WO2015045978A1 - マイナス水素イオンの検出方法 - Google Patents

マイナス水素イオンの検出方法 Download PDF

Info

Publication number
WO2015045978A1
WO2015045978A1 PCT/JP2014/074495 JP2014074495W WO2015045978A1 WO 2015045978 A1 WO2015045978 A1 WO 2015045978A1 JP 2014074495 W JP2014074495 W JP 2014074495W WO 2015045978 A1 WO2015045978 A1 WO 2015045978A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
gas
anode
cathode
Prior art date
Application number
PCT/JP2014/074495
Other languages
English (en)
French (fr)
Inventor
胤昭 及川
Original Assignee
株式会社Taane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Taane filed Critical 株式会社Taane
Publication of WO2015045978A1 publication Critical patent/WO2015045978A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for detecting negative hydrogen ions, and more particularly to a method for detecting negative hydrogen ions in ionized hydrogen water containing negative hydrogen ions or plasma water in which hydrogen is in a plasma state at normal temperature and normal pressure.
  • Minus hydrogen ions have a reducing power, and if they are taken into the body, they can effectively extinguish active oxygen (free radicals) generated in the body.
  • active oxygen free radicals
  • hydrogen since hydrogen reacts with oxygen to form water, hydrogen is attracting attention as a clean energy source that is friendly to the global environment.
  • Patent Document 1 a method for manufacturing a magnetic ceramic ball having strong reduction characteristics (Patent Document 1), throws the ceramic ball into water, generates hydrogen bubbles from the N pole of the ceramic ball, and produces minus hydrogen. It enables the generation of water containing ions.
  • Patent Document 2 a method of generating hydrogen plasma in a liquid at room temperature and pressure
  • Patent Document 3 a method of storing hydrogen in ionized hydrogen water containing ions of H + + H ⁇
  • Patent Document 4 A method of generating hydrogen from ionized hydrogen water containing ions of H + + H ⁇
  • Patent Document 5 a method of emulsifying oil with generated hydrogen plasma
  • Patent Document 6 A method of emulsifying oil by adding a bonded metal hydride and hydroxide to water (Patent Document 6) has been devised.
  • Patent No. 4218939 Japanese Patent No. 5232939 Japanese Patent No. 5283785 Japanese Patent No. 5283777 Japanese Patent No. 5232932 Japanese Patent No. 5188655
  • an object of the present invention is to provide a method for detecting the presence of negative hydrogen ions in water.
  • the method for detecting the presence of negative hydrogen ions in water comprises electrolyzing water containing negative hydrogen ions and detecting hydrogen gas generated from an anode and a cathode, thereby detecting the presence of negative hydrogen ions in water. Is detected.
  • Water containing negative hydrogen ions contains H + + H ⁇ ions.
  • water containing negative hydrogen ions contains hydrogen plasma at normal temperature and normal pressure.
  • the hydrogen plasma is represented by H 2 0 ⁇ H + + H ⁇ .
  • water containing negative hydrogen ions is accommodated in a container, an anode and a cathode are arranged in the container, and electrolysis of water containing negative hydrogen ions is performed through the anode and cathode.
  • gases generated from the anode and the cathode are accumulated in the tube, and the gas in the tube is detected using a gas detection tube.
  • negative hydrogen ions can be easily detected or verified.
  • Fig. 1 shows experimental equipment when Sendai City tap water is used as typical water and electrolyzed.
  • a DC stabilized power supply (GW Instek) was used, and a commercially available F35-1330 electrolytic device (Hoffman type) EA-SMPT was used as the electrolyzer.
  • a Kitagawa type gas detector tube (AP-20), which is a vacuum gas collector, was used.
  • the anode 12 and the cathode 14 connected to the DC stabilized power supply device 10 are disposed in the container 16.
  • Cu was used for the anode 12 and Zn was used for the cathode 14.
  • platinum was used for the anode 12 and the cathode 14, respectively.
  • two test tubes containing gas generated from the anode 12 are prepared. One test tube is used to detect oxygen, and the other test tube contains hydrogen. Used to detect.
  • two test tubes containing gas generated from the cathode 14 are provided, one used to detect oxygen and the other used to detect hydrogen.
  • Sendai city tap water W1 was accommodated, and a small amount of NaOH was added thereto.
  • a resistance and a diode load 18 are connected in series in the forward direction to the DC stabilized power supply 10, and an ammeter 20 is connected between the DC stabilized power supply 10 and the anode 12.
  • the stabilized DC power supply 10 can generate a voltage having a desired magnitude. For example, when a DC voltage of 9 V was applied, oxygen gas was generated from the anode 12 and hydrogen gas was generated from the cathode 14. This is because, as is well known, water is electrolyzed into hydrogen ions H + and hydroxide ions OH ⁇ , and the hydrogen ions H + moved to the cathode 14 receive electrons, where hydrogen gas H 2 is generated, Hydroxide ions OH ⁇ transferred to the anode 12 lose electrons, and oxygen gas O 2 is generated there.
  • the generation of oxygen gas O 2 from the anode 12 was confirmed by the fact that the chemical reacted with the oxygen gas and changed color when the gas detection tube was inserted into the test tube and the sample gas was vented. Further, from the anode 12 it was confirmed by the same method that the hydrogen gas H 2 is not generated. On the other hand, the generation of hydrogen gas H 2 from the cathode 14 was confirmed by the reaction of the chemical with the hydrogen gas and discoloration when the gas detection tube was inserted into the test tube and the sample gas was vented. Further, it was confirmed by the same method that oxygen gas O 2 was not generated from the cathode 14. Moreover, it was confirmed that the ammeter 20 does not react. The same was true for testers.
  • negative hydrogen ions H - were prepared HII water containing.
  • ionized as a possible water induction hydrogen plasma formable situ (hydrogen plasma decomposes synthesizable field) - HII water, as used herein, hydrogen molecules H 2 0 ⁇ H + + H in the liquid Is done.
  • Such ionized hydrogen water contains ortho-type hydrogen molecules or ion-bonded hydrogen molecules as described in Patent Documents 2 to 5 and the like.
  • the ortho-type hydrogen molecule has a property of being dissolved in water, and the hydrogen molecule is ionized into H 2 0 2H + + H ⁇ in the liquid.
  • the ionized hydrogen water can be obtained, for example, by adding a metal hydride such as CaH 2 or MgH 2 to water.
  • a metal hydride such as CaH 2 or MgH 2
  • the metal hydride to be added may be an alkali metal, alkaline earth metal, group 13 or group 14 metal shown on the periodic table of elements.
  • the ionized hydrogen water can also be generated using the ceramic balls described in Patent Document 1.
  • Fig. 2 shows the experimental apparatus when electrolyzed ionized hydrogen water.
  • the experiment apparatus is the same as that shown in FIG.
  • the energization was started by the direct current stabilized power supply device 10, and the gas generated from the anode 12 and the cathode 14 was accumulated in the test tube until a predetermined time passed.
  • two test tubes for accommodating the gas generated from the anode 12 and the cathode 14 are prepared.
  • the presence or absence of hydrogen and oxygen was confirmed when the presence or absence of hydrogen and oxygen was detected for each of the two test tubes from which the gas generated from the anode 12 was collected using a gas detection tube. Similarly, the presence of hydrogen and oxygen was confirmed when the presence or absence of hydrogen and oxygen was detected for each of the two test tubes using a gas detection tube. It was confirmed that when hydrogen was detected, the drug in the gas detector tube turned blue, and when oxygen was detected, the drug turned brown.
  • FIG. 3 shows a state in which bubbles are generated from the cathode and the anode when 24 V and 10 mA are applied by the DC stabilized power supply device 10.
  • the amount of gas generated after 16 hours was 14.5 ml at the anode and 32.0 ml at the cathode.
  • the detection of hydrogen gas was confirmed from both electrodes. In the experiment, it was confirmed that the generation of bubbles from the anode 12 became stronger when the voltage was increased at a constant current (10 mA).
  • plasma water containing negative hydrogen ions H ⁇ was prepared and electrolyzed.
  • plasma water is defined as water in which hydrogen plasma is formed at room temperature, normal pressure, and oxygen-free conditions by irradiating ionized hydrogen water with ultrasonic waves, microwaves, or sunlight (wavelength of 193 nm). Is done.
  • Such plasma water is disclosed in, for example, Patent Document 2.
  • the experimental apparatus for electrolyzing the plasma water was the same as the experimental apparatus shown in FIG. 1 or FIG. 2, and platinum was used for the anode and the cathode 14 respectively, and the plasma water was accommodated in the container 16.
  • the energization was started by the direct current stabilized power supply device 10, and the gas generated from the anode 12 and the cathode 14 was accumulated in the test tube by a predetermined time, and the gas was detected by inserting the gas detection tube into the test tube. As a result, the presence of hydrogen and oxygen was confirmed from both the anode 12 and the cathode 14.
  • FIG. 7 shows the state of generation of bubbles from the cathode and the anode at this time. It was confirmed that bubbles were generated from the anode and strong bubbles were generated from the cathode.
  • the amount of gas generated by electrolysis for 1 hour and 50 minutes is shown in FIGS. 28.5 ml of gas was generated from the cathode and 5.6 ml of gas was generated from the anode. And as shown in FIG. 10, the detection of hydrogen gas was confirmed from both poles.
  • the negative hydrogen ions H in water - were included HII water, electrolysis of water containing the water containing hydrogen which is ionically bonded, water containing hydrogen ortho type, or normal temperature, the hydrogen plasma at normal pressure Then, hydrogen gas is generated from the anode.
  • hydrogen gas is generated from the anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】 本発明は、水中のマイナス水素イオンの存在を検出する方法を提供することを目的とする。 【解決手段】 本発明のマイナス水素イオンの存在を検出する方法は、マイナス水素イオン(H)が電離した水を電気分解し、陽極および陰極から発生された水素ガスを検知することで、水中のマイナス水素イオン(H)の存在を検出するものである。マイナス水素イオンが電離した水は、H+Hのイオン、または常温、常圧の水素プラズマ(H ⇔H+H)を含む。 

Description

マイナス水素イオンの検出方法
 本発明は、マイナス水素イオンの検出方法に関し、特にマイナス水素イオンを含む電離水素水や、常温、常圧で水素がプラズマ状態にあるプラズマウォーターにおけるマイナス水素イオンの検出方法に関する。
 マイナス水素イオンは、還元力をもち、これが体内に摂取されれば、体内で発生された活性酸素(フリーラジカル)を効果的に消滅させることができる。また、水素は、酸素と反応して水となるため、水素は、地球環境に優しいクリーンなエネルギー源としても注目を浴びている。
 本発明者は、強還元特性を有する磁性セラミックボールを製造する方法(特許文献1)を発案し、このセラミックボールを水中に投入し、セラミックボールのN極から水素の気泡を生じさせ、マイナス水素イオンを含む水の生成を可能にしている。さらに本発明者は、常温、常圧の液体中に水素プラズマを発生させる方法(特許文献2)、H+Hのイオンを含む電離水素水等に水素を貯蔵する方法(特許文献3)、H+Hのイオンを含む電離水素水等から水素を発生させる方法(特許文献4)、発生された水素プラズマにより油をエマルジョン化する方法(特許文献5)、マイナス水素イオン(H)が結合された水素化金属と水酸化物とを水に添加することで油をエマルジョン化する方法(特許文献6)を発案している。
特許第4218939号 特許第5232939号 特許第5283785号 特許第5283777号 特許第5232932号 特許第5188655号
 上記特許文献には、マイナス水素イオン(H)が含まれる電離水素水や水素プラズマ化されたプラズマウォーターを生成すること、そのような水から必要に応じて水素ガスを取り出すことが開示されている。水素ガスの発生を通じて、水中にマイナス水素イオンが存在することが推認されるが、水中のマイナス水素イオンの存在をより明確にかつ直接的に検出ないし検証する方法が未だ示されていない。
 そこで本発明は、水中のマイナス水素イオンの存在を検出する方法を提供することを目的とする。
 本発明に係る水中のマイナス水素イオンの存在を検出する方法は、マイナス水素イオンを含む水を電気分解し、陽極および陰極から発生された水素ガスを検知することで、水中のマイナス水素イオンの存在を検出するものである。
 マイナス水素イオンを含む水は、H+Hのイオンを含むものである。あるいはマイナス水素イオンを含む水は、常温、常圧の水素プラズマを含むものである。水素プラズマは、H ⇔H+Hで表される。好ましくはマイナス水素イオンを含む水を容器内に収容し、前記容器内に陽極および陰極を配置させ、前記陽極および陰極を介してマイナス水素イオンを含む水の電気分解を行う。好ましくは陽極および陰極からそれぞれ発生されたガスを管内に蓄積させ、ガス検知管を用いて前記管内のガスを検知する。
 本発明によれば、マイナス水素イオンの検出または検証を容易に行うことができる。また、このような検出方法を利用することで、水素ガスを安定的に取り出しが可能になる。
水道水の電気分解の実験例を説明する図である。 電離水素水の電気分解の実験例を説明する図である。 電離水素水を電気分解したときの両極からの気泡の発生状態を示す写真である。 電気分解から16時間経過までに陽極および陰極で発生されたガス量を示す写真である。 電気分解から16時間経過までに陽極および陰極で発生されたガス量を示す写真である。 電離水素水を電気分解したときに両極から水素ガスが検出されたことを示す写真である。 プラズマウォーターを電気分解したときの両極からの気泡の発生状態を示す写真である。 電気分解から1時間50分経過までに陽極および陰極で発生されたガス量を示す写真である。 電気分解から1時間50分経過までに陽極および陰極で発生されたガス量を示す写真である。 プラズマウォーターを電気分解したときに両極から水素ガスが検出されたことを示す写真である。
 以下、本発明を実施するための形態について図面を参照して詳細に説明する。
 図1は、典型的な水として仙台市水道水を用い、これを電気分解したときの実験装置を示している。実験では、直流安定化電源装置(GW Instek製)を用い、電解装置は、市販のF35-1330 電解装置(ホフマン型)EA-SMPTを用いた。また、発生されたガスの種類を検知するために、真空法ガス採取器である北川式ガス検知管(AP-20)を用いた。
 具体的には、直流安定化電源装置10に接続された陽極12と、陰極14とが容器16内に配置される。陽極12にCu、陰極14にZnを用いた。他の実験では、陽極12および陰極14にそれぞれ白金を用いた。また、図には示されないが、陽極12から発生されたガスを収容する2つの試験管が用意され、一方の試験管は、酸素を検知するために使用され、他方の試験管は、水素を検知するために使用される。同様に陰極14から発生されたガスを収容する2つの試験管が用意され、一方は、酸素を検知するために使用され、他方は、水素を検知するために使用される。容器16内には、仙台市水道水W1が収容され、そこに少量のNaOHを投入した。直流安定化電源装置10には、抵抗およびダイオードの負荷18を順方向に直列に接続し、直流安定化電源装置10と陽極12との間に電流計20を接続した。
 直流安定化電源装置10は、所望の大きさの電圧を生成することができる。例えば、9Vの直流電圧を印加すると、陽極12から酸素ガスが発生し、陰極14から水素ガスが発生された。これは、公知のように、水が電気分解されて、水素イオンHと水酸イオンOHとなり、陰極14に移動した水素イオンHが電子を受け取り、そこで水素ガスHが発生し、陽極12に移動した水酸イオンOHが電子を失い、そこで酸素ガスOが発生する。
 陽極12から酸素ガスOが発生されたことは、試験管内にガス検知管を挿入し試料ガスを通気させたときに薬剤が酸素ガスと反応して変色することにより確認された。また、陽極12からは水素ガスHが発生されていないことが同様の方法により確認された。他方、陰極14から水素ガスHが発生されたことは、試験管内にガス検知管を挿入し試料ガスを通気させたときに薬剤が水素ガスと反応して変色することにより確認された。また、陰極14からは酸素ガスOが発生されていないことが同様の方法により確認された。また、電流計20が反応しないことが確認された。テスターでも同様であった。
 次に、本発明の実施例に係るマイナス水素イオンの検出または検証方法について説明する。本実施例では、図1に示す電気分解装置と同様の装置を利用して、マイナス水素イオンが水中に生成されていることを検証し、そのようなマイナス水素イオンから生成された水素ガスを検出した。
 始めに、マイナス水素イオンHを含む電離水素水を用意した。電離水素水は、本明細書では、液中において水素分子がH ⇔H+Hに電離し、水素プラズマ形成可能な場(水素プラズマ分解と合成可能場)を誘導可能な水として定義される。このような電離水素水は、特許文献2ないし5等に記載されるように、オルト型の水素分子またはイオン結合性の水素分子を含む。オルト型の水素分子は、水に溶ける性質を有し、液中において水素分子がH ⇔H+Hに電離している。電離水素水は、例えば、CaH、MgHなどの水素化金属を水に添加することにより得ることができる。添加する水素化金属は、上記外にも、元素周期律表上に示されているアルカリ金属、アルカリ土金属、第13族または第14族の金属によるものであってもよい。また、電離水素水は、特許文献1に記載されるセラミックボールを用いても生成することができる。
 図2に、電離水素水を電気分解したときの実験装置を示す。当該実験装置は、図1に示すものと同じであるが、容器16内に電離水素水W2を入れ、陽極12および陰極14にそれぞれ白金を用いた。直流安定化電源装置10により通電を開始し、一定時間が経過するまで、陽極12および陰極14から発生されたガスを試験管内に蓄積した。上記したように、陽極12および陰極14から発生されたガスを収容するための試験管がそれぞれ2つ用意されている。
 陽極12から発生されたガスを採取した2つの試験管に対し、ガス検知管を用いて、水素と酸素の有無をそれぞれ検知したところ、水素および酸素の存在が確認された。陰極14についても同様に、2つの試験管に対し、ガス検知管を用いて水素と酸素の有無をそれぞれ検知したところ、水素および酸素の存在が確認された。水素が検知されたとき、ガス検知管内の薬剤は青色に変色し、酸素が検知されたとき薬剤は茶色に変色することが確認された。
 図3は、直流安定化電源装置10により24V、10mAを印加したときの陰極および陽極からの気泡の発生状態を示している。16時間経過後のガス発生量は、図4および図5に示すように、陽極で14.5ml、陰極で32.0mlであった。そして図6に示すように、両極から水素ガスの検出が確認された。なお、実験では、定電流(10mA)で、電圧を上昇させたとき、陽極12からの気泡の発生が強くなることが確認された。
 この結果から、電離水素水に電離しているプラス水素イオンHが陰極14から電子を受け取り、水素ガスとなって発生し、マイナス水素イオンHが陽極12に引き寄せられ、そこで電子を失い水素ガスとなって発生されたことが検証された。
 次に、マイナス水素イオンHを含むプラズマウォーターを用意し、これの電気分解を行った。プラズマウォーターは、本明細書では、電離水素水に超音波、マイクロ波あるいは太陽光(193nmの波長)を照射することで、常温、常圧、無酸素状態で水素プラズマが形成された水と定義される。このようなプラズマウォーターは、例えば特許文献2等に開示されている。
 プラズマウォーターを電気分解した実験装置は、図1または図2に示す実験装置と同じであり、陽極および陰極14にそれぞれ白金を用い、容器16内にプラズマウォーターを収容した。直流安定化電源装置10により通電を開始し、一定時間経過までに、陽極12および陰極14から発生されたガスを試験管内に蓄積し、試験管内にガス検知管を挿入してガスを検知した。その結果、陽極12および陰極14のいずれからも水素および酸素の存在が確認された。
 人工海水プラズマウォーターを容器16内に収容し、直流安定化電源装置10により、最初の30分間に9.0V、30mAを印加し、次の30分間に18.0V、60mAを印加し、次の20分間に24.0V、90mAを印加した。図7は、このときの陰極および陽極からの気泡の発生状態を示している。陽極から気泡が発生し、陰極からは強い気泡が発生していることが確認された。1時間50分間の電気分解により発生されたガス量を図8および図9に示す。陰極からは、28.5mlのガスが発生し、陽極からは、5.6mlのガスが発生した。そして、図10に示すように、両極から水素ガスの検出が確認された。
 プラズマウォーターの場合にも、電離水素水のときと同様に、プラス水素イオンHが陰極14から電子を受け取り、水素ガスHとなって発生し、マイナス水素イオンHが陽極12に引き寄せられ、そこで電子を失い水素ガスHとなって発生されたことが検証された。
 なお、本明細書中に示した電離水素水およびプラズマウォーターの電気分解の実験例は、1つの例示であり、これ以外の複数回の実験においても、同様の結果を確認することができた。
 このように、水中にマイナス水素イオンHが含まれた電離水素水、イオン結合された水素を含む水、オルト型の水素を含む水、あるいは常温、常圧の水素プラズマを含む水を電気分解すると、陽極から水素ガスが発生される。他方、水素が電離していない水、水素が共有結合である水、あるいは水素がパラ型の水を電気分解しても、陽極からは酸素ガスが発生され、水素ガスが発生されない。従って、水を電気分解したときに、陽極から水素ガスが検知されれば、電気分解された水にはマイナス水素イオンが存在することが間接的に検証ないし検出されたことになる。
 本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10:直流安定化電源装置
12:陽極
14:陰極
16:容器
18:負荷
20:電流計
W1:水道水
W2:電離水素水
 

Claims (6)

  1. マイナス水素イオンを含む水を電気分解し、陽極および陰極から発生された水素ガスを検知することで、水中のマイナス水素イオンの存在を検出する方法。
  2. マイナス水素イオンを含む水は、H+Hのイオンを含む、請求項1に記載の検出方法。
  3. マイナス水素イオンを含む水は、常温、常圧の水素プラズマを含む、請求項1に記載の検出方法。
  4. 水素プラズマは、H ⇔H+Hで表される、請求項3に記載の検出方法。
  5. マイナス水素イオンを含む水を容器内に収容し、前記容器内に陽極および陰極を配置させ、前記陽極および陰極を介してマイナス水素イオンを含む水の電気分解を行う、請求項1に記載の検出方法。
  6. 陽極および陰極からそれぞれ発生されたガスを管内に蓄積させ、
     ガス検知管を用いて前記管内のガスを検知する、請求項5に記載の検出方法。
     
PCT/JP2014/074495 2013-09-24 2014-09-17 マイナス水素イオンの検出方法 WO2015045978A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-196614 2013-09-24
JP2013196614 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045978A1 true WO2015045978A1 (ja) 2015-04-02

Family

ID=52743119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074495 WO2015045978A1 (ja) 2013-09-24 2014-09-17 マイナス水素イオンの検出方法

Country Status (2)

Country Link
TW (1) TW201531702A (ja)
WO (1) WO2015045978A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324257B2 (ja) * 1981-11-13 1988-05-19 Onahama Seiren Kk
JPH07253407A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 金属試料中含有成分の分析方法
JP2002350420A (ja) * 2001-05-29 2002-12-04 Nippon Torimu:Kk 水素ラジカルの検出方法及び定量分析方法
JP2006242778A (ja) * 2005-03-03 2006-09-14 Nec Electronics Corp 酸化還元電位測定装置および酸化還元電位の測定方法
JP5153728B2 (ja) * 2008-06-24 2013-02-27 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ 貴金属溶解装置
JP5232939B1 (ja) * 2012-04-02 2013-07-10 株式会社Taane 水素プラズマ発生方法および発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324257B2 (ja) * 1981-11-13 1988-05-19 Onahama Seiren Kk
JPH07253407A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 金属試料中含有成分の分析方法
JP2002350420A (ja) * 2001-05-29 2002-12-04 Nippon Torimu:Kk 水素ラジカルの検出方法及び定量分析方法
JP2006242778A (ja) * 2005-03-03 2006-09-14 Nec Electronics Corp 酸化還元電位測定装置および酸化還元電位の測定方法
JP5153728B2 (ja) * 2008-06-24 2013-02-27 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ 貴金属溶解装置
JP5232939B1 (ja) * 2012-04-02 2013-07-10 株式会社Taane 水素プラズマ発生方法および発生装置

Also Published As

Publication number Publication date
TW201531702A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
WO2008054463A3 (en) Method and apparatus for producing x-rays, ion beams and nuclear fusion energy
WO2012046362A1 (ja) 二酸化炭素を還元する方法
WO2006092612A3 (en) Oxygen generation apparatus and method
NZ589886A (en) Use of acoustic energy in cavitation assisted sonochemical hydrogen production system
WO2011087821A3 (en) Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current
JP6172394B2 (ja) レドックスフロー電池
CN101903089A (zh) 用于二氧化碳的等离子体分解设备和方法
MX2013003739A (es) Celula fotoelectroquimica y metodo para la descomposicion solar controlada de un material inicial.
US20120217155A1 (en) Gas generating device
KR101788917B1 (ko) 수소수 생산 장치
SA518400650B1 (ar) تجهيزة وطريقة للتحليل الكهربائي لثاني أكسيد الكربون
JP6202371B2 (ja) 二酸化炭素の再資源化方法
WO2015045978A1 (ja) マイナス水素イオンの検出方法
GB2543989A (en) An energy conversion system
US20060011472A1 (en) Deep well geothermal hydrogen generator
US8486239B2 (en) Electrolysis anode
CN101864578A (zh) 利用超声电化学制备过一硫酸的方法
JP2016191141A (ja) 二酸化炭素の還元固定装置、および還元固定方法
JP2009035442A (ja) ダイヤモンドの加工方法
JP2012011289A (ja) ホウ素含有水の処理方法
MX2021003142A (es) Proceso modificado de electrolisis para la generacion de hidrogeno en presencia de un compuesto organico de gran area superficial con posibilidad de acoplamiento a un sistema de aprovechamiento de hidrogeno como combustible.
KR20220058013A (ko) 플라즈마 방전을 이용한 고농도 살균소독수 생성장치 및 생성방법
Tachibana et al. Chemical Reactions Induced by Atmospheric Pressure Hydrogen Plasma
KR20100116441A (ko) 포터블 수소연료전지 생성장치
JP2020056763A (ja) 放射性汚染水処理設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP