、Serving Cellとも呼称される)として、複数のCCをデータ伝送に用いるCA(Carrier Aggregation)技術が導入されている。CAを用いる端末装置(ユーザ装置、UE、移動局装置)は、複数のCCでのデータ伝送やデータ受信が可能となり、その場合1つのCCをプライマリセルとして設定され、その他のCCをセカンダリセルとして設定される。複数のCCよりデータを受信する場合は、端末装置はHARQ(Hybrid Automatic Repeat Request)制御として各CCへのACK/NACK(Acknowledgement / Negative Acknowledgement)を1つの制御情報でプライマリセルのPUCCH(Physical Uplink Control CHannel)より送信する。複数のCCで受信したデータに対するACK/NACKを同時に送信する場合には、PUCCH Format1b with channel selectionもしくは、Format3が用いられる。
 それぞれのCCを構成する基地局装置(eNB;evolved Node B)が異なる基地局装置の場合、X2インターフェースなどで基地局間通信より共有される。また、複数のACK/NACKを送信しない場合でも、端末装置は1つのCCでACK/NACKを送信するタイミングと、他方のCCで周期的もしくは非周期的に送信するCSI(Channel State InformationもしくはCQI: Channel Quality Indicatorとも呼称される)を送信するタイミングが重複する場合にも1つのPUCCHのフォーマット(Format2aもしくはFormat2b)を用いてプライマリセルに送信する。このように、LTE-AシステムのRel.11までは、端末装置が複数の制御情報を送信する場合にも常にプライマリセルのPUCCHのみ送信することで、複数のPUCCHの同時送信を行わない。LTE-AシステムのRel.12では、基地局間通信に遅延が存在するnon-ideal backhaulのシナリオが検討されている。基地局間通信での遅延によるオーバヘッドの増加を防ぐために、端末装置が複数の制御情報を1つのフォーマットでプライマリセルのみに送信するのではなく、複数の制御情報を異なるCCのPUCCHで送信するdual connectivity技術の導入が検討されている。
 一方、LTE-AシステムのRel.12では、端末間通信(Device To Device Communication、D2D Communicationとも呼称される)技術の導入も検討されている(非特許文献1参照)。D2Dには、主に2つのシナリオが存在し、1つは基地局装置のカバレッジ内(Within Coverage)と他方は基地局装置のカバレッジ外(Out of Coverage)である。カバレッジ内のシナリオでは、D2D通信でデータを受信する端末装置は、基地局装置より送信されるダウンリンクのデータ(PDSCH;Physical Downlink Shared CHannel)とD2D通信のデータの受信が可能である。この場合、端末装置はPDSCHに対するACK/NACKとD2D通信に対するACK/NACKをそれぞれ送信することとなる。
Qualcomm Incorporated,"Text Proposal for TR 36.843", R1-134025,August 19-23, 2013
 端末装置がPDSCHとD2D通信に対するACK/NACKの送信方法として2つの解決方法が考えられる。1つ目は、LTE-AシステムのRel.11と同様に、端末装置が1つの制御情報のフォーマットを用いて基地局装置へACK/NACKを送信する。2つ目は、LTE-AシステムのRel.12で検討されているdual connectivityと同様に、端末装置がPDSCHとD2D通信に対するACK/NACKをそれぞれ基地局装置と端末装置へ制御情報チャネルのPUCCHで送信する。しかしながら、1つ目の方法は、基地局装置が端末装置からの制御情報を受信し、その制御情報にD2D通信に対するACK/NACKが含まれる場合には、D2D通信でデータ送信した端末装置へACK/NACKを通知する必要があり、オーバヘッドが大きくなる。2つ目の方法は、端末装置と基地局装置間と、D2D通信をする端末装置間のパスロスが大きくなることから、PDSCHとD2D通信に対するACK/NACKで必要とされる送信電力が大きく異なる。その結果、D2D通信に対するACK/NACKの送信電力を基地局装置と端末装置間のパスロスに基づいて決定すると、端末装置の電力効率の観点で好ましくなく、D2D通信をする端末装置間のパスロスに基づいて決定すると、PUCCHは複数の端末装置が拡散コードで多重されていることから、多重されている他の端末装置へのコード間干渉が増大する恐れがある。そのため、基地局装置からのデータ信号とD2D通信のデータ信号を受信する場合に、効率的にACK/NACKを送信することができない問題があった。
 本発明は上記の点に鑑みてなされたものであり、基地局装置からのデータ信号とD2D通信のデータ信号を受信する端末装置がACK/NACKの送信先に応じて、送信方法や送信電力を切り替える端末装置を提供する。
 (1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、基地局装置と他の端末装置から送信されたデータ信号を受信してACK/NACKを送信する第2の端末装置であって、前記第2の端末装置は、前記基地局装置と前記他の端末装置へACK/NACKを送信する制御情報送信処理部を有し、前記制御情報送信処理部は、複数の前記ACK/NACKの送信タイミングの少なくとも一部が重複するかつ、前記ACK/NACKの送信先に前記基地局装置と前記他の端末装置が含まれる場合、前記ACK/NACKの送信先を示す情報に基づいて、前記ACK/NACKの送信に用いるリソースを前記基地局装置より送信された制御情報のリソースインデックス情報により決定されるリソースか、その他のリソースとするかを切り替えて送信する。
 (2)また、本発明の一態様は、前記ACK/NACKを送信する前記リソースは、前記基地局装置へ送信する場合はPUCCHを用い、前記他の端末装置へ送信する場合は前記基地局装置より指定されたPUSCHの一部を用いる。
 (3)また、本発明の一態様は、前記ACK/NACKを送信する前記リソースは、前記端末装置へ送信する場合は前記他の端末装置よりデータを受信したリソースもしくは前記基地局装置より指定されたリソースもしくはRNTIもしくはセルIDの少なくとも一つに基づいて決定する。
 (4)また、本発明の一態様は、前記ACK/NACKを送信する前記リソースは、前記他の端末装置よりデータを受信したリソースと同一の周波数リソースである。
 (5)また、本発明の一態様は、前記制御情報送信処理部は、前記ACK/NACKの送信に用いる送信電力の決定に用いるパスロスの値を、前記ACK/NACKの送信先が前記基地局装置の場合にはダウンリンクの参照信号に基づいて決定し、前記ACK/NACKの送信先が前記他の端末装置の場合にはアップリンクリソースで送信された信号で算出する。
 (6)また、本発明の一態様は、前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示すパラメータに基づいて、前記基地局装置と前記他の端末装置へのACK/NACKを同時に送信するかを決定する。
 (7)また、本発明の一態様は、前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信ができない場合は、前記基地局装置へ送信する前記ACK/NACKのみを送信する。
 (8)また、本発明の一態様は、前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信が可能かつ、同一サブフレームで前記基地局装置と前記他の端末装置へ前記ACK/NACK送信時に、送信電力が自装置の最大送信電力を超える場合、前記他の端末装置へ送信する前記ACK/NACKの送信電力を優先し、残りの送信電力を前記基地局装置への送信電力とする。
 (9)また、本発明の一態様は、前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信ができない場合かつ、前記他の端末装置への前記ACK/NACKと前記基地局装置へのCSI送信が同一サブフレームの場合、前記他の端末装置への前記ACK/NACKのみを送信する。
 (10)また、本発明の一態様は、前記制御情報送信処理部は、前記他の端末装置への前記ACK/NACKを送信するサブフレームで前記基地局装置よりPUSCHのリソース割り当てを行われた場合、前記PUSCHのリソースを用いて前記他の端末装置への前記ACK/NACKを送信する。
 本発明によれば、基地局装置からのデータ信号とD2D通信のデータ信号を受信する端末装置が送信先に情報に基づいて送信方法や送信電力を切り替えることで、効率的なACK/NACKの送信が実現でき、周波数利用効率の向上、システムスループットの増加、送信電力の効率な割当が可能となる。
本発明に係るシステムの一例の概略図である。 本発明に係るシステムの一例の概略図である。 本発明に係る基地局装置eNBの構成の一例を示す概略ブロック図である。 本発明に係る第1の端末装置の構成の一例を示す概略ブロック図である。 本発明に係る第2の端末装置の構成の一例を示す概略ブロック図である。 本発明に係るDLリソース信号検出部303の構成の一例を示す概略ブロック図である。 本発明に係る受信信号検出部405の構成の一例を示す概略ブロック図である。 本発明に係るULリソース信号検出部304の構成の一例を示す概略ブロック図である。 本発明に係る受信信号検出部505の構成の一例を示す概略ブロック図である。 第2の実施形態に係る第2の端末装置の構成の一例を示す概略ブロック図である。 第2の実施形態に係るDLリソース信号検出部603の構成の一例を示す概略ブロック図である。 第2の実施形態に係るULリソース信号検出部604の構成の一例を示す概略ブロック図である。 第3の実施形態に係る第2の端末装置の構成の一例を示す概略ブロック図である。 第3の実施形態に係るDLリソース信号検出部703の構成の一例を示す概略ブロック図である。
 以下、本発明の実施形態について図面を参照して説明する。以下の各実施形態では、データ伝送を行う送信装置を基地局装置(eNB;evolved Node B)と端末間通信(Device To Device Communication、D2D Communicationとも呼称される)でデータ伝送する第1の端末装置(ユーザ装置、UE、移動局装置)とし、PDSCHやD2D通信のデータを受信し、ACK/NACK(Acknowledgement / Negative Acknowledgement)を送信する第2の端末装置とする。また、データ伝送を行う基地局装置は小基地局(small eNB、もしくはpico eNB)であっても良いし、Cluster Head(CH)が基地局のように動作する場合にはCHでも良い。また、本発明は、LTEシステムを前提に説明するが、無線LANやモバイルWiMAX(IEEE802.16e)等、他のシステムに適用しても良い。
(第1の実施形態)
 図1に、本発明に係るシステムの概略図を示す。同図のシステムでは、ダウンリンクのデータ伝送を行う基地局装置eNBと、端末間通信の伝送が可能な第1の端末装置UE1と、基地局装置eNBと第1の端末装置UE1のいずれかもしくは両方からのデータを受信する第2の端末装置UE2、UE3から構成される。端末装置UE2、UE3は、基地局装置eNBと第1の端末装置UE1の両方からのデータを受信可能であり、同一タイミングでデータ受信しても良い。また、第2の端末装置UE2は、受信したデータに対するACK/NACKを、データの送信元に送信する。ここで、第2の端末装置UE2は基地局装置eNBと第1の端末装置UE1へACK/NACKを送信するタイミングの少なくとも一部が重複する場合がある。同図では、第1の端末装置UE1は基地局装置eNBのカバレッジ内としているが、他の基地局装置のカバレッジ内もしくはどの基地局装置のカバレッジの外であっても良い。
 図2に、端末装置UE1、UE2、UE3が通信可能な基地局装置eNBがない場合を示す。この場合は、基地局装置eNBの代わりにCluster Headがあり、Cluster Headが基地局装置のようにリソース割り当てなどの制御を行っても良い。
 図3に、本実施形態に係る基地局装置eNBの構成の一例を示す概略ブロック図を示す。基地局装置eNBは、端末装置からPUCCH(Physical Uplink Control CHannel)で送信された制御情報を受信アンテナ110で受信する。受信部111は受信信号をベースバンド周波数にダウンコンバートし、A/D(Analog / Digital;アナログ/ディジタル)変換し、ディジタル信号からCPを除去した信号する。その後、受信部111はCP除去後の制御情報から、ACK/NACK(Acknowledgement / Negative Acknowledgement)情報とCSI(Channel State InformationもしくはCQI:Channel Quality Indicatorとも呼称される)の情報を抽出し、それぞれ再送制御部100と制御情報決定部112に出力する。制御情報決定部112は、複数の端末装置のCSIに基づいてダウンリンクのデータ伝送に用いる周波数リソースをスケジューリングし、データ伝送に用いるプリコーディングなども決定する。制御情報決定部112は、周波数リソースの割当情報を信号割当部104-1~104-Mに出力し、周波数リソースの割当情報を含む制御情報を生成して制御信号多重部106-1~106-Mに出力し、プリコーディング情報をプリコーディング部103に出力する。
 再送制御部100は、ダウンリンクでデータ伝送するデータビット列が入力され、ACK/NACKの情報を基に、前回の送信タイミングで送信したデータビット列を符号化部101-1~101-Lに出力するか、新しいデータビット列を符号化部101-1~101-Lに出力するかを決定し、データビット列を出力する。符号化部101-1~101-Lは、入力されたデータビット列に対し、誤り訂正符号の符号化を施す。誤り訂正符号には、例えば、ターボ符号やLDPC(Low Density Parity Check)符号、畳み込み符号などが用いられる。符号化部101-1~101-Lで施す誤り訂正符号の種類は、送受信装置で予め決められていても良いし、送受信機会毎に制御情報として通知されても良い。符号化部101-1~101-Lは、PDCCH(Physical Downlink Control CHannel)で端末装置へ通知したMCS(Modulation and Coding Scheme)に含まれる符号化率に基づいて、符号化ビット列に対してパンクチャを行う。符号化部101-1~101-Lは、パンクチャした符号化ビット列を変調部102-1~102-Lへ出力する。
 変調部102-1~102-Lは、図示していないがPDCCHで端末装置へ通知した変調方式が入力され、符号化部101-1~101-Lから入力された符号化ビット列に対して変調を施すことで、変調シンボル列を生成する。変調方式には、例えば、QPSK(Quaternary Phase Shift Keying;四相位相偏移変調)、16QAM(16-ary Quadrature Amplitude Modulation;16直交振幅変調)や64QAMなどがある。変調部102-1~102-Lは、生成した変調シンボル列をプリコーディング部103に出力する。プリコーディング部103は、入力された変調シンボル列に対してプリコーディング行列を乗算し、アンテナポート毎の信号を生成し、信号割当部104-1~104-Mに出力する。アンテナポートとは、複数のアンテナがあることを受信装置側で認識する必要がない構成であれば、アンテナポート数を1とされる。
 以降、信号割当部104-1~104-Mから送信アンテナ109-1~109-Mまでの処理は各アンテナで同一であるため、信号割当部104-1から送信アンテナ109-1の処理のみを説明する。信号割当部104-1は、制御情報決定部112より入力された周波数リソース割当の情報に基づいてプリコーディング部103より入力された信号列を周波数帯域に配置し、参照信号多重部105-1に出力する。参照信号多重部105-1は、信号割当部104-1より周波数領域のデータ信号列が入力され、参照信号生成部113より参照信号列が入力され、これらの信号列を多重することで、送信信号のフレームを生成する。制御信号多重部106-1では、送信信号のフレームに対して、送信する制御情報を多重する。IFFT部107-1は、制御信号多重部106-1より周波数領域の送信信号のフレームが入力され、各OFDMシンボル単位で逆高速フーリエ変換することで、周波数領域信号列から時間領域信号列に変換する。時間領域信号列は、送信処理部108-1に出力される。
 送信処理部108-1は、時間領域信号列にCP(Cyclic Prefix;サイクリックプレフィックス)を挿入し、D/A(Digital/Analog;ディジタル/アナログ)変換でアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートする。送信処理部108-1は、アップコンバートした信号を、PA(Power Amplifier)で増幅し、増幅後の信号を、送信アンテナ109-1を介して送信する。信号割当部104-2~104-Mから送信アンテナ109-2~109-Mは上記説明と同様の処理を行う。また、基地局装置は複数のアンテナポートでデータ伝送を行う場合について説明したが、アンテナポート数を1としても良い。
 本発明に係る第1の端末装置の構成の一例を示す概略ブロック図を図4に示す。第1の端末装置は、基地局装置からPDCCH(Physical Downlink Control CHannel)等で送信された制御情報もしくは第2の端末装置よりPUSCH(Physical Uplink Shared CHannel)等で送信された制御情報を受信アンテナ209で受信する。受信部210は受信信号をベースバンド周波数にダウンコンバートし、ダウンコンバートした信号に対してA/D変換を行うことでディジタル信号を生成する。さらに、受信部210はディジタル信号からCPを除去した信号を送信パラメータ抽出部211へ出力する。ここで、送信パラメータとは、再送制御情報、MCSや周波数リソース割当情報、送信電力制御情報、基地局装置へのアップリンク伝送許可もしくは端末間通信の伝送許可などの少なくとも一部の情報が含まれる。送信パラメータ抽出部211は、受信した制御情報よりMCSに含まれる符号化率の情報を符号化部201に出力し、図示していないがMCSに含まれる変調方式の情報を変調部202に出力し、周波数リソース割当の情報を信号割当部204に出力し、前の送信タイミングの伝送に対するACK/NACKを再送制御部200に出力する。再送制御部200に入力されるACK/NACKは、第2の端末装置より送信された端末間通信に対するACK/NACKもしくは、基地局装置より送信されたアップリンク伝送に対するACK/NACKの少なくとも一方とする。また、NACKにより再送要求を受信した場合は、MCSや周波数リソースは前の送信タイミングの送信パラメータを記憶しておき、再送時に用いても良いし、予め再送用の送信パラメータを送受信間で共有していても良いし、再送要求時に送信パラメータが制御情報に含まれていても良い。
 再送制御部200は、データビット列が入力され、ACK/NACKの情報を基に、前回の送信タイミングで送信したデータビット列を符号化部201に出力するか、新しいデータビット列を符号化部201に出力するかを決定し、データビット列を出力する。符号化部201、変調部202は、それぞれ符号化部101-1~101-Lと変調部102-1~102-Lと同様の処理をデータビット列に施し、変調シンボル列を得る。DFT部203は、変調シンボル列を時間領域の信号列から周波数領域の信号列に変換し、信号割当部204に出力する。信号割当部204は、送信パラメータ抽出部211より入力された周波数リソース割当の情報に基づいて周波数領域の信号列を割り当て、参照信号多重部205に出力する。ここで、信号の割り当てが連続的な周波数の場合はDFTS-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing、SC-FDMAとも呼称される)信号であり、非連続な周波数の場合はClustered DFTS-OFDM信号の伝送となる。参照信号多重部205は、信号割当部204より周波数領域のデータ信号列が入力され、参照信号生成部212より参照信号列が入力され、これらの信号列を多重することで、送信信号のフレームを生成する。IFFT部206は、周波数領域の送信信号のフレームが入力され、各OFDMシンボル単位で逆高速フーリエ変換することで、周波数領域信号列から時間領域信号列に変換する。時間領域信号列は、送信処理部207に出力される。送信処理部207は、時間領域信号列にCPを挿入し、D/A変換でアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートする。送信処理部207は、アップコンバートした信号を、PAで増幅し、増幅後の信号を、送信アンテナ208を介して送信する。また、第2の端末装置はアンテナポート数を1としてデータ伝送を行う場合について説明したが、アンテナポート数を複数有しても良い。
 本発明に係る第2の端末装置の構成の一例を示す概略ブロック図を図5に示す。同図では、データの受信に用いる受信アンテナ数をNとしている。Nは1以上の整数とする。第2の端末装置は、受信アンテナ301-1~301-Nにより信号を受信し、受信した信号はそれぞれ受信処理部302-1~302-Nに出力する。受信処理部302-1~302-Nは受信信号をベースバンド周波数にダウンコンバートし、ダウンコンバートした信号に対してA/D変換を行うことでディジタル信号を生成する。さらに、受信処理部302-1~302-Nはディジタル信号からCPを除去した信号をそれぞれDLリソース信号検出部303とUL送信帯域信号検出部304に出力する。
 本発明に係るDLリソース信号検出部303の構成の一例を示す概略ブロック図を図6に示す。DLリソース信号検出部303は、ダウンリンクの信号が入力される。ここで、ダウンリンクの信号とは、FDD(Frequency Division Duplex)の場合、ダウンリンク用の周波数の信号であり、TDD(Time Division Duplex)の場合、ダウンリンクのサブフレームの信号を意味する。DLリソース信号検出部303は、入力された信号はFFT部401-1~401-Nに出力する。FFT部401-1~401-Nから割当信号抽出部404-1~404-Nはそれぞれ同一の処理をするため、FFT部401-1から割当信号抽出部404-1の処理のみを説明する。
 FFT部401-1は、入力された受信信号列を高速フーリエ変換により時間領域信号列から周波数領域信号列に変換し、周波数領域信号列を制御情報分離部402-1に出力する。制御情報分離部402-1は、PDCCHの信号を抽出し、制御情報識別部410に出力する。制御情報識別部410は、ダウンリンクのデータ伝送に用いられた送信パラメータを抽出し、受信信号検出部405に出力する。参照信号分離部402-1は、制御情報が分離された信号が入力され、入力された周波数領域信号列から参照信号列を分離する。参照信号分離部402-1は、分離した参照信号列を伝搬路推定部408に入力し、参照信号列を分離した残りの受信信号列を割当信号抽出部404-1に入力する。
 伝搬路推定部408は、CRS(Cell-specific Reference Signal)やCSI-RS(Channel State Information-Reference Signal)、DMRS(De-Modulation Reference Signal)などの参照信号列が入力され、主にCRSやCSI-RSで推定した周波数応答はCSIを生成するために使用され、DMRSで推定した周波数応答はデータ信号の復調に用いられる。伝搬路推定部408は、CSIを制御情報出力部409に出力し、復調用の推定した周波数応答は受信信号検出部405に出力する。割当信号抽出部404-1は、図示していないが制御情報識別部410よりダウンリンクのデータ伝送に用いられた周波数リソースの割当情報が入力され、周波数領域信号列から基地局装置より送信されたデータ信号列を抽出し、受信信号検出部405に入力する。
 本発明に係る受信信号検出部405の構成の一例を示す概略ブロック図を図7に示す。受信信号検出部405は、ダウンリンクの信号を受信するため、OFDM信号の受信処理を行う。受信信号検出部405は、割当信号抽出部404-1~404-Nより入力された信号列をMIMO分離部4051に出力する。MIMO分離部4051は、伝搬路推定部408より入力された伝搬路の周波数応答よりMMSE規範に基づく等化重みを生成し、入力された周波数領域のデータ信号列に対して重みを乗算することでMIMO多重された信号を分離する。MIMO分離部4051は、分離した信号列を復調部4053-1~4053-Lに入力する。ただし、Lは1以上の整数とする。MIMO分離部4051での信号処理は、ZF(Zero Forcing)基準等の他の基準の空間フィルタリングや、MLD(Maximum Likelihood Detection)等の他の検出法を適用しても良い。
 復調部4053-1~4053-Lは、制御情報識別部410より変調方式の情報が入力され、時間領域の受信信号列に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)、つまりLLR列を得る。復調部4053-1~4053-Lは、復調で得られたLLR列を復号部4054-1~4054-Lに出力する。復号部4054-1~4054-Lは、制御情報識別部410より符号化率の情報に入力され、LLR列に対して復号処理を行う。復号部4054-1~4054-Lは、復号後のLLR列を誤り判定部406に出力する。誤り判定部406は、入力された復号後のLLR列をコードワード毎に硬判定し、誤りが無かった場合にはビット列を送信データとして得る。コードワード毎の誤りの有無の情報は、ACK/NACKとして通知するために制御情報出力部409に出力する。
 本発明に係るULリソース信号検出部304の構成の一例を示す概略ブロック図を図8に示す。同図は、制御情報分離部502-1~502-N、割当信号抽出部504-1~504-N、受信信号検出部505、制御情報識別部510以外は図6と同様のため、説明を省略する。ULリソース信号検出部304は、アップリンクの信号が入力される。ここで、アップリンクの信号とは、FDD(Frequency Division Duplex)の場合、アップリンク用の周波数の信号であり、TDD(Time Division Duplex)の場合、アップリンクのサブフレームの信号を意味する。制御情報分離部502-1~502-Nは、アップリンクの信号に含まれる端末間通信用の制御情報を分離し、分離した制御情報を制御情報識別部510に出力し、残りの信号列を参照信号分離部403-1~403-Nに出力する。割当信号抽出部504-1~504-Nは、図示していないが制御情報識別部410より端末間通信に用いられた周波数リソースの割当情報が入力され、周波数領域信号列から第1の端末装置より送信されたデータ信号列を抽出し、受信信号検出部505に入力する。ここで、周波数リソースの割当情報が連続か非連続かにより、DFTS-OFDM信号であるかClustered DFTS-OFDM信号であるかが決定する。
 本発明に係る受信信号検出部505の構成の一例を示す概略ブロック図を図9に示す。受信信号検出部505は、端末間通信の信号を受信するため、DFTS-OFDM信号もしくはClustered DFTS-OFDM信号の受信処理を行う。同図は、IDFT部4052-1~4052-Lが追加された以外は図7と同様のため、説明を省略する。IDFT部4052-1~4052-Lは入力された信号列を周波数領域から時間領域に変換し、それぞれ復調部4053-1~4053-Nに出力する。
 図5の制御情報送信処理部300について説明する。制御情報生成部305は、DLリソース信号検出部303とULリソース信号検出部304の制御情報出力部409よりCSIやダウンリンクのデータ伝送に対するACK/NACKが入力され、制御情報識別部410、510よりデータ伝送に用いられたリソースがダウンリンクかアップリンクかの情報が入力される。ここで、ダウンリンクかアップリンクかの判別はデータ受信がPDSCHかPUSCHかであっても良い。制御情報生成部305は、ダウンリンクで伝送された信号の制御情報は、PUCCHのフォーマットに変換する。制御情報生成部305は、アップリンクで伝送された信号の制御情報は、端末間通信でACK/NACKの通知フォーマットに変換する。また、送信する制御情報にCPを付加する場合には、比較的距離の遠い基地局装置へ送信する制御情報にはCP長を長くし、比較的距離の近い第1の端末装置へ送信する制御情報にはCP長を短く、あるいはCPを挿入せずに、効率的な伝送としても良い。
 制御情報生成部305は、生成した制御情報とデータ受信したリソースがダウンリンクかアップリンクかを示す情報を送信先判別部307に出力する。送信先判別部307は、ダウンリンクのリソースで受信した信号を基地局装置より伝送された信号と判別し、生成した制御情報をPUCCHに配置する。ここで、PUCCHに配置するとは、基地局装置がダウンリンクのリソースを指定するために送信した制御情報であるPDCCHは配置されていたCCE(Control Channel Element)の最も小さいインデックスなどにより算出されるリソースを意味する。送信先判別部307は、アップリンクのリソースで受信した信号を第1の端末装置より伝送された信号と判別し、生成した制御情報をPDCCHは配置されていたCCEの最も小さいインデックス以外の情報(リソースインデックス情報)から算出されるリソースに配置する。例えば、端末装置は、他の端末装置がPUCCHの送信に用いていないPUSCHのリソースに制御情報を配置するなどである。ただし、端末間通信の制御情報の送信に用いるPUSCHのリソースは予め決められていても、基地局装置より指定されても良い。また、基地局装置より制御情報を送信するタイミングのPUSCHのリソース割当がある場合のみ指定されたリソースに制御情報を配置し、基地局装置より制御情報を送信するタイミングのPUSCHのリソース割当がない場合は予め決められたリソースを使用するとしても良い。また、送信先判別部307は、データ受信したリソースがダウンリンクかアップリンクかを示す情報により、制御情報の配置をPUCCHかPUSCHかとしていたが、この例に限られない。例えば、送信先判別部307は、ダウンリンクとアップリンクのどちらのリソースでデータを受信した場合も制御情報をPUCCHに配置するとし、ダウンリンクかアップリンクかを示す情報によりリソース算出方法が異なり、PUCCHの異なるリソースを用いるようにすれば良い。ここで、基地局装置と第1の端末装置に同時に制御情報を送信する場合には、各制御情報をそれぞれPUCCHとPUSCHへ配置する。制御情報送信部308は、D/A変換でアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートし、PAで増幅し、送信アンテナ309を介して送信する。
 本実施形態では、データ伝送に用いられるリソースがダウンリンクかアップリンクかによって、制御情報の送信先を判別し、制御情報の送信方法を変更したが、その他の方法でも良い。例えば、データを受信した送信元のセルIDもしくはRNTI(Radio Network Temporary Identifier)の情報やDMRSの系列、データを受信した周波数リソースなどによって、制御情報の送信先を判別しても良い。また、端末間通信のACK/NACKやその他の制御情報の送信に用いるPUSCHのリソースは、予め決められているもしくは基地局装置より指定されたリソースであることに限られず、端末間通信のデータを受信した周波数リソース割当の少なくとも一部を用いても良い。
 本実施形態では、第1の端末装置へ送信する制御情報をPUSCHに配置する例を示したが、PUSCHの一部であっても良い。PUSCHは最低の割当単位は、1RBであり、1RBは12サブキャリア、14OFDMシンボルから構成される。そのため、PUSCHの一部とは、12サブキャリア未満を第1の端末装置へ送信する制御情報の伝送に用いることや、1RBの一部のOFDMシンボルとしても良い。また別の例として、14OFDMシンボルで1サブフレームとして定義され、PUSCHでのデータ伝送はサブフレーム毎にスケジューリングが可能だが、特定のサブフレーム番号のみに第1の端末装置へ送信する制御情報を割り当て可能としても良い。
 以上により、本実施形態では受信信号の伝送に用いられたリソースに応じて、送信元を判別して制御情報の生成方法、送信方法を変更する。その結果、制御情報の送信先に応じて、適切なアップリンクリソースを使用することができ、伝送効率が向上する。さらに、制御情報の送信先の情報を受信信号により判別するため、制御情報を増加せずにオーバヘッドの増加を抑制できる。
(第2の実施形態)
 本発明の第2の実施形態では、第2の端末装置が制御情報の送信先によって、制御情報の送信に用いる送信電力制御について説明する。基地局装置と第1の端末装置は前実施形態と同様であり、それぞれ図3、図4と同一の構成となるため、説明は省略する。
 第2の実施形態に係る第2の端末装置の構成の一例を示す概略ブロック図を図10に示す。同図は、図5と比較するとDLリソース信号検出部603とULリソース信号検出部604、送信電力制御部310、311が追加になっている。図10は、その他の構成は図5と同様のため説明は省略する。第2の端末装置は、受信処理部302-1~302-Nはディジタル信号からCPを除去した信号をそれぞれDLリソース信号検出部603とUL送信帯域信号検出部604に出力する。
 第2の実施形態に係るDLリソース信号検出部603の構成の一例を示す概略ブロック図を図11に示す。DLリソース信号検出部603は、ダウンリンクの信号が入力される。ここで、ダウンリンクの信号とは、FDDの場合、ダウンリンク用の周波数の信号であり、TDDの場合、ダウンリンクのサブフレームの信号を意味する。同図は、前実施形態の図6からパスロス測定部6032が追加されているため、パスロス測定部6032のみ説明する。パスロス測定部6032は、受信信号列から分離された参照信号であるCRSもしくはCSI-RSが入力される。また、パスロス測定部6032は基地局装置がダウンリンクのデータ伝送に用いる送信電力の情報が通知されており、記憶している。パスロス測定部6032は入力された参照信号の受信電力と記憶している基地局装置の送信電力からパスロス値PLDLを算出する。ここで、パスロス測定部6032は伝搬路利得の周波数変動や時変動に影響されないように、複数のサブフレーム、周波数で算出した値を平均して用いても良い。算出したダウンリンクのパスロスの値は送信電力制御部310に出力される。
 第2の実施形態に係るULリソース信号検出部604の構成の一例を示す概略ブロック図を図12に示す。ULリソース信号検出部604は、アップリンクの信号が入力される。ここで、アップリンクの信号とは、FDDの場合、アップリンク用の周波数の信号であり、TDDの場合、アップリンクのサブフレームの信号を意味する。同図は、前実施形態の図8からPL測定用信号分離部6041-1~6041-N、パスロス測定部6042が追加されている。図12のULリソース信号検出部604は、図8とその他の構成が同じであり、同様の処理を行うため説明を省略する。
 PL測定用信号分離部6041-1~6041-Nは、参照信号が分離された受信信号が入力され、入力された受信信号から端末間通信に用いられるディスカバリ信号を分離してパスロス測定部6042に出力する。ここで、ディスカバリ信号とは端末間通信が可能な端末の見つけるためや同期などに用いられる信号のことである。パスロス測定部6042は、ディスカバリ信号が入力され、さらに予め決められているもしくはディスカバリ信号の送信元より通知される送信電力の情報を保持している。パスロス測定部6042は、ディスカバリ信号の受信電力と保持している送信電力の情報よりパスロス値PLD2Dを算出し、送信電力制御部311に出力する。
 図10の制御情報送信処理部600について説明する。送信電力制御部310、311はそれぞれ送信する制御情報と測定したパスロス値PLDL、PLD2Dが入力される。送信電力制御部310は、入力された制御情報の信号に対して、次式で送信電力制御PPUCCHを行う。
Figure JPOXMLDOC01-appb-M000001
 
 ただし、PCMAX,cはc番目のCC(serving cell)における第2の端末装置の許容最大送信電力であり、P0_PUCCHは基地局装置における目標受信電力であり、PLDLはパスロスを補償するための値であり、h(nCQI,nHARQ,nSR)は指定のフォーマットにおける送信ビット数による値であり、ΔF_PUCCH(F)はPUCCHのフォーマットに依存する値であり、ΔTxD(F’)は上位レイヤより通知されるPUCCHの信号の送信に用いるアンテナポート数に依存する値であり、gはクローズドループの送信電力制御の値である。
 送信電力制御部311は、入力された制御情報の信号に対して、次式で送信電力制御PD2D_ACK_NACKを行う。
Figure JPOXMLDOC01-appb-M000002
 式(2)は、P0_D2Dは端末間通信における目標受信電力であり、PLD2Dはパスロスを補償するための値であり、h(nCQI,nHARQ,nSR)は指定のフォーマットにおける送信ビット数による値であり、ΔF_D2D(F)は端末間通信の制御情報のフォーマットに依存する値であり、ΔTxD(F’)は上位レイヤより通知されるPUCCHの信号の送信に用いるアンテナポート数に依存する値であり、gはクローズドループの送信電力制御の値である。ただし、端末間通信でクローズドループの送信電力制御を行わない場合は0とする。
 送信電力制御部310、311は、送信電力制御を施した信号を送信先判別307に出力する。その後、送信先判別307以降は前実施形態と同様である。
 本実施形態では、端末間通信におけるパスロス値PLD2Dをディスカバリ信号として説明したが、参照信号を用いても良い。また、送信先判別部307は前実施形態と同様としたが、パスロス値の大きさによって制御情報の送信先を判別しても良い。例えば、パスロス値が大きい場合は基地局装置とし、パスロス値が小さい場合は第1の基地局装置としても良い。
 以上により、本実施形態では受信信号の伝送に用いられたリソースに応じて、異なる信号でパスロス値を算出し、制御情報の送信先に応じて制御情報の送信電力制御に用いるパスロス値を変えることで、適切な送信電力を設定できる。その結果、第2の端末装置は、必要最低限の送信電力を用いるため、低消費電力を実現でき、さらにセル間干渉やセルラシステムのアップリンクと端末間通信の相互への与干渉を低減できる。その結果、周波数利用効率やスループットを改善できる。
(第3の実施形態)
 本発明の第3の実施形態では、第2の端末装置が基地局装置と第1の端末装置へのACK/NACKやその他の制御情報が同一のタイミングになった場合に、送信に用いる帯域や送信する信号、送信電力の決定方法について説明する。基地局装置と第1の端末装置は前実施形態と同様であり、それぞれ図3、図4と同一の構成となるため、説明は省略する。
 第3の実施形態に係る第2の端末装置の構成の一例を示す概略ブロック図を図13に示す。同図は、前実施形態の図10と比較すると送信電力制御部700と同時送信制御部701、DLリソース信号検出部703が変更になっている。図13は、その他の構成は図10と同様のため説明は省略する。第2の端末装置は、受信処理部302-1~302-Nはディジタル信号からCPを除去した信号をそれぞれDLリソース信号検出部703とUL送信帯域信号検出部604に出力する。
 第3の実施形態に係るDLリソース信号検出部703の構成の一例を示す概略ブロック図を図14に示す。DLリソース信号検出部703は、ダウンリンクの信号が入力される。ここで、ダウンリンクの信号とは、FDDの場合、ダウンリンク用の周波数の信号であり、TDDの場合、ダウンリンクのサブフレームの信号を意味する。同図は、前実施形態の図11から制御情報識別部7031とパスロス測定部7032が変更になっているため、制御情報識別部7031とパスロス測定部7032のみ説明する。制御情報識別部7031は、ダウンリンクのデータ伝送に用いられた送信パラメータを抽出し、受信信号検出部405に出力する。さらに、制御情報識別部7031は、受信した信号の伝送に用いられたリソースがダウンリンクかアップリンクかの情報を制御情報生成部305に出力する。制御情報識別部7031は、基地局装置より送信されたRRC(Radio Resource Control)シグナリングにより、PUSCHとPUCCHの同時送信の可否を示すパラメータが含まれており、このPUSCHとPUCCHの同時送信の可否を示すパラメータを同時送信制御部701に出力する。パスロス測定部7032は、前実施形態と同様にCRSもしくはCSI-RSとダウンリンクの送信電力の情報からパスロスを算出し、送信電力制御部700へ出力する。
 第3の実施形態に係るULリソース信号検出部604の構成は、前実施形態の図12と同一であり、パスロス測定部6042に算出したパスロスの出力先が送信電力制御部700になる以外は処理も同一である。
 図13の制御情報送信処理部800について説明する。送信電力制御部700は、式(1)、式(2)により基地局装置へ送信する制御情報と第1の端末装置に送信する制御情報の送信電力を決定する。ここで、送信電力制御部700は、図示していないがDLリソース信号検出部703よりPUSCHとPUCCHの同時送信の可否を示すパラメータが入力されている。PUSCHとPUCCHの同時送信の可否を示すパラメータにより、同時送信が可能であり、式(1)、式(2)で算出したPPUCCHとPD2D_ACK_NACKが次式を満たす場合、式(4)の送信電力の配分を決定する。
Figure JPOXMLDOC01-appb-M000003
 式(3)のPCMAXは第2の端末装置の最大送信電力である。
Figure JPOXMLDOC01-appb-M000004
 式(4)は、第1の端末装置へ送信する制御情報の送信電力は、式(2)に基づいて決定し、基地局装置へ送信する制御情報の送信電力は、式(4)に基づいて決定することを意味する。これは、第2の端末装置は基地局装置よりも第1の端末装置の方が地理的に近いことが想定され、パスロスが小さいために所要送信電力が低くなることが考えられる。その結果、式(4)を使用したとしてもP’PUCCHの送信電力は大きく低減されず、伝送特性の影響が小さい。ただし、この送信電力の決定方法に限らず、制御情報によって指定された場合やQoSなどに応じて式(5)もしくは式(6)を用いて、端末装置が複数の制御情報を送信する送信電力を最大送信電力以下に調整しても良い。
Figure JPOXMLDOC01-appb-M000005
 式(5)は、基地局装置へ送信する制御情報の送信電力は、式(1)に基づいて決定し、第1の端末装置へ送信する制御情報の送信電力は、式(5)に基づいて決定することを意味する。この方法は、基地局装置へ送信する制御情報の優先度が高い場合に、所要送信電力を確保することで、基地局装置へ送信する制御情報の伝送特性を劣化させない効果がある。
Figure JPOXMLDOC01-appb-M000006
 
 wは、スケーリングファクターであり、0≦w≦1を満たす。式(6)は、基地局装置へ送信する制御情報の送信電力と第1の端末装置へ送信する制御情報の送信電力を一律に下げることで、末装置が複数の制御情報を送信する送信電力を最大送信電力以下に調整することを意味する。また、スケーリングの方法は式(6)に限られず、PPUCCHとPD2D_ACK_NACKで異なるスケーリングファクターを乗算し、送信電力を調整しても良い。この場合、送信電力を一律に下げるためPPUCCHとPD2D_ACK_NACKの両方の送信電力の低減量がそれぞれ小さくなり、両方の制御情報の伝送特性の劣化量を小さくすることができる。
 送信電力制御部700は、送信電力制御後の信号を送信先判別部307に出力する。送信先判別部307は前実施形態と同様の処理を行う。同時送信制御部701は、制御情報識別部7031よりPUSCHとPUCCHの同時送信の可否を示すパラメータが入力される。ここで、PUSCHとPUCCHの同時送信の可否を示すパラメータにより、PUSCHとPUCCHの同時送信ができないかつ、基地局装置と第1の端末装置へ同一タイミングでACK/NACKを送信する場合、基地局装置のみにACK/NACKを送信することを決定し、基地局装置のみにACK/NACKの信号のみを制御情報送信部308に出力する。ただし、本発明はこの例に限定されず、制御情報によって指定された場合やQoSなどに応じて第1の端末装置のみにACK/NACKの信号を送信するようにして、同時送信に基地局装置と第1の端末装置へのACK/NACK送信を回避しても良い。
 また、同時送信制御部701は、PUSCHとPUCCHの同時送信ができないかつ、基地局装置もしくは第1の端末装置の一方へACK/NACK送信と他方の送信元への周期的CSIもしくは非周期的CSIの送信タイミングは同一の場合、ACK/NACKのみを送信する。ただし、同時送信制御部701は、PUSCHとPUCCHの同時送信ができない場合、第1の端末装置へのACK/NACKをPUSCHで送信するかつ、周期的CSIもしくは非周期的CSIを同一のタイミングで送信する場合、PUSCHで多重して送信しても良い。
 以上により、本実施形態では第2の端末装置が基地局装置と第1の端末装置へのACK/NACKやその他の制御情報が同一のタイミングになった場合に、PUSCHとPUCCHの同時送信の可否を示すパラメータに基づいて、複数のACK/NACKを送信するかを決定する。その結果、複数のACK/NACKの送信が可能であるかを示す新たな制御情報が必要ないため、オーバヘッドが増加しない。さらに、PUSCHとPUCCHの同時送信が可能な場合の効率的な送信電力の配分方法をすることで、複数のACK/NACK送信の所要送信電力が最大送信電力を超える場合でも制御情報の伝送特性の劣化量を小さくでき、スループットの劣化を抑制できる。
 なお、上述した実施形態に係る端末装置、基地局装置の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、端末装置又は基地局装置に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態に係る端末装置又は基地局装置の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。端末装置又は基地局装置の各機能ブロックは個別にプロセッサ化しても良いし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 なお、本国際出願は、2013年10月4日に出願した日本国特許出願第2013-208720号に基づく優先権を主張するものであり、日本国特許出願第2013-208720号の全内容を本国際出願に援用する。
 100…再送制御部
 101-1~101-L…符号化部
 102-1~102-L…変調部
 103…プリコーディング部
 104-1~104-M…信号割当部
 105-1~105-M…参照信号多重部
 106-1~106-M…制御情報多重部
 107-1~107-M…IFFT部
 108-1~108-M…送信処理部
 109-1~109-M…送信アンテナ
 110…受信アンテナ
 111…受信部
 112…制御情報決定部
 113…参照信号生成部
 200…再送制御部
 201…符号化部
 202…変調部
 203…DFT部
 204…信号割当部
 205…参照信号多重部
 206…IFFT部
 207…送信処理部
 208…送信アンテナ
 209…受信アンテナ
 210…受信部
 211…送信パラメータ抽出部
 212…参照信号生成部
 300…制御情報送信処理部
 301-1~301-N…受信アンテナ
 302-1~302-N…受信処理部
 303…DLリソース信号検出部
 304…ULリソース信号検出部
 305…制御情報生成部
 307…送信先判別部
 308…制御情報送信部
 309…送信アンテナ
 310…送信電力制御部
 311…送信電力制御部
 401-1~401-N…FFT部
 402-1~402-N…制御情報分離部
 403-1~403-N…参照信号分離部
 404-1~404-N…割当信号抽出部
 405…受信信号検出部
 406…誤り判定部
 408…伝搬路推定部
 409…制御情報出力部
 410…制御情報識別部
 4051…MIMO分離部
 4052-1~4052-L…IDFT部
 4053-1~4053-L…復調部
 4054-1~4054-L…復号部
 502-1~502-N…制御情報分離部
 504-1~504-N…割当信号抽出部
 505…受信信号検出部
 510…制御情報識別部
 600…制御情報送信処理部
 603…DLリソース信号検出部
 604…ULリソース信号検出部
 6032…パスロス測定部
 6041…PL測定用信号分離部
 6042…パスロス測定部
 700…送信電力制御部
 701…同時送信制御部
 703…DLリソース信号検出部
 7031…制御情報識別部
 7032…パスロス測定部
 800…制御情報送信処理部

Claims (10)

  1.  基地局装置と他の端末装置から送信されたデータ信号を受信してACK/NACKを送信する端末装置であって、
     前記基地局装置と前記他の端末装置へACK/NACKを送信する制御情報送信処理部を有し、
     前記制御情報送信処理部は、複数の前記ACK/NACKの送信タイミングの少なくとも一部が重複するかつ、前記ACK/NACKの送信先に前記基地局装置と前記他の端末装置が含まれる場合、
     前記ACK/NACKの送信先を示す情報に基づいて、前記ACK/NACKの送信に用いるリソースを前記基地局装置より送信された制御情報のリソースインデックス情報により決定されるリソースか、その他のリソースとするかを切り替えて送信することを特徴とする端末装置。
  2.  前記ACK/NACKを送信する前記リソースは、前記基地局装置へ送信する場合はPUCCHを用い、前記他の端末装置へ送信する場合は前記基地局装置より指定されたPUSCHの一部を用いることを特徴とする請求項1に記載の端末装置。
  3.  前記ACK/NACKを送信する前記リソースは、前記端末装置へ送信する場合は前記他の端末装置よりデータを受信したリソースもしくは前記基地局装置より指定されたリソースもしくはRNTIもしくはセルIDの少なくとも一つに基づいて決定することを特徴とする請求項1に記載の端末装置。
  4.  前記ACK/NACKを送信する前記リソースは、前記他の端末装置よりデータを受信したリソースと同一の周波数リソースであることを特徴とする請求項1に記載の端末装置。
  5.  前記制御情報送信処理部は、前記ACK/NACKの送信に用いる送信電力の決定に用いるパスロスの値を、前記ACK/NACKの送信先が前記基地局装置の場合にはダウンリンクの参照信号に基づいて決定し、前記ACK/NACKの送信先が前記他の端末装置の場合にはアップリンクリソースで送信された信号で算出することを特徴とする請求項1に記載の端末装置。
  6.  前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示すパラメータに基づいて、前記基地局装置と前記他の端末装置へのACK/NACKを同時に送信するかを決定することを特徴とする請求項1に記載の端末装置。
  7.  前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信ができない場合は、前記基地局装置へ送信する前記ACK/NACKのみを送信することを特徴とする請求項6に記載の端末装置。
  8.  前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信が可能かつ、同一サブフレームで前記基地局装置と前記他の端末装置へ前記ACK/NACK送信時に、送信電力が自装置の最大送信電力を超える場合、前記他の端末装置へ送信する前記ACK/NACKの送信電力を優先し、残りの送信電力を前記基地局装置への送信電力とすることを特徴とする請求項6に記載の端末装置。
  9.  前記制御情報送信処理部は、前記基地局装置より通知されるPUCCHとPUSCHの同時送信の可否を示す前記パラメータにより同時送信ができない場合かつ、前記他の端末装置への前記ACK/NACKと前記基地局装置へのCQI送信が同一サブフレームの場合、前記他の端末装置への前記ACK/NACKのみを送信することを特徴とする請求項6に記載の端末装置。
  10.  前記制御情報送信処理部は、前記他の端末装置への前記ACK/NACKを送信するサブフレームで前記基地局装置よりPUSCHのリソース割り当てを行われた場合、前記PUSCHのリソースを用いて前記他の端末装置への前記ACK/NACKを送信することを特徴とする請求項1に記載の端末装置。
PCT/JP2014/075709 2013-10-04 2014-09-26 端末装置 WO2015050064A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013208720A JP2016213517A (ja) 2013-10-04 2013-10-04 端末装置
JP2013-208720 2013-10-04

Publications (1)

Publication Number Publication Date
WO2015050064A1 true WO2015050064A1 (ja) 2015-04-09

Family

ID=52778654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075709 WO2015050064A1 (ja) 2013-10-04 2014-09-26 端末装置

Country Status (2)

Country Link
JP (1) JP2016213517A (ja)
WO (1) WO2015050064A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141768A (zh) * 2015-09-25 2018-06-08 夏普株式会社 基站装置、终端装置以及通信方法
WO2019215935A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2020521239A (ja) * 2017-05-17 2020-07-16 漢陽大学校産学協力団 無線通信システムを介して端末の位置情報を取得するための方法および装置
EP3672337A3 (en) * 2018-12-20 2020-08-12 ASUSTek Computer Inc. Method for handling sidelink feedback collision in a wireless communication system
CN112369117A (zh) * 2018-07-17 2021-02-12 株式会社Ntt都科摩 用户装置及基站装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287357A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 無線通信システムおよび無線通信端末
JP2009171028A (ja) * 2008-01-11 2009-07-30 Toshiba Corp 無線送信装置、無線通信装置および方法
US20130157656A1 (en) * 2011-12-19 2013-06-20 Renesas Mobile Corporation Device-To-Device Discovery and Operation
WO2013132774A1 (ja) * 2012-03-09 2013-09-12 パナソニック株式会社 無線通信端末装置および制御チャネル形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287357A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 無線通信システムおよび無線通信端末
JP2009171028A (ja) * 2008-01-11 2009-07-30 Toshiba Corp 無線送信装置、無線通信装置および方法
US20130157656A1 (en) * 2011-12-19 2013-06-20 Renesas Mobile Corporation Device-To-Device Discovery and Operation
WO2013132774A1 (ja) * 2012-03-09 2013-09-12 パナソニック株式会社 無線通信端末装置および制御チャネル形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "D2D Communication in LTE", 3GPP TSG-RAN WG1#73 R1-132188, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_73/Docs/R1-132188.zip> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141768A (zh) * 2015-09-25 2018-06-08 夏普株式会社 基站装置、终端装置以及通信方法
JP2020521239A (ja) * 2017-05-17 2020-07-16 漢陽大学校産学協力団 無線通信システムを介して端末の位置情報を取得するための方法および装置
US11564060B2 (en) 2017-05-17 2023-01-24 Industry-University Cooperation Foundation Hanyang University Method and apparatus for acquiring location information of terminal through wireless communication system
JP7211592B2 (ja) 2017-05-17 2023-01-24 漢陽大学校産学協力団 端末の位置情報を測定する装置およびその方法
WO2019215935A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
JPWO2019215935A1 (ja) * 2018-05-11 2021-05-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7299215B2 (ja) 2018-05-11 2023-06-27 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN112369117A (zh) * 2018-07-17 2021-02-12 株式会社Ntt都科摩 用户装置及基站装置
EP3672337A3 (en) * 2018-12-20 2020-08-12 ASUSTek Computer Inc. Method for handling sidelink feedback collision in a wireless communication system
US11388733B2 (en) 2018-12-20 2022-07-12 Asustek Computer Inc. Method and apparatus for handling sidelink feedback collision in a wireless communication system

Also Published As

Publication number Publication date
JP2016213517A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
US11689337B2 (en) Method and apparatus for transceiving signal of device-to-device communication terminal in wireless communication system
US10939417B2 (en) Method and device for transmitting and receiving PSCCH and PSSCH by terminal in wireless communication system
EP3462663B1 (en) User terminal, radio base station and radio communication method
US10986620B2 (en) Method and apparatus for receiving downlink control channel in wireless communication system
EP4020835A1 (en) Apparatus and method for transmitting or receiving signal using beamforming in wireless communication system
EP3451768B1 (en) Terminal device, base station device, communication method and integrated circuit
US11895656B2 (en) User terminal and radio communication method
KR102284453B1 (ko) 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US9923753B2 (en) Method for receiving downlink data in a wireless communication system supporting 256 QAM, and terminal therefor
JP6688882B2 (ja) 端末装置、基地局装置、および、通信方法
WO2015107942A1 (ja) 基地局装置および端末装置
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
US20200359240A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2015050064A1 (ja) 端末装置
CN110741706A (zh) 用于在无线通信系统中传输下行链路控制信道的装置和方法
JP6548334B2 (ja) 端末装置、基地局装置、および通信方法
CA3022919C (en) User terminal and radio communication method
US11838235B2 (en) Physical uplink control channel frequency division multiplexing with intra data subcarrier orthogonal cover codes
WO2016027646A1 (ja) 端末装置、基地局装置および通信方法
WO2016182038A1 (ja) 端末装置および基地局装置
WO2017188012A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US20160094323A1 (en) Intercell interference control through control signal provided by terminal
WO2014123061A1 (ja) 端末装置
JP2015095669A (ja) 端末装置
OA19677A (en) User terminal and wireless communications method.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP