WO2017188012A1 - 端末装置、基地局装置、通信方法、および、集積回路 - Google Patents

端末装置、基地局装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2017188012A1
WO2017188012A1 PCT/JP2017/015152 JP2017015152W WO2017188012A1 WO 2017188012 A1 WO2017188012 A1 WO 2017188012A1 JP 2017015152 W JP2017015152 W JP 2017015152W WO 2017188012 A1 WO2017188012 A1 WO 2017188012A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
pucch
cyclic shift
transmitted
terminal device
Prior art date
Application number
PCT/JP2017/015152
Other languages
English (en)
French (fr)
Inventor
友樹 吉村
林 貴志
翔一 鈴木
立志 相羽
渉 大内
麗清 劉
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017188012A1 publication Critical patent/WO2017188012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a terminal device, a base station device, a communication method, and an integrated circuit.
  • Eol realized high-speed communication by adopting OFDM (Orthogonal Frequency-Division Multiplexing) communication method and flexible scheduling in predetermined frequency and time units called resource blocks.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • UTRA Universal Terrestrial Radio Access
  • Non-patent Document 1 a method for realizing low-latency communication by setting TTI (Transmission Time Interval) shorter than the conventional 1 ms is being studied.
  • TTI Transmission Time Interval
  • RTT Red Trip Time
  • the shortening of the RTT is expected to improve the throughput of the TCP (Transport Control Protocol) layer in particular, and thereby the throughput performance of the entire wireless communication system is expected to be improved.
  • PUCCH Physical Uplink Control Channel
  • PUCCH format Physical Uplink Control Channel
  • Non-Patent Document 2 a PUCCH format that repeats the same sequence in the time direction within a period of 1 ms.
  • the present invention has been made in view of the above points, and an object thereof is to provide a terminal device, a base station device, and a communication method capable of efficiently performing uplink communication.
  • the first aspect of the present invention is a terminal apparatus, which determines a transmission unit for transmitting an uplink signal on a PUCCH corresponding to one SC-FDMA symbol, and transmission power for transmission on the PUCCH.
  • a control unit wherein the uplink signal is generated based on a first sequence and a second sequence, and the first sequence applies a first cyclic shift to a third sequence
  • the second sequence is given by applying a second cyclic shift to the third sequence, and the transmission power for transmission on the PUCCH is the first cyclic Based on the value of the shift and the value of the second cyclic shift.
  • a second aspect of the present embodiment is a base station apparatus, which is a PUCCH corresponding to one SC-FDMA symbol, a receiving unit that receives an uplink signal, and a transmission power for the PUCCH.
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first cyclic shift with respect to the third sequence.
  • the second sequence is given by applying a second cyclic shift to the third sequence, and the transmission power for transmission on the PUCCH is the first sequence Is provided based on the value of the cyclic shift and the value of the second cyclic shift.
  • a third aspect of the present embodiment is a communication method used for a terminal device, which generates a first sequence by applying a first cyclic shift to a third sequence, A second sequence is generated by applying a second cyclic shift to the third sequence, an uplink signal is generated based on the first sequence and the second sequence, and the second sequence Based on the cyclic shift value of 1 and the second cyclic shift value, the transmission power on the PUCCH is determined, and the uplink signal is transmitted on the PUCCH corresponding to one SC-FDMA symbol.
  • a fourth aspect of the present embodiment is an integrated circuit implemented in a terminal device, which is a PUCCH corresponding to one SC-FDMA symbol, a transmission circuit that transmits an uplink signal, and the PUCCH.
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is the same as the third sequence with respect to the third sequence.
  • the second sequence is given by applying a second cyclic shift to the third sequence and the transmission power for transmission on the PUCCH Is given based on the value of the first cyclic shift and the value of the second cyclic shift.
  • a fifth aspect of the present embodiment is a terminal apparatus, which is a PUCCH corresponding to one SC-FDMA symbol, a transmission unit that transmits an uplink signal, and a cyclic shift for transmission on the PUCCH.
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first cyclic with respect to the third sequence.
  • the second sequence is given by applying a second cyclic shift to the third sequence, the value of the first cyclic shift, and The value of the second cyclic shift is given based on whether only SR, only HARQ-ACK, SR or HARQ-ACK is transmitted on the PUCCH. It is.
  • a sixth aspect of the present embodiment is a base station apparatus, which is a PUCCH corresponding to one SC-FDMA symbol, a receiving unit that receives an uplink signal, and a cyclic shift for the PUCCH.
  • a control unit for instructing a device wherein the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first size relative to a third sequence.
  • the uplink signal is generated based on the first sequence and the second sequence
  • the first sequence is a first size relative to a third sequence.
  • a seventh aspect of the present embodiment is a communication method for a terminal apparatus, which is based on whether only SR, HARQ-ACK, SR, or HARQ-ACK is transmitted in the PUCCH.
  • Generating a first sequence by generating a cyclic shift value of 1 and a second cyclic shift, and applying the first cyclic shift to a third sequence
  • a second sequence is generated by applying the second cyclic shift to a third sequence
  • an uplink signal is generated based on the first sequence and the second sequence
  • the uplink signal is transmitted on the PUCCH corresponding to one SC-FDMA symbol.
  • An eighth aspect of the present embodiment is an integrated circuit implemented in a terminal apparatus, which is a PUCCH corresponding to one SC-FDMA symbol, a transmission circuit that transmits an uplink signal, and the PUCCH
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is generated with respect to the third sequence.
  • the second sequence is provided by applying a second cyclic shift to the third sequence, and the first cyclic shift is applied to the third sequence.
  • the value of the shift and the value of the second cyclic shift are either SR only, HARQ-ACK only, or SR and HARQ-ACK in the PUCCH. It is given on the basis of either signal.
  • uplink communication can be performed efficiently.
  • FIG. 2 is a schematic diagram illustrating an example of an uplink radio frame configuration according to the present embodiment. It is a figure which shows an example of the method of producing
  • a first embodiment of the present invention will be described below.
  • a communication system in which a base station device (base station, Node B, eNB (eNodeB)) and a terminal device (terminal, mobile station, mobile station device, user device, UE (User equipment)) communicate in a cell Will be described.
  • base station device base station, Node B, eNB (eNodeB)
  • terminal device terminal, mobile station, mobile station device, user device, UE (User equipment)
  • FIG. 1 is a diagram illustrating a configuration example of a communication system 100 according to the present embodiment.
  • the communication system 100 includes a base station device 1, a terminal device 3A, and a terminal device 3B.
  • the terminal device 3A and the terminal device 3B are also collectively referred to as the terminal device 3.
  • the base station device 1 communicates data (payload, physical layer data, information) with the terminal device 3.
  • a channel means a medium used for signal transmission
  • a physical channel means a physical medium used for signal transmission.
  • a physical channel can be used synonymously with a signal.
  • the physical channel may be added in the future, or the structure and format of the physical channel may be changed or added in EUTRA and Advanced EUTRA, but even if changed or added, the description of the present embodiment is not affected.
  • LTE LTE
  • EUTRA and Advanced EUTRA scheduling of physical channels or physical signals is managed using radio frames.
  • An example of the time length of one radio frame is 10 milliseconds (ms), and an example of one radio frame includes 10 subframes.
  • an example of one subframe is composed of two slots. That is, an example of the time length of one subframe is 1 ms, and an example of the time length of one slot is 0.5 ms.
  • resource blocks are used as a minimum scheduling unit in which physical channels are allocated.
  • a resource block is that the frequency axis is composed of a set of a plurality of subcarriers (for example, 12 subcarriers with a subcarrier interval of 15 kHz), and a fixed transmission time interval (TTI (Transmission Time Interval). ), Slot, symbol).
  • TTI Transmission Time Interval
  • One subframe may be referred to as one resource block pair.
  • 1 TTI may be defined as 1 subframe (1 ms).
  • TTI may be defined as a reception time interval on the reception side.
  • the TTI may be defined as a transmission unit or a reception unit of a physical channel or a physical signal. That is, the time length of the physical channel or physical signal may be defined based on the length of TTI.
  • a subframe may be composed of one sTTI. That is, the subframe may be determined based on the TTI length.
  • the TTI according to the present embodiment may be defined by the number of OFDM symbols.
  • FIG. 2 is a diagram illustrating an example of a TTI defined by the number of OFDM symbols.
  • One subframe is composed of a plurality of OFDM symbols, and the number of OFDM symbols is 14 in the example shown in FIG. Further, the lengths of the OFDM symbols in one subframe may be different.
  • the first and eighth OFDM symbols from the left are 2208T s seconds, and the other OFDM symbols are 2192T s seconds.
  • Ts is 0.01 / 307200 seconds.
  • a solid line arrow indicates the length of the TTI. Note that the length of the OFDM symbol constituting the subframe is not limited to the example illustrated in FIG.
  • an OFDM symbol, an OFDM symbol, and an SC-FDMA symbol are also referred to as an OS.
  • the OFDM symbol and the SC-FDMA symbol may be interchanged with each other.
  • TTI may be defined by the length of 1, 2, 3, 4, 7, 14 OS. Since the length of the OS can take different values within the subframe, the TTI may include a plurality of TTI lengths. Further, the length of the TTI is not limited to this.
  • 1 subframe may be composed of a TTI indicated by the length of 1 OS.
  • a TTI composed of one OS length is also referred to as a 1-symbol TTI.
  • one subframe may be configured with a TTI indicated by the length of 2 OS.
  • the TTI indicated by the length of 2 OS is also referred to as 2-symbol TTI.
  • One subframe may be configured with a TTI indicated by a length of 3 OS and a TTI indicated by a length of 4 OS.
  • 3 TTI indicated by OS length is also referred to as 3-symbol TTI
  • TTI indicated by 4 OS length is also referred to as 4-symbol TTI.
  • each TTI is collectively referred to as 3 / 4-symbol TTI.
  • one subframe may be composed of a TTI indicated by a length of 7 OS. 7 TTI indicated by OS length is also called 7-symbol TTI or slot TTI.
  • one subframe may be configured with a TTI indicated by 14 OS. 14 TTI indicated by OS is also called 14-symbol TTI or subframe TTI. Further, all TTIs according to the present invention are collectively referred to as sTTI.
  • the TTI length may be defined other than the number of OFDM symbols.
  • the TTI length may be defined based on time, frequency, subcarrier interval, communication method, and the like.
  • Frame configuration type 1 (Frame structure type 1) can be applied to Frequency Division Duplex (FDD).
  • Frame structure type 2 (Frame structure type 2) can be applied to time division duplex (TDD).
  • FIG. 3 is a diagram illustrating an example of a downlink radio frame configuration according to the present embodiment.
  • An OFDM access scheme is used for the downlink.
  • transmitting a downlink signal and / or a downlink physical channel is referred to as downlink transmission.
  • a PDCCH, an EPDCCH, a physical downlink shared channel (PDSCH), a physical downlink shared channel, and the like are allocated.
  • the downlink radio frame is composed of a downlink resource block (RB) pair.
  • One downlink RB pair is composed of two downlink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One downlink RB is composed of 12 subcarriers in the frequency domain. Further, in the time domain, it is composed of 7 OFDM symbols when a normal cyclic prefix (CP) is added, and 6 OFDM symbols when a cyclic prefix longer than normal is added. Is done.
  • a region defined by one subcarrier in the frequency domain and one OFDM symbol in the time domain is referred to as a resource element (RE).
  • RE resource element
  • the physical downlink control channel is a physical channel through which downlink control information such as a terminal device identifier, physical downlink shared channel scheduling information, physical uplink shared channel scheduling information, modulation scheme, coding rate, and retransmission parameter is transmitted. It is.
  • downlink sub-frame in one element carrier CC; Component Carrier
  • a downlink sub-frame is prescribed
  • FIG. 4 is a diagram illustrating an example of an uplink radio frame configuration according to the present embodiment.
  • the SC-FDMA scheme is used for the uplink.
  • transmission of an uplink signal and / or an uplink physical channel is referred to as uplink transmission. That is, uplink transmission can be rephrased as PUSCH transmission.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Shared Channel
  • an uplink reference signal (uplink reference signal) is assigned to a part of PUSCH or PUCCH.
  • the uplink radio frame is composed of uplink RB pairs.
  • One uplink RB pair is composed of two uplink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink RB is composed of 12 subcarriers in the frequency domain. In the time domain, it is composed of seven SC-FDMA symbols when a normal cyclic prefix is added and six SC-FDMA symbols when a longer cyclic prefix is added.
  • an uplink subframe in one CC is described, an uplink subframe is defined for each CC. From the viewpoint of the terminal device, the head of the uplink radio frame (uplink subframe) is adjusted to be ahead of the head of the downlink radio frame (downlink subframe) from the viewpoint of the terminal device due to propagation delay correction and the like. .
  • the synchronization signal is composed of three types of primary synchronization signals and a secondary synchronization signal composed of 31 types of codes arranged alternately in the frequency domain, and the base signal depends on the combination of the primary synchronization signal and the secondary synchronization signal.
  • 504 cell identifiers (physical cell identity (PCI)) for identifying the station apparatus 1 and frame timing for wireless synchronization are shown.
  • the terminal device 3 specifies the physical cell ID of the synchronization signal received by the cell search.
  • the physical broadcast information channel (PBCH; Physical Broadcast Channel) is transmitted for the purpose of notifying (setting) control parameters (broadcast information (system information); System information) commonly used by the terminal devices 3 in the cell.
  • the radio resource for transmitting broadcast information on the physical downlink control channel is notified to the terminal device 3 in the cell, and the broadcast information not notified on the physical broadcast information channel is the physical downlink shared channel in the notified radio resource.
  • a layer 3 message (system information) for notifying broadcast information is transmitted.
  • CGI Cell Global Identifier
  • TAI tracking area identifier
  • Downlink reference signals are classified into multiple types according to their use.
  • a cell-specific reference signal is a pilot signal transmitted at a predetermined power for each cell, and is a downlink reference signal that is periodically repeated in the frequency domain and the time domain based on a predetermined rule. It is.
  • the terminal device 3 measures the reception quality for each cell by receiving the cell-specific RS.
  • the terminal device 3 uses the cell-specific RS as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell-specific RS.
  • a sequence used for the cell-specific RS a sequence that can be identified for each cell is used.
  • the downlink reference signal is also used for estimation of downlink propagation path fluctuation.
  • a downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (CSI-RS).
  • the downlink reference signal set individually for the terminal device 3 is called UE specific reference signals (URS), Demodulation Reference Signal (DMRS) or Dedicated RS (DRS), and is an extended physical downlink control channel, Alternatively, it is referred to for channel propagation path compensation processing when demodulating the physical downlink shared channel.
  • URS UE specific reference signals
  • DMRS Demodulation Reference Signal
  • DRS Dedicated RS
  • the terminal device 3 Before transmitting / receiving downlink data (PDSCH, DL-SCH) and layer 2 message and layer 3 message (paging, handover command, etc.) that are higher layer control information, the terminal device 3 transmits a physical downlink addressed to itself.
  • radio resource allocation information called uplink grant during transmission and downlink grant (downlink assignment) during reception is physically downloaded.
  • the physical downlink control channel is configured to be transmitted from the base station apparatus 1 to the terminal apparatus 3 in the resource block area allocated individually (dedicated), in addition to the above-described OFDM symbol. It is also possible.
  • an uplink grant can be paraphrased with the DCI format which schedules PUSCH.
  • the downlink grant can be rephrased as a DCI format for scheduling the PDSCH.
  • the subframe in which the PDSCH is scheduled is a subframe in which the decoding of the DCI format instructing reception of the PDSCH is successful.
  • a subframe in which PUSCH is scheduled is indicated in association with a subframe in which decoding of the DCI format instructing transmission of the PUSCH is successful.
  • the subframe in which the PUSCH is scheduled is four subframes after the subframe in which the decoding of the DCI format instructing transmission of the PUSCH is successful. That is, a subframe in which PUSCH and PDSCH are scheduled is associated with a subframe in which the transmission or reception is instructed and the DCI format has been successfully decoded.
  • a physical downlink control channel (PDCCH; Physical Downlink Control Channel) is transmitted in several OFDM symbols (for example, 1 to 4 OFDM symbols) from the top of each subframe.
  • An extended physical downlink control channel (EPDCCH; Enhanced Physical Downlink Control Channel) is a physical downlink control channel arranged in an OFDM symbol in which the physical downlink shared channel PDSCH is arranged.
  • the PDCCH or EPDCCH is used for the purpose of notifying the terminal device 3 of radio resource allocation information according to the scheduling of the base station device 1 and information indicating an adjustment amount of increase / decrease of transmission power.
  • a physical downlink control channel (PDCCH) it means both physical channels of PDCCH and EPDCCH unless otherwise specified.
  • the PDCCH may be used to transmit downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the DCI transmitted by the PDCCH includes a downlink grant and an uplink grant.
  • DCI includes scheduling information of uplink subframes and downlink subframes.
  • the DCI may include uplink and / or downlink sTTI scheduling information. That is, the base station apparatus 1 can notify the uplink grant and / or the downlink grant for the sTTI by transmitting DCI to the terminal apparatus 3.
  • DCI including an uplink grant and / or a downlink grant for sTTI is also referred to as sDCI.
  • the sDCI can be transmitted on the PDCCH.
  • sTTI can be transmitted by areas other than PDCCH.
  • a region other than the PDCCH having a function of transmitting sDCI is also referred to as sPDCCH.
  • sPDCCH may be included between the head OS of sTTI and N sPDCCH .
  • sPDCCH may be included in a part of the band of sTTI.
  • a CRC (Cyclic Redundancy Check) parity bit is added to the DCI format.
  • the CRC parity bit added to the downlink grant or the uplink grant is C-RNTI (Cell-Radio Network Temporary Identifier) or SPS C-RNTI (Semi Persistent Scheduling Cell-Radio Qualifier). May be.
  • C-RNTI and SPS C-RNTI are identifiers for identifying a terminal device in a cell.
  • the C-RNTI is used to control PDSCH or PUSCH in a single subframe.
  • the SPS C-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • the CRC grant bit added to the downlink grant or uplink grant for sTTI may be scrambled by C-RNTI or SPS-RNTI.
  • the downlink grant for sTTI or the CRC parity bit added to the uplink grant may be scrambled with an RNTI (for example, an RNTI dedicated to sTTI) used to allocate sTTI.
  • the base station apparatus 1 can divide and transmit information included in the downlink grant or the uplink grant.
  • the base station device 1 may have a function of transmitting a first DCI (Slow Grant, First Grant, etc.) and a second DCI (Fast Grant, Second Grant) to the terminal device 3.
  • the first DCI may indicate a sPDSCH or sPUSCH resource candidate to which the terminal device 3 is assigned.
  • the first DCI may include information regarding sPDSCH or sPUSCH allocation information, MCS, TTI length, and the like.
  • the first DCI may include information indicating a downlink grant for sTTI or resources (frequency band, period, number of RBs, RB index, etc.) on which allocation by the uplink grant is operated.
  • the CRC parity bit added to the first DCI may be scrambled with an RNTI shared by a plurality of terminal devices 3.
  • the second DCI may include information on decoding of the allocated sPDSCH or sPUSCH in the resource for sTTI allocated in advance by the first DCI.
  • the second DCI may include downlink resource allocation indicating an RB used for data transmission, information used for HARQ control, and the like.
  • DCI may be used for transmission of a plurality of TPC (Transmission Power Control) commands for the PUSCH of the primary cell or a plurality of TPC commands for the PUCCH of the primary cell.
  • TPC Transmission Power Control
  • a plurality of TPC commands for the primary cell PUSCH and / or PUCCH are included in DCI format 3 or DCI format 3A.
  • One TPC command included in the DCI format 3 has 2 bits.
  • One TPC command included in the DCI format 3A is 1 bit.
  • the base station apparatus 1 includes information indicating a value of TPC-PUSCH-RNTI, information indicating a parameter tpc-index corresponding to TPC-PUSCH-RNTI, information indicating a value of TPC-PUCCH-RNTI, and TPC-PUCCH- An upper layer signal including information indicating the parameter tpc-index corresponding to the RNTI is transmitted to the terminal device 3.
  • the base station device 1 transmits an upper layer signal including information instructing monitoring of the DCI format 3 or the DCI format 3A to the terminal device 3.
  • the CRC parity bit added to DCI format 3 / 3A is scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI.
  • the terminal device 3 determines that the DCI format 3 / 3A includes a TPC command for the PUSCH.
  • the terminal device 3 determines that the DCI format 3 / 3A includes a TPC command for the PUCCH.
  • DCI format 3 / 3A to which CRC parity bits scrambled by TPC-PUSCH-RNTI are added is also referred to as DCI format 3 / 3A for PUSCH.
  • DCI format 3 / 3A to which CRC parity bits scrambled by TPC-PUCCH-RNTI are added is also referred to as DCI format 3 / 3A for PUCCH.
  • the terminal device 3 determines the index of the TPC command for the terminal device 3 based on the parameter tpc-index given by the upper layer.
  • the base station apparatus 1 may transmit the DCI format 3 / 3A using CSS (Common Search Space) of the primary cell.
  • the terminal device 3 may monitor the DCI format 3 / 3A with the CSS of the primary cell.
  • the terminal device 3 may try to decode the PDCCH / EPDCCH for the DCI format 3 / 3A using the CSS of the primary cell.
  • the downlink grant includes a TPC command for PUCCH.
  • the uplink grant includes a TPC command for PUSCH.
  • the physical uplink control channel (PUCCH; Physical Uplink Control Channel) is a downlink data reception confirmation response (HARQ-ACK; Hybrid Automatic Repeat reQuestNackingAcknowledgementACK / NACK); It is used to perform Acknowledgment), downlink propagation path (channel state) information (CSI; Channel State Information), and uplink radio resource allocation request (radio resource request, scheduling request (SR)).
  • PUCCH Physical Uplink Control Channel
  • HARQ-ACK Hybrid Automatic Repeat reQuestNackingAcknowledgementACK / NACK
  • CSI downlink propagation path
  • CSI Channel State Information
  • SR uplink radio resource allocation request
  • a scheduling request is transmitted in the subframe or (s) TTI.
  • It is also called positive SR (Positive SR)
  • negative SR Negative SR
  • the terminal device 3 can transmit a positive SR or a negative SR in a subframe or (s) TTI in which a scheduling request is expected to be transmitted (or set).
  • the CSI is a reception quality index (CQI: Channel Quality Indicator), precoding matrix index (PMI: Precoding Matrix Indicator), precoding type index (PTI: Precoding Type Indicator), and rank index (rank index) corresponding to the CSI. And can be used to specify (represent) a suitable modulation scheme and coding rate, a suitable precoding matrix, a suitable PMI type, and a suitable rank, respectively. Each Indicator may be written as Indication. Also, for CQI and PMI, wideband CQI and PMI assuming transmission using all resource blocks in one cell and some continuous resource blocks (subbands) in one cell were used. It is classified into subband CQI and PMI assuming transmission. In addition to the normal type of PMI that represents one suitable precoding matrix with one PMI, the PMI represents one suitable precoding matrix using two types of PMIs, the first PMI and the second PMI. There is a type of PMI.
  • CQI Channel Quality Indicator
  • PMI Precoding Mat
  • the terminal apparatus 3 occupies a group of downlink physical resource blocks, and the error probability of one PDSCH transport determined by a combination of a modulation scheme and a transport block size corresponding to the CQI index has a predetermined value (for example, , 0.1), the CQI index that satisfies the condition is not reported.
  • a predetermined value for example, , 0.1
  • the downlink physical resource block used for the calculation of CQI, PMI and / or RI is also referred to as a CSI reference resource (CSI reference resource).
  • the terminal device 3 reports the CSI to the base station device 1.
  • the CSI report includes a periodic CSI report and an aperiodic CSI report.
  • periodic CSI reporting the terminal apparatus 3 reports CSI at the timing set in the higher layer.
  • aperiodic CSI report the terminal device 3 reports the CSI at a timing based on the received CSI request information included in the uplink DCI format (uplink grant) or the random access response grant.
  • the terminal device 3 reports CQI and / or PMI and / or RI.
  • the terminal device 3 may not report PMI and / or RI depending on the setting of the upper layer.
  • the settings of the upper layer are, for example, a transmission mode, a feedback mode, a report type, and a parameter indicating whether to report PMI / RI.
  • FIG. 5 is a diagram illustrating a method for generating a PUCCH according to the present embodiment.
  • N PUCCH SF is the spreading factor of the orthogonal sequence w (i) in a single slot and is 4.
  • N PUCCH seq is the number of subcarriers included in the bandwidth of a single PUCCH, and is 12.
  • p is an antenna port number, and P is the number of antenna ports used for PUCCH transmission.
  • the terminal device 3 determines the sequence r ′ u, v (n).
  • u is a sequence group number.
  • the terminal device 3 may determine the value of u based on at least the physical layer cell identity.
  • v is a sequence number and is always 0 for PUCCH.
  • sequence group number u may hop for each slot based on a pseudo-random sequence.
  • the base station apparatus 1 transmits information indicating whether hopping of the sequence group number u is valid. Further, the terminal device 3 determines whether or not to hop the sequence group number u based on information indicating whether or not hopping of the sequence group number u is valid.
  • the terminal apparatus 3 and the base station apparatus 1 store a sequence r ′ u, v (n) having a sequence length of 12 defined for each sequence group number, and a sequence corresponding to the determined u Read (generate) r ′ u, v (n).
  • the terminal device 3 generates the sequence r ( ⁇ p) u, v (n) by multiplying the sequence r ′ u, v (n) by ej ⁇ pn .
  • ⁇ p is the amount of phase rotation for each subcarrier.
  • the phase rotation of the sequence r ′ u, v (n) in the frequency domain corresponds to a cyclic shift of the SC-FDMA symbol of the PUCCH in the time domain. Accordingly, in this embodiment, simply referred to as cyclic shifted alpha p.
  • the terminal device 3 generates a modulation symbol block y (p) (n) by multiplying the sequence r ( ⁇ p) u, v (n) by 1 / ⁇ P and d (0).
  • d (0) is a modulation symbol generated by subjecting each 1-bit or 2-bit HARQ-ACK to BPSK (Binary Phase Shift Keying) modulation or QPSK (Quadrature Phase Shift Keying) modulation.
  • the terminal device 3 is multiplied by S (n s) in the block y of the modulation symbols (p) (n), and orthogonal series S (n s) block of modulation symbols multiplied by the y (p) (n)
  • a block of modulation symbols z (p) (*) is generated by spreading with w n (p) OC (m).
  • S (n s ) 1 or e j ⁇ / 2 is selected based on the number of the PUCCH resource.
  • the terminal device 3 arranges the modulation symbol block z (p) (*) in the SC-FDMA symbols of ⁇ 0, 1, 5, 6 ⁇ in the first slot, and then the second Are placed in the SC-FDMA symbols of ⁇ 0, 1, 5, 6 ⁇ of the slots.
  • z (p) (*) is arranged in order from the subcarrier with the smallest number.
  • FIG. 6 is a diagram illustrating a method for generating a DMRS sequence according to the present embodiment.
  • N PUCCH RS is the number of SC-FDMA symbols used for transmission of DMRS for PUCCH per single slot, and is 3.
  • M RS SC is the length of the reference signal sequence and is 12.
  • the terminal device 3 generates the sequence r ( ⁇ p) u, v (n) in the same manner as the PUCCH. That is, the terminal device 3 may generate the sequence r ( ⁇ p) u, v (n) based on at least the physical layer cell identity.
  • the terminal device 3 multiplies the sequence r ( ⁇ p) u, v (n) by 1 / ⁇ P, w ′ (p) (m), and z (m) to obtain the sequence r (p) PUCCH.
  • w ′ (p) (m) is an orthogonal sequence for DMRS.
  • z (m) is always 1 for DMRS of PUCCH used for transmission of only HARQ-ACK. That is, when generating a PUCCH DMRS used for transmission of only HARQ-ACK, it is not necessary to perform a process of multiplying z (m).
  • the terminal apparatus 31 arranges the sequence r (p) PUCCH (*) in ⁇ 2, 3, 4 ⁇ SC-FDMA symbols of the first slot, and then ⁇ 2, 3, 4 ⁇ .
  • r (p) PUCCH (*) is arranged in order from the subcarrier with the smallest number.
  • w ′ (i) is [1 1 1], [1 e j2 ⁇ / 3 e j4 ⁇ / 3 ], [1 e j4 ⁇ / 3 e j2 ⁇ / 3 ] and One of these.
  • the PUCCH can be used to transmit a reception confirmation response of assigned downlink data when the terminal device 3 is assigned a downlink subframe.
  • the PUCCH may be used to transmit an acknowledgment for PDSCH (DL-SCH, downlink data).
  • PUCCH can be used in order to perform the reception confirmation response of the allocated downlink data, when the terminal device 3 is allocated downlink sTTI.
  • PUCCH may be used to transmit an acknowledgment for sPDSCH (DL-SCH, downlink data).
  • FIG. 7 is a diagram illustrating an example of a configuration of a PUCCH for performing a reception confirmation response of downlink data assigned to sTTI.
  • a demodulation reference signal DMRS
  • a signal for reception confirmation response is assigned to an OS indicated by a lattice.
  • a channel for performing a reception confirmation response of downlink data allocated to sTTI may be configured with sTTI.
  • a channel for performing a downlink data reception confirmation response configured by sTTI is also referred to as sPUCCH. That is, sPUCCH may be used to transmit a reception confirmation response to downlink data in sTTI.
  • FIG. 7 shows an example in which the sPUCCH is configured with 2-symbol TTI, but the sPUCCH according to the present embodiment is not limited to this example, and may be configured with any sTTI.
  • the physical downlink shared channel (PDSCH; Physical Downlink Shared Channel), in addition to downlink data, provides response to random access (random access response, RAR), paging, and broadcast information (system information) that is not notified by the physical broadcast information channel. It is also used to notify the terminal device 3 as a layer 3 message.
  • the radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel.
  • the physical downlink shared channel is transmitted after being arranged in an OFDM symbol other than the OFDM symbol through which the physical downlink control channel is transmitted. That is, the physical downlink shared channel and the physical downlink control channel are time division multiplexed within one subframe.
  • PDSCH may be configured by sTTI.
  • a PDSCH configured by sTTI is also referred to as sPDSCH.
  • the physical uplink shared channel (PUSCH; Physical Uplink Shared Channel) mainly transmits uplink data and uplink control information, and can also include uplink control information such as CSI and ACK / NACK. In addition to the uplink data, it is also used to notify the base station apparatus 1 from the terminal apparatus 3 of the layer 2 message and the layer 3 message, which are higher layer control information. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH may be configured by sTTI.
  • a PUSCH configured by sTTI is also referred to as sPUSCH.
  • the uplink reference signal (uplink reference signal; Uplink Reference Signal, uplink pilot signal, also called uplink pilot channel) is transmitted from the base station apparatus 1 to the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH.
  • Demodulation reference signal (DMRS) used for demodulating the signal
  • SRS sounding reference signal
  • the sounding reference signal includes a periodic sounding reference signal (Periodic SRS) transmitted periodically and an aperiodic sounding reference signal (Aperiodic SRS) transmitted when instructed by the base station apparatus 1. is there.
  • a physical random access channel is a channel used to notify (set) a preamble sequence and has a guard time.
  • the preamble sequence is configured to notify the base station apparatus 1 of information by a plurality of sequences. For example, when 64 types of sequences are prepared, 6-bit information can be indicated to the base station apparatus 1.
  • the physical random access channel is used as a means for accessing the base station device 1 of the terminal device 3.
  • the terminal device 3 and the base station device 1 aggregate (aggregate) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) by carrier aggregation into one frequency (frequency band). ) May be applied.
  • Component carriers include uplink component carriers corresponding to the uplink and downlink component carriers corresponding to the downlink.
  • a frequency and a frequency band may be used synonymously.
  • the terminal device 3 having the capability of performing carrier aggregation considers these as a frequency bandwidth of 100 MHz and performs transmission / reception.
  • the component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous.
  • the usable frequency band is 800 MHz band, 2 GHz band, and 3.5 GHz band
  • one component carrier is transmitted in the 800 MHz band
  • another component carrier is transmitted in the 2 GHz band
  • another component carrier is transmitted in the 3.5 GHz band. It may be.
  • the frequency bandwidth of each component carrier may be a frequency bandwidth (for example, 5 MHz or 10 MHz) narrower than the receivable frequency bandwidth (for example, 20 MHz) of the terminal device 3, or the aggregated frequency bandwidth may be different. good.
  • the frequency bandwidth is preferably equal to one of the frequency bandwidths of the conventional cell in consideration of backward compatibility, but may be a frequency bandwidth different from that of the conventional cell.
  • component carriers that are not backward compatible may be aggregated.
  • the number of uplink component carriers that the base station device 1 assigns (sets or adds) to the terminal device 3 is desirably the same as or less than the number of downlink component carriers.
  • a cell composed of an uplink component carrier in which an uplink control channel is set for a radio resource request and a downlink component carrier that is cell-specifically connected to the uplink component carrier is a primary cell (PCell: Primary cell). ). Moreover, the cell comprised from component carriers other than a primary cell is called a secondary cell (SCell: Secondary cell).
  • the terminal device 3 performs reception of a paging message in the primary cell, detection of update of broadcast information, initial access procedure, setting of security information, and the like, but may not perform these in the secondary cell.
  • the primary cell is not subject to activation and deactivation control (that is, it is always considered to be activated), but the secondary cell is in a state of activation and deactivation. These state changes are explicitly specified from the base station apparatus 1 and are changed based on a timer set in the terminal apparatus 3 for each component carrier.
  • the primary cell and the secondary cell are collectively referred to as a serving cell.
  • carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation.
  • the terminal device 3 may be wirelessly connected to the base station device 1 via a relay station device (or repeater) for each frequency. That is, the base station apparatus 1 of this embodiment can be replaced with a relay station apparatus.
  • the base station device 1 manages, for each frequency, a cell that is an area in which the terminal device 3 can communicate with the base station device 1.
  • One base station apparatus 1 may manage a plurality of cells.
  • the cells are classified into a plurality of types according to the size (cell size) of the area that can communicate with the terminal device 3. For example, the cell is classified into a macro cell and a small cell. Further, small cells are classified into femtocells, picocells, and nanocells according to the size of the area.
  • the terminal device 3 can communicate with a certain base station device 1
  • the cell set to be used for communication with the terminal device 3 among the cells of the base station device 1 is a serving cell ( A cell that is a Serving cell and is not used for other communication is referred to as a neighboring cell (Neighboring cell).
  • a plurality of configured serving cells include one primary cell and one or a plurality of secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment procedure has been performed, a serving cell that has started a connection reconstruction procedure, or a cell designated as a primary cell in a handover procedure.
  • the primary cell operates at the primary frequency.
  • the secondary cell may be set at the time when the connection is (re-) built or after that.
  • the secondary cell operates at the secondary frequency.
  • the connection may be referred to as an RRC connection.
  • aggregation is performed by one primary cell and one or more secondary cells.
  • the terminal device 3 is simultaneously connected to a plurality of base station devices 1 (for example, the base station device 1-1 and the base station device 1-2).
  • the base station apparatus 1-1 is a base station apparatus constituting a macro cell
  • the base station apparatus 1-2 is a base station apparatus constituting a small cell.
  • the simultaneous connection of the terminal device 3 using a plurality of cells belonging to the plurality of base station devices 1 is referred to as dual connectivity.
  • the cells belonging to each base station apparatus 1 may be operated at the same frequency or may be operated at different frequencies.
  • carrier aggregation is different from dual connectivity in that one base station apparatus 1 manages a plurality of cells and the frequency of each cell is different.
  • carrier aggregation is a technique for connecting one terminal apparatus 3 and one base station apparatus 1 via a plurality of cells having different frequencies
  • dual connectivity is a technique for connecting one terminal apparatus 3 to one terminal apparatus 3. This is a technique for connecting a plurality of base station apparatuses 1 via a plurality of cells having the same or different frequencies.
  • the terminal device 3 and the base station device 1 can apply a technique applied to carrier aggregation to dual connectivity.
  • the terminal device 3 and the base station device 1 may apply techniques such as primary cell and secondary cell allocation and activation / inactivation to cells connected by dual connectivity.
  • the terminal device 3 When the terminal device 3 performs transmission on the PUCCH, the terminal device 3 sets a transmission power value for transmission on the PUCCH in a certain subframe i for a certain cell c based on Equation (1).
  • Preal_PUCCH, c (i) in Equation (1) is defined based on Equation (2).
  • P real_PUCCH, c (i) is a power value calculated (estimated) based on actual transmission (a real transmission) for PUCCH.
  • the calculation of the power value based on the actual transmission on the PUCCH (estimation) includes the meaning that the power value is calculated (estimated) based on the actual transmission on the PUCCH.
  • P PUCCH, c (i) indicates a transmission power value for transmission on PUCCH in the i-th subframe.
  • P 0_PUCCH, c is a parameter indicating basic transmission power for transmission on PUCCH, and is instructed from an upper layer.
  • P 0_PUCCH, c is composed of P 0_NOMINAL_PUCCH, c and P 0_UE_PUCCH, c .
  • P 0_NOMINAL_PUCCH, c and P 0_UE_PUCCH, c are each supported from an upper layer.
  • P 0_NOMINAL_PUCCH, c and P 0_UE_PUCCH, c may be determined based on the PUCCH format (which may be a (s) PUCCH configuration method). Further, P 0_NOMINAL_PUCCH, c and P 0_UE_PUCCH, c may be determined based on the number of bits of the scheduling request to be transmitted.
  • h (n CQI, n HARQ ) is a value calculated based on the number of bits transmitted on the PUCCH and the format of the PUCCH. That is, h (n CQI, n HARQ ) may be determined based on the PUCCH format (which may be a (s) PUCCH configuration method).
  • n CQI indicates the number of bits of channel state information transmitted on PUCCH
  • n HARQ indicates the number of bits of HARQ-ACK transmitted on PUCCH.
  • h (n CQI, n HARQ ) may include the number of bits of the scheduling request transmitted on the PUCCH.
  • Equation (2) h (n CQI , n HARQ) instead h of (n CQI, n HARQ, n SR) may be used.
  • n SR may be related to the number of scheduling request bits transmitted.
  • h (n CQI, n HARQ , 1) X SR
  • X SR and X 0 are values of h (n CQI, n HARQ , n SR ) when a 1-bit scheduling request is transmitted and when no scheduling request is transmitted, respectively.
  • X SR and S 0 may be determined based on n CQI and n HARQ .
  • the terminal device 3 may set the value of g (i) based on Equation (3).
  • ⁇ PUCCH is a correction value (a correction value) and is called a TPC command. That is, ⁇ PUCCH (i ⁇ K PUCCH ) indicates a value accumulated in g (i ⁇ 1). Also, ⁇ PUCCH ( iK PUCCH ) is set in the TPC command field for the PUCCH included in the DCI format 3 / 3A for the downlink grant and PUCCH for a certain cell received in a certain subframe ( iK PUCCH ). Instructed based on the value set.
  • the value in which the TPC command field (2-bit information field) for the PUCCH included in the DCI format 3 for the downlink grant and the PUCCH is set is the accumulated correction value ⁇ 1, 0, 1, 3 ⁇ . Mapped. For example, the value in which the TPC command field (1-bit information field) for PUCCH included in the DCI format 3A for PUCCH is set is mapped to the accumulated correction value ⁇ 1, 1 ⁇ .
  • K PUCCH is 4, for example.
  • the value of KPUCCH may be determined based on the (s) TTI length of PUCCH or the (s) TTI length of PDSCH corresponding to the reception confirmation response included in sPUCCH.
  • An example of the sPUCCH configuration method (configuration method 1) according to the present embodiment is a sequence determined based on Equation (4).
  • S 1 is a sPUCCH sequence
  • ⁇ 1 and ⁇ 2 are cyclic shifts, respectively.
  • the configuration method of sPUCCH sequence S 1 is also referred to as configuration method 1.
  • the sequence r ′ u, v (n) is also referred to as r (n).
  • a sequence based on ⁇ 1 (the first term on the right side in Equation (4)) is also referred to as a reference signal sequence.
  • a series based on ⁇ 2 (second term on the right side in equation (4)) is also referred to as a data series.
  • the first term on the right side in Equation (4) is also called the first (or second) series
  • ⁇ 1 is also called the first (or second) cyclic shift.
  • the second term on the right side in the formula (4) is also referred to as a second (or first) series
  • ⁇ 2 is also referred to as a second (or first) cyclic shift.
  • the configuration method 1 is a method in which a plurality of sequences multiplied (applied) by different cyclic shifts are included in one SC-FMDA symbol.
  • the sPUCCH sequence S 1 transmitted by the terminal device 3 can be received by the base station device 1.
  • the base station apparatus 1 can detect the cyclic shifts ⁇ 1 and ⁇ 2 by performing a correlation process using r (n) on the received sPUCCH sequence S 1 .
  • the base station apparatus 1 can estimate d (0) by detecting a phase difference or the like of a sequence subjected to different cyclic shifts ⁇ 1 and ⁇ 2 .
  • SPUCCH may be used to transmit at least an SR and a reception confirmation response (also called ACK / NACK, A / N, etc.). That is, the information transmitted using sPUCCH is information indicating at least SR only, A / N only, and SR + A / N (SR and A / N) (hereinafter, only SR and only A / N). And including information indicating SR + A / N is also referred to as uplink control information).
  • the value of cyclic shift ⁇ 1 and / or ⁇ 2 and SR may be related. That is, when ⁇ 1 and / or ⁇ 2 indicate a specific value, the base station device 1 may interpret that the SR has been transmitted. That is, based on the value of ⁇ 1 and / or ⁇ 2 , it may be indicated which of positive SR and negative SR is transmitted. Further, SR may be related to the difference between the cyclic shifts ⁇ 1 and ⁇ 2 . That is, when the difference between ⁇ 1 and / ⁇ 2 indicates a specific value, the base station device 1 may interpret that the SR has been transmitted. That is, based on the difference between ⁇ 1 and / or ⁇ 2 , it may be indicated which of the positive SR and the negative SR is transmitted.
  • the value of d (0) and SR may be related. That is, when d (0) indicates a specific value (modulation symbol value, bit sequence, etc.), the base station apparatus 1 may interpret that the SR has been transmitted. That is, based on the value of d (0), it may be indicated which of positive SR and negative SR is transmitted.
  • the value of cyclic shift ⁇ 1 and / or ⁇ 2 and A / N may be related. That is, when ⁇ 1 and / or ⁇ 2 indicate a specific value, the base station apparatus 1 may interpret that A / N has been transmitted. Further, the difference between the cyclic shifts ⁇ 1 and ⁇ 2 and A / N may be related. That is, whether ACK or NACK is transmitted may be indicated based on the values of ⁇ 1 and / or ⁇ 2 . That is, when the difference between ⁇ 1 and / ⁇ 2 indicates a specific value, the base station apparatus 1 may interpret that A / N is transmitted. That is, based on the difference between ⁇ 1 and / or ⁇ 2 , it may be indicated whether ACK or NACK is transmitted.
  • the value of d (0) and A / N may be related. That is, when d (0) indicates a specific value (modulation symbol value, bit sequence, etc.), the base station apparatus 1 may interpret that A / N has been transmitted. That is, based on the value of d (0), it may be indicated which of ACK and NACK is transmitted.
  • alpha 1 value, alpha 2 values, the value of d (0), and may be associated with SR is. That is, when ⁇ 1 , ⁇ 2 , and d (0) indicate specific values, the base station device 1 may interpret that the SR has been transmitted. That is, based on ⁇ 1 , ⁇ 2 , and d (0), it may be indicated which of the positive SR and the negative SR is transmitted.
  • the value of ⁇ 1, the value of ⁇ 2 , the value of d (0), and A / N may be related. That is, when ⁇ 1 , ⁇ 2 , and d (0) indicate specific values, the base station apparatus 1 may interpret that A / N has been transmitted. That is, it may be indicated which of ACK and NACK is transmitted based on ⁇ 1 , ⁇ 2 , and d (0).
  • an appropriate cyclic shift can be assigned to each of the uplink control information. That is, an appropriate cyclic shift can be assigned to each of SR only, A / N only, and SR + A / N.
  • ⁇ A , ⁇ B, and ⁇ C may indicate different cyclic shift amounts.
  • the same cyclic shift amount (alpha A) may be used.
  • the same cyclic shift amount ( ⁇ B ) may be used as ⁇ 2 when only SR is transmitted and ⁇ 1 when SR + A / N is transmitted.
  • the alpha 2 in the case where only the A / N is transmitted as 2 alpha in the case of SR + A / N is transmitted the same cyclic shift amount (alpha C) may be used.
  • the same cyclic shift amount ( ⁇ A ) may be used as ⁇ 1 and ⁇ 2 .
  • alpha 1 and (alpha 2) in the case where only the SR is transmitted as alpha 1 in the case where only the A / N is transmitted, the same cyclic shift amount (alpha A) may be used.
  • alpha 1 and (alpha 2) in the case where only the SR is transmitted as alpha 1 in the case of SR + A / N is transmitted, the same cyclic shift amount (alpha A) may be used.
  • the alpha 2 in the case where only the A / N is transmitted as 2 alpha in the case of SR + A / N is transmitted the same cyclic shift amount (alpha C) may be used.
  • the power allocated to the reference signal sequence is doubled when only the SR is transmitted, as compared with the case where at least A / N is transmitted.
  • the base station apparatus 1 when the base station apparatus 1 expects to receive SR + A / N, if the terminal apparatus 3 does not transmit A / N, it is assigned to a reference signal sequence as compared with the case where the terminal apparatus 3 transmits A / N. The electric power to be doubled.
  • the terminal device 3 can change the transmission power between when only SR is transmitted and when at least A / N is transmitted. That is, the terminal device 3 can change transmission power according to the allocated cyclic shift. For example, the terminal device 3 can set the transmission power when only SR is transmitted to at least X times the transmission power when A / N is transmitted. For example, X is 2. That is, the terminal device 3 can change transmission power based on the different value X according to the kind of uplink control information transmitted.
  • the terminal device 3 may apply different transmission power control depending on whether only SR is transmitted or at least A / N is transmitted. That is, the terminal device 3 may apply different transmission power control according to the assigned cyclic shift. For example, transmission power control applied when at least A / N is transmitted is based on Equation (1) and Equation (2), and transmission power control applied when only SR is transmitted is Equation (1). And a method not based on the mathematical formula (2). For example, the transmission power control applied when only SR is transmitted may be based on Equation (5).
  • the parameters X 2 is a new offset have been introduced with respect to equation (2).
  • the offset parameter X 2 is 0 when applied when at least A / N is transmitted, and is ⁇ 10 * Log 10 (2) when applied only when SR is transmitted. There may be. That is, the offset parameter may be different based on the type of uplink control information to be transmitted. Also, the mathematical formula used for transmission power control applied when the terminal apparatus transmits sPUCCH may be different depending on the uplink control information to be transmitted.
  • the terminal device 3 may use different parameters for transmission power control depending on whether only SR is transmitted or at least A / N is transmitted. That is, the terminal device 3 may apply different transmission power control information according to the assigned cyclic shift.
  • the transmission power control information includes P c — max, c , PL c , h (n CQI , n HARQ ), n CQI , n HARQ , ⁇ F_PUCCH (F), g (i), ⁇ PUCCH , And / or K PUCCH may be included. That is, the terminal device 3 can perform transmission power control of sPUCCH based on transmission power control information.
  • the terminal device 3 can apply different transmission power control based on the number of (s) SC-FDMA symbols constituting the PUCCH. For example, when the number of SC-FDMA symbols constituting (s) PUCCH is equal to or less than N sPUCCH , terminal apparatus 3 applies different transmission power control to (s) PUCCH according to uplink control information, and (s) When the number of SC-FDMA symbols constituting the PUCCH is larger than N sPUCCH , transmission power control based on Equation (1) and Equation (2) is applied to (s) PUCCH regardless of uplink control information. May be. In another example, the terminal device 3 may apply (s) the number of SC-FDMA symbols constituting the PUCCH, N sPUCCH, and transmission power control based on a table that correlates transmission power.
  • the terminal device 3 can apply different transmission power control based on the bandwidth of (s) PUCCH. For example, when the bandwidth of the (s) PUCCH is equal to or less than the W sPUCCH , the terminal device 3 applies different transmission power control to the (s) PUCCH according to the uplink control information, and the bandwidth of the (s) PUCCH is When larger than W sPUCCH, transmission power control based on Equation (1) and Equation (2) may be applied to (s) PUCCH regardless of uplink control information. In another example, the terminal device 3 may apply (s) the PUCCH bandwidth W sPUCCH and transmission power control based on a function or table that associates the transmission power.
  • the base station apparatus 1 uses transmission power control information (parameter, index, table, formula, calculation method) used in each of the case where only the SR is transmitted by the terminal apparatus 3 and the case where at least A / N is transmitted. Etc.) may be transmitted (configured) using higher layer signaling (RRC signaling), downlink control information (DCI), PDCCH, and / or PDSCH.
  • RRC signaling higher layer signaling
  • DCI downlink control information
  • PDCCH Physical Downlink control information
  • PDSCH PDSCH
  • FIG. 8 is a diagram illustrating an example (cyclic shift relationship 1) of ⁇ A , ⁇ B , and ⁇ C relationships of sPUCCH based on allocation method 1 or allocation method 2.
  • sPUCCH based on allocation method 2 when only SR is transmitted, it may be considered that ⁇ B is not given.
  • the cyclic shifts ⁇ A , ⁇ B , and ⁇ C when the uplink control information is transmitted are not changed. Therefore, advantages such as ease of mounting are also expected.
  • Nd is a unit of cyclic shift, and is, for example, a phase rotation amount (2 ⁇ / 12 or the like may be used). That is, the cyclic shift may be a phase rotation in the time direction (or frequency direction).
  • FIG. 9 is a diagram showing another example of the relationship between ⁇ A , ⁇ B , and ⁇ C of sPUCCH based on allocation method 1 or allocation method 2 (cyclic shift relationship 2).
  • the cyclic shift relationship 2 is an example in which the values (and relationships) of ⁇ A , ⁇ B , and ⁇ C differ according to the uplink control information expected by the base station device 1.
  • the frequency domain interval between the two cyclic shifts ⁇ A and ⁇ B is 5 * N d
  • SR + A / N transmission is expected.
  • ⁇ 2 may be set so that the intervals (or differences) between ⁇ A , ⁇ B, and ⁇ C are maximized.
  • ⁇ 2B may be set such that the interval (or difference) between ⁇ B and ⁇ C is maximized.
  • ⁇ 2A may be set such that the interval (or difference) between ⁇ A and ⁇ B is maximized.
  • the terminal device 3 changes the cyclic shift related to the sPUCCH configuration according to the type of uplink control information expected to be transmitted by the base station device 1, the subframe number, the sTTI number, the sTTI length, or the like. Can do.
  • CS control information value, value setting method, or parameter for value calculation, etc.
  • CS control information is higher layer signaling (RRC) transmitted by the base station apparatus 1. Signaling), downlink control information (DCI), (s) PDCCH, and / or (s) PDSCH.
  • the CS control information may be information regarding a part or all of ⁇ 1 , ⁇ 2 , ⁇ A , ⁇ B , and ⁇ C.
  • the cyclic shift relationship does not necessarily need to be based on the frequency domain interval.
  • the cyclic shift relationship based on characteristics of the sequence S 1 generated based on the formula (4) (for example, PAPR (Peak to Average Power Ratio), CM (Cubic Metric), etc.)
  • the values of ⁇ A , ⁇ B , and ⁇ C may be set.
  • the characteristic of the sequence S1 may be a value calculated by computer simulation or the like, and the cyclic shift relationship or the values of ⁇ A , ⁇ B , and ⁇ C may be based on computer simulation (sequence generated by a computer). Also called CGS (Computer Generated Sequence) or the like).
  • the resource index index for specifying resources such as frequency, time, space, etc.
  • the RB used for sPUCCH transmission can be different between when SR transmission is expected and when A / N transmission is expected.
  • the resource index can be different between when at least SR is transmitted and when only A / N is transmitted.
  • configuration method 2 of the sPUCCH configuration method according to the present embodiment can be determined based on Equation (6).
  • a sequence subjected to cyclic shift is arranged in a single SC-FMDA symbol. That is, the configuration method 2 may be a method in which one sequence multiplied (applied) by a cyclic shift is included in one SC-FMDA symbol.
  • the sPUCCH sequence S 2 transmitted by the terminal device 3 can be received by the base station device 1.
  • the base station apparatus 1 can detect the cyclic shift ⁇ by performing a correlation process using r (n) on the received sPUCCH sequence S 2 .
  • sequences can be assigned in a comb shape (Comb, interlace, Interlace) within one SC-FDMA symbol.
  • a comb shape Comb, interlace, Interlace
  • FIG. 10 when a series is allocated in a comb shape, two allocation patterns can be generated.
  • allocation pattern 1 in FIG. 10 is also referred to as allocation pattern X1.
  • the allocation pattern 2 in FIG. 10 is also referred to as an allocation pattern X2.
  • the configuration method 2 is not limited to the example of FIG. 10, and two or more allocation patterns may be generated by providing two or more intervals in a comb shape.
  • the configuration method 2 may be based on a mathematical formula other than the mathematical formula (5), and may be a method similar to the SRS generation method, for example.
  • the configuration method 2 will be described by taking sPUCCH configured as an example shown in FIG. 10 as an example. Further, in the method shown in the configuration method 2, the sPUCCH may be configured by a sequence obtained by combining sequences assigned the same or different cyclic shifts to the respective allocation patterns.
  • SR cyclic shifts ⁇ 1 2 and ⁇ 2 2 set for allocation patterns X1 and X2 to uplink control information in sPUCCH based on configuration method 2
  • null may indicate that no cyclic shift is assigned and no sequence is generated.
  • the sequence generated based on the formula (5) or other formula (or rule) used for the allocation pattern X1 is also referred to as a first (or second) series, and is referred to as the first series.
  • the cyclic shift alpha 1 being applied with a cyclic shift of the first (or second) referred to.
  • a sequence generated based on Formula (5) or other formula (or rule) used for allocation pattern X2 is also referred to as a second (or first) sequence, and is applied to the second sequence.
  • the power per allocation pattern (allocation power) is higher when only SR is transmitted than when at least A / N is transmitted. Doubled. This is because the assignment pattern 2 is not assigned in the case of SR only. Therefore, the base station apparatus 1 is required to change the power that is expected to be received when transmission of only SR is expected and when transmission of at least A / N is expected. Also, when the base station apparatus 1 expects to receive SR + A / N, if the terminal apparatus 3 does not transmit A / N, it is assigned to a reference signal sequence as compared with the case where the terminal apparatus 3 transmits A / N. The electric power to be doubled.
  • the terminal device 3 may determine the transmission power using the same method as when the allocation method 2 is applied.
  • Configuration method 1 and configuration method 2 can be configured with one SC-FDMA symbol. Further, the sequence generated based on the configuration method 1 or the configuration method 2 may be applied to the same sequence mapped to different frequency bands (frequency hopping or the like). Here, the sequences to which frequency hopping is applied need not be exactly the same sequences. For example, frequency hopping may be applied to different sequences including the same information.
  • FIG. 11 is a schematic diagram illustrating an example of a block configuration of the base station apparatus 1 according to the present embodiment.
  • the base station apparatus 1 includes an upper layer (upper layer control information notification unit, upper layer processing unit) 301, a control unit (base station control unit) 302, a codeword generation unit 303, a downlink subframe generation unit 304, and an OFDM signal transmission.
  • the downlink subframe generation unit 304 includes a downlink reference signal generation unit 305.
  • the uplink subframe processing unit 310 includes an uplink control information extraction unit (CSI acquisition unit) 311.
  • FIG. 12 is a schematic diagram illustrating an example of a block configuration of the terminal device 3 according to the present embodiment.
  • the terminal device 3 includes a reception antenna (terminal reception antenna) 401, an OFDM signal reception unit (downlink reception unit) 402, a downlink subframe processing unit 403, a transport block extraction unit (data extraction unit) 405, a control unit (terminal) Control unit) 406, upper layer (upper layer control information acquisition unit, upper layer processing unit) 407, channel state measurement unit (CSI generation unit) 408, uplink subframe generation unit 409, SC-FDMA signal transmission unit (UCI transmission) Part) 411 and a transmission antenna (terminal transmission antenna) 412.
  • the downlink subframe processing unit 403 includes a downlink reference signal extraction unit 404.
  • the uplink subframe generation unit 409 includes an uplink control information generation unit (UCI generation unit) 410.
  • UCI generation unit uplink control information generation unit
  • the control unit 302 includes MCS (Modulation and Coding Scheme) indicating a downlink modulation scheme and coding rate, downlink resource allocation indicating an RB used for data transmission, and information used for HARQ control ( The redundancy version, HARQ process number, and new data index) are stored, and the codeword generation unit 303 and the downlink subframe generation unit 304 are controlled based on these.
  • the downlink data (also referred to as downlink transport block) sent from the upper layer 301 is subjected to processing such as error correction coding and rate matching processing in the codeword generation unit 303 under the control of the control unit 302. And a codeword is generated.
  • MCS Modulation and Coding Scheme
  • the downlink subframe generation unit 304 generates a downlink subframe according to an instruction from the control unit 302.
  • the codeword generated by the codeword generation unit 303 is converted into a modulation symbol sequence by a modulation process such as PSK (Phase Shift Keying) modulation or QAM (Quadrature Amplitude Modulation) modulation.
  • the modulation symbol sequence is mapped to REs in some RBs, and a downlink subframe for each antenna port is generated by precoding processing.
  • the transmission data sequence sent from the higher layer 301 includes higher layer control information which is control information (for example, dedicated (individual) RRC (Radio Resource Control) signaling) in the higher layer.
  • the downlink reference signal generation section 305 generates a downlink reference signal.
  • the downlink subframe generation unit 304 maps the downlink reference signal to the RE in the downlink subframe according to an instruction from the control unit 302.
  • the downlink subframe generated by the downlink subframe generation unit 304 is modulated into an OFDM signal by the OFDM signal transmission unit 306 and transmitted via the transmission antenna 307.
  • a configuration having one OFDM signal transmission unit 306 and one transmission antenna 307 is illustrated here, but when transmitting a downlink subframe using a plurality of antenna ports, transmission is performed with the OFDM signal transmission unit 306.
  • a configuration having a plurality of antennas 307 may be used.
  • the downlink subframe generation unit 304 can also have a capability of generating a physical layer downlink control channel such as PDCCH or EPDCCH and mapping it to the RE in the downlink subframe.
  • the plurality of base station apparatuses (base station apparatus 1-1 and base station apparatus 1-2) each transmit an individual downlink subframe.
  • the OFDM signal is received by the OFDM signal receiving unit 402 via the receiving antenna 401, and OFDM demodulation processing is performed.
  • the downlink subframe processing unit 403 first detects a downlink control channel in the physical layer such as PDCCH and EPDCCH. More specifically, the downlink subframe processing unit 403 decodes the PDCCH or EPDCCH transmitted in an area where the PDCCH or EPDCCH can be allocated, and confirms a CRC (Cyclic Redundancy Check) bit added in advance. (Blind decoding) That is, the downlink subframe processing unit 403 monitors PDCCH and EPDCCH.
  • CRC Cyclic Redundancy Check
  • One CRC bit is assigned to one terminal device such as an ID (C-RNTI (Cell-Radio Network Temporary Identifier) or SPS-C-RNTI (Semi Persistent Scheduling-C-RNTI)) assigned from the base station device in advance.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • SPS-C-RNTI Semi Persistent Scheduling-C-RNTI
  • the control unit 406 holds MCS indicating the modulation scheme and coding rate in the downlink based on the control information, downlink resource allocation indicating the RB used for downlink data transmission, and information used for HARQ control, based on these And controls the downlink subframe processing unit 403, the transport block extraction unit 405, and the like. More specifically, the control unit 406 performs control so as to perform RE demapping processing and demodulation processing corresponding to the RE mapping processing and modulation processing in the downlink subframe generation unit 304.
  • the PDSCH extracted from the received downlink subframe is sent to the transport block extraction unit 405.
  • the downlink reference signal extraction unit 404 in the downlink subframe processing unit 403 extracts a downlink reference signal from the downlink subframe.
  • the transport block extraction unit 405 performs rate matching processing in the codeword generation unit 303, rate matching processing corresponding to error correction coding, error correction decoding, and the like, and extracts transport blocks and sends them to the upper layer 407. It is done.
  • the transport block includes upper layer control information, and the upper layer 407 informs the control unit 406 of necessary physical layer parameters based on the upper layer control information.
  • the plurality of base station apparatuses 1 (base station apparatus 1-1 and base station apparatus 1-2) transmit individual downlink subframes, and the terminal apparatus 3 receives these, so The processing may be performed for each downlink subframe for each of the plurality of base station apparatuses 1.
  • the terminal device 3 may or may not recognize that a plurality of downlink subframes are transmitted from the plurality of base station devices 2. When not recognizing, the terminal device 3 may simply recognize that a plurality of downlink subframes are transmitted in a plurality of cells. Further, the transport block extraction unit 405 determines whether or not the transport block has been correctly detected, and the determination result is sent to the control unit 406.
  • the downlink reference signal extracted by the downlink reference signal extraction unit 404 is sent to the channel state measurement unit 408 under the instruction of the control unit 406, and the channel state measurement unit 408 performs channel state and / or interference. And CSI is calculated based on the measured channel conditions and / or interference.
  • the control unit 406 sends the HARQ-ACK (DTX (not transmitted), ACK (successful detection), or NACK ( Detection failure)) and mapping to downlink subframes.
  • the terminal device 3 performs these processes on the downlink subframes for each of a plurality of cells.
  • Uplink control information generating section 410 generates PUCCH including the calculated CSI and / or HARQ-ACK.
  • the PUSCH including the uplink data sent from the higher layer 407 and the PUCCH generated in the uplink control information generation unit 410 are mapped to the RB in the uplink subframe, and the uplink A subframe is generated.
  • the uplink subframe is subjected to SC-FDMA modulation in the SC-FDMA signal transmission unit 411 to generate an SC-FDMA signal and transmitted via the transmission antenna 412.
  • the terms primary cell and PS cell have been described, but these terms are not necessarily used.
  • the primary cell in each of the above embodiments can also be called a master cell
  • the PS cell in each of the above embodiments can also be called a primary cell.
  • the first aspect of the present embodiment is the terminal apparatus 3, which is a transmission unit that transmits an uplink signal using PUCCH corresponding to one SC-FDMA symbol, and transmission power for transmission on the PUCCH.
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first cyclic shift with respect to the third sequence.
  • the second sequence is given by applying a second cyclic shift to the third sequence, and the transmission power for transmission on the PUCCH is the first sequence Is provided based on the value of the cyclic shift and the value of the second cyclic shift.
  • the transmission unit transmits the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • a second aspect of the present embodiment is the base station apparatus 1, which is a PUCCH corresponding to one SC-FDMA symbol, a receiving unit that receives an uplink signal, and a transmission power for the PUCCH.
  • a control unit for instructing a device wherein the uplink signal is generated based on a first sequence and a second sequence, and the first sequence is a first cyclic with respect to a third sequence Given by applying a shift, the second sequence is given by applying a second cyclic shift to the third sequence, and the transmission power for transmission on the PUCCH is given by It is given based on the value of one cyclic shift and the value of the second cyclic shift.
  • the receiving unit receives the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is received.
  • a third aspect of the present embodiment is a communication method used for the terminal device 3, and generates the first sequence by applying the first cyclic shift to the third sequence. Generating a second sequence by applying a second cyclic shift to the third sequence, generating an uplink signal based on the first sequence and the second sequence, and Based on the value of the first cyclic shift and the value of the second cyclic shift, transmission power on the PUCCH is determined, and an uplink signal is transmitted on the PUCCH corresponding to one SC-FDMA symbol. .
  • the uplink signal is transmitted in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • a fourth aspect of the present embodiment is an integrated circuit implemented in the terminal device 3, a transmission circuit that transmits an uplink signal on a PUCCH corresponding to one SC-FDMA symbol, and the PUCCH
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is generated with respect to the third sequence.
  • the electric power is given based on the value of the first cyclic shift and the value of the second cyclic shift.
  • the transmission circuit transmits the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • the fifth aspect of the present embodiment is the terminal apparatus 3, which is a PUCCH corresponding to one SC-FDMA symbol, a transmission unit that transmits an uplink signal, and a cyclic for transmission on the PUCCH.
  • a control unit for determining a shift wherein the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first size relative to a third sequence.
  • Given by applying a click shift, and the second sequence is given by applying a second cyclic shift to the third sequence, the value of the first cyclic shift, and The value of the second cyclic shift is based on whether only SR, only HARQ-ACK, SR, or HARQ-ACK is transmitted in the PUCCH. Erareru.
  • the transmission unit transmits the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • the uplink signal is generated based on only the SR, only the HARQ-ACK, or the SR and the HARQ-ACK.
  • a sixth aspect of the present embodiment is a base station apparatus 1, wherein a PUCCH corresponding to one SC-FDMA symbol is used to receive an uplink signal, and a cyclic shift for the PUCCH is performed.
  • a control unit that instructs a terminal device, wherein the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is a first sequence with respect to a third sequence Given by applying a cyclic shift, and the second sequence is given by applying a second cyclic shift to the third sequence, the value of the first cyclic shift, The value of the second cyclic shift is based on whether only SR, only HARQ-ACK, SR or HARQ-ACK is transmitted on the PUCCH. I have given in.
  • the receiving unit receives the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is received.
  • the uplink signal is generated only on the SR, only the HARQ-ACK, or based on the SR and the HARQ-ACK.
  • a seventh aspect of the present embodiment is a communication method of the terminal device 3, which is based on whether only SR, only HARQ-ACK, SR or HARQ-ACK is transmitted in the PUCCH.
  • Generating a first sequence by generating a first cyclic shift value and a second cyclic shift value, and applying the first cyclic shift to a third sequence;
  • Generating a second sequence by applying the second cyclic shift to the third sequence, generating an uplink signal based on the first sequence and the second sequence, The uplink signal is transmitted on the PUCCH corresponding to one SC-FDMA symbol.
  • the uplink signal is transmitted in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • the uplink signal is generated based only on the SR, only the HARQ-ACK, or based on the SR and the HARQ-ACK.
  • An eighth aspect of the present embodiment is an integrated circuit implemented in the terminal apparatus 3, a transmission circuit that transmits an uplink signal using a PUCCH corresponding to one SC-FDMA symbol, and the PUCCH
  • the uplink signal is generated based on the first sequence and the second sequence, and the first sequence is converted into a third sequence.
  • the second sequence is given by applying a second cyclic shift to the third sequence, and the second sequence is given by applying a first cyclic shift to the third sequence.
  • the value of the click shift and the value of the second cyclic shift are either SR only, HARQ-ACK only, or SR and HARQ-ACK in the PUCCH. There is provided on the basis of either transmitted.
  • the transmission circuit transmits the uplink signal in a second frequency band different from the first frequency band in which the uplink signal is transmitted.
  • the uplink signal is generated based only on the SR, only the HARQ-ACK, or based on the SR and the HARQ-ACK.
  • the program that operates in the base station apparatus 1 and the terminal apparatus 3 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention. ). Information handled by these devices is temporarily stored in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the terminal device 3, the base station device 1-1, or a part of the base station device 1-2 in the above-described embodiment may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 3, or the base station device 1-1 or the base station device 1-2, and includes hardware such as an OS and peripheral devices. Shall be.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 1 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 1 according to the above-described embodiment.
  • the device group only needs to have one function or each functional block of the base station device 1.
  • the terminal device 3 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station apparatus 1-1 or the base station apparatus 1-2 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station apparatus 2-1 or the base station apparatus 2-2 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 3, the base station device 1-1, or the base station device 1-2 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or a chip set. It may be realized as.
  • Each functional block of the terminal device 3, the base station device 1-1, or the base station device 1-2 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the cellular mobile station apparatus is described as an example of the terminal apparatus or the communication apparatus. It can also be applied to terminal devices or communication devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, and other daily life devices.
  • terminal devices or communication devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, and other daily life devices.

Abstract

1ms以下のTTIでPUCCHを実現する方法。端末装置は、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、前記PUCCHでの送信に対するサイクリックシフトを決定する制御部を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。

Description

端末装置、基地局装置、通信方法、および、集積回路
 本発明は、端末装置、基地局装置、通信方法、および、集積回路に関する。
 本願は、2016年4月27日に、日本に出願された特願2016-088915号に基づき優先権を主張し、その内容をここに援用する。
 標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、OFDM(Orthogonal Frequency-Division Multiplexing)通信方式やリソースブロックと呼ばれる所定の周波数・時間単位の柔軟なスケジューリングの採用によって、高速な通信を実現させたEvolved Universal Terrestrial Radio Access(以降E-UTRAと称する)の標準化が行なわれた。
 また、3GPPでは、TTI(Transmission Time Interval)を従来の1msより短く設定することにより、低遅延な通信を実現する方法の検討が行われている(非特許文献1)。TTIを短く設定することにより、物理層において、信号を送信してから当該信号に対する応答が返ってくるまでの時間を示すRTT(Round Trip Time)を短縮することが期待されている。RTTの短縮は、特にTCP(Transport Control Protocol)レイヤのスループット改善を実現することが期待されており、それによって無線通信システム全体のスループット性能改善が期待されている。
 一方で、E-UTRAでは、上りリンク(Uplink)において、上りリンク制御情報の送信に用いられるPUCCH(Physical Uplink Control CHannel)が定義されている。また、PUCCHフォーマットとして、1msの期間内で時間方向に同一の系列を反復するPUCCHフォーマット(PUCCH format)が定義されている(非特許文献2)。例えば、時間方向に同一の系列を反復するPUCCHフォーマットを用いることによって、PUCCHの通信カバレッジ拡大を実現することができる。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Latency Reduction Techniques for LTE; (Release 14) 3GPP TR 36.881 V0.6.0 (2016-3). 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); (Release 12) 3GPP TS 36.213 V12.4.0 (2014-12).
 しかしながら、1ms以下のTTIでPUCCHを実現する方法は十分に検討されていない。
 本発明は上記の点に鑑みてなされたものであり、その目的は、上りリンクにおける通信を、効率的に行なうことができる端末装置、基地局装置、および通信方法を提供する。
 (1)本発明の態様は、以下の手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、前記PUCCHでの送信に対する送信電力を決定する制御部を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (2)本実施形態の第2の態様は、基地局装置であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を受信する受信部と、前記PUCCHに対する送信電力を端末装置に指示する制御部を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (3)本実施形態の第3の態様は、端末装置に用いられる通信方法であって、第3の系列に対して第1のサイクリックシフトを適用することによって第1の系列を生成し、前記第3の系列に対して第2のサイクリックシフトを適用することによって第2の系列を生成し、第1の系列、および、第2の系列に基づき、上りリンク信号を生成し、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて前記PUCCHでの送信電力を決定し、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する。
 (4)本実施形態の第4の態様は、端末装置に実装される集積回路であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信回路と、前記PUCCHでの送信に対する送信電力を決定する制御回路を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (5)本実施形態の第5の態様は、端末装置であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、前記PUCCHでの送信に対するサイクリックシフトを決定する制御部を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 (6)本実施形態の第6の態様は、基地局装置であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を受信する受信部と、前記PUCCHに対するサイクリックシフトを端末装置に指示する制御部を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 (7)本実施形態の第7の態様は、端末装置の通信方法であって、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて第1のサイクリックシフトの値、および、第2のサイクリックシフトの値を生成し、第3の系列に対して前記第1のサイクリックシフトを適用することによって第1の系列を生成し、前記第3の系列に対して前記第2のサイクリックシフトを適用することによって第2の系列を生成し、前記第1の系列、および、前記第2の系列に基づき上りリンク信号を生成し、1つのSC-FDMAシンボルに対応するPUCCHで、前記上りリンク信号を送信する。
 (8)本実施形態の第8の態様は、端末装置に実装される集積回路であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信回路と、前記PUCCHでの送信に対するサイクリックシフトを決定する制御回路を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 この発明によれば、上りリンクにおける通信を、効率的に行なうことができる。
本実施形態に係る通信システムの構成例を示した図である。 本実施形態に係るTTIの一例を示す図である。 本実施形態に係る下りリンクの無線フレーム構成の一例を示す概略図である。 本実施形態に係る上りリンクの無線フレーム構成の一例を示す概略図である。 本実施形態に係るPUCCHを生成する方法の一例を示す図である。 本実施形態に係るDMRSの系列を生成する方法の一例を示す図である。 本実施形態に係るsTTIに割り当てられた下りリンクデータの受信確認応答を行うためのPUCCHの構成の一例を示す図である。 本実施形態に係るsPUCCHのα、α、αの関係性の一例を示す図である。 本実施形態に係るsPUCCHのα、α、αの関係性の一例を示す図である。 本実施形態に係るsTTIに割り当てられた下りリンクデータの受信確認応答を行うためのPUCCHの構成の一例を示す図である。 本実施形態に係る基地局装置のブロック構成の一例を示す概略図である。 本実施形態に係る端末装置のブロック構成の一例を示す概略図である。
 <第1の実施形態>
 本発明の第1の実施形態について以下に説明する。基地局装置(基地局、ノードB、eNB(eNodeB))と端末装置(端末、移動局、移動局装置、ユーザ装置、UE(User equipment))とが、セルにおいて通信する通信システム(セルラーシステム)を用いて説明する。
 図1は、本実施形態に係る通信システム100の構成例を示した図である。通信システム100は、基地局装置1、端末装置3A及び端末装置3Bを含んで構成される。端末装置3A及び端末装置3Bをまとめて端末装置3とも呼称する。基地局装置1は、端末装置3とデータ(ペイロード、物理層データ、情報)の通信を行う。
 EUTRAおよびAdvanced EUTRAで使用される主な物理チャネル、および物理シグナルについて説明を行なう。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。本実施形態において、物理チャネルは、信号と同義的に使用され得る。物理チャネルは、EUTRA、およびAdvanced EUTRAにおいて、今後追加、または、その構造やフォーマット形式が変更または追加される可能性があるが、変更または追加された場合でも本実施形態の説明には影響しない。
 LTEおよびEUTRAおよびAdvanced EUTRAでは、物理チャネルまたは物理信号のスケジューリングについて無線フレームを用いて管理している。1無線フレームの時間長の一例は10ミリ秒(ms)であり、1無線フレームの一例は10サブフレームで構成される。さらに、1サブフレームの一例は2スロットで構成される。すなわち、1サブフレームの時間長の一例は1ms、1スロットの時間長の一例は0.5msである。また、物理チャネルが配置されるスケジューリングの最小単位としてリソースブロックを用いて管理している。リソースブロックの一例とは、周波数軸を複数サブキャリア(例えば、サブキャリア間隔が15kHzである12サブキャリア)の集合で構成される一定の周波数領域と、一定の送信時間間隔(TTI(Transmission Time Interval)、スロット、シンボル)で構成される領域で定義される。なお、1サブフレームは、1リソースブロックペアと称されてもよい。また、LTEでは、1TTIは1サブフレーム(1ms)として規定されてもよい。なお、TTIは、受信側では受信時間間隔として規定されてもよい。TTIは、物理チャネルや物理信号の送信単位または受信単位として定義されてもよい。つまり、物理チャネルや物理信号の時間長は、TTIの長さに基づいて規定されてもよい。また、サブフレームは、1つのsTTIで構成されても良い。つまり、サブフレームはTTI長に基づいて決定されても良い。
 本実施形態に係るTTIは、OFDMシンボル数で定義されても良い。図2は、OFDMシンボル数で定義されるTTIの一例を示した図である。1サブフレームは複数のOFDMシンボルで構成されており、図2に示す一例では、OFDMシンボル数は14である。また、1サブフレーム内のOFDMシンボルそれぞれの長さは異なっていても良い。図2に示す一例では、左から1番目及び8番目のOFDMシンボルは2208T秒であり、それ以外のOFDMシンボルは2192T秒である。ここで、Tsは0.01/307200秒である。また、実線の矢印はTTIの長さを示す。なお、サブフレームを構成するOFDMシンボルの長さは、図2に示す一例に限定されない。また、以下ではOFDMシンボル、OFDM symbol、SC-FDMAシンボルをOSとも呼称する。また、本実施形態において、OFDMシンボルとSC-FDMAシンボルはお互いに読み替えられても良い。
 例えば、TTIは1,2,3,4,7,14 OSの長さで規定されても良い。OSの長さはサブフレーム内で異なる値をとり得るから、TTIは複数のTTI長を含んでも良い。また、TTIの長さはこれに限定されない。
 1サブフレームは、1 OSの長さで示されるTTIで構成されても良い。以下では、1 OSの長さで構成されるTTIを1-symbol TTIとも呼称する。また、1サブフレームは、2 OSの長さで示されるTTIで構成されても良い。以下では、2 OSの長さで示されるTTIを2-symbol TTIとも呼称する。また、1サブフレームは、3 OSの長さで示されるTTIと4 OSの長さで示されるTTIで構成されてもよい。3 OSの長さで示されるTTIを3-symbol TTIとも呼称し、4 OSの長さで示されるTTIを4-symbol TTIとも呼称する。また、図2に示されるように、1サブフレームが3-symbol TTI及び4-symbol TTIで構成される場合に、それぞれのTTIをまとめて3/4-symbol TTIとも呼称する。また、1サブフレームは、7 OSの長さで示されるTTIで構成されても良い。7 OSの長さで示されるTTIを7-symbol TTIまたはslot TTIとも呼称する。また、1サブフレームは、14 OSで示されるTTIで構成されても良い。14 OSで示されるTTIを14-symbol TTIまたはsubframe TTIとも呼称する。また、本発明に係る全てのTTIをまとめてsTTIとも呼称する。
 TTI長は、OFDMシンボル数以外で定義されても良い。例えば、TTI長は時間、周波数、サブキャリア間隔、通信方式等に基づいて定義されても良い。
 EUTRAおよびAdvanced EUTRAでは、フレーム構成タイプが定義される。フレーム構成タイプ1(Frame structure type 1)は周波数分割複信(Frequency Division Duplex、FDD)に適用できる。フレーム構成タイプ2(Frame structure type 2)は時分割複信(Time Division Duplex、TDD)に適用できる。
 図3は、本実施形態に係る下りリンクの無線フレーム構成の一例を示す図である。下りリンクはOFDMアクセス方式が用いられる。下りリンクにおいて、下りリンクの信号および/または下りリンクの物理チャネルを送信することを、下りリンク送信と呼称される。下りリンクでは、PDCCH、EPDCCH、物理下りリンク共用チャネル(PDSCH;Physical Downlink Shared CHannel)などが割り当てられる。下りリンクの無線フレームは、下りリンクのリソースブロック(RB;Resource Block)ペアから構成されている。この下りリンクのRBペアは、下りリンクの無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。1個の下りリンクのRBペアは、時間領域で連続する2個の下りリンクのRB(RB帯域幅×スロット)から構成される。1個の下りリンクのRBは、周波数領域において12個のサブキャリアから構成される。また、時間領域においては、通常のサイクリックプレフィッス(CP)が付加される場合には7個、通常よりも長いサイクリックプレフィッスが付加される場合には6個のOFDMシンボルから構成される。周波数領域において1つのサブキャリア、時間領域において1つのOFDMシンボルにより規定される領域をリソースエレメント(RE;Resource Element)と称する。物理下りリンク制御チャネルは、端末装置識別子、物理下りリンク共用チャネルのスケジューリング情報、物理上りリンク共用チャネルのスケジューリング情報、変調方式、符号化率、再送パラメータなどの下りリンク制御情報が送信される物理チャネルである。なお、ここでは一つの要素キャリア(CC;Component Carrier)における下りリンクサブフレームを記載しているが、CC毎に下りリンクサブフレームが規定され、下りリンクサブフレームはCC間でほぼ同期している。
 図4は、本実施形態に係る上りリンクの無線フレーム構成の一例を示す図である。上りリンクはSC-FDMA方式が用いられる。上りリンクにおいて、上りリンクの信号および/または上りリンクの物理チャネルを送信することを、上りリンク送信と呼称される。つまり、上りリンク送信は、PUSCHの送信と換言できる。上りリンクでは、物理上りリンク共用チャネル(Physical Uplink Shared Channel;PUSCH)、PUCCHなどが割り当てられる。また、PUSCHやPUCCHの一部に、上りリンク参照信号(上りリンクリファレンスシグナル)が割り当てられる。上りリンクの無線フレームは、上りリンクのRBペアから構成されている。この上りリンクのRBペアは、上りリンクの無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。1個の上りリンクのRBペアは、時間領域で連続する2個の上りリンクのRB(RB帯域幅×スロット)から構成される。1個の上りリンクのRBは、周波数領域において12個のサブキャリアから構成される。時間領域においては、通常のサイクリックプレフィッスが付加される場合には7個、通常よりも長いサイクリックプレフィッスが付加される場合には6個のSC-FDMAシンボルから構成される。なお、ここでは一つのCCにおける上りリンクサブフレームを記載しているが、CC毎に上りリンクサブフレームが規定される。伝搬遅延の補正などから、端末装置の視点から、上りリンクの無線フレーム(上りリンクサブフレーム)の先頭は下りリンクの無線フレーム(下りリンクサブフレーム)の先頭よりも前になるように調整される。
 同期シグナルは、3種類のプライマリー同期シグナルと、周波数領域で互い違いに配置される31種類の符号から構成されるセカンダリー同期シグナルとで構成され、プライマリー同期シグナルとセカンダリー同期シグナルの信号の組み合わせによって、基地局装置1を識別する504通りのセル識別子(物理セルID(Physical Cell Identity; PCI))と、無線同期のためのフレームタイミングが示される。端末装置3は、セルサーチによって受信した同期シグナルの物理セルIDを特定する。
 物理報知情報チャネル(PBCH; Physical Broadcast Channel)は、セル内の端末装置3で共通に用いられる制御パラメータ(報知情報(システム情報);System information)を通知(設定)する目的で送信される。物理下りリンク制御チャネルで報知情報が送信される無線リソースがセル内の端末装置3に対して通知され、物理報知情報チャネルで通知されない報知情報は、通知された無線リソースにおいて、物理下りリンク共用チャネルによって報知情報を通知するレイヤ3メッセージ(システムインフォメーション)が送信される。
 報知情報として、セル個別の識別子を示すセルグローバル識別子(CGI; Cell Global Identifier)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(TAI; Tracking Area Identifier)、ランダムアクセス設定情報(送信タイミングタイマーなど)、当該セルにおける共通無線リソース設定情報、周辺セル情報、上りリンクアクセス制限情報などが通知される。
 下りリンクリファレンスシグナルは、その用途によって複数のタイプに分類される。例えば、セル固有RS(Cell-specific reference signals)は、セル毎に所定の電力で送信されるパイロットシグナルであり、所定の規則に基づいて周波数領域および時間領域で周期的に繰り返される下りリンクリファレンスシグナルである。端末装置3は、セル固有RSを受信することでセル毎の受信品質を測定する。また、端末装置3は、セル固有RSと同時に送信される物理下りリンク制御チャネル、または物理下りリンク共用チャネルの復調のための参照用の信号としてもセル固有RSを使用する。セル固有RSに使用される系列は、セル毎に識別可能な系列が用いられる。
 また、下りリンクリファレンスシグナルは下りリンクの伝搬路変動の推定にも用いられる。伝搬路変動の推定に用いられる下りリンクリファレンスシグナルのことをチャネル状態情報リファレンスシグナル(Channel State Information Reference Signals;CSI-RS)と称する。また、端末装置3に対して個別に設定される下りリンクリファレンスシグナルは、UE specific Reference Signals(URS)、Demodulation Reference Signal(DMRS)またはDedicated RS(DRS)と称され、拡張物理下りリンク制御チャネル、または物理下りリンク共用チャネルを復調するときのチャネルの伝搬路補償処理のために参照される。
 端末装置3は、下りリンクデータ(PDSCH、DL-SCH)や上位層制御情報であるレイヤ2メッセージおよびレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)を送受信する前に、自装置宛の物理下りリンク制御チャネルを監視(モニタ)し、自装置宛の物理下りリンク制御チャネルを受信することで、送信時には上りリンクグラント、受信時には下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を物理下りリンク制御チャネルから取得する必要がある。なお、物理下りリンク制御チャネルは、上述したOFDMシンボルで送信される以外に、基地局装置1から端末装置3に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。なお、上りリンクグラントは、PUSCHをスケジュールするDCIフォーマットと換言することができる。なお、下りリンクグラントは、PDSCHをスケジュールするDCIフォーマットと換言することができる。PDSCHがスケジュールされるサブフレームは、そのPDSCHの受信を指示するDCIフォーマットの復号が成功したサブフレームである。また、PUSCHがスケジュールされるサブフレームは、そのPUSCHの送信を指示するDCIフォーマットの復号が成功したサブフレームに関連付けられて指示される。例えば、FDDセルの場合、PUSCHがスケジュールされるサブフレームは、そのPUSCHの送信を指示するDCIフォーマットの復号が成功したサブフレームから4サブフレーム後である。すなわち、PUSCHおよびPDSCHがスケジュールされるサブフレームは、その送信または受信が指示されるDCIフォーマットの復号が成功したサブフレームに関連付けられる。
 物理下りリンク制御チャネル(PDCCH; Physical Downlink Control Channel)は、各サブフレームの先頭からいくつかのOFDMシンボル(例えば1~4OFDMシンボル)で送信される。拡張物理下りリンク制御チャネル(EPDCCH; Enhanced Physical Downlink Control Channel)は、物理下りリンク共用チャネルPDSCHが配置されるOFDMシンボルに配置される物理下りリンク制御チャネルである。PDCCHまたはEPDCCHは、端末装置3に対して基地局装置1のスケジューリングに従った無線リソース割り当て情報や、送信電力の増減の調整量を指示する情報を通知する目的で使用される。以降、単に物理下りリンク制御チャネル(PDCCH)と記載した場合、特に明記がなければ、PDCCHとEPDCCHの両方の物理チャネルを意味する。
 PDCCHは、下りリンク制御情報(DCI: Downlink Control Information)を送信するために用いられてもよい。PDCCHが送信するDCIには、下りリンクグラントや上りリンクグラントがある。DCIは、上りリンクサブフレーム及び下りリンクサブフレームのスケジューリング情報を含む。
 DCIは、上りリンクおよび/または下りリンクsTTIのスケジューリング情報を含むことができる。つまり、基地局装置1は、DCIを端末装置3に送信することにより、当該sTTIのための上りリンクグラントおよび/または下りリンクグラントを通知することができる。本実施形態において、sTTIのための上りリンクグラントおよび/または下りリンクグラントを含むDCIをsDCIとも呼称する。sDCIはPDCCHにより送信されることができる。また、sTTIは、PDCCH以外の領域により送信されることができる。本実施形態において、sDCIを送信する機能を備えるPDCCH以外の領域をsPDCCHとも呼称する。例えば、sPDCCHはsTTIの先頭OSからNsPDCCHまでの間に含まれていてもよい。また、例えばsPDCCHはsTTIの帯域の一部に含まれていてもよい。
 DCIフォーマットには、CRC(Cyclic Redundancy Check)パリティビットが付加される。下りリンクグラント、または、上りリンクグラントに付加されるCRCパリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、または、SPS C-RNTI(Semi Persistent Scheduling Cell-Radio Network Temporary Identifier)でスクランブルされてもよい。C-RNTIおよびSPS C-RNTIは、セル内において端末装置を識別するための識別子である。
 C-RNTIは、単一のサブフレームにおけるPDSCHまたはPUSCHを制御するために用いられる。SPS C-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。
 sTTIのための下りリンクグラント、または、上りリンクグラントに付加されるCRCパリティビットは、C-RNTI、SPS-RNTIでスクランブルされてもよい。また、sTTIのための下りリンクグラント、または、上りリンクグラントに付加されるCRCパリティビットは、sTTIを割り当てるために用いられるRNTI(例えば、sTTI専用のRNTI等)でスクランブルされてもよい。
 以下では、sTTIのための下りリンクグラントまたは上りリンクグラントの方法を説明する。基地局装置1は、例えば、下りリンクグラントまたは上りリンクグラントに含まれる情報を分割して送信することができる。例えば、基地局装置1は、第1のDCI(Slow Grant、First Grant等)と第2のDCI(Fast Grant、Second Grant)を端末装置3に送信する機能を備えてもよい。第1のDCIは、端末装置3が割り当てられるsPDSCHまたはsPUSCHのリソースの候補を示してもよい。第1のDCIは、sPDSCHまたはsPUSCHの割当情報、MCS、TTI長等に関する情報を含んでもよい。第1のDCIは、sTTIのための下りリンクグラント、または、上りリンクグラントによる割当が運用されるリソース(周波数帯域、期間、RB数、RB指標等)を示す情報等を含んでもよい。第1のDCIに付加されるCRCパリティビットは、複数の端末装置3によって共有されるRNTIでスクランブルされてもよい。
 第2のDCIは、第1のDCIによって事前に割り当てられたsTTIのためのリソースにおいて、割り当てられたsPDSCHまたはsPUSCHの復号に関する情報を含んでもよい。例えば、第2のDCIは、データ送信に用いるRBを示す下りリンクリソース割り当て、HARQの制御に用いる情報等が含まれてもよい。
 DCIは、プライマリセルのPUSCHに対する複数のTPC(Transmission Power Control)コマンド、または、プライマリセルのPUCCHに対する複数のTPCコマンドの送信のために用いられてもよい。プライマリセルのPUSCHおよび/またはPUCCHに対する複数のTPCコマンドは、DCIフォーマット3またはDCIフォーマット3Aに含まれる。DCIフォーマット3に含まれる1つのTPCコマンドは2ビットである。DCIフォーマット3Aに含まれる1つのTPCコマンドは1ビットである。
 基地局装置1は、TPC-PUSCH-RNTIの値を示す情報、TPC-PUSCH-RNTIに対応するパラメータtpc-indexを示す情報、TPC-PUCCH-RNTIの値を示す情報、および、TPC-PUCCH-RNTIに対応するパラメータtpc-indexを示す情報を含む上位層の信号を、端末装置3に送信する。基地局装置1は、DCIフォーマット3またはDCIフォーマット3Aのモニタを指示する情報を含む上位層の信号を、端末装置3に送信する。
 DCIフォーマット3/3Aに付加されるCRCパリティビットは、TPC-PUSCH-RNTI、または、TPC-PUCCH-RNTIでスクランブルされる。
 端末装置3は、DCIフォーマット3/3Aに付加されたCRCパリティビットがTPC-PUSCH-RNTIでスクランブルされている場合、該DCIフォーマット3/3AはPUSCHに対するTPCコマンドを含んでいると判断する。端末装置3は、DCIフォーマット3/3Aに付加されたCRCパリティビットがTPC-PUCCH-RNTIでスクランブルされている場合、DCIフォーマット3/3AはPUCCHに対するTPCコマンドを含んでいると判断する。
 TPC-PUSCH-RNTIでスクランブルされたCRCパリティビットが付加されたDCIフォーマット3/3Aを、PUSCHに対するDCIフォーマット3/3Aとも称する。TPC-PUCCH-RNTIでスクランブルされたCRCパリティビットが付加されたDCIフォーマット3/3Aを、PUCCHに対するDCIフォーマット3/3Aとも称する。
 端末装置3は、上位層によって与えられるパラメータtpc-indexに基づいて、該端末装置3に対するTPCコマンドのインデックスを決定する。
 基地局装置1は、プライマリセルのCSS(Common Search Space)でDCIフォーマット3/3Aを送信してもよい。端末装置3は、プライマリセルのCSSでDCIフォーマット3/3Aをモニタしてもよい。端末装置3は、プライマリセルのCSSでDCIフォーマット3/3Aに対するPDCCH/EPDCCHのデコードを試みてもよい。
 下りリンクグラントは、PUCCHに対するTPCコマンドを含む。上りリンクグラントは、PUSCHに対するTPCコマンドを含む。
 物理上りリンク制御チャネル(PUCCH; Physical Uplink Control Channel)は、物理下りリンク共用チャネルで送信された下りリンクデータの受信確認応答(HARQ-ACK;Hybrid Automatic Repeat reQuest-AcknowledgementあるいはACK/NACK;Acknowledgement/Negative Acknowledgement)や下りリンクの伝搬路(チャネル状態)情報(CSI;Channel State Information)、上りリンクの無線リソース割り当て要求(無線リソース要求、スケジューリングリクエスト(SR;Scheduling Request))を行なうために使用される。
 スケジューリングリクエストの送信が期待される(または設定される)サブフレームまたは(s)TTIにおいて、受信確認応答が送信される場合、当該サブフレームまたは当該(s)TTIにおいてスケジューリングリクエストが送信されることを正のSR(Positive SR)とも呼称し、当該サブフレームまたは当該(s)TTIにおいてスケジューリングリクエストが送信されないことを負のSR(Negative SR)とも呼称する。つまり、端末装置3は、スケジューリングリクエストの送信が期待される(または設定される)サブフレームまたは(s)TTIにおいて、正のSRまたは負のSRを送信することができる。
 CSIは、前記CSIに対応するサービングセルの受信品質指標(CQI:Channel Quality Indicator)、プレコーディング行列指標(PMI:Precoding Matrix Indicator)、プレコーディングタイプ指標(PTI:Precoding Type Indicator)、ランク指標(RI:Rank Indicator)を含み、それぞれ、好適な変調方式および符号化率、好適なプレコーディング行列、好適なPMIのタイプ、好適なランクを指定する(表現する)ために用いられることができる。各Indicatorは、Indicationと表記されてもよい。また、CQIおよびPMIには、1つのセル内のすべてのリソースブロックを用いた送信を想定したワイドバンドCQIおよびPMIと、1つのセル内の一部の連続するリソースブロック(サブバンド)を用いた送信を想定したサブバンドCQIおよびPMIとに分類される。また、PMIは、1つのPMIで1つの好適なプレコーディング行列を表現する通常のタイプのPMIの他に、第1PMIと第2PMIの2種類のPMIを用いて1つの好適なプレコーディング行列を表現するタイプのPMIが存在する。
 例えば、端末装置3は、下りリンク物理リソースブロックのグループを占領し、CQIインデックスに対応する変調方式およびトランスポートブロックサイズの組み合わせによって決定される一つのPDSCHトランスポートの誤り確率が所定の値(例えば、0.1)を超えないような条件を満たす前記CQIインデックスを報告する。
 尚、CQI、PMI、および/または、RIの計算に用いられる下りリンク物理リソースブロックはCSI参照リソース(CSI reference resource)とも呼称される。
 端末装置3は、CSIを基地局装置1に報告する。CSI報告は、周期的なCSI報告と非周期的なCSI報告がある。周期的なCSI報告では、端末装置3は、上位層で設定されたタイミングにおいて、CSIを報告する。非周期的なCSI報告では、端末装置3は、受信した上りリンク用のDCIフォーマット(上りリンクグラント)またはランダムアクセスレスポンスグラントに含まれるCSI要求の情報に基づいたタイミングにおいて、CSIを報告する。
 端末装置3は、CQIおよび/またはPMIおよび/またはRIを報告する。尚、端末装置3は、上位層の設定によって、PMIおよび/またはRIを報告しなくてもよい。上位層の設定は、例えば、送信モード、フィードバックモード、報告タイプ、PMI/RIを報告するか否かのパラメータ、である。
 図5は、本実施形態のPUCCHを生成する方法を示す図である。図5において、NPUCCH SFは、単一のスロット内における直交系列w(i)のスプレッディングファクタであり、そして、4である。図5において、NPUCCH seqは、単一のPUCCHの帯域幅に含まれるサブキャリアの数であり、そして、12である。図5において、pはアンテナポートの番号であり、そして、PはPUCCHの送信に用いられるアンテナポートの数である。
 最初に、端末装置3は、シーケンスr’u,v(n)を決定する。uは、シーケンスグループ番号である。端末装置3は、少なくとも物理レイヤセルアイデンティティに基づいてuの値を決定してもよい。vは、シーケンス番号であり、PUCCHに対しては常に0である。
 尚、シーケンスグループ番号uは、擬似ランダムシーケンスに基づいて、スロット毎にホップしてもよい。基地局装置1は、シーケンスグループ番号uのホッピングが有効かどうかを示す情報を送信する。また、端末装置3は、シーケンスグループ番号uのホッピングが有効かどうかを示す情報に基づいて、シーケンスグループ番号uをホップさせるかどうかを決定する。
 端末装置3と基地局装置1は、シーケンスグループ番号のそれぞれに対して定義されている系列長12のシーケンスr’u,v(n)を記憶しており、そして、決定したuに対応するシーケンスr’u,v(n)を読み出す(生成する)。
 端末装置3は、シーケンスr’u,v(n)をejαpnで乗算することにより、シーケンスr(αp) u,v(n)を生成する。αは、サブキャリア毎の位相回転量である。周波数領域におけるシーケンスr’u,v(n)の位相回転は、時間領域におけるPUCCHのSC-FDMAシンボルのサイクリックシフトに相当する。従って、本実施形態において、αを単にサイクリックシフトとも称する。
 端末装置3は、シーケンスr(αp) u,v(n)に1/√Pとd(0)を乗算することにより、変調シンボルのブロックy(p)(n)を生成する。d(0)は1ビットまたは2ビットのHARQ-ACKのそれぞれをBPSK(Binary Phase Shift Keying)変調またはQPSK(Quadrature Phase Shift Keying)変調することによって生成される変調シンボルである。
 端末装置3は、変調シンボルのブロックy(p)(n)にS(n)を乗算し、そして、S(n)を乗算した変調シンボルのブロックy(p)(n)を直交系列wn(p)OC(m)で拡散することにより、変調シンボルのブロックz(p)(*)を生成する。S(n)は、PUCCHリソースの番号に基づいて、1またはejπ/2が選択される。
 端末装置3は、サブフレーム内において、変調シンボルのブロックz(p)(*)を第1のスロットの{0、1、5,6}のSC-FDMAシンボルに配置し、次に、第2のスロットの{0、1、5,6}のSC-FDMAシンボルに配置する。尚、単一のSC-FDMAシンボルにおいて、z(p)(*)は番号の小さいサブキャリアから順番に配置される。
 以下、DMRSの生成方法について説明する。
 図6は、本実施形態のDMRSの系列を生成する方法を示す図である。図6において、NPUCCH RSは、単一のスロット毎のPUCCHに対するDMRSの送信に用いられるSC-FDMAシンボルの数であり、そして、3である。図6において、MRS SCは、参照信号系列の長さであり、そして、12である。
 端末装置3は、図6において、PUCCHと同じようにシーケンスr(αp) u,v(n)を生成する。つまり、端末装置3は、少なくとも物理レイヤセルアイデンティティに基づいてシーケンスr(αp) u,v(n)を生成してもよい。
 また、端末装置3は、シーケンスr(αp) u,v(n)に1/√Pとw’(p)(m)とz(m)とを乗算することにより、シーケンスr(p) PUCCH(*)を生成する。w’(p)(m)はDMRSに対する直交系列である。z(m)は、HARQ-ACKのみの送信に用いられるPUCCHのDMRSに対して常に1である。つまり、HARQ-ACKのみの送信に用いられるPUCCHのDMRSを生成する場合は、z(m)を乗算する処理をしなくてもよい。
 端末装置31は、サブフレーム内において、シーケンスr(p) PUCCH(*)を第1のスロットの{2、3、4}のSC-FDMAシンボルに配置し、次に、第2のスロットの{2、3、4}に配置する。尚、単一のSC-FDMAシンボルにおいて、r(p) PUCCH(*)は番号の小さいサブキャリアから順番に配置される。
 尚、単一のPUCCHリソースに対応するDMRSにおいて、w’(i)は、[1 1 1]と[1 ej2π/3 ej4π/3]と[1 ej4π/3 ej2π/3]とのうち1つに対応する。
 PUCCHは、端末装置3が、下りリンクサブフレームを割り当てられた場合に、割り当てられた下りリンクデータの受信確認応答を送信するために使用されることができる。例えば、PUCCHは、PDSCH(DL-SCH、下りリンクデータ)に対する受信確認応答を送信するために使用されてもよい。また、PUCCHは、端末装置3が、下りリンクのsTTIを割り当てられた場合に、割り当てられた下りリンクデータの受信確認応答を行うために使用されることができる。例えば、PUCCHは、sPDSCH(DL-SCH、下りリンクデータ)に対する受信確認応答を送信するために使用されてもよい。
 図7は、sTTIに割り当てられた下りリンクデータの受信確認応答を行うためのPUCCHの構成の一例を示す図である。例えば、斜線で示されるOSに復調用の参照信号(DMRS)が割り当てられ、格子で示されるOSに受信確認応答用の信号が割り当てられる。このように、sTTIに割り当てられた下りリンクデータの受信確認応答を行うためのチャネルは、sTTIで構成されても良い。ここで、sTTIで構成される下りリンクデータの受信確認応答を行うためのチャネルを、sPUCCHとも呼称する。すなわち、sPUCCHは、sTTIにおける下りリンクデータに対する受信確認応答を送信するために使用されてもよい。図7は、2-symbol TTIでsPUCCHが構成される一例を示しているが、本実施形態に係るsPUCCHはこの一例に限定されず、いかなるsTTIによって構成されても良い。
 物理下りリンク共用チャネル(PDSCH; Physical Downlink Shared Channel)は、下りリンクデータの他、ランダムアクセスに対する返答(ランダムアクセスレスポンス、RAR)、ページングや、物理報知情報チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして端末装置3に通知するためにも使用される。物理下りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。物理下りリンク共用チャネルは物理下りリンク制御チャネルが送信されるOFDMシンボル以外のOFDMシンボルに配置されて送信される。すなわち、物理下りリンク共用チャネルと物理下りリンク制御チャネルは1サブフレーム内で時分割多重されている。
 PDSCHは、sTTIによって構成されても良い。sTTIによって構成されるPDSCHをsPDSCHとも呼称する。
 物理上りリンク共用チャネル(PUSCH; Physical Uplink Shared Channel)は、主に上りリンクデータと上りリンク制御情報を送信し、CSIやACK/NACKなどの上りリンク制御情報を含めることも可能である。また、上りリンクデータの他、上位層制御情報であるレイヤ2メッセージおよびレイヤ3メッセージを端末装置3から基地局装置1に通知するためにも使用される。また、下りリンクと同様に物理上りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
 PUSCHは、sTTIによって構成されても良い。sTTIによって構成されるPUSCHをsPUSCHとも呼称する。
 上りリンクリファレンスシグナル(上りリンク参照信号;Uplink Reference Signal、上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、基地局装置1が、物理上りリンク制御チャネルPUCCHおよび/または物理上りリンク共用チャネルPUSCHを復調するために使用する復調参照信号(DMRS;Demodulation Reference Signal)と、基地局装置1が、主に、上りリンクのチャネル状態を推定するために使用するサウンディング参照信号(SRS;Sounding Reference Signal)が含まれる。また、サウンディング参照信号には、周期的に送信される周期的サウンディング参照信号(Periodic SRS)と、基地局装置1から指示されたときに送信される非周期的サウンディング参照信号(Aperiodic SRS)とがある。
 物理ランダムアクセスチャネル(PRACH; Physical Random Access Channel)は、プリアンブル系列を通知(設定)するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、複数のシーケンスによって基地局装置1へ情報を通知するように構成される。例えば、64種類のシーケンスが用意されている場合、6ビットの情報を基地局装置1へ示すことができる。物理ランダムアクセスチャネルは、端末装置3の基地局装置1へのアクセス手段として用いられる。
 また、端末装置3と基地局装置1は、キャリアアグリゲーションによって複数の異なる周波数バンド(周波数帯)の周波数(コンポーネントキャリア、または周波数帯域)を集約(アグリゲート、aggregate)して一つの周波数(周波数帯域)のように扱う技術を適用してもよい。コンポーネントキャリアには、上りリンクに対応する上りリンクコンポーネントキャリアと、下りリンクに対応する下りリンクコンポーネントキャリアとがある。本明細書において、周波数と周波数帯域は同義的に使用され得る。
 例えば、キャリアアグリゲーションによって周波数帯域幅が20MHzのコンポーネントキャリアを5つ集約した場合、キャリアアグリゲーションを可能な能力を持つ端末装置3はこれらを100MHzの周波数帯域幅とみなして送受信を行う。なお、集約するコンポーネントキャリアは連続した周波数であっても、全てまたは一部が不連続となる周波数であってもよい。例えば、使用可能な周波数バンドが800MHz帯、2GHz帯、3.5GHz帯である場合、あるコンポーネントキャリアが800MHz帯、別のコンポーネントキャリアが2GHz帯、さらに別のコンポーネントキャリアが3.5GHz帯で送信されていてもよい。
 また、同一周波数帯の連続または不連続の複数のコンポーネントキャリアを集約することも可能である。各コンポーネントキャリアの周波数帯域幅は端末装置3の受信可能周波数帯域幅(例えば20MHz)よりも狭い周波数帯域幅(例えば5MHzや10MHz)であっても良く、集約する周波数帯域幅が各々異なっていても良い。周波数帯域幅は、後方互換性を考慮して従来のセルの周波数帯域幅のいずれかと等しいことが望ましいが、従来のセルの周波数帯域と異なる周波数帯域幅でも構わない。
 また、後方互換性のないコンポーネントキャリア(キャリアタイプ)を集約してもよい。なお、基地局装置1が端末装置3に割り当てる(設定する、追加する)上りリンクコンポーネントキャリアの数は、下りリンクコンポーネントキャリアの数と同じか少ないことが望ましい。
 無線リソース要求のための上りリンク制御チャネルの設定が行われる上りリンクコンポーネントキャリアと、当該上りリンクコンポーネントキャリアとセル固有接続される下りリンクコンポーネントキャリアから構成されるセルは、プライマリセル(PCell:Primary cell)と称される。また、プライマリセル以外のコンポーネントキャリアから構成されるセルは、セカンダリセル(SCell:Secondary cell)と称される。端末装置3は、プライマリセルでページングメッセージの受信、報知情報の更新の検出、初期アクセス手順、セキュリティ情報の設定などを行う一方、セカンダリセルではこれらを行わないでもよい。
 プライマリセルは活性化(Activation)および不活性化(Deactivation)の制御の対象外であるが(つまり必ず活性化しているとみなされる)、セカンダリセルは活性化および不活性化という状態(state)を持ち、これらの状態の変更は、基地局装置1から明示的に指定されるほか、コンポーネントキャリア毎に端末装置3に設定されるタイマーに基づいて状態が変更される。プライマリセルとセカンダリセルとを合わせてサービングセル(在圏セル)と称する。
 なお、キャリアアグリゲーションは、複数のコンポーネントキャリア(周波数帯域)を用いた複数のセルによる通信であり、セル・アグリゲーションとも称される。なお、端末装置3は、周波数毎にリレー局装置(またはリピーター)を介して基地局装置1と無線接続されても良い。すなわち、本実施形態の基地局装置1は、リレー局装置に置き換えることが出来る。
 基地局装置1は端末装置3が該基地局装置1で通信可能なエリアであるセルを周波数毎に管理する。1つの基地局装置1が複数のセルを管理していてもよい。セルは、端末装置3と通信可能なエリアの大きさ(セルサイズ)に応じて複数の種別に分類される。例えば、セルは、マクロセルとスモールセルに分類される。さらに、スモールセルは、そのエリアの大きさに応じて、フェムトセル、ピコセル、ナノセルに分類される。また、端末装置3がある基地局装置1と通信可能であるとき、その基地局装置1のセルのうち、端末装置3との通信に使用されるように設定されているセルは在圏セル(Serving cell)であり、その他の通信に使用されないセルは周辺セル(Neighboring cell)と称される。
 言い換えると、キャリアアグリゲーション(キャリアアグリゲーションとも称す)において、設定された複数のサービングセルは、1つのプライマリセルと1つまたは複数のセカンダリセルとを含む。
 プライマリセルは、初期コネクション構築プロシージャが行なわれたサービングセル、コネクション再構築プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルである。プライマリセルは、プライマリー周波数でオペレーションする。コネクションが(再)構築された時点、または、その後に、セカンダリセルが設定されてもよい。セカンダリセルは、セカンダリー周波数でオペレーションする。なお、コネクションは、RRCコネクションと称されてもよい。CAをサポートしている端末装置3に対して、1つのプライマリセルと1つ以上のセカンダリセルで集約される。
 以下では、デュアルコネクティビティの基本構造(アーキテクチャー)について説明する。例えば、端末装置3が、複数の基地局装置1(例えば、基地局装置1-1、基地局装置1-2)と同時に接続している場合を説明する。基地局装置1-1はマクロセルを構成する基地局装置であり、基地局装置1-2はスモールセルを構成する基地局装置であるとする。このように、端末装置3が、複数の基地局装置1に属する複数のセルを用いて同時に接続することをデュアルコネクティビティと称する。各基地局装置1に属するセルは同じ周波数で運用されていてもよいし、異なる周波数で運用されていてもよい。
 なお、キャリアアグリゲーションは、複数のセルを一つの基地局装置1が管理し、各セルの周波数が異なるという点がデュアルコネクティビティと異なる。換言すると、キャリアアグリゲーションは、一つの端末装置3と一つの基地局装置1とを、周波数が異なる複数のセルを介して接続させる技術であるのに対し、デュアルコネクティビティは、一つの端末装置3と複数の基地局装置1とを、周波数が同じまたは異なる複数のセルを介して接続させる技術である。
 端末装置3と基地局装置1は、キャリアアグリゲーションに適用される技術を、デュアルコネクティビティに対して適用することができる。例えば、端末装置3と基地局装置1は、プライマリセルおよびセカンダリセルの割り当て、活性化/不活性化などの技術をデュアルコネクティビティにより接続されるセルに対して適用してもよい。
 以下、本実施形態におけるPUCCHでの送信に対する送信電力制御について説明する。
 端末装置3は、PUCCHでの送信を行う場合に、あるセルcに対する、あるサブフレームiにおけるPUCCHでの送信に対する送信電力値を、数式(1)に基づいてセットする。数式(1)におけるPreal_PUCCH,c(i)は、数式(2)に基づいて定義される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、Preal_PUCCH,c(i)は、PUCCHに対する実際の送信(a real transmission)に基づいて算出される(推定される)電力値である。また、PUCCHに対する実際の送信に基づいて電力値が算出される(推定される)とは、PUCCHでの実際の送信に基づいて電力値が算出される(推定される)ことの意味を含む。
 ここで、PPUCCH,c(i)は、第iサブフレームにおけるPUCCHでの送信に対する送信電力値を示す。P0_PUCCH,cは、PUCCHでの送信に対する基本となる送信電力を示すパラメータであり、上位層から指示される。P0_PUCCH,cは、P0_NOMINAL_PUCCH、c及びP0_UE_PUCCH、cにより構成される。P0_NOMINAL_PUCCH、c及びP0_UE_PUCCH、cは、それぞれ上位層から支持される。ここで、P0_NOMINAL_PUCCH、c及びP0_UE_PUCCH、cは、PUCCHフォーマット((s)PUCCHの構成方法でもよい)に基づいて決定されてもよい。また、P0_NOMINAL_PUCCH、c及びP0_UE_PUCCH、cは、送信されるスケジューリングリクエストのビット数に基づき決定されてもよい。
 h(nCQI、HARQ)は、PUCCHで送信されるビット数およびPUCCHのフォーマットに基づいて算出される値である。すなわち、PUCCHフォーマット((s)PUCCHの構成方法でもよい)に基づいて、h(nCQI、HARQ)が決定されてもよい。ここで、nCQIはPUCCHで送信されるチャネル状態情報のビット数を示し、nHARQはPUCCHで送信されるHARQ-ACKのビット数を示す。ここで、h(nCQI、HARQ)に、PUCCHで送信されるスケジューリングリクエストのビット数が含まれてもよい。つまり、数式(2)において、h(nCQI、HARQ)の代わりにh(nCQI、HARQ、nSR)が用いられてもよい。なお、nSRは、送信されるスケジューリングリクエストビット数に関連してよい。例えば、h(nCQI、HARQ、1)=XSR、h(nCQI、HARQ、0)=Xであってもよい。XSR、及びXはそれぞれ、1ビットのスケジューリングリクエストが送信される場合、及びスケジューリングリクエストが送信されない場合のh(nCQI、HARQ、nSR)の値である。例えば、XSR=0、X=10*Log10(2)である。XSR及びSは、nCQI及びnHARQに基づいて決定されてもよい。
 ΔF_PUCCH(F)は、PUCCHのフォーマット毎に上位層から指示されるオフセット値である。すなわち、PUCCHフォーマット((s)PUCCHの構成方法でもよい)毎にオフセット値が指示されてもよい。例えば、PUCCHフォーマット1aに対するΔF_PUCCH(F)は常に0である。例えば、(s)PUCCHに対して、スケジューリングリクエストが送信される場合にΔF_PUCCH(F)=0であり、スケジューリングリクエストが送信されない場合にΔF_PUCCH(F)=10*Log10(2)であってもよい。
 端末装置3は、数式(3)に基づいて、g(i)の値をセットしてもよい。
Figure JPOXMLDOC01-appb-M000003
 ここで、δPUCCHは、補正値(a correction value)であり、TPCコマンドと呼称される。すなわち、δPUCCH(i-KPUCCH)は、g(i-1)に累積される値を示している。また、δPUCCH(i-KPUCCH)は、あるサブフレーム(i-KPUCCH)で受信した、あるセルに対する下りリンクグラントおよびPUCCHに対するDCIフォーマット3/3Aに含まれるPUCCHに対するTPCコマンドのフィールドにセットされた値に基づいて指示される。
 例えば、下りリンクグラントおよびPUCCHに対するDCIフォーマット3に含まれるPUCCHに対するTPCコマンドのフィールド(2ビットの情報フィールド)がセットされる値は、累積される補正値{-1、0、1、3}にマップされる。例えば、PUCCHに対するDCIフォーマット3Aに含まれるPUCCHに対するTPCコマンドのフィールド(1ビットの情報フィールド)がセットされる値は、累積される補正値{-1、1}にマップされる。
 KPUCCHの値は、例えば4である。KPUCCHの値はPUCCHの(s)TTI長や、sPUCCHに含まれる受信確認応答に対応するPDSCHの(s)TTI長に基づいて決定されても良い。
 本実施形態に係るsPUCCHの構成方法の一例(構成方法1)は、数式(4)に基づいて決定される系列である。
Figure JPOXMLDOC01-appb-M000004
 ここで、SはsPUCCHの系列であり、α及びαはそれぞれサイクリックシフトである。ここで、sPUCCHの系列Sの構成方法を構成方法1とも呼称する。なお、以下では、系列r’u,v(n)をr(n)とも呼称する。また、α1に基づく系列(数式(4)における右辺第1項)を参照信号系列とも呼称する。また、αに基づく系列(数式(4)における右辺第2項)をデータ系列とも呼称する。また、数式(4)における右辺第1項を第1(または第2)の系列、及びαを第1(または第2)のサイクリックシフトとも呼称する。また、数式(4)における右辺第2項を第2(または第1)の系列、及びαを第2(または第1)のサイクリックシフトとも呼称する。
 ここで、構成方法1は、異なるサイクリックシフトが乗算された(施された)複数の系列が、1つのSC-FMDAシンボル内に含まれる方法である。端末装置3により送信されるsPUCCH系列Sは、基地局装置1により受信されることができる。例えば、基地局装置1は、受信したsPUCCH系列Sに対してr(n)による相関処理を行なうことにより、サイクリックシフトα及びαを検出することができる。次いで、基地局装置1は、異なるサイクリックシフトα及びαが施された系列の位相差等を検出することによりd(0)を推定することが可能である。
 sPUCCHは、少なくとも、SR、受信確認応答(ACK/NACK、A/N等とも呼称)を送信するために用いられてもよい。つまり、sPUCCHを用いて送信される情報は、少なくとも、SRのみ、A/Nのみ、及び、SR+A/N(SR及びA/N)を示す情報である(以下では、SRのみ、A/Nのみ、及び、SR+A/Nを示す情報を含めて上りリンク制御情報とも呼称する)。
 サイクリックシフトαおよび/またはαの値とSRが関連してもよい。つまり、αおよび/またはαが特定の値を示す場合に、基地局装置1は、SRが送信されたと解釈してもよい。つまり、αおよび/またはαの値に基づいて、正のSRおよび負のSRの何れが送信されたかが示されてもよい。また、サイクリックシフトαおよびαの差とSRが関連してもよい。つまり、αおよび/αの差が特定の値を示す場合に、基地局装置1は、SRが送信されたと解釈してもよい。つまり、αおよび/またはαの差に基づいて、正のSRおよび負のSRの何れが送信されたかが示されてもよい。
 d(0)の値とSRが関連してもよい。つまり、d(0)が特定の値(変調シンボル値、ビット系列等)を示す場合に、基地局装置1は、SRが送信されたと解釈してもよい。つまり、d(0)の値に基づいて、正のSRおよび負のSRの何れが送信されたかが示されてもよい。
 サイクリックシフトαおよび/またはαの値とA/Nが関連してもよい。つまり、αおよび/またはαが特定の値を示す場合に、基地局装置1は、A/Nが送信されたと解釈してもよい。また、サイクリックシフトαおよびαの差とA/Nが関連してもよい。つまり、αおよび/またはαの値に基づいて、ACKおよびNACKの何れが送信されたかが示されてもよい。つまり、αおよび/αの差が特定の値を示す場合に、基地局装置1は、A/Nが送信されたと解釈してもよい。つまり、αおよび/またはαの差に基づいて、ACKおよびNACKの何れが送信されたかが示されてもよい。
 d(0)の値とA/Nが関連してもよい。つまり、d(0)が特定の値(変調シンボル値、ビット系列等)を示す場合に、基地局装置1は、A/Nが送信されたと解釈してもよい。つまり、d(0)の値に基づいて、ACKおよびNACKの何れが送信されたかが示されてもよい。
 ここで、αの値、αの値、d(0)の値、および、SRが関連してもよい。つまり、α、α、d(0)が特定の値を示す場合に、基地局装置1は、SRが送信されたと解釈してもよい。つまり、α、α、d(0)に基づいて、正のSRおよび負のSRの何れが送信されたかが示されてもよい。
 ここで、αの値、αの値、d(0)の値、および、A/Nが関連してもよい。つまり、α、α、d(0)が特定の値を示す場合に、基地局装置1は、A/Nが送信されたと解釈してもよい。つまり、α、α、d(0)に基づいて、ACKおよびNACKの何れが送信されたかが示されてもよい。
 ここで、構成方法1において、上りリンク制御情報のそれぞれに対して、適切なサイクリックシフトを割り当てることができる。すなわち、SRのみ、A/Nのみ、及び、SR+A/Nのそれぞれに対して、適切なサイクリックシフトを割り当てることができる。
 構成方法1に基づくsPUCCHにおける上りリンク制御情報へのサイクリックシフトの割当方法の一例(以下、割当方法1)において、SRのみが送信される場合には(α、α)=(α、α)であってもよい。また、A/Nのみが送信される場合には(α、α)=(α、α)であってもよい。また、SR+A/Nが送信される場合には(α、α)=(α、α)であってもよい。ここで、α、α及びαは、異なるサイクリックシフト量を示してもよい。
 すなわち、SRのみが送信される場合におけるαと、A/Nのみが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。また、SRのみが送信される場合におけるαと、SR+A/Nが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。また、A/Nのみが送信される場合におけるαと、SR+A/Nが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。
 また、構成方法1に基づくsPUCCHにおける上りリンク制御情報へのサイクリックシフトの割当方法の別の一例(以下、割当方法2)において、SRのみが送信される場合には(α、α)=(α、α)であってもよい。また、A/Nのみが送信される場合には(α、α)=(α、α)であってもよい。また、SR+A/Nが送信される場合に(α、α)=(α、α)であってもよい。すなわち、SRのみを送信するsPUCCHにおいて、数式(4)におけるd(0)を用いないことから、α=α=αとすることで、端末装置3または基地局装置1の構成の簡易化、または送信効率または検出性能の向上等が期待される。
 すなわち、SRのみが送信される場合において、αとαとして、同一のサイクリックシフト量(α)が用いられてもよい。また、SRのみが送信される場合におけるα(α)と、A/Nのみが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。また、SRのみが送信される場合におけるα(α)と、SR+A/Nが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。また、A/Nのみが送信される場合におけるαと、SR+A/Nが送信される場合におけるαとして、同一のサイクリックシフト量(α)が用いられてもよい。
 ここで、割当方法2が端末装置3に適用される場合、少なくともA/Nが送信される場合と比較して、SRのみが送信される場合に参照信号系列に割り当てられる電力が2倍となる。ここで、少なくともA/Nが送信される場合とは、A/Nのみが送信される場合、および/または、SR+A/Nが送信される場合を含んでもよい。これは、α=αとしており、右辺第2項が右辺第1項に加算されることに起因している。そのため、基地局装置1は、SRのみの送信が期待される場合と少なくともA/Nの送信が期待される場合とで、受信を期待する電力の変更が要求される。また、基地局装置1がSR+A/Nの受信を期待する場合において、端末装置3がA/Nを送信しない場合、端末装置3がA/Nを送信する場合と比較して参照信号系列に割り当てられる電力が2倍となる。
 端末装置3は、SRのみが送信される場合と、少なくともA/Nが送信される場合とで、送信電力を変更することができる。つまり、端末装置3は、割り当てられたサイクリックシフトに応じて、送信電力を変更することができる。例えば、端末装置3は、SRのみが送信される場合の送信電力を、少なくともA/Nが送信される場合の送信電力のX倍とすることができる。例えば、Xは2である。つまり、端末装置3は、送信される上りリンク制御情報の種類に応じて、異なる値Xに基づいて送信電力を変更することができる。
 端末装置3は、SRのみが送信される場合と、少なくともA/Nが送信される場合とで、異なる送信電力制御を適用しても良い。つまり、端末装置3は、割り当てられたサイクリックシフトに応じて、異なる送信電力制御を適用しても良い。例えば、少なくともA/Nが送信される場合に適用される送信電力制御は数式(1)及び数式(2)に基づき、SRのみが送信される場合に適用される送信電力制御は数式(1)及び数式(2)に基づかない方法でも良い。例えば、SRのみが送信される場合に適用される送信電力制御は数式(5)に基づいてもよい。
Figure JPOXMLDOC01-appb-M000005
 数式(5)では、数式(2)に対して新たなオフセット用パラメータXが導入されている。例えば、オフセット用パラメータXは、少なくともA/Nが送信される場合に適用される場合に0であり、SRのみが送信される場合に適用される場合に-10*Log10(2)であってもよい。つまり、オフセット用パラメータは、送信される上りリンク制御情報の種類に基づき、異なってもよい。また、端末装置がsPUCCH送信時に適用する送信電力制御のために用いられる数式は、送信される上りリンク制御情報に応じて、異なってもよい。
 端末装置3は、SRのみが送信される場合と、少なくともA/Nが送信される場合とで、異なる送信電力制御のためのパラメータを用いても良い。つまり、端末装置3は、割り当てられたサイクリックシフトに応じて、異なる送信電力制御情報を適用しても良い。
 ここで、例えば、送信電力制御制御情報には、Pc_max,c、PL、h(nCQI,nHARQ)、nCQI,nHARQ、ΔF_PUCCH(F)、g(i)、δPUCCH、および/または、KPUCCHが含まれても良い。つまり、端末装置3は、送信電力制御情報に基づきsPUCCHの送信電力制御を行うことができる。
 端末装置3は、(s)PUCCHを構成するSC-FDMAシンボルの数に基づき、異なる送信電力制御を適用することができる。例えば、端末装置3は、(s)PUCCHを構成するSC-FDMAシンボル数がNsPUCCH以下の場合に、上りリンク制御情報に応じて異なる送信電力制御を(s)PUCCHに適用し、(s)PUCCHを構成するSC-FDMAシンボル数がNsPUCCHより大きいの場合に、上りリンク制御情報によらず、数式(1)及び数式(2)に基づく送信電力制御を、(s)PUCCHに対して適用してもよい。また、別の一例では、端末装置3は、(s)PUCCHを構成するSC-FDMAシンボル数NsPUCCHと送信電力とを関連付ける関数またはテーブルに基づく送信電力制御を適用してもよい。
 端末装置3は、(s)PUCCHの帯域幅に基づき、異なる送信電力制御を適用することができる。例えば、端末装置3は、(s)PUCCHの帯域幅がWsPUCCH以下の場合に、上りリンク制御情報に応じて異なる送信電力制御を(s)PUCCHに適用し、(s)PUCCHの帯域幅がWsPUCCHより大きいの場合に、上りリンク制御情報によらず、数式(1)及び数式(2)に基づく送信電力制御を、(s)PUCCHに対して適用してもよい。また、別の一例では、端末装置3は、(s)PUCCHの帯域幅WsPUCCHと送信電力とを関連付ける関数またはテーブルに基づく送信電力制御を適用してもよい。
 例えば、基地局装置1は、端末装置3によってSRのみが送信される場合と、少なくともA/Nが送信される場合のそれぞれにおいて用いられる送信電力制御情報(パラメータ、インデックス、テーブル、数式、計算方法等)を、上位層のシグナリング(RRCシグナリング)、下りリンク制御情報(DCI)、PDCCH、および/または、PDSCH等を用いて送信(設定)してもよい。
 続いて、サイクリックシフトα、α、αの関係性を説明する。図8は、割当方法1または割当方法2に基づくsPUCCHのα、α、αの関係性の一例(サイクリックシフト関係性1)を示す図である。なお、割当方法2に基づくsPUCCHでは、SRのみが送信される場合にαが与えられないとみなしてもよい。図8に示す一例では、上りリンク制御情報のそれぞれが送信される場合のサイクリックシフトα、α、αが変わらない。そのため、実装の容易性等の利点も期待される。一方で、少なくともA/Nが送信される場合には、2つのサイクリックシフト間の周波数領域の間隔が2*Nとなり、基地局装置1の検出精度が課題となる。ここで、Nは、サイクリックシフトの単位であり、例えば、位相回転量(2π/12等が用いられてもよい)である。つまり、サイクリックシフトは、時間方向(または周波数方向)の位相回転であってもよい。
 図9は、割当方法1または割当方法2に基づくsPUCCHのα、α、αの関係性の別の一例(サイクリックシフト関係性2)を示す図である。サイクリックシフト関係性2は、基地局装置1によって期待される上りリンク制御情報に応じて、α、α、αの値(及び関係性)が異なる一例である。これにより、A/Nのみの送信が期待される場合には、2つのサイクリックシフトα、α間の周波数領域の間隔が5*Nとなり、SR+A/Nの送信が期待される場合には、各サイクリックシフトα、α、α間の周波数領域の間隔が3*Nとなることで、基地局装置1の検出精度改善が期待される。つまり、例えばα、α、αは、SRのみの送信が期待される場合および/またはA/Nのみの送信が期待される場合にα=α+Δの関係を備え、SR+A/Nの送信が期待される場合に、α=2*Δ+α=Δ+αの関係を備えてもよい。Δは、αおよびαの間隔(または差)が最大になるよう設定されてもよい。また、Δは、α、αおよびαの間隔(または差)が最大になるよう設定されてもよい。また、例えばα、α、αは、SR+A/Nの送信が期待される場合に、α=Δ2B+α、α=Δ2A+α2Aの関係を備えてもよい。ここで、Δ2Bは、αおよびαの間隔(または差)が最大になるよう設定されてもよい。また、ここで、Δ2Aは、αおよびαの間隔(または差)が最大になるよう設定されてもよい。
 つまり、端末装置3は、基地局装置1によって送信が期待される上りリンク制御情報の種類、サブフレーム番号、sTTIの番号またはsTTI長等に応じて、sPUCCH構成に係るサイクリックシフトを変更することができる。なお、sPUCCH構成に係るサイクリックシフトのためのCS制御情報(値、または値の設定方法、または値の計算のためのパラメータ等)は、基地局装置1により送信される上位層のシグナリング(RRCシグナリング)、下りリンク制御情報(DCI)、(s)PDCCH、および/または、(s)PDSCH等に基づいても良い。ここで、CS制御情報は、α、α、α、α、αの一部または全部に関する情報であってもよい。
 なお、サイクリックシフトの関係性は、必ずしも周波数領域の間隔に基づかなくても良い。例えば、端末装置3の観点から、数式(4)に基づき生成される系列Sの特性(例えば、PAPR(Peak to Average Power Ratio)やCM(Cubic Metric)等)に基づきサイクリックシフトの関係性またはα、α、αの値が設定されても良い。また、系列S1の特性はコンピュータシミュレーション等で計算された値でもよく、サイクリックシフトの関係性またはα、α、αの値はコンピュータシミュレーションに基づいてもよい(計算機で生成される系列またはCGS(Computer Generated Sequence)等とも呼ばれる)。
 構成方法1に基づくsPUCCHにおける上り制御情報へのサイクリックシフトの割当方法の一例(以下、割当方法3)は、(α、α)=(α、α)であり、SRの送信が期待される場合とA/Nの送信が期待される場合とでリソースインデックス(周波数、時間、空間等のリソースを指定するインデックス)が異なる。例えば、SRの送信が期待される場合とA/Nの送信が期待される場合とでsPUCCHの送信に使用されるRBが異なることができる。さらに、SR+A/Nの送信が期待される場合に、例えば、少なくともSRが送信される場合とA/Nのみが送信される場合とでリソースインデックスが異なることができる。
 本実施形態に係るsPUCCHの構成方法の別の一例(構成方法2)は、数式(6)に基づいて決定されることができる。
Figure JPOXMLDOC01-appb-M000006
 構成方法2では、1つのSC-FMDAシンボル内にサイクリックシフトが施された系列が単体で配置される。すなわち、構成方法2は、サイクリックシフトが乗算された(施された)1つの系列が、1つのSC-FMDAシンボル内に含まれる方法であってもよい。端末装置3により送信されるsPUCCH系列Sは、基地局装置1により受信されることができる。例えば、基地局装置1は、受信したsPUCCH系列Sに対してr(n)による相関処理を行なうことにより、サイクリックシフトαを検出することができる。
 図10の斜線部分に示すように、構成方法2では、1つのSC-FDMAシンボル内に、櫛状(Comb、インターレース、Interlace)に系列を割り当てることができる。例えば、図10に示すように、櫛状に系列が割り当てられる場合、2つの割当パターンが生成されることができる。ここで、図10における割当パターン1を割当パターンX1とも称する。また、図10における割当パターン2を割当パターンX2とも称する。なお、構成方法2は、図10の例に限定されず、櫛状に2以上の間隔を設けることにより、2以上の割当パターンが生成されてもよい。なお、構成方法2は、数式(5)以外の数式に基づいても良く、例えば、SRSの生成方法と同様の方法でも良い。なお、以下では、構成方法2において、図10に示される一例により構成されるsPUCCHを例にとり説明を行う。また、構成方法2に示す方法では、それぞれの割当パターンに、同一の、または異なるサイクリックシフトを施した系列を合成された系列によりsPUCCHが構成されても良い。
 構成方法2に基づくsPUCCHにおける上りリンク制御情報への割当パターンX1及びX2のために設定されるサイクリックシフトα 及びα の一例(以下、割当方法4)において、例えば、SRのみが送信される場合には(α 、α )=(α、null)であってもよい。また、A/Nのみが送信される場合には(α 、α )=(α、α)であってもよい。また、SR+A/Nが送信される場合には(α 、α )=(α、α)であっても良い。
 すなわち、SRのみが送信される場合におけるα と、A/Nのみが送信される場合におけるα と、A/Nのみが送信される場合におけるα として、同一のサイクリックシフト量(α)が用いられてもよい。
 ここで、nullは、サイクリックシフトが割り当てられず、系列が生成されないことを示していても良い。なお、SRのみが送信される場合に、(α 、α )=(α、α)が設定されても良い。また、SRのみが送信される場合に、(α 、α )=(α、α)が設定されても良い。なお、以下では、割当パターンX1に用いられる、数式(5)またはそれ以外の数式(または法則)に基づき生成される系列を第1(または第2)の系列とも呼称し、第1の系列に施されるサイクリックシフトαを第1(または第2)のサイクリックシフトとも呼称する。また、割当パターンX2に用いられる、数式(5)またはそれ以外の数式(または法則)に基づき生成される系列を第2(または第1)の系列とも呼称し、第2の系列に施されるサイクリックシフトαを第2(または第1)のサイクリックシフトとも呼称する。
 ここで、割当方法4が端末装置3に適用される場合、少なくともA/Nが送信される場合と比較して、SRのみが送信される場合には、割当パターン当たりの電力(割当電力)が2倍となる。これは、SRのみの場合に割当パターン2が割り当てられないためである。そのため、基地局装置1は、SRのみの送信が期待される場合と少なくともA/Nの送信が期待される場合とで、受信を期待する電力の変更が要求される。また、基地局装置1がSR+A/Nの受信を期待する場合において、端末装置3がA/Nを送信しない場合、端末装置3がA/Nを送信する場合と比較して参照信号系列に割り当てられる電力が2倍となる。
 端末装置3は、割当方法4が適用される際において、割当方法2が適用される場合と同様の方法を用いて、送信電力を決定してもよい。
 構成方法1および構成方法2は、1SC-FDMAシンボルでの構成が可能である。さらに、構成方法1または構成方法2に基づき生成された系列は、同一の系列を異なる周波数帯域にマッピングする(周波数ホッピング等)が適用されてもよい。ここで、周波数ホッピングが適用される系列は、厳密に同一の系列である必要はない。例えば、同一の情報を含む、異なる系列に対して周波数ホッピングが適用されてもよい。
 図11は、本実施形態に係る基地局装置1のブロック構成の一例を示す概略図である。基地局装置1は、上位層(上位層制御情報通知部、上位層処理部)301、制御部(基地局制御部)302、コードワード生成部303、下りリンクサブフレーム生成部304、OFDM信号送信部(下りリンク送信部)306、送信アンテナ(基地局送信アンテナ)307、受信アンテナ(基地局受信アンテナ)308、SC-FDMA信号受信部(CSI受信部)309、上りリンクサブフレーム処理部310を有する。下りリンクサブフレーム生成部304は、下りリンク参照信号生成部305を有する。また、上りリンクサブフレーム処理部310は、上りリンク制御情報抽出部(CSI取得部)311を有する。
 図12は、本実施形態に係る端末装置3のブロック構成の一例を示す概略図である。端末装置3は、受信アンテナ(端末受信アンテナ)401、OFDM信号受信部(下りリンク受信部)402、下りリンクサブフレーム処理部403、トランスポートブロック抽出部(データ抽出部)405、制御部(端末制御部)406、上位層(上位層制御情報取得部、上位層処理部)407、チャネル状態測定部(CSI生成部)408、上りリンクサブフレーム生成部409、SC-FDMA信号送信部(UCI送信部)411、送信アンテナ(端末送信アンテナ)412を有する。下りリンクサブフレーム処理部403は、下りリンク参照信号抽出部404を有する。また、上りリンクサブフレーム生成部409は、上りリンク制御情報生成部(UCI生成部)410を有する。
 まず、図11および図12を用いて、下りリンクデータの送受信の流れについて説明する。基地局装置2において、制御部302は、下りリンクにおける変調方式および符号化率などを示すMCS(Modulation and Coding Scheme)、データ送信に用いるRBを示す下りリンクリソース割り当て、HARQの制御に用いる情報(リダンダンシーバージョン、HARQプロセス番号、新データ指標)を保持し、これらに基づいてコードワード生成部303や下りリンクサブフレーム生成部304を制御する。上位層301から送られてくる下りリンクデータ(下りリンクトランスポートブロックとも称す)は、コードワード生成部303において、制御部302の制御の下で、誤り訂正符号化やレートマッチング処理などの処理が施され、コードワードが生成される。1つのセルにおける1つのサブフレームにおいて、最大2つのコードワードが同時に送信される。下りリンクサブフレーム生成部304では、制御部302の指示により、下りリンクサブフレームが生成される。まず、コードワード生成部303において生成されたコードワードは、PSK(Phase Shift Keying)変調やQAM(Quadrature Amplitude Modulation)変調などの変調処理により、変調シンボル系列に変換される。また、変調シンボル系列は、一部のRB内のREにマッピングされ、プレコーディング処理によりアンテナポート毎の下りリンクサブフレームが生成される。このとき、上位層301から送られてくる送信データ系列は、上位層における制御情報(例えば専用(個別)RRC(Radio Resource Control)シグナリング)である上位層制御情報を含む。また、下りリンク参照信号生成部305では、下りリンク参照信号が生成される。下りリンクサブフレーム生成部304は、制御部302の指示により、下りリンク参照信号を下りリンクサブフレーム内のREにマッピングする。下りリンクサブフレーム生成部304で生成された下りリンクサブフレームは、OFDM信号送信部306においてOFDM信号に変調され、送信アンテナ307を介して送信される。なお、ここではOFDM信号送信部306と送信アンテナ307を一つずつ有する構成を例示しているが、複数のアンテナポートを用いて下りリンクサブフレームを送信する場合は、OFDM信号送信部306と送信アンテナ307とを複数有する構成であってもよい。また、下りリンクサブフレーム生成部304は、PDCCHやEPDCCHなどの物理層の下りリンク制御チャネルを生成して下りリンクサブフレーム内のREにマッピングする能力も有することができる。複数の基地局装置(基地局装置1-1および基地局装置1-2)は、それぞれ個別の下りリンクサブフレームを送信する。
 端末装置3では、受信アンテナ401を介して、OFDM信号受信部402においてOFDM信号が受信され、OFDM復調処理が施される。下りリンクサブフレーム処理部403は、まずPDCCHやEPDCCHなどの物理層の下りリンク制御チャネルを検出する。より具体的には、下りリンクサブフレーム処理部403は、PDCCHやEPDCCHが割り当てられ得る領域においてPDCCHやEPDCCHが送信されたものとしてデコードし、予め付加されているCRC(Cyclic Redundancy Check)ビットを確認する(ブラインドデコーディング)。すなわち、下りリンクサブフレーム処理部403は、PDCCHやEPDCCHをモニタリングする。CRCビットが予め基地局装置から割り当てられたID(C-RNTI(Cell-Radio Network Temporary Identifier)、SPS-C-RNTI(Semi Persistent Scheduling―C-RNTI)など1つの端末装置に対して1つ割り当てられる端末固有識別子、あるいはTemporaly C-RNTI)と一致する場合、下りリンクサブフレーム処理部403は、PDCCHあるいはEPDCCHを検出できたものと認識し、検出したPDCCHあるいはEPDCCHに含まれる制御情報を用いてPDSCHを取り出す。制御部406は、制御情報に基づく下りリンクにおける変調方式および符号化率などを示すMCS、下りリンクデータ送信に用いるRBを示す下りリンクリソース割り当て、HARQの制御に用いる情報を保持し、これらに基づいて下りリンクサブフレーム処理部403やトランスポートブロック抽出部405などを制御する。より具体的には、制御部406は、下りリンクサブフレーム生成部304におけるREマッピング処理や変調処理に対応するREデマッピング処理や復調処理などを行うように制御する。受信した下りリンクサブフレームから取り出されたPDSCHは、トランスポートブロック抽出部405に送られる。また、下りリンクサブフレーム処理部403内の下りリンク参照信号抽出部404は、下りリンクサブフレームから下りリンク参照信号を取り出す。トランスポートブロック抽出部405では、コードワード生成部303におけるレートマッチング処理、誤り訂正符号化に対応するレートマッチング処理、誤り訂正復号化などが施され、トランスポートブロックが抽出され、上位層407に送られる。トランスポートブロックには、上位層制御情報が含まれており、上位層407は上位層制御情報に基づいて制御部406に必要な物理層パラメータを知らせる。なお、複数の基地局装置1(基地局装置1-1および基地局装置1-2)は、それぞれ個別の下りリンクサブフレームを送信しており、端末装置3ではこれらを受信するため、上述の処理を複数の基地局装置1毎の下りリンクサブフレームに対して、それぞれ行うようにしてもよい。このとき、端末装置3は複数の下りリンクサブフレームが複数の基地局装置2から送信されていると認識してもよいし、認識しなくてもよい。認識しない場合、端末装置3は、単に複数のセルにおいて複数の下りリンクサブフレームが送信されていると認識するだけでもよい。また、トランスポートブロック抽出部405では、トランスポートブロックが正しく検出できたか否かを判定し、判定結果は制御部406に送られる。
 次に、上りリンク信号の送受信の流れについて説明する。端末装置3では制御部406の指示の下で、下りリンク参照信号抽出部404で抽出された下りリンク参照信号がチャネル状態測定部408に送られ、チャネル状態測定部408においてチャネル状態および/または干渉が測定され、さらに測定されたチャネル状態および/または干渉に基づいて、CSIが算出される。また、制御部406は、トランスポートブロックが正しく検出できたか否かの判定結果に基づいて、上りリンク制御情報生成部410にHARQ-ACK(DTX(未送信)、ACK(検出成功)またはNACK(検出失敗))の生成および下りリンクサブフレームへのマッピングを指示する。端末装置3は、これらの処理を複数のセル毎の下りリンクサブフレームに対して、それぞれ行う。上りリンク制御情報生成部410では、算出されたCSIおよび/またはHARQ-ACKを含むPUCCHが生成される。上りリンクサブフレーム生成部409では、上位層407から送られる上りリンクデータを含むPUSCHと、上りリンク制御情報生成部410において生成されるPUCCHとが上りリンクサブフレーム内のRBにマッピングされ、上りリンクサブフレームが生成される。上りリンクサブフレームは、SC-FDMA信号送信部411において、SC-FDMA変調が施されSC-FDMA信号が生成され、送信アンテナ412を介して送信される。
 また、上記各実施形態では、プライマリセルやPSセルという用語を用いて説明したが、必ずしもこれらの用語を用いる必要はない。例えば、上記各実施形態におけるプライマリセルをマスターセルと呼ぶこともできるし、上記各実施形態におけるPSセルをプライマリセルと呼ぶこともできる。
 以下、本実施形態における、端末装置3および基地局装置1の種々の態様について説明する。
 (1)本実施形態の第1の態様は、端末装置3であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、前記PUCCHでの送信に対する送信電力を決定する制御部を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (2)本実施形態の第1の態様において、前記送信部は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (3)本実施形態の第2の態様は、基地局装置1であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を受信する受信部と、前記PUCCHに対する送信電力を端末装置に指示する制御部を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (4)本実施形態の第2の態様において、前記受信部は、前記上りリンク信号が受信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を受信する。
 (5)本実施形態の第3の態様は、端末装置3に用いられる通信方法であって、第3の系列に対して第1のサイクリックシフトを適用することによって第1の系列を生成し、前記第3の系列に対して第2のサイクリックシフトを適用することによって第2の系列を生成し、第1の系列、および、第2の系列に基づき、上りリンク信号を生成し、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて前記PUCCHでの送信電力を決定し、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する。
 (6)本実施形態の第3の態様において、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (7)本実施形態の第4の態様は、端末装置3に実装される集積回路であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信回路と、前記PUCCHでの送信に対する送信電力を決定する制御回路を備え、前記上りリンク信号は、第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記PUCCHでの送信に対する送信電力は、前記第1のサイクリックシフトの値と、前記第2のサイクリックシフトの値に基づいて与えられる。
 (8)本実施形態の第4の態様において、前記送信回路は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (9)本実施形態の第5の態様は、端末装置3であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、前記PUCCHでの送信に対するサイクリックシフトを決定する制御部を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 (10)本実施形態の第5の態様において、前記送信部は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (11)本実施形態の第5の態様において、前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される。
 (12)本実施形態の第6の態様は、基地局装置1であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を受信する受信部と、前記PUCCHに対するサイクリックシフトを端末装置に指示する制御部を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 (13)本実施形態の第6の態様において、前記受信部は、前記上りリンク信号が受信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を受信する。
 (14)本実施形態の第6の態様において、前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される。
 (15)本実施形態の第7の態様は、端末装置3の通信方法であって、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて第1のサイクリックシフトの値、および、第2のサイクリックシフトの値を生成し、第3の系列に対して前記第1のサイクリックシフトを適用することによって第1の系列を生成し、前記第3の系列に対して前記第2のサイクリックシフトを適用することによって第2の系列を生成し、前記第1の系列、および、前記第2の系列に基づき上りリンク信号を生成し、1つのSC-FDMAシンボルに対応するPUCCHで、前記上りリンク信号を送信する。
 (16)本実施形態の第7の態様において、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (17)本実施形態の第7の態様において、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて前記上りリンク信号を生成する。
 (18)本実施形態の第8の態様は、端末装置3に実装される集積回路であって、1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信回路と、前記PUCCHでの送信に対するサイクリックシフトを決定する制御回路を備え、前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる。
 (19)本実施形態の第8の態様において、前記送信回路は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する。
 (20)本実施形態の第8の態様において、前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される。
 本発明に関わる基地局装置1および端末装置3で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置3、基地局装置1-1あるいは基地局装置1-2の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置3、又は基地局装置1-1あるいは基地局装置1-2に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置1は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置1の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置1の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置3は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置1-1あるいは基地局装置1-2は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置2-1あるいは基地局装置2-2は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置3、基地局装置1-1あるいは基地局装置1-2の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置3、基地局装置1-1あるいは基地局装置1-2の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、端末装置もしくは通信装置の一例としてセルラー移動局装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
301 上位層
302 制御部
303 コードワード生成部
304 下りリンクサブフレーム生成部
305 下りリンク参照信号生成部
306 OFDM信号送信部
307 送信アンテナ
308 受信アンテナ
309 SC-FDMA信号受信部
310 上りリンクサブフレーム処理部
311 上りリンク制御情報抽出部
401 受信アンテナ
402 OFDM信号受信部
403 下りリンクサブフレーム処理部
404 下りリンク参照信号抽出部
405 トランスポートブロック抽出部
406 制御部
407 上位層
408 チャネル状態測定部
409 上りリンクサブフレーム生成部
410 上りリンク制御情報生成部
411 SC-FDMA信号送信部
412 送信アンテナ
1(1-1、1-2) 基地局装置
3(3A、3B) 端末装置
100 通信システム

Claims (12)

  1.  1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信部と、
     前記PUCCHでの送信に対するサイクリックシフトを決定する制御部を備え、
     前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、
     前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、
     前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、
     前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる
     端末装置。
  2.  前記送信部は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する
     請求項1に記載の端末装置。
  3.  前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される
     請求項1または2に記載の端末装置。
  4.  1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を受信する受信部と、
     前記PUCCHに対するサイクリックシフトを端末装置に指示する制御部を備え、
     前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、
     前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、
     前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、
     前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる
     基地局装置。
  5.  前記受信部は、前記上りリンク信号が受信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を受信する
     請求項1に記載の端末装置。
  6.  前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される
     請求項1または2に記載の端末装置。
  7.  端末装置の通信方法であって、
     前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて第1のサイクリックシフトの値、および、第2のサイクリックシフトの値を生成し、
     第3の系列に対して前記第1のサイクリックシフトを適用することによって第1の系列を生成し、
     前記第3の系列に対して前記第2のサイクリックシフトを適用することによって第2の系列を生成し、
     前記第1の系列、および、前記第2の系列に基づき上りリンク信号を生成し、
     1つのSC-FDMAシンボルに対応するPUCCHで、前記上りリンク信号を送信する
     通信方法。
  8.  前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する
     請求項7に記載の通信方法。
  9.  前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて前記上りリンク信号を生成する
     請求項7または8に記載の通信方法。
  10.  端末装置に実装される集積回路であって、
     1つのSC-FDMAシンボルに対応するPUCCHで、上りリンク信号を送信する送信回路と、
     前記PUCCHでの送信に対するサイクリックシフトを決定する制御回路を備え、
     前記上りリンク信号は、前記第1の系列、および、第2の系列に基づき生成され、
     前記第1の系列は、第3の系列に対して第1のサイクリックシフトを適用することによって与えられ、
     前記第2の系列は、前記第3の系列に対して第2のサイクリックシフトを適用することによって与えられ、
     前記第1のサイクリックシフトの値、および、前記第2のサイクリックシフトの値は、前記PUCCHにおいて、SRのみ、HARQ-ACKのみ、SRおよびHARQ-ACKのいずれが送信されるかに基づいて与えられる
     集積回路。
  11.  前記送信回路は、前記上りリンク信号が送信される第1の周波数帯域とは異なる第2の周波数帯域において、前記上りリンク信号を送信する
     請求項10に記載の集積回路。
  12.  前記上りリンク信号は、前記SRのみ、前記HARQ-ACKのみ、または、前記SRおよび前記HARQ-ACKに基づいて生成される
     請求項10または11に記載の集積回路。
PCT/JP2017/015152 2016-04-27 2017-04-13 端末装置、基地局装置、通信方法、および、集積回路 WO2017188012A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-088915 2016-04-27
JP2016088915A JP2019110357A (ja) 2016-04-27 2016-04-27 端末装置、基地局装置、通信方法、および、集積回路

Publications (1)

Publication Number Publication Date
WO2017188012A1 true WO2017188012A1 (ja) 2017-11-02

Family

ID=60161543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015152 WO2017188012A1 (ja) 2016-04-27 2017-04-13 端末装置、基地局装置、通信方法、および、集積回路

Country Status (2)

Country Link
JP (1) JP2019110357A (ja)
WO (1) WO2017188012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095239A1 (zh) * 2017-11-16 2019-05-23 Oppo广东移动通信有限公司 用于传输控制信息的方法、网络设备和终端设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3520504B1 (en) * 2016-09-30 2023-04-05 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods of performing power control of a physical channel in a communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523248A (ja) * 2008-04-21 2011-08-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御信号送信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523248A (ja) * 2008-04-21 2011-08-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御信号送信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"PUCCH design in eLAA", 3GPP TSG- RAN WG1#84B RL-162939, 15 April 2016 (2016-04-15), XP051080423 *
3GPP TS 36.211, March 2016 (2016-03-01), pages 29 - 46,61-62, XP055438437 *
LENOVO: "Considerations on TTI shortening for UL", 3GPP TSG-RAN WG1#84 RL-161018, 19 February 2016 (2016-02-19), XP051054322 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095239A1 (zh) * 2017-11-16 2019-05-23 Oppo广东移动通信有限公司 用于传输控制信息的方法、网络设备和终端设备
RU2749837C1 (ru) * 2017-11-16 2021-06-17 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ для передачи управляющей информации, сетевое устройство и терминальное устройство
US11516781B2 (en) 2017-11-16 2022-11-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting control information, network device, and terminal device

Also Published As

Publication number Publication date
JP2019110357A (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6439985B2 (ja) 端末装置、基地局装置、通信方法
JP6688882B2 (ja) 端末装置、基地局装置、および、通信方法
US9445406B2 (en) Wireless communication of channel state information using a single physical uplink channel
WO2017135385A1 (ja) 端末装置、基地局装置および通信方法
JP6524552B2 (ja) 端末装置、基地局装置、および通信方法
WO2015111325A1 (ja) ユーザ装置、基地局装置、集積回路、および、通信方法
WO2017135312A1 (ja) 端末装置および通信方法
WO2017002794A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017135213A1 (ja) 端末装置、基地局装置および通信方法
WO2017187697A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2016121433A1 (ja) 端末装置、基地局装置、通信方法および集積回路
JP6260031B2 (ja) ユーザ装置、基地局装置、集積回路、および、通信方法
JP2019145857A (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018016619A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016163369A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2017079338A (ja) 端末装置、基地局装置および方法
JP6028076B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
WO2017002804A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2015204514A (ja) 端末装置、および、基地局装置
WO2017188012A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016125580A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2017002801A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017002813A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016125584A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP2019149759A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789298

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP