WO2015046274A1 - 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体 - Google Patents

有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体 Download PDF

Info

Publication number
WO2015046274A1
WO2015046274A1 PCT/JP2014/075327 JP2014075327W WO2015046274A1 WO 2015046274 A1 WO2015046274 A1 WO 2015046274A1 JP 2014075327 W JP2014075327 W JP 2014075327W WO 2015046274 A1 WO2015046274 A1 WO 2015046274A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
mmol
carbazolyl
hole transport
Prior art date
Application number
PCT/JP2014/075327
Other languages
English (en)
French (fr)
Inventor
正信 小坪
泉 槙
智子 福嶋
納戸 光治
Original Assignee
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社 filed Critical 大電株式会社
Priority to JP2015539280A priority Critical patent/JP6419704B2/ja
Publication of WO2015046274A1 publication Critical patent/WO2015046274A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic electroluminescence device containing a novel hole transport material having low solubility in alcohol, a method for producing the same, and a novel carbazole derivative suitably used for them.
  • organic electroluminescence (EL) element (hereinafter referred to as “organic EL element”) in which a light-emitting organic compound layer (organic electroluminescence layer) is provided between an anode and a cathode has a lower direct current than an inorganic EL element. It has the advantages of being capable of being driven by voltage and having high luminance and luminous efficiency, and has attracted attention as a next-generation display device. Recently, full-color display panels have been put on the market, and research and development have been actively conducted for increasing the display surface and improving the durability.
  • An organic EL element is an electroluminescent element that emits light by electrically exciting an organic compound by recombination of injected electrons and holes.
  • Research on organic EL devices has been conducted by many companies and research institutions since the report of Tang et al. Of Kodak Co., Ltd. (see Non-Patent Document 1), which showed that organic laminated thin film devices emit light with high brightness.
  • a typical structure of an organic EL device by Kodak Company is a diamine compound as a hole transport material on an ITO (indium tin oxide) glass substrate as a transparent anode, and tris (8-quinolinolato) aluminum (III) as a light emitting material.
  • a green light emission of about 1000 cd / cm 2 was observed at a driving voltage of about 10 V, in which Mg: Al as a cathode was sequentially laminated.
  • the stacked organic EL element currently being researched and put into practical use basically follows the configuration of Kodak.
  • Organic EL elements are roughly classified into high-molecular organic EL elements and low-molecular organic EL elements depending on their constituent materials.
  • the former is manufactured by a wet method, and the latter is manufactured by a dry method such as a vapor deposition method or a wet method.
  • a dry method such as a vapor deposition method or a wet method.
  • it is difficult to balance the hole transport property and the electron transport property in the conductive polymer material used for the fabrication of the polymer organic EL device.
  • Laminated low-molecular-weight organic EL elements with separated light emitting functions are becoming mainstream.
  • the manufacturing method of the laminated low molecular weight organic EL element by the wet method is roughly divided into two types, and one is a method of forming a lower layer after forming a lower layer, insolubilizing it by crosslinking or polymerization by heat or light, The other is a method of using materials having greatly different solubility between the lower layer and the upper layer.
  • the former method has a wide selection of materials, but has a problem in durability because it is difficult to remove a reaction initiator and unreacted substances after crosslinking or polymerization.
  • the latter method is difficult to select a material, it does not involve a chemical reaction as compared with the insolubilizing method, so that it is possible to construct a high-purity and highly durable device. Considering the risk of such chemical reaction, it is difficult to select materials for the wet lamination method, but it is considered that lamination based on the difference in solubility is suitable.
  • one of the factors that make it difficult to stack using the difference in solubility is that most of the conductive polymers and organic semiconductors that can be spin-coated are solvents with relatively high solvent capabilities such as toluene, chloroform, and tetrahydrofuran. It is mentioned that it can only be dissolved.
  • the stacked organic EL element sequentially has a positive hole transport layer made of a P-type organic semiconductor, a light emitting layer, and an electron transport layer made of an N-type organic semiconductor on an anode made of a transparent metal oxide such as ITO.
  • a positive hole transport layer made of a P-type organic semiconductor
  • a light emitting layer and an electron transport layer made of an N-type organic semiconductor on an anode made of a transparent metal oxide such as ITO.
  • the underlying hole transport layer is eroded. Therefore, there is a problem that a laminated structure having a PN interface with few defects cannot be formed.
  • the solvent is removed by natural drying, erosion of the hole transport layer and the light emitting layer becomes severe, and it may be extremely difficult to obtain device characteristics that are not problematic in practice. .
  • the present inventors have developed an alcohol-soluble electron transport material in order to solve the above-mentioned problems in the production of wet process organic EL (see Patent Document 1). By using this material, it becomes possible to use alcohol for film formation of the electron transport layer by a wet method, and it becomes possible to construct an electron transport layer without damaging the light emitting layer made of a light emitting polymer. It was.
  • oligomers and low-molecular materials which have a better balance between function and durability than conventional polymer materials, are being used as constituent materials for the light-emitting layers and electron-transport layers of organic EL devices. Since many of oligomers and low molecular weight materials are soluble in alcohol, when an electron transport layer is formed by a wet method using the alcohol-soluble electron transport material and alcohol described in Patent Document 1, light emission that has already been formed. There is a possibility that the hole transport layer formed in the layer or its lower layer may be eroded and deteriorate the performance of the organic EL element. However, since low molecular hole transport materials with low solubility in alcohol and excellent hole transport properties have not been known so far, it is difficult to produce an organic compound layer of a low molecular organic EL element only by a wet method. there were.
  • the present invention has been made in view of the above problems, and provides an organic electroluminescence device including a novel hole transporting material having low solubility in alcohol, a method for producing the same, and a novel carbazole derivative suitably used for them. For the purpose.
  • the first aspect of the present invention that meets the above-described object is to emit light by recombination of injected electrons and holes in an organic electroluminescent device having a plurality of organic compound layers stacked so as to be sandwiched between an anode and a cathode.
  • One or both of the light emitting layer and the organic compound layer provided so as to be in contact with the anode side surface of the light emitting layer and injecting holes into the light emitting layer are represented by the following general formula (I) as a hole transport material.
  • the above-mentioned problems are solved by providing an organic electroluminescent device comprising a compound having 4 or more carbazolyl groups in the molecule.
  • R 1 and R 2 each independently represent a hydrogen atom or a 9-carbazolyl group which may have a substituent at one or both of the 3-position and the 6-position;
  • X represents any of an aryl group, a heteroaryl group, a substituted aryl group, and a substituted heteroaryl group,
  • n represents a natural number of 1 or more and 4 or less.
  • the organic compound layer provided to be in contact with the cathode side surface of the organic compound layer containing the hole transport material is made of a material soluble in alcohol. Is preferred.
  • At least the surface of the substrate on which the anode is formed is represented by the general formula (I) as a hole transport material on the surface of the substrate, and 4 or more carbazolyls in the molecule.
  • one or a plurality of organic compound layers are formed on the electrode of the substrate, and the organic solvent contained in the solution is the organic It is preferable that any of the compound layers is a solvent that does not dissolve or swell.
  • the organic compound layer containing the hole transport material comprises a light emitting layer, a hole transport layer or a positive electrode. It may be a hole injection layer.
  • the number of carbazolyl groups in the molecule is preferably 4, 5 or 6.
  • one of R 1 and R 2 in the above formula (I) is in the third and sixth positions.
  • both may be a 9-carbazolyl group substituted with a 9-carbazolyl group which may have a substituent at one or both of the 3-position and the 6-position.
  • X in the formula (I) is a phenyl group, a 1,3-benzenediyl group, 1,3,5-benzenetriyl group, 9,9-dimethylfluorene-2,7-diyl group, biphenyl-3,3′-diyl group, 1,3,5-triphenylbenzene-3 ′, 5 ′ , 3 ′′, 5 ′′, 3 ′ ′′, 5 ′ ′′-hexayl group, 1,1 ′: 3 ′, 1 ′′ -terphenyl-3,3 ′′ -diyl group and 1,1 ′ : 3 ′, 1 ′′: 3 ′′, 1 ′ ′′-quarterphenyl-3,3 ′′ -diyl group is preferable.
  • the compound represented by the above formula (I) is represented by the following formulas (1) to ( It is preferably one represented by any one of 8) and (10) to (12).
  • a novel carbazole derivative characterized by being represented by any one of the above formulas (2) to (8), (10) and (11). It is a solution.
  • a compound represented by the above general formula (I) and having 4 or more carbazolyl groups in the molecule easily forms a dense amorphous structure having a high glass transition temperature, and further has a high hole transport efficiency. Therefore, it can be suitably used as a hole transport material constituting the light emitting layer, hole transport layer or hole injection layer in the organic electroluminescence device. Moreover, since said compound has low solubility with respect to alcohol, the organic compound layer formed using this has high tolerance with respect to alcohol. In the construction of an organic EL device by a wet method having various advantages such as low manufacturing cost and easy area enlargement, it is possible to use organic compound layers at the time of manufacturing that use materials having greatly different solubility in the lower layer and the upper layer.
  • the present invention provides a new option for a hole transport material having high alcohol resistance, thereby providing a low molecular organic EL device. It can contribute to the expansion of applicability of wet methods in construction.
  • An organic EL element 1 which is an example of the organic electroluminescence element according to the first embodiment of the present invention includes a plurality of organic layers stacked so as to be sandwiched between an anode 3 and a cathode 7 formed on a transparent substrate 2. It has a compound layer (in the organic EL element 1 according to the present embodiment, in order from the anode 3 side, a hole transport layer 4, a light emitting layer 5, and an electron transport layer 6), and the whole is a sealing member 8. It is sealed with.
  • (electrode or organic compound layer) Y is provided on (electrode or organic compound layer) X” used in the following description is “on the surface of X on the cathode 7 side”. , Y are formed so as to be in contact with each other surface, and the expression “forms (electrode or organic compound layer) Y on (electrode or organic compound layer) X” is expressed as “of X "Y is formed on the surface on the cathode 7 side so that the surfaces are in contact with each other.”
  • the transparent substrate 2 is a support for the organic EL element 1. Since the organic EL element 1 according to the present embodiment is configured to extract light from the transparent substrate 2 side (bottom emission type), each of the transparent substrate 2 and the anode 3 is substantially transparent (colorless and transparent, colored and transparent). (Or translucent) material.
  • the constituent material of the transparent substrate 2 include resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, and polyarylate, quartz glass, and soda. Examples thereof include glass materials such as glass, and one or more of these can be used in combination.
  • the average thickness of the transparent substrate 2 is not particularly limited, but is preferably about 0.1 to 30 mm, and more preferably about 0.1 to 10 mm.
  • an opaque substrate may be used instead of the transparent substrate 2.
  • the opaque substrate include a substrate made of a ceramic material such as alumina, a substrate in which an oxide film (insulating film) is formed on the surface of a metal substrate such as stainless steel, and a substrate made of a resin material.
  • the anode 3 is an electrode that injects holes into the hole transport layer 4 described later.
  • a constituent material of the anode 3 it is preferable to use a material having a large work function and excellent conductivity.
  • the constituent material of the anode 3 include ITO (indium tin oxide), IZO (indium zirconium oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , oxides such as Al-containing ZnO, Au, Pt, and Ag. Cu, alloys containing these, and the like can be used, and one or more of these can be used in combination.
  • the average thickness of the anode 3 is not particularly limited, but is preferably about 10 to 200 nm, and more preferably about 50 to 150 nm.
  • the cathode 7 is an electrode for injecting electrons into an electron transport layer 6 described later, and is provided on the opposite side of the electron transport layer 6 from the light emitting layer 5.
  • a constituent material of the cathode 7 it is preferable to use a material having a small work function.
  • the constituent material of the cathode 7 include Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb, and alloys containing these. These can be used alone or in combination of two or more (for example, a multi-layer laminate).
  • an alloy when used as the constituent material of the cathode 7, it is preferable to use an alloy containing a stable metal element such as Ag, Al, or Cu, specifically, an alloy such as MgAg, AlLi, or CuLi.
  • an alloy such as MgAg, AlLi, or CuLi.
  • the average thickness of the cathode 7 is not particularly limited, but is preferably about 50 to 10,000 nm, and more preferably about 80 to 500 nm.
  • a material having a small work function or an alloy containing these is made to have a thickness of about 5 to 20 nm, and the upper surface is made of a highly transmissive conductive material such as ITO with a thickness of about 100 to 500 nm. It will be formed.
  • the organic EL element 1 which concerns on this Embodiment is a bottom emission type, the light transmittance of the cathode 7 is not especially requested
  • the organic compound layer (the hole transport layer 4, the light emitting layer 5, and the electron transport layer 6) constituting the organic EL element will be described in order from the anode 3 side.
  • a hole transport layer 4 is provided on the anode 3.
  • the hole transport layer 4 has a function of transporting holes injected from the anode 3 to the light emitting layer 5.
  • An example of the constituent material of the hole transport layer 4 is a compound represented by the following general formula (I) and having 4 or more carbazolyl groups in the molecule (details will be described later).
  • R 1 and R 2 each independently represent a hydrogen atom or a 9-carbazolyl group which may have a substituent at one or both of the 3-position and the 6-position;
  • X represents any of an aryl group, a heteroaryl group, a substituted aryl group, and a substituted heteroaryl group,
  • n represents a natural number of 1 or more and 4 or less.
  • the above compound has low solubility in alcohol, and an organic compound layer formed using the compound is not easily dissolved, eroded or swollen by the alcohol.
  • constituent material of the hole transport layer 4 include phthalocyanine, copper phthalocyanine (CuPc), metal or metal-free phthalocyanine compounds such as iron phthalocyanine, polyarylamines such as polyaniline, aromatic amine derivatives, Fluorene-arylamine copolymer, fluorene-bithiophene copolymer, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophene, polyalkylthiophene, polyhexylthiophene, poly (p-phenylenevinylene), polytinylene Examples include vinylene, pyrene formaldehyde resin, ethyl carbazole formaldehyde resin, and derivatives thereof. One or more of these can be used in combination.
  • aromatic amine derivative examples include the following compounds.
  • the above compounds can also be used as a mixture with other compounds.
  • examples of the mixture containing polythiophene include poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS).
  • the average thickness of the hole transport layer 4 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 50 to 100 nm.
  • a light emitting layer 5 is provided on the hole transport layer 4, that is, on the surface of the hole transport layer 4 on the cathode 7 side.
  • the light emitting layer 5 is supplied (injected) with electrons from an electron transport layer 6 described later and holes from the hole transport layer 4.
  • holes and electrons recombine, and excitons (excitons) are generated by the energy released during the recombination, and energy (fluorescence and phosphorous) is returned when the excitons return to the ground state. Light) is emitted (emitted).
  • a specific example of a light emitting substance (guest material) having a light emitting function is 1,3,5-tris [(3-phenyl-6-trifluoromethyl) quinoxalin-2-yl].
  • Benzene compounds such as benzene (TPQ1), 1,3,5-tris [ ⁇ 3- (4-t-butylphenyl) -6-trifluoromethyl ⁇ quinoxalin-2-yl] benzene (TPQ2), tris ( 8-hydroxyquinolinolato) aluminum (Alq 3 ), low molecular weight materials such as factory (2-phenylpyridine) iridium (Ir (ppy) 3 ), oxadiazole polymers, triazole polymers , Carbazole polymers, polyfluorene polymers, polyparaphenylene vinylene polymers, and the like. Alternatively, two or more kinds can be used in combination.
  • the light emitting layer includes a material (host material) responsible for charge transport of electrons or holes, and the guest material is uniformly distributed in the host material.
  • the concentration of the guest material is generally about 0.1 to 10% by weight of the host material.
  • Specific examples of the electron transport auxiliary material and the hole transport auxiliary material that can be added to the light emitting layer include any material used as a constituent material of the hole transport layer 4 and the electron transport layer 6 described later, and any of these materials. A combination of two or more is mentioned.
  • the average thickness of the light emitting layer 5 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 20 to 60 nm.
  • an electron transport layer 6 which is an example of an electron transport material is provided on the light emitting layer 5.
  • the electron transport layer 6 has a function of transporting electrons injected from the cathode 7 to the light emitting layer 5.
  • Specific examples of the constituent material of the electron transport layer 6 include triazole derivatives, oxazole derivatives, polycyclic compounds, heteropolycyclic compounds such as bathocuproine, oxadiazole derivatives, fluorenone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives.
  • metal complexes such as metal complexes of derivatives, metal phthalocyanines, metal complexes having benzoxazole or benzothiazole as a ligand, organosilane derivatives, iridium complexes, JP 2010-278376
  • a Phosphine oxide derivatives such as alcohol-soluble phosphine oxide derivative of the mounting, any combination of two or more of these compounds.
  • the average thickness of the electron transport layer 6 is not particularly limited, but is preferably about 1 to 100 nm, and more preferably about 10 to 50 nm.
  • the sealing member 8 is provided so as to cover the organic EL element 1 (the anode 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, and the cathode 7). Has the function of blocking moisture. By providing the sealing member 8, effects such as improvement of the reliability of the organic EL element 1 and prevention of deterioration and deterioration (improvement of durability) are obtained.
  • the constituent material of the sealing member 8 examples include Al, Au, Cr, Nb, Ta, Ti, alloys containing these, silicon oxide, various resin materials, and the like.
  • an insulating film Is preferably provided.
  • the sealing member 8 may be formed in a flat plate shape so as to face the transparent substrate 2 and be sealed with a sealing material such as a thermosetting resin.
  • the organic EL element 1 can be manufactured as follows, for example. First, a transparent substrate 2 is prepared, and an anode 3 is formed on the transparent substrate 2.
  • the anode 3 is, for example, a chemical vapor deposition method (CVD) such as plasma CVD, thermal CVD, or laser CVD, a dry plating method such as vacuum deposition, sputtering, or ion plating, or a wet method such as electroplating, immersion plating, or electroless plating. It can be formed by using a plating method, a thermal spraying method, a sol-gel method, a MOD method, a metal foil bonding, or the like.
  • CVD chemical vapor deposition method
  • a dry plating method such as vacuum deposition, sputtering, or ion plating
  • a wet method such as electroplating, immersion plating, or electroless plating. It can be formed by using a plating method, a thermal spraying method, a sol-gel method, a MOD
  • the hole transport layer 4 is formed on the anode 3.
  • the hole transport layer 4 is dried (desolvent or dedispersion medium) after supplying the hole transport layer forming material in which the hole transport material is dissolved or dispersed in the dispersion medium onto the anode 3, for example.
  • the method for supplying the hole transport layer forming material include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating.
  • Various coating methods such as a printing method, a screen printing method, a flexographic printing method, an offset printing method, and an ink jet printing method can be used. By using such a coating method, the hole transport layer 4 can be formed relatively easily.
  • the solvent or dispersion medium used for the preparation of the hole transport layer forming material is appropriately selected according to the solubility, cost, availability, easiness of drying and safety of the hole transport material used.
  • Specific examples of the solvent or dispersion medium include inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, carbon tetrachloride, and ethylene carbonate, methyl ethyl ketone (MEK), acetone, diethyl ketone, and methyl isobutyl ketone.
  • MIBK ketone solvents such as methyl isopropyl ketone (MIPK), cyclohexanone
  • alcohol solvents such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxy Ethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), anisole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl Ether solvents such as ether (carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane, aromatics such as toluene, xy
  • the upper surface of the anode 3 may be subjected to oxygen plasma treatment. Thereby, it is possible to impart lyophilicity to the upper surface of the anode 3, remove (clean) organic substances adhering to the upper surface of the anode 3, adjust the work function near the upper surface of the anode 3, and the like.
  • oxygen plasma treatment for example, plasma power: about 100 to 800 W, oxygen gas flow rate: about 50 to 100 mL / min, conveyance speed of the member to be treated (anode 3): 0.5 to 10 mm / sec
  • the temperature of the transparent substrate 2 is preferably about 70 to 90 ° C.
  • the light emitting layer 5 is formed on the hole transport layer 4 (one surface side of the anode 3).
  • the light emitting layer 5 is obtained by, for example, supplying an organic light emitting layer forming material in which a light emitting material is dissolved in a solvent or dispersed in a dispersion medium onto the hole transport layer 4 and then drying (desolving or dedispersing medium). Can be formed. It is desirable to select and use a solvent or dispersion medium that does not dissolve, erode, or swell the hole transport layer 4.
  • the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3,5,5-trimethyl-1 -Hexanol, 1-decanol, 1-U Decanol, 1-dodecanol, allyl alcohol, propyl
  • the method for supplying the organic light emitting layer forming material and the method for drying are the same as described in the formation of the hole transport layer 4.
  • a nonpolar solvent is suitable, for example, an aromatic hydrocarbon solvent such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, tetramethylbenzene, pyridine, pyrazine, furan, Examples include aromatic heterocyclic compound solvents such as pyrrole, thiophene, and methylpyrrolidone, and aliphatic hydrocarbon solvents such as hexane, pentane, heptane, and cyclohexane. These can be used alone or as a mixed solvent containing them. . In this case, it is desirable to select and use a material insoluble in these nonpolar solvents as the constituent material of the
  • the composition for forming an organic electron transport material is supplied onto the light emitting layer 5 and then dried to obtain the electron transport layer 6.
  • a compound represented by the above general formula (I) and having four or more carbazolyl groups in the molecule is used as a constituent material of the light emitting layer 5
  • a solvent used for preparing an organic light emitting layer forming material or As the dispersion medium alcohol is preferably used. Specific examples of the alcohol that can be used are as described above. Since the method for supplying the organic electron transport material forming composition and the drying method are the same as those described in the formation of the hole transport layer 4 and the light emitting layer 5, detailed description thereof is omitted.
  • the cathode 7 is formed on the electron transport layer 6 (on the side opposite to the light emitting layer 5).
  • the cathode 7 can be formed by using, for example, a vacuum deposition method, a sputtering method, bonding of metal foil, application and firing of metal fine particle ink, or the like.
  • the sealing member 8 is covered so as to cover the obtained organic light emitting device 1 and bonded to the transparent substrate 2.
  • the organic EL element 1 is obtained through the above processes.
  • a vacuum device or the like can be used in the formation of the organic layer (hole transport layer 4, light emitting layer 5, electron transport layer 6), or in the formation of the cathode 7 when the metal fine particle ink is used. Therefore, the manufacturing time and manufacturing cost of the organic light emitting device 1 can be reduced.
  • an ink jet method droplet discharge method
  • the hole transport layer 4 and the light emitting layer 5 are manufactured using a liquid phase method.
  • these layers are formed according to the types of the hole transport material and the light emitting material to be used. For example, you may make it form by vapor phase processes, such as a vacuum evaporation method.
  • Such an organic EL element 1 can be used as a light source, for example.
  • a display apparatus can be comprised by arrange
  • the driving method of the display device is not particularly limited, and may be either an active matrix method or a passive matrix method.
  • the electric energy source supplied to the organic EL element 1 is mainly a direct current, but a pulse current or an alternating current can also be used.
  • the current value and the voltage value are not particularly limited, but the maximum luminance should be obtained with the lowest possible energy in consideration of the power consumption and lifetime of the element.
  • the “matrix” that constitutes the display device refers to a display in which pixels (pixels) for display are arranged in a lattice pattern, and displays characters and images by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, television, and a pixel with a side of mm order is used for a large display such as a display panel.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a passive matrix method or an active matrix method.
  • the former has an advantage that the structure is simple, but the latter active matrix may be superior in consideration of operation characteristics, and therefore, it is necessary to properly use the latter depending on the application.
  • the organic EL element 1 may be a segment type display device.
  • the “segment type” means that a predetermined pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • the matrix display and the segment display may coexist in the same panel.
  • the organic EL element 1 may be a backlight used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, etc. in order to improve the visibility of a display device that does not emit light.
  • a backlight for a liquid crystal display device especially a personal computer for which thinning is an issue, can be made thinner and lighter than a conventional backlight made of a fluorescent lamp or a light guide plate.
  • Such an organic EL element 1 can be used as, for example, a light source.
  • a display apparatus can be comprised by arrange
  • the driving method of the display device is not particularly limited, and may be either an active matrix method or a passive matrix method.
  • an electron injection layer (not shown) can be provided between the cathode 7 and the electron transport layer 6.
  • the electron injection layer is used to improve the efficiency of electron injection from the cathode 7 to the electron transport layer 6, that is, to reduce the drive voltage.
  • the electron injection layer is composed of alkali metal chalcogenide, alkaline earth metal chalcogenide, alkali metal halide, alkaline earth metal halide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal bicarbonate, It is preferred to use at least one metal compound selected from the group consisting of alkaline earth metals and bicarbonates.
  • alkali metal chalcogenides include, for example, lithium oxide (Li 2 O), potassium oxide (K 2 O), sodium sulfide (Na 2 S), sodium selenide (Na 2 Se), and sodium oxide (Na 2 O).
  • Preferred alkaline earth metal chalcogenides include, for example, calcium oxide (CaO), barium oxide (BaO), strontium oxide (SrO), beryllium oxide (BeO), barium sulfide (BaS), and calcium selenide (CaSe).
  • Examples of preferable alkali metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), lithium chloride (LiCl), potassium chloride (KCl), and sodium chloride (NaCl). ) And the like.
  • Examples of preferred alkaline earth metal halides include calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), magnesium fluoride (MgF 2 ), and beryllium fluoride. Examples thereof include fluorides such as (BeF 2 ) and halides other than fluorides.
  • organometallic complexes containing alkali metals and alkaline earth metals can also be used.
  • preferred organometallic complexes include acetylacetone, dibenzoylmethane, ⁇ -diketones such as 2,2,6,6-tetramethyl-3,5-heptanedione, 8-hydroxyquinoline, 2-picolinic acid and the like.
  • a complex of a ligand containing a heterocyclic ring with an alkali metal and an alkaline earth metal can be used.
  • a hole blocking layer (not shown) may be provided between the light emitting layer 5 and the electron transport layer 6.
  • the hole blocking layer can be provided by using the above-described electron transport material, and is preferably a mixed layer in which two or more kinds of electron transport materials are mixed and laminated by co-evaporation or the like.
  • the electron transport material contained in the hole blocking layer preferably has an ionization potential larger than that of the light emitting layer 5.
  • a hole injection layer (not shown) may be provided between the hole transport layer 4 and the anode 3.
  • the constituent material of the hole injection layer any material appropriately selected from the above-described specific examples of the constituent material of the hole transport layer 4 can be used, but the electric field strength lower than that of the constituent material of the hole transport layer 4 A material that transports holes to the light emitting layer 5 is preferable.
  • hole transport material is represented by the following general formula (I), and 4 in the molecule. It contains the above carbazolyl group.
  • R 1 and R 2 each independently represent a hydrogen atom or a 9-carbazolyl group which may have a substituent at one or both of the 3-position and the 6-position.
  • R 1 and R 2 include a 9-carbazolyl group in which one or both of the 3-position and the 6-position are substituted with an arbitrary substituent containing a 9-carbazolyl group. That is, R 1 and R 2 are a 9-carbazolyl group or a substituted 9-carbazolyl group represented by any of the following formulas i to iii.
  • R 17 from R 11 are same as R 1 and R 2, independently, on one or both of the hydrogen atoms or 3-position and 6-position may have a substituent group Represents an optional substituent containing a 9-carbazolyl group.
  • substituents other than the 9-carbazolyl group include alkyl groups, alkoxyl groups, aryl groups, halogens (fluorine, chlorine, bromine, iodine), cyano groups, nitro groups, carboxyl groups, acetyl groups, sulfonic acid groups, etc.
  • a straight chain or branched lower alkyl group such as a methyl group or a tert-butyl group is preferable.
  • X represents any of an aryl group, heteroaryl group, substituted aryl group and substituted heteroaryl group, and n represents a natural number of 1 or more and 4 or less. That is, X is an aryl group, heteroaryl group, substituted aryl group or substituted heteroaryl group in which 1 to 4 hydrogen atoms are substituted with a 9-carbazolyl group or a substituted 9-carbazolyl group.
  • 9-carbazolyl groups or substituted 9-carbazolyl groups may be It is preferable that they are arranged so as not to be positioned in the ortho position or the peri position.
  • the aryl group includes any group in which 1 to 6 hydrogen atoms of a cyclic hydrocarbon having aromaticity are substituted with any of the substituents represented by the above formulas i to iii.
  • n 3: benzenetriyl group (1,2,4-benzenetriyl group, 1,3,5-benzenetriyl group, etc.), naphthalenetriyl group (1,2,4-naphthalene) Triyl group, 1,2,5-naphthalenetriyl group, 1,2,6-naphthalenetriyl group, 1,2,7-naphthalenetriyl group, 1,3,5-naphthalenetriyl group, 1, 3,6-naphthalenetriyl group, 1,3,7-naphthalenetriyl group, etc.), anthracentriyl group (1,2,5-anthracentriyl group, 1,2,6-anthracentriyl group, 1) , 2,7-anthracentriyl group, 1,2,8-anthracentriyl group, 1,2,10-anthracentriyl group, 2,3,5-anthracentriyl group, 2,3,6-anthracene Tri
  • heteroaryl group examples include an arbitrary group in which 1 to 4 hydrogen atoms of an aromatic heterocyclic compound are substituted with substituents represented by the above formulas i to iii.
  • Specific examples of the heterocyclic compound having aromaticity include furan, thiophene, pyrrole, pyridine, pyrimidine, quinoline, isoquinoline, quinoxaline, and carbazole. The substitution position is the same as in the case of the aryl group.
  • substituted aryl group examples include any group in which any one or more of the above aryl groups are substituted with any substituent.
  • substituted heteroaryl group examples include an arbitrary group in which any one or more of the above heteroaryl groups are substituted with an arbitrary substituent.
  • particularly preferred X include phenyl group, benzene-1,3, -diyl group, benzene-1,3,5-triyl group, 9,9-dimethylfluorene-2,7-diyl group, biphenyl- 3,3′-diyl group, 1,3,5-triphenylbenzene-3 ′, 5 ′, 3 ′′, 5 ′′, 3 ′ ′′, 5 ′ ′′-hexyl group, 1,1 ′: 3 ′, 1 ′′ -terphenyl-3,3 ′′ -diyl group and 1,1 ′: 3 ′, 1 ′′: 3 ′′, 1 ′′ ′-quarterphenyl-3,3 ′′ -diyl Groups.
  • the number of carbazolyl groups in the molecule is 4 or more, preferably 4 or more and 6 or less.
  • the “carbazolyl group” refers to a group in which one or more hydrogen atoms on a carbon atom or nitrogen atom in carbazole are substituted with another group.
  • Specific examples of the carbazolyl group include 9-carbazolyl group, 3-carbazolyl group, 3,6-carbazolediyl group, 3,9-carbazolediyl group, 3,6,9-carbazoletriyl group and the like.
  • the solubility of the hole transport material in alcohol increases, and the layer containing the hole transport material is eroded during the production of an organic electroluminescence device by a wet method using alcohol. There is a risk of receiving.
  • the solubility of the hole transport material in alcohol decreases as the number of carbazolyl groups in the molecule increases, but if the number of carbazolyl groups in the molecule increases too much, the solubility in solvents other than alcohol also decreases. It becomes unsuitable for film formation by.
  • the number of carbazolyl groups contained in the molecule in the hole transport material is particularly preferably 4, 5 or 6.
  • preferable hole transport materials include those represented by any of the following formulas (1) to (8) and (10) to (12). Of these, the compounds represented by the formulas (2) to (8) and (10) to (12) are novel compounds.
  • the hole transport material can be synthesized using any known method, and specific examples of the synthesis route include those shown in the following schemes 1 to 12.
  • the hole transport material may be used alone or as a host material (hole transport material) of the light-emitting layer 5 or a constituent material of the hole transport layer 4 in an organic electroluminescence device typified by the organic EL device 1 or the like. It can be used in combination with one or more compounds.
  • Example 1 Synthesis of hole transport material Eight types of compounds having different numbers of 9-carbazolyl groups were synthesized as hole transport materials, and were soluble in alcohol, hole transport properties, thermal properties, light emission properties, and electricity. Chemical properties were evaluated.
  • the central skeleton (X in the above general formula (I)) is a phenyl group, a benzene 1,3-diyl group or a benzene 1,3,5-triyl group, and the number of 9-carbazolyl groups is 4
  • the following compound (1) refers to a compound represented by the following formula (1).
  • a compound represented by the following formula (n) is hereinafter abbreviated as “compound (n)”.
  • the following compound (2) which is five, the following compounds (3) and (4), which are six, and the central skeleton is a 9,9-dimethylfluorene-2,7-diyl group
  • the following compound (5) having 6 9-carbazolyl groups, the following compound (6) having a central skeleton of biphenyl-3,3′-diyl group and 4 9-carbazolyl groups
  • the 3- and 6-positions of the four 9-carbazolyl groups The following compound (7) wherein a hydrogen atom is substituted with a methyl group, the central skeleton is 1,3,5-triphenylbenzene-3 ′, 5 ′, 3 ′′, 5 ′′, 3 ′ ′′, 5 ′
  • the following compound (8) which is a ′′ -hexayl group and the number of 9-carbazolyl groups is 6, the
  • Carbazole (2.51 g, 15 mmol) was dissolved in ethanol (500 mL), and sodium periodate (802 mg, 3.75 mmol) and iodine (1.89 g, 7.45 mmol) were sequentially added.
  • An ethanol solution (98.4 mL) of sulfuric acid (2.94 g, 30 mmol) was added, and the mixture was stirred at 65 ° C. for 1 hour. After completion of the reaction, the reaction mixture was neutralized with an ethanol solution (110 mL) of sodium hydroxide (1.54 g). After distilling off ethanol, the residue was extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated.
  • the organic layer was dried over magnesium sulfate and then concentrated with an evaporator.
  • the desired product was purified by medium pressure column chromatography (eluent: heptane / dichloromethane) and further purified by reverse phase chromatography.
  • 1,3,5-tribromobenzene (2.00 mmol), 3,5-bis (carbazol-9-yl) phenylboronic acid pinacol ester (7.08 mmol), palladium acetate (0.18 mmol), potassium phosphate ( 36.0 mmol), SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl, 0.36 mmol), toluene (60 mL) and water (7.5 mL) were added to the vessel and stirred at 100 ° C. overnight at reflux. did. After completion of the reaction, the reaction mixture was extracted with dichloromethane / water, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure.
  • the sample was supported on silica gel by dissolving the residue in dichloromethane, adding silica gel, and drying again.
  • the silica gel was packed into a column and purified by medium pressure column chromatography (eluent: heptane / dichloromethane ⁇ toluene). Crude yield 2.48 g (crude yield 95.5%).
  • Example 2 Evaluation of alcohol resistance Compounds (1) to (12) were each dissolved in toluene so as to have a concentration of 10 mg / mL to prepare a toluene solution.
  • a solution of the compounds (1) to (12) prepared on a quartz substrate was spin-coated at 1000 rpm and dried at 100 ° C. for 10 minutes to obtain a thin film (film thickness 40 nm) of the compounds (1) to (12).
  • the thin film was spin-coated with alcohol (2-propanol and 1-butanol) at 1000 rpm and dried at 100 ° C. for 10 minutes. Thereafter, the absorption spectrum was measured, and the film thickness reduction (film reduction) rate was calculated from the absorbance before and after the alcohol application.
  • FIGS. 2 to 7 and 12 to 14 show the evaluation results of the resistance of each material to alcohol (compound (7) is not shown).
  • CBz”, “2-PrOH”, and “1-BuOH” mean a carbazolyl group, 2-propanol, and 1-butanol, respectively.
  • the left graph is a change in absorbance before and after 2-propanol application
  • the right graph is a graph showing the absorbance change before and after application of 1-butanol. From these results, alcohol resistance was confirmed in the compounds (3) and (4) having six carbazolyl groups in the molecule. Alcohol resistance was also confirmed in the compound (5) having six carbazolyl groups in the molecule by changing the central skeleton to dimethylfluorene.
  • the obtained cyclic voltammograms are shown in FIGS.
  • the electron affinity (Ea) was estimated from the rise of the potential on the reduction side (right graphs in FIGS. 8 to 11), and the ionization potential (Ip) was estimated from the fall of the potential on the oxidation side (left graphs in FIGS. 8 to 11).
  • Table 4 shows the measurement results.
  • Example 4 Production of Organic EL Element Production 1-1. Substrate cleaning An organic EL device having a thickness of 0.04 cm 2 was prepared on 80 nm ITO glass ( ⁇ 50 mm, made by Sanyo Vacuum). Substrates are cleaned with an alkaline detergent (manufactured by Kanto Kagaku), ultrapure water, acetone (manufactured by Wako) with ultrasonic cleaning (each for 5 minutes), boiled with IPA (manufactured by Wako) (5 minutes), UV / O 3 cleaning ( 15 minutes).
  • an alkaline detergent manufactured by Kanto Kagaku
  • acetone manufactured by Wako
  • IPA manufactured by Wako
  • UV / O 3 cleaning 15 minutes.
  • the film formation conditions for the aluminum thin film as the cathode are as follows. Vacuum deposition by resistance heating method Deposition rate: 5 ⁇ / sec Pressure: ⁇ 1 ⁇ 10 ⁇ 4 Pa
  • the organic EL element was sealed with a glass cap (manufactured by climbing) with a dry sheet agent (manufactured by Dynic) in a glove box (made by vac, moisture concentration 1 ppm or less, oxygen concentration 1 ppm or less) substituted with nitrogen. .
  • the voltage-current-luminance characteristics of the produced organic EL element were measured by applying a voltage from 0V to 10V using a DC voltage / current power source / monitor (made by ADMT 6241A) and measuring the current value every 0.1V.
  • the EL spectrum (@ 100 cd / m 2 ) was measured using a spectroscopic detector of a multichannel spectrophotometer (manufactured by ADMTT 7351A). From the measurement results, it was confirmed that the organic EL device was operating normally. From this result, it was confirmed that the organic EL element could be constructed by a wet method without causing erosion of each layer by the solvent used at the time of film formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

 アルコールへの溶解度が低い新規な正孔輸送材料として、陽極と陰極に挟まれるように積層された複数の有機化合物層を有する有機電界発光素子において、注入された電子と正孔の再結合により発光する発光層及び該発光層の陽極側表面に接するように設けられ、前記発光層に正孔を注入する有機化合物層の一方又は双方が、正孔輸送材料として、下記の一般式(I)で表され、分子中に4以上のカルバゾリル基を有する化合物を含むことを特徴とする有機電界発光素子を提供する。

Description

有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体
 本発明は、アルコールへの溶解度が低い新規な正孔輸送材料を含む有機電界発光素子及びその製造方法並びにそれらに好適に用いられる新規カルバゾール誘導体に関する。
 陽極と陰極との間に発光性有機化合物層(有機エレクトロルミネッセンス層)が設けられた有機エレクトロルミネッセンス(EL)素子(以下、「有機EL素子」という。)は、無機EL素子に比べ、直流低電圧での駆動が可能であり、輝度及び発光効率が高いという利点を有しており、次世代の表示装置として注目を集めている。最近になってフルカラー表示パネルが市販されるに至り、表示面の大型化、耐久性の向上等に向けて盛んに研究開発が行われている。
 有機EL素子は、注入した電子とホール(正孔)との再結合により有機化合物を電気的に励起し発光させる電気発光素子である。有機EL素子の研究は、有機積層薄膜素子が高輝度で発光することを示したコダック社のTangらの報告(非特許文献1参照)以来、多くの企業及び研究機関によりなされている。コダック社による有機EL素子の代表的な構成は、透明陽極であるITO(酸化インジウムスズ)ガラス基板上に正孔輸送材料であるジアミン化合物、発光材料であるトリス(8-キノリノラート)アルミニウム(III)、陰極であるMg:Alを順次積層したもので、10V程度の駆動電圧で約1000cd/cmの緑色発光が観測された。現在研究及び実用化がなされている積層型有機EL素子は、基本的にはこのコダック社の構成を踏襲している。
 有機EL素子は、その構成材料により、高分子系有機EL素子と低分子系有機EL素子に大別され、前者は湿式法により、後者は蒸着法等の乾式法又は湿式法により製造される。高分子系有機EL素子は、素子の作製に用いられる導電性高分子材料における正孔輸送特性と電子輸送特性とのバランスを取るのが困難であるため、近年では、電子輸送、正孔輸送及び発光の機能を分離した積層型低分子系有機EL素子が主流となりつつある。
 インクジェット法等の印刷技術を利用して製造される湿式法では、大面積を一度に塗布することが可能なため、大画面の素子でも容易に作製でき、生産性が高く、乾式法に変わる次世代の有機EL素子の製造法として期待されている。湿式法による積層型低分子系有機EL素子の製造法は2種類に大別され、1つは、下層を製膜後、熱や光により架橋や重合を行い不溶化し上層を製膜する方法、もう1つは、下層と上層で溶解性の大きく違う材料を用いる方法である。前者の方法は、材料の選択の幅が広い反面、架橋又は重合後、反応開始剤や未反応物を取り除くことが困難で耐久性に問題がある。後者の方法は、材料の選択が難しいが不溶化させる方法に比較し化学反応を伴わないため高純度で耐久性の高い素子の構築が可能になる。このような化学反応のリスクを考えると湿式による積層の方式は、材料の選択は難しいが溶解性の違いによる積層が適していると考えられる。しかし、溶解性の違いを利用した積層を難しくしている要因の1つに、導電性高分子やスピンコート可能な有機半導体の殆どが、トルエン、クロロホルム、テトラヒドロフラン等の比較的溶媒能の高い溶媒にしか溶けないことが挙げられる。多くの場合、積層型有機EL素子は、ITO等の透明な金属酸化物からなる陽極上に、P型有機半導体からなる正孔輸送層、発光層、N型有機半導体からなる電子輸送層を順次積層させることにより製造される。この場合、P型有機半導体高分子で正孔輸送層を製膜した後、同様の溶媒を用いてN型有機半導体高分子をスピンコートすると、下地の正孔輸送層が浸食を受けるため、平坦で欠陥の少ないPN界面を有する積層構造を形成できないという問題がある。特にインクジェット法を用いる場合には、溶媒が自然乾燥で除去されるため、正孔輸送層や発光層の浸食が激しくなり、実用上問題のないデバイス特性を得ることが著しく困難になるおそれがある。
 本発明者らは、湿式法有機ELの製造における上記のような問題を解決するために、アルコール可溶な電子輸送材料を開発した(特許文献1参照)。この材料を用いることにより、湿式法による電子輸送層の製膜にアルコールを使用することが可能になり、発光性高分子からなる発光層を損なうことなく電子輸送層を構築することが可能になった。
特開2010-278376号公報
C. W. Tang, S. A. Van Slyke著、「Organic electroluminescent diodes」、Applied Physics Letters(米国)、米国物理学会(The American Institute of Physics)、1987年9月21日、第51巻、第12号、p.913-915
 近年、従来の高分子材料よりも機能と耐久性のバランスに優れたオリゴマーや低分子材料が、有機EL素子の発光層や電子輸送層の構成材料として用いられるようになりつつある。オリゴマーや低分子材料の多くはアルコールに可溶であるため、特許文献1記載のアルコール可溶性電子輸送材料及びアルコールを用いて湿式法により電子輸送層の製膜を行うと、既に形成されている発光層や、その下層に形成されている正孔輸送層が浸食を受け、有機EL素子の性能を低下させるおそれがある。しかしながら、アルコールに対する溶解度が低く、正孔輸送特性に優れた低分子正孔輸送材料はこれまで知られていないため、低分子有機EL素子の有機化合物層を湿式法のみにより製造することは困難であった。
 本発明は、上記課題に鑑みてなされたものであり、アルコールへの溶解度が低い新規な正孔輸送材料を含む有機電界発光素子及びその製造方法並びにそれらに好適に用いられる新規カルバゾール誘導体を提供することを目的とする。
 前記目的に沿う本発明の第1の側面は、陽極と陰極に挟まれるように積層された複数の有機化合物層を有する有機電界発光素子において、注入された電子と正孔の再結合により発光する発光層及び該発光層の陽極側表面に接するように設けられ、前記発光層に正孔を注入する有機化合物層の一方又は双方が、正孔輸送材料として、下記の一般式(I)で表され、分子中に4以上のカルバゾリル基を有する化合物を含むことを特徴とする有機電界発光素子を提供することにより上記課題を解決するものである。
Figure JPOXMLDOC01-appb-C000034
 式(I)において、
 R及びRは、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を表し、
 Xは、アリール基、ヘテロアリール基、置換アリール基及び置換へテロアリール基のいずれかを表し、
 nは、1以上4以下の自然数を表す。
 本発明の第1の側面に係る有機電界発光素子において、前記正孔輸送材料を含む有機化合物層の陰極側表面に接するように設けられた有機化合物層が、アルコールに可溶な材料からなることが好ましい。
 本発明の第2の側面は、少なくとも陽極が表面に形成された基板の該電極側の表面に、正孔輸送材料として、上記の一般式(I)で表され、分子中に4以上のカルバゾリル基を含む化合物と、非アルコール系の有機溶媒とを含む溶液を用いて湿式法により有機化合物層を形成する工程を含むことを特徴とする有機電界発光素子の製造方法を提供することにより上記課題を解決するものである。
 本発明の第2の側面に係る有機電界発光素子の製造方法において、前記基板の前記電極上に1又は複数の有機化合物層が形成されており、前記溶液に含まれる前記有機溶媒が、前記有機化合物層のいずれも溶解及び膨潤させない溶媒であることが好ましい。
 本発明の第1の側面に係る有機電界発光素子及び第2の側面に係る有機電界発光素子の製造方法において、前記正孔輸送材料を含む有機化合物層が、発光層、正孔輸送層又は正孔注入層であってもよい。
 本発明の第1の側面に係る有機電界発光素子及び第2の側面に係る有機電界発光素子の製造方法において、分子中のカルバゾリル基の数が4、5又は6であることが好ましい。
 本発明の第1の側面に係る有機電界発光素子及び第2の側面に係る有機電界発光素子の製造方法において、上記の式(I)におけるR及びRが、3位及び6位の一方若しくは双方が3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基で置換されている9-カルバゾリル基であってもよい。
 本発明の第1の側面に係る有機電界発光素子及び第2の側面に係る有機電界発光素子の製造方法において、上記の式(I)におけるXが、フェニル基、1,3-ベンゼンジイル基、1,3,5-ベンゼントリイル基、9,9-ジメチルフルオレン-2,7-ジイル基、ビフェニル-3,3’-ジイル基、1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基、1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基及び1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基のいずれかであることが好ましい。
 本発明の第1の側面に係る有機電界発光素子及び第2の側面に係る有機電界発光素子の製造方法において、上記の式(I)で表される化合物が、下記の式(1)~(8)及び(10)~(12)のいずれかで表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 本発明の第3の側面は、上記の式(2)~(8)、(10)及び(11)のいずれかで表されることを特徴とする新規カルバゾール誘導体を提供することにより上記課題を解決するものである。
 上記の一般式(I)で表され、分子内に4以上のカルバゾリル基を有する化合物は、高いガラス転移温度を有する緻密な非晶質構造を形成しやすく、更に、高い正孔輸送効率を有するため、有機電界発光素子における発光層、正孔輸送層又は正孔注入層を構成する正孔輸送材料として好適に用いることができる。また、上記の化合物は、アルコールに対する溶解性が低いため、これを用いて形成される有機化合物層は、アルコールに対する高い耐性を有する。製造コストが低く、大面積化も容易である等の種々の利点を有する湿式法による有機EL素子の構築において、下層と上層で溶解性の大きく異なる材料を用いることは、製造時の有機化合物層の溶解、浸食、膨潤等に伴う特性の低下を抑制する上で重要であるが、本発明は、アルコール耐性の高い正孔輸送材料について新たな選択肢を提供することにより、低分子有機EL素子の構築における湿式法の適用可能性の拡大に貢献できる。
本発明の第1の実施の形態に係る有機EL素子の断面図である。 比較例に係る化合物(9)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(1)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(2)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(3)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(4)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(5)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(1)の酸化還元電位の変化を示すサイクリックボルタモグラムである。 実施例に係る化合物(2)の酸化還元電位の変化を示すサイクリックボルタモグラムである。 実施例に係る化合物(3)の酸化還元電位の変化を示すサイクリックボルタモグラムである。 実施例に係る化合物(4)の酸化還元電位の変化を示すサイクリックボルタモグラムである。 実施例に係る化合物(10)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(11)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。 実施例に係る化合物(12)を用いて製膜した正孔輸送層のアルコールに対する耐久性評価の結果を示す図である。
 以下、図面を参照しながら、本発明の実施の形態について説明する。
[第1の実施形態:有機電界発光素子]
 本発明の第1の実施の形態に係る有機電界発光素子の一例である有機EL素子1は、透明基板2の上に形成された陽極3と陰極7に挟まれるように積層された複数の有機化合物層(本実施の形態に係る有機EL素子1においては、陽極3側から順に、正孔輸送層4と、発光層5と、電子輸送層6)を有し、その全体が封止部材8で封止されている。
 なお、以下の説明において用いられている「(電極又は有機化合物層)X上には(電極又は有機化合物層)Yが設けられている」という表現は、「Xの陰極7側の表面上に、Yが、互いに表面を接するように形成されている」ことを意味し、「(電極又は有機化合物層)X上に(電極又は有機化合物層)Yを形成する」という表現は、「Xの陰極7側の表面上に、互いに表面を接するようにYを形成する」ことを意味する。
 まず、有機EL素子1を構成する透明基板2、陽極3及び陰極7について説明する。
 透明基板2は、有機EL素子1の支持体となるものである。本実施の形態に係る有機EL素子1は、透明基板2側から光を取り出す構成(ボトムエミッション型)であるため、透明基板2及び陽極3は、それぞれ、実質的に透明(無色透明、着色透明又は半透明)な材料より構成されている。透明基板2の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。
 透明基板2の平均厚さは、特に限定されないが、0.1~30mm程度であるのが好ましく、0.1~10mm程度であるのがより好ましい。なお、有機EL素子1が透明基板2と反対側から光を取り出す構成(トップエミッション型)の場合、透明基板2の代わりに不透明基板が用いられる場合がある。不透明基板の例としては、アルミナ等のセラミックス材料で構成された基板、ステンレス鋼等の金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
 陽極3は、後述する正孔輸送層4に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。陽極3の構成材料としては、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウムジルコニウム)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物、Au、Pt、Ag、Cu又はこれらを含む合金等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。陽極3の平均厚さは、特に限定されないが、10~200nm程度であるのが好ましく、50~150nm程度であるのがより好ましい。
 一方、陰極7は、後述する電子輸送層6に電子を注入する電極であり、電子輸送層6の発光層5と反対側に設けられている。この陰極7の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。陰極7の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rb又はこれらを含む合金等が挙げられ、これらのうちの1種又は任意の2種以上を組み合わせて(例えば、複数層の積層体等)用いることができる。
 特に、陰極7の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極7の構成材料として用いることにより、陰極7の電子注入効率及び安定性の向上を図ることができる。陰極7の平均厚さは、特に限定されないが、50~10000nm程度であるのが好ましく、80~500nm程度であるのがより好ましい。
 トップエミッション型の場合、仕事関数の小さい材料、又はこれらを含む合金を5~20nm程度とし、透過性を持たせ、さらにその上面にITO等の透過性の高い導電材料を100~500nm程度の厚さで形成する。
 なお、本実施の形態に係る有機EL素子1は、ボトムエミッション型であるため、陰極7の光透過性は特に要求されない。
 次に、有機EL素子を構成する有機化合物層(陽極3側から順に、正孔輸送層4、発光層5、電子輸送層6)について説明する。
 陽極3上には、正孔輸送層4が設けられている。この正孔輸送層4は、陽極3から注入された正孔を、発光層5まで輸送する機能を有するものである。
 正孔輸送層4の構成材料の一例としては、下記の一般式(I)で表され、分子内に4以上のカルバゾリル基を有する化合物(詳細については後述する。)が挙げられる。
Figure JPOXMLDOC01-appb-C000046
 式(I)において、
 R及びRは、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を表し、
 Xは、アリール基、ヘテロアリール基、置換アリール基及び置換へテロアリール基のいずれかを表し、
 nは、1以上4以下の自然数を表す。
 上記の化合物は、アルコールに対する可溶性が低く、これを用いて形成された有機化合物層は、アルコールにより溶解、浸食及び膨潤を受けにくい。
 正孔輸送層4の構成材料の他の具体例としては、フタロシアニン、銅フタロシアニン(CuPc)、鉄フタロシアニンのような金属又は無金属のフタロシアニン系化合物、ポリアニリン等のポリアリールアミン、芳香族アミン誘導体、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂又はその誘導体等が挙げられる。これらのうちの1種又は2種以上を組み合わせて用いることができる。
 芳香族アミン誘導体の具体例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 また、上記の化合物は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
 正孔輸送層4の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、50~100nm程度であるのがより好ましい。
 正孔輸送層4上、すなわち、正孔輸送層4の陰極7側の表面上には、発光層5が設けられている。この発光層5には、後述する電子輸送層6から電子が、また、前記正孔輸送層4から正孔がそれぞれ供給(注入)される。そして、発光層5内では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーにより励起子(エキシトン)が生成し、励起子が基底状態に戻る際にエネルギー(蛍光やりん光)が放出(発光)される。
 発光層5の構成材料のうち、発光機能を担う発光物質(ゲスト材料)の具体例としては、1,3,5-トリス[(3-フェニル-6-トリフルオロメチル)キノキサリン-2-イル]ベンゼン(TPQ1)、1,3,5-トリス[{3-(4-t-ブチルフェニル)-6-トリフルオロメチル}キノキサリン-2-イル]ベンゼン(TPQ2)のようなベンゼン系化合物、トリス(8-ヒドロキシキノリノレート)アルミニウム(Alq)、ファクトリス(2-フェニルピリジン)イリジウム(Ir(ppy))のような低分子系のものや、オキサジアゾール系高分子、トリアゾール系高分子、カルバゾール系高分子、ポリフルオレン系高分子、ポリパラフェニレンビニレン系高分子のような高分子系のものが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。
 また、発光層は、電子又は正孔の電荷輸送を担う材料(ホスト材料)を含んでおり、ゲスト材料は、ホスト材料中に均一に分布している。ゲスト材料の濃度は、一般に、ホスト材料の0.1~10重量%程度である。
 発光層に添加することができる電子輸送補助材料及び正孔輸送補助材料の具体例としては、正孔輸送層4及び後述する電子輸送層6の構成材料として用いられる任意の材料及びこれらの任意の2以上の組み合わせが挙げられる。
 発光層5の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、20~60nm程度であるのがより好ましい。
 発光層5上には、電子輸送材料の一例である電子輸送層6が設けられている。この電子輸送層6は、陰極7から注入された電子を、発光層5まで輸送する機能を有するものである。電子輸送層6の構成材料の具体例としては、トリアゾール誘導体、オキサゾール誘導体、多環系化合物、バソクプロイン等のヘテロ多環系化合物、オキサジアゾール誘導体、フルオレノン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、アントラキノンジメタン誘導体、アントロン誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンテトラカルボン酸又はペリレンテトラカルボン酸等の芳香環テトラカルボン酸の酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体等の各種金属錯体、有機シラン誘導体、イリジウム錯体、特開2010-278376号公報記載のアルコール可溶性ホスフィンオキシド誘導体等のホスフィンオキシド誘導体、これらの化合物の任意の2以上の組み合わせが挙げられる。
 電子輸送層6の平均厚さは、特に限定されないが、1~100nm程度であるのが好ましく、10~50nm程度であるのがより好ましい。
 封止部材8は、有機EL素子1(陽極3、正孔輸送層4、発光層5、電子輸送層6及び陰極7)を覆うように設けられ、これらを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材8を設けることにより、有機EL素子1の信頼性の向上や、変質及び劣化の防止(耐久性向上)等の効果が得られる。
 封止部材8の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Ti又はこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、封止部材8の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、封止部材8と有機EL素子1との間には、必要に応じて、絶縁膜を設けるのが好ましい。また、封止部材8は、平板状として、透明基板2と対向させ、これらの間を、例えば熱硬化性樹脂等のシール材で封止するようにしてもよい。
 有機EL素子1は、例えば、次のようにして製造することができる。
 まず、透明基板2を用意し、この透明基板2上に陽極3を形成する。
 陽極3は、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メッキ法、電界メッキ、浸漬メッキ、無電界メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
 次に、陽極3上に正孔輸送層4を形成する。
 正孔輸送層4は、例えば、正孔輸送材料を溶媒に溶解又は分散媒に分散した正孔輸送層形成用材料を、陽極3上に供給した後、乾燥(脱溶媒又は脱分散媒)することにより形成することができる。正孔輸送層形成用材料の供給方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いることができる。このような塗布法を用いることにより、正孔輸送層4を比較的容易に形成することができる。
 正孔輸送層形成用材料の調製に用いる溶媒又は分散媒は、用いられる正孔輸送材料の溶解性、コスト、入手容易性、乾燥の容易さ及び安全性等に応じて、適宜選択される。溶媒又は分散媒の具体例としては、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系溶媒、クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、又は、これらを含む混合溶媒等が挙げられる。
 なお、乾燥は、例えば、大気圧又は減圧雰囲気中での放置、加熱処理、不活性ガスの吹付け等により行うことができる。
 また、本工程に先立って、陽極3の上面には、酸素プラズマ処理を施すようにしてもよい。これにより、陽極3の上面に親液性を付与すること、陽極3の上面に付着する有機物を除去(洗浄)すること、陽極3の上面付近の仕事関数を調整すること等を行うことができる。
 ここで、酸素プラズマ処理の条件としては、例えば、プラズマパワー:100~800W程度、酸素ガス流量:50~100mL/min程度、被処理部材(陽極3)の搬送速度:0.5~10mm/sec程度、透明基板2の温度:70~90℃程度とするのが好ましい。
 次に、正孔輸送層4上(陽極3の一方の面側)に、発光層5を形成する。
 発光層5は、例えば、発光材料を溶媒に溶解又は分散媒に分散した有機発光層形成用材料を、正孔輸送層4上に供給した後、乾燥(脱溶媒又は脱分散媒)することにより形成することができる。用いられる溶媒又は分散媒は、正孔輸送層4を溶解、浸食又は膨潤させないものを選択して用いることが望ましい。例えば、正孔輸送層4の構成材料として、上記の下記の一般式(I)で表され、分子内に4以上のカルバゾリル基を有する化合物を用いる場合には、有機発光層形成用材料の調製に用いる溶媒又は分散媒としては、アルコールが好ましく用いられる。
 アルコールの具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、1-ノナノール、3,5,5-トリメチル-1-ヘキサノール、1-デカノール、1-ウンデカノール、1-ドデカノール、アリルアルコール、プロパルギルアルコール、ベンジルアルコール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール、αーテルピネオール、アビエチノール、フーゼル油、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、グリセリン、2-エチル-2-(ヒドロキシメチル)-1,3-プロパンジオール、1,2,6-ヘキサントリオール、m-クレゾール、p-クレゾール、キシレノール類、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールが挙げられる。
 有機発光層形成用材料の供給方法及び乾燥の方法は、前記正孔輸送層4の形成で説明したのと同様である。
 なお、前述したような発光材料及び上記の一般式(I)で表され、分子内に4以上のカルバゾリル基を有する化合物のいずれか一方又は双方を用いる場合、有機発光層形成用材料の調製に用いる溶媒又は分散媒としては、非極性溶媒が好適であり、例えば、キシレン、トルエン、シクロヘキシルベンゼン、ジハイドロベンゾフラン、トリメチルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられ、これらを単独又はこれらを含む混合溶媒として用いることができる。この場合には、正孔輸送層4の構成材料としては、これらの非極性溶媒に不溶なものを選択して用いることが望ましい。
 次に、有機電子輸送材料形成用組成物を発光層5上に供給した後乾燥することにより、電子輸送層6が得られる。例えば、発光層5の構成材料として、上記の一般式(I)で表され、分子内に4以上のカルバゾリル基を有する化合物を用いる場合には、有機発光層形成用材料の調製に用いる溶媒又は分散媒としては、アルコールが好ましく用いられる。用いることができるアルコールの具体例は、上述のとおりである。有機電子輸送材料形成用組成物の供給方法及び乾燥の方法は、前記正孔輸送層4及び発光層5の形成で説明したのと同様であるため、詳しい説明を省略する。
 最後に、電子輸送層6上(発光層5と反対側)に、陰極7を形成する。
 陰極7は、例えば、真空蒸着法、スパッタリング法、金属箔の接合、金属微粒子インクの塗布及び焼成等を用いて形成することができる。
 最後に、得られた有機発光素子1を覆うように封止部材8を被せ、透明基板2に接合する。
 以上のような工程を経て、有機EL素子1が得られる。
 以上のような製造方法によれば、有機層(正孔輸送層4、発光層5、電子輸送層6)の形成や、金属微粒子インクを使用する場合は陰極7の形成においても、真空装置等の大掛かりな設備を要しないため、有機発光素子1の製造時間及び製造コストの削減を図ることができる。また、インクジェット法(液滴吐出法)を適用することで、大面積の素子の作製や多色の塗り分けが容易となる。
 なお、本実施の形態では、液相法を用いて正孔輸送層4及び発光層5を製造する場合について説明したが、用いる正孔輸送材料及び発光材料の種類に応じて、これらの層を、例えば、真空蒸着法等の気相プロセスにより形成するようにしてもよい。
 このような有機EL素子1は、例えば光源等として使用することができる。また、複数の有機EL素子1をマトリックス状に配置することにより、ディスプレイ装置を構成することができる。なお、ディスプレイ装置の駆動方式としては、特に限定されず、アクティブマトリックス方式、パッシブマトリックス方式のいずれであってもよい。
 有機EL素子1に供給される電気エネルギー源としては、主に直流電流であるが、パルス電流や交流電流を用いることも可能である。電流値及び電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
 ディスプレイ装置を構成する「マトリックス」とは、表示のための画素(ピクセル)が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパーソナルコンピュータ、モニター、テレビの画像及び文字表示には、通常一辺が300μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的には、デルタタイプとストライプタイプがある。そして、このマトリックスの駆動方法としては、パッシブマトリックス方式及びアクティブマトリックス方式のどちらでもよい。前者には、構造が簡単であるという利点があるが、動作特性を考慮した場合、後者のアクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 有機EL素子1は、セグメントタイプの表示装置であってもよい。「セグメントタイプ」とは、予め決められた情報を表示するように所定形状のパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器等の動作状態表示、自動車のパネル表示などがあげられる。マトリックス表示とセグメント表示は同じパネルの中に共存していてもよい。
 有機EL素子1は、自発光しない表示装置の視認性を向上させるために、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識等に使用されるバックライトであってもよい。特に液晶表示装置、中でも薄型化が課題となっているパーソナルコンピュータ用途のバックライトとしては、蛍光灯や導光板からなる従来のものに比べ、薄型化、軽量化が可能になる。
 このような有機EL素子1は、例えば光源等として使用することができる。また、複数の有機EL素子1をマトリックス状に配置することにより、ディスプレイ装置を構成することができる。
 なお、ディスプレイ装置の駆動方式としては、特に限定されず、アクティブマトリックス方式、パッシブマトリックス方式のいずれであってもよい。
 有機EL素子1において、陰極7と電子輸送層6の間には、図示しない電子注入層を設けることができる。電子注入層は、陰極7から電子輸送層6へ電子注入の効率向上、すなわち駆動電圧の低下のために用いられる。電子注入層は、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属及び炭酸水素塩からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニドなどで構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、酸化リチウム(LiO)、酸化カリウム(KO)、硫化ナトリウム(NaS)、セレン化ナトリウム(NaSe)及び酸化ナトリウム(NaO)が挙げられる。好ましいアルカリ土類金属カルコゲニドとしては、例えば、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化ベリリウム(BeO)、硫化バリウム(BaS)及びセレン化カルシウム(CaSe)が挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、塩化リチウム(LiCl)、塩化カリウム(KCl)及び塩化ナトリウム(NaCl)などが挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、フッ化カルシウム(CaF)、フッ化バリウム(BaF)、フッ化ストロンチウム(SrF)、フッ化マグネシウム(MgF)及びフッ化ベリリウム(BeF)などのフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 上記の無機化合物の他に、アルカリ金属及びアルカリ土類金属を含む有機金属錯体も使用可能である。好ましい有機金属錯体の具体例としては、アセチルアセトン、ジベンゾイルメタン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン等のβ-ジケトン類、8-ヒドロキシキノリン、2-ピコリン酸等の複素環を含む配位子とアルカリ金属及びアルカリ土類金属との錯体などが挙げられる。
 また、発光層5と電子輸送層6との間に、図示しない正孔ブロッキング層を設けてもよい。正孔ブロッキング層を設けることによって、電子輸送層6への正孔の流入を抑制でき、発光効率を高めることができるとともに、有機EL素子1の寿命を延長することもできる。ここで、正孔ブロッキング層は、前述の電子輸送材料を用いて設けることができ、2つ以上の種類の電子輸送材料を共蒸着などにより混合して積層された混合層とすることが好ましい。正孔ブロッキング層に含有する電子輸送材料は、そのイオン化ポテンシャルを発光層5のイオン化ポテンシャルよりも大きくすることが好ましい。
 また、正孔輸送層4と陽極3との間に、図示しない正孔注入層を設けてもよい。正孔注入層の構成材料としては、前述した正孔輸送層4の構成材料の具体例から適宜選択した任意のものを用いることができるが、正孔輸送層4の構成材料よりも低い電界強度で正孔を発光層5に輸送する材料が好ましい。
[第2の実施の形態]
 本発明の第2の実施の形態に係る正孔輸送材料(以下、単に「正孔輸送材料」と略称する場合がある。)は、下記の一般式(I)で表され、分子中に4以上のカルバゾリル基を含んでいる。
Figure JPOXMLDOC01-appb-C000052
 式(I)において、R及びRは、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を表す。R及びRの具体例としては、3位及び6位の一方若しくは双方が9-カルバゾリル基を含む任意の置換基で置換されている9-カルバゾリル基が挙げられる。
 すなわち、R及びRは、下記の式i~iiiのいずれかで表される9-カルバゾリル基又は置換9-カルバゾリル基である。
Figure JPOXMLDOC01-appb-C000053
 上記の式i~iiiにおいて、R11からR17は、R及びRと同様、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を含む任意の置換基を表す。9-カルバゾリル基以外の置換基の具体例としては、アルキル基、アルコキシル基、アリール基、ハロゲン(フッ素、塩素、臭素、ヨウ素)、シアノ基、ニトロ基、カルボキシル基、アセチル基、スルホン酸基等が挙げられるが、好ましくは直鎖又は分岐低級アルキル基、例えばメチル基、tert-ブチル基である。
 上記の式(I)において、Xは、アリール基、ヘテロアリール基、置換アリール基及び置換へテロアリール基のいずれかを表し、nは、1以上4以下の自然数を表す。すなわち、Xは、1から4の水素原子が9-カルバゾリル基又は置換9-カルバゾリル基で置換されたアリール基、ヘテロアリール基、置換アリール基又は置換へテロアリール基である。Xにおいて、嵩高い9-カルバゾリル基又は置換9-カルバゾリル基同士が近接していると、合成時の収率の低下等の問題が生じうるので、9-カルバゾリル基又は置換9-カルバゾリル基同士がオルト位やペリ位に位置しないように配置されていることが好ましい。
 アリール基としては、芳香族性を有する環状炭化水素の1~6の水素原子が上記の式i~iiiで表される置換基のいずれかで置換された任意の基が挙げられ、より具体的には、
(1)n=1の場合:フェニル基、ナフチル基(1-ナフチル基、2-ナフチル基)、アントリル基(1-アントリル基、2-アントリル基、9-アントリル基)、ビフェニリル基(3-ビフェニリル基、4-ビフェニリル基等)、フルオレニル基(1-フルオレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基);
(2)n=2の場合:ベンゼンジイル基(1,3-ベンゼンジイル基、1,4-ベンゼンジイル基等)、ナフタレンジイル基(1,2-ナフタレンジイル基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基)、アントラセンジイル基(1,3-アントラセンジイル基、1,4-アントラセンジイル基、1,5-アントラセンジイル基、1,6-アントラセンジイル基、1,7-アントラセンジイル基、1,8-アントラセンジイル基、1,10-アントラセンジイル基、2,3-アントラセンジイル基、2,4-アントラセンジイル基、2,5-アントラセンジイル基、2,6-アントラセンジイル基、2,7-アントラセンジイル基、2,8-アントラセンジイル基、2,9-アントラセンジイル基、2,10-アントラセンジイル基等)、ビフェニルジイル基(2,4-ビフェニルジイル基、2,5-ビフェニルジイル基、3,5-ビフェニルジイル基、2,2’-ビフェニルジイル基、2,3’-ビフェニルジイル基、2,4’-ビフェニルジイル基、3,3’-ビフェニルジイル基、3,4’-ビフェニルジイル基、4,4’-ビフェニルジイル基等)、フルオレンジイル基(2,7,-フルオレンジイル基等)、
ターフェニルジイル基(1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基、1,1’:3’,1’’-ターフェニル-3,4’’-ジイル基等)、クォーターフェニルジイル基(1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基、1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,4’’-ジイル基等);
 (3)n=3の場合:ベンゼントリイル基(1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基等)、ナフタレントリイル基(1,2,4-ナフタレントリイル基、1,2,5-ナフタレントリイル基、1,2,6-ナフタレントリイル基、1,2,7-ナフタレントリイル基、1,3,5-ナフタレントリイル基、1,3,6-ナフタレントリイル基、1,3,7-ナフタレントリイル基等)、アントラセントリイル基(1,2,5-アントラセントリイル基、1,2,6-アントラセントリイル基、1,2,7-アントラセントリイル基、1,2,8-アントラセントリイル基、1,2,10-アントラセントリイル基、2,3,5-アントラセントリイル基、2,3,6-アントラセントリイル基、2,3,7-アントラセントリイル基、2,3,9-アントラセントリイル基、2,3,10-アントラセントリイル基、2,9,10-アントラセントリイル基等)、ビフェニルトリイル基(2,4,2’-ビフェニルトリイル基、2,4,3’-ビフェニルトリイル基、2,4,4’-ビフェニルトリイル基、2,5,2’-ビフェニルトリイル基、2,5,3’-ビフェニルトリイル基、2,5,4’-ビフェニルトリイル基、3,5,2’-ビフェニルトリイル基、3,5,3’-ビフェニルトリイル基、3,5,4’-ビフェニルトリイル基等)、フルオレントリイル基(2,3,6-フルオレントリイル基、2,3,7-フルオレントリイル基、2,4,6-フルオレントリイル基、2,4,7-フルオレントリイル基等);
(4)n=4の場合:ベンゼンテトライル基(1,2,3,4-ベンゼンテトライル基、1,2,3,5-ベンゼンテトライル基、1,2,4,5-ベンゼンテトライル基等)、ナフタレンテトライル基(2,3,6,7-ナフタレンテトライル基等)、アントラセンテトライル基(2,3,6,7-アントラセンテトライル基等)、ビフェニルテトライル基(3,5-3’、5’-ビフェニルテトライル基等)、フルオレンテトライル基(2,3,6,7-フルオレンテトライル基等);
(5)n=6の例
1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基;
等が挙げられるが、これらに限定されない。
 ヘテロアリール基としては、芳香族性を有する複素環式化合物の1~4の水素原子が上記の式i~iiiで表される置換基で置換された任意の基が挙げられる。芳香族性を有する複素環式化合物の具体例としては、フラン、チオフェン、ピロール、ピリジン、ピリミジン、キノリン、イソキノリン、キノキサリン及びカルバゾール等が挙げられる。置換位置については、上記のアリール基の場合と同様である。
 置換アリール基としては、上記のアリール基のうち、任意の1又は複数が任意の置換基で置換された任意の基が挙げられる。
 置換ヘテロアリール基の具体例としては、上記のヘテロアリール基のうち、任意の1又は複数が任意の置換基で置換された任意の基が挙げられる。
 特に好ましいXの具体例としては、フェニル基、ベンゼン-1,3,-ジイル基、ベンゼン-1,3,5-トリイル基、及び9,9-ジメチルフルオレン-2,7-ジイル基、ビフェニル-3,3’-ジイル基、1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基、1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基及び1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基が挙げられる。
 正孔輸送材料において、分子中のカルバゾリル基の数は4以上であり、4以上6以下であることが好ましい。なお、「カルバゾリル基」とは、カルバゾール中の炭素原子又は窒素原子上の1又は複数の水素原子が他の基で置換された基をいう。カルバゾリル基の具体例としては、9-カルバゾリル基、3-カルバゾリル基、3,6-カルバゾールジイル基、3,9-カルバゾールジイル基、3,6,9-カルバゾールトリイル基等が挙げられる。分子中のカルバゾリル基の数が3以下であると、正孔輸送材料のアルコールに対する溶解度が高くなり、アルコールを用いた湿式法による有機電界発光素子の製造時に、正孔輸送材料を含む層が浸食を受けるおそれがある。正孔輸送材料のアルコールに対する溶解度は、分子中のカルバゾリル基の数が多くなるほど低くなるが、分子中のカルバゾリル基の数が多くなりすぎると、アルコール以外の溶媒に対する溶解度も低下するので、湿式法による製膜に適さなくなる。アルコールに対する溶解度と、他の溶媒に対する溶解度を考慮すると、正孔輸送材料において、分子中に含まれるカルバゾリル基の数は、4、5又は6であることが特に好ましい。
 好ましい正孔輸送材料の具体例としては、下記の式(1)~(8)及び(10)~(12)のいずれかで表されるものが挙げられる。これらのうち、式(2)~(8)及び(10)~(12)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 正孔輸送材料は、任意の公知の方法を用いて合成することができるが、合成経路の具体例としては、下記のスキーム1~12に示すものが挙げられる。
 カルバゾールへの3-位への9-カルバゾリル基の導入(3-(9-カルバゾリル)-カルバゾールの合成)は、ヨウ素/ヨウ素酸を用いてカルバゾールを3-ヨード化した後、9-位の窒素原子をトシル基(p-トルエンスルホニル基)で保護し、ヨウ化銅(I)、トランス-シクロヘキサン-1,2-ジアミン、リン酸カリウムの存在下、トルエン中で加熱環流、或いは、ヨウ化銅(I)、炭酸セシウム、18-クラウン-6の存在下、2-(ブトキシエチル)エーテル中で加熱環流した後、水酸化ナトリウムを用いて脱トシル化することにより行うことができる(スキーム1参照)。9-位の窒素原子がベンゼン環に結合したカルバゾールへの3-位への9-カルバゾリル基の導入は、ヨウ素/ヨウ素酸を用いてカルバゾールを3-ヨード化した後、[1]ヨウ化銅(I)、トランス-シクロヘキサン-1,2-ジアミン、リン酸カリウムの存在下、トルエン中で加熱環流、[2]ヨウ化銅(I)、炭酸セシウム、18-クラウン-6の存在下、2-(ブトキシエチル)エーテル中で加熱環流、或いは、[3]水素化ナトリウムの存在下DMF中室温で撹拌することにより行うことができる(スキーム2~6、8、10~12参照)。ベンゼン環とカルバゾールの3-位との間のC-C結合の形成は、[1]炭酸セシウム、18-クラウン-6の存在下、2-(ブトキシエチル)エーテル中でのハロベンゼン誘導体と3-ブロモカルバゾール(又は3-ヨードカルバゾール)との加熱環流、或いは、[2]t-BuOK(カリウムt-ブトキシド)等の塩基触媒による、フルオロベンゼン誘導体と3-ブロモカルバゾール(又は3-ヨードカルバゾール)とのカップリング反応により行うことができる(スキーム7、9、11参照)。また、ベンゼン環同士のクロスカップリングには、鈴木カップリング等の任意の公知の方法を用いることができる(スキーム9参照)。
スキーム1
Figure JPOXMLDOC01-appb-C000065
スキーム2
Figure JPOXMLDOC01-appb-C000066
スキーム3
Figure JPOXMLDOC01-appb-C000067
スキーム4
Figure JPOXMLDOC01-appb-C000068
スキーム5
Figure JPOXMLDOC01-appb-C000069
スキーム6
Figure JPOXMLDOC01-appb-C000070
スキーム7
Figure JPOXMLDOC01-appb-C000071
スキーム8
Figure JPOXMLDOC01-appb-C000072
スキーム9
Figure JPOXMLDOC01-appb-C000073
スキーム10
Figure JPOXMLDOC01-appb-C000074
スキーム11
Figure JPOXMLDOC01-appb-C000075
























スキーム12
Figure JPOXMLDOC01-appb-C000076
 正孔輸送材料は、有機EL素子1に代表される有機電界発光素子等において、発光層5のホスト材料(正孔輸送材料)や、正孔輸送層4の構成材料として、単独で、或いは他の1又は複数の化合物と組み合わせて用いることができる。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:正孔輸送材料の合成
 正孔輸送材料として、9-カルバゾリル基の数の異なる8種類の化合物を合成し、アルコールへの溶解性、正孔輸送特性、熱特性、発光特性及び電気化学的特性の評価を行った。合成した化合物は、中心骨格(上記一般式(I)におけるX)が、フェニル基、ベンゼン1,3-ジイル基又はベンゼン1,3,5-トリイル基であり、9-カルバゾリル基の数が4つである下記の化合物(1)(下記の式(1)で表される化合物をいう。以下、同様に、下記の式(n)で表される化合物を「化合物(n)」と略称する場合がある。)、5つである下記の化合物(2)、6つである下記の化合物(3)、(4)、中心骨格が9,9-ジメチルフルオレン-2,7-ジイル基であり、9-カルバゾリル基の数が6つである下記の化合物(5)、中心骨格がビフェニル-3,3’-ジイル基であり、9-カルバゾリル基の数が4つである下記の化合物(6)、化合物(4)において、4つの9-カルバゾリル基の3-位と6-位の水素原子がメチル基で置換された下記の化合物(7)、中心骨格が1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基であり、9-カルバゾリル基の数が6つである下記の化合物(8)、中心骨格が1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基であり、9-カルバゾリル基の数が4つである下記の化合物(10)、中心骨格が1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基であり、9-カルバゾリル基の数が4つである下記の化合物(11)、化合物(10)において、2つの9-カルバゾリル基の3-位と6-位の水素原子がtert-ブチル基で置換され、2つの9-カルバゾリル基の6-位の水素原子がtert-ブチル基で置換された下記の化合物(12)である。また、比較のために、中心骨格がフェニル基であり、9-カルバゾリル基の数が3つである下記の化合物(9)も合成した。なお、化合物(2)~(8)及び(10)~(12)は新規化合物である。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
1-1. 3,6-ビス(9-カルバゾリル)-9-フェニルカルバゾール(9)の合成
1-1-1. 3,6-ジブロモ-9-フェニルカルバゾールの合成
 J. Mater. Chem., 2011, 21, 9139-9148 に記載の方法に準拠して行った。
 9-フェニルカルバゾール(1.45g、5.97mmol)をDMF(25mL)に溶解し、NBS(2.19g、5.97mmol)をゆっくり加えた。得られた混合物を室温で一晩撹拌後、塩水中に入れ、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後、濃縮した。残渣をメタノール/ジクロロメタンから再結晶し、白色針状結晶を得た。収量:2.2657g(収率94.8%)。ASAP-TOF-MS(m/z)=399, 401, 403(1:2:1)([M]+)。
1-1-2. 3,6-ビス(9-カルバゾリル)-9-フェニルカルバゾール(9)の合成
 3,6-ジブロモ-9-フェニルカルバゾール(802mg、2mmol)、カルバゾール(803mg、4.8mmol)、ヨウ化銅(I)(0.152g、0.8mmol)、炭酸セシウム(2.61g、8mmol)、18-クラウン-6(31.7mg、0.12mmol)及びビス(2-ブトキシエチル)エーテル(4mL)を反応容器に入れ、Ar雰囲気下で1時間撹拌しながら加熱環流させた。反応終了後、室温に戻し、セライトでろ過した。ろ液を水洗後、水層をジクロロメタンで抽出した。有機層をひとまとめにし、硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、溶離液:ヘプタン/ジクロロメタン)を用いて精製した。ヘプタン/ジクロロメタンから再結晶し、白色結晶を得た。収量:0.367g(HPLC純度99.4%、収率31.9%)。ASAP-TOF-MS(m/z)=574([M]+)。
1-2. 1,3-ビス[3-(9-カルバゾリル)カルバゾリル]ベンゼン(1)の合成
1-2-1. 1,3-ビス(3-ヨード-9-カルバゾリル)ベンゼンの合成
 特開2009-254279号公報記載の方法に準拠して行った。
 1,3-ビス(3-ヨード-9-カルバゾリル)ベンゼン(204mg、0.5mmol)をエタノール(33mL)に溶解し、過ヨウ素酸ナトリウム(53.5mg、0.25mmol)とヨウ素(127mg、0.5mmol)を順に添加した。硫酸(197mg、2.01mmol)のエタノール溶液(6.57mL)を加え、65℃で2時間撹拌した。2時間反応後、溶液の色が変化し、TLCにより原料の消失が確認された。NaOH(46.7mg)のエタノール溶液(3.3mL)で反応混合物を中和した。次いで、エタノールを除去後、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後、濃縮した。残渣をHPLCで分析したところ、TLCでは1スポットだったが、主に3成分あるのが確認された。昇華精製を行い、目的物を87.1%含む粗生成物が得られた(他に、モノヨード体10.1%、トリヨード体2.7%を含んでいた)。これ以上の精製は困難であるため、このまま次の反応に利用した。収量:0.10g(薄黄色ガラス状固体)。ASAP-TOF-MS(m/z)=660([M]+)。
1-2-2. 1,3-ビス[3-(9-カルバゾリル)カルバゾリル]ベンゼン(1)の合成
 特表2009-509247号公報記載の方法に準拠して行った。
 1,3-ビス(3-ヨード-9-カルバゾリル)ベンゼン(108mg、0.143mmol)、カルバゾール(95.6mg、0.572mmol)、ヨウ化銅(I)(6.1mg、0.0318mmol)、トランス-シクロヘキサン-1,2-ジアミン(5.5mg、0.0477mmol)、リン酸カリウム(169mg、0.798mmol)及びトルエン(4.77mL)を反応容器に入れ、Ar雰囲気下で24時間撹拌しながら加熱環流させた。反応終了後、反応混合物を水洗し、水層をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、溶離液:シクロヘキサン/酢酸エチル)を用いて精製した。エタノール/ジクロロメタンから再結晶し、白色結晶を得た。収量:0.0223g(白色結晶)(HPLC純度99.9%)(収率21.0%)。ASAP-TOF-MS(m/z)=738([M]+)。
1-3. 3,6-[3-(9-カルバゾリル)-カルバゾリル]-9-フェニルカルバゾール(2)の合成
 特表2009-509247号公報記載の方法に準拠して行った。
1-3-1. 3-ヨードカルバゾールの合成
Figure JPOXMLDOC01-appb-C000089
 カルバゾール(2.51g、15mmol)をエタノール(500mL)に溶解し、過ヨウ素酸ナトリウム(802mg、3.75mmol)とヨウ素(1.89g、7.45mmol)を順に添加した。硫酸(2.94g、30mmol)のエタノール溶液(98.4mL)を加え、65℃で1時間撹拌した。反応終了後、水酸化ナトリウム(1.54g)のエタノール溶液(110mL)で反応混合物を中和した。エタノールを留去後、残渣をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後、濃縮した。残渣をジクロロメタンで再結晶後、再度ヘキサン/酢酸エチルで再結晶した。母液をカラムクロマトグラフィー(シリカゲル、溶離液:シクロヘキサン/酢酸エチル)を用いて精製した。再度ヘキサン/酢酸エチルから再結晶し、白色結晶を得た。収量:2.64g(収率60.1%)。ASAP-TOF-MS(m/z)=293([M]+)。
1-3-2. 3-ヨード-9-(p-トルエンスルホニル)カルバゾールの合成
Figure JPOXMLDOC01-appb-C000090
 反応容器に3-ヨードカルバゾール(1.76g、6mmol)と粉砕したKOH(404mg、7.2mmol)、アセトン(30mL)を入れ、塩化p-トルエンスルホニル(1.49g、7.8mmol)を添加した。16時間撹拌しながら加熱環流させた後、冷却した。反応混合物を冷水中に注ぎ、30分間撹拌した。水層をジクロロメタンで抽出後、有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣をエタノール/ジクロロメタンで再結晶し、固体を得た。収量:1.44g(収率53.6%)。ASAP-TOF-MS(m/z)=447([M]+)
1-3-3. 3-(9-カルバゾリル)-9-(p-トルエンスルホニル)カルバゾールの合成
Figure JPOXMLDOC01-appb-C000091
条件1)
 米国特許出願公開第2010-0326526号公報記載の方法に準拠して行った。
 3-ヨード-9-(p-トルエンスルホニル)カルバゾール(376mg、0.84mmol)、カルバゾール(211mg、1.26mmol)、炭酸カリウム(592mg、4.28mmol)、銅(272mg、4.28mmol)、18-クラウン-6(87.1mg、0.33mmol)及びDMF(1mL)を反応容器に入れ、30分脱気後、150℃で24時間撹拌した。セライトにより銅と塩をろ去後、ろ液を濃縮した。ヘキサンを加え、生成した沈殿をろ過することにより、18-クラウン-6を除去した。
 TLCで反応をモニターしたが、18時間後及び24時間後のTLCに殆ど変化がなかったため、24時間で反応を終了した。ASAP-TOF-MSで目的物の生成は確認できたものの、主生成物は9-カルバゾリル基が2つ導入され、p-トルエンスルホニル基が切断されたものであった。
条件2)
 3-ヨード-9-(p-トルエンスルホニル)カルバゾール(1.07g、2.4mmol)、カルバゾール(484mg、2.9mmol)、ヨウ化銅(I)(38mg、0.2mmol)、トランス-シクロヘキサン-1,2-ジアミン(27.4mg、0.24mmol)、リン酸カリウム(1.06g、5.01mmol)及びトルエン(15mL)を反応容器に入れ、Ar雰囲気下で62時間撹拌しながら加熱環流させた。反応終了後、反応混合物を水洗し、水層をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:シクロヘキサン/酢酸エチル)を用いて精製した。エタノール/ジクロロメタンから再結晶し、白色結晶を得た。収量:0.99g(収率84.7%)。ASAP-TOF-MS(m/z)=486([M]+)。
1-3-4. 3-(9-カルバゾリル)カルバゾールの合成
Figure JPOXMLDOC01-appb-C000092
 3-(9-カルバゾリル)-9-(p-トルエンスルホニル)カルバゾール(341mg、0.7mmol)、水酸化ナトリウム(267mg、6.67mmol)、テトラヒドロフラン(2.67mL)、メタノール(1.33mL)及び水(1.33mL)を反応容器に取り、Ar雰囲気下で12時間撹拌しながら加熱環流させた。反応終了後、反応混合物をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:シクロヘキサン、酢酸エチル)により精製し、白色固体を得た。収量:0.16g(白色結晶)(収率80.0%)。ASAP-TOF-MS(m/z)=332([M]+)
1-3-5. 3,6-ビス[3(9-カルバゾリル)カルバゾリル]-9-フェニルカルバゾール(2)の合成
 3,6-ジブロモ-9-フェニルカルバゾール(316mg、0.788mmol)、3-(9-カルバゾリル)カルバゾール(628mg、1.89mmol)、ヨウ化銅(I)(60mg、0.315mmol)、炭酸セシウム(1.03g、3.15mmol)、18-クラウン-6(12.5mg、0.0473mmol)を反応容器に入れ、Ar雰囲気下で1時間撹拌しながら加熱環流させた。反応終了後、室温まで放冷し、セライトでろ過した。ろ液をジクロロメタンで抽出し、有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:ヘプタン/ジクロロメタン)で精製後、ヘプタン/再生ジクロロメタンから再結晶し、さらに逆相クロマトグラフィー(溶離液:メタノール/ジクロロメタン)を用いて精製を行った。
 逆相カラムクロマトグラフィーの条件は下記のとおりである。
 ・カラム:Inertsil(登録商標) ODS-3(内径50mm、L=250mm、粒径=5μm)
 ・サンプル負荷量:250mg/mL(溶媒:ジクロロメタン/酢酸=7/3)
 ・溶離液:メタノール/ジクロロメタン=1/1(d=1.05g/mL)(恒温槽38.0℃)
 ・流速:80mL/分
 ・検出波長:254nm、350nm
 収量:0.1245g(薄黄色結晶、HPLC純度97.6%、収率17.1%)。ASAP-TOF-MS(m/z)=904([M]+)
1-4. 1,3,5-トリス[3-(9-カルバゾリル)-9-カルバゾリル]ベンゼン(3)の合成
 特表2009-509247号公報記載の方法に準拠して行った。
 1,3,5-トリヨードベンゼン(0.955g、2.1mmol)、3-(9-カルバゾリル)カルバゾール(2.51g、7.56mmol)、ヨウ化銅(I)(99.5mg、0.522mmol)、トランス-シクロヘキサン-1,2-ジアミン(71.9mg、13mmol)、リン酸カリウム(2.77g、13mmol)及びトルエン(39.3mL)を反応容器に入れ、Ar雰囲気下で48時間撹拌しながら加熱環流させた。反応終了後、反応混合物を水洗し、水層をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:シクロヘキサン/酢酸エチル)を用いて精製した。ヘプタン/酢酸エチルから再結晶後、逆相クロマトグラフィー(メタノール/ジクロロメタン)を用いてさらに精製した。ヘプタン/酢酸エチルから再結晶した。再結晶後収量:2.06g(白色結晶)(HPLC純度96.1%)。逆相カラムクロマトグラフィー後のHPLC純度:>99.5%。ASAP-TOF-MS(m/z)=1069([M]+)。
 逆相カラムクロマトグラフィーの条件は下記のとおりである。
 ・カラム:Inertsil(登録商標) ODS-3(内径50mm、L=250mm、粒径=5μm)
 ・サンプル負荷量:250mg/mL(溶媒:ジクロロメタン/酢酸=7/3)
 ・溶離液:メタノール/ジクロロメタン=1/1(d=1.05g/mL)(恒温槽38.0℃)
 ・流速:80mL/分
 ・検出波長:254nm、350nm
1-5. 1,3-ビス[3,6-ビス(9-カルバゾリル)カルバゾリル]ベンゼン(4)の合成
1-5-1. 1,3-ビス(3,6-ジブロモ-9-カルバゾリル)ベンゼンの合成
 水素化ナトリウム(0.67g、13.9mmol)のDMA懸濁液(3.87mL)に、3,6-ジブロモカルバゾール(4.52g、13.9mmol)のDMA溶液(19.4mL)を滴下後、室温で30分撹拌した。得られた混合物に、1,3-ジフルオロベンゼン(0.724g、6.35mmol)を加え、45℃で2時間撹拌した。さらに65℃に昇温させ終夜撹拌後、160℃で4時間撹拌した。反応終了後、反応混合物をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。中圧クロマトグラフィー(シリカゲル、溶離液:ヘプタン/再生ジクロロメタン)を用いて精製を行った。メタノール/ジクロロメタンで再結晶し、白色結晶を得た。収量:3.1563g(収率68.6%)。ASAP-TOF-MS(m/z)=722, 724, 726, 728(1:3:3:1)([M]+)
1-5-2. 1,3-ビス[3,6-ビス(9-カルバゾリル)カルバゾリル]ベンゼンの合成
 1,3-ビス(3,6-ジブロモ-カルバゾリル)ベンゼン(1.01g、1.39mmol)、カルバゾール(1.12mg、6.67mmol)、ヨウ化銅(I)(0.211g、1.11mmol)、炭酸セシウム(3.61g、11.1mmol)、18-クラウン-6(44.1mg、0.167mmol)及びビス(2-ブトキシエチル)エーテル(5.56mL)を反応容器に入れ、Ar雰囲気下で撹拌しながら加熱環流させた。反応終了後、室温に戻し、セライトでろ過した。ろ液を水洗後、水層をジクロロメタンで抽出した。有機層をひとまとめにし、硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:ヘプタン/ジクロロメタン)を用いて精製した。ヘプタン/ジクロロメタンから再結晶した。さらに、逆相クロマトグラフィー(メタノール/ジクロロメタン)を用いて精製し、淡褐色の固体を得た。再結晶後収量:0.3237g(HPLC純度89.7%、収率16.0%)。ASAP-TOF-MS(m/z)=1069([M]+)
 逆相カラムクロマトグラフィーの条件は下記のとおりである。
 ・カラム:Inertsil(登録商標) ODS-3(内径50mm、L=250mm、粒径=5μm)
 ・サンプル負荷量:250mg/mL(溶媒:ジクロロメタン/酢酸=7/3)
 ・溶離液:メタノール/ジクロロメタン=1/1(d=1.05g/mL)(恒温槽38.0℃)
 ・流速:80mL/分
 ・検出波長:254nm、350nm
1-6. 2,7-ビス[3,6-ビス(9-カルバゾリル)-カルバゾリル]-9,9-ジメチルフルオレン(5)の合成
1-6-1. 3,6-ジヨード-9-p-トルエンスルホニルカルバゾールの合成
Figure JPOXMLDOC01-appb-C000093
 Chemical Communications (Cambridge, United Kingdom), 48(28), 3382-3384; 2012 記載の方法に準拠して行った。
 反応容器に3,6-ジヨードカルバゾール(4.03g、9.62mmol)と粉砕したKOH(1.61g、28.7mmol)、アセトン(24mL)を入れ、塩化p-トルエンスルホニル(5.46g、28.7mmol)をゆっくり添加した。1時間撹拌しながら加熱環流させた後、冷却した。反応混合物を冷水中に注いだ。水層をジクロロメタンで抽出後、有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣をメタノール/ジクロロメタンで再結晶し、白色結晶を得た。収量:4.21g(収率76.4%)。ASAP-TOF-MS(m/z)=573([M]+)。
1-6-2. 3,6-ビス(9-カルバゾリル)-9-p-トルエンスルホニルカルバゾールの合成
Figure JPOXMLDOC01-appb-C000094
 3,6-ジヨード-9-p-トルエンスルホニルカルバゾール(4.2g、7.34mmol)、カルバゾール(4.91g、29.4mmol)、ヨウ化銅(I)(232mg、1.22mmol)、トランス-シクロヘキサン-1,2-ジアミン(167mg、1.47mmol)、リン酸カリウム(6.47g、30.5mmol)及びトルエン(91.9mL)を反応容器に入れ、Ar雰囲気下で44時間撹拌しながら加熱環流させた。反応終了後、反応混合物を水洗し、水層をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣を中圧クロマトグラフィー(シリカゲル、溶離液:シクロヘキサン/酢酸エチル)を用いて精製した。ヘプタン/酢酸エチルから再結晶した。収量:3.96g(黄土色結晶)(収率82.8%)。ASAP-TOF-MS(m/z)=651([M]+)。
1-6-3. 3,6-ビス(9-カルバゾリル)カルバゾールの合成
Figure JPOXMLDOC01-appb-C000095
 3,6-ビス(9-カルバゾリル)-9-p-トルエンスルホニルカルバゾール(652mg、1mmol)、水酸化ナトリウム(384mg、9.6mmol)、テトラヒドロフラン(3.83mL)、メタノール(1.92mL)及び水(1.92mL)を反応容器に取り、Ar雰囲気下で12時間撹拌しながら加熱環流させた。反応終了後、反応混合物をジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(シリカゲル、溶離液:ヘプタン/ジクロロメタン)により精製後、ジクロロメタンから再結晶し、白色又は褐色固体を得た。収量:2.94g (収率50.6%)。ASAP-TOF-MS(m/z)=498 ([M+1]+)。
1-6-4. 2,7-ビス[3,6-ビス(9-カルバゾリル)カルバゾリル]-9,9-ジメチルフルオレン(5)の合成
 2,7-ジヨード-9,9-ジメチルフルオレン(223mg、0.5mmol)、3,6-ビス(9-カルバゾリル)カルバゾール(597mg、1.2mmol)、ヨウ化銅(I)(38.1mg、0.2mmol)、炭酸セシウム(652mg、2mmol)、18-クラウン-6(7.9mg、0.03mmol)及びビス(2-ブトキシエチル)エーテル(2mL)を反応容器に入れ、Ar雰囲気下で1時間撹拌しながら加熱環流させた。反応終了後室温に戻し、セライトでろ過した。ろ液をジクロロメタンで抽出し、有機層を硫酸マグネシウムで乾燥し、濃縮した。カラムクロマトグラフィー(ヘプタン、再生ジクロロメタン)を用いて精製した。メタノール/ジクロロメタンから再結晶し、淡褐色結晶を得た。収量:0.182g(収率30.8%)。ASAP-TOF-MS(m/z)=1185([M+1]+)。
1-7. 3,3’-ビス(3-カルバゾール-9’-イル9-カルバゾリル)ビフェニル(6)の合成
1-7-1. 3,3’-ジフルオロビフェニルの合成
Figure JPOXMLDOC01-appb-C000096
 THF(100mL)に溶かした1-ブロモ-3-フルオロベンゼン(200mmol)をマグネシウム(100mmol)に滴下し、グリニャール試薬を調製し、テトラキス(トリフェニルホスフィン)パラジウム(5mmol)を6回に分けて投入した後、50℃で20時間加熱撹拌を行った。反応終了後、塩化アンモニウム水溶液でクエンチを行った後、ジクロロメタン/水で有機層を抽出後、硫酸マグネシウムで有機層を乾燥した。エバポレータで濃縮後、ロータリーポンプを用いた真空下で蒸留を行うことで目的物を単離した。初留温度:58℃、本留温度:52℃。収量:15.2g(収率:79.8%)。無色液体。
1-7-2. 3,3’-ビス(3-ブロモ9-カルバゾリル)ビフェニルの合成
Figure JPOXMLDOC01-appb-C000097
 3-ブロモカルバゾール(30mmol)に1,3-ジメチル-2-イミダゾリジノン(DMI)(30mL)を加えて溶解させ、次いで、カリウム-t-ブトキシド(45mmol)を加え、120℃で撹拌した。全ての試薬が溶解したところで、3,3’-ジフルオロビフェニル(15mmol)を加え、190℃で3時間加熱撹拌を行った。反応終了後、ジクロロメタン/水で有機層を抽出し、有機層を硫酸マグネシウムで乾燥後、エバポレータで濃縮した。ジクロロメタンに難溶な結晶が析出してきたので、ろ過により回収し、トルエンで再結晶を行った。収量:3.37g(収率:35%)。褐色結晶。
1-7-3. 3,3’-ビス(3-カルバゾール-9’-イル9-カルバゾリル)ビフェニル(6)の合成
Figure JPOXMLDOC01-appb-C000098
 3,3’-ビス(3-ブロモ9-カルバゾリル)ビフェニル(5mmol)とカルバゾール(20mmol)、ヨウ化銅(I)(2mmol)、炭酸セシウム(20mmol)、18-クラウン-6(0.3mmol)、ビス(ブトキシエチル)エーテル(10mL)を容器に入れ、Ar下で1.5時間加熱撹拌を行った。反応終了後、セライトろ過によって触媒を除去した。ろ液に水を加え、ジクロロメタンで抽出後、有機層を硫酸マグネシウムで乾燥後、エバポレータで濃縮してから、中圧カラムクロマトグラフィー(溶離液:シクロヘキサン/トルエン)で精製した。また、セライト上に溶解しなかった目的物が残ったため、熱クロロベンゼンで熱時ろ過を行い溶出させた。得られた生成物は、クロロベンゼン/イソプロパノールで再結晶を行った。次いで、粗結晶を真空下で昇華(T1:140℃、T2:270℃、T3:330℃、T4:370℃)を行うことによって精製した。収量:1.64g(収率:40.2%)。白色結晶。ASAP-TOF-MS (m/z)=815([M]+)。
1-8. 1,3-ビス[3,6-ビス(3,6-ジメチル9-カルバゾリル)9-カルバゾリル]ベンゼン(7)の合成
1-8-1. 1,2,3,4-テトラヒドロ-3,6-ジメチルカルバゾールの合成
Figure JPOXMLDOC01-appb-C000099
 三口フラスコに4-メチルシクロヘキサノン(50mmol)と酢酸(25mL)を投入し、4-メチルフェニルヒドラジン塩酸塩を、10分ごと6回に分けて投入した。得られた混合物を、オイルバスで徐々に加熱し、80℃で30分間加熱撹拌を行った。反応後、ジクロロメタン/水及びジクロロメタン/5%水酸化ナトリウム水溶液で洗浄及び中和した有機層を分離し、硫酸マグネシウムで乾燥後、エバポレータで濃縮した。その後、残渣をシクロヘキサンで再結晶した。収量7.98g(収率80%)。ASAP-TOF-MS (m/z)=200([M+1]+)。
1-8-2. 3,6-ジメチルカルバゾールの合成
Figure JPOXMLDOC01-appb-C000100
 1,2,3,4-テトラヒドロ-3,6-ジメチルカルバゾール(43.2mmol)をトリグライム(28.8mmol)に溶かし、そこにPd/C(10wt%、2.16mmol)を加え、一晩還流撹拌を行った。反応後、セライトろ過によってPd/Cを除去し、ろ液をジクロロメタン/水で抽出して有機層を分離後、硫酸マグネシウムで乾燥した。その後、有機層をエバポレータで濃縮した。残渣をイソプロパノールによって再結晶をした。収量4.46g(収率53%)。黄色結晶。ASAP-TOF-MS (m/z)=196([M+1]+)
1-8-3. 1,3-ビス(3.6-ジブロモ-9-カルバゾリル)ベンゼンの合成
 1-5-1と同一の手順で合成を行った。
1-8-3. 1,3-ビス[3,6-ビス(3,6-ジメチル9-カルバゾリル)9-カルバゾリル]ベンゼン(7)の合成
Figure JPOXMLDOC01-appb-C000101
 1,3-ビス(3.6-ジブロモカルバゾール-9-イル)ベンゼン(0.85mmol)、3,6-ジメチルカルバゾール(6.78mmol)、ヨウ化銅(I)(0.68mmol)、炭酸セシウム(6.78mmol)、18-クラウン-6(0.10mmol)、ビス(2-ブトキシエチル)エーテル(3.29mL)を容器に入れ、Ar雰囲気下180℃で1時間加熱撹拌を行った。反応終了後、セライトろ過によって触媒を除去し、ろ液をジクロロメタン/水で抽出して有機層を分離した。硫酸マグネシウムで有機層を乾燥後、エバポレータで濃縮した。中圧カラムクロマトグラフィー(溶離液:ヘプタン/ジクロロメタン)で目的物を精製し、逆相クロマトグラフィーによってさらに精製した。
 逆相カラムクロマトグラフィーの条件は下記のとおりである。
 ・カラム:Inertsil(登録商標) ODS-3(内径50mm、L=250mm、粒径=5μm)
 ・カラム温度:37℃
 ・試料溶媒:ジクロロメタン/酢酸70:30
 ・濃度:50mg/mL
 ・溶離液:ジクロロメタン/メタノール50:50
 ・検出波長:254nm、350nm
 逆相カラムクロマトグラフィーによる精製後、ヘプタン/ジクロロメタンで再結晶を行った。得られた試料について分析HPLCを用い、ピークの面積強度比より純度を確認した。
 ・装置:GL7400(ジーエルサイエンス社製)
 ・カラム:Inertsil(登録商標) ODS-3 HP(粒径=3μm、内径3.0mm、L=150mm)
 ・溶離液:メタノール/THF 70:30
 収量:0.36g(収率:35.6%)。白色結晶。純度99.6%。ASAP-TOF-MS (m/z)=1181([M]+)。
1-9. 1,3,5-トリス[3,5-ビス(カルバゾール-9-イル)フェニル]ベンゼン(8)の合成
 特開2011-256143号公報、A. Suzuki, H. C. Brown., Organic Syntheses Via Boranes Volume 3 Suzuki Coupring 2003, 32、特開2010-111620号公報に記載の方法に準拠して行った。
1-9-1. 1-ブロモ-3,5-ビス(カルバゾール-9-イル)-ベンゼンの合成
Figure JPOXMLDOC01-appb-C000102
 Ar雰囲気下で、カルバゾール(50mmol)を1,3-ジメチル-2-イミダゾリジノン(25mL)に溶解させた後、カリウム-t-ブトキシド(52.5mmol)を添加した。懸濁液を120℃まで昇温した後に、1-ブロモ-3,5-ジフルオロベンゼン(25mmol)を滴下し、140℃で2時間加熱撹拌を行った。反応終了後、反応混合物を室温まで冷却してから、酢酸エチル/水で抽出を行い、有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。有機層を濃縮し、得られた残渣をエタノールで再結晶を行い精製した。収量:2.16g(収率:90.3%)。白色結晶。ASAP-TOF-MS (m/z)=487, 489(1:1 [M+1]+)。
1-9-2. 3,5-ビス(カルバゾール-9-イル)フェニルボロン酸ピナコールエステルの合成
Figure JPOXMLDOC01-appb-C000103
 1-ブロモ-3,5-ビス(カルバゾール-9-イル)-ベンゼン(10.2mmol)、ビス(ピナコラート)ジボロン(20.4mmol)、酢酸カリウム(102mmol)、1,4-ジオキサン(59.8mL)を容器に加え、Ar雰囲気下60℃で15分間加熱撹拌した。続けてPd(dppf)Cl2・CH2Cl2を加え、80℃で2時間加熱撹拌を行った。反応終了後トルエン/水で抽出を行い、有機層を硫酸マグネシウムで乾燥後、濃縮した。残渣を中圧カラムクロマトグラフィー(溶離液:ヘプタン/再生ジクロロメタン)によって精製し、エタノール/ジクロロメタンで再結晶を行った。収量:4.82g(収率:88.8%)。白色結晶。ASAP-TOF-MS (m/z)=535([M+1]+)。
1-9-3. 1,3,5-トリス[3,5-ビス(カルバゾール-9-イル)フェニル]ベンゼン(8)の合成
Figure JPOXMLDOC01-appb-C000104
 1,3,5-トリブロモベンゼン(2.00mmol)、3,5-ビス(カルバゾール-9-イル)フェニルボロン酸ピナコールエステル(7.08mmol)、酢酸パラジウム(0.18mmol)、リン酸カリウム(36.0mmol)、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル、0.36mmol)、トルエン(60mL)、水(7.5mL)を容器に加え、100℃で一晩還流撹拌した。反応終了後、ジクロロメタン/水で反応混合物を抽出後、有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をジクロロメタンに溶解し、シリカゲルを加え、再度乾燥させることで、シリカゲルに試料を担持させた。このシリカゲルをカラムに充填し、中圧カラムクロマトグラフィー(溶離液:ヘプタン/ジクロロメタン→トルエン)で精製を行った。粗収量2.48g(粗収率95.5%)。
 次いで、逆相カラムクロマトグラフィーにより、精製を行った。
 ・カラム:Inertsil(登録商標) ODS-3(内径50mm、L=250mm、粒径=5μm)
 ・カラム温度:60℃
 ・試料溶媒:トルエン/メタノール70:30
 ・濃度:25mg/mL
 ・溶離液:トルエン/メタノール60:40
 ・検出波長:240nm、329nm
 逆相カラムクロマトグラフィーによる精製後、ジクロロメタン/メタノールで再結晶を行った。得られた試料について分析HPLCを用い、ピークの面積強度比より純度を確認した。
 ・装置:GL7400(ジーエルサイエンス社製)
 ・カラム:Inertsil(登録商標) ODS-3 HP(粒径=3μm、内径3.0mm、L=150mm)
 ・溶離液:メタノール/THF 65:35
 収量:2.03 g(収率:78.0%)カラム回収率82%。純度99.99%。白色結晶。FAB-MS (m/z)=1297([M]+)。
1-10. 3,3’’-ビス(3,9’-ビカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニル(10)の合成
1-10-1. 3,3’’-ジブロモ-1,1’:3’.1’’-ターフェニルの合成
Figure JPOXMLDOC01-appb-C000105
 容器に1,3-ジヨードベンゼン3.96g(12mmol)、3-ブロモフェニルボロン酸4.82g(24mmol)、炭酸ナトリウム7.63g(72mmol)、トルエン80ml、エタノール80ml、水40mlを加えて脱気した。続けてアルゴン雰囲気下においてテトラキス(トリフェニルホスフィン)パラジウム(0)0.83g(0.72mmol)を加えて80℃で17時間半加熱撹拌を行った。反応終了後、ジクロロメタン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。その後、濃縮物をシリカゲルに担持させて中圧カラムクロマトグラフィー(溶離液:ヘプタン)でカラム精製を行った。収量:3.33g(無色粘体)(収率:71.5%)。ASAP-TOF-MS(m/z)=386、388、389(1:2:1)([M]+)。
1-10-2. 3-ヨード-9-[(p-トシル)スルフォニル]カルバゾールの合成
Figure JPOXMLDOC01-appb-C000106
 容器に3-ヨードカルバゾール11.7g(40mmol)と粉末状に砕いた水酸化カリウム6.73g(120mmol)、アセトン100mlを入れた。続けてp-トシルクロリド22.9g(120mmol)を10回に分けて加え、1時間還流撹拌を行った。反応終了後、反応液を水中に注いでジクロロメタン/水で有機層を抽出した。それから水、塩水で洗浄した有機層を硫酸マグネシウムで乾燥し、エバポレータで濃縮した。そしてジクロロメタン/エタノールで再結晶を行った。収量:15.5g(茶色結晶)(収率:86.5%)。ASAP-TOF-MS(m/z)=447([M]+)。
1-10-3. 3-カルバゾリル-9-[(p-トシル)スルフォニル]カルバゾールの合成
Figure JPOXMLDOC01-appb-C000107
 容器に3-ヨード-9-[p-トルエンスルフォニル]カルバゾール15.4g(34.5mmol)、カルバゾール6.92g(41.4mmol)、ヨウ化銅(I)0.55g(2.86mmol)、トランス-1,2-シクロヘキサジアミン0.39g(3.45mmol)、リン酸三カリウム15.2g(71.8mmol)、トルエン216mlを入れて2日間還流撹拌を行った。反応終了後、トルエン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。続けてシリカゲルに担持させて中圧カラムクロマトグラフィー(溶離液:ヘプタン/酢酸エチル)で精製した。その後ジクロロメタン/メタノールで再結晶を行った。収量:13.6g(白色粉末)(収率:80.9%)。ASAP-TOF-MS(m/z)=487([M+1]+)。
 1-10-4. 3,9’-ビカルバゾールの合成
Figure JPOXMLDOC01-appb-C000108
 容器に3-カルバゾリル-9-[(p-トシル)スルフォニル]カルバゾール13.6g(27.9mmol)、水酸化ナトリウム10.6g(265mmol)、THF106ml、メタノール53.1ml、水53.1mlを加えて17時間還流撹拌を行った。反応終了後、酢酸エチル/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。その後、ジクロロメタン/メタノールで再結晶を行った。そして母液は濃縮して昇華精製(T1:50℃、T2:100℃、T3:150℃、T4:200℃)を行って目的物を回収した。収量:6.11g(白色結晶)(収率:65.9%)。ASAP-TOF-MS(m/z)=332([M])。
1-10-5. 3,3’’-ビス(3,9’-ビカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニル(10)の合成
Figure JPOXMLDOC01-appb-C000109
 容器に3,3’’-ジブロモ-1,1’:3’,1’’-ターフェニル2.33g(6mmol)と3,9-ビカルバゾール4.99g(15mmol)、ヨウ化銅(I)0.46g(2.4mmol)、炭酸セシウム7.82g(24mmol)、18-クラウン-6-エーテル0.10g(0.36mmol)、ビス(ブトキシエチル)エーテル12mlを入れ、アルゴン下で19時間加熱攪拌を行った。反応終了後は熱時ろ過によって不溶物を取り除き、ジクロロメタン/水で有機層を抽出してから硫酸マグネシウムで乾燥し、エバポレータで濃縮した。続けてメタノールで生成物を沈殿させて回収し、真空下で昇華を二回(一回目(T1:200℃、T2:300℃、T3:350℃、T4:380℃)、二回目(T1:300℃、T2:330℃、T3:360℃、T4:410℃))を行うことによって精製した。
収量:1.77g(黄色ガラス状)(収率:33.2%)(純度:98.5%)。ASAP-TOF-MS(m/z)=891([M]+)。
 1-11. 3,3’’’-ビス(3-カルバゾール-9’-イル9-カルバゾリル)-1,1’:3’,1’’:3’’,1’’’-クォーターフェニル(11)の合成
 1-11-1. 3,3’-ジクロロビフェニルの合成
Figure JPOXMLDOC01-appb-C000110
 1-クロロ-3-ヨードベンゼン25g(105mmol)を還流させ、そこに活性化した銅16.7g(263mmol)を少しずつ加えた。その後3時間還流攪拌を続けた後に反応を終了し、冷却後セライトろ過で銅を取り除いてからジクロロメタン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。それから真空蒸留(初留温度:230℃、終了時:280℃)によって目的物を単離した。収量:4.46g(無色液体)(収率:19%)。ASAP-TOF-MS(m/z)=222([M-1]+)。
1-11-2. 3,3’’’-ジフルオロ-1,1’:3’,1’’:3’’,1’’’-クォーターフェニルの合成
Figure JPOXMLDOC01-appb-C000111
 容器に3,3’-ジクロロビフェニル2.23g(10mmol)と3-フルオロフェニルボロン酸4.2g(30mmol)、酢酸パラジウム0.04g(0.2mmol)、SPhos0.16g(0.4mmol)、リン酸三カリウム8.49g(40mmol)、トルエン40mlを入れてアルゴン下100℃で17時間加熱撹拌を行った。反応終了後、トルエン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。その後、中圧カラムクロマトグラフィー(溶離液:ヘプタン)で目的物を単離した。収量:1.33g(収率:38.8%)(無色粘体)。ASAP-TOF-MS(m/z)=342([M]+)。
1-11-3. 3,3’’’-ビス(3-ブロモ9-カルバゾリル)-1,1’:3’,1’’:3’’,1’’’-クォーターフェニルの合成
Figure JPOXMLDOC01-appb-C000112
 1,3-ジメチル-2-イミダゾリジノン8mlに3-ブロモカルバゾール2.95g(12mmol)を溶かしてからカリウムtert-ブトキシド2.02g(18mmol)を加えて120℃で攪拌した。試薬が溶解したところで3,3’’’-ジフルオロ-1,1’:3’,1’’:3’’,1’’’-クォーターフェニル1.37g(4mmol)を加えて220℃で3時間加熱攪拌を行った。反応終了後はジクロロメタン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮を行った。その後、濃縮物をシリカゲルに担持させて中圧カラムクロマトグラフィー(溶離液:ヘプタン/酢酸エチル)である程度精製し、さらに昇華精製によって目的物を得た。収量:0.89g(収率:28%)(黄褐色ガラス状)。ASAP-TOF-MS(m/z)=792、794、796(1:2:1)([M]+)。
 1-11-4. 3,3’’’-ビス(3-カルバゾール-9’-イル9-カルバゾリル)-1,1’:3’,1’’:3’’,1’’’-クォーターフェニル(11)の合成
Figure JPOXMLDOC01-appb-C000113
 3,3’’’-ビス(3-ブロモ9-カルバゾリル)-1,1’:3’,1’’:3’’,1’’’-クォーターフェニル0.79g(1mmol)とカルバゾール0.67g(4mmol)、ヨウ化銅(I)0.08g(0.4mmol)、炭酸セシウム1.30g(4mmol)、18-クラウン-6-エーテル0.02g(0.06mmol)、ビス(ブトキシエチル)エーテル2mlを容器に入れ、アルゴン下で1.5時間還流攪拌を行った。反応終了後は熱時ろ過によって不溶物を取り除き、ジクロロメタン/水で有機層を抽出してから硫酸マグネシウムで乾燥し、エバポレータで濃縮した。それから中圧カラムクロマトグラフィー(溶離液:シクロヘキサン/トルエン)で目的物をある程度精製した。そして得られた粗結晶を真空下で昇華を行うことによって精製した。収量:0.40g(収率:41%)(黄褐色ガラス状)。ASAP-TOF-MS(m/z)=967([M]+)。
 1-12. 3,3’’-ビス[3-(3,6-ジ-tert-ブチルカルバゾール-9-イル)-6-tert-ブチルカルバゾール-9-イル]-1,1’:3’,1’’-ターフェニル(12)の合成
 1-12-1. 3-tert-ブチル-2,3,4,9-テトラヒドロ-1H-カルバゾールの合成
Figure JPOXMLDOC01-appb-C000114
 フェニルヒドラジン1.09g(10.1mmol)、4-tert-ブチルシクロヘキサノン1.54g(10mmol)、濃塩酸6ml、エタノール18mlを容器に入れて2時間半還流撹拌を行った。反応終了後は冷蔵庫で冷却し、析出した結晶を回収した。収量:1.84g(収率:81%)。ASAP-TOF-MS(m/z)=228([M+1]+)。
 1-12-2. 3-tert-ブチルカルバゾールの合成
Figure JPOXMLDOC01-appb-C000115
 3-tert-ブチル-2,3,4,9-テトラヒドロ-1H-カルバゾール1.82g(8mmol)をメシチレン5mlに溶かして10%Pd/C0.43g(0.4mmol)を加え、4時間還流撹拌を行った。反応終了後はセライトろ過で触媒を取り除き、ジクロロメタン/水で有機層を抽出してから硫酸マグネシウムで乾燥し、エバポレータで濃縮した。その後ヘプタンで再結晶を行った。収量:1.3g(収率:72.6%)。ASAP-TOF-MS(m/z)=224([M+1]+
 1-12-3. 3,3’’-ジフルオロ-1,1’:3’.1’’-ターフェニルの合成
Figure JPOXMLDOC01-appb-C000116
 THF40mlに溶かした1-ブロモ-3-フルオロベンゼン7.7g(44mmol)をマグネシウム1.07g(44mmol)に滴下してグリニャール試薬を調整し、続けてTHF20mlに溶かした1,3-ジブロモベンゼン4.72g(20mmol)を滴下した。それから0℃に冷却してテトラキス(トリフェニルホスフィン)パラジウム(0)1.16g(1mmol)を4回に分けて投入して一日還流攪拌を行った。反応終了後、塩化アンモニウム水溶液でクエンチを行ってからジクロロメタン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮した。それから中圧カラムクロマトグラフィー(溶離液:ヘプタン)によって目的物を単離した。収量:3.79g(収率:71%)(無色液体)。ASAP-TOF-MS(m/z)=224([M+1]+)。
 1-12-4. 3,3’’-ビス(3-tert-ブチルカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニルの合成
Figure JPOXMLDOC01-appb-C000117
 3-tert-ブチルカルバゾール1.21g(5.4mmol)をDMF3.6mlに溶かしてからカリウムtert-ブトキシド0.91g(8.1mmol)を加えて100℃で溶解させた。続けて3,3’’-ジフルオロ-1,1’:3’.1’’-ターフェニル0.48g(1.8mmol)を加えて220℃で3時間加熱撹拌を行った。反応終了後はジクロロメタン/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮し、中圧カラムクロマトグラフィー(溶離液:ヘプタン/酢酸エチル)によって目的物を単離した。その後メタノールで目的物を結晶化させた。収量:0.86g(収率:70.6%)。ASAP-TOF-MS(m/z)=672([M+1]+)。
 1-12-5. 3,3’’-ビス(3-ブロモ-6-tert-ブチルカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニルの合成
Figure JPOXMLDOC01-appb-C000118
 3,3’’-ビス(3-tert-ブチルカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニル0.81g(1.2mmol)を酢酸エチル8mlに溶かし、N-ブロモスクシンイミド0.45g(2.5mmol)を加えて一晩撹拌を行った。反応終了後、酢酸エチル/水で有機層を抽出し、硫酸マグネシウムで乾燥してからエバポレータで濃縮してメタノールで結晶化させた。収量:0.94g(収率:95%)。ASAP-TOF-MS(m/z)=828、830、832(1:2:1)([M]+)。
1-12-6. 3,3’’-ビス[3-(3,6-ジ-tert-ブチルカルバゾール-9-イル)-6-tert-ブチルカルバゾール-9-イル]-1,1’:3’,1’’-ターフェニル(12)の合成
Figure JPOXMLDOC01-appb-C000119
 3,3’’-ビス(3-ブロモ-6-tert-ブチルカルバゾール-9-イル)-1,1’:3’,1’’-ターフェニル0.91g(1.1mmol)と3,6-ジ-tert-ブチルカルバゾール1.23g(4.4mmol)、ヨウ化銅(I)0.08g(0.44mmol)、炭酸セシウム1.43g(4.4mmol)、18-クラウン-6-エーテル0.02g(0.07mmol)、ビス(ブトキシエチル)エーテル2.2mlを容器に入れて3時間還流撹拌を行った。反応終了後は熱時ろ過によって不溶物を取り除き、ジクロロメタン/水で有機層を抽出してから硫酸マグネシウムで乾燥し、エバポレータで濃縮した。それから中圧カラムクロマトグラフィー(溶離液:ヘプタン/ジクロロメタン)で目的物を単離した。その後続けて逆相カラムクロマトグラフィー(溶離液:メタノール/ジクロロメタン)によってさらに精製を行った。収量:0.58g(収率:52.8%)(茶色粉末)。ASAP-TOF-MS(m/z)=1227([M]+)。
実施例2:耐アルコール性の評価
 化合物(1)~(12)の濃度が10mg/mLとなるようそれぞれトルエンに溶解させ、トルエン溶液を調製した。石英基板に調製した化合物(1)~(12)の溶液を1000rpmでスピンコートし、100℃で10分間乾燥させて、化合物(1)~(12)の薄膜(膜厚40nm)を得た。
 薄膜は紫外可視分光光度計(日立ハイテック製U-2900)で吸収スペクトルを測定後、薄膜にアルコール(2-プロパノール及び1-ブタノール)を1000rpmでスピンコートし、100℃で10分間乾燥させた。その後、吸収スペクトルを測定し、アルコール塗布前後での吸光度より膜厚の減少(膜減り)率を算出した。
 表1、図2~7及び12~14に、それぞれの材料のアルコールに対する耐性の評価結果を示す(化合物(7)については図示を省略。)。なお、表1において、「CBz」、「2-PrOH」、「1-BuOH」は、それぞれ、カルバゾリル基、2-プロパノール、1-ブタノールを意味する。また、図2~7及び12~14において、左側のグラフは、2-プロパノール塗布前後の吸光度変化、右側のグラフは、1-ブタノール塗布前後の吸光度変化を示すグラフである。これらの結果より、分子中に6つのカルバゾリル基を有する化合物(3)、(4)において耐アルコール性が確認された。また中心骨格をジメチルフルオレンに変え、同じく分子中に6つのカルバゾリル基を有する化合物(5)においても耐アルコール性が確認された。
Figure JPOXMLDOC01-appb-T000120
実施例3:基礎物性の評価
(1)熱特性
 示差走査熱量測定(DSC)にて、正孔輸送材料(2)~(8)のガラス転移温度(Tg)、結晶化温度(Tc)、融点(Tm)を測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000121
 いずれの材料も高いTgを示し、耐熱性に優れていることが示唆された。
(2)光学特性
 紫外可視分光光度計(UV-VIS)、蛍光分光光度計にて最大吸収波長(λmax)、励起波長(λEX)、蛍光波長(λEM)、三重項エネルギー(T1)の測定を行った。また紫外可視吸収スペクトルの吸収端よりエネルギーギャップ(Eg)を見積もった。測定結果及びエネルギーギャップを表3に示す。
Figure JPOXMLDOC01-appb-T000122
 全ての材料において溶液状態で蛍光が観測された。
 (1)と(4)の比較より、発光波長について、中心骨格Xが1,3-ベンゼンジイル基である場合、分子中に含まれるカルバゾリル基数による変化は観測されなかった。
 エネルギーギャップについては、中心骨格Xが1,3,5-ベンゼントリイル基である(3)のエネルギーギャップが、他の正孔輸送材料と比較して大きな値を示すことがわかった。
 三重項エネルギーは、他のカルバゾール材料と同程度の比較的大きな値を示し、青色りん光発光材料に適用可能であることがわかった。
(3)電気化学特性
 電気化学的性質を評価するために、化合物(1)~(4)について、サイクリックボルタンメトリー(CV)を行った。
 測定条件は下記のとおりである。
  溶媒:DMF
  電解質:TBA・BF(100mM)
 得られたサイクリックボルタモグラムを図8~11に示す。
 還元側(図8~11の右側のグラフ)の電位の立ち上がりより電子親和力(Ea)、酸化側(図8~11の左側のグラフ)の電位の立ち下りよりイオン化ポテンシャル(Ip)を見積もった。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000123
 全ての材料において酸化側でも還元側でも酸化還元反応が起きており、非可逆反応であった。また、酸化側での酸化還元反応は測定の度に得られるピークが小さくなり、分解していることが分かった。カルバゾールの数による電気化学特性の違いは殆ど観測されなかった。
実施例4:有機EL素子の作製
1.作製
1-1.基板洗浄
 80nmのITOガラス(□50mm 三容真空製)上に0.04cmの有機EL素子を作製した。基板はアルカリ洗剤(関東化学製)、超純水、アセトン(和光製)にて超音波洗浄(各5分間)、IPA(和光製)にて煮沸洗浄(5分間)、UV/O洗浄(15分間)を行った。
1-2.有機膜成膜
 正孔注入層、発光層、電子輸送層の有機膜はスピンコート法にて成膜した。各層の材料、成膜条件は以下の通りである。
  ・正孔注入層 PEDOT:PSS AI4083(Heraeus製) 40nm
   スピンコート2700rpm×45秒間(大気雰囲気)
   ベーク200℃ 60分間(大気雰囲気)
  ・発光層 ホスト材料(1)~(11)
       発光材料(ゲスト材料)Ir(ppy)3 10重量%
   10g/L クロロベンゼン溶液 60nm
   スピンコート1000rpm×45秒間(大気雰囲気)
   ベーク100℃、30分間(窒素雰囲気)
  ・電子輸送層 ETL1(下式)
   9g/L 2-プロパノール又は1-ブタノール溶液 35nm
   スピンコート1000rpm×45秒間(大気雰囲気)
   ベーク100℃、30分間(窒素雰囲気)
Figure JPOXMLDOC01-appb-C000124
1-3.陰極成膜
 陰極であるアルミニウム薄膜の成膜条件は以下のとおりである。
   抵抗加熱法による真空蒸着
   蒸着速度:5Å/秒
   圧力:<1×10-4 Pa
1-4.封止
 有機EL素子は窒素置換したグローブボックス(vac製、水分濃度1ppm以下、酸素濃度1ppm以下)で、乾燥シート剤(ダイニック製)を貼ったガラスキャップ(クライミング製)にて素子を封止した。
2.測定
 作製した有機EL素子の電圧-電流-輝度特性は、DC電圧電流電源・モニター(ADCMT製 6241A)を用いて0Vから10Vまで電圧を印加して0.1V毎に電流値を測定した。ELスペクトル(@100cd/m)はマルチチャンネル分光測定器(ADCMT製 7351A)の分光検出器を用いて測定した。測定結果より、有機EL素子として正常に動作していることが確認された。この結果より、製膜時に使用した溶媒による各層の浸食が起こることなく、湿式法により有機EL素子が構築できたことが確認された。
 発光層の形成用の溶媒として2-プロパノール及び1-ブタノール、ホスト材料として、化合物(9)(比較例)、(1)、(2)、(4)、(10)及び(11)を用いて作製した有機EL素子の電流効率の比較結果を、下記の表5に示す。分子中のカルバゾリル基の数が多いほど、すなわち、アルコール耐性が高いほど、得られた有機EL素子が高い電流効率を有することが確認された。
Figure JPOXMLDOC01-appb-T000125
1 有機EL素子
2 透明基板
3 陽極
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極
8 封止部材

Claims (15)

  1.  陽極と陰極に挟まれるように積層された複数の有機化合物層を有する有機電界発光素子において、
     注入された電子と正孔の再結合により発光する発光層及び該発光層の陽極側表面に接するように設けられ、前記発光層に正孔を注入する有機化合物層の一方又は双方が、正孔輸送材料として、下記の一般式(I)で表され、分子中に4以上のカルバゾリル基を有する化合物を含むことを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
     式(I)において、
     R及びRは、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を表し、
     Xは、アリール基、ヘテロアリール基、置換アリール基及び置換へテロアリール基のいずれかを表し、
     nは、1以上4以下の自然数を表す。
  2.  前記正孔輸送材料を含む有機化合物層の陰極側表面に接するように設けられた有機化合物層が、アルコールに可溶な材料からなるものであることを特徴とする請求項1記載の有機電界発光素子。
  3.  前記正孔輸送材料を含む有機化合物層が、発光層、正孔輸送層又は正孔注入層であることを特徴とする請求項1又は2記載の有機電界発光素子。
  4.  前記正孔輸送材料が、分子中のカルバゾリル基の数が4、5又は6であることを特徴とする請求項1から3のいずれか1項記載の有機電界発光素子。
  5.  前記式(I)において、R及びRが、3位及び6位の一方若しくは双方が3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基で置換されている9-カルバゾリル基であることを特徴とする請求項1から4のいずれか1項記載の有機電界発光素子。
  6.  前記式(I)において、Xが、フェニル基、1,3-ベンゼンジイル基、1,3,5-ベンゼントリイル基、9,9-ジメチルフルオレン-2,7-ジイル基、ビフェニル-3,3’-ジイル基1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基、1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基及び1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基のいずれかであることを特徴とする請求項1から5のいずれか1項記載の有機電界発光素子。
  7.  前記正孔輸送材料が、下記の式(1)~(8)及び(10)~(12)のいずれかで表されることを特徴とする請求項6記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
  8.  少なくとも陽極が表面に形成された基板の該電極側の表面に、正孔輸送材料として、下記の一般式(I)で表され、分子中に4以上のカルバゾリル基を含む化合物と、非アルコール系の有機溶媒とを含む溶液を用いて湿式法により有機化合物層を形成する工程を含むことを特徴とする有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000013
     式(I)において、
     R及びRは、それぞれ独立して、水素原子又は3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基を表し、
     Xは、アリール基、ヘテロアリール基、置換アリール基及び置換へテロアリール基のいずれかを表し、
     nは、1以上4以下の自然数を表す。
  9.  前記基板の前記電極上に1又は複数の有機化合物層が形成されており、前記溶液に含まれる前記有機溶媒が、前記有機化合物層のいずれも溶解及び膨潤させない溶媒であることを特徴とする請求項8記載の有機電界発光素子の製造方法。
  10.  前記正孔輸送材料を含む有機化合物層が、発光層、正孔輸送層又は正孔注入層であることを特徴とする請求項8又は9記載の有機電界発光素子の製造方法。
  11.  前記正孔輸送材料が、分子中のカルバゾリル基の数が4、5又は6であることを特徴とする請求項8から10のいずれか1項記載の有機電界発光素子の製造方法。
  12.  前記式(I)において、R及びRが、3位及び6位の一方若しくは双方が3位及び6位の一方若しくは双方に置換基を有していてもよい9-カルバゾリル基で置換されている9-カルバゾリル基であることを特徴とする請求項8から11のいずれか1項記載の有機電界発光素子の製造方法。
  13.  前記式(I)において、Xが、フェニル基、1,3-ベンゼンジイル基、1,3,5-ベンゼントリイル基、9,9-ジメチルフルオレン-2,7-ジイル基、ビフェニル-3,3’-ジイル基、1,3,5-トリフェニルベンゼン-3’,5’,3'',5'',3''',5'''-ヘキサイル基、1,1’:3’,1’’-ターフェニル-3,3’’-ジイル基及び1,1’:3’,1’’:3’’,1’’’-クォーターフェニル-3,3’’-ジイル基のいずれかであることを特徴とする請求項8から12のいずれか1項記載の有機電界発光素子の製造方法。
  14.  前記正孔輸送材料が、下記の式(1)~(8)及び(10)~(12)のいずれかで表されることを特徴とする請求項13記載の有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
  15.  下記の式(2)~(8)、(10)及び(11)のいずれかで表されることを特徴とするカルバゾール誘導体。
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
PCT/JP2014/075327 2013-09-26 2014-09-24 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体 WO2015046274A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539280A JP6419704B2 (ja) 2013-09-26 2014-09-24 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199168 2013-09-26
JP2013-199168 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046274A1 true WO2015046274A1 (ja) 2015-04-02

Family

ID=52743409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075327 WO2015046274A1 (ja) 2013-09-26 2014-09-24 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体

Country Status (2)

Country Link
JP (1) JP6419704B2 (ja)
WO (1) WO2015046274A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021381A1 (ja) * 2016-07-26 2018-02-01 日立化成株式会社 有機エレクトロニクス材料
JP2020501324A (ja) * 2016-12-06 2020-01-16 メルク パテント ゲーエムベーハー 電子デバイスの調製方法
CN111307991A (zh) * 2020-04-07 2020-06-19 中钢集团南京新材料研究院有限公司 一种采用高效液相色谱同时检测溴苯和咔唑化合物的方法
TWI720044B (zh) * 2015-10-29 2021-03-01 日商保土谷化學工業股份有限公司 有機電致發光元件
US20230105380A1 (en) * 2018-09-11 2023-04-06 Universal Display Corporation Organic electroluminescent materials and devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165051A (zh) * 2007-08-07 2008-04-23 中国科学院长春应用化学研究所 树枝状主体材料及该化合物制备的有机电致发光器件
WO2009060780A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20130004780A (ko) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165051A (zh) * 2007-08-07 2008-04-23 中国科学院长春应用化学研究所 树枝状主体材料及该化合物制备的有机电致发光器件
WO2009060780A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20130004780A (ko) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI JIANG ET AL.: "Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphoerscent OLEDs", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 24, 28 June 2012 (2012-06-28), pages 12016 - 12022 *
WEI JIANG ET AL.: "Synthesis of carbazole-based dendrimer: hose material for highly efficient soution-processed blue organic electorophosphorescent diodes", TETRAHEDRON, vol. 68, pages 5800 - 5805 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720044B (zh) * 2015-10-29 2021-03-01 日商保土谷化學工業股份有限公司 有機電致發光元件
WO2018021381A1 (ja) * 2016-07-26 2018-02-01 日立化成株式会社 有機エレクトロニクス材料
JPWO2018021381A1 (ja) * 2016-07-26 2019-05-16 日立化成株式会社 有機エレクトロニクス材料
JP2020501324A (ja) * 2016-12-06 2020-01-16 メルク パテント ゲーエムベーハー 電子デバイスの調製方法
JP7196072B2 (ja) 2016-12-06 2022-12-26 メルク パテント ゲーエムベーハー 電子デバイスの調製方法
US20230105380A1 (en) * 2018-09-11 2023-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11939293B2 (en) * 2018-09-11 2024-03-26 Universal Display Corporation Organic electroluminescent materials and devices
CN111307991A (zh) * 2020-04-07 2020-06-19 中钢集团南京新材料研究院有限公司 一种采用高效液相色谱同时检测溴苯和咔唑化合物的方法

Also Published As

Publication number Publication date
JPWO2015046274A1 (ja) 2017-03-09
JP6419704B2 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
JP5764500B2 (ja) アントラセン誘導体および発光素子
JP5656534B2 (ja) インドロ[3,2,1−jk]カルバゾール化合物及びこれを有する有機発光素子
TW201840813A (zh) 金屬錯合物
TWI582074B (zh) 1,2-苯并苊衍生物、含有其的發光元件材料及發光元件
JP4675413B2 (ja) 有機発光素子
JP4990973B2 (ja) アントラセン誘導体、それを用いた有機電子素子、およびその有機電子素子を含む電子装置
JP5868195B2 (ja) 新規スピロ化合物およびそれを有する有機発光素子
KR101582707B1 (ko) 전기활성 재료
JP6419704B2 (ja) 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体
JP6688608B2 (ja) 有機電子輸送材料及びこれを用いた有機電界発光素子
JP2011506564A (ja) ナフチル置換されたアントラセン誘導体および有機発光ダイオードにおけるその使用
JP2009194166A (ja) 有機エレクトロルミネッセンス素子
TWI558705B (zh) 發光元件材料及發光元件
WO2017115578A1 (ja) 有機電子輸送材料及びこれを用いた有機電界発光素子
US20220069238A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
CN113698426B (zh) 一种多环化合物及其在有机电子器件中的应用
JP4651048B2 (ja) 有機エレクトロルミネッセンス素子
JP2011176063A (ja) 白色有機電界発光素子及びその製造方法
CN112005392B (zh) 有机发光器件
JP4802671B2 (ja) 低分子有機薄膜を備える有機el素子
JP2007302624A (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物および有機電界発光素子
EP4349814A1 (en) Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same
KR101545418B1 (ko) 전기활성 재료
KR102154797B1 (ko) 다이아자크리센 유도체를 포함하는 전자 소자
JP2009173873A (ja) 有機エレクトロルミネッセンス材料およびそれを用いた素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847468

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14847468

Country of ref document: EP

Kind code of ref document: A1