WO2015045863A1 - 光レセプタクルおよび光モジュール - Google Patents

光レセプタクルおよび光モジュール Download PDF

Info

Publication number
WO2015045863A1
WO2015045863A1 PCT/JP2014/073882 JP2014073882W WO2015045863A1 WO 2015045863 A1 WO2015045863 A1 WO 2015045863A1 JP 2014073882 W JP2014073882 W JP 2014073882W WO 2015045863 A1 WO2015045863 A1 WO 2015045863A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
receptacle
optical receptacle
adhesive
Prior art date
Application number
PCT/JP2014/073882
Other languages
English (en)
French (fr)
Inventor
亜耶乃 今
心平 森岡
三四郎 長井
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US15/025,924 priority Critical patent/US9915795B2/en
Priority to CN201480054203.7A priority patent/CN105593735B/zh
Publication of WO2015045863A1 publication Critical patent/WO2015045863A1/ja
Priority to US15/713,790 priority patent/US10120143B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to an optical receptacle and an optical module having the same.
  • optical modules including light emitting elements such as surface emitting lasers (for example, VCSEL, Vertical, Surface, Emitting, Laser) have been used for optical communication using optical transmission bodies such as optical fibers and optical waveguides.
  • the optical module includes an optical receptacle that allows light including communication information emitted from the light emitting element to enter the end face of the optical transmission body.
  • Patent Document 1 describes an optical module having an optical connector and a substrate on which a light emitting element is arranged.
  • the optical connector has an optical fiber and a connector portion, and the connector portion has a lens array (optical receptacle) disposed between the tip portions of the plurality of optical fibers and the light emitting elements.
  • the lens array includes a reflection mirror that reflects the light emitted from the light emitting element toward the tip of the optical fiber, and a condensing lens that collects the light reflected by the reflection mirror toward the tip of the optical fiber.
  • the optical connector is positioned at a predetermined position of the substrate, and a thermosetting epoxy resin adhesive is attached to the boundary between the side surface of the lens array and the substrate and thermally cured.
  • the optical connector is fixed to the board.
  • the light emitted from the light emitting element is reflected by the reflecting mirror toward the tip of the optical fiber, and reaches the tip of the optical fiber via the condenser lens.
  • the lens array (the condensing lens and the reflecting mirror) is on the epoxy resin adhesive side (that is, the side) due to the shrinkage of the epoxy resin adhesive. Deforms to be pulled by The epoxy resin adhesive is cured with the lens array deformed. Therefore, the lens array remains deformed after being fixed to the substrate, and the light emitted from the light emitting element may not be properly guided to the end face of the optical fiber.
  • the lens array (optical receptacle) described in Patent Document 1 has a problem of being deformed when it is fixed using an adhesive.
  • the optical receptacle of the present invention is disposed between a plurality of light emitting elements or light receiving elements and a plurality of optical transmission bodies, and the plurality of light emitting elements or the plurality of light receiving elements and end faces of the plurality of optical transmission bodies. And a plurality of first receptacles that respectively enter the light emitted from the plurality of light emitting elements or emit light passing through the light receiving elements toward the light receiving element. A plurality of second opticals that respectively emit light incident on the optical surface and the plurality of first optical surfaces toward the end surfaces of the plurality of optical transmission members, or incident light from the plurality of optical transmission members, respectively.
  • An optical receptacle body having a surface, support portions connected to both ends of the optical receptacle body, and the support portion so as to be positioned at the four corners of the optical receptacle when viewed in plan.
  • Four adhesive reservoirs that are through-holes or recesses surrounded by the support, and the optical receptacle body and the support are parallel to the optical axis of the light emitted from the second optical surface
  • the four adhesive reservoir portions are arranged in a plane-symmetrical position with respect to the plane of symmetry.
  • An optical module of the present invention includes the optical receptacle of the present invention and a substrate on which a light emitting element is disposed, and the optical receptacle is formed by the adhesive injected into the four adhesive reservoirs. It is fixed on the surface.
  • the plurality of light emitting elements or the plurality of light receiving elements and the plurality of optical transmission bodies can be optically and appropriately coupled.
  • FIG. 1 is a cross-sectional view of the optical module according to the first embodiment.
  • 2A to 2E are diagrams showing the configuration of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic diagram of an adhesive reservoir.
  • 4A and 4B are diagrams showing the direction of deformation of the optical receptacle (supporting portion) when the adhesive is cured.
  • 5A to 5C are diagrams showing other shapes of the opening of the adhesive reservoir.
  • 6A to 6E are diagrams showing the configuration of an optical receptacle of a comparative example.
  • 7A and 7B show simulation results for the optical receptacle according to the first embodiment.
  • 8A to 8E are diagrams showing a configuration of an optical receptacle according to a modification of the first embodiment.
  • 9A to 9E are diagrams showing the configuration of the optical receptacle according to the second embodiment.
  • 10A and 10B show simulation results for the optical receptacle according to the second embodiment.
  • 11A to 11E are diagrams showing a configuration of an optical receptacle according to a modification of the second embodiment.
  • FIG. 1 is a cross-sectional view of an optical module 100 according to Embodiment 1 of the present invention.
  • hatching of the cross section of the optical receptacle 120 is omitted to show the optical path in the optical receptacle 120.
  • the optical module 100 includes a substrate mounting type photoelectric conversion device 110 including a light emitting element 114 and an optical receptacle 120.
  • the optical module 100 is used with the optical transmission body 116 connected to the optical receptacle 120.
  • the optical transmitter 116 may be a single mode optical fiber or a multimode optical fiber. Further, the optical transmission body 116 may be an optical waveguide.
  • the photoelectric conversion device 110 includes a substrate 112 and a plurality of light emitting elements 114.
  • the light emitting elements 114 are arranged in a line on the substrate 112 and emit laser light in a direction perpendicular to the surface of the substrate 112.
  • the light emitting element 114 is, for example, a vertical cavity surface emitting laser (VCSEL).
  • the optical receptacle 120 optically couples the light emitting element 114 and the end face of the optical transmission body 116 while being arranged between the photoelectric conversion device 110 and the optical transmission body 116.
  • the configuration of the optical receptacle 120 will be described in detail.
  • FIG. 2 is a diagram illustrating a configuration of the optical receptacle 120 according to the first embodiment.
  • 2A is a plan view of the optical receptacle
  • FIG. 2B is a bottom view
  • FIG. 2C is a front view
  • FIG. 2D is a rear view
  • FIG. 2E is a right side view.
  • the optical receptacle 120 is a square U-shaped member when seen in a plan view.
  • the optical receptacle 120 has an optical receptacle body 130 and two support portions 140.
  • the optical receptacle body 130 and the support portion 140 have a plane-symmetric shape with a plane parallel to the optical axis of the light emitted from the second optical surface 136 as a plane of symmetry.
  • the optical receptacle main body 130 has translucency, and emits light emitted from the light emitting element 114 toward the end face of the optical transmission body 116.
  • the optical receptacle body 130 has a substantially rectangular parallelepiped shape.
  • the optical receptacle main body 130 has a plurality of first optical surfaces (incident surfaces) 132, a third optical surface (reflective surface) 134, a plurality of second optical surfaces (exit surfaces) 136, and two protrusions 138.
  • the optical receptacle main body 130 is formed using a material that transmits light with a wavelength used for optical communication. Examples of such materials include transparent resins such as polyetherimide (PEI) and cyclic olefin resins.
  • the optical receptacle main body 130 can be manufactured by injection molding, for example.
  • the first optical surface 132 is an incident surface that refracts the laser light emitted from the light emitting element 114 and causes the laser light to enter the inside of the optical receptacle main body 130.
  • the plurality of first optical surfaces 132 are arranged in a row on the bottom surface side of the optical receptacle body 130 so as to face the light emitting elements 114 respectively.
  • the shape of the first optical surface 132 is not particularly limited. In the present embodiment, the shape of the first optical surface 132 is a convex lens surface that is convex toward the light emitting element 114. Further, the planar view shape of the first optical surface 132 is a circle.
  • the central axis of the first optical surface 132 is preferably perpendicular to the light emitting surface of the light emitting element 114 (and the surface of the substrate 112). Also. It is preferable that the central axis of the first optical surface 132 coincides with the optical axis of the laser light emitted from the light emitting element 114.
  • the light incident on the first optical surface 132 (incident surface) travels toward the third optical surface 134 (reflective surface).
  • the third optical surface 134 is a reflecting surface that reflects the light incident on the first optical surface 132 toward the second optical surface 136.
  • the third optical surface 134 is inclined so as to approach the optical transmission body 116 from the bottom surface of the optical receptacle body 130 toward the top surface.
  • the inclination angle of the third optical surface 134 with respect to the optical axis emitted from the light emitting element 114 is not particularly limited. In the present embodiment, the inclination angle of the third optical surface 134 is 45 ° with respect to the optical axis of the light incident on the first optical surface 132.
  • the shape of the third optical surface 134 is not particularly limited. In the present embodiment, the shape of the third optical surface 134 is a plane.
  • the light incident on the first optical surface 132 is incident on the third optical surface 134 at an incident angle larger than the critical angle.
  • the third optical surface 134 totally reflects incident light toward the second optical surface 136. That is, on the third optical surface 134 (reflection surface), light having a predetermined light beam diameter is incident, and light having a predetermined light beam diameter is emitted toward the second optical surface 136 (output surface).
  • the second optical surface 136 is an emission surface that emits the light totally reflected by the third optical surface 134 toward the end surface of the optical transmission body 116.
  • the plurality of second optical surfaces 136 are arranged in a row on the first side surface of the optical receptacle body 130 so as to face the end surface of the optical transmission body 116.
  • the shape of the second optical surface 136 is not particularly limited. In the present embodiment, the shape of the second optical surface 136 is a convex lens surface that is convex toward the end surface of the optical transmission body 116. Thereby, light having a predetermined beam diameter reflected by the third optical surface 134 can be efficiently coupled to the end surface of the optical transmission body 116.
  • the central axis of the second optical surface 136 preferably coincides with the central axis of the end surface of the optical transmission body 116.
  • the two protrusions 138 are disposed on the first side surface of the optical receptacle body 130 where the second optical surface 136 is disposed.
  • the optical receptacle main body 130 is fitted.
  • the optical transmission body 116 can be fixed to.
  • the support part 140 is a part for fixing the optical receptacle body 130 to the substrate 112.
  • the two support portions 140 each have two adhesive reservoir portions 142. That is, the optical receptacle 120 has four adhesive reservoir portions 142.
  • the support part 140 is a substantially rectangular parallelepiped, and is connected to both ends of the optical receptacle body 130, respectively.
  • the support portion 140 is connected to the optical receptacle main body 130 at one end portion. Further, the support part 140 is disposed in the same direction as the light emitted from the second optical surface 136.
  • the support 140 may be formed using the same light-transmitting material as that of the optical receptacle main body 130 or may be formed of a non-light-transmitting material different from that of the optical receptacle main body 130.
  • the support part 140 can be manufactured integrally by injection molding using the same material as the optical receptacle 120.
  • the adhesive reservoir 142 stores adhesive for mounting (fixing) on the substrate 112. As shown in FIG. 2, the adhesive reservoir 142 is disposed on the support 140 so as to be positioned at the four corners of the optical receptacle 120 when viewed in plan. Further, the four adhesive reservoir portions 142 are arranged in plane symmetry positions with a plane parallel to the optical axis of the light emitted from the second optical surface 136 as a symmetry plane. The adhesive reservoir portion 142 is disposed at both ends of the support portion 140. The shape of the adhesive reservoir 142 is not particularly limited. In the present embodiment, adhesive reservoir 142 is a cylindrical through hole.
  • the adhesive reservoir 142 has a circular opening at the top and bottom, but the other direction (that is, the entire circumference) is surrounded by the support 140.
  • the size of the opening of the adhesive reservoir 142 is not particularly limited. What is necessary is just to set the magnitude
  • FIG. 3 is a schematic view of the adhesive reservoir 142. As shown in FIG. 3, the area of the inner peripheral surface of the through hole is ⁇ LD (about 3.14 LD), where L is the diameter of the opening and D is the height of the through hole.
  • a known thermosetting epoxy resin adhesive, ultraviolet curable resin adhesive, or the like can be used as the adhesive injected into the adhesive reservoir 142.
  • the optical receptacle 120 is fixed to the substrate 112 by positioning the optical receptacle 120 with respect to the substrate 112 and then injecting an adhesive into the adhesive reservoir 142 and curing it.
  • the optical receptacle 120 is positioned with respect to the substrate 112 so that the central axis of each first optical surface 132 coincides with the optical axis of the laser light emitted from the light emitting element 114. And after inject
  • FIG. 4 is a diagram showing the direction of deformation of the optical receptacle 120 (support portion 140) when the adhesive is cured.
  • FIG. 4A is a schematic diagram illustrating the deformation direction of the optical receptacle 120 in the optical module according to Embodiment 1.
  • FIG. 4B is a schematic diagram showing the deformation direction of the optical receptacle when an adhesive is attached to the outside of the optical receptacle.
  • the support 140 the inner peripheral surface of the adhesive reservoir 142 in contact with the adhesive is pulled toward the center of the adhesive reservoir 142 due to the shrinkage of the adhesive accompanying curing. It is done.
  • the adhesive is in contact with the inner peripheral surface of the adhesive reservoir 142 over the entire circumference. For this reason, the horizontal force derived from the shrinkage of the adhesive that acts on the optical receptacle 120 (the support portion 140) to be deformed cancels each other.
  • the four adhesive reservoir portions 142 are disposed in plane symmetry positions with respect to the symmetry plane when viewed in plan, the deformation of the optical receptacle 120 due to the contraction of the adhesive is further suppressed. Therefore, even if it is a case where it fixes with an adhesive agent, a deformation
  • FIG. 4B when the optical receptacle is fixed with an adhesive on the outside, the support portion 140 is deformed so as to be pulled outward.
  • FIG. 5 is a view showing another shape of the opening of the adhesive reservoir.
  • the shape of the opening of the adhesive reservoir 142a may be a cross shape.
  • the area of the inner peripheral surface of the through hole is 4 LD, where L is the maximum diameter, L / 3 is the cross-line width, and D is the height of the through hole.
  • the shape of the opening of the adhesive reservoir 142b may be an H shape.
  • the area of the inner peripheral surface of the through hole is about 5 LD (16/3 LD), where the H-shaped line width is L / 3.
  • FIG. 5 is a view showing another shape of the opening of the adhesive reservoir.
  • the shape of the opening of the adhesive reservoir 142a may be a cross shape.
  • the area of the inner peripheral surface of the through hole is 4 LD, where L is the maximum diameter, L / 3 is the cross-line width, and D is the height of the through hole.
  • the shape of the opening of the adhesive reservoir 142b may be an H shape.
  • the shape of the opening of the adhesive reservoir 142c may be a shape in which a cross rotated by 45 ° is overlapped with the cross.
  • the area of the inner peripheral surface of the through hole is about 6 LD (6.1 LD) when the cross line width is L / 6.
  • the optical receptacle having the adhesive reservoirs 142a, 142b, and 142c shown in FIGS. 5A to 5C can be manufactured by the same process as the optical receptacle according to the first embodiment.
  • the simulation was performed only for the right half.
  • the incident surfaces 132 are numbered up to the number 12 on each incident surface 132 with the leftmost incident surface 132 as the first. Therefore, in this simulation, the simulation was performed for the moving distance of the first optical surface 132 of No. 7 to No. 12.
  • FIG. 6 is a view showing a configuration of a comparative optical receptacle 120 ′ without the adhesive reservoir 142.
  • 6A is a plan view of a comparative optical receptacle 120 ′
  • FIG. 6B is a bottom view
  • FIG. 6C is a front view
  • FIG. 6D is a rear view
  • FIG. 6E is a right side view.
  • FIG. 7 is a graph showing the relationship between each first optical surface (incident surface) and the moving distance of the first optical surface 132 due to curing of the adhesive.
  • FIG. 7A is a graph showing the movement distance of the first optical surface 132 in the X-axis direction
  • FIG. 7B is a graph showing the movement distance of the first optical surface 132 in the Y-axis direction.
  • the “X-axis direction” means a direction along the central axis of the second optical surface (the vertical direction in FIG. 2B)
  • the “Y-axis direction” means the arrangement direction of the first optical surfaces (FIG. 2B). Left and right direction).
  • the horizontal axis is the number of the first optical surface 132 given by the method described above.
  • the vertical axis indicates the moving distance of the first optical surface 132 after the adhesive is cured from the position of the first optical surface 132 before the adhesive is cured.
  • a black circle symbol indicates a simulation result when the optical receptacle 120 ′ of the comparative example shown in FIG. 6 is used, and a white circle symbol indicates an optical receptacle having the adhesive reservoir 142 having the shape shown in FIG. 120, the white square symbol indicates the simulation result using the optical receptacle 120 having the adhesive reservoir 142a having the shape shown in FIG. 5A, and the white triangular symbol is The simulation result using the optical receptacle 120 having the adhesive reservoir 142b having the shape shown in FIG. 5B is shown, and the white diamond symbol indicates the optical receptacle 120 having the adhesive reservoir 142c having the shape shown in FIG. 5C. The simulation result using is shown.
  • the first optical surface 132 has moved greatly in the X-axis direction and the Y-axis direction due to the curing of the adhesive. I understand that.
  • the optical receptacle 120 having the adhesive reservoirs 142, 142a, 142b, 142c it can be seen that the movement of the first optical surface 132 is suppressed. Even when the shapes of the openings of the adhesive reservoirs 142, 142a, 142b, 142c were changed, there was no significant difference in the movement distance in the X-axis direction and the Y-axis direction.
  • the optical receptacle 120 according to Embodiment 1 is disposed on the support 140 so that the adhesive reservoir 142 is positioned at the four corners of the optical receptacle, and the inner peripheral surface of the adhesive reservoir 142. Since the entire circumference of the optical receptacle 120 is surrounded by the support portion 140, deformation of the optical receptacle 120 can be suppressed even when the optical receptacle 120 is fixed to the substrate 112 using an adhesive.
  • FIG. 8 is a diagram showing a configuration of an optical receptacle 220 according to a modification of the first embodiment.
  • 8A is a plan view of an optical receptacle 220 according to a modification of the first embodiment
  • FIG. 8B is a bottom view
  • FIG. 8C is a front view
  • FIG. 8D is a rear view
  • 8E is a right side view.
  • the optical receptacle 220 includes a cover 250 in addition to the optical receptacle main body 130 and the support portion 140.
  • the cover 250 is disposed on the optical receptacle main body 130 and the support portion 140.
  • the cover 250 may be formed using the same translucent material as the optical receptacle main body 130 or the support part 140, or may be formed of a different non-translucent material.
  • the cover 250 may be made of the same translucent material as the optical receptacle main body 130 and the support portion 140, and may be integrally manufactured by injection molding.
  • the optical receptacle 220 according to the modification of the first embodiment includes the cover 250, the optical receptacle 220 is further deformed even when the optical receptacle 220 is fixed to the substrate 112 using an adhesive. Can be suppressed.
  • the optical module according to the second embodiment is different from the optical module 100 according to the first embodiment in the shape of the optical receptacle 320. Therefore, the same components as those of the optical module 100 according to Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted. The components different from those of the optical module 100 will be mainly described.
  • the optical module according to the second embodiment is different from the optical module 100 according to the first embodiment in the shape of the support portion 340.
  • FIG. 9 is a diagram showing a configuration of an optical receptacle according to Embodiment 2 of the present invention.
  • 9A is a plan view of the optical receptacle 320 according to Embodiment 2
  • FIG. 9B is a bottom view
  • FIG. 9C is a front view
  • FIG. 9D is a rear view
  • FIG. It is a right view.
  • the optical receptacle 320 includes an optical receptacle body 130 and a support portion 340.
  • the optical receptacle 320 has an H shape when viewed from above.
  • Support portions 340 are disposed at both ends of the optical receptacle body 130.
  • the support portion 340 has a substantially rectangular parallelepiped shape that is longer than the support portion 340 of the first embodiment.
  • the support portion 340 is connected to both ends of the optical receptacle main body 130 at the central portion in the long axis direction.
  • the shape of the opening of the through hole in plan view is not particularly limited, and may be, for example, a circle, a cross, an H shape, or a shape in which a cross rotated by 45 ° is overlapped. Also good.
  • the optical receptacle 320 (simulation) Similarly to the first embodiment, the optical receptacle 320 according to the second embodiment also moves the first optical surface 132 (after being heated) when it is fixed with a thermosetting epoxy resin adhesive (the optical receptacle). The amount of deformation) was simulated.
  • FIG. 10 is a graph showing the relationship between each first optical surface (incident surface) and the moving distance of the first optical surface 132 due to curing of the adhesive.
  • FIG. 10A is a graph showing the movement distance of the first optical surface 132 in the X-axis direction
  • FIG. 10B is a graph showing the movement distance of the first optical surface 132 in the Y-axis direction.
  • the horizontal axis is the number of the first optical surface 132 given by the method described above.
  • the vertical axis indicates the moving distance of the first optical surface 132 after the adhesive is cured from the position of the first optical surface 132 before the adhesive is cured.
  • a black circle symbol in FIG. 10 indicates a simulation result using the comparative optical receptacle 120 ′ for comparison shown in FIG. 6, and a white circle symbol indicates the light according to the second embodiment shown in FIG. The simulation result using the receptacle 320 is shown.
  • the first optical surface 132 has moved greatly in the X-axis direction and the Y-axis direction due to the curing of the adhesive. I understand that. On the other hand, it can be seen that the movement of the first optical surface 132 is suppressed in the optical receptacle 320 that is H-shaped when viewed in plan.
  • the optical module according to the modification of the second embodiment is different from the optical module 100 according to the first embodiment in the position of the light emitting element and the shape of the optical receptacle 120. Therefore, the same components as those of the optical modules according to the first and second embodiments are denoted by the same reference numerals and the description thereof is omitted, and the components different from those of the optical module 100 will be mainly described.
  • FIG. 11 is a diagram showing a configuration of an optical receptacle 420 according to a modification of the second embodiment.
  • 11A is a plan view of an optical receptacle 420 according to a modification of the second embodiment
  • FIG. 11B is a bottom view
  • FIG. 11C is a front view
  • FIG. 11D is a rear view
  • 11E is a right side view.
  • the optical receptacle 420 according to the modification of the second embodiment is different from the optical receptacle 320 according to the second embodiment in that the third optical surface 134 is not provided.
  • the optical receptacle 420 includes an optical receptacle main body 130 and a support portion 340.
  • the optical receptacle main body 130 has a first optical surface 132 and a second optical surface 136.
  • the first optical surface 132 is disposed on the first side surface of the optical receptacle body 130.
  • the second optical surface 136 is disposed on the second side surface of the optical receptacle body 130 so as to face the first optical surface 132.
  • the light emitting element is disposed so as to emit laser light toward the first side surface of optical receptacle body 130.
  • the laser light emitted from the light emitting element is incident on the first optical surface 132 (incident surface), emitted from the second optical surface 136 (emitted surface), and reaches the optical transmission body 116.
  • the optical receptacles 320 and 420 according to the second embodiment have the same effect as the optical receptacle 120 according to the first embodiment.
  • the adhesive reservoir 142 has been described as an optical receptacle having a through hole.
  • the adhesive reservoir 142 may be a bottomed recess. Even in this case, the inner peripheral surface of the recess is surrounded by the support portions 140 and 340 over the entire periphery.
  • the shape of the opening of the adhesive reservoir 142 is not particularly limited, and may be any of a circle, a cross, an H shape, and a shape in which a cross rotated by 45 ° is superimposed on the cross.
  • the optical module may monitor the output (for example, intensity or light amount) of the laser light emitted from the light emitting element 114.
  • the photoelectric conversion device 110 of the optical module is based on the substrate 112, the light emitting element 114, the light receiving element disposed on the substrate 112, and the intensity and light amount of the monitor light received by the light receiving element.
  • the optical receptacle 120 has a separation unit that separates the light incident on the first optical surface 132 into signal light directed to the optical transmission body 116 and monitor light directed to the light receiving element.
  • the first optical surface 132 and the second optical surface 136 are convex lens surfaces.
  • the first optical surface 132 and the second optical surface 136 are flat surfaces. May be. Specifically, only the first optical surface 132 may be a flat surface, or only the second optical surface 136 may be a flat surface.
  • the third optical surface 134 is formed so that it can function as a concave mirror.
  • the second optical surface 136 is formed in a plane. Also good.
  • the optical receptacles according to the above embodiments can be used for the optical module on the receiving side.
  • the receiving optical module has a plurality of light receiving elements for receiving light instead of the plurality of light emitting elements 114.
  • the plurality of light receiving elements are respectively disposed at the same positions as the light emitting elements.
  • the second optical surface 136 is an incident surface
  • the first optical surface 132 is an output surface.
  • the light emitted from the end face of the optical transmission body 116 enters the optical receptacle from the second optical surface 136.
  • the light incident on the optical receptacle is reflected by the third optical surface 134 and is emitted from the first optical surface 132 toward the light receiving element.
  • light incident on the optical receptacle is emitted from the first optical surface 132 toward the light receiving element.
  • the adhesive reservoir 142 is formed on the support portions 140 and 340.
  • the same effect can be obtained by forming the adhesive reservoir 142 on the substrate 112.
  • optical receptacle and the optical module according to the present invention are useful for optical communication using an optical transmission body.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

 本発明は、光レセプタクルおよびこれを有する光モジュールに関する。光レセプタクルは、透光性の光レセプタクル本体(130)と、光レセプタクル本体(130)の両端に配置された支持部(140)と、発光素子(114)から出射された光を入射させる第1光学面(132)と、複数の第1光学面(132)で入射した光を複数の光伝送体(116)の端面に向けて出射させる第2光学面(136)と、平面視したときに光レセプタクル(120)の四隅に配置され、全周が支持部に囲われた貫通孔または凹部である4つの接着剤溜まり部(142)と、を有する。光レセプタクル本体(130)および支持部(140)は、面対称の形状であり、4つの接着剤溜まり部(142)は、面対称の位置に配置されている。

Description

光レセプタクルおよび光モジュール
 本発明は、光レセプタクルおよびこれを有する光モジュールに関する。
 以前から、光ファイバーや光導波路などの光伝送体を用いた光通信には、面発光レーザー(例えば、VCSEL:Vertical Cavity Surface Emitting Laser)などの発光素子を備えた光モジュールが使用されている。光モジュールは、発光素子から出射された通信情報を含む光を、光伝送体の端面に入射させる光レセプタクルを有する。
 たとえば、特許文献1には、光コネクターと、発光素子を配置した基板と、を有する光モジュールが記載されている。光コネクターは光ファイバーおよびコネクター部を有し、コネクター部は複数の光ファイバーの先端部と発光素子との間に配置されたレンズアレイ(光レセプタクル)を有する。また、レンズアレイは、発光素子から出射された光を光ファイバーの先端部に向かって反射する反射ミラーと、反射ミラーで反射した光を光ファイバーの先端部に向けて集光する集光レンズと、を有する。
 特許文献1に記載の光モジュールでは、基板の所定の位置に光コネクターを位置決めして、レンズアレイの側面と基板との境界に熱硬化性のエポキシ樹脂接着剤を付けて熱硬化させることで、基板に対して光コネクターを固定している。
 このように製造された光モジュールでは、発光素子から出射した光は、反射ミラーで光ファイバーの先端部に向かって反射され、集光レンズを介して光ファイバーの先端部に到達する。
特開2010-175942号公報
 しかしながら、特許文献1に記載の光モジュールでは、エポキシ樹脂接着剤を硬化させると、エポキシ樹脂接着剤の収縮により、レンズアレイ(集光レンズおよび反射ミラー)がエポキシ樹脂接着剤側(すなわち側方)に引っ張られるように変形する。そして、エポキシ樹脂接着剤は、レンズアレイを変形させた状態で硬化する。よって、レンズアレイは、基板に固定された後も変形したままになってしまい、発光素子から出射された光を光ファイバーの端面に適切に導くことができないことがある。このように、特許文献1に記載のレンズアレイ(光レセプタクル)には、接着剤を用いて固定した場合に変形してしまうという問題があった。
 本発明の目的は、接着剤を用いて固定しても変形しにくい光レセプタクルを提供することである。また、本発明の別の目的は、前記光レセプタクルを有する光モジュールを提供することでもある。
 本発明の光レセプタクルは、複数の発光素子または複数の受光素子と、複数の光伝送体との間に配置され、前記複数の発光素子または複数の受光素子と、前記複数の光伝送体の端面とをそれぞれ光学的に結合するための光レセプタクルであって、前記複数の発光素子から出射された光をそれぞれ入射させるか、内部を通る光を前記受光素子に向けてそれぞれ出射させる複数の第1光学面と、前記複数の第1光学面で入射した光を前記複数の光伝送体の端面に向けてそれぞれ出射させるか、前記複数の光伝送体からの光をそれぞれ入射させる複数の第2光学面とを有する光レセプタクル本体と、前記光レセプタクル本体の両端に接続された支持部と、平面視したときに光レセプタクルの四隅に位置するように前記支持部に配置され、全周が前記支持部に囲われた貫通孔または凹部である4つの接着剤溜まり部と、を有し、前記光レセプタクル本体および前記支持部は、前記第2光学面から出射される光の光軸と平行な面を対称面として面対称の形状であり、前記4つの接着剤溜まり部は、前記対称面について面対称の位置に配置されている。
 本発明の光モジュールは、本発明の光レセプタクルと、発光素子が配置された基板と、を有し、前記光レセプタクルは、前記4つの接着剤溜まり部に注入された接着剤により、前記基板の表面に固定されている。
 本発明によれば、接着剤を用いて光レセプタクルを基板に固定しても、複数の発光素子または複数の受光素子と複数の光伝送体とを光学的に適切に結合させることができる。
図1は、実施の形態1に係る光モジュールの断面図である。 図2A~Eは、実施の形態1に係る光レセプタクルの構成を示す図である。 図3は、接着剤溜まり部の模式図である。 図4A,Bは、接着剤の硬化時における光レセプタクル(支持部)の変形の方向を示す図である。 図5A~Cは、接着剤溜まり部の開口部の他の形状を示す図である。 図6A~Eは、比較例の光レセプタクルの構成を示す図である。 図7A,Bは、実施の形態1に係る光レセプタクルについてのシミュレーション結果である。 図8A~Eは、実施の形態1の変形例に係る光レセプタクルの構成を示す図である。 図9A~Eは、実施の形態2に係る光レセプタクルの構成を示す図である。 図10A,Bは、実施の形態2に係る光レセプタクルについてのシミュレーション結果である。 図11A~Eは、実施の形態2の変形例に係る光レセプタクルの構成を示す図である。
 以下、本発明に係る実施の形態について、図面を参照して詳細に説明する。
 [実施の形態1]
 (光モジュールの構成)
 図1は、本発明の実施の形態1に係る光モジュール100の断面図である。図1では、光レセプタクル120内の光路を示すために光レセプタクル120の断面へのハッチングを省略している。
 図1に示されるように、光モジュール100は、発光素子114を含む基板実装型の光電変換装置110と、光レセプタクル120と、を有する。光モジュール100は、光レセプタクル120に光伝送体116が接続されて使用される。光伝送体116は、シングルモード方式の光ファイバーであってもよいし、マルチモード方式の光ファイバーであってもよい。また、光伝送体116は、光導波路であってもよい。
 光電変換装置110は、基板112および複数の発光素子114を有する。発光素子114は、基板112上に一列に配置されており、基板112の表面に対して垂直方向にレーザー光を出射する。発光素子114は、例えば垂直共振器面発光レーザー(VCSEL)である。
 光レセプタクル120は、光電変換装置110と光伝送体116との間に配置された状態で、発光素子114と光伝送体116の端面とを光学的に結合させる。以下、光レセプタクル120の構成について詳細に説明する。
 (光レセプタクルの構成)
 図2は、実施の形態1に係る光レセプタクル120の構成を示す図である。図2Aは、光レセプタクルの平面図であり、図2Bは、底面図であり、図2Cは、正面図であり、図2Dは、背面図であり、図2Eは、右側面図である。
 図2に示されるように、光レセプタクル120は、平面視したときに角型のU字形状の部材である。光レセプタクル120は、光レセプタクル本体130および2つの支持部140を有する。光レセプタクル本体130および支持部140は、第2光学面136から出射される光の光軸と平行な面を対称面として面対称の形状である。
 光レセプタクル本体130は、透光性を有し、発光素子114から出射された光を光伝送体116の端面に向けて出射する。光レセプタクル本体130は、略直方体の形状である。光レセプタクル本体130は、複数の第1光学面(入射面)132、第3光学面(反射面)134、複数の第2光学面(出射面)136および2つの突起138を有する。光レセプタクル本体130は、光通信に用いられる波長の光に対して透光性を有する材料を用いて形成される。そのような材料の例には、ポリエーテルイミド(PEI)や環状オレフィン樹脂などの透明な樹脂が含まれる。また、光レセプタクル本体130は、例えば射出成形により製造されうる。
 第1光学面132は、発光素子114から出射されたレーザー光を屈折させて光レセプタクル本体130の内部に入射させる入射面である。複数の第1光学面132は、光レセプタクル本体130の底面側に、発光素子114とそれぞれ対向するように一列に配置されている。第1光学面132の形状は、特に限定されない。本実施の形態では、第1光学面132の形状は、発光素子114向かって凸状の凸レンズ面である。また、第1光学面132の平面視形状は、円形である。第1光学面132の中心軸は、発光素子114の発光面(および基板112の表面)に対して垂直であることが好ましい。また。第1光学面132の中心軸は、発光素子114から出射されたレーザー光の光軸と一致することが好ましい。第1光学面132(入射面)で入射した光は、第3光学面134(反射面)に向かって進行する。
 第3光学面134は、第1光学面132で入射した光を第2光学面136に向けて反射させる反射面である。第3光学面134は、光レセプタクル本体130の底面から天面に向かうにつれて、光伝送体116に近づくように傾斜している。発光素子114から出射される光軸に対する第3光学面134の傾斜角度は、特に限定されない。本実施の形態では、第3光学面134の傾斜角度は、第1光学面132で入射した光の光軸に対して45°である。第3光学面134の形状は、特に限定されない。本実施の形態では、第3光学面134の形状は、平面である。第3光学面134には、第1光学面132で入射した光が、臨界角より大きな入射角で入射する。第3光学面134は、入射した光を第2光学面136に向かって全反射させる。すなわち、第3光学面134(反射面)では、所定の光束径の光が入射して、所定の光束径の光が第2光学面136(出射面)に向かって出射する。
 第2光学面136は、第3光学面134で全反射した光を光伝送体116の端面に向けて出射させる出射面である。複数の第2光学面136は、光レセプタクル本体130の第1の側面に、光伝送体116の端面とそれぞれ対向するように一列に配置されている。第2光学面136の形状は、特に限定されない。本実施の形態では、第2光学面136の形状は、光伝送体116の端面に向かって凸状の凸レンズ面である。これにより、第3光学面134で反射した所定の光束径の光を光伝送体116の端面に効率良く結合させることができる。第2光学面136の中心軸は、光伝送体116の端面の中心軸と一致していることが好ましい。
 2つの突起138は、第2光学面136が配置されている、光レセプタクル本体130の第1の側面に配置されている。光レセプタクル本体130の2つの突起138に、光伝送体116の端部に固定されている光伝送体取り付け部139(図1参照)の2つの凹部をそれぞれ嵌合させることで、光レセプタクル本体130に対して光伝送体116を固定することができる。
 支持部140は、光レセプタクル本体130を基板112に対して固定するための部分である。2つの支持部140は、それぞれ2つの接着剤溜まり部142を有する。すなわち、光レセプタクル120は、4つの接着剤溜まり部142を有する。支持部140は、略直方体であり、光レセプタクル本体130の両端にそれぞれ接続されている。支持部140は、一方の端部で光レセプタクル本体130と接続している。また、支持部140は、第2光学面136から出射される光と同じ向きに配置されている。支持部140は、光レセプタクル本体130と同じ透光性の材料を用いて形成されてもよいし、光レセプタクル本体130と異なる非透光性の材料で形成されていてもよい。例えば、支持部140は、光レセプタクル120と同じ材料で、射出成形により一体として製造されうる。
 接着剤溜まり部142は、基板112に実装(固定)するために、接着剤を貯留する。図2に示されるように、接着剤溜まり部142は、平面視したときに光レセプタクル120の四隅に位置するように支持部140に配置される。また、4つの接着剤溜まり部142は、第2光学面136から出射される光の光軸と平行な面を対称面として面対称の位置に配置されている。接着剤溜まり部142は、支持部140の両端部に配置されている。接着剤溜まり部142の形状は、特に限定されない。本実施の形態では、接着剤溜まり部142は、円柱状の貫通孔である。すなわち、接着剤溜まり部142は、上下に円形の開口部を有するが、それ以外の方向(つまり全周)は支持部140に囲われている。接着剤溜まり部142の開口部の大きさは、特に限定されない。接着剤溜まり部142の開口部の大きさは、支持部140の材料や大きさ、使用する接着剤の特性によって、適宜設定すればよい。図3は、接着剤溜まり部142の模式図である。図3に示されるように、貫通孔の内周面の面積は、開口部の直径をLとし、貫通孔の高さをDとすると、πLD(約3.14LD)である。また、接着剤溜まり部142に注入される接着剤としては、公知の熱硬化性のエポキシ樹脂接着剤や紫外線硬化性の樹脂接着剤などを用いることができる。
 光レセプタクル120は、基板112に対して光レセプタクル120を位置決めした後、接着剤溜まり部142に接着剤を注入し、硬化させることにより、基板112に対して固定される。
 より具体的には、各第1光学面132の中心軸と発光素子114から出射されるレーザー光の光軸が一致するように、基板112に対して光レセプタクル120を位置決めする。そして、接着剤溜まり部142の内周面の全周に接するように接着剤を注入した後、接着剤を硬化させる。たとえば、熱硬化性のエポキシ樹脂接着剤を用いる場合は、接着剤を加熱する。これらの工程により、基板112に対して光レセプタクル120が固定される。
 図4は、接着剤の硬化時における光レセプタクル120(支持部140)の変形の方向を示す図である。図4Aは、実施の形態1に係る光モジュールにおける光レセプタクル120の変形の方向を示した模式図である。また、図4Bは、比較のため、光レセプタクルの外側に接着剤を付けた場合における光レセプタクルの変形の方向を示した模式図である。図4Aに示されるように、硬化に伴う接着剤の収縮により、接着剤に接している支持部140(接着剤溜まり部142の内周面)は、接着剤溜まり部142の中心に向かって引っ張られる。本実施の形態では、接着剤は、全周にわたり接着剤溜まり部142の内周面に接している。このため、光レセプタクル120(支持部140)に作用して変形させる、接着剤の収縮に由来する水平方向の力は、互いに相殺される。また、4つの接着剤溜まり部142は、平面視したときに対称面について面対称の位置に配置されているため、接着剤の収縮による光レセプタクル120の変形がさらに抑制される。よって、接着剤で固定した場合であっても、光レセプタクル本体130の変形が抑制される。一方、図4Bに示されるように、光レセプタクルの外側において接着剤で固定した場合、支持部140は、外側に向かって引っ張られるように変形してしまう。
 図5は、接着剤溜まり部の開口部の他の形状を示す図である。図5Aに示されるように、接着剤溜まり部142aの開口部の形状は、十字形状であってもよい。この場合、貫通孔の内周面の面積は、最大径をLとし、十字の線幅をL/3とし、貫通孔の高さをDとすると、4LDである。また、図5Bに示されるように、接着剤溜まり部142bの開口部の形状は、H字形状であってもよい。この場合、貫通孔の内周面の面積は、H字の線幅をL/3とすると、約5LD(16/3LD)である。さらに、図5Cに示されるように、接着剤溜まり部142cの開口部の形状は、十字に45°回転させた十字を重ねた形状であってもよい。この場合、貫通孔の内周面の面積は、十字の線幅をL/6とすると、約6LD(6.1LD)である。なお、図5A~Cに示される接着剤溜まり部142a、142b、142cを有する光レセプタクルは、実施の形態1に係る光レセプタクルと同様の工程により製造することができる。
 (シミュレーション)
 接着剤溜まり部142の開口部の形状が異なる4種類の光レセプタクル120について、熱硬化性のエポキシ樹脂接着剤で固定した時の(加熱した後の)第1光学面132の移動距離(光レセプタクルの変形量)についてシミュレーションを行った。加熱による各第1光学面132の平面方向(X軸方向およびY軸方向)の移動距離は、有限要素法により解析した。また、比較のため、接着剤溜まり部142が無い支持部を有する光レセプタクル120’についても、シミュレーションを行った。シミュレーションのために設定した各パラメータを表1に示す。シミュレーションにおける熱硬化性のエポキシ樹脂接着剤の硬化温度は100℃とし、硬化時間は1時間とした。なお、光レセプタクル120’は、対称面に対して面対称の形状であるため、右半分に対してのみシミュレーションを行った。また、入射面132は、最も左側の入射面132を1番として、各入射面132に12番まで番号を付した。したがって、本シミュレーションでは、第7番~12番の第1光学面132の移動距離についてシミュレーションを行った。
Figure JPOXMLDOC01-appb-T000001
 図6は、接着剤溜まり部142が無い比較例の光レセプタクル120’の構成を示す図である。図6Aは、比較例の光レセプタクル120’の平面図であり、図6Bは、底面図であり、図6Cは、正面図であり、図6Dは、背面図であり、図6Eは、右側面図である。
 図7は、各第1光学面(入射面)と、接着剤の硬化による第1光学面132の移動距離との関係を示すグラフである。図7Aは、第1光学面132のX軸方向の移動距離を示すグラフであり、図7Bは、第1光学面132のY軸方向の移動距離を示すグラフである。ここで、「X軸方向」とは、第2光学面の中心軸に沿う方向(図2Bにおける上下方向)を意味し、「Y軸方向」とは、第1光学面の配列方向(図2Bにおける左右方向)を意味する。これらのグラフにおいて、横軸は、上記した方法により付した第1光学面132の番号である。縦軸は、接着剤の硬化前の第1光学面132の位置からの接着剤の硬化後の第1光学面132の移動距離を示している。黒丸のシンボルは、図6に示される比較例の光レセプタクル120’を用いた場合のシミュレーション結果を示しており、白丸のシンボルは、図3に示される形状の接着剤溜まり部142を有する光レセプタクル120を用いたシミュレーション結果を示しており、白四角のシンボルは、図5Aに示される形状の接着剤溜まり部142aを有する光レセプタクル120を用いたシミュレーション結果を示しており、白三角のシンボルは、図5Bに示される形状の接着剤溜まり部142bを有する光レセプタクル120を用いたシミュレーション結果を示しており、白菱形のシンボルは、図5Cに示される形状の接着剤溜まり部142cを有する光レセプタクル120を用いたシミュレーション結果を示している。
 これらのグラフに示されるように、接着剤溜まり部142を有さない比較例の光レセプタクル120’では、接着剤の硬化により、第1光学面132がX軸方向およびY軸方向に大きく移動したことがわかる。一方、接着剤溜まり部142,142a,142b,142cを有する光レセプタクル120では、第1光学面132の移動が抑制されていることがわかる。なお、接着剤溜まり部142,142a,142b,142cの開口部の形状を変えても、X軸方向およびY軸方向の移動距離に大きな差は見られなかった。
 (効果)
 以上のように、実施の形態1に係る光レセプタクル120は、接着剤溜まり部142が光レセプタクルの四隅に位置するように支持部140に配置されており、かつ接着剤溜まり部142の内周面の全周が支持部140に囲まれているため、接着剤を用いて基板112に光レセプタクル120を固定する際にも、光レセプタクル120の変形を抑制することができる。
 (変形例)
 実施の形態1の変形例に係る光モジュールは、光レセプタクル120の形状が実施の形態1に係る光モジュール100と異なる。そこで、実施の形態1に係る光モジュール100と同一の構成要素については、同一の符号を付してその説明を省略し、光モジュール100と異なる構成要素を中心に説明する。
 図8は、実施の形態1の変形例に係る光レセプタクル220の構成を示す図である。図8Aは、実施の形態1の変形例に係る光レセプタクル220の平面図であり、図8Bは、底面図であり、図8Cは、正面図であり、図8Dは、背面図であり、図8Eは、右側面図である。
 図8に示されるように、実施の形態1の変形例に係る光レセプタクル220は、光レセプタクル本体130および支持部140に加え、カバー250を有する。カバー250は、光レセプタクル本体130および支持部140の上に配置されている。カバー250は、光レセプタクル本体130または支持部140と同じ透光性の材料を用いて形成されてもよいし、異なる非透光性の材料で形成されていてもよい。たとえば、カバー250は、光レセプタクル本体130および支持部140と同じ透光性の材料で、射出成形により一体として製造されうる。
 (効果)
 以上のように、実施の形態1の変形例に係る光レセプタクル220は、カバー250を有するため、接着剤を用いて基板112に光レセプタクル220を固定する際にも、光レセプタクル220の変形をさらに抑制することができる。
 [実施の形態2]
 実施の形態2に係る光モジュールは、光レセプタクル320の形状が実施の形態1に係る光モジュール100と異なる。そこで、実施の形態1に係る光モジュール100と同一の構成要素については、同一の符号を付してその説明を省略し、光モジュール100と異なる構成要素を中心に説明する。実施の形態2に係る光モジュールは、支持部340の形状が実施の形態1に係る光モジュール100と異なる。
 (光レセプタクルの構成)
 図9は、本発明の実施の形態2に係る光レセプタクルの構成を示す図である。図9Aは、実施の形態2に係る光レセプタクル320の平面図であり、図9Bは、底面図であり、図9Cは、正面図であり、図9Dは、背面図であり、図9Eは、右側面図である。
 図9に示されるように、実施の形態2に係る光レセプタクル320は、光レセプタクル本体130および支持部340を有する。光レセプタクル320は、平面視したときにH字形状である。
 支持部340は、光レセプタクル本体130の両端に配置されている。支持部340は、実施の形態1の支持部340より長い略直方体の形状である。支持部340は、長軸方向の中央部分で光レセプタクル本体130の両端に接続している。
 また、本実施の形態においても、貫通孔の開口部の平面視形状は、特に限定されず、例えば円形、十字、H字、十字に45°回転させた十字を重ねた形状のいずれであってもよい。
 (シミュレーション)
 実施の形態2に係る光レセプタクル320についても、実施の形態1と同様に、熱硬化性のエポキシ樹脂接着剤で固定した時の(加熱した後の)第1光学面132の移動距離(光レセプタクルの変形量)についてシミュレーションを行った。
 図10は、各第1光学面(入射面)と、接着剤の硬化による第1光学面132の移動距離との関係を示すグラフである。図10Aは、第1光学面132のX軸方向の移動距離を示すグラフであり、図10Bは、第1光学面132のY軸方向の移動距離を示すグラフである。これらのグラフにおいて、横軸は、上記した方法により付した第1光学面132の番号である。縦軸は、接着剤の硬化前の第1光学面132の位置からの接着剤の硬化後の第1光学面132の移動距離を示している。図10の黒丸のシンボルは、図6に示される比較用の比較例の光レセプタクル120’を用いたシミュレーション結果を示しており、白丸のシンボルは、図9に示される実施の形態2に係る光レセプタクル320を用いたシミュレーション結果を示している。
 これらのグラフに示されるように、接着剤溜まり部142を有さない比較例の光レセプタクル120’では、接着剤の硬化により、第1光学面132がX軸方向およびY軸方向に大きく移動したことがわかる。一方、平面視したときにH字形状である光レセプタクル320では、第1光学面132の移動が抑制されていることがわかる。
 (変形例)
 実施の形態2の変形例に係る光モジュールは、発光素子の位置および光レセプタクル120の形状が実施の形態1に係る光モジュール100と異なる。そこで、実施の形態1,2に係る光モジュールと同一の構成要素については、同一の符号を付してその説明を省略し、光モジュール100と異なる構成要素を中心に説明する。
 図11は、実施の形態2の変形例に係る光レセプタクル420の構成を示す図である。図11Aは、実施の形態2の変形例に係る光レセプタクル420の平面図であり、図11Bは、底面図であり、図11Cは、正面図であり、図11Dは、背面図であり、図11Eは、右側面図である。実施の形態2の変形例に係る光レセプタクル420は、第3光学面134を有さない点において、実施の形態2に係る光レセプタクル320と異なる。
 図11に示されるように、実施の形態2の変形例に係る光レセプタクル420は、光レセプタクル本体130および支持部340を有する。また、光レセプタクル本体130は、第1光学面132および第2光学面136を有する。第1光学面132は、光レセプタクル本体130の第1の側面に配置されている。一方、第2光学面136は、第1光学面132と対向するように光レセプタクル本体130の第2の側面に配置されている。本実施の形態では、発光素子は、光レセプタクル本体130の第1の側面に向かってレーザー光を出射するように配置される。発光素子から出射したレーザー光は、第1光学面132(入射面)で入射し、第2光学面136(出射面)から出射して、光伝送体116に到達する。
 (効果)
 実施の形態2に係る光レセプタクル320,420は、実施の形態1に係る光レセプタクル120と同じ効果を有する。
 なお、上記各実施の形態では、接着剤溜まり部142が貫通孔の光レセプタクルについて説明したが、接着剤溜まり部142は有底の凹部であってもよい。この場合であっても、凹部の内周面は、全周にわたり支持部140,340に囲われている。また、接着剤溜まり部142の開口部の形状は、特に限定されず、円形、十字、H字、十字に45°回転させた十字を重ねた形状のいずれであってもよい。
 また、上記各実施の形態に係る光モジュールは、発光素子114から出射されたレーザー光の出力(例えば、強度や光量)を監視してもよい。特に図示しないが、この場合、光モジュールの光電変換装置110は、基板112と、発光素子114と、基板112に配置された受光素子と、受光素子によって受光されたモニター光の強度や光量に基づいて、発光素子114から出射するレーザー光の出力を制御する制御部とを有する。また、光レセプタクル120は、第1光学面132で入射した光を、光伝送体116に向かう信号光と、受光素子に向かうモニター光とに分離する、分離部を有する。
 また、上記各実施の形態に係る光レセプタクルでは、第1光学面132および第2光学面136が凸レンズ面である場合を示したが、第1光学面132および第2光学面136は平面であってもよい。具体的には、第1光学面132のみが平面であってもよいし、第2光学面136のみが平面であってもよい。第1光学面132が平面に形成されている場合、例えば、第3光学面134は、凹面鏡として機能できるように形成される。また、第1光学面132や第3光学面134などにより、第2光学面136に到達する直前の光が効果的に収束されている場合は、第2光学面136が平面に形成されていてもよい。
 また、上記各実施の形態に係る光レセプタクルは、受信側の光モジュールにも使用することができる。この場合、受信用の光モジュールは、複数の発光素子114の代わりに光を受光するための複数の受光素子を有する。複数の受光素子は、それぞれ発光素子と同じ位置に配置される。受信用の光モジュールでは、第2光学面136が入射面となり、第1光学面132が出射面となる。光伝送体116の端面から出射された光は、第2光学面136から光レセプタクル内に入射する。そして、光レセプタクルに入射した光は、第3光学面134で反射して第1光学面132から受光素子に向かって出射される。また、反射面を有さない光モジュールでは、光レセプタクルに入射した光は、第1光学面132から受光素子に向かって出射される。
 また、本実施の形態では、支持部140,340に接着剤溜まり部142を形成したが、基板112に接着剤溜まり部142を形成しても同様の効果を得られる。
 本出願は、2013年9月30日出願の特願2013-203666に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明に係る光レセプタクルおよび光モジュールは、光伝送体を用いた光通信に有用である。
 100 光モジュール
 110 光電変換装置
 112 基板
 114 発光素子
 116 光伝送体
 120,120’,220,320,420 光レセプタクル
 130 光レセプタクル本体
 132 第1光学面(入射面)
 134 第3光学面(反射面)
 136 第2光学面(出射面)
 138 突起
 139 光伝送体取り付け部
 140,340 支持部
 142,142a,142b,142c 接着剤溜まり部
 250 カバー

Claims (5)

  1.  複数の発光素子または複数の受光素子と、複数の光伝送体との間に配置され、前記複数の発光素子または複数の受光素子と、前記複数の光伝送体の端面とをそれぞれ光学的に結合するための光レセプタクルであって、
     前記複数の発光素子から出射された光をそれぞれ入射させるか、内部を通る光を前記受光素子に向けてそれぞれ出射させる複数の第1光学面と、前記複数の第1光学面で入射した光を前記複数の光伝送体の端面に向けてそれぞれ出射させるか、前記複数の光伝送体からの光をそれぞれ入射させる複数の第2光学面とを有する光レセプタクル本体と、
     前記光レセプタクル本体の両端に接続された支持部と、
     平面視したときに光レセプタクルの四隅に位置するように前記支持部に配置され、全周が前記支持部に囲われた貫通孔または凹部である4つの接着剤溜まり部と、を有し、
     前記光レセプタクル本体および前記支持部は、前記第2光学面から出射される光の光軸と平行な面を対称面として面対称の形状であり、
     前記4つの接着剤溜まり部は、前記対称面について面対称の位置に配置されている、
     光レセプタクル。
  2.  前記光レセプタクル本体は、前記第1光学面で入射した光を前記第2光学面に向かって反射させるか、前記第2光学面で入射した光を前記第1光学面に向かって反射させる反射面をさらに有する、請求項1に記載の光レセプタクル。
  3.  前記第1光学面は、前記光レセプタクル本体の底面側に配置され、
     前記第2光学面は、前記光レセプタクルの側面側に配置されている、
     請求項2に記載の光レセプタクル。
  4.  前記第1光学面は、前記光レセプタクル本体の第1の側面側に配置され、
     前記第2光学面は、前記第1光学面と対向するように前記光レセプタクル本体の第2の側面側に配置されている、請求項1に記載の光レセプタクル。
  5.  請求項1~4のいずれか一項に記載の光レセプタクルと、
     発光素子または受光素子が配置された基板と、を有し、
     前記光レセプタクルは、前記4つの接着剤溜まり部に注入された接着剤により、前記基板の表面に固定されている、
     光モジュール。
PCT/JP2014/073882 2013-09-30 2014-09-10 光レセプタクルおよび光モジュール WO2015045863A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/025,924 US9915795B2 (en) 2013-09-30 2014-09-10 Light receptacle and light module
CN201480054203.7A CN105593735B (zh) 2013-09-30 2014-09-10 光插座及光模块
US15/713,790 US10120143B2 (en) 2013-09-30 2017-09-25 Optical receptacle and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-203666 2013-09-30
JP2013203666A JP6383529B2 (ja) 2013-09-30 2013-09-30 光レセプタクルおよび光モジュール

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/025,924 A-371-Of-International US9915795B2 (en) 2013-09-30 2014-09-10 Light receptacle and light module
US15/713,790 Division US10120143B2 (en) 2013-09-30 2017-09-25 Optical receptacle and optical module

Publications (1)

Publication Number Publication Date
WO2015045863A1 true WO2015045863A1 (ja) 2015-04-02

Family

ID=52743007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073882 WO2015045863A1 (ja) 2013-09-30 2014-09-10 光レセプタクルおよび光モジュール

Country Status (5)

Country Link
US (2) US9915795B2 (ja)
JP (1) JP6383529B2 (ja)
CN (1) CN105593735B (ja)
TW (1) TWI628482B (ja)
WO (1) WO2015045863A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929492A (zh) * 2016-07-01 2016-09-07 青岛海信宽带多媒体技术有限公司 一种光模块
US10459179B2 (en) * 2017-10-04 2019-10-29 Prime World International Holdings Ltd. Optical transceiver and optical lens thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226167A (ja) * 1996-02-22 1997-09-02 Canon Inc 線光源装置の製造方法及び線光源装置並びに該線光源装置を用いた画像記録装置
JP2002314182A (ja) * 2001-04-13 2002-10-25 Hamamatsu Photonics Kk 半導体レーザ装置
JP2011197633A (ja) * 2010-02-23 2011-10-06 Furukawa Electric Co Ltd:The 光導波路コリメータおよび光スイッチ装置
JP2012108443A (ja) * 2010-10-28 2012-06-07 Enplas Corp レンズアレイおよびこれを備えた光モジュール
JP2013164497A (ja) * 2012-02-10 2013-08-22 Enplas Corp レンズアレイおよびこれを備えた光モジュール
WO2013125283A1 (ja) * 2012-02-20 2013-08-29 住友電気工業株式会社 レンズ部品及びそれを備えた光モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043889A (ja) * 1983-08-22 1985-03-08 Hitachi Ltd 光ファイバー付レーザーダイオード装置の組立方法
US6375365B1 (en) * 2000-02-28 2002-04-23 Onix Microsystems, Inc. Apparatus and packaging method to assemble optical modules to a common substrate with adjustable plugs
JP2004240220A (ja) * 2003-02-06 2004-08-26 Seiko Epson Corp 光モジュール及びその製造方法、混成集積回路、混成回路基板、電子機器、光電気混載デバイス及びその製造方法
JP4253027B2 (ja) * 2006-11-21 2009-04-08 古河電気工業株式会社 光モジュール
CA2725286A1 (en) * 2008-04-14 2009-10-22 The Furukawa Electric Co., Ltd. Optical module mounting unit and optical module
JP5019639B2 (ja) 2009-01-30 2012-09-05 古河電気工業株式会社 並列光伝送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226167A (ja) * 1996-02-22 1997-09-02 Canon Inc 線光源装置の製造方法及び線光源装置並びに該線光源装置を用いた画像記録装置
JP2002314182A (ja) * 2001-04-13 2002-10-25 Hamamatsu Photonics Kk 半導体レーザ装置
JP2011197633A (ja) * 2010-02-23 2011-10-06 Furukawa Electric Co Ltd:The 光導波路コリメータおよび光スイッチ装置
JP2012108443A (ja) * 2010-10-28 2012-06-07 Enplas Corp レンズアレイおよびこれを備えた光モジュール
JP2013164497A (ja) * 2012-02-10 2013-08-22 Enplas Corp レンズアレイおよびこれを備えた光モジュール
WO2013125283A1 (ja) * 2012-02-20 2013-08-29 住友電気工業株式会社 レンズ部品及びそれを備えた光モジュール

Also Published As

Publication number Publication date
TWI628482B (zh) 2018-07-01
TW201512728A (zh) 2015-04-01
US9915795B2 (en) 2018-03-13
JP6383529B2 (ja) 2018-08-29
US20160238802A1 (en) 2016-08-18
US20180011265A1 (en) 2018-01-11
CN105593735B (zh) 2017-06-13
US10120143B2 (en) 2018-11-06
JP2015069023A (ja) 2015-04-13
CN105593735A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP6011958B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP6461506B2 (ja) 光レセプタクルおよび光モジュール
US9244234B2 (en) Optical receptacle and optical module
JP2013024918A (ja) 光レセプタクルおよびこれを備えた光モジュール
TWI638195B (zh) 光模組
US9804351B2 (en) Optical receptacle and optical module
JP6291300B2 (ja) 光レセプタクルおよび光モジュール
JP6383529B2 (ja) 光レセプタクルおよび光モジュール
US20160327758A1 (en) Light receptacle and light module
JP6357320B2 (ja) 光レセプタクルおよび光モジュール
JP6494216B2 (ja) 光レセプタクルおよび光モジュール
US11867949B2 (en) Optical receptacle and optical module
JP2019060979A (ja) 光レセプタクルおよび光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15025924

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14848618

Country of ref document: EP

Kind code of ref document: A1