WO2015046971A1 - 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치 - Google Patents

기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치 Download PDF

Info

Publication number
WO2015046971A1
WO2015046971A1 PCT/KR2014/009055 KR2014009055W WO2015046971A1 WO 2015046971 A1 WO2015046971 A1 WO 2015046971A1 KR 2014009055 W KR2014009055 W KR 2014009055W WO 2015046971 A1 WO2015046971 A1 WO 2015046971A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
resin
water
weight
Prior art date
Application number
PCT/KR2014/009055
Other languages
English (en)
French (fr)
Inventor
김경원
이남정
심화섭
박준욱
임이랑
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140128311A external-priority patent/KR101657356B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/024,670 priority Critical patent/US9715045B2/en
Priority to EP14847081.8A priority patent/EP3054327B1/en
Priority to CN201480054153.2A priority patent/CN105593719A/zh
Priority to JP2016545691A priority patent/JP2016535321A/ja
Publication of WO2015046971A1 publication Critical patent/WO2015046971A1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to an optical film, a polarizing plate including the same, and an image display apparatus, which have a functional coating layer including a conductive material such as a conductive polymer, an ionic liquid, or a metal oxide.
  • a conventional polarizing plate generally has a structure in which a triacetyl cellulose (TAC) film is laminated on both sides of a polyvinyl alcohol (hereinafter, referred to as 'PVA') polarizer.
  • TAC triacetyl cellulose
  • 'PVA' polyvinyl alcohol
  • TAC films cause durability problems due to dimensional changes over long periods of use due to moisture vulnerability, and to compensate for these disadvantages, cyclo-olefin polymers (COP), polycarbonates (PC) Or attempts have been made to apply a film of a composition having a high resistance to moisture and low retardation properties, such as an acrylic resin, to a polarizing plate.
  • the acrylic composition film is known to have advantages in terms of cost as well as optical properties and durability.
  • the acrylic film produced using the conventional acrylic resin has a high surface frictional force causing blocking (a phenomenon in which the film surface and the film surface meet and stick after winding) and the adhesion with the polarizer is not good. There was this.
  • a primer prepared by adding fine particles to a polyurethane polymer has been developed.
  • a polarizer protective film having excellent winding property by suppressing blocking occurring during winding, but also in this case, due to the high electrical insulating property of the acrylic film, static electricity may be generated during unwinding of the wound film. It is generated, which causes the problem that the foreign matter is adsorbed on the film substrate to contaminate the surface, and in severe cases lead to the generation of sparks, there is a problem that the safety of the worker is threatened.
  • the cleaning operation for removing the adsorbed foreign matter there is a problem that the foreign matter remains and optical defects occur.
  • the present invention is to solve the above problems, by providing a functional coating layer containing a conductive material in the acrylic film, to overcome the static electricity and the resulting defects in the process of unwinding the wound film and to ensure antistatic properties
  • a functional coating layer containing a conductive material in the acrylic film to overcome the static electricity and the resulting defects in the process of unwinding the wound film and to ensure antistatic properties
  • An acrylic optical film, and a polarizing plate and an image display device including the same are provided.
  • the present invention in one aspect, acrylic film; And a functional coating layer formed on at least one surface of the acrylic film, containing a conductive material and a water dispersible resin, and having a surface resistance of 10 9 W / Sq to 10 13 W / Sq.
  • the conductive material is a conductive polymer; Ionic liquids; Metal oxides; Or a mixture thereof.
  • the conductive polymer may be a polythiophene-based, polypyrrole-based, polyaniline-based high molecular compound or a mixture thereof.
  • the metal oxide may be doped zinc oxide (ZnO), doped tin oxide (ATO) or doped indium oxide (ITO).
  • the ionic liquid may be a cation consisting of alkylimidazolium, alkylphosphonium, N-alkylpyridinium, N, N'-dialkylimidazolium or a derivative thereof; Anions consisting of bromide, hexafluorophosphate, hexafluoroantimonite, tetrafluoroborate, rifluoromethane sulphate, methanesulfate, tosylate, chloride or derivatives thereof; And it may be one or more selected from the group consisting of a mixture thereof.
  • the functional coating layer preferably contains 1 to 10 parts by weight of the conductive polymer with respect to 100 parts by weight of the water-dispersible resin, and 5 to 25 parts by weight of the ionic liquid with respect to 100 parts by weight of the water-dispersible resin.
  • the metal oxide content is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the water dispersible resin.
  • the water-dispersible resin is a water-dispersed polyurethane resin, a water-dispersible acrylic resin, or a combination thereof.
  • the present invention provides a polarizing plate and an image display device including the optical film of the present invention.
  • the acrylic film of the present invention provides a functional coating layer containing a conductive material on the surface thereof, and thus has excellent antiblocking property and adhesiveness with a polarizer, while having a small amount of static electricity generated during the unwinding of the wound film, thereby preventing antistatic properties. This is excellent.
  • the present inventors have conducted research to develop an acrylic optical film having excellent antistatic effect without sacrificing optical properties and adhesiveness, thereby forming a functional coating layer containing a conductive material together with a water dispersible resin on the surface of the acrylic film.
  • the present invention has been found to be capable of producing an excellent optical film having excellent optical properties and adhesive properties as well as antistatic properties, which has been a disadvantage in the past, and completed the present invention.
  • the optical film of the present invention contains an acrylic film and a functional coating layer containing a conductive material and a water dispersible resin on at least one surface of the acrylic film and having a surface resistance of 10 9 W / Sq to 10 13 W / Sq.
  • the conductive material is characterized in that it comprises a conductive polymer such as polythiophene-based, polypyrrole-based, polyaniline-based, ionic liquid or metal oxide.
  • the functional coating layer of the optical film of the present invention preferably has a surface resistance of about 10 9 W / Sq to 10 13 W / Sq, and more preferably about 10 9 W / Sq to 10 12 W / Sq. Do.
  • a surface resistance of about 10 9 W / Sq to 10 13 W / Sq, and more preferably about 10 9 W / Sq to 10 12 W / Sq. Do.
  • the conductive polymer has an antistatic effect on the surface of the coating film is used to remove contaminants such as dust.
  • the conductive polymer is preferably a polythiophene-based, polypyrrole-based, polyaniline-based high molecular compound or a mixture thereof, and preferably has a hydrophilic functional group in the molecule.
  • the hydrophilic functional group include sulfo groups, amino groups, amide groups, imide groups, 4-ammonium bases, hydroxyl groups, mercapto groups, hydrazino groups, carboxyl groups, sulfate groups or salts thereof.
  • polyaniline-based high molecular compound is not limited thereto, but polyaniline sulfonic acid is preferably used as a commercially available polyaniline sulfonic acid, and aquaPASS-50Y manufactured by Mitsubishi Rayon may be used.
  • polymer compound a polythiophene-based compound, although not limited thereto, is more preferable, and polyethylenedioxythiophene (PEDOT) is particularly preferable.
  • PEDOT polyethylenedioxythiophene
  • Baytron P is a product in which polystyrenesulfonic acid (PSS) is added as a dopant to an aqueous dispersion in which polyethylenedioxythiophene (PEDOT) is dispersed in water.
  • PSS polystyrenesulfonic acid
  • PEDOT polyethylenedioxythiophene
  • the content of polyethylenedioxythiophene in the Baytron P is about 1.4%.
  • the functional coating layer is characterized in that it comprises about 1 to 10 parts by weight of the solids content of the conductive polymer with respect to 100 parts by weight based on the solids content of the water-dispersible resin, preferably 2 To about 5 parts by weight.
  • the conductive polymer content is less than 1 part by weight, it is difficult to obtain an antistatic effect.
  • the conductive polymer content is more than 10 parts by weight, the transparency and coating properties of the coating layer are lowered.
  • the ionic liquid is referred to as a ionic liquid because the ionic liquid is present as a liquid at a temperature of 100 °C or less, unlike a metal salt compound consisting of a metal cation and a non-metal anion.
  • the ionic liquid is composed of organic cations and anions, and has a vapor pressure of almost zero, flame retardant, ionic, low viscosity and high conductivity.
  • Ionic liquids that can be used in the present invention include cations, bromide, and hexafluorophosphate composed of alkylimidazolium, alkylphosphonium, N-alkylpyridinium, N, N'-dialkylimidazolium or derivatives thereof, and the like. , Hexafluoroantimonite, tetrafluoroborate, rifluoromethane sulphate, methane sulfate, tosylate, chloride or an anion consisting of its derivatives, etc., which can be used as a single type and mixed two or more kinds It is also possible to use.
  • a ionic liquid can also use a commercial item.
  • commercially available ionic liquids include, but are not limited to, IL-OH2, IL-OH8, IL-MA1, IL-MA2 or IL-S8 (KOEI).
  • the ionic liquid in the present invention is characterized in that it comprises 5 to 25 parts by weight based on 100 parts by weight based on the solids content of the water-dispersible resin, preferably 10 to 20 parts by weight.
  • the ionic liquid satisfies the above range, the antistatic performance is guaranteed, and when the ionic liquid exceeds 25 parts by weight, the coating property is lowered and the adhesion tends to be inferior.
  • ketone solvents such as toluene and methyl ether ketone, acetate solvents, lower alcohol solvents such as methyl alcohol, ethyl alcohol and isopropyl alcohol, aldehyde solvents such as dimethyl formaldehyde, diethyl ether and dipropyl ether Ether solvents such as alcohol ethers, amide solvents such as en-methyl-2-pyridyridone, sulfoxide solvents such as dimethyl sulfoxide, amine solvents such as alkyl amines, cyclic amines, aromatic amines, and the like. Any one or more of the solvents can be selected and used.
  • the metal oxide as the conductive material can be applied without limitation to those commonly used as antistatic agents in the art.
  • the conductive metal oxide may be preferably an oxide of a metal selected from Ti, Zr, In, Zn, Sn, Sb, and Al.
  • the conductive metal oxide may preferably include an oxide of at least one metal of Sb, In, and Sn. More preferably, the conductive metal oxide may be doped zinc oxide (ZnO) doped tin oxide (ATO; antimontinoxide) or doped indium tin oxide (ITO).
  • the average particle diameter of the metal oxide is preferably 1 nm to 120 nm, more preferably 1 nm to 60 nm, and still more preferably 2 nm to 40 nm.
  • the average particle diameter of the conductive metal oxide has the above range, it is preferable because it reduces haze and excellent dispersion stability, and can be easily localized to the upper part during volatilization of the solvent during the drying process.
  • the conductive metal oxide may be included in an amount of 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight based on the solids content of the water-dispersible resin.
  • the content of the conductive metal oxide is less than 0.1 parts by weight based on the above, it is difficult to express sufficient antistatic performance, when the content of more than 10 parts by weight is excellent in the antistatic performance, but there is a disadvantage that a decrease in transmittance and coating properties.
  • the functional coating layer of the present invention is characterized in that it comprises a water-dispersible resin.
  • a water-dispersible resin other than the solvent-based resin as described above in the acrylic film lacking solvent resistance, uniform coating is possible without causing mechanical property degradation or surface defect due to erosion of the solvent.
  • it can be coated in-line (in-line) when manufacturing the film because it is eco-friendly and does not require a separate explosion-proof equipment.
  • water-dispersible resin of the present invention examples include, but are not limited to, water-dispersed polyurethane resins, water-dispersible acrylic resins, and combinations thereof.
  • the weight average molecular weight of the polyurethane-based resin is preferably 10,000 to 100,000. This is because if the molecular weight is less than 10,000, there is a problem in adhesion, and if it exceeds 100,000, the water dispersibility may be lowered.
  • the said polyurethane resin contains a carboxy group. This is because, when the carboxyl group is included in the polyurethane-based resin, the dispersibility to water is improved by the formation of the anion portion, and the adhesion to the polarizer is increased.
  • the polyurethane resin containing the carboxyl group can be obtained, for example, by reacting a chain extender having a free carboxyl group in addition to the polyol and the polyisocyanate.
  • the chain extender which has a carboxyl group is dihydroxy carboxylic acid, dihydroxy succinic acid, etc. are mentioned.
  • the dihydroxy carboxylic acid include dialkylol alkanoic acid including dimethylol alkanoic acid such as dimethylol acetic acid, dimethylol butanoic acid, dimethylol propionic acid, dimethylol butyric acid and dimethylolpentanoic acid. These can be used individually or in combination of 2 or more types.
  • the said polyurethane-type resin is obtained by making a polyol and polyisocyanate react.
  • the polyol is not particularly limited as long as it has two or more hydroxyl groups in the molecule, and any appropriate polyol can be employed.
  • the polyol may be a polyester polyol, polycarbonate diol, polyether polyol, or the like, and may be used alone or in combination of two or more kinds selected from the group consisting of these.
  • the polyester polyol may be obtained by reacting a polybasic acid component and a polyol component.
  • the polybasic acid component for example, ortho-phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, non Aromatic dicarboxylic acids such as phenyldicarboxylic acid and tetrahydrophthalic acid; Aliphatic dicarboxylic acids such as oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, linoleic acid, maleic acid, fumaric acid, mesaconic acid and itaconic acid; Alicyclic dicarboxylic acids such as hexahydrophthalic acid, tetrahydrophthalic acid,
  • the polyol is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 1,6-hexanediol, 1 , 8-octanediol, 1,10-decanediol, 4,4'-dihydroxyphenylpropane, 4,4'-dihydroxymethylmethane, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, Polypropylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, bisphenol A, bisphenol F, glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexatriol, penta It is preferred that it is at least one selected from the group consisting of erytriol
  • the polycarbonate diol is preferably an aliphatic polycarbonate diol. This is because polyurethane-based resins synthesized with such aliphatic polycarbonate diols are excellent in water resistance and oil resistance as well as excellent mechanical properties, and particularly excellent in long-term weather resistance.
  • the aliphatic polycarbonate diol but is not limited to, for example, may be at least one selected from the group consisting of poly (hexamethylene carbonate) glycol and poly (cyclohexane carbonate) glycol.
  • the polyether polyol can be typically obtained by ring-opening polymerization of an alkylene oxide to a polyhydric alcohol.
  • a polyhydric alcohol ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, trimethylol propane, etc. are mentioned, for example. These can be used individually or in combination of 2 or more types.
  • the polyisocyanate is not limited as long as it is a compound having two or more NCO groups, for example, toluene diisocyanate (TDI), 4,4-diphenylmethane diisocyanate (MDI), 1,5-naphthalene diisocyanate (NDI ), Tolidine diisocyanate (TODI), hexamethylene diisocyanate (HMDI), isopron diisocyanate (IPDI), p-phenylene diisocyanate, 1,4-diisocyanate and xylene diisocyanate (XDI) It can be used individually or in combination of 2 or more types.
  • TDI toluene diisocyanate
  • MDI 4,4-diphenylmethane diisocyanate
  • NDI 1,5-naphthalene diisocyanate
  • TODI Tolidine diisocyanate
  • HMDI hexamethylene diisocyanate
  • IPDI
  • the method for producing the polyurethane-based resin may employ any suitable method known in the art. Specifically, the one-shot method which makes each said component react at once, and the multistage method which reacts in steps are mentioned.
  • a polyurethane-type resin has a carboxyl group, it is preferably manufactured by the multistage method, and it is because a carboxyl group can be introduce
  • any suitable urethane reaction catalyst can be used in the production of the polyurethane-based resin.
  • polyurethane-based resin In the production of the polyurethane-based resin, other polyols and / or other chain extenders may be reacted in addition to the above components.
  • the polyol which has three or more hydroxyl groups such as sorbitol, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, is mentioned, for example.
  • chain extender for example, ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentylglycol, pentanediol, 1,6-hexane Glycols such as diol and propylene glycol; Aliphatic diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, 1,4-butanediamine, and aminoethyl ethanolamine; Alicyclic diamines such as isophorone diamine and 4,4'-dicyclohexyl methanediamine; Aromatic diamine, such as xylylenediamine and tolylenediamine, etc. are mentioned.
  • a neutralizing agent can be used in manufacture of the said polyurethane resin.
  • the stability of the polyurethane-based resin in water can be improved.
  • the neutralizing agent include ammonia, N-methylmorpholine, triethylamine, dimethylethanolamine, methyldiethanolamine, triethanolalkyne, morpholine, tripropylamine, ethanol amine, triisopropanolamine, and the like. These can be used individually or in combination of 2 or more types.
  • an organic solvent which is inert to the polyisocyanate and compatible with water is preferably used.
  • organic solvent such as ethyl acetate and an ethyl cellosolve acetate; Ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; Ether solvents, such as dioxane tetrahydrofuran, etc. are mentioned. These can be used individually or in combination of 2 or more types.
  • the water-dispersible acrylic resin that can be used as the water-dispersible resin may be prepared by polymerizing an acrylic monomer, and in this case, it is preferable to use an acrylic monomer having a glass transition temperature higher than room temperature.
  • an acrylic monomer having a glass transition temperature higher than room temperature may include, for example, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate or a mixture thereof.
  • the water-dispersible resin may further include at least one acrylic monomer having a glass transition temperature lower than room temperature.
  • the adhesion and the physical properties of the functional coating layer can be improved, but is not limited thereto, for example, methoxyethylaminoacrylate, butyl acrylate, hexyl acrylate, ethylhexyl acrylate or a mixture thereof It may further include.
  • the water-dispersible resin may further include at least one or more water-soluble acrylic monomers.
  • the storage stability of the acrylic monomer is improved, but is not limited thereto, and may further include, for example, hydroxyhexyl acrylate, hydroxyethyl acrylamide, methacrylic acid or a mixture thereof.
  • the functional coating layer of the present invention may further include water dispersible fine particles.
  • any appropriate fine particles may be used as the water-dispersible fine particles, and for example, inorganic fine particles, organic fine particles or a combination thereof may be used.
  • the inorganic fine particles include inorganic oxides such as silica, titania, alumina, zirconia, antimony and the like.
  • the organic fine particles include silicone resins, fluorine resins, (meth) acrylic resins, crosslinked polyvinyl alcohols, melamine resins, and the like.
  • the optical film of this invention uses an acryl-type film as a base film.
  • the acrylic film may contain a (meth) acrylate resin.
  • the film containing (meth) acrylate type resin can manufacture the molding material containing (meth) acrylate type resin as a main component, for example by extrusion molding.
  • the acryl-based film is a film comprising an alkyl (meth) acrylate-based unit and a copolymer containing a styrene-based unit, and an aromatic resin having a carbonate portion in the main chain, or an alkyl (meth) acrylate-based unit, a styrene-based unit, It may be a film comprising a 3 to 6 membered hetero ring unit substituted with at least one carbonyl group and a vinyl cyanide unit. In addition, it may be an acrylic resin having a lactone ring structure.
  • (meth) acrylate type resin which has a lactone ring structure it is the lactone described, for example in Unexamined-Japanese-Patent No. 2000-230016, Unexamined-Japanese-Patent No. 2001-151814, 2002-120326, etc.
  • (Meth) acrylate type resin which has a ring structure is mentioned.
  • Examples of the (meth) acrylate-based resin having an aromatic ring include (a) (meth) acrylate-based units comprising (a) one or more (meth) acrylate-based derivatives described in Korean Patent Laid-Open Publication No. 10-2009-0115040; (b) an aromatic unit having a chain having an hydroxy group containing portion and an aromatic moiety; And (c) a styrene-based unit containing at least one styrene-based derivative.
  • the units (a) to (c) may each be included in the resin composition in the form of a separate copolymer, and two or more units of the units (a) to (c) may be included in the resin composition in the form of one copolymer. have.
  • the manufacturing method of the said (meth) acrylate type resin film is not specifically limited, For example, (meth) acrylate type resin, another polymer, an additive, etc. are fully mixed by arbitrary suitable mixing methods, and a thermoplastic resin composition is prepared. After the preparation, it may be manufactured by film molding, or (meth) acrylate-based resin and other polymers, additives, etc. may be prepared in a separate solution and then mixed to form a uniform mixed solution and then film-molded.
  • thermoplastic resin composition is prepared by, for example, extrusion kneading the resulting mixture after preblending the film raw material with any suitable mixer such as an omni mixer.
  • the mixer used for extrusion kneading is not specifically limited,
  • arbitrary appropriate mixers such as an extruder, such as a single screw extruder and a twin screw extruder, and a pressurized kneader, can be used.
  • molding there exists arbitrary suitable film shaping
  • the melt extrusion method is preferable.
  • the melt extrusion method is not particularly limited, and may be performed by a melt extrusion method well known in the art, for example, a T die method, an inflation method, or the like. At this time, molding temperature becomes like this. Preferably it is 150-350 degreeC, More preferably, it is 200-300 degreeC.
  • a T die When forming a film by the said T die method, a T die can be attached to the front-end
  • the acrylic film may be any of an unoriented film or a stretched film.
  • a stretched film it may be a uniaxial stretched film or a biaxially stretched film, and in the case of a biaxially stretched film, it may be either a simultaneous biaxially stretched film or a successive biaxially stretched film.
  • biaxial stretching the mechanical strength is improved and the film performance is improved.
  • the optical film of the present invention may be prepared by applying a composition for forming a functional coating layer on the surface of the acrylic film, and then drying, wherein the coating is well known in the art, for example, It may be performed using a bar, gravure, slot die coater.
  • the surface treatment may be performed on at least one surface of the acrylic film to improve the adhesion between the acrylic film and the functional coating layer, wherein the surface treatment is a method well known in the art, such as corona treatment or plasma treatment. It is available.
  • the drying step may be performed through a convection oven or the like, but is not limited thereto.
  • the drying step is performed for 10 seconds to 5 minutes at a temperature of 90 °C to 120 °C.
  • the drying temperature may be adjusted differently depending on the coating step.
  • the optical film of the present invention is an unstretched film or a film completed before the coating step, it is preferable to perform a drying step within a range not exceeding the glass transition temperature (Tg) of the film.
  • Tg glass transition temperature
  • the optical film of the present invention after coating it may be stretched after drying for 10 seconds to 3 minutes at a temperature of 90 ⁇ 120 °C after coating, to be made at the stretching temperature and at the same time stretching It is also possible.
  • the stretching temperature is preferably the glass transition temperature (Tg) °C ⁇ (Tg + 30) °C of the acrylic resin composition of the present invention, more preferably (Tg + 2) ° C to (Tg + 20) ° C.
  • Tg glass transition temperature
  • Tg + 30 glass transition temperature
  • the thickness of the functional coating layer is preferably 50nm to 2000nm, more preferably 100nm to 1000nm, still more preferably 200nm to 700nm. If the thickness of the functional coating layer is less than 50nm, there is a problem that the adhesive strength is not sufficient, if the thickness exceeds 2000nm there is a problem that the drying is not enough.
  • the internal haze of the optical film of this invention is 0.5% or less.
  • the internal haze is generated by light scattering such as internal fine particles, and the larger the value thereof, the lower the light transmittance of the manufactured polarizing plate. Therefore, when the optical film having a large internal haze value is applied to the LCD panel, the contrast ratio can be greatly reduced, so that the internal haze of the optical film of the present invention is preferably 0.5% or less, and more preferably 0.3% or less.
  • this invention provides the polarizing plate containing the optical film of this invention mentioned above.
  • the polarizing plate may be formed by laminating an optical film having a functional coating layer of the present invention on one or both surfaces of the polarizer.
  • the polarizer is not particularly limited, and a film made of polyvinyl alcohol (PVA) including a polarizer well known in the art, for example, iodine or a dichroic dye, may be used.
  • PVA polyvinyl alcohol
  • the polarizer may be prepared by dyeing iodine or dichroic dye on the PVA film, but a method of manufacturing the same is not particularly limited.
  • the polarizer means a state not including a protective film
  • the polarizing plate means a state including a polarizer and a protective film.
  • the method of laminating the polarizer and the optical film is not particularly limited and may be performed using an adhesive or an adhesive well known in the art.
  • the polarizing plate of the present invention preferably further has an adhesive layer in order to facilitate lamination to a liquid crystal cell or the like, and may be disposed on one side or both sides of the polarizing plate.
  • the adhesive may be sufficiently cured by heat or ultraviolet rays after adhesion, and thus the mechanical strength may be improved to an adhesive level.
  • the adhesive strength is also large, so that the adhesive does not peel off without breakage of either film to which the adhesive is attached. It is desirable to have.
  • the adhesive which can be used is excellent in optical transparency, and it is preferable to show the adhesive characteristic of moderate wettability, cohesion, or adhesiveness.
  • the adhesive etc. which suitably prepared polymers, such as an acryl-type polymer, a silicone type polymer, polyester, a polyurethane, a polyether, synthetic rubber, as a base polymer, are mentioned.
  • the polarizing plate comprising the optical film according to the present invention by the excellent antistatic effect of the optical film having a functional coating layer of the present invention, to reduce the jeongcheol generated during the manufacturing process of the polarizing plate, to obtain a polarizing plate to minimize the occurrence of foreign matter and defects Can be.
  • the present invention provides an image display device including an optical film or a polarizing plate provided with a functional coating layer according to the above. That is, the polarizing plate of the present invention may be attached to one side or both sides of the display panel to be usefully applied to an image display device.
  • the display panel may be a liquid crystal panel, a plasma panel, and an organic light emitting panel.
  • the image display device may include a liquid crystal display (LCD), a plasma display panel (PDP), and an organic light emitting display device.
  • the display device may be an organic light emitting diode (OLED).
  • the image display device may be a liquid crystal display device including a liquid crystal panel and polarizing plates provided on both surfaces of the liquid crystal panel, wherein at least one of the polarizing plates may be a polarizing plate according to the present invention.
  • the type of liquid crystal panel included in the liquid crystal display device is not particularly limited.
  • a panel of a passive matrix type such as, but not limited to, a twisted nematic (TN) type, a super twisted nematic (STN) type, a ferrolectic (F) type, or a polymer dispersed (PD) type; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
  • IPS In Plane Switching
  • VA Vertical Alignment
  • other configurations constituting the liquid crystal display device for example, types of upper and lower substrates (eg, color filter substrates or array substrates) are not particularly limited, and configurations known in the art may be employed without limitation. Can be.
  • Water-dispersed polyurethane resin (CHO Kwang Paint Co., Ltd., CK-PUD-PF: solid 30% aqueous solution) 4.67g, conductive material (PEDOT / PSS, solid 1.4% aqueous solution) 2g, pure water 13.33g is mixed to mix the antistatic functional coating solution Prepared.
  • An optical film was manufactured in the same manner as in Example 1, except that 3 g of a conductive material (PEDOT / PSS, an aqueous solution of solid content of 1.4%) was used to prepare a functional coating solution.
  • a conductive material PEDOT / PSS, an aqueous solution of solid content of 1.4%) was used to prepare a functional coating solution.
  • Example 2 In the same manner as in Example 1, except that 1.40 g of polyaniline sulfonic acid (PAS, Mitsubishi Rayon, solid 3.0% aqueous solution) was used instead of PEDOT / PSS (solid 1.4% aqueous solution) as a conductive material when preparing the functional coating solution. An optical film was prepared.
  • PAS polyaniline sulfonic acid
  • PSS solid 1.4% aqueous solution
  • Example 2 In the same manner as in Example 1, except that 2.33 g of polyaniline sulfonic acid (PAS, Mitsubishi Rayon, solid 3.0% aqueous solution) was used instead of PEDOT / PSS (solid 1.4% solid solution) as a conductive material in preparing the functional coating solution. An optical film was prepared.
  • PAS polyaniline sulfonic acid
  • PSS solid 1.4% solid solution
  • An optical film was prepared in the same manner as in Example 1, except that 0.21 g of Ionic liquid (IL-OH8, KOEI Co., Ltd.) was used instead of PEDOT / PSS (solid solution of 1.4% solids) as a conductive material when preparing the functional coating solution. It was.
  • Ionic liquid IL-OH8, KOEI Co., Ltd.
  • PEDOT / PSS solid solution of 1.4% solids
  • an antistatic functional coating solution was prepared in the same manner as in Example 1, except that the coating process was performed, and the optical film was prepared by stretching 2.0 times in the TD direction for 1 minute at a temperature of 135 ° C.
  • Example 2 In the same manner as in Example 1, except that a coating solution was prepared by mixing 4.67 g of a water-dispersed polyurethane-based resin (Chowang Paint CK-PUD-PF: 30% solid content in water) and 13.33 g of pure water, and coating the stretched film. An optical film was prepared.
  • a coating solution was prepared by mixing 4.67 g of a water-dispersed polyurethane-based resin (Chowang Paint CK-PUD-PF: 30% solid content in water) and 13.33 g of pure water, and coating the stretched film.
  • An optical film was prepared.
  • An optical film was prepared in the same manner as in Example 1, except that 15 g of a conductive material (PEDOT / PSS, solid solution of 1.4% solids) was used to prepare a functional coating solution.
  • a conductive material PEDOT / PSS, solid solution of 1.4% solids
  • An optical film was manufactured in the same manner as in Example 1, except that 1 g of a conductive material (PEDOT / PSS, solid solution of 1.4% solids) was used to prepare a functional coating solution.
  • a conductive material PEDOT / PSS, solid solution of 1.4% solids
  • An optical film was prepared in the same manner as in Example 1, except that 0.43 g of Ionic liquid (IL-OH8, KOEI) was used instead of (PEDOT / PSS, 1.4% solid solution) as a conductive material in preparing the functional coating solution. It was.
  • Ionic liquid IL-OH8, KOEI
  • An optical film was prepared in the same manner as in Example 1, except that 0.014 g of Ionic liquid (IL-OH8, KOEI) was used instead of (PEDOT / PSS, 1.4% solid solution) as a conductive material in preparing the functional coating solution. It was.
  • Ionic liquid IL-OH8, KOEI
  • ⁇ (good) The defective area is less than 1%.
  • the defective area is 10% or more.
  • a 2 cm x 2 cm polarizing plate in which the films prepared according to Examples 1 to 8 and Comparative Examples 1 to 6, PVA polarizer, and another protective film were laminated with an adhesive was used at a texture analyzer of 0.05 N and 0.5 cm / sec. Pulling for a second to determine whether the acrylic substrate film breakage was determined the adhesion between the acrylic film and the PVA prepared above. The measurement results are shown in the following [Table 1]. (At this time, breakage of the acrylic film means that the PVA polarizer and the primer are perfectly attached.)
  • ⁇ (good) The fractured area of the acrylic base film on the adhesive surface is 50% or more.
  • ⁇ (normal) The fractured area of the acrylic base film on the adhesive surface is 50% or less.
  • ⁇ (good) The film is wound without wrinkles and does not deform or stick together in appearance even after standing for more than one week.
  • the acrylic film including the functional coating layer according to the present invention has excellent surface resistance as compared to the acrylic film containing no functional coating layer, and has an antistatic function. It was found to be excellent. In addition, looking at Comparative Examples 3 to 6, it was confirmed that the coating property and adhesive strength is lowered when the content of the conductive polymer is outside the appropriate content range of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은 아크릴계 필름; 및 상기 아크릴계 필름의 적어도 일면에 형성되며, 전도성 고분자, 이온성 액체 또는 금속산화물 등의 전도성 물질 및 수분산성 수지를 함유하며, 표면 저항이 109 W/Sq 내지 1013 W/Sq인 기능성 코팅층을 포함하는 광학 필름에 관한 것이다.

Description

기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치
본 발명은 아크릴계 필름에 전도성 고분자, 이온성 액체 또는 금속산화물 등의 전도성 물질을 포함하는 기능성 코팅층을 가지는 것을 특징으로 하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치에 관한 것이다.
종래의 편광판은 일반적으로 폴리비닐알코올(Polyvinyl alcohol, 이하 'PVA'라 함) 편광자의 양면에 트리아세틸셀룰로오스(Triacetyl cellulose, 이하 TAC) 필름을 적층시킨 구조를 갖는다.
하지만 TAC 필름은 수분에 대한 취약성으로 인해 장기간 사용 시 치수 변화에 의한 내구성 문제를 유발시키며, 이러한 단점을 보완하기 위해 환상 올레핀 폴리머 (cyclo-olefin polymer, 이하 COP), 폴리카보네이트(polycarbonate, 이하 PC) 또는 아크릴계 수지 등과 같이 수분에 대한 저항성이 높고, 낮은 위상차 물성을 갖는 조성의 필름을 편광판에 적용하려는 시도가 이루어져 왔다. 특히 아크릴계 조성의 필름의 경우 광학적인 특성과 내구성뿐만 아니라 가격적인 측면에서도 장점을 가지는 것으로 알려져 있다.
그러나, 종래의 아크릴계 수지를 사용하여 제작한 아크릴계 필름의 경우 표면 마찰력이 높아 필름 권취 시에 블로킹(권취 후 필름 면과 필름 면이 만나 늘러 붙는 현상)이 발생하고 편광자와의 접착이 잘 되지 않는다는 문제점이 있었다.
이를 해결하기 위해 폴리우레탄 고분자에 미립자를 첨가하여 제조한 프라이머가 개발되어 있다. 이 경우 권취 시에 발생하는 블로킹을 억제하여, 권취성이 우수한 편광자 보호 필름을 제조할 수 있으나, 이 경우에도 아크릴계 필름의 전기 절연성이 높은 특징으로 인하여 권취된 필름을 푸는 과정(unwinding)에서 정전기가 발생되며, 이는 필름 기재에 이물질이 흡착되어 표면을 오염시키는 문제점을 유발시키고, 심한 경우 스파크 발생으로 이어져 작업자의 안전이 위협받는 문제점이 있다. 뿐만 아니라, 상기 흡착된 이물질을 제거하기 위한 세정 작업에도 불구하고, 여전히 이물질이 남게 되어 광학 결점(defect)가 발생한다는 문제점이 있다.
특히, 최근에는 액정표시장치 패널이 대형화되면서 이에 맞게 편광판의 크기 또한 확대되는 추세에 있고, 생산성 향상을 위해 공정의 고속화가 진행되면서 정전기의 발생량이 더욱 증가하고 있다. 따라서, 대전방지 효과가 우수하며, 기 발생된 정전기를 신속하게 제거할 수 있는 기능을 가진 편광자 보호 필름의 개발이 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 아크릴계 필름에 전도성 물질을 포함하는 기능성 코팅층을 제공함으로써, 권취된 필름을 푸는 과정에서 발생하는 정전기 및 이로 인한 불량을 극복하고 대전방지성을 확보한 아크릴계 광학 필름 및 이를 포함하는 편광판과 화상표시장치를 제공하고자 한다.
이를 위해 본 발명은 일 측면에서, 아크릴계 필름; 및 상기 아크릴계 필름의 적어도 일면에 형성되고, 전도성 물질 및 수분산성 수지를 함유하며, 표면 저항이 109 W/Sq 내지 1013 W/Sq인 기능성 코팅층을 포함하는 광학 필름을 제공한다.
상기 전도성 물질은 전도성 고분자; 이온성 액체; 금속산화물; 또는 이들의 혼합물인 것이 바람직하다.
상기 전도성 고분자는 폴리티오펜계, 폴리피롤계, 폴리아닐린계 고분자 화합물 또는 이들의 혼합물일 수 있다.
또한, 상기 금속산화물은 도핑된 산화아연(ZnO), 도핑된 산화주석(ATO) 또는 도핑된 산화인듐(ITO)일 수 있다.
또한, 상기 이온성 액체는 상기 이온성 액체는 알킬이미다졸리움, 알킬포스포늄, N-알킬피리디늄, N,N'-디알킬이미다졸리움 또는 그 유도체로 이루어진 양이온; 브로마이드, 헥사플로로포스페이트, 헥사플로로안티모나이트, 테트라플로로보레이트, 리플로로메탄셀페이트, 메탄설페이트, 토실레이트, 클로라이드 또는 그 유도체로 이루어진 음이온; 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
기능성 코팅층은 상기 수분산성 수지 100 중량부에 대하여 전도성 고분자 함량이 1 내지 10 중량부를 포함하는 것이 바람직하고, 상기 수분산성 수지 100 중량부에 대하여 이온성 액체의 함량이 5 내지 25 중량부를 포함하는 것이 바람직하며, 상기 수분산성 수지 100 중량부에 대하여 금속산화물 함량이 0.1 내지 10 중량부를 포함하는 것이 바람직하다.
상기 수분산성 수지는 수분산 폴리우레탄계 수지, 수분산 아크릴계 수지 또는 이들의 조합인 것이 바람직하다.
다른 측면에서 본 발명은 상기 본 발명의 광학 필름을 포함하는 편광판 및 화상표시장치를 제공한다.
본 발명의 아크릴계 필름은 그 표면에 전도성 물질을 포함하는 기능성 코팅층을 제공함으로써, 안티블로킹성 및 편광자와의 접착성이 우수하면서도, 권취된 필름을 푸는 과정에서 발생하는 정전기의 양이 적어 대전방지성이 우수하다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 광학특성, 접착성을 저해하지 않으면서도 대전방지 효과가 우수한 아크릴계 광학 필름을 개발하기 위해 연구를 거듭한 결과, 아크릴계 필름 표면에 수분산성 수지와 함께 전도성 물질을 포함하는 기능성 코팅층을 형성함으로써, 광학특성 및 접착성이 우수할 뿐만 아니라 기존의 단점이었던 대전방지성까지 모두 우수한 광학 필름을 제조할 수 있음을 발견하고 본 발명을 완성하였다.
보다 구체적으로는, 본 발명의 광학 필름은 아크릴계 필름 및 상기 아크릴계 필름의 적어도 일면에 전도성 물질 및 수분산성 수지를 함유하며, 표면 저항이 109 W/Sq 내지 1013 W/Sq인 기능성 코팅층을 포함하는 것을 그 특징으로 한다. 특히, 상기 전도성 물질에는 폴리티오펜계, 폴리피롤계, 폴리아닐린계와 같은 전도성 고분자, 이온성 액체 또는 금속산화물이 포함하는 것을 그 특징으로 한다.
상기, 본 발명의 광학 필름의 기능성 코팅층은 표면 저항값이 109 W/Sq 내지 1013 W/Sq인 정도인 것이 바람직하며, 109 W/Sq 내지 1012 W/Sq인 정도인 것이 더욱 바람직하다. 상기 범위를 만족할 때, 광학 필름에 발생할 수 있는 권취 주름, 블로킹 등의 권취 불량을 효과적으로 개선할 수 있고, 전기 절연성이 높은 상기 권취된 아크릴 필름을 푸는 과정(unwinding)에서 발생하는 정전기를 효과적으로 줄여줄 수 있다. 즉, 대전 방지 효과가 우수하며, 기 발생된 정전기를 신속하게 제거할 수 있는 광학 필름을 제조할 수 있다.
상기 전도성 고분자는 코팅필름의 표면에 대전방지 효과를 가지게 하여 먼지 등의 오염원을 제거하기 위해 사용된다. 상기 전도성 고분자로는 폴리티오펜계, 폴리피롤계, 폴리아닐린계 고분자 화합물 또는 이들의 혼합물이 바람직하고, 그 분자 내에 친수성 관능기를 갖는 것이 바람직하다. 상기 친수성 관능기로서, 예를 들어, 술포기, 아미노기, 아미드기, 이미드기, 4-암모늄 염기, 하이드록실기, 메르캅토기, 히드라지노기, 카르복실기, 황산염기 또는 이들의 염이 있다.
이때, 이로써 제한되는 것은 아니나, 상업적으로 사용되는 상기 폴리아닐린계 고분자 화합물로는 폴리아닐린 설폰산(polyaniline sulfonic acid)이 바람직하며, 미쓰비시(Mitsubishi Rayon)사의 상품명 aquaPASS-50Y등이 사용될 수 있다.
한편, 상기 고분자 화합물에 있어서, 이로써 제한되는 것은 아니나, 폴리티오펜계 화합물이 더욱 바람직하며, 폴리에틸렌디옥시티오펜(polyethylendioxithiophene; PEDOT)이 특히 바람직하다.
이때, 상기 고분자 화합물로 상업적으로 시판되는 바이엘(Bayer)사의 상품명 Baytron P나 Baytron PH를 사용할 수 있다. Baytron P는 물에 폴리에틸렌디옥시티오펜 (polyethylendioxithiophene:PEDOT)이 분산되어 있는 수분산액에 폴리스티렌술폰산(PSS)을 도펀트(dophant)로 첨가한 제품이다. 상기 Baytron P 중 폴리에틸렌디옥시티오펜의 함량은 약 1.4%이다.
한편, 본 발명에 있어서, 상기 기능성 코팅층은 상기 수분산성 수지의 고형분 함량을 기준으로 100 중량부에 대하여 전도성 고분자의 고형분 함량이 1 내지 10 중량부 정도 포함하는 것을 그 특징으로 하며, 바람직하게는 2 내지 5 중량부 정도를 포함한다. 전도성 고분자 함량이 1 중량부 미만인 경우에는 대전방지 효과를 얻기 어려우며, 10 중량부를 초과할 경우에는 코팅층의 투명성 및 코팅성이 저하된다.
한편, 상기 이온성 액체는 통상의 금속 양이온과 비금속 음이온으로 이루어진 금속염 화합물과는 달리 100℃ 이하의 온도에서 액체로 존재하여 이온성 액체라고 한다. 이온성 액체는 유기양이온과 음이온으로 구성되어 있으며, 증기압이 거의 제로이며 난연성이며 이온성이면서 저점성이고 고전도성을 갖는 것이 특징이다.
본 발명에 사용할 수 있는 이온성 액체는, 알킬이미다졸리움, 알킬포스포늄, N-알킬피리디늄, N,N'-디알킬이미다졸리움 또는 그 유도체 등으로 이루어진 양이온과 브로마이드, 헥사플로로포스페이트, 헥사플로로안티모나이트, 테트라플로로보레이트, 리플로로메탄셀페이트, 메탄설페이트, 토실레이트, 클로라이드 또는 그 유도체 등으로 이루어진 음이온으로 이루어지며, 이를 단일 종류로 사용도 가능하며 2종 이상 혼합하여 사용하는 것도 가능하다.
한편, 이온성 액체는 시판 제품을 사용할 수도 있다. 시판되는 이온성 액체의 예로는 IL-OH2, IL-OH8, IL-MA1, IL-MA2 또는 IL-S8(KOEI社) 등을 들 수 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 상기 이온성 액체는 상기 수분산성 수지의 고형분 함량을 기준으로 100 중량부에 대하여 5 내지 25 중량부를 포함하는 것을 그 특징으로 하며, 바람직하게는 10 내지 20 중량부를 포함한다. 상기 이온성 액체는 상기 범위를 만족하는 경우, 대전 방지 성능이 보장되며, 25 중량부를 초과하는 경우 코팅성이 저하되고, 접착력이 떨어지는 경향이 있다.
상기 이온성 액체를 대전방지용으로 사용함에 있어, 필요에 따라 분산성을 좋게 하기 위해 다른 용매를 사용할 수 있다. 용매는 상기 이온성 액체를 용해시키면서 자외선 경화형 수지 또한 용해시킬 수 있는 것이면 대부분 가능하다. 이와 같은 용매로서 톨루엔, 메틸에테르케톤 등의 케톤류 용매, 아세테이트류 용매, 메틸 알콜, 에틸 알콜, 이소프로필 알콜 등의 저급 알콜계 용매, 디메틸포름알데히드 등의 알데히드계 용매, 다이에틸에테르, 다이프로필에테르, 알콜에테르 등의 에테르계 용매, 엔-메틸-2-피릴리디논 등의 아마이드계 용매, 다이메틸술폭사이드 등의 설폭사이드계 용매, 알킬 아민, 사이클릭 아민, 방향족 아민 등의 아민계 용매 등의 용매 중 어느 하나 이상을 선택하여 사용할 수 있다.
한편, 상기 전도성 물질로서 금속산화물은 당해 분야에서 대전방지제로 일반적으로 사용되는 것을 제한 없이 적용할 수 있다. 예를 들어 상기 전도성 금속산화물은 Ti, Zr, In, Zn, Sn, Sb 및 Al에서 선택되는 금속의 산화물이 바람직하게 사용될 수 있다. 전도성의 관점에서 상기 전도성 금속산화물은 Sb, In 및 Sn 중 적어도 하나의 금속의 산화물을 포함하는 것이 바람직하게 사용될 수 있다. 더욱 바람직하게는 상기 전도성 금속산화물은 도핑된 산화아연(ZnO; zincoxide) 도핑된 산화주석(ATO;antimontinoxide) 또는 도핑된 산화인듐(ITO; indiumtinoxide)일 수 있다.
상기 금속산화물의 평균 입자 직경은 1nm 내지 120nm가 바람직하고, 1nm 내지 60nm가 더욱 바람직하고, 2nm 내지 40nm가 더욱 더 바람직하다. 전도성 금속산화물의 평균 입자 직경이 상기 범위를 갖는 경우 헤이즈를 감소시키고 분산 안정성이 우수하며, 건조과정에서 용제의 휘발 시 상부로 용이하게 편재될 수 있기 때문에 바람직하다.
상기 전도성 금속산화물은 상기 수분산성 수지의 고형분 함량을 기준으로 100 중량부에 대하여 0.1 내지 10중량부 정도 포함될 수 있고, 바람직하게는 1 내지 5 중량부 정도 포함될 수 있다. 상기 전도성 금속산화물의 함량이 상기 기준으로 0.1 중량부 미만일 경우 충분한 대전방지 성능이 발현되기 어려우며, 10 중량부 초과일 경우 대전방지성능에서 우수하나 투과율 및 코팅성의 저하가 발생하는 단점이 있다.
다음으로, 본 발명의 기능성 코팅층은 수분산성 수지를 포함하는 것을 특징으로 한다. 상기와 같이 용제계 수지가 아닌 수분산성 수지를 포함하는 경우에는, 내용제성이 부족한 아크릴계 필름에 있어서, 용제의 침식에 의한 기계적 물성 저하나 표면 불량 등을 유발하지 않으며, 균일한 코팅이 가능하다. 또한, 친환경적이고 별도의 방폭설비가 필요하지 않아 필름 제조 시 인-라인(in-line)으로 코팅할 수 있다.
본 발명의 상기 수분산성 수지로는, 이로써 한정되는 것은 아니나, 수분산 폴리우레탄계 수지, 수분산 아크릴계 수지 또는 이들의 조합 등을 예로 들 수 있다.
한편, 본 발명에 있어서, 상기 폴리우레탄계 수지의 중량 평균분자량은 1만 내지 10만인 것이 바람직하다. 분자량이 1만 미만인 경우에는 접착력에 문제가 있고, 10만을 초과하는 경우에는 수분산성이 저하될 수 있기 때문이다.
또한, 본 발명에 있어서, 상기 폴리우레탄계 수지는 카르복시기를 포함하는 것이 바람직하다. 폴리우레탄계 수지에 카르복시기가 포함될 경우, 음이온부의 형성에 의해 물에 대한 분산성이 향상되고, 편광자와의 밀착성이 높아지기 때문이다.
상기 카르복실기를 포함하는 폴리우레탄계 수지는, 예를 들어, 폴리올과 폴리이소시아네이트에 추가하여 유리 카르복실기를 갖는 사슬 연장제를 반응시킴으로써 획득할 수 있다. 카르복실기를 갖는 사슬 연장제는 디하이드록시 카르복실산, 디하이드록시 숙신산 등을 들 수 있다. 디하이드록시 카르복실산은 예를 들어 디메틸올아세트산, 디메틸올부탄산, 디메틸올프로피온산, 디메틸올부티르산, 디메틸올펜탄산 등의 디메틸올알칸산을 포함하는 디알킬올 알칸산을 들 수 있다. 이들은 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.
또한, 상기 폴리우레탄계 수지는 폴리올과 폴리이소세아네이트를 반응시킴으로써 얻어진다. 상기 폴리올로서는 분자 중에 하이드록실기를 2개 이상 갖는 것이면 특별히 한정되지 않으며, 임의의 적절한 폴리올을 채용할 수 있다. 예를 들어, 상기 폴리올은 폴리에스테르폴리올, 폴리카보네이트다이올, 폴리에테르폴리올 등일 수 있으며, 이들로 이루어진 그룹으로부터 선택된 적어도 1종이상을 단독으로 또는 2종 이상을 조합하여 이용할 수 있다.
이때, 상기 폴리에스테르폴리올은 대표적으로는 다염기산 성분과 폴리올 성분을 반응시킴으로써 획득할 수 있다. 다염기산 성분으로서는 예를 들어 오르쏘(ortho)-프탈산, 이소프탈산, 테레프탈산, 1,4-나프탈렌디카르복실산, 2,5-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 비페닐디카르복실산, 테트라하이드로프탈산 등의 방향족 디카르복실산; 옥살산, 숙신산, 말론산, 글루타르산, 아디프산, 피멜산, 수베르산, 아젤라인산, 세바스산, 리놀레산, 말레산, 푸마르산, 메사콘산, 이타콘산 등의 지방족 디카르복실산; 헥사하이드로프탈산, 테트라하이드로프탈산, 1,3-시클로헥산디카르복실산, 1,4-시클로헥산디카르복실산 등의 지환식 디카르복실산; 또는 이들의 산 무수물, 알킬 에스테르, 산 할라이드 등의 반응성 유도체 등을 들 수 있다. 이들은 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.
한편, 상기 폴리올은 에틸렌글리콜, 1,2-프로판온디올, 1,3-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 네올펜틸글리콜, 펜탄디올, 1,6-헥산디올, 1,8-옥탄디올, 1,10-데칸디올, 4,4'-디히드록시페닐프로판, 4,4'-디히드록시메틸메탄, 디에틸렌글리콜, 트리에틸렌글리콜, 폴리에틸렌글리콜, 디프로필렌글리콜, 폴리프로필렌글리콜, 1,4-시클로헥산디메탄올, 1,4-시클로헥산디올, 비스페놀 A, 비스페놀 F, 글리세린, 1,1,1-트리메틸올프로판, 1,2,5-헥사트리올, 펜타에리트리올, 글루코오스, 수크로오스, 및 소르비톨로 이루어진 그룹으로부터 선택된 적어도 1종인 것이 바람직하다.
상기 폴리카보네이트다이올은 지방족 폴리카보네이트다이올인 것이 바람직하다. 이러한 지방족 폴리카보네이트다이올로 합성된 폴리우레탄계 수지는 우수한 기계적 성질뿐만 아니라 내수성 및 내유성이 우수하고, 특히 장기 내후성이 뛰어나기 때문이다. 한편, 상기 지방족 폴리카보네이트다이올로는, 이에 한정되는 것은 아니나, 예컨대 폴리(헥사메틸렌카보네이트)글리콜 및 폴리(사이클로헥산카보네이트)글리콜로 이루어진 그룹으로부터 선택된 1종 이상을 들 수 있다.
상기 폴리에테르폴리올은 대표적으로는 다가 알코올에 알킬렌옥사이드를 개환 중합하여 부가시킴으로써 획득될 수 있다. 다가 알코올로서는 예를 들어 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜, 글리세린, 트리메틸올프로판 등을 들 수 있다. 이들은 단독으로 또는 2종 이상을 조합하여 이용할 수 있다.
한편, 상기 폴리이소시아네이트는 2 이상의 NCO기를 갖는 화합물이면 제한되지 않으나, 예를 들어, 톨루엔디이소시아네이트(TDI), 4,4-디페닐메탄디이소시아네이트(MDI), 1,5-나프탈렌 디이소시아네이트(NDI), 톨리딘 디이소시아네이트(TODI), 헥사메틸렌디이소시아네이트(HMDI), 이소프론디이소시아네이트(IPDI), p-페닐렌 디이소시아네이트, 1,4-디이소시아네이트 및 자이렌디이소시아네이트(XDI)로 이루어진 그룹으로부터 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.
상기 폴리우레탄계 수지의 제조방법은 당해 기술 분야에 알려진 임의의 적절한 방법을 채용할 수 있다. 구체적으로는 상기 각 성분을 한번에 반응시키는 원샷법, 단계적으로 반응시키는 다단법을 들 수 있다. 폴리우레탄계 수지가 카르복실기를 갖는 경우 바람직하게는 다단법에 의해 제조하며, 다단법에 의하면 카르복실기를 용이하게 도입할 수 있기 때문이다. 나아가, 상기 폴리우레탄계 수지의 제조 시에 임의의 적절한 우레탄 반응 촉매를 이용할 수 있다.
상기 폴리우레탄계 수지의 제조에 있어서, 상기의 성분에 추가로 다른 폴리올 및/또는 다른 사슬 연장제를 반응시킬 수 있다.
다른 폴리올로서 예를 들어 소르비톨, 글리세린, 트리메틸올에탄, 트리메틸올프로판, 펜타에리트리톨 등의 수산기 수가 3개 이상인 폴리올을 들 수 있다.
다른 사슬 연장제로서는 예를 들어 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 네오펜틸글리콜, 펜탄디올, 1,6-헥산디올, 프로필렌글리콜 등의 글리콜류; 에틸렌디아민, 프로필렌디아민, 헥사메틸렌디아민, 1,4-부탄디아민, 아미노에틸에칸올아민 등의 지방족 디아민; 이소포론디아민, 4,4'-디시클로헥실메탄디아민 등의 지환족 디아민; 자일릴렌디아민, 톨릴렌디아민 등의 방향족 디아민 등을 들 수 있다.
나아가, 상기 폴리우레탄계 수지의 제조에 있어서 중화제를 이용할 수 있다. 중화제를 이용함으로써 수중에 있어서의 폴리우레탄계 수지의 안정성이 향상될 수 있다. 중화제로서는 예를 들어 암모니아, N-메틸모르폴린, 트리에틸아민, 디메틸에탄올아민, 메틸디에탄올아민, 트리에탄올알킨, 모르폴린, 트리프로필아민, 에탄올 아민, 트리이소프로판올아민 등을 들 수 있다. 이들은 단독으로 또는 2종 이상을 조합하여 이용할 수 있다.
상기 폴리우레탄계 수지의 제조 시에 바람직하게는 상기 폴리이소시아네이트에 대하여 불활성이고 물과 상용하는 유기 용제를 이용한다. 당해 유기 용제로는 아세트산에틸, 에틸셀로솔브아세테이트 등의 에스테르계 용제; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤계 용제; 디옥산 테트라하이드로푸란 등의 에테르계 용제 등을 들 수 있다. 이들은 단독으로 또는 2종 이상을 조합하여 이용할 수 있다.
다음으로, 상기 수분산성 수지로 사용 가능한 수분산성 아크릴계 수지는 아크릴계 모노머를 중합시켜 제조할 수 있으며, 이때, 유리전이온도가 상온보다 높은 아크릴계 모노머를 사용하는 것이 바람직하다. 이로써 제한되는 것은 아니나, 예를 들면, 메틸메트아크릴레이트, 에틸메트아크릴레이트, 아이소부틸메트아크릴레이트 또는 이들의 혼합물 등을 포함할 수 있다.
또한, 상기 수분산성 수지에 유리전이온도가 상온보다 낮은 적어도 1종 이상의 아크릴계 모노머를 더 포함할 수 있다. 이 경우, 접착력 및 기능성 코팅층의 물성을 향상시킬 수 있으며, 이로써 제한되는 것은 아니나, 예를 들면, 메톡시에틸아미노아크릴레이트, 부틸아크릴레이트, 헥실아크릴레이트, 에틸헥실아크릴레이트 또는 이들의 혼합물 등을 더 포함할 수 있다.
또한, 상기 수분산성 수지에는 적어도 1종 이상의 수용성 아크릴계 모노머를 더 포함할 수 있다. 이 경우, 상기 아크릴계 모노머의 저장안정성이 향상되며, 이로써 제한되는 것은 아니나, 예를 들면 하이드록시헥실아크릴레이트, 하이드록시에틸아크릴아미드, 메트아크릴에시드 또는 이들의 혼합물 등을 더 포함할 수 있다.
한편, 본 발명의 기능성 코팅층은 수분산성 미립자를 더 포함할 수도 있다. 이 경우, 상기 수분산성 미립자는 임의의 적절한 미립자를 이용할 수 있으며, 예를 들면, 무기계 미립자, 유기계 미립자 또는 이들의 조합을 이용할 수 있다. 무기계 미립자로서는 예를 들어 실리카, 티타니아, 알루미나, 지르코니아, 안티몬계 등의 무기 산화물 등을 들 수 있다. 유기계 미립자로서는 예를 들어 실리콘계 수지, 불소계 수지, (메트)아크릴계 수지, 가교 폴리비닐알코올, 멜라민계 수지 등이 있다.
한편, 본 발명의 광학 필름은 기재 필름으로 아크릴계 필름을 사용한다. 상기 아크릴계 필름은 (메트)아크릴레이트계 수지를 함유할 수 있다. (메트)아크릴레이트계 수지를 포함하는 필름은, 예를 들어, (메트)아크릴레이트계 수지를 주성분으로 함유하는 성형 재료를 압출 성형에 의해 제조할 수 있다.
상기 아크릴계 필름은 알킬(메트)아크릴레이트계 단위 및 스티렌계 단위를 포함하는 공중합체, 및 주쇄에 카보네이트 부를 갖는 방향족계 수지를 포함하는 필름이거나, 알킬(메트)아크릴레이트계 단위, 스티렌계 단위, 적어도 하나의 카르보닐기로 치환된 3 내지 6원소 헤테로 고리 단위 및 비닐 시아나이드 단위를 포함하는 필름일 수 있다. 또한, 락톤 고리 구조를 갖는 아크릴계 수지일 수 있다.
락톤 고리 구조를 갖는 (메트)아크릴레이트계 수지의 구체적인 예로서는 예를 들어 일본 공개특허공보 제2000-230016호, 일본공개특허공보 제 2001-151814호, 일본 공개특허공보 제 2002-120326호 등에 기재된 락톤 고리 구조를 갖는 (메트)아크릴레이트계 수지를 들 수 있다.
방향족 고리를 갖는 (메트)아크릴레이트계 수지로서는 한국공개특허 10-2009-0115040에 기재된 (a) 1종 이상의 (메트)아크릴레이트계 유도체를 포함하는 (메트)아크릴레이트계 유닛; (b) 히드록시기 함유부를 갖는 쇄 및 방향족 부를 갖는 방향족계 유닛; 및(c) 1종 이상의 스티렌계 유도체를 포함하는 스티렌계 유닛을 포함하는 수지 조성물을 들 수 있다. 상기 (a) 내지 (c) 유닛들은 각각 별도의 공중합체 형태로 수지 조성물에 포함될 수도 있고, 상기 (a) 내지 (c) 유닛들 중 2 이상의 유닛이 하나의 공중합체 형태로 수지 조성물에 포함될 수도 있다.
상기 (메트)아크릴레이트계 수지 필름의 제조 방법은 특별히 한정되지 않으며, 예를 들어 (메트) 아크릴레이트계 수지와 그 밖의 중합체, 첨가제 등을 임의의 적절한 혼합 방법에 의해 충분히 혼합하여 열가소성 수지 조성물을 제조한 후 이를 필름 성형하여 제조하거나, 또는 (메트) 아크릴레이트계 수지와, 그 밖의 중합체, 첨가제 등을 별도의 용액으로 제조한 후 혼합하여 균일한 혼합액을 형성한 후 이를 필름 성형할 수도 있다.
상기 열가소성 수지 조성물은 예를 들어 옴니 믹서 등 임의의 적절한 혼합기로 상기 필름 원료를 프리블렌드한 후 얻어진 혼합물을 압출 혼련하여 제조한다. 이 경우, 압출 혼련에 이용되는 혼합기는 특별히 한정되지 않고, 예를 들어 단축 압출기, 2축 압출기 등의 압출기나 가압 니더 등 임의의 적절한 혼합기를 이용할 수 있다.
상기 필름 성형의 방법으로는, 예를 들어 용액 캐스트법(용액 유연법), 용융 압출법, 캘린더법, 압축 성형법 등 임의의 적절한 필름 성형법이 있다. 특히 용융 압출법이 바람직하다.
상기 용융 압출법으로는 특별히 제한되지 않으며, 당해 기술 분야에 잘 알려진 용융 압출법에 의해 수행될 수 있으며, 예를 들어 T 다이법, 인플레이션법 등을 이용할 수 있다. 이때, 성형 온도는 바람직하게는 150~350℃, 보다 바람직하게는 200~300℃이다.
상기 T 다이법으로 필름을 성형하는 경우에는, 공지된 단축 압출기나 2축 압출기의 선단부에 T 다이를 장착하고, 필름 형상으로 압출된 필름을 권취하여 롤 형상의 필름을 얻을 수 있다. 이 때, 적절한 온도에서 연신 롤을 이용하여 압출 방향으로 연신을 가함으로써 1축 연신할 수도 있다. 또한, 텐터 등의 횡방향 연신기를 이용하여 압출 방향과 수직인 방향으로 필름을 연신함으로써 동시 2축 연신, 축차 2축 연신 등을 실시할 수도 있다.
상기 아크릴계 필름은 미연신 필름 또는 연신 필름 중 어느 것일 수 있다. 연신 필름인 경우에는 1축 연신 필름 또는 2축 연신 필름 일 수 있고, 2축 연신 필름인 경우에는 동시 2축 연신 필름 또는 축차 2축 연신 필름 중 어느 것일 수 있다. 2축 연신한 경우에는 기계적 강도가 향상되어 필름 성능이 향상된다.
한편, 상기 아크릴계 필름 제조시에 다른 열가소성 수지를 혼합하여 연신하는 경우, 위상차가 증가하는 것을 억제하여 광학적 등방성을 유지할 수 있으며, 이에 반해, 상기 아크릴계 필름 제조시에 이방성이 큰 위상차 조절제를 첨가하여 연신하는 경우에는, 위상차를 크게 증가시켜 광시야각을 위한 보상필름으로도 사용할 수 있다.
본 발명의 광학 필름은 상기와 같은 아크릴계 필름의 표면에 기능성 코팅층을 형성하기 위한 조성물을 도포한 후 건조하는 방법으로 제조될 수 있으며, 이 때 상기 도포는 당해 기술분야에 잘 알려진 방법, 예를 들면 바(bar), 그라비어, 슬롯다이 코터를 이용하여 수행될 수 있다.
이때 상기 아크릴계 필름과 기능성 코팅층과의 접착력 향상을 위해 상기 아크릴계 필름의 적어도 일면에 표면처리가 수행될 수 있으며, 이때 상기 표면 처리는 당해 기술분야에 잘 알려진 방법, 예를 들면 코로나 처리 또는 플라즈마 처리를 이용할 수 있다.
한편, 상기 건조 단계는 컨벡션(convection) 오븐 등을 통해 수행될 수 있으나 이에 제한되는 것은 아니며, 바람직하게는 90℃ 내지 120℃ 의 온도에서 10초에서 5 분 동안 수행된다. 상기 건조 온도는 코팅되는 단계에 따라 다르게 조절될 수 있다.
보다 구체적으로, 본 발명의 광학 필름이 무연신 필름 또는 코팅 단계 이전에 연신이 완료된 필름인 경우에는 필름의 유리전이온도(Tg)를 넘지 않는 범위에서 건조 단계를 수행하는 것이 바람직하다.
한편, 본 발명의 광학 필름을 코팅 이후에 연신할 경우에는, 코팅 후 90 ~ 120℃의 온도에서 10초에서 3 분 동안 건조시킨 후 연신할 수도 있으며, 연신과 동시에 연신 온도에서 건조가 이뤄지도록 하는 것도 가능하다.
이때, 연신과 동시에 건조가 이루어질 때, 상기 연신 온도는, 본 발명의 아크릴계 수지 조성물의 유리전이온도(Tg)℃ ~ (Tg + 30)℃인 것이 바람직하며, 보다 바람직하게는 (Tg + 2)℃ ~ (Tg + 20)℃이다. 이때, 연신 온도가 Tg 미만이면 광학 필름의 연신 단계에서 파단이 발생할 수 있으며, 연신 온도가 (Tg + 30)℃를 초과하면, 수지 조성물의 유동이 일어나, 광학 필름을 안정적으로 연신 하지 못할 우려가 있다.
한편, 본 발명에 있어서, 상기 기능성 코팅층의 두께는 50nm 내지 2000nm인 것이 바람직하고, 보다 바람직하게는 100nm 내지 1000nm이며, 더욱 바람직하게는 200nm 내지 700nm이다. 상기 기능성 코팅층의 두께가 50nm미만인 경우 접착력이 충분하지 않은 문제가 있으며, 2000nm를 초과하는 경우 건조가 충분히 되지 않는 문제가 있다.
또한, 본 발명의 광학 필름은 내부 헤이즈가 0.5% 이하인 것이 바람직하다. 내부 헤이즈는 내부 미립자 등의 광산란에 의해 발생되며, 그 수치가 커질수록 제조된 편광판의 광투과율을 저하시킬 수 있다. 따라서, 내부 헤이즈 수치가 큰 광학 필름이 LCD패널에 적용될 경우, 콘트라스트비를 크게 떨어뜨릴 수 있으므로, 본 발명의 광학 필름의 내부 헤이즈는 0.5% 이하인 것이 바람직하고, 0.3% 이하인 것이 더욱 바람직하다.
또한, 본 발명은 상기한 본 발명의 광학 필름을 포함하는 편광판을 제공한다. 상기 편광판은 편광자에 일면 또는 양면에 본 발명의 기능성 코팅층을 가진 광학 필름을 적층하여 형성할 수 있다.
이때, 상기 편광자는 특별히 제한되지 않으며, 당해 기술분야에 잘 알려진 편광자, 예를 들면 요오드 또는 이색성 염료를 포함하는 폴리비닐알콜(PVA)로 이루어진 필름을 사용할 수 있다. 상기 편광자는 PVA 필름에 요오드 또는 이색성 염료를 염착시켜서 제조될 수 있으나, 이의 제조방법은 특별히 한정되지 않는다. 본 명세서에 있어서, 편광자는 보호 필름을 포함하지 않는 상태를 의미하며, 편광판은 편광자와 보호 필름을 포함하는 상태를 의미한다.
편광자와 상기 광학 필름의 적층 방법은 특별히 제한되지 않으며, 당해 기술 분야에 잘 알려진 접착제 또는 점착제 등을 이용하여 수행될 수 있다.
또한, 본 발명의 편광판은 액정 셀 등으로의 적층을 쉽게 하기 위하여 추가로 점착제층을 가지고 있는 것이 바람직하며, 상기 편광판의 한 면 또는 양면에 배치할 수 있다. 상기 점착제는 접착 후 열 또는 자외선에 의하여 충분히 경화가 일어나 기계적 강도가 접착제 수준으로 향상되는 것이 바람직하며, 계면 접착력도 커서 점착제가 부착된 양쪽 필름 중 어느 한 쪽의 파괴 없이는 박리되지 않는 정도의 점착력을 갖는 것이 바람직하다.
사용 가능한 점착제는 광학적 투명성이 뛰어나며, 적당한 습윤성, 응집성이나 접착성의 점착 특성을 나타내는 것이 바람직하다. 구체적인 예로서는 아크릴계 폴리머나 실리콘계 폴리머, 폴리에스테르, 폴리우레탄, 폴리에테르, 합성 고무 등의 폴리머를 적절히 베이스 폴리머로서 조제된 점착제 등을 들 수 있다.
이때, 본 발명에 따른 광학 필름을 포함하는 편광판은 본 발명의 기능성 코팅층을 가진 광학 필름의 우수한 대전방지효과에 의해, 편광판 제조 공정 중 발생하는 전정기를 줄이게 되어, 이물질 및 defect 발생을 최소한 편광판을 얻을 수 있다.
나아가, 본 발명은 상술한 내용에 따른 기능성 코팅층이 구비된 광학 필름 또는 편광판을 포함하는 화상표시장치를 제공한다. 즉, 본 발명의 편광판은 표시 패널의 일면 또는 양면에 부착되어 화상표시장치에 유용하게 적용될 수 있다. 상기 표시 패널은 액정 패널, 플라즈마 패널 및 유기발광 패널일 수 있으며, 이에 따라, 상기 화상표시장치는 액정표시장치(LCD, liquid crystal display), 플라즈마표시장치(PDP, plasma display pannel) 및 유기전계발광 표시장치(OLED, organic light emitting diode) 일 수 있다.
보다 구체적으로, 상기 화상표시장치는 액정 패널 및 이 액정 패널의 양면에 각각 구비된 편광판들을 포함하는 액정표시장치일 수 있으며, 이때, 상기 편광판 중 적어도 하나가 본 발명에 따른 편광판일 수 있다.
이때, 상기 액정표시장치에 포함되는 액정 패널의 종류는 특별히 한정되지 않는다. 예를 들면, 그 종류에 제한되지 않고, TN(twisted nematic)형, STN(super twisted nematic)형, F(ferroelectic)형 또는 PD(polymer dispersed)형과 같은 수동 행렬 방식의 패널; 2단자형(two terminal) 또는 3단자형(three terminal)과 같은 능동행렬 방식의 패널; 횡전계형(IPS; In Plane Switching) 패널 및 수직배향형(VA; Vertical Alignment) 패널 등의 공지의 패널이 모두 적용될 수 있다. 또한, 액정표시장치를 구성하는 기타 구성, 예를 들면, 상부 및 하부 기판(ex. 컬러 필터 기판 또는 어레이 기판) 등의 종류 역시 특별히 제한되지 않고, 이 분야에 공지되어 있는 구성이 제한 없이 채용될 수 있다.
이하에서는 실시예를 통하여 본 발명을 보다 상세히 설명한다.
실시예 1
폴리(시클로헥실말레이미드-co-메틸메타크릴레이드) (㈜LGMMA PMMA830HR) 수지를 250℃, 250rpm 조건하에서 T-다이 제막기를 이용하여 폭 800mm의 미연신 아크릴계 필름을 제조한 후, 135℃의 온도에서 MD방향으로 1.8배 연신하였다.
수분산 폴리우레탄계 수지 (㈜조광페인트社, CK-PUD-PF: 고형분 30% 수용액) 4.67g, 전도성물질(PEDOT/PSS, 고형분 1.4% 수용액) 2g, 순수 13.33g을 혼합하여 대전방지용 기능성 코팅액을 제조하였다.
MD방향으로 연신된 상기 아크릴계 필름 위에 #5번 메이어바(Mayer bar)로 상기 제조한 기능성 코팅액으로 코팅한 후 135℃의 온도에서 1분 동안 TD방향으로 2.0배 연신하여 광학 필름을 제조하였다.
실시예 2
기능성 코팅액 제조시 전도성물질(PEDOT/PSS, 고형분 1.4% 수용액) 3g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실시예 3
기능성 코팅액 제조시 전도성물질로서 PEDOT/PSS(고형분 1.4% 수용액) 대신에 폴리아닐린 설폰산(PAS, Mitsubishi Rayon 社, 고형분 3.0% 수용액) 1.40g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실시예 4
기능성 코팅액 제조시 전도성물질로서 PEDOT/PSS(고형분 1.4% 수용액) 대신에 폴리아닐린 설폰산(PAS, Mitsubishi Rayon 社, 고형분 3.0% 수용액) 2.33g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실시예 5
기능성 코팅액 제조시 전도성물질로서 (PEDOT/PSS, 고형분 1.4% 수용액)대신에 Ionic liquid(IL-OH8, KOEI社) 0.21g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실시예 6
기능성 코팅액 제조시 수분산 폴리우레탄계 수지 (㈜조광페인트社, CK-PUD-PF: 고형분 30% 수용액) 대신에, 아크릴계 수지(TAKAMATSU OIL & FAT社, A-645: 고형분 30% 수용액)을 4.67g 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실시예 7
기능성 코팅액 제조시 수분산 폴리우레탄계 수지 (㈜조광페인트社, CK-PUD-PF: 고형분 30% 수용액) 대신에, 아크릴계 수지(TAKAMATSU OIL & FAT社, A-645: 고형분 30% 수용액)을 4.67g 사용하는 것을 제외하고는, 실시예 2와 동일한 방법으로 광학 필름을 제조하였다.
실시예 8
기능성 코팅액 제조시 수분산 폴리우레탄계 수지 (㈜조광페인트社, CK-PUD-PF: 고형분 30% 수용액) 대신에, 아크릴계 수지(TAKAMATSU OIL & FAT社, A-645: 고형분 30% 수용액)을 4.67g 사용하는 것을 제외하고는, 실시예 5와 동일한 방법으로 광학 필름을 제조하였다.
비교예 1
폴리(시클로헥실말레이미드-co-메틸메타크릴레이드) (㈜LGMMA PMMA830HR) 수지를 250℃, 250rpm 조건하에서 T-다이 제막기를 이용하여 폭 800mm의 미연신 아크릴계 필름을 제조한 후, 135℃의 온도에서 MD방향으로 1.8배 연신하였다.
이후 실시예 1과 같이 대전방지용 기능성 코팅액을 제조하여 코팅하는 과정을 제외한 채, 135℃의 온도에서 1분 동안 TD방향으로 2.0배 연신 하여 광학 필름을 제조하였다.
비교예 2
수분산 폴리우레탄계 수지 (㈜조광페인트 CK-PUD-PF: 고형분 30% 수용액) 4.67g 및 순수 13.33g을 혼합하여 코팅액을 제조하여 연신필름에 코팅한 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
비교예 3
기능성 코팅액 제조시 전도성물질(PEDOT/PSS, 고형분 1.4% 수용액) 15g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
비교예 4
기능성 코팅액 제조시 전도성물질(PEDOT/PSS, 고형분 1.4% 수용액) 1g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
비교예 5
기능성 코팅액 제조시 전도성물질로서 (PEDOT/PSS, 고형분 1.4% 수용액)대신에 Ionic liquid(IL-OH8, KOEI社) 0.43g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
비교예 6
기능성 코팅액 제조시 전도성물질로서 (PEDOT/PSS, 고형분 1.4% 수용액)대신에 Ionic liquid(IL-OH8, KOEI社) 0.014g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 광학 필름을 제조하였다.
실험예
1. 표면저항
표면저항 측정기(MCP-HT450/MITSUBUSHI CHEMICAL), Probe(URS, UR100)를 이용하여 제조된 대전방지성 광학 필름의 표면 3지점을 각각 3회씩 측정하고, 그 평균값을 계산하였다. 그 결과를 하기 표 1에 나타내었다.
2. 코팅성 평가
실시예 1 내지 8 및 비교예 2 내지 6에 의해 제조된 20cm × 20cm 필름의 표면을 관찰하여, 전면 얼룩, 바무늬 얼룩, spot성 얼룩 및 Dewetting 자국 등 코팅 외관 불량 정도를 평가하였다. 그 결과를 하기 [표 1]에 나타내었다.
○ (양호): 불량 부위 면적이 1% 미만임.
△ (보통): 불량 부위 면적이 1%이상이고 10% 미만임.
× (불량): 불량 부위 면적이 10% 이상임.
3. 접착력 평가
실시예 1 내지 8 및 비교예 1 내지 6에 의해 제조된 필름과 PVA 편광자 그리고 또 다른 보호필름을 접착제로 합지한 2cm × 2cm 편광판을, texture analyzer를 이용하여, 0.05N, 0.5cm/sec로 6초간 잡아당겨 아크릴 기재 필름의 파괴 여부로 상기 제조된 아크릴계 필름과 PVA간의 접착력을 판단하였다. 측정 결과는 하기 [표 1]에 나타내었다. (이때, 아크릴계 필름이 파괴된다는 것은 PVA 편광자와 프라이머가 완벽하게 붙었다는 의미임.)
○ (양호): 접착표면에서 아크릴 기재 필름의 파괴된 면적이 50% 이상임.
△ (보통): 접착표면에서 아크릴 기재 필름의 파괴된 면적이 50% 이하임.
× (불량): 접착표면에서 아크릴 기재 필름의 파괴된 면적이 없음.
4. 안티블로킹성
제작한 필름의 양쪽 끝 단을 슬리팅한 후 500m 이상 롤에 권취하여 필름 롤을 형성시킨다. 필름의 권취상태 및 1주일이상 방치 후 롤 외관 변화 등을 육안으로 확인하여 아래와 같이 안티블로킹성을 평가하였다. 측정 결과는 하기 [표1] 나타내었다.
○ (양호): 필름이 주름 없이 권취되며 1주일 이상 방치 후에도 외관상 변형이나 필름끼리 달라붙지 않는다.
× (불량): 권취시 주름 발생 또는 방치 후에 외관 변형 또는 필름끼리 달라붙는다.
표 1
구분 전도성 물질 조성 물성
필름 수분산성수지 전도성물질 표면저항(W/Sq) 코팅성 접착력 안티블로킹성
실시예1 Acryl 폴리우레탄 PEDOT 2중량부 1012~1013
실시예2 Acryl 폴리우레탄 PEDOT 3중량부 1011
실시예3 Acryl 폴리우레탄 PAS 3중량부 1013
실시예4 Acryl 폴리우레탄 PAS 5중량부 1012
실시예5 Acryl 폴리우레탄 IL-OH8 15중량부 1.5×1012
실시예6 Acryl 아크릴계 수지 PEDOT 2중량부 1012~1013
실시예7 Acryl 아크릴계 수지 PEDOT 3중량부 1011
실시예8 Acryl 아크릴계 수지 IL-OH8 15중량부 1012
비교예1 Acryl - - >1015 - × ×
비교예2 Acryl 폴리우레탄 - >1015
비교예3 Acryl 폴리우레탄 PEDOT 15중량부 1010 × ×
비교예4 Acryl 폴리우레탄 PEDOT 1중량부 >1015
비교예5 Acryl 폴리우레탄 IL-OH8 30중량부 1011~1012 ×
비교예6 Acryl 폴리우레탄 IL-OH8 1중량부 >1015
상기 표 1의 실시예 1 내지 8과 비교예 1을 비교해 보면, 본 발명에 따른 기능성 코팅층을 포함한 아크릴계 필름은, 상기 기능성 코팅층을 포함하지 아니한 아크릴계 필름에 비하여 표면 저항이 우수하여, 대전 방지 기능이 우수함을 알 수 있었다. 또한 비교예 3 내지 6을 살펴보면, 전도성 고분자의 함량이 적절한 본 발명의 함량범위를 벗어나는 경우 코팅성 및 접착력이 떨어짐을 확인할 수 있었다.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (14)

  1. 아크릴계 필름; 및
    상기 아크릴계 필름의 적어도 일면에 형성되고, 전도성 물질 및 수분산성 수지를 함유하며, 표면 저항이 109 W/Sq 내지 1013 W/Sq인 기능성 코팅층을 포함하는 광학 필름.
  2. 제1항에 있어서,
    상기 전도성 물질은 전도성 고분자; 이온성 액체; 금속산화물; 또는 이들의 혼합물인 광학 필름.
  3. 제2항에 있어서,
    상기 전도성 고분자는 폴리티오펜계, 폴리피롤계, 폴리아닐린계 고분자 화합물 또는 이들의 혼합물인 광학 필름.
  4. 제2항에 있어서,
    상기 금속산화물은 도핑된 산화아연(ZnO), 도핑된 산화주석(ATO) 또는 도핑된 산화인듐(ITO)인 광학 필름.
  5. 제2항에 있어서,
    상기 이온성 액체는 알킬이미다졸리움, 알킬포스포늄, N-알킬피리디늄, N,N'-디알킬이미다졸리움 또는 그 유도체로 이루어진 양이온;
    브로마이드, 헥사플로로포스페이트, 헥사플로로안티모나이트, 테트라플로로보레이트, 리플로로메탄셀페이트, 메탄설페이트, 토실레이트, 클로라이드 또는 그 유도체로 이루어진 음이온; 및
    이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상인 광학 필름.
  6. 제2항에 있어서,
    상기 기능성 코팅층은 상기 수분산성 수지 100 중량부에 대하여 전도성 고분자 함량이 1 내지 10 중량부를 포함하는 광학 필름.
  7. 제2항에 있어서,
    상기 기능성 코팅층은 상기 수분산성 수지 100 중량부에 대하여 이온성 액체의 함량이 5 내지 25 중량부를 포함하는 광학 필름.
  8. 제2항에 있어서,
    상기 기능성 코팅층은 상기 수분산성 수지 100 중량부에 대하여 금속산화물 함량이 0.1 내지 10 중량부를 포함하는 광학 필름.
  9. 제1항에 있어서,
    상기 수분산성 수지는 수분산 폴리우레탄계 수지, 수분산 아크릴계 수지 또는 이들의 조합인 광학 필름.
  10. 제9항에 있어서,
    상기 폴리우레탄계 수지의 중량평균분자량은 10,000 내지 100,000인 광학 필름.
  11. 제9항에 있어서,
    상기 폴리우레탄계 수지는 카르복실기를 포함하는 광학 필름.
  12. 제 1항에 있어서,
    상기 광학 필름은 편광판용 보호 필름인 광학 필름.
  13. 제1항 내지 12항 중 어느 한 항의 광학 필름을 포함하는 편광판.
  14. 제13항의 편광판을 포함하는 화상표시장치.
PCT/KR2014/009055 2013-09-30 2014-09-26 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치 WO2015046971A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/024,670 US9715045B2 (en) 2013-09-30 2014-09-26 Optical film including functional coating layer and polarizing plate and image display device including same
EP14847081.8A EP3054327B1 (en) 2013-09-30 2014-09-26 Optical film including functional coating layer and polarizing plate and image display device including same
CN201480054153.2A CN105593719A (zh) 2013-09-30 2014-09-26 包括功能性涂层的光学膜以及包括该光学膜的偏光板和图像显示装置
JP2016545691A JP2016535321A (ja) 2013-09-30 2014-09-26 機能性コーティング層を含む光学フィルム、これを含む偏光板及び画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130117064 2013-09-30
KR10-2013-0117064 2013-09-30
KR1020140128311A KR101657356B1 (ko) 2013-09-30 2014-09-25 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치
KR10-2014-0128311 2014-09-25

Publications (1)

Publication Number Publication Date
WO2015046971A1 true WO2015046971A1 (ko) 2015-04-02

Family

ID=52743980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009055 WO2015046971A1 (ko) 2013-09-30 2014-09-26 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치

Country Status (1)

Country Link
WO (1) WO2015046971A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230016A (ja) 1998-12-09 2000-08-22 Nippon Shokubai Co Ltd 透明性耐熱樹脂の製造方法とその用途
JP2001151814A (ja) 1999-11-26 2001-06-05 Nippon Shokubai Co Ltd 透明性耐熱樹脂の製造方法およびその用途
JP2002120326A (ja) 2000-10-18 2002-04-23 Nippon Shokubai Co Ltd 透明熱可塑性樹脂積層体
JP2009107329A (ja) * 2007-10-10 2009-05-21 Jsr Corp 表面保護フィルム
KR20090115040A (ko) 2008-04-30 2009-11-04 주식회사 엘지화학 수지 조성물 및 이를 이용하여 형성된 광학 필름
KR20110053938A (ko) * 2011-05-02 2011-05-24 닛토덴코 가부시키가이샤 편광판용 보호 필름 및 그의 제조 방법 및 편광판
JP2011252948A (ja) * 2010-05-31 2011-12-15 Nitto Denko Corp 帯電防止性粘着型光学フィルムおよび画像表示装置
JP2013023611A (ja) * 2011-07-22 2013-02-04 Adeka Corp 水系ポリウレタン樹脂組成物、これを塗布してなる易接着性ポリエステルフィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230016A (ja) 1998-12-09 2000-08-22 Nippon Shokubai Co Ltd 透明性耐熱樹脂の製造方法とその用途
JP2001151814A (ja) 1999-11-26 2001-06-05 Nippon Shokubai Co Ltd 透明性耐熱樹脂の製造方法およびその用途
JP2002120326A (ja) 2000-10-18 2002-04-23 Nippon Shokubai Co Ltd 透明熱可塑性樹脂積層体
JP2009107329A (ja) * 2007-10-10 2009-05-21 Jsr Corp 表面保護フィルム
KR20090115040A (ko) 2008-04-30 2009-11-04 주식회사 엘지화학 수지 조성물 및 이를 이용하여 형성된 광학 필름
JP2011252948A (ja) * 2010-05-31 2011-12-15 Nitto Denko Corp 帯電防止性粘着型光学フィルムおよび画像表示装置
KR20110053938A (ko) * 2011-05-02 2011-05-24 닛토덴코 가부시키가이샤 편광판용 보호 필름 및 그의 제조 방법 및 편광판
JP2013023611A (ja) * 2011-07-22 2013-02-04 Adeka Corp 水系ポリウレタン樹脂組成物、これを塗布してなる易接着性ポリエステルフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054327A4

Similar Documents

Publication Publication Date Title
WO2014148684A1 (ko) 보호필름 및 이를 포함하는 편광판
WO2014178517A1 (ko) 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판
KR101657356B1 (ko) 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치
WO2014204150A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204148A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204134A1 (ko) 박형 편광판 및 그의 제조 방법
WO2014204154A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2014185685A1 (ko) 편광판
WO2018034512A1 (ko) 접착력 및 내구성이 우수한 광학 필름, 및 이를 포함하는 편광판
WO2016048016A1 (ko) 내수성 및 내용제성이 우수한 광학 필름, 및 이를 포함하는 편광판
WO2014204132A1 (ko) 광학 물성이 우수한 박형 편광자, 그 제조 방법, 이를 포함하는 편광판 및 디스플레이 장치
WO2014204151A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2013055158A4 (ko) 편광판용 접착제 및 이를 포함하는 편광판
WO2015102336A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2015178741A1 (ko) 폴리에틸렌테레프탈레이트 보호 필름을 포함하는 편광판, 그 제조 방법, 이를 포함하는 화상표시장치 및 액정표시장치
WO2020145712A1 (ko) 편광판
WO2014157976A1 (ko) 양면형 편광판의 제조방법 및 이로부터 제조된 양면형 편광판
WO2013055154A2 (ko) 양면형 편광판 및 이를 포함하는 광학 장치
WO2015046971A1 (ko) 기능성 코팅층을 포함하는 광학 필름, 이를 포함하는 편광판 및 화상표시장치
WO2020145713A1 (ko) 편광판의 제조 방법
WO2020130462A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020145714A1 (ko) 광학 필름의 제조 방법
WO2015046844A1 (ko) 아크릴계 광학 필름, 이를 포함하는 편광판
WO2014204147A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847081

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014847081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15024670

Country of ref document: US

Ref document number: 2014847081

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016545691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE