WO2015046693A1 - Method of forming electrode for lithium secondary battery - Google Patents

Method of forming electrode for lithium secondary battery Download PDF

Info

Publication number
WO2015046693A1
WO2015046693A1 PCT/KR2014/002963 KR2014002963W WO2015046693A1 WO 2015046693 A1 WO2015046693 A1 WO 2015046693A1 KR 2014002963 W KR2014002963 W KR 2014002963W WO 2015046693 A1 WO2015046693 A1 WO 2015046693A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
silicon oxide
secondary battery
mixture
electrode
Prior art date
Application number
PCT/KR2014/002963
Other languages
French (fr)
Korean (ko)
Inventor
윤우영
염지호
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015046693A1 publication Critical patent/WO2015046693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for forming an electrode for a lithium secondary battery, and more particularly, to a method for forming an electrode for a lithium secondary battery constituting a secondary battery capable of charging and discharging.
  • Lithium secondary battery is a type of secondary battery that is charged and discharged by insertion and desorption of lithium ions in the battery. During charging, lithium ions move from cathode to cathode toward anode. It is inserted into the active material of, on the contrary, during discharge, lithium ions inserted into the negative electrode move toward the positive electrode and are inserted into the active material of the positive electrode.
  • Such lithium secondary batteries have high energy density, large electromotive force, and high capacity, and thus are widely used as power sources for mobile phones and laptops.
  • the lithium secondary battery is usually composed of a negative electrode, a positive electrode, a separator and an electrolyte.
  • the negative electrode and the positive electrode include a negative electrode active material and a positive electrode active material capable of inserting and detaching lithium ions as described above.
  • a separator prevents physical cell contact between the positive and negative electrodes. Instead, the movement of ions through the separator is free.
  • the electrolyte serves as a path through which ions can move freely between the anode and the cathode.
  • carbon for constituting the negative electrode may be used.
  • the carbon material is widely used as a negative electrode material of a lithium ion battery due to its small volume change, excellent reversibility, and relatively low price when intercalating / deintercalating lithium.
  • Carbon materials used as such anode materials include graphite, coke, fiber, pitch, and meso carbon.
  • the graphite has a theoretical limit (372 mAh g-1) in charge capacity per unit mass. Therefore, there has been a demand for the development of a new negative electrode material capable of greatly improving operating characteristics such as energy density, reversible capacity, and initial charging efficiency of a lithium ion battery.
  • Silicon has a lot of interest in the field of lithium ion batteries because it has a theoretical capacity per unit mass (approximately 4,200 mAh g-1) that is more than 10 times higher than the charge capacity of graphite electrodes or other various oxide and nitride material electrodes. It is a material.
  • silicon when silicon is applied to an electrode of a lithium ion battery, due to the insertion / desorption of lithium into the silicon electrode, a large volume change of 400% or more occurs in the silicon electrode, and thus the application to the actual anode material has many limitations.
  • silicon oxide SiOx
  • the silicon oxide is in the form of an oxygen group attached to the silicon and when the reaction with lithium, in addition to the main reaction between lithium and silicon, other oxides are generated.
  • These ancillary products show improved performance by acting to mitigate the volume expansion of silicon.
  • lithium ions used in the reaction of ancillary products are not reversible and thus are not used again during charge and discharge, resulting in loss of lithium ions.
  • the capacity may be reduced due to the loss of lithium ions, which may deteriorate the characteristics of the lithium secondary battery.
  • One object of the present invention is to provide a method for forming an electrode for a lithium secondary battery having an improved capacity and lifetime.
  • silicon oxide powder and lithium metal powder are mixed to form a mixture, and then the mixture is heated to a temperature above the melting point of the lithium metal powder. As a result, the liquid lithium metal and silicon oxide powder are reacted to form lithium silicon oxide from the mixture. Thereafter, an active material body is formed using the lithium silicon oxide and the aqueous binder.
  • a process of placing the mixture in the crucible and directly heating the crucible may be performed.
  • a process of placing the mixture in the crucible and heating the crucible in a bath in order to heat the mixture, a process of placing the mixture in the crucible and heating the crucible in a bath.
  • a process of performing a milling process for the mixture may be additionally performed.
  • the milling process may be carried out for 12-24 hours at a speed between 140 and 200 rpm.
  • a mixture of lithium metal powder and silicon oxide powder is heated to react with a liquid lithium powder and silicon oxide powder to form lithium silicon oxide and lithium silicon oxide
  • irreversible reaction does not occur during charge and discharge, only the reversible reaction may occur during movement between the electrodes of lithium ions.
  • the lithium secondary battery may have a stable cycle characteristics.
  • 1 is a voltage-capacity graph showing cycle characteristics during axial discharge of a lithium secondary battery including an electrode made of silicon oxide and an electrode including lithium silicon oxide, respectively.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • silicon oxide powder and lithium metal powder are mixed to form a mixture, and then the mixture is heated to a temperature above the melting point of the lithium metal powder. As a result, the liquid lithium metal and silicon oxide powder are reacted to form lithium silicon oxide from the mixture. Thereafter, an active material body is formed using the lithium silicon oxide and the aqueous binder.
  • a silicon oxide powder and a lithium metal powder are mixed to form a mixture.
  • the lithium metal powder may be formed through a droplet emulsion technique (DET) process. That is, the silicone oil is heated to a temperature above the break point of lithium. Thereafter, lithium foil is charged into the silicone oil to melt the lithium. At this time, the impeller pulverizes the molten lithium by the turbulent energy generated by the high speed rotation by using the rotational force of the motor, and at the same time, the lithium metal and the silicone oil are mixed to form an emulsified solvent. Thereafter, the emulsified solvent may be layered using hexane to obtain lithium powder.
  • DET droplet emulsion technique
  • a homogenizer or a stirrer may be used.
  • lithium metal powder generation of by-products due to side reactions may be suppressed as compared with the case where lithium compounds such as lithium chloride and lithium hydroxide are used.
  • the reaction surface area may be increased during the reaction with the silicon oxide, thereby improving reactivity as compared with the bulk lithium metal. That is, the lithium powder and the silicon oxide powder may easily react at a temperature of 190 to 210 ° C. close to the melting point of the lithium.
  • the lithium powder and the silicon oxide powder may be uniformly mixed at a predetermined ratio in the mixing process as compared with the lithium in the bulk state.
  • the liquid lithium metal and silicon oxide react with each other by heating the mixture to a temperature higher than the melting point of the lithium metal powder.
  • the lithium silicon oxide include lithium silicate (Li 4 SiO 4 ).
  • an irreversible reaction may occur during axial discharge of the lithium secondary battery, and thus may be formed on an irreversible material including lithium.
  • the irreversible material is already formed in the lithium secondary battery electrode made of the lithium silicon oxide corresponding to the irreversible material before the axial discharge of the lithium secondary battery. Therefore, when the electrode including the lithium silicon oxide is used in the lithium secondary battery, the irreversible reaction is suppressed during the axial discharge of the lithium secondary battery so that lithium ions are not consumed.
  • the lithium secondary battery to which the electrode including the lithium silicon oxide is applied may have improved cycle characteristics, that is, improved lifespan.
  • the lithium metal powder and silicon oxide powder is charged to the crucible, the crucible is mounted in a vacuum oven or a furnace to directly melt the crucible at the melting point of the lithium metal (180.54 ° C.).
  • the lithium metal powder can be melted and the liquid lithium metal and the silicon oxide powder can be reacted to form lithium silicon oxide.
  • the heating process may, for example, proceed for 24 hours or more.
  • the lithium metal powder and the silicon oxide powder is charged to the crucible, the crucible is mounted in a silicon oil to heat the crucible in a hot water bath to melt the lithium metal powder, and the liquid lithium metal And reacting the silicon oxide powder to form lithium silicon oxide.
  • the silicone oil may be maintained at a temperature sufficient to melt the lithium metal powder at 200 ° C. or higher. The heating process may, for example, proceed for 24 hours or more.
  • a milling process may be additionally performed on the mixture.
  • the mixture is synthesized so that the liquid lithium metal and silicon oxide can react more easily in a subsequent heating process.
  • the milling process can for example proceed at a speed between 140 and 200 rpm.
  • the milling process may be performed for about 12 hours to 24 hours.
  • the milling process can be performed using, for example, a ball mill apparatus or a planetary mill apparatus.
  • an active material body formed of the lithium silicon oxide and the aqueous binder is formed.
  • the lithium silicon oxide, the conductive material and the binder may be adjusted to a weight ratio of 70: 25: 5, for example.
  • An example of the aqueous binder may be sodium carboxymethyl cellulose (CMC).
  • an aqueous binder When forming an active material body using the lithium silicon oxide, it is not necessary to use a non-aqueous binder to solve the stability problem caused by the reaction of the lithium particles with water. Therefore, when the active material body is formed of lithium silicon oxide, an aqueous binder may be applied. In addition, when the aqueous binder is used, the effect of binding the lithium silicon oxide particles in a smaller amount compared to the non-aqueous binder may be excellent. As a result, the ratio of the aqueous binder in the active material body can be reduced, so that the properties of the active material body can be improved.
  • the carbon-based conductive agent is additionally mixed to improve the electrical conductivity of the active material body.
  • Lithium secondary battery includes a positive electrode, a negative electrode and an electrolyte layer.
  • the positive electrode includes a positive electrode active material capable of inserting and detaching lithium ions.
  • the cathode active material may be a lithium-containing transition metal oxide (lithiated cathode) used in a battery reaction such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCrO 2 , LiMn 2 O 4 , and the like.
  • the positive electrode active material included in the positive electrode portion is environmentally friendly, does not use rare metals such as cobalt (Co), and instead contains iron having abundant reserves, thus the raw material is very inexpensive and greatly contributes to battery capacity.
  • Lithium iron phosphate Lithium Iron Phosphate, LiFePO 4
  • the cathode is disposed to face the anode.
  • the negative electrode includes a negative electrode active material composed of lithium silicon oxide and an aqueous binder.
  • aqueous binder may be sodium carboxymethyl cellulose (CMC).
  • the lithium secondary battery When applied to a secondary battery including an electrode including the lithium silicon oxide, irreversible reaction of generating lithium silicate during axial discharge may be suppressed. Therefore, when the electrode including the lithium silicon oxide is applied to the lithium secondary battery, the lithium secondary battery may have a stable cycle characteristics.
  • the electrolyte layer is interposed between the positive electrode and the negative electrode.
  • the electrolyte layer includes an electrolyte solution.
  • the electrolyte may be a non-aqueous organic solvent, which may include a lithium salt.
  • a non-aqueous organic solvent cyclic or acyclic carbonate, an aliphatic carboxylic acid ester, etc. can use what is single or 2 or more types are mixed.
  • Silicon oxide powder and lithium metal powder were mixed to form a mixture.
  • the lithium metal powder was formed by a DiT process.
  • a homogenizer was used to form a mixture in which silicon oxide powder and lithium metal powder were uniformly mixed.
  • the crucible was heat-treated at 200 ° C. for 24 hours in a vacuum oven to form lithium silicon oxide.
  • the lithium silicon oxide, the conductive material, and the aqueous binder were formed with an active material body at a mass ratio of 70: 25: 5 to prepare an electrode for a lithium secondary battery.
  • the electrolyte for the lithium secondary battery as a negative electrode a lithium cobalt oxide (LiCoO 2 ) material as a positive electrode, a polypropylene material as a separator, an electrolyte solution containing 1 mol of LiPF 6 and EC and DEC in a ratio of 1: 1 A coin cell was produced.
  • the coin cell was charged and discharged once between 0 and 1.5 V at a constant current of 0.1 C.
  • 1 is a voltage-capacity graph showing cycle characteristics during axial discharge of a lithium secondary battery including an electrode made of silicon oxide and an electrode including lithium silicon oxide, respectively.
  • the capacity reduction rate of the initial charge amount and the discharge amount is 40.3%, but the lithium secondary battery employing an electrode including lithium silicon oxide in reaction with lithium powder has a capacity of about 12%. A decrease can be seen. That is, it can be seen that the initial efficiency of the lithium secondary battery having the electrode including the lithium silicon oxide has 88%.
  • lithium reversible and irreversible reaction of lithium inserted during charging of the battery occur together, and lithium ions involved in the 40.3% capacity corresponding to the irreversible reaction no longer affect the charge and discharge of the battery.
  • lithium secondary battery including an electrode made of lithium silicon oxide in which an irreversible material is formed prior to charging and discharging, lithium ions inserted during charging do not participate in the irreversible reaction, thereby suppressing generation of the irreversible material. You can see that.
  • the method of manufacturing an electrode for a lithium secondary battery according to embodiments of the present invention may be applied to form an electrode of a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

In a method of forming an electrode for a lithium secondary battery, silicon oxide powder and lithium metal powder are mixed to form a mixture, and then the mixture is heated to a temperature equal to or greater than the melting point of the lithium metal powder so as to react liquid lithium metal with silicon oxide powder and form a lithium silicon oxide from the mixture. Thereafter, the lithium silicon oxide and water-based binder are used to form an active material body.

Description

리튬 이차 전지용 전극의 형성 방법Formation Method of Electrode for Lithium Secondary Battery
본 발명은 리튬 이차 전지용 전극의 형성 방법에 관한 것으로, 더욱 상세하게는 충전 및 방전이 가능한 이차 전지를 이루는 리튬 이차 전지용 전극의 형성 방법에 관한 것이다.The present invention relates to a method for forming an electrode for a lithium secondary battery, and more particularly, to a method for forming an electrode for a lithium secondary battery constituting a secondary battery capable of charging and discharging.
리튬 이차 전지(Lithium secondary battery)는 전지 내에서 리튬 이온의 삽입 및 탈리에 의하여 충전과 방전이 이루어지는 이차 전지의 일종으로, 충전 시에는 양극(cathode)에서 음극(anode) 쪽으로 리튬 이온이 이동하여 음극의 활물질에 삽입되며, 반대로 방전 시에는 음극에 삽입된 리튬 이온이 양극 쪽으로 이동하여 양극의 활물질에 삽입된다. 이러한 리튬 이차 전지는 에너지 밀도가 높고, 기전력이 크며, 고용량을 발휘할 수 있는 장점을 가지고 있어, 휴대전화, 노트북 등의 전원으로 많이 이용된다.Lithium secondary battery is a type of secondary battery that is charged and discharged by insertion and desorption of lithium ions in the battery. During charging, lithium ions move from cathode to cathode toward anode. It is inserted into the active material of, on the contrary, during discharge, lithium ions inserted into the negative electrode move toward the positive electrode and are inserted into the active material of the positive electrode. Such lithium secondary batteries have high energy density, large electromotive force, and high capacity, and thus are widely used as power sources for mobile phones and laptops.
상기 리튬 이차 전지는 통상 음극, 양극, 분리판 및 전해질로 구성된다. 음극과 양극은 상기와 같이 리튬 이온의 삽입 및 탈리가 가능한 음극 활물질 및 양극 활물질을 포함한다. 분리판(separator)은 양극과 음극 사이에서 물리적인 전지 접촉을 방지한다. 대신 분리판을 통한 이온의 이동은 자유롭다. 전해액은 양극과 음극 사이에서 이온이 자유롭게 이동할 수 있는 통로 역할을 한다.The lithium secondary battery is usually composed of a negative electrode, a positive electrode, a separator and an electrolyte. The negative electrode and the positive electrode include a negative electrode active material and a positive electrode active material capable of inserting and detaching lithium ions as described above. A separator prevents physical cell contact between the positive and negative electrodes. Instead, the movement of ions through the separator is free. The electrolyte serves as a path through which ions can move freely between the anode and the cathode.
한편, 상기 음극을 구성하기 위한 탄소가 이용될 수 있다. 상기 탄소재료는 리튬의 층간 삽입/탈리 시에 부피 변화가 적고, 가역성이 뛰어나며, 가격이 상대적으로 저렴하여 리튬이온전지의 음극재료로 널리 사용되고 있다. 이러한 음극재료로 사용되는 탄소 재료는 그라파이트(graphite), 코크(coke), 파이버(fiber), 피치(pitch), 및 메조(meso) 탄소 등이 있다. 그러나, 상기 그라파이트는 단위질량당 충전용량에 이론적 한계(372 mAh g-1)가 있다. 따라서, 리튬이온전지의 에너지 밀도, 가역 용량 및 초기 충전효율과 같은 동작 특성을 크게 향상시킬 수 있는 새로운 음극 재료의 개발이 요구되고 있었다.Meanwhile, carbon for constituting the negative electrode may be used. The carbon material is widely used as a negative electrode material of a lithium ion battery due to its small volume change, excellent reversibility, and relatively low price when intercalating / deintercalating lithium. Carbon materials used as such anode materials include graphite, coke, fiber, pitch, and meso carbon. However, the graphite has a theoretical limit (372 mAh g-1) in charge capacity per unit mass. Therefore, there has been a demand for the development of a new negative electrode material capable of greatly improving operating characteristics such as energy density, reversible capacity, and initial charging efficiency of a lithium ion battery.
최근 상기한 문제점을 해결하기 위한 시도로 실리콘을 이용한 전극개발이 주목을 받고 있다. 실리콘은 그라파이트 전극 또는 다른 다양한 산화물, 질화물 재료 전극의 충전용량(charge capacity)보다 10배 이상 높은 이론적 단위질량당 충전용량(약 4,200 mAh g-1)을 가지기 때문에 리튬이온전지 분야에서 많은 관심을 가지고 있는 소재이다. 그러나, 실리콘이 리튬이온전지의 전극에 적용될 경우 실리콘 전극 내부로의 리튬의 삽입/탈리로 인하여, 실리콘 전극에 400% 이상의 큰 부피 변화가 발생하여 실제 음극 재료로의 적용에는 많은 제약이 따른다. Recently, the development of electrodes using silicon has been attracting attention in an attempt to solve the above problems. Silicon has a lot of interest in the field of lithium ion batteries because it has a theoretical capacity per unit mass (approximately 4,200 mAh g-1) that is more than 10 times higher than the charge capacity of graphite electrodes or other various oxide and nitride material electrodes. It is a material. However, when silicon is applied to an electrode of a lithium ion battery, due to the insertion / desorption of lithium into the silicon electrode, a large volume change of 400% or more occurs in the silicon electrode, and thus the application to the actual anode material has many limitations.
이러한 실리콘 전극의 문제점을 해결하기 위하여 실리콘 산화물(SiOx)이 제안되고 있다. In order to solve the problem of the silicon electrode, silicon oxide (SiOx) has been proposed.
상기 실리콘 산화물은 실리콘에 산소기가 붙어있는 형태이며 리튬과 반응시 리튬과 실리콘 사이의 주반응 외에도 기타 산화물이 생성되는 반응이 생겨난다. 이러한 부수적인 생성물들이 실리콘의 부피팽창을 완화시키는 역할을 함으로써 향상된 성능을 나타내고 있다. 하지만 부수적인 생성물의 반응에 사용된 리튬 이온은 가역적이지 않아 충방전시 다시 사용되지 않고 결과적으로 리튬이온의 손실이 발생하게 된다. 상기 비가역 반응이 발생되면 리튬이온의 손실로 인한 용량 감소가 생겨 리튬 이차전지의 특성이 악화될 수 있다.The silicon oxide is in the form of an oxygen group attached to the silicon and when the reaction with lithium, in addition to the main reaction between lithium and silicon, other oxides are generated. These ancillary products show improved performance by acting to mitigate the volume expansion of silicon. However, lithium ions used in the reaction of ancillary products are not reversible and thus are not used again during charge and discharge, resulting in loss of lithium ions. When the irreversible reaction occurs, the capacity may be reduced due to the loss of lithium ions, which may deteriorate the characteristics of the lithium secondary battery.
본 발명의 일 목적은 개선된 용량 및 수명을 갖는 리튬 이차 전지용 전극의 형성 방법을 제공하는 것이다.One object of the present invention is to provide a method for forming an electrode for a lithium secondary battery having an improved capacity and lifetime.
본 발명의 일 실시예에 따른 리튬 이차 전지용 전극의 형성 방법에 있어서, 실리콘 산화물 분말 및 리튬 금속 분말을 혼합하여 혼합물을 형성하고, 이후, 상기 혼합물에 대하여 상기 리튬 금속 분말의 녹는점 이상의 온도로 가열함으로써 액상의 리튬 금속 및 실리콘 산화물 분말을 반응시켜, 상기 혼합물로부터 리튬 실리콘 산화물을 형성한다. 이후, 상기 리튬 실리콘 산화물 및 수계 바인더를 이용하여 활물질체를 형성한다. In the method of forming an electrode for a lithium secondary battery according to an embodiment of the present invention, silicon oxide powder and lithium metal powder are mixed to form a mixture, and then the mixture is heated to a temperature above the melting point of the lithium metal powder. As a result, the liquid lithium metal and silicon oxide powder are reacted to form lithium silicon oxide from the mixture. Thereafter, an active material body is formed using the lithium silicon oxide and the aqueous binder.
본 발명의 일 실시예에 있어서, 상기 혼합물을 가열하기 위하여, 상기 혼합물을 도가니 내에 위치시키고, 상기 도가니를 직접 가열하는 공정이 수행될 수 있다. In one embodiment of the present invention, in order to heat the mixture, a process of placing the mixture in the crucible and directly heating the crucible may be performed.
본 발명의 일 실시예에 있어서, 상기 혼합물을 가열하기 위하여, 상기 혼합물을 도가니 내에 위치시키고, 상기 도가니를 중탕 방식으로 가열하는 공정이 수행될 수 있다. In one embodiment of the present invention, in order to heat the mixture, a process of placing the mixture in the crucible and heating the crucible in a bath.
본 발명의 일 실시예에 있어서, 상기 혼합물에 대하여 밀링 공정을 수행하는 공정이 추가적으로 수행될 수 있다. 여기서, 상기 밀링 공정은 140 에서 200 rpm 사이의 속도로 12-24 시간 진행될 수 있다.In one embodiment of the present invention, a process of performing a milling process for the mixture may be additionally performed. Here, the milling process may be carried out for 12-24 hours at a speed between 140 and 200 rpm.
본 발명에 따른 리튬 이차전지용 전극의 형성 방법에 따르면, 리튬 금속 분말 및 실리콘 산화물 분말이 혼합된 혼합물을 가열하여, 액상의 리튬 분말 및 실리콘 산화물 분말과 반응시켜 리튬 실리콘 산화물을 형성하도록 하고 리튬 실리콘 산화물을 전극 활물질체로 사용함으로써 충전 방전 시 비가역 반응이 발생하지 않고 리튬 이온의 전극들 간의 이동시 가역 반응만 발생할 수 있다.According to the method for forming an electrode for a lithium secondary battery according to the present invention, a mixture of lithium metal powder and silicon oxide powder is heated to react with a liquid lithium powder and silicon oxide powder to form lithium silicon oxide and lithium silicon oxide By using as an electrode active material body, irreversible reaction does not occur during charge and discharge, only the reversible reaction may occur during movement between the electrodes of lithium ions.
따라서, 상기 리튬 실리콘 산화물을 포함하는 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 안정적인 사이클 특성을 가질 수 있다.Therefore, when the electrode including the lithium silicon oxide is applied to the lithium secondary battery, the lithium secondary battery may have a stable cycle characteristics.
도 1은 실리콘 산화물로 이루어진 전극 및 리튬 실리콘 산화물을 포함하는 전극을 각각 포함하는 리튬 이차 전지의 축방전시 사이클 특성을 나타내는 전압-용량 그래프이다.1 is a voltage-capacity graph showing cycle characteristics during axial discharge of a lithium secondary battery including an electrode made of silicon oxide and an electrode including lithium silicon oxide, respectively.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 대상물들의 크기와 양은 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In the accompanying drawings, the size and amount of the objects are shown to be enlarged or reduced than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "include" are intended to indicate that there is a feature, step, function, component, or combination thereof described on the specification, and other features, steps, functions, components Or it does not exclude in advance the possibility of the presence or addition of them in combination.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
본 발명의 일 실시예에 따른 리튬 이차 전지용 전극의 형성 방법에 있어서, 실리콘 산화물 분말 및 리튬 금속 분말을 혼합하여 혼합물을 형성하고, 이후, 상기 혼합물에 대하여 상기 리튬 금속 분말의 녹는점 이상의 온도로 가열함으로써 액상의 리튬 금속 및 실리콘 산화물 분말을 반응시켜, 상기 혼합물로부터 리튬 실리콘 산화물을 형성한다. 이후, 상기 리튬 실리콘 산화물 및 수계 바인더를 이용하여 활물질체를 형성한다. In the method of forming an electrode for a lithium secondary battery according to an embodiment of the present invention, silicon oxide powder and lithium metal powder are mixed to form a mixture, and then the mixture is heated to a temperature above the melting point of the lithium metal powder. As a result, the liquid lithium metal and silicon oxide powder are reacted to form lithium silicon oxide from the mixture. Thereafter, an active material body is formed using the lithium silicon oxide and the aqueous binder.
본 발명의 실시예에 따른 리튬 이차 전지용 전극의 형성 방법에 있어서, 먼저, 실리콘 산화물 분말 및 리튬 금속 분말을 혼합하여 혼합물을 형성한다.In the method for forming an electrode for a lithium secondary battery according to an embodiment of the present invention, first, a silicon oxide powder and a lithium metal powder are mixed to form a mixture.
상기 리튬 금속 분말은 디이티(droplet emulsion technique; DET) 공정을 통하여 형성될 수 있다. 즉, 실리콘 오일을 리튬의 끊는 점 이상의 온도로 가열시킨다. 이후, 리튬 호일을 실리콘 오일 내에 장입시켜 상기 리튬을 용융시킨다. 이때 임펠러가 모터의 회전력을 이용하여 고속 회전함으로서 발생하는 난류 에너지로 용융 리튬을 분쇄시키며 동시에 리튬 금속과 실리콘 오일을 혼합시켜 에멀젼화된 용매를 형성한다. 이후, 상기 에멀젼화된 용매를 헥산을 이용하여 층분리시켜 리튬 분말을 얻을 수 있다.The lithium metal powder may be formed through a droplet emulsion technique (DET) process. That is, the silicone oil is heated to a temperature above the break point of lithium. Thereafter, lithium foil is charged into the silicone oil to melt the lithium. At this time, the impeller pulverizes the molten lithium by the turbulent energy generated by the high speed rotation by using the rotational force of the motor, and at the same time, the lithium metal and the silicone oil are mixed to form an emulsified solvent. Thereafter, the emulsified solvent may be layered using hexane to obtain lithium powder.
상기 실리콘 산화물 분말 및 상기 리튬 금속 분말을 균일하게 혼합하기 위하여, 균질기(homogenizer) 또는 스털러(stirrer) 등이 이용될 수 있다. In order to uniformly mix the silicon oxide powder and the lithium metal powder, a homogenizer or a stirrer may be used.
이때, 상기 리튬 금속 분말이 사용됨에 따라 염화 리튬, 리튬 수산화물과 같은 리튬 화합물이 사용되는 경우와 비교하여, 부수적인 반응에 의한 부산물의 발생이 억제될 수 있다. In this case, as the lithium metal powder is used, generation of by-products due to side reactions may be suppressed as compared with the case where lithium compounds such as lithium chloride and lithium hydroxide are used.
또한 분말 상태의 리튬 금속이 이용됨에 따라 벌크 상태의 리튬 금속에 비하여, 상기 실리콘 산화물과의 반응시 반응 표면적이 증대되어 반응성이 개선될 수 있다. 즉, 상기 리튬의 녹는점에 근접하는 190 내지 210 ℃의 온도에서 상기 리튬 분말과 상기 실리콘 산화물 분말이 용이하게 반응할 수 있다. In addition, as the lithium metal in the powder state is used, the reaction surface area may be increased during the reaction with the silicon oxide, thereby improving reactivity as compared with the bulk lithium metal. That is, the lithium powder and the silicon oxide powder may easily react at a temperature of 190 to 210 ° C. close to the melting point of the lithium.
나아가, 상기 리튬 분말과 상기 실리콘 산화물 분말이 이용되어 혼합물이 형성됨에 따라 벌크 상태의 리튬에 비하여 혼합 과정에서 일정 비율로균일하게 혼합될 수 있다.Furthermore, as the mixture is formed by using the lithium powder and the silicon oxide powder, the lithium powder and the silicon oxide powder may be uniformly mixed at a predetermined ratio in the mixing process as compared with the lithium in the bulk state.
이어서, 상기 혼합물에 대하여 상기 리튬 금속 분말의 녹는점 이상의 온도로 가열함으로써 액상의 리튬 금속 및 실리콘 산화물이 상호 반응한다. 이로써 상기 혼합물로부터 리튬 실리콘 산화물을 형성한다. 상기 리튬 실리콘 산화물은 예를 들면 리튬실리케이트(Li4SiO4)를 들 수 있다. Subsequently, the liquid lithium metal and silicon oxide react with each other by heating the mixture to a temperature higher than the melting point of the lithium metal powder. This forms lithium silicon oxide from the mixture. Examples of the lithium silicon oxide include lithium silicate (Li 4 SiO 4 ).
즉, 실리콘 산화물로 이루어진 활물질체가 리튬 이차 전지의 전극으로 이용될 경우 상기 리튬 이차 전지의 축방전시 비가역 반응이 발생하여 리튬을 포함하는 비가역 물질에 형성될 수 있다. 상기 비가역 물질에 해당하는 상기 리튬 실리콘 산화물로 이루어진 리튬 이차 전지용 전극에는 리튬 이차 전지의 축방전 이전에 상기 비가역 물질이 이미 형성된다. 따라서, 상기 리튬 실리콘 산화물을 포함하는 전극이 리튬 이차 전지에 사용될 경우, 리튬 이차 전지의 축방전시 상기 비가역 반응이 억제되어 리튬 이온이 소비되지 않는다. 결과적으로 상기 리튬 실리콘 산화물을 포함하는 전극이 적용된 리튬 이차 전지는 개선된 싸이클 특성, 즉 개선된 수명을 가질 수 있다.That is, when an active material body made of silicon oxide is used as an electrode of a lithium secondary battery, an irreversible reaction may occur during axial discharge of the lithium secondary battery, and thus may be formed on an irreversible material including lithium. The irreversible material is already formed in the lithium secondary battery electrode made of the lithium silicon oxide corresponding to the irreversible material before the axial discharge of the lithium secondary battery. Therefore, when the electrode including the lithium silicon oxide is used in the lithium secondary battery, the irreversible reaction is suppressed during the axial discharge of the lithium secondary battery so that lithium ions are not consumed. As a result, the lithium secondary battery to which the electrode including the lithium silicon oxide is applied may have improved cycle characteristics, that is, improved lifespan.
본 발명의 일 실시예에 있어서, 상기 리튬 금속 분말 및 실리콘 산화물 분말을 도가니에 장입하고, 상기 도가니를 진공 오븐이나 퍼니스(furnace) 내에 장착하여 직접 상기 도가니를 상기 리튬 금속의 녹는점(180.54 ℃) 이상의 온도로 가열함으로써 상기 리튬 금속 분말을 용융시키고 액상 리튬 금속 및 상기 실리콘 산화물 분말을 반응시켜, 리튬 실리콘 산화물을 형성할 수 있다. 상기 가열 공정은 예를 들면, 24 시간 이상 동안 진행될 수 있다.In one embodiment of the present invention, the lithium metal powder and silicon oxide powder is charged to the crucible, the crucible is mounted in a vacuum oven or a furnace to directly melt the crucible at the melting point of the lithium metal (180.54 ° C.). By heating to the above temperature, the lithium metal powder can be melted and the liquid lithium metal and the silicon oxide powder can be reacted to form lithium silicon oxide. The heating process may, for example, proceed for 24 hours or more.
본 발명의 일 실시예에 있어서, 상기 리튬 금속 분말 및 실리콘 산화물 분말을 도가니에 장입하고, 상기 도가니를 실리콘 오일 내에 장착하여 중탕 방식으로 상기 도가니를 가열함으로써 상기 리튬 금속 분말을 용융시키고, 액상 리튬 금속 및 상기 실리콘 산화물 분말을 반응시켜, 리튬 실리콘 산화물을 형성할 수 있다. 상기 실리콘 오일은 200 ℃ 이상으로 상기 리튬 금속 분말을 용융시킬 수 있는 충분한 온도로 유지할 수 있다. 상기 가열 공정은 예를 들면, 24 시간 이상 동안 진행될 수 있다.In one embodiment of the present invention, the lithium metal powder and the silicon oxide powder is charged to the crucible, the crucible is mounted in a silicon oil to heat the crucible in a hot water bath to melt the lithium metal powder, and the liquid lithium metal And reacting the silicon oxide powder to form lithium silicon oxide. The silicone oil may be maintained at a temperature sufficient to melt the lithium metal powder at 200 ° C. or higher. The heating process may, for example, proceed for 24 hours or more.
본 발명의 일 실시예에 있어서, 상기 혼합물에 대하여 밀링 공정이 추가적으로 수행될 수 있다. 상기 밀링 공정을 통하여, 상기 혼합물을 합성시켜 후속하는 가열 공정에서 보다 용이하게 액상 리튬 금속과 실리콘 산화물이 반응할 수 있도록 한다. 상기 밀링 공정은 예를 들면 140 에서 200 rpm 사이의 속도로 진행될 수 있다. 또한 상기 밀링 공정은 약 12 시간 내지 24 시간 동안 진행될 수 있다. 상기 밀링 공정은 예를 들면, 볼밀 장치 또는 유성밀 장치를 이용하여 수행될 수 있다. In one embodiment of the present invention, a milling process may be additionally performed on the mixture. Through the milling process, the mixture is synthesized so that the liquid lithium metal and silicon oxide can react more easily in a subsequent heating process. The milling process can for example proceed at a speed between 140 and 200 rpm. In addition, the milling process may be performed for about 12 hours to 24 hours. The milling process can be performed using, for example, a ball mill apparatus or a planetary mill apparatus.
이후, 상기 리튬 실리콘 산화물 및 수계 바인더로 이루어진 활물질체를 형성한다. 상기 리튬 실리콘 산화물, 도전재 및 바인더는 예를 들면 70:25:5의 중량비로 조절될 수 있다. 상기 수계 바인더의 예로는 소듐 카르복시메틸 셀루로스(sodium carboxymethyl cellulose; CMC)을 들 수 있다.Thereafter, an active material body formed of the lithium silicon oxide and the aqueous binder is formed. The lithium silicon oxide, the conductive material and the binder may be adjusted to a weight ratio of 70: 25: 5, for example. An example of the aqueous binder may be sodium carboxymethyl cellulose (CMC).
상기 리튬 실리콘 산화물을 이용하여 활물질체를 형성하는 경우, 리튬 입자의 물과의 반응에 의한 안정성 문제를 해결하기 위하여 비수계 바인더가 사용될 필요가 없다. 따라서, 리튬 실리콘 산화물로 활물질체를 형성할 경우, 수계 바인더가 적용될 수 있다. 나아가, 상기 수계 바인더가 이용될 경우, 비수계 바인더와 비교할 경우 보다 작은 양으로도 리튬 실리콘 산화물 입자들을 바인딩하는 효과가 우수할 수 있다. 결과적으로 활물질체에서 수계 바인더의 비율이 감소될 수 있으로써 활물질체의 특성이 개선될 수 있다.When forming an active material body using the lithium silicon oxide, it is not necessary to use a non-aqueous binder to solve the stability problem caused by the reaction of the lithium particles with water. Therefore, when the active material body is formed of lithium silicon oxide, an aqueous binder may be applied. In addition, when the aqueous binder is used, the effect of binding the lithium silicon oxide particles in a smaller amount compared to the non-aqueous binder may be excellent. As a result, the ratio of the aqueous binder in the active material body can be reduced, so that the properties of the active material body can be improved.
한편, 상기 리튬 실리콘 산화물 및 수계 바인더로 이루어진 활물질체를 형성할 경우, 카본 계열의 도전제가 추가적으로 혼합됨으로써 활물질체의 전기적 전도성을 개선할 수 있다.On the other hand, when forming the active material body consisting of the lithium silicon oxide and the aqueous binder, the carbon-based conductive agent is additionally mixed to improve the electrical conductivity of the active material body.
리튬 이차 전지의 제조Fabrication of Lithium Secondary Battery
본 발명의 일 실시예에 따른 리튬 이차 전지는 양극, 음극 및 전해질층을 포함한다. Lithium secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode and an electrolyte layer.
상기 양극은 리튬 이온을 삽입 및 탈리할 수 있는 양극 활물질을 포함한다. 이러한 양극 활물질은 LiCoO2, LiMnO2, LiNiO2, LiCrO2, LiMn2O4 등과 같은 전지반응에 사용되는 리튬을 함유하고 있는 전이금속 산화물(lithiated cathode)이 될 수 있다. 또한 양극부에 포함되는 양극 활물질은 환경 친화적이고, 코발트(Co)와 같은 희귀 금속을 사용하지 않고, 대신에 매장량이 풍부한 철을 함유하여 원료의 가격도 매우 저렴하고, 전지 용량에도 크게 기여하는 장점이 있는 리튬 철인산화물(Lithium Iron Phosphate, LiFePO4)이 될 수 있다. The positive electrode includes a positive electrode active material capable of inserting and detaching lithium ions. The cathode active material may be a lithium-containing transition metal oxide (lithiated cathode) used in a battery reaction such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCrO 2 , LiMn 2 O 4 , and the like. In addition, the positive electrode active material included in the positive electrode portion is environmentally friendly, does not use rare metals such as cobalt (Co), and instead contains iron having abundant reserves, thus the raw material is very inexpensive and greatly contributes to battery capacity. Lithium iron phosphate (Lithium Iron Phosphate, LiFePO 4 ) It can be.
상기 음극은 상기 양극과 마주보도록 배치된다. 상기 음극은 리튬 실리콘 산화물 및 수계 바인더로 이루어진 음극 활물질체를 포함한다. The cathode is disposed to face the anode. The negative electrode includes a negative electrode active material composed of lithium silicon oxide and an aqueous binder.
상기 수계 바인더의 예로는 소듐 카르복시메틸 셀루로스(sodium carboxymethyl cellulose; CMC)을 들 수 있다. An example of the aqueous binder may be sodium carboxymethyl cellulose (CMC).
상기 리튬 실리콘 산화물을 포함하는 전극을 포함하는 이차 전지에 적용할 경우 축방전시 리튬 실리케이트를 발생시키는 비가역 반응이 억제될 수 있다. 따라서, 상기 리튬 실리콘 산화물을 포함하는 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 안정적인 사이클 특성을 가질 수 있다.When applied to a secondary battery including an electrode including the lithium silicon oxide, irreversible reaction of generating lithium silicate during axial discharge may be suppressed. Therefore, when the electrode including the lithium silicon oxide is applied to the lithium secondary battery, the lithium secondary battery may have a stable cycle characteristics.
상기 전해질층은 상기 양극 및 음극 사이에 개재된다. 상기 전해질층은 전해액을 포함한다. 상기 전해액의 예로는 비수성 유기 용매가 될 수 있으며, 여기에 리튬염이 포함될 수 있다. 상기 비수성 유기 용매는 환상 또는 비환상 카보네이트, 지방족 카르복실산 에스테르 등이 단독 또는 2종 이상이 혼합되어 있는 것을 이용할 수 있다.The electrolyte layer is interposed between the positive electrode and the negative electrode. The electrolyte layer includes an electrolyte solution. Examples of the electrolyte may be a non-aqueous organic solvent, which may include a lithium salt. As said non-aqueous organic solvent, cyclic or acyclic carbonate, an aliphatic carboxylic acid ester, etc. can use what is single or 2 or more types are mixed.
리튬 이차 전지용 전극의 평가Evaluation of the electrode for lithium secondary batteries
실리콘 산화물 분말 및 리튬 금속 분말을 혼합하여 혼합물을 형성하였다. 이때, 리튬 금속 분말은 디이티 공정으로 형성되었다. 또한, 균질기(homogenizer)가 이용되어 실리콘 산화물 분말 및 리튬 금속 분말이 균일하게 혼합된 혼합물이 형성되었다. 상기 혼합물을 도가니에 장입시킨 후 상기 도가니를 진공 오븐 내에 200 ℃ 온도에 24시간 동안 열처리하여 리튬 실리콘 산화물을 형성하였다. 상기 리튬 실리콘 산화물, 도전재 및 수계 바인더를 70:25:5의 질량비로 활물질체를 형성하여, 리튬 이차 전지용 전극을 제조하였다. 또한, 상기 리튬 이차 전지용 전극을 음극으로, 리튬 코발트 옥사이드(LiCoO2) 물질을 양극으로, 폴리프로필렌 물질을 분리판으로, LiPF6 1mol이 포함되고 EC 및 DEC가 1:1의 비율로 혼합된 전해액으로 코인셀을 제작하였다. 상기 코인셀에 대하여 0.1C의 정전류로 0~1.5V 사이에서 1회 충방전을 진행하였다Silicon oxide powder and lithium metal powder were mixed to form a mixture. At this time, the lithium metal powder was formed by a DiT process. In addition, a homogenizer was used to form a mixture in which silicon oxide powder and lithium metal powder were uniformly mixed. After charging the mixture to the crucible, the crucible was heat-treated at 200 ° C. for 24 hours in a vacuum oven to form lithium silicon oxide. The lithium silicon oxide, the conductive material, and the aqueous binder were formed with an active material body at a mass ratio of 70: 25: 5 to prepare an electrode for a lithium secondary battery. In addition, the electrolyte for the lithium secondary battery as a negative electrode, a lithium cobalt oxide (LiCoO 2 ) material as a positive electrode, a polypropylene material as a separator, an electrolyte solution containing 1 mol of LiPF 6 and EC and DEC in a ratio of 1: 1 A coin cell was produced. The coin cell was charged and discharged once between 0 and 1.5 V at a constant current of 0.1 C.
도 1은 실리콘 산화물로 이루어진 전극 및 리튬 실리콘 산화물을 포함하는 전극을 각각 포함하는 리튬 이차 전지의 축방전시 사이클 특성을 나타내는 전압-용량 그래프이다.1 is a voltage-capacity graph showing cycle characteristics during axial discharge of a lithium secondary battery including an electrode made of silicon oxide and an electrode including lithium silicon oxide, respectively.
도 1을 참조하면, 실리콘 모노옥사이드 분말을 사용하였을 경우 초기 충전양과 방전양의 용량 감소율이 40.3% 이지만 리튬분말과 반응하여 리튬 실리콘 산화물를 포함하는 전극을 채용한 리튬 이차 전지는 12%의 정도의 용량 감소를 볼 수 있다. 즉, 리튬 실리콘 산화물을 포함하는 전극을 구비한 리튬 이차 전지는 초기효율이 88%를 가짐을 확인할 수 있다.Referring to FIG. 1, when the silicon monooxide powder is used, the capacity reduction rate of the initial charge amount and the discharge amount is 40.3%, but the lithium secondary battery employing an electrode including lithium silicon oxide in reaction with lithium powder has a capacity of about 12%. A decrease can be seen. That is, it can be seen that the initial efficiency of the lithium secondary battery having the electrode including the lithium silicon oxide has 88%.
즉, 일반적인 실리콘 모노옥사이드의 경우는 전지의 충전시 삽입되는 리튬의 가역과 비가역 반응이 함께 일어나고 비가역 반응에 해당하는 40.3% 용량에 관여한 리튬이온은 더 이상 전지의 충전 방전에 영향을 주지 못한다. 반면에 충방전 이전에 비가역 물질을 형성시킨 리튬 실리콘 산화물로 이루어진 전극을 포함하는 리튬 이차 전지의 경우, 충전시 삽입되는 리튬 이온이 비가역 반응에 참여하지 않고 가역 반응에 참여하여 비가역 물질의 생성이 억제되는 것을 확인할 수 있다.That is, in the case of general silicon monooxide, lithium reversible and irreversible reaction of lithium inserted during charging of the battery occur together, and lithium ions involved in the 40.3% capacity corresponding to the irreversible reaction no longer affect the charge and discharge of the battery. On the other hand, in the case of a lithium secondary battery including an electrode made of lithium silicon oxide in which an irreversible material is formed prior to charging and discharging, lithium ions inserted during charging do not participate in the irreversible reaction, thereby suppressing generation of the irreversible material. You can see that.
본 발명의 실시예들에 따른 리튬 이차 전지용 전극의 제조 방법은 리튬 이차 전지의 전극을 형성하는 데 적용될 수 있다.The method of manufacturing an electrode for a lithium secondary battery according to embodiments of the present invention may be applied to form an electrode of a lithium secondary battery.

Claims (5)

  1. 실리콘 산화물 분말 및 리튬 금속 분말을 혼합하여 혼합물을 형성하는 단계;Mixing the silicon oxide powder and the lithium metal powder to form a mixture;
    상기 혼합물에 대하여 상기 리튬 금속 분말의 녹는점 이상의 온도로 가열함으로써 액상의 리튬 금속 및 실리콘 산화물 분말을 반응시켜, 상기 혼합물로부터 리튬 실리콘 산화물을 형성하는 단계; 및Reacting the liquid lithium metal and silicon oxide powder by heating the mixture to a temperature above the melting point of the lithium metal powder to form lithium silicon oxide from the mixture; And
    상기 리튬 실리콘 산화물 및 수계 바인더를 이용하여 활물질체를 형성하는 단계를 포함하는 리튬 이차 전지용 전극의 제조 방법.Method of manufacturing an electrode for a lithium secondary battery comprising the step of forming an active material using the lithium silicon oxide and the aqueous binder.
  2. 제1항에 있어서, 상기 혼합물을 가열하는 단계는, The method of claim 1, wherein heating the mixture comprises:
    상기 혼합물을 도가니 내에 위치시키는 단계; 및Placing the mixture into the crucible; And
    상기 도가니를 직접 가열하는 단계를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극의 제조 방법.Method for producing a lithium secondary battery electrode, characterized in that it comprises the step of heating the crucible directly.
  3. 제1항에 있어서, 상기 혼합물을 가열하는 단계는, The method of claim 1, wherein heating the mixture comprises:
    상기 혼합물을 도가니 내에 위치시키는 단계; 및Placing the mixture into the crucible; And
    상기 도가니를 중탕 방식으로 가열하는 단계를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극의 제조 방법.Method for manufacturing a lithium secondary battery electrode, characterized in that it comprises the step of heating the crucible in a bath.
  4. 제1항에 있어서, 상기 혼합물에 대하여 밀링 공정을 수행하는 단계를 더 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극의 제조 방법.The method of manufacturing an electrode for a lithium secondary battery according to claim 1, further comprising performing a milling process on the mixture.
  5. 제4항에 있어서, 상기 밀링 공정은 140 에서 200 rpm 사이의 속도로 12-24 시간 진행되는 것을 특징으로 하는 리튬 이차 전지용 전극의 제조 방법.The method of claim 4, wherein the milling process is performed at a speed of 140 to 200 rpm for 12 to 24 hours.
PCT/KR2014/002963 2013-09-30 2014-04-07 Method of forming electrode for lithium secondary battery WO2015046693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0116504 2013-09-30
KR1020130116504A KR101527286B1 (en) 2013-09-30 2013-09-30 Method of forming an anode for a lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2015046693A1 true WO2015046693A1 (en) 2015-04-02

Family

ID=52743788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002963 WO2015046693A1 (en) 2013-09-30 2014-04-07 Method of forming electrode for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR101527286B1 (en)
WO (1) WO2015046693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751004A (en) * 2021-01-04 2021-05-04 澳门大学 LixSi composite material, preparation method thereof and lithium ion battery cathode material
CN114672713A (en) * 2022-04-21 2022-06-28 胜华新能源科技(东营)有限公司 Preparation method of lithium-containing metal silicon, lithium-containing SiO and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370693B (en) * 2020-03-24 2022-12-27 洛阳联创锂能科技有限公司 Preparation method of silica lithium anode material with high initial efficiency
EP4290619A1 (en) * 2022-04-21 2023-12-13 Shinghwa Amperex Technology (Dongying) Co., Ltd. Preparation method for lithium-containing silicon metal, lithium-containing silicon metal, lithium-containing sio and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050087912A (en) * 2004-02-27 2005-09-01 한국전기연구원 Cathode active material for lithium secondary battery and manufacturing method thereof
KR20080089024A (en) * 2007-03-30 2008-10-06 일진홀딩스 주식회사 A device for manufacturing rapidly solidified powder alloy including si precipitates of active material for rechargable li-battery and a method thereof
KR20110069037A (en) * 2008-09-30 2011-06-22 스미토모 베이클리트 컴퍼니 리미티드 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
KR20120099375A (en) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 Metal oxide coated positive electrode materials for lithium-based batteries
WO2012176039A1 (en) * 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235282B2 (en) * 2006-06-16 2013-07-10 国立大学法人九州大学 Cathode active material and battery for non-aqueous electrolyte secondary battery
FR2912398B1 (en) * 2007-02-09 2009-04-24 Centre Nat Rech Scient MIXED SILICATES OF LITHIUM
JP5156946B2 (en) * 2007-03-07 2013-03-06 国立大学法人九州大学 Method for producing positive electrode active material for secondary battery
KR101322177B1 (en) * 2011-12-20 2013-10-28 충남대학교산학협력단 Method of manufaturing negative electrode active material for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050087912A (en) * 2004-02-27 2005-09-01 한국전기연구원 Cathode active material for lithium secondary battery and manufacturing method thereof
KR20080089024A (en) * 2007-03-30 2008-10-06 일진홀딩스 주식회사 A device for manufacturing rapidly solidified powder alloy including si precipitates of active material for rechargable li-battery and a method thereof
KR20110069037A (en) * 2008-09-30 2011-06-22 스미토모 베이클리트 컴퍼니 리미티드 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
KR20120099375A (en) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 Metal oxide coated positive electrode materials for lithium-based batteries
WO2012176039A1 (en) * 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751004A (en) * 2021-01-04 2021-05-04 澳门大学 LixSi composite material, preparation method thereof and lithium ion battery cathode material
CN112751004B (en) * 2021-01-04 2024-05-07 澳门大学 LixSi composite material, preparation method thereof and lithium ion battery anode material
CN114672713A (en) * 2022-04-21 2022-06-28 胜华新能源科技(东营)有限公司 Preparation method of lithium-containing metal silicon, lithium-containing SiO and application thereof
CN114672713B (en) * 2022-04-21 2022-09-16 胜华新能源科技(东营)有限公司 Preparation method of lithium-containing metal silicon, lithium-containing SiO and application thereof
WO2023201767A1 (en) * 2022-04-21 2023-10-26 胜华新能源科技(东营)有限公司 Preparation method for lithium-containing silicon metal, lithium-containing silicon metal, lithium-containing sio and use thereof

Also Published As

Publication number Publication date
KR20150037163A (en) 2015-04-08
KR101527286B1 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
CN102945963B (en) There is the electrode active material of nucleocapsid structure
Lewandowski et al. Cycling and rate performance of Li–LiFePO4 cells in mixed FSI–TFSI room temperature ionic liquids
JP5696353B2 (en) All solid state battery system
CN105552344A (en) Positive plate of lithium ion battery, lithium ion battery and preparation method of lithium ion battery
US20130260258A1 (en) Electrode body and all solid state battery
CN102148400A (en) Solid battery
CN103855431B (en) A kind of chemical synthesizing method improving cycle performance of lithium ion battery
US10158144B2 (en) Solid electrolyte material and all solid lithium battery
CN101379653A (en) Lithium secondary battery using ionic liquid
CN102969473A (en) Organic/inorganic composite porous thin film and electrochemical energy storing device using same
CN101887970B (en) Preparation method of lithium-ion secondary battery positive plate
CN113488637B (en) Composite negative electrode material, negative plate and lithium ion battery
JP2010113820A (en) Lithium ion conductive solid electrolyte composition and battery using it
CN102130359A (en) Lithium sulfur battery and preparation method thereof
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
WO2015046693A1 (en) Method of forming electrode for lithium secondary battery
JP2013084499A (en) Sulfide solid battery system
CN103000874A (en) Preparation method of carbon-coated ternary positive electrode material
KR101959761B1 (en) Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP2012054000A (en) All-solid type lithium secondary battery
CN113234403B (en) Adhesive, preparation method and application thereof
CN103370819A (en) Nonaqueous electrolyte secondary battery
CN106063014A (en) Non-aqueous electrolyte secondary cell
JP2001250555A (en) Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell
JP2002117831A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848480

Country of ref document: EP

Kind code of ref document: A1