WO2015045620A1 - Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor - Google Patents

Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor Download PDF

Info

Publication number
WO2015045620A1
WO2015045620A1 PCT/JP2014/070368 JP2014070368W WO2015045620A1 WO 2015045620 A1 WO2015045620 A1 WO 2015045620A1 JP 2014070368 W JP2014070368 W JP 2014070368W WO 2015045620 A1 WO2015045620 A1 WO 2015045620A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
film
metal
oxide film
oxide precursor
Prior art date
Application number
PCT/JP2014/070368
Other languages
French (fr)
Japanese (ja)
Inventor
真宏 高田
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167007361A priority Critical patent/KR101897372B1/en
Publication of WO2015045620A1 publication Critical patent/WO2015045620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Abstract

The present invention provides a method for producing a metal oxide film which involves alternatingly performing the following steps N times (N≥2): a step for coating a substrate with a solution containing a metal nitrate, and forming a metal oxide precursor film by drying the film coating; and a step for changing the metal oxide precursor film into a metal oxide film. Therein, the steps performed two or more times satisfy the relationship 1>(Cn/Cn-1), given that the metal mol concentration in the solution containing the metal nitrate used in the step for forming the metal oxide precursor film the nth-1 time (2≤n≤N) is Cn-1(mol/L), and the metal mol concentration in the solution containing the metal nitrate used in the step for forming the metal oxide precursor film the nth time is Cn(mol/L). Further provided are a metal oxide film produced by this method, and a device provided with the same.

Description

金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサMetal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor
 本発明は、金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサに関する。 The present invention relates to a method for producing a metal oxide film, a metal oxide film, a thin film transistor, a display device, an image sensor, and an X-ray sensor.
 金属酸化物半導体膜は真空成膜法による製造において実用化がなされ、現在注目を集めている。
 一方で、簡便に、低温で、かつ大気圧下で高い半導体特性を有する金属酸化物膜を形成することを目的とした、液相プロセスによる金属酸化物膜の作製に関して研究開発が盛んに行われている。
A metal oxide semiconductor film has been put into practical use in the production by a vacuum film forming method and is currently attracting attention.
On the other hand, research and development have been actively conducted on the production of metal oxide films by a liquid phase process for the purpose of easily forming metal oxide films having high semiconductor properties at low temperatures and atmospheric pressure. ing.
 例えば、国際公開第2009/081862号には、硝酸塩等の金属塩を含む溶液を塗布し、金属酸化物半導体層を形成する手法が開示されている。
 また、特開2000-247608号公報には、金属アルコキシド又は金属塩を主原料として得られる金属酸化物の前駆体ゾルを被塗布物の表面に塗布して被塗布物表面に金属酸化物ゲルの薄膜を形成する工程と、金属酸化物ゲルの薄膜に対して波長が360nm以下である紫外光を照射して金属酸化物ゲルを結晶化させる工程とを複数回繰り返して行う金属酸化物膜の製造方法が開示されている。
 また、Nature, 489 (2012) 128.には、溶液を基板上に塗布し、紫外線を用いることで150℃以下の低温で高い輸送特性を有する薄膜トランジスタ(TFT:Thin Film Transistor)を製造する手法が報告されている。
For example, International Publication No. 2009/081862 discloses a method of forming a metal oxide semiconductor layer by applying a solution containing a metal salt such as nitrate.
Japanese Patent Laid-Open No. 2000-247608 discloses a metal oxide precursor sol obtained by using a metal alkoxide or a metal salt as a main raw material on the surface of the object to be coated, and a metal oxide gel formed on the surface of the object to be coated. Production of a metal oxide film in which the step of forming a thin film and the step of crystallizing the metal oxide gel by irradiating the metal oxide gel thin film with ultraviolet light having a wavelength of 360 nm or less are repeated several times. A method is disclosed.
Nature, 489 (2012) 128. Discloses a method of manufacturing a thin film transistor (TFT) having a high transport property at a low temperature of 150 ° C. or lower by applying a solution on a substrate and using ultraviolet rays.
 本発明は、緻密な金属酸化物膜を比較的低温で、かつ大気圧下で製造することができる金属酸化物膜の製造方法及び金属酸化物膜、並びに、高い移動度を有する薄膜トランジスタ、表示装置、イメージセンサ及びX線センサを提供することを目的とする。 The present invention relates to a metal oxide film manufacturing method and metal oxide film capable of manufacturing a dense metal oxide film at a relatively low temperature and atmospheric pressure, and a thin film transistor and a display device having high mobility. An object is to provide an image sensor and an X-ray sensor.
 上記目的を達成するため、以下の発明が提供される。
<1> 金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを、交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
 金属酸化物前駆体膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をCn-1(mol/L)、n回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をC(mol/L)としたときに、下記式(1)の関係を満たす金属酸化物膜の製造方法。
  1>(C/Cn-1)   (1)
<2> 金属酸化物前駆体膜を形成するN回の工程のうち、少なくとも(N-1)回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度(mol/L)と、N回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度(mol/L)とが、式(1)の関係を満たす<1>に記載の金属酸化物膜の製造方法。
<3> 金属酸化物前駆体膜を形成する全ての工程において、金属硝酸塩を含む溶液の金属モル濃度(mol/L)が、式(1)の関係を満たす<1>又は<2>に記載の金属酸化物膜の製造方法。
<4> 式(1)が下記式(2)である<1>~<3>のいずれか一項に記載の金属酸化物膜の製造方法。
  1/3≧(C/Cn-1)   (2)
<5> 金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
 金属酸化物前駆体膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物前駆体膜の膜厚をPn-1、n回目に形成する金属酸化物前駆体膜の膜厚をPとしたときに、下記式(3)の関係を満たす金属酸化物膜の製造方法。
  1>(P/Pn-1)   (3)
<6> 金属酸化物前駆体膜を形成するN回の工程のうち、少なくとも(N-1)回目に形成する金属酸化物前駆体膜の膜厚と、N回目に形成する金属酸化物前駆体膜の膜厚とが、式(3)の関係を満たす<5>に記載の金属酸化物膜の製造方法。
<7> 金属酸化物前駆体膜を形成する全ての工程において、金属酸化物前駆体膜の膜厚が、式(3)の関係を満たす<5>又は<6>に記載の金属酸化物膜の製造方法。
<8> 式(3)が下記式(4)である<5>~<7>のいずれか一項に記載の金属酸化物膜の製造方法。
  1/3≧(P/Pn-1)   (4)
<9> 金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
 金属酸化物膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物膜の膜厚をTn-1、n回目に形成する金属酸化物膜の膜厚をTとしたときに、下記式(5)の関係を満たす金属酸化物膜の製造方法。
  1>(T/Tn-1)   (5)
<10> 金属酸化物膜を形成するN回の工程のうち、少なくとも(N-1)回目に形成する金属酸化物膜の膜厚と、N回目に形成する金属酸化物膜の膜厚とが、式(5)の関係を満たす<9>に記載の金属酸化物膜の製造方法。
<11>金属酸化物膜を形成する全ての工程において、金属酸化物膜の膜厚が、式(5)の関係を満たす<9>又は<10>に記載の金属酸化物膜の製造方法。
<12> 式(5)が下記式(6)である<9>~<11>のいずれか一項に記載の金属酸化物膜の製造方法。
  1/3≧(T/Tn-1)   (6)
<13> 前記金属酸化物前駆体膜を形成する工程において、前記金属硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法により塗布する<1>~<12>のいずれか一項に記載の金属酸化物膜の製造方法。
<14> 前記金属硝酸塩を含む溶液の金属モル濃度が、0.01mol/L以上0.5mol/L以下である<1>~<13>のいずれか一項に記載の金属酸化物膜の製造方法。
<15> 前記金属硝酸塩を含む溶液が、少なくとも硝酸インジウムを含む<1>~<14>のいずれか一項に記載の金属酸化物膜の製造方法。
<16> 前記硝酸インジウムを含む溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれるいずれか1つ以上の金属原子を含む化合物をさらに含有する<15>に記載の金属酸化物膜の製造方法。
<17> 前記金属酸化物前駆体膜を形成する工程において、前記塗布膜を乾燥する際の前記基板の温度が35℃以上100℃以下である<1>~<16>のいずれか一項に記載の金属酸化物膜の製造方法。
<18> 前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程における前記基板の最高到達温度が200℃以下である<1>~<17>のいずれか一項に記載の金属酸化物膜の製造方法。
<19> 前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程における前記基板の最高到達温度が120℃以上である<1>~<18>のいずれか一項に記載の金属酸化物膜の製造方法。
<20> 前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に紫外線を照射する工程を含む<1>~<19>のいずれか一項に記載の金属酸化物膜の製造方法。
<21> 前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に対し、波長300nm以下の紫外線を10mW/cm以上の強度で照射する工程を含む<1>~<20>のいずれか一項に記載の金属酸化物膜の製造方法。
<22> 前記金属酸化物前駆体膜に前記紫外線を照射する際に用いる光源が、低圧水銀ランプである<20>又は<21>に記載の金属酸化物膜の製造方法。
<23> <1>~<22>のいずれか一項に記載の金属酸化物膜の製造方法を用いて作製された金属酸化物膜。
In order to achieve the above object, the following invention is provided.
<1> Applying a solution containing metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and converting the metal oxide precursor film into a metal oxide film , Alternately repeating N times (N represents an integer of 2 or more),
Metal nitrate used in the step of forming the metal oxide precursor film in the (n-1) th time (n represents an integer of 2 or more and N or less) in at least two steps of forming the metal oxide precursor film The metal molar concentration of the solution containing metal is C n-1 (mol / L), and the metal molar concentration of the solution containing metal nitrate used in the step of forming the metal oxide precursor film for the nth time is C n (mol / L). A method for producing a metal oxide film satisfying the relationship of the following formula (1).
1> (C n / C n−1 ) (1)
<2> Among the N steps of forming the metal oxide precursor film, the metal molar concentration (mol) of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film at least (N−1) times / L) and the metal molar concentration (mol / L) of the solution containing metal nitrate used in the step of forming the metal oxide precursor film for the Nth time satisfy the relationship of formula (1) <1> Of manufacturing a metal oxide film.
<3> In all steps of forming the metal oxide precursor film, the metal molar concentration (mol / L) of the solution containing the metal nitrate satisfies the relationship of the formula (1), described in <1> or <2> Of manufacturing a metal oxide film.
<4> The method for producing a metal oxide film according to any one of <1> to <3>, wherein the formula (1) is the following formula (2).
1/3 ≧ (C n / C n−1 ) (2)
<5> Applying a solution containing metal nitrate on the substrate, drying the coating film to form a metal oxide precursor film, and converting the metal oxide precursor film into a metal oxide film Alternately repeating N times (N represents an integer of 2 or more),
In at least two steps of forming the metal oxide precursor film, the film thickness of the metal oxide precursor film formed in the (n-1) th time (n represents an integer of 2 or more and N or less) is defined as P n -1 , A method for producing a metal oxide film satisfying the relationship of the following formula (3), where P n is the thickness of the metal oxide precursor film formed at the nth time.
1> (P n / P n-1 ) (3)
<6> Of the N steps of forming the metal oxide precursor film, the film thickness of the metal oxide precursor film to be formed at least (N-1) and the metal oxide precursor to be formed at the Nth time The method for producing a metal oxide film according to <5>, wherein the film thickness satisfies the relationship of formula (3).
<7> The metal oxide film according to <5> or <6>, wherein the film thickness of the metal oxide precursor film satisfies the relationship of formula (3) in all steps of forming the metal oxide precursor film: Manufacturing method.
<8> The method for producing a metal oxide film according to any one of <5> to <7>, wherein the formula (3) is the following formula (4).
1/3 ≧ (P n / P n−1 ) (4)
<9> Applying a solution containing a metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and converting the metal oxide precursor film into a metal oxide film Alternately repeating N times (N represents an integer of 2 or more),
In at least two steps of forming the metal oxide film, the film thickness of the metal oxide film formed at the (n−1) th time (n represents an integer of 2 or more and N or less) is set to T n−1 , n A method for producing a metal oxide film satisfying the relationship of the following formula (5), where T n is the thickness of the metal oxide film formed in the second time.
1> ( Tn / Tn-1 ) (5)
<10> Of the N steps of forming the metal oxide film, the thickness of the metal oxide film formed at least at the (N−1) th time and the thickness of the metal oxide film formed at the Nth time are: <9> The manufacturing method of the metal oxide film as described in <9> which satisfy | fills the relationship of Formula (5).
<11> The method for producing a metal oxide film according to <9> or <10>, wherein the film thickness of the metal oxide film satisfies the relationship of formula (5) in all steps of forming the metal oxide film.
<12> The method for producing a metal oxide film according to any one of <9> to <11>, wherein the formula (5) is the following formula (6).
1/3 ≧ (T n / T n−1 ) (6)
<13> In the step of forming the metal oxide precursor film, the solution containing the metal nitrate is applied by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method. The method for producing a metal oxide film according to any one of <1> to <12>.
<14> The metal oxide film according to any one of <1> to <13>, wherein a metal molar concentration of the solution containing the metal nitrate is 0.01 mol / L or more and 0.5 mol / L or less. Method.
<15> The method for producing a metal oxide film according to any one of <1> to <14>, wherein the solution containing the metal nitrate contains at least indium nitrate.
<16> The method for producing a metal oxide film according to <15>, wherein the solution containing indium nitrate further contains a compound containing any one or more metal atoms selected from zinc, tin, gallium, and aluminum.
<17> In any one of <1> to <16>, in the step of forming the metal oxide precursor film, a temperature of the substrate when the coating film is dried is 35 ° C. or more and 100 ° C. or less. The manufacturing method of the metal oxide film of description.
<18> The metal oxidation according to any one of <1> to <17>, wherein a maximum temperature of the substrate in the step of converting the metal oxide precursor film into the metal oxide film is 200 ° C. or lower. Manufacturing method of physical film.
<19> The metal oxidation according to any one of <1> to <18>, wherein a maximum temperature of the substrate in the step of converting the metal oxide precursor film into the metal oxide film is 120 ° C. or higher. Manufacturing method of physical film.
<20> The process according to any one of <1> to <19>, wherein the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays. The manufacturing method of the metal oxide film of description.
<21> The step of converting the metal oxide precursor film into the metal oxide film comprises irradiating the metal oxide precursor film with ultraviolet light having a wavelength of 300 nm or less at an intensity of 10 mW / cm 2 or more. The method for producing a metal oxide film according to any one of <1> to <20>.
<22> The method for producing a metal oxide film according to <20> or <21>, wherein a light source used when irradiating the metal oxide precursor film with the ultraviolet light is a low-pressure mercury lamp.
<23> A metal oxide film produced using the method for producing a metal oxide film according to any one of <1> to <22>.
<24> 前記金属酸化物膜が金属酸化物半導体膜である<1>~<22>のいずれか一項に記載の金属酸化物膜の製造方法。
<25> <24>に記載の金属酸化物膜の製造方法を用いて作製された金属酸化物半導体膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタ。
<26> <25>に記載の薄膜トランジスタを備えた表示装置。
<27> <25>に記載の薄膜トランジスタを備えたイメージセンサ。
<28> <25>に記載の薄膜トランジスタを備えたX線センサ。
<24> The method for producing a metal oxide film according to any one of <1> to <22>, wherein the metal oxide film is a metal oxide semiconductor film.
<25> An active layer including a metal oxide semiconductor film manufactured using the method for manufacturing a metal oxide film according to <24>, a source electrode, a drain electrode, a gate insulating film, and a gate electrode. A thin film transistor.
<26> A display device comprising the thin film transistor according to <25>.
<27> An image sensor comprising the thin film transistor according to <25>.
<28> An X-ray sensor comprising the thin film transistor according to <25>.
 本発明によれば、緻密な金属酸化物膜を比較的低温で、かつ大気圧下で製造することができる金属酸化物膜の製造方法及び金属酸化物膜、並びに、高い移動度を有する薄膜トランジスタ、表示装置、イメージセンサ及びX線センサが提供される。 According to the present invention, a metal oxide film manufacturing method and a metal oxide film capable of manufacturing a dense metal oxide film at a relatively low temperature and atmospheric pressure, and a thin film transistor having high mobility, A display device, an image sensor, and an X-ray sensor are provided.
本発明により製造される薄膜トランジスタの一例(トップゲート-トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(トップゲート-ボトムコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-bottom contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート-トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (bottom gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート-ボトムコンタクト型)の構成を示す概略図である。1 is a schematic view showing a configuration of an example (bottom gate-bottom contact type) thin film transistor manufactured according to the present invention. FIG. 実施形態の液晶表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of liquid crystal display device of embodiment. 図5の液晶表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the liquid crystal display device of FIG. 実施形態の有機EL表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of organic EL display apparatus of embodiment. 図7の有機EL表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the organic electroluminescent display apparatus of FIG. 実施形態のX線センサアレイの一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of X-ray sensor array of embodiment. 図9のX線センサアレイの電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the X-ray sensor array of FIG. 実施例1、2及び比較例1~4で作製した簡易型TFTのV-I特性を示す図である。It is a diagram showing, V g -I d characteristics of the simplified TFT fabricated in Examples 1 and 2 and Comparative Examples 1-4. 実施例3で作製した簡易型TFTのV-I特性を示す図である。Is a diagram showing, V g -I d characteristics of the simplified type TFT prepared in Example 3.
 以下、添付の図面を参照しながら、本発明の金属酸化物膜の製造方法、並びに本発明により製造される金属酸化物膜及びそれを備えた薄膜トランジスタ、表示装置、X線センサ等について具体的に説明する。
 なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、本明細書において「~」の記号により数値範囲を示す場合、数値範囲には、「~」の記号の左右両数値が含まれる。
 また、本発明に係る金属酸化物膜の導電性は限定されず、本発明は、酸化物半導体膜、酸化物導電膜、又は酸化物絶縁膜の製造に適用することができるが、代表例として、TFTの活性層(半導体層)に適用することができる金属酸化物半導体膜の製造方法について主に説明する。
Hereinafter, a method for producing a metal oxide film of the present invention, a metal oxide film produced by the present invention, a thin film transistor including the same, a display device, an X-ray sensor, and the like will be specifically described with reference to the accompanying drawings. explain.
In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate. Further, in this specification, when a numerical range is indicated by the symbol “to”, the numerical range includes both the left and right numerical values of the symbol “to”.
Further, the conductivity of the metal oxide film according to the present invention is not limited, and the present invention can be applied to the manufacture of an oxide semiconductor film, an oxide conductive film, or an oxide insulating film. A method for manufacturing a metal oxide semiconductor film that can be applied to an active layer (semiconductor layer) of a TFT will be mainly described.
 本発明者らは詳細な研究を通して、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体薄膜を金属酸化物膜に転化する工程を、交互に2回以上繰り返して金属酸化物膜を製造する方法において、金属酸化物前駆体薄膜を形成する少なくとも連続する2回の工程において、先の工程で用いる溶液の金属モル濃度よりも後の工程で用いる溶液の金属モル濃度を相対的に低くすることで比較的低温で緻密な金属酸化物膜を形成することができることを見出した。特に、本発明の方法によって金属酸化物半導体膜を作製することにより、高い輸送特性を有する薄膜トランジスタを大気圧下、低温で作製できることから薄膜液晶ディスプレイや有機EL等の表示装置、特にフレキシブルディスプレイを提供することが可能となる。 Through detailed research, the present inventors applied a solution containing a metal nitrate on a substrate, dried the coating film to form a metal oxide precursor film, and the metal oxide precursor thin film was converted into a metal oxide. In the method of producing a metal oxide film by alternately repeating the process of converting to a film twice or more, the metal of the solution used in the previous process in at least two consecutive processes of forming the metal oxide precursor thin film It has been found that a dense metal oxide film can be formed at a relatively low temperature by relatively lowering the metal molar concentration of the solution used in the subsequent step from the molar concentration. In particular, by producing a metal oxide semiconductor film by the method of the present invention, a thin film transistor having high transport properties can be produced at a low pressure under atmospheric pressure, and thus a display device such as a thin film liquid crystal display or an organic EL, particularly a flexible display is provided. It becomes possible to do.
 本発明によって緻密な金属酸化物膜を形成することができる理由は定かでないが、以下のように推測される。金属硝酸塩溶液を用いて金属酸化物前駆体膜を形成した後、紫外線照射等の外部刺激を加えて金属酸化物膜に転化した場合、金属酸化物膜中には硝酸塩の分解に伴って空洞が形成され、金属モル濃度が高いほど空洞が多く形成されると考えられる。次いで、金属モル濃度が相対的に低い金属硝酸塩溶液を直前に形成した金属酸化物膜上に塗布して次の金属酸化物前駆体膜を形成すると、乾燥前の塗布液が、先に形成された金属酸化物膜の空孔内に入り込み易く、再度紫外線照射等の外部刺激を加えて金属酸化物膜に転化させることで空孔内に金属酸化物が形成され、先に形成された金属酸化物膜と一体化した緻密な金属酸化物膜が形成されると考えられる。 The reason why a dense metal oxide film can be formed according to the present invention is not clear, but is presumed as follows. When a metal oxide precursor film is formed using a metal nitrate solution and then converted to a metal oxide film by applying an external stimulus such as ultraviolet irradiation, the metal oxide film has voids due to the decomposition of nitrate. It is considered that the higher the metal molar concentration, the more cavities are formed. Next, when a metal nitrate solution having a relatively low metal molar concentration is applied onto the metal oxide film formed immediately before to form the next metal oxide precursor film, the coating liquid before drying is formed first. The metal oxide film is easy to enter the pores of the metal oxide film, and the metal oxide film is formed in the pores by applying an external stimulus such as UV irradiation again to convert it into the metal oxide film. It is considered that a dense metal oxide film integrated with the material film is formed.
<金属酸化物膜の製造方法>
 本発明の金属酸化物膜の製造方法は、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、金属酸化物前駆体膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をCn-1(mol/L)、n回目の金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をC(mol/L)としたときに(但し、C≠0)、下記式(1)の関係を満たす。
 1>(C/Cn-1)   (1)
<Method for producing metal oxide film>
The method for producing a metal oxide film of the present invention includes a step of applying a solution containing a metal nitrate on a substrate, drying the applied film to form a metal oxide precursor film, and forming the metal oxide precursor film into a metal. And at least two steps of forming a metal oxide precursor film, wherein the step of converting to an oxide film is repeated N times (N represents an integer of 2 or more), and (n-1) The metal molar concentration of the solution containing metal nitrate used in the step of forming the metal oxide precursor film in the second time (n represents an integer of 2 or more and N or less) is C n-1 (mol / L), the nth time When the metal molar concentration of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film is C n (mol / L) (where C n ≠ 0), the relationship of the following formula (1) is obtained. Fulfill.
1> (C n / C n−1 ) (1)
 以下、本発明の金属酸化物膜の製造方法について具体的に説明する。なお、本発明の金属酸化物膜の製造方法は、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互に3回以上繰り返してもよいが、代表例として2回繰り返して(すなわち、N=2、n=2)、第1の金属酸化物膜と第2の金属酸化物膜とが一体化した金属酸化物膜を形成する場合について主に説明する。 Hereinafter, the method for producing the metal oxide film of the present invention will be specifically described. The method for producing a metal oxide film of the present invention includes a step of applying a solution containing a metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and a metal oxide precursor film. The step of converting the metal oxide film into the metal oxide film may be alternately repeated three times or more, but as a typical example, the process is repeated twice (that is, N = 2, n = 2), and the first metal oxide film and the first The case of forming a metal oxide film integrated with two metal oxide films will be mainly described.
[第1の金属酸化物前駆体膜の形成工程]
 まず、第1の金属酸化物膜を形成するための金属硝酸塩を含む溶液と、金属酸化物膜を形成するための基板を用意し、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して第1の金属酸化物前駆体膜を形成する。
[Formation process of first metal oxide precursor film]
First, a solution containing a metal nitrate for forming the first metal oxide film and a substrate for forming the metal oxide film are prepared, the solution containing the metal nitrate is applied on the substrate, and the coating film is formed. Dry to form a first metal oxide precursor film.
(基板)
 基板の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。
(substrate)
There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the objective. The structure of the substrate may be a single layer structure or a laminated structure.
 基板を構成する材料としては特に限定はなく、ガラス、YSZ(Yttria-Stabilized Zirconia)等の無機基板、樹脂基板、その複合材料等を用いることができる。中でも軽量である点、可撓性を有する点から樹脂基板又はその複合材料が好ましい。
 具体的には、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド・オレフィン、セルロース、エピスルフィド化合物等の合成樹脂基板、酸化珪素粒子との複合プラスチック材料、金属ナノ粒子、無機酸化物ナノ粒子、無機窒化物ナノ粒子等との複合プラスチック材料、カーボン繊維、カーボンナノチューブとの複合プラスチック材料、ガラスフェレーク、ガラスファイバー、ガラスビーズとの複合プラスチック材料、粘土鉱物や雲母派生結晶構造を有する粒子との複合プラスチック材料、薄いガラスと上記単独有機材料との間に少なくとも1回の接合界面を有する積層プラスチック材料、無機層と有機層を交互に積層することで、少なくとも1回以上の接合界面を有するバリア性能を有する複合材料、ステンレス基板或いはステンレスと異種金属を積層した金属多層基板、アルミニウム基板或いは表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板等を用いることができる。また、樹脂基板は耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、又は低吸湿性等に優れていることが好ましい。樹脂基板は、水分や酸素の透過を防止するためのガスバリア層や、樹脂基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
The material forming the substrate is not particularly limited, and glass, an inorganic substrate such as YSZ (Yttria-Stabilized Zirconia), a resin substrate, a composite material thereof, or the like can be used. Among these, a resin substrate or a composite material thereof is preferable from the viewpoint of light weight and flexibility.
Specifically, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin, Synthetic resin substrate such as aromatic ether, maleimide / olefin, cellulose, episulfide compound, silicon oxide Composite plastic materials with children, metal nanoparticles, inorganic oxide nanoparticles, composite plastic materials with inorganic nitride nanoparticles, carbon fibers, composite plastic materials with carbon nanotubes, glass ferkes, glass fibers, glass beads Composite plastic materials, composite plastic materials with clay minerals and particles having a mica-derived crystal structure, laminated plastic materials having at least one bonding interface between the thin glass and the single organic material, an inorganic layer and an organic layer Oxidation treatment (for example, anodic oxidation treatment) on composite materials having barrier performance having at least one bonding interface, stainless steel substrate, metal multilayer substrate in which stainless steel and dissimilar metal are laminated, aluminum substrate or surface by alternately laminating Oxide film with improved surface insulation Kino aluminum substrate or the like can be used. The resin substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like. The resin substrate may include a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving the flatness of the resin substrate and adhesion with the lower electrode, and the like.
 本発明で用いる基板の厚みに特に制限はないが、50μm以上500μm以下であることが好ましい。基板の厚みが50μm以上であると、基板自体の平坦性がより向上する。また、基板の厚みが500μm以下であると、基板自体の可撓性がより向上し、フレキシブルデバイス用基板としての使用がより容易となる。 The thickness of the substrate used in the present invention is not particularly limited, but is preferably 50 μm or more and 500 μm or less. When the thickness of the substrate is 50 μm or more, the flatness of the substrate itself is further improved. Further, when the thickness of the substrate is 500 μm or less, the flexibility of the substrate itself is further improved, and the use as a substrate for a flexible device becomes easier.
(金属硝酸塩を含む溶液)
 金属硝酸塩を含む溶液は、金属硝酸塩等の溶質を、溶液が所望の濃度となるように秤量し、溶媒中で攪拌して溶解させて得られる。攪拌を行う時間は溶質が十分に溶解されれば特に制限はない。
(Solution containing metal nitrate)
A solution containing a metal nitrate is obtained by weighing a solute such as a metal nitrate so that the solution has a desired concentration and stirring and dissolving in a solvent. The stirring time is not particularly limited as long as the solute is sufficiently dissolved.
 溶液に含まれる金属硝酸塩としては、形成する金属酸化物膜に応じて選択すればよい。例えば、硝酸インジウム、硝酸マグネシウム、硝酸アルミニウム、硝酸カルシウム、硝酸スカンジウム、硝酸クロム、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸銅、硝酸亜鉛、硝酸ガリウム、硝酸ストロンチウム、硝酸イットリウム、硝酸バリウム、硝酸ランタン、硝酸セリウム、硝酸プラセオジウム、硝酸ネオジウム、硝酸サマリウム、硝酸ユーロピウム、硝酸ガドリニウム、硝酸テルビウム、硝酸ジスプロシウム、硝酸ホルミウム、硝酸エルビウム、硝酸ツリウム、硝酸イッテルビウム、硝酸ルテチウム、硝酸ビスマスが挙げられる。金属硝酸塩は水和物であってもよい。 The metal nitrate contained in the solution may be selected according to the metal oxide film to be formed. For example, indium nitrate, magnesium nitrate, aluminum nitrate, calcium nitrate, scandium nitrate, chromium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate, copper nitrate, zinc nitrate, gallium nitrate, strontium nitrate, yttrium nitrate, barium nitrate, Examples include lanthanum nitrate, cerium nitrate, praseodymium nitrate, neodymium nitrate, samarium nitrate, europium nitrate, gadolinium nitrate, terbium nitrate, dysprosium nitrate, holmium nitrate, erbium nitrate, thulium nitrate, ytterbium nitrate, lutetium nitrate, and bismuth nitrate. The metal nitrate may be a hydrate.
 溶液の金属モル濃度は、粘度や得たい膜厚に応じて任意に選択することができる。膜の平坦性及び生産性の観点から0.01mol/L以上0.5mol/L以下であることが好ましい。溶液中の金属モル濃度が0.01mol/L以上であれば膜密度を効果的に向上させることができる。また、下に金属酸化物膜が存在する場合、溶液中の金属モル濃度が0.5mol/L以下であれば下の金属酸化物膜を溶解することを効果的に抑制することができる点でも好ましい。 The metal molar concentration of the solution can be arbitrarily selected according to the viscosity and the desired film thickness. From the viewpoint of film flatness and productivity, it is preferably 0.01 mol / L or more and 0.5 mol / L or less. If the metal molar concentration in the solution is 0.01 mol / L or more, the film density can be effectively improved. In addition, when a metal oxide film is present below, dissolution of the lower metal oxide film can be effectively suppressed if the metal molar concentration in the solution is 0.5 mol / L or less. preferable.
 なお、金属硝酸塩を含む溶液が複数種の金属を含む場合は、本発明における金属モル濃度は、各金属のモル濃度(mol/L)の合計量を意味する。 In addition, when the solution containing a metal nitrate contains multiple types of metals, the metal molar concentration in the present invention means the total amount of molar concentrations (mol / L) of each metal.
 金属硝酸塩を含む溶液は、金属硝酸塩以外の他の金属原子含有化合物を含んでいてもよい。金属原子含有化合物としては金属塩、金属ハロゲン化物、有機金属化合物を挙げることができる。
 金属硝酸塩以外の金属塩としては、硫酸塩、燐酸塩、炭酸塩、酢酸塩、蓚酸塩等が挙げられ、金属ハロゲン化物としては、塩化物、ヨウ化物、臭化物等が挙げられ、有機金属化合物としては、金属アルコキシド、有機酸塩、金属βジケトネート等が挙げられる。
The solution containing a metal nitrate may contain a metal atom-containing compound other than the metal nitrate. Examples of the metal atom-containing compound include metal salts, metal halides, and organometallic compounds.
Examples of metal salts other than metal nitrates include sulfates, phosphates, carbonates, acetates, and oxalates. Examples of metal halides include chlorides, iodides, bromides, and the like. Examples thereof include metal alkoxides, organic acid salts, and metal β-diketonates.
 金属硝酸塩を含む溶液は、少なくとも硝酸インジウムを含むことが好ましい。特に酸化物半導体膜又は酸化物導体膜を形成する場合、硝酸インジウムを用いることで、容易にインジウム含有酸化物膜を形成することができ、高い電気伝導性が得られる。
 また、金属酸化物前駆体膜を金属酸化物膜に転化する工程が紫外線を照射する工程を含む場合、前駆体膜が紫外光を効率よく吸収することができ、インジウム含有酸化物膜を容易に形成することができる。
The solution containing metal nitrate preferably contains at least indium nitrate. In particular, when an oxide semiconductor film or an oxide conductor film is formed, an indium-containing oxide film can be easily formed by using indium nitrate, and high electrical conductivity can be obtained.
Further, when the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating ultraviolet rays, the precursor film can efficiently absorb ultraviolet light, and the indium-containing oxide film can be easily formed. Can be formed.
 また、金属硝酸塩を含む溶液にインジウム以外の金属元素として、亜鉛、錫、ガリウム、及びアルミニウムから選ばれるいずれか1つ以上の金属原子を含む化合物を含有することが好ましい。前記金属元素を適量含むことにより、得られる酸化物半導体膜の閾値電圧を所望の値に制御することができ、且つ膜の電気的安定性も向上する。
 なお、インジウムと前記金属元素を含む酸化物半導体及び酸化物導電体として、In-Ga-Zn-O(IGZO)、In-Zn-O(IZO)、In-Ga-O(IGO)、In-Sn-O(ITO)、In-Sn-Zn-O(ITZO)等が挙げられる。
Moreover, it is preferable that the solution containing a metal nitrate contains a compound containing any one or more metal atoms selected from zinc, tin, gallium, and aluminum as a metal element other than indium. By including an appropriate amount of the metal element, the threshold voltage of the obtained oxide semiconductor film can be controlled to a desired value, and the electrical stability of the film is also improved.
Note that as an oxide semiconductor and an oxide conductor containing indium and the above metal elements, In—Ga—Zn—O (IGZO), In—Zn—O (IZO), In—Ga—O (IGO), In— Sn-O (ITO), In-Sn-Zn-O (ITZO), and the like can be given.
 金属硝酸塩を含む溶液に用いる溶媒は、用いる金属硝酸塩を含む金属原子含有化合物が溶解するものであれば特に制限されない。水、アルコール溶媒(メタノール、エタノール、プロパノール、エチレングリコール等)、アミド溶媒(N,N-ジメチルホルムアミド等)、ケトン溶媒(アセトン、N-メチルピロリドン、スルホラン、N,N-ジメチルイミダゾリジノン等)、エーテル溶媒(テトラヒドロフラン、メトキシエタノール等)、ニトリル溶媒(アセトニトリル等)、その他上記以外のヘテロ原子含有溶媒等が挙げられる。特に溶解性、塗れ性の観点からメタノール、メトキシエタノール等を用いることが好ましい。 The solvent used in the solution containing the metal nitrate is not particularly limited as long as the metal atom-containing compound containing the metal nitrate to be used is dissolved. Water, alcohol solvents (methanol, ethanol, propanol, ethylene glycol, etc.), amide solvents (N, N-dimethylformamide, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.) , Ether solvents (tetrahydrofuran, methoxyethanol, etc.), nitrile solvents (acetonitrile, etc.), and other heteroatom-containing solvents other than those mentioned above. In particular, from the viewpoint of solubility and paintability, it is preferable to use methanol, methoxyethanol or the like.
(塗布)
 金属硝酸塩を含む溶液(金属酸化物膜形成用塗布液)を基板上に塗布する方法は特に限定されず、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法等が挙げられる。特に、微細パターンを容易に形成する観点から、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法を用いることが好ましい。
(Application)
The method of applying a solution containing metal nitrate (coating solution for forming a metal oxide film) on the substrate is not particularly limited. Spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method , Bar coating method, die coating method, mist method, ink jet method, dispenser method, screen printing method, relief printing method, and intaglio printing method. In particular, from the viewpoint of easily forming a fine pattern, it is preferable to use at least one coating method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method.
(乾燥)
 金属酸化物膜形成用塗布液を基板上に塗布した後、塗布膜を乾燥し、第1の金属酸化物前駆体膜を得る。乾燥によって、塗布膜の流動性を低減させ、最終的に得られる酸化物膜の平坦性を向上させることができる。
 適切な乾燥温度(例えば、基板の温度が35℃以上100℃以下)を選択することにより、最終的により緻密な金属酸化物膜を得ることができる。乾燥のための加熱処理の方法は特に限定されず、ホットプレート加熱、電気炉加熱、赤外線加熱、マイクロ波加熱等から選択することができる。
 乾燥は膜の平坦性を均一に保つ観点から、塗布後、5分以内に開始することが好ましい。
 乾燥を行う時間は特に制限はないが、膜の均一性、生産性の観点から15秒以上10分以下であることが好ましい。
 また、乾燥における雰囲気に特に制限はないが、製造コスト等の観点から大気圧下、大気中で行うことが好ましい。
(Dry)
After the metal oxide film forming coating solution is applied on the substrate, the coating film is dried to obtain a first metal oxide precursor film. By drying, the fluidity of the coating film can be reduced, and the flatness of the finally obtained oxide film can be improved.
By selecting an appropriate drying temperature (for example, the substrate temperature is 35 ° C. or higher and 100 ° C. or lower), a denser metal oxide film can be finally obtained. The method of heat treatment for drying is not particularly limited, and can be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like.
Drying is preferably started within 5 minutes after coating from the viewpoint of keeping the flatness of the film uniform.
The drying time is not particularly limited, but is preferably 15 seconds or longer and 10 minutes or shorter from the viewpoint of film uniformity and productivity.
Moreover, there is no restriction | limiting in particular in the atmosphere in drying, but it is preferable to carry out in air | atmosphere under atmospheric pressure from viewpoints, such as manufacturing cost.
[第1の金属酸化物膜への転化工程]
 乾燥して得た第1の金属酸化物前駆体膜を第1の金属酸化物膜に転化する。金属酸化物前駆体膜を金属酸化物膜に転化する方法に特に制限はなく、加熱、プラズマ、紫外光、マイクロ波等を用いる手法が挙げられる。
 より低温で金属酸化物膜への転化を行う観点から、紫外線(UV:Ultraviolet)を用いる手法が好ましい。紫外線の光源としては、UVランプやレーザーが挙げられるが、大面積に均一に、安価な設備で紫外線照射を行う観点からUVランプが好ましい。
[Conversion process to first metal oxide film]
The first metal oxide precursor film obtained by drying is converted into a first metal oxide film. There is no particular limitation on the method for converting the metal oxide precursor film into the metal oxide film, and examples thereof include a method using heating, plasma, ultraviolet light, microwave, and the like.
From the viewpoint of conversion to a metal oxide film at a lower temperature, a method using ultraviolet (UV) is preferable. Examples of the ultraviolet light source include a UV lamp and a laser, and a UV lamp is preferable from the viewpoint of performing ultraviolet irradiation with a cheap facility uniformly over a large area.
 UVランプとしては、エキシマランプ、重水素ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ヘリウムランプ、カーボンアークランプ、カドミウムランプ、無電極放電ランプ等が挙げられる。特に低圧水銀ランプを用いると金属酸化物前駆体膜から金属酸化物膜への転化が容易に行えることから好ましい。 Examples of UV lamps include excimer lamps, deuterium lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, helium lamps, carbon arc lamps, cadmium lamps, and electrodeless discharge lamps. In particular, it is preferable to use a low-pressure mercury lamp because the conversion from the metal oxide precursor film to the metal oxide film can be easily performed.
 転化工程において、金属酸化物前駆体膜の膜面には波長300nm以下の紫外光を10mW/cm以上の照度で照射することが好ましい。上記波長範囲の紫外光を上記照度範囲で照射することでより短い時間で金属酸化物前駆体膜から金属酸化物膜への転化を行うことができる。
 なお、金属酸化物前駆体膜に照射する紫外線の照度は、例えば、紫外線光量計(オーク製作所社製、UV-M10、受光器UV-25)を用いて測定することができる。
In the conversion step, the film surface of the metal oxide precursor film is preferably irradiated with ultraviolet light having a wavelength of 300 nm or less at an illuminance of 10 mW / cm 2 or more. By irradiating ultraviolet light in the above wavelength range within the above illuminance range, conversion from the metal oxide precursor film to the metal oxide film can be performed in a shorter time.
Note that the illuminance of ultraviolet rays applied to the metal oxide precursor film can be measured using, for example, an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25).
 転化工程における雰囲気に制限はなく、大気圧下であっても真空下であってもよく、また、大気中であっても、任意のガス中であってもよいが、簡便に転化を行う観点から大気圧下で行うことが好ましい。 There is no limitation on the atmosphere in the conversion step, and it may be under atmospheric pressure or under vacuum, and may be in the air or in any gas, but it is easy to convert. To atmospheric pressure.
 転化工程における基板の最高到達温度は120℃以上200℃以下であることが好ましい。120℃以上であれば緻密な金属酸化物膜を容易に得られ、200℃以下であれば耐熱性の低い樹脂基板への適用が容易となる。なお、転化工程における基板の最高到達温度はサーモラベルによって測定することができる。 It is preferable that the maximum temperature reached by the substrate in the conversion step is 120 ° C. or higher and 200 ° C. or lower. If it is 120 ° C. or higher, a dense metal oxide film can be easily obtained, and if it is 200 ° C. or lower, application to a resin substrate having low heat resistance is easy. Note that the maximum temperature reached by the substrate in the conversion step can be measured by a thermo label.
 紫外線照射時の基板の温度は、用いる紫外線ランプからの輻射熱を用いてもよく、ヒーター等によって基板温度を制御してもよい。紫外線ランプからの輻射熱を用いる際には、ランプ-基板間距離やランプ出力を調整することで基板温度を制御することができる。
 紫外線照射時間は紫外線の照度にもよるが、生産性の観点から、5秒以上120分以下であることが好ましい。
The substrate temperature at the time of ultraviolet irradiation may be radiant heat from the ultraviolet lamp used, or the substrate temperature may be controlled by a heater or the like. When radiant heat from an ultraviolet lamp is used, the substrate temperature can be controlled by adjusting the lamp-substrate distance and the lamp output.
Although the ultraviolet irradiation time depends on the illuminance of the ultraviolet rays, it is preferably 5 seconds or longer and 120 minutes or shorter from the viewpoint of productivity.
[第2の金属酸化物前駆体膜の形成工程]
 第1の金属酸化物前駆体膜を第1の金属酸化物膜に転化した後、第1の金属酸化物膜上に金属硝酸塩を含む溶液を基板上に塗布し、乾燥して第1の金属酸化物膜上に第2の金属酸化物前駆体膜を形成する。ここで、第1の金属酸化物前駆体膜を形成するための金属硝酸塩を含む溶液の金属モル濃度をC(mol/L)、第2の金属酸化物前駆体膜の形成に用いる金属硝酸塩を含む溶液の金属モル濃度をC(mol/L)とすると、式(1)の関係、1>(C/C)、すなわち、金属モル濃度C(mol/L)が金属モル濃度C(mol/L)より低い溶液を用いて第2の金属酸化物前駆体膜を形成する。
[Step of forming second metal oxide precursor film]
After the first metal oxide precursor film is converted into the first metal oxide film, a solution containing metal nitrate is applied onto the substrate on the first metal oxide film and dried to form the first metal A second metal oxide precursor film is formed on the oxide film. Here, the metal molar concentration of the solution containing the metal nitrate for forming the first metal oxide precursor film is C 1 (mol / L), and the metal nitrate used for forming the second metal oxide precursor film Assuming that the metal molar concentration of the solution containing is C 2 (mol / L), the relationship of formula (1), 1> (C 2 / C 1 ), that is, the metal molar concentration C 2 (mol / L) is metal mole A second metal oxide precursor film is formed using a solution having a concentration lower than C 1 (mol / L).
 上記のように、第1の金属酸化物前駆体膜の形成に用いた金属硝酸塩を含む溶液の金属モル濃度C(mol/L)よりも金属モル濃度C(mol/L)が低い金属硝酸塩を含む溶液を用いて第2の金属酸化物前駆体膜を形成し、金属酸化物膜に転化して第1の金属酸化物膜と一体化させることで緻密な金属酸化物膜を形成することができる。 As described above, a metal having a metal molar concentration C 2 (mol / L) lower than the metal molar concentration C 1 (mol / L) of the solution containing the metal nitrate used for forming the first metal oxide precursor film. A second metal oxide precursor film is formed using a solution containing nitrate, converted to a metal oxide film, and integrated with the first metal oxide film to form a dense metal oxide film. be able to.
 第2の金属酸化物前駆体膜の形成に用いる金属硝酸塩を含む溶液は、第1の金属酸化物前駆体膜の形成に用いる金属硝酸塩を含む溶液の金属モル濃度よりも低ければよく、金属モル濃度の範囲、金属硝酸塩以外に含み得る金属硝酸塩、金属原子含有化合物、溶媒、塗布方法、塗布膜の乾燥条件などについては前述した第1金属酸化物前駆体膜の形成に用いる金属硝酸塩を含む溶液と同様である。 The solution containing the metal nitrate used for forming the second metal oxide precursor film may be lower than the metal molar concentration of the solution containing the metal nitrate used for forming the first metal oxide precursor film. A solution containing a metal nitrate used for forming the first metal oxide precursor film described above for the concentration range, metal nitrate that can be contained in addition to the metal nitrate, metal atom-containing compound, solvent, coating method, drying conditions of the coating film, etc. It is the same.
[第2の金属酸化物膜への転化工程]
 次いで乾燥して得た第2の金属酸化物前駆体膜を第2の金属酸化物膜に転化して第1の金属酸化物膜と一体化した金属酸化物膜を形成する。
 第2の金属酸化物前駆体膜を第2の金属酸化物膜に転化する手法、基板の最高到達温度等は、前述した第1の金属酸化物膜への転化工程と同様である。
[Conversion process to second metal oxide film]
Next, the second metal oxide precursor film obtained by drying is converted into a second metal oxide film to form a metal oxide film integrated with the first metal oxide film.
The method of converting the second metal oxide precursor film into the second metal oxide film, the maximum temperature reached by the substrate, and the like are the same as those in the conversion process into the first metal oxide film described above.
 上記のように金属モル濃度が相対的に高い溶液を用いて第1の金属酸化物膜を形成した後、第1の金属酸化物膜上に金属モル濃度が相対的に低い溶液を用いて第2の金属酸化物膜を形成して一体化させることで、比較的低温で緻密な金属酸化物膜を形成することができる。 After forming the first metal oxide film using a solution having a relatively high metal molar concentration as described above, the first metal oxide film is formed on the first metal oxide film using a solution having a relatively low metal molar concentration. By forming the two metal oxide films and integrating them, a dense metal oxide film can be formed at a relatively low temperature.
 なお、金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程を交互にそれぞれ3回以上繰り返してより厚みがある緻密な金属酸化物膜を形成してもよい。 In addition, the process of forming a metal oxide precursor film and the process of converting the metal oxide precursor film into a metal oxide film are alternately repeated three times or more to form a dense metal oxide film with a greater thickness. May be.
 金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを繰り返す回数は2回以上であれば特に制限されず、目標とする金属酸化物膜の厚み等を考慮して決めればよいが、生産性の観点から10回以下とすることが好ましい。 The number of times of repeating the step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film is not particularly limited as long as it is 2 times or more, and the target metal oxide film The thickness may be determined in consideration of the thickness, etc., but is preferably 10 times or less from the viewpoint of productivity.
 なお、金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程を交互にN回繰り返す場合、金属酸化物前駆体膜を形成する連続する2回の工程が(N-1)回、存在することになるが、そのうちの少なくとも1回において、式(1)の関係を満たす溶液を用い、金属酸化物前駆体膜を形成した後、金属酸化物膜に転化すればよい。少なくともN回目(最後)に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度C(mol/L)と、(N-1)回目(最後から2番目)に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度CN-1(mol/L)とが、式(1)の関係、すなわち、1>(C/CN-1)を満たすことが好ましい。金属酸化物前駆体膜を形成する全ての連続する2回の工程において、金属硝酸塩を含む溶液の金属モル濃度(mol/L)が、式(1)の関係、すなわち、C>C…CN-1>Cを満たすことがより好ましい。 When the step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film are repeated N times alternately, two consecutive times of forming the metal oxide precursor film are performed. Step (N-1) is present at least once, and after forming a metal oxide precursor film using a solution satisfying the relationship of formula (1) at least once, the metal oxide What is necessary is just to convert into a film. The metal molar concentration C N (mol / L) of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film at least Nth (last), and (N-1) th (second to last) The metal molar concentration C N-1 (mol / L) of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film is the relationship of the formula (1), that is, 1> (C N / C N -1 ) is preferably satisfied. In all two consecutive steps for forming the metal oxide precursor film, the metal molar concentration (mol / L) of the solution containing the metal nitrate is expressed by the relationship of formula (1), that is, C 1 > C 2 . More preferably, C N-1 > C N is satisfied.
 また、膜密度をより向上させる観点から、後に用いる溶液中の金属モル濃度C(mol/L)は先に用いる溶液中の金属モル濃度Cn-1(mol/L)の1/3以下、すなわち、下記式(2)の関係を満たすことが好ましい。
 1/3≧(C/Cnー1)    (2)
 一方、先に塗布した溶液の金属モル濃度Cn-1に対して後に塗布する溶液の金属モル濃度Cが低過ぎると膜密度の向上効果が小さくなるため、(C/Cn-1)≧1/10であることが好ましい。
Further, from the viewpoint of further improving the film density, the metal molar concentration C n (mol / L) in the solution used later is 1/3 or less of the metal molar concentration C n-1 (mol / L) in the previously used solution. That is, it is preferable to satisfy the relationship of the following formula (2).
1/3 ≧ (C n / C n−1 ) (2)
Meanwhile, since the effect of improving the film density when the metal molar concentration C n of the solution to be applied is too low after the metal molar concentration C n-1 of the solution applied earlier is reduced, (C n / C n-1 ) ≧ 1/10 is preferable.
 なお、金属酸化物前駆体膜を形成する際、金属硝酸塩を含む溶液を例えばスピンコートで基板上に塗布する場合、回転数等の塗布条件を同一とすれば、溶液の金属モル濃度と金属酸化物前駆体膜の膜厚は比例関係となる。
 そこで、金属酸化物前駆体膜を形成するN回の工程のうち、少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物前駆体膜の膜厚をPn-1、n回目に形成する金属酸化物前駆体膜の膜厚をPとしたときに、下記式(3)の関係を満たしてもよい。
 1>(P/Pn-1)   (3)
 少なくとも(N-1)回目に形成する金属酸化物前駆体膜の膜厚と、N回目に形成する金属酸化物前駆体膜の膜厚とが、前記式(3)の関係を満たすことが好ましく、金属酸化物前駆体膜を形成する全ての工程において、金属酸化物前駆体膜の膜厚が、前記式(3)の関係を満たすことがより好ましい。
 さらに、前記式(3)が下記式(4)であることが特に好ましい。
 1/3≧(P/Pn-1)   (4)
When forming a metal oxide precursor film, a solution containing a metal nitrate is applied onto a substrate by spin coating, for example, if the application conditions such as the rotational speed are the same, the metal molar concentration of the solution and the metal oxidation The thickness of the precursor film is proportional.
Therefore, the metal oxide formed at the (n−1) th time (n represents an integer of 2 or more and N or less) in at least two steps among the N steps of forming the metal oxide precursor film. When the film thickness of the precursor film is P n-1 and the film thickness of the metal oxide precursor film formed n times is P n , the relationship of the following formula (3) may be satisfied.
1> (P n / P n-1 ) (3)
It is preferable that at least the film thickness of the metal oxide precursor film formed at the (N-1) th time and the film thickness of the metal oxide precursor film formed at the Nth time satisfy the relationship of the formula (3). In all the steps of forming the metal oxide precursor film, it is more preferable that the film thickness of the metal oxide precursor film satisfies the relationship of the above formula (3).
Furthermore, it is particularly preferable that the formula (3) is the following formula (4).
1/3 ≧ (P n / P n−1 ) (4)
 また、金属酸化物前駆体膜の膜厚と金属酸化物膜の膜厚も比例関係となる。
 従って、金属酸化物膜を形成するN回の工程のうち、少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物膜の膜厚をTn-1、n回目に形成する金属酸化物膜の膜厚をTとしたときに、下記式(5)の関係を満たしてもよい。
 1>(T/Tn-1)   (5)
 少なくとも(N-1)回目に形成する金属酸化物膜の膜厚と、N回目に形成する金属酸化物膜の膜厚とが、前記式(5)の関係を満たすことが好ましく、金属酸化物膜を形成する全ての工程において、金属酸化物膜の膜厚が、前記式(5)の関係を満たすことがより好ましい。
 さらに、前記式(5)が下記式(6)であることが特に好ましい。
 1/3≧(T/Tn-1)   (6)
The film thickness of the metal oxide precursor film and the film thickness of the metal oxide film are also proportional to each other.
Therefore, among the N processes for forming the metal oxide film, the metal oxide film formed at the (n-1) th time (n represents an integer of 2 or more and N or less) in at least two processes. When the film thickness is T n−1 and the film thickness of the nth metal oxide film formed is T n , the relationship of the following formula (5) may be satisfied.
1> ( Tn / Tn-1 ) (5)
It is preferable that at least the film thickness of the metal oxide film formed at the (N-1) th time and the film thickness of the metal oxide film formed at the Nth time satisfy the relationship of the above formula (5). In all the steps of forming the film, it is more preferable that the thickness of the metal oxide film satisfies the relationship of the above formula (5).
Further, the formula (5) is particularly preferably the following formula (6).
1/3 ≧ (T n / T n−1 ) (6)
 なお、金属酸化物前駆体膜を形成する工程(工程A)と金属酸化物前駆体膜を金属酸化物膜に転化する工程(工程B)を各々1回ずつ行って得られる金属酸化物膜の平均膜厚が6nm以下であることが好ましく、2nm以下であることがより好ましい。6nm以下にすることによって、最終的に得られる膜密度が高い金属酸化物膜を得ることができ、2nm以下であればその効果がより高く得られる。尚、ここで述べる平均膜厚とは、工程A及び工程Bを交互に複数回繰り返して作製した金属酸化物膜の膜厚を塗布回数(工程Aの回数)で除した値を指す。例えば工程A及び工程Bを交互に2回繰り返し、最終的に得られる膜厚が10nmの場合、平均膜厚は10/2=5nmとなる。最終的に得られる金属酸化物膜の膜厚は膜の透過型電子顕微鏡(Transmission Electron Microscoe:TEM)による断面観察やX線反射率測定(X-ray reflectometry:XRR)等によって評価することができる。 The metal oxide film obtained by performing the step of forming the metal oxide precursor film (step A) and the step of converting the metal oxide precursor film into a metal oxide film (step B) once each. The average film thickness is preferably 6 nm or less, and more preferably 2 nm or less. By making the thickness 6 nm or less, a metal oxide film having a high film density finally obtained can be obtained. The average film thickness described here refers to a value obtained by dividing the film thickness of the metal oxide film produced by alternately repeating the process A and the process B a plurality of times by the number of times of application (the number of processes A). For example, when the step A and the step B are alternately repeated twice and the finally obtained film thickness is 10 nm, the average film thickness is 10/2 = 5 nm. The film thickness of the finally obtained metal oxide film can be evaluated by cross-sectional observation of the film using a transmission electron microscope (Transmission Electron Microscope: TEM), X-ray reflectometry (XRR) measurement, or the like. .
 本発明の金属酸化物膜の製造方法を用いることで、例えば、大気圧下、200℃以下の低温プロセスで緻密な金属酸化物膜を得ることができ、種々のデバイスの作製に適用することができる。本発明では、大掛かりな真空装置を用いる必要がない点、耐熱性の低い安価な樹脂基板を用いることができる点、原料が安価である点等からデバイス作製コストを大幅に低減可能となる。
 また、耐熱性の低い樹脂基板に適用できることからフレキシブルディスプレイ等のフレキシブル電子デバイスを安価に作製することが可能となる。本発明は、特に金属酸化物半導体膜や金属酸化物導電膜の作製に用いた際に極めて電子伝達特性が高い膜を得ることができる。
By using the method for producing a metal oxide film of the present invention, for example, a dense metal oxide film can be obtained by a low-temperature process at 200 ° C. or lower under atmospheric pressure, and can be applied to the production of various devices. it can. In the present invention, the device manufacturing cost can be greatly reduced because it is not necessary to use a large vacuum device, an inexpensive resin substrate having low heat resistance can be used, and the raw material is inexpensive.
Further, since it can be applied to a resin substrate having low heat resistance, a flexible electronic device such as a flexible display can be manufactured at low cost. The present invention can obtain a film having extremely high electron transfer characteristics, particularly when used for manufacturing a metal oxide semiconductor film or a metal oxide conductive film.
<薄膜トランジスタ>
 本発明の実施形態により作製された金属酸化物半導体膜は高い半導体特性を示すことから、薄膜トランジスタ(TFT)の活性層(酸化物半導体層)に好適に用いることができる。以下、本発明の製造方法により作製された金属酸化物膜を薄膜トランジスタの活性層として用いる実施形態について説明する。
 尚、実施形態としてはトップゲート型の薄膜トランジスタについて記述するが、本発明の金属酸化物半導体膜を用いた薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。
<Thin film transistor>
Since the metal oxide semiconductor film manufactured according to the embodiment of the present invention exhibits high semiconductor characteristics, it can be suitably used for an active layer (oxide semiconductor layer) of a thin film transistor (TFT). Hereinafter, an embodiment in which a metal oxide film produced by the production method of the present invention is used as an active layer of a thin film transistor will be described.
Note that although a top-gate thin film transistor is described as an embodiment, the thin-film transistor using the metal oxide semiconductor film of the present invention is not limited to the top-gate thin film transistor, and may be a bottom-gate thin film transistor.
 本発明に係るTFTの素子構造は特に限定されず、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)及びスタガ構造(トップゲート型とも呼ばれる)のいずれの態様であってもよい。また、活性層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型、ボトムコンタクト型のいずれの態様であってもよい。
 トップゲート型とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に活性層が形成された形態である。ボトムゲート型とは、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に活性層が形成された形態である。また、ボトムコンタクト型とは、ソース・ドレイン電極が活性層よりも先に形成されて活性層の下面がソース・ドレイン電極に接触する形態である。トップコンタクト型とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
The element structure of the TFT according to the present invention is not particularly limited, and is either a so-called reverse stagger structure (also referred to as a bottom gate type) or a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. Also good. Further, based on the contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), either a so-called top contact type or bottom contact type may be used.
The top gate type is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowest layer. The bottom gate type is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film. The bottom contact type is a mode in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes. In the top contact type, the active layer is formed before the source / drain electrodes, and the upper surface of the active layer is in contact with the source / drain electrodes.
 図1は、トップゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図1に示すTFT10では、基板12の一方の主面上に活性層14として上述の金属酸化物半導体膜が積層されている。そして、活性層14上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上にゲート絶縁膜20と、ゲート電極22とが順に積層されている。 FIG. 1 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a top gate structure. In the TFT 10 shown in FIG. 1, the above-described metal oxide semiconductor film is stacked as an active layer 14 on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the active layer 14 so as to be separated from each other, and a gate insulating film 20 and a gate electrode 22 are sequentially stacked thereon.
 図2は、トップゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図2に示すTFT30では、基板12の一方の主面上にソース電極16及びドレイン電極18が互いに離間して設置されている。そして、活性層14として上述の金属酸化物半導体膜と、ゲート絶縁膜20と、ゲート電極22と、が順に積層されている。 FIG. 2 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a top gate structure. In the TFT 30 shown in FIG. 2, the source electrode 16 and the drain electrode 18 are disposed on one main surface of the substrate 12 so as to be separated from each other. Then, the above-described metal oxide semiconductor film, the gate insulating film 20, and the gate electrode 22 are sequentially stacked as the active layer 14.
 図3は、ボトムゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図3に示すTFT40では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、活性層14として上述の金属酸化物半導体膜と、が順に積層されている。そして、活性層14の表面上にソース電極16及びドレイン電極18が互いに離間して設置されている。 FIG. 3 is a schematic view showing an example of a TFT according to the present invention having a bottom gate structure and a top contact type. In the TFT 40 shown in FIG. 3, the gate electrode 22, the gate insulating film 20, and the above-described metal oxide semiconductor film as the active layer 14 are sequentially stacked on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the surface of the active layer 14 so as to be separated from each other.
 図4は、ボトムゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図4に示すTFT50では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、が順に積層されている。そして、ゲート絶縁膜20の表面上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上に、活性層14として上述の金属酸化物半導体膜が積層されている。 FIG. 4 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a bottom gate structure. In the TFT 50 shown in FIG. 4, the gate electrode 22 and the gate insulating film 20 are sequentially stacked on one main surface of the substrate 12. Then, the source electrode 16 and the drain electrode 18 are provided on the surface of the gate insulating film 20 so as to be spaced apart from each other, and the above-described metal oxide semiconductor film is stacked as the active layer 14 thereon.
 以下の実施形態としては図1に示すトップゲート型の薄膜トランジスタ10ついて主に説明するが、本発明の薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。 In the following embodiment, the top gate type thin film transistor 10 shown in FIG. 1 will be mainly described. However, the thin film transistor of the present invention is not limited to the top gate type and may be a bottom gate type thin film transistor.
(活性層)
 本実施形態の薄膜トランジスタ10を製造する場合、まず、金属硝酸塩を含み、金属モル濃度が異なる2種以上の溶液を準備し、前述した式(1)の関係を満たす条件で、金属酸化物前駆体膜の形成工程及び金属酸化物膜への転化工程を交互に2回以上繰り返して基板12上に金属酸化物半導体膜を形成する。
 金属酸化物半導体膜のパターンニングは前述したインクジェット法、ディスペンサー法、凸版印刷法、又は凹版印刷法によって行ってもよく、金属酸化物膜の形成後にフォトリソグラフィー及びエッチングによりパターニングを行ってもよい。
 フォトリソグラフィー及びエッチングによりパターン形成を行うには、金属酸化物半導体膜を形成した後、活性層14として残存させる部分にフォトリソグラフィーによりレジストパターンを形成した後、塩酸、硝酸、希硫酸、又は燐酸、硝酸及び酢酸の混合液等の酸溶液によりエッチングすることにより活性層14のパターンを形成する。
(Active layer)
When the thin film transistor 10 of the present embodiment is manufactured, first, a metal oxide precursor is prepared under the conditions satisfying the relationship of the above-described formula (1) by preparing two or more kinds of solutions containing metal nitrate and different metal molar concentrations. The metal oxide semiconductor film is formed on the substrate 12 by alternately repeating the film formation process and the conversion process to the metal oxide film twice or more.
The metal oxide semiconductor film may be patterned by the above-described ink jet method, dispenser method, relief printing method, or intaglio printing method, and may be patterned by photolithography and etching after the formation of the metal oxide film.
In order to perform pattern formation by photolithography and etching, after forming a metal oxide semiconductor film, after forming a resist pattern by photolithography on a portion to be left as the active layer 14, hydrochloric acid, nitric acid, dilute sulfuric acid, or phosphoric acid, The pattern of the active layer 14 is formed by etching with an acid solution such as a mixed solution of nitric acid and acetic acid.
 金属酸化物半導体膜の膜厚は膜の平坦性及び膜形成に要する時間の観点から5nm以上50nm以下であることが好ましい。 The thickness of the metal oxide semiconductor film is preferably 5 nm or more and 50 nm or less from the viewpoint of film flatness and time required for film formation.
 また、高い移動度を得る観点から、活性層14におけるインジウムの含有量は、活性層14に含まれる全金属元素の50atom%以上であることが好ましく、80atom%以上であることがより好ましい。 Further, from the viewpoint of obtaining high mobility, the indium content in the active layer 14 is preferably 50 atom% or more of the total metal elements contained in the active layer 14, and more preferably 80 atom% or more.
(保護層)
 活性層14上にはソース・ドレイン電極16,18のエッチング時に活性層14を保護するための保護層(不図示)を形成することが好ましい。保護層の成膜方法に特に限定はなく、金属酸化物半導体膜を形成した後、パターニングする前に形成してもよいし、金属酸化物膜のパターニング後に形成してもよい。
 また、保護層としては金属酸化物層であってもよく、樹脂のような有機材料であってもよい。なお、保護層はソース電極15及びドレイン電極18(適宜「ソース・ドレイン電極」と記す)の形成後に除去しても構わない。
(Protective layer)
A protective layer (not shown) for protecting the active layer 14 is preferably formed on the active layer 14 when the source / drain electrodes 16 and 18 are etched. There is no particular limitation on the method for forming the protective layer, and the protective layer may be formed after the metal oxide semiconductor film is formed and before the patterning, or after the metal oxide film is patterned.
Further, the protective layer may be a metal oxide layer or an organic material such as a resin. The protective layer may be removed after the source electrode 15 and the drain electrode 18 (referred to as “source / drain electrodes” as appropriate) are formed.
(ソース・ドレイン電極)
 金属酸化物半導体膜で形成される活性層14上にソース・ドレイン電極16,18を形成する。ソース・ドレイン電極16,18はそれぞれ電極として機能するように高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O等の金属酸化物導電膜等を用いて形成することができる。
(Source / drain electrodes)
Source / drain electrodes 16 and 18 are formed on the active layer 14 formed of a metal oxide semiconductor film. The source / drain electrodes 16 and 18 have high conductivity so as to function as electrodes, respectively, and metals such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide Alternatively, a metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), or In—Ga—Zn—O can be used.
 ソース・ドレイン電極16,18を形成する場合、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。 When the source / drain electrodes 16 and 18 are formed, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, a chemical method such as a CVD method and a plasma CVD method, etc. The film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
 ソース・ドレイン電極16,18の膜厚は、成膜性、エッチング又はリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上100nm以下とすることがより好ましい。 The film thickness of the source / drain electrodes 16 and 18 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 100 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferred.
 ソース・ドレイン電極16,18は、導電膜を形成した後、例えば、エッチング又はリフトオフ法により所定の形状にパターンニングして形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ソース・ドレイン電極16,18及びこれらの電極に接続する配線(不図示)を同時にパターンニングすることが好ましい。 The source / drain electrodes 16 and 18 may be formed by patterning into a predetermined shape by, for example, etching or a lift-off method after forming a conductive film, or may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the source / drain electrodes 16 and 18 and wiring (not shown) connected to these electrodes simultaneously.
(ゲート絶縁膜)
 ソース・ドレイン電極16,18及び配線(不図示)を形成した後、ゲート絶縁膜20を形成する。ゲート絶縁膜20は高い絶縁性を有するものが好ましく、例えばSiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を2種以上含む絶縁膜としてもよい。
 ゲート絶縁膜20は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
(Gate insulation film)
After the source / drain electrodes 16 and 18 and the wiring (not shown) are formed, the gate insulating film 20 is formed. The gate insulating film 20 preferably has a high insulating property. For example, an insulating film such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , or a compound thereof is used. An insulating film including two or more kinds may be used.
The gate insulating film 20 is a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method. The film may be formed according to a method appropriately selected in consideration of the suitability of
 尚、ゲート絶縁膜20はリーク電流の低下及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁膜20の厚みが大きすぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜20は材質にもよるが、ゲート絶縁膜20の厚みは10nm以上10μm以下が好ましく、50nm以上1000nm以下がより好ましく、100nm以上400nm以下が特に好ましい。 The gate insulating film 20 needs to have a thickness for reducing leakage current and improving voltage resistance. On the other hand, if the gate insulating film 20 is too thick, the driving voltage is increased. Although the gate insulating film 20 depends on the material, the thickness of the gate insulating film 20 is preferably 10 nm to 10 μm, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
(ゲート電極)
 ゲート絶縁膜20を形成した後、ゲート電極22を形成する。ゲート電極22は高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、IGZO等の金属酸化物導電膜等を用いて形成することができる。ゲート電極22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることができる。
(Gate electrode)
After forming the gate insulating film 20, a gate electrode 22 is formed. The gate electrode 22 is made of highly conductive metal such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide ( It can be formed using a metal oxide conductive film such as ITO), zinc indium oxide (IZO), or IGZO. As the gate electrode 22, these conductive films can be used as a single layer structure or a stacked structure of two or more layers.
 ゲート電極22は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜する。
 ゲート電極22を形成するための金属膜の膜厚は、成膜性、エッチングやリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上200nm以下とすることがより好ましい。
 成膜後、エッチング又はリフトオフ法により所定の形状にパターンニングすることにより、ゲート電極22を形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ゲート電極22及びゲート配線(不図示)を同時にパターンニングすることが好ましい。
The gate electrode 22 is made of a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method. The film is formed according to a method appropriately selected in consideration of the suitability of the above.
The film thickness of the metal film for forming the gate electrode 22 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 200 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferably.
After the film formation, the gate electrode 22 may be formed by patterning into a predetermined shape by an etching or lift-off method, or the pattern may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the gate electrode 22 and the gate wiring (not shown) at the same time.
 以上で説明した本実施形態の薄膜トランジスタ10の用途には特に限定はないが、高い輸送特性を示すことから、例えば電気光学装置。具体的には、液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置における駆動素子、耐熱性の低い樹脂基板を用いたフレキシブルディスプレイの作製に好適である。
 更に本発明により製造される薄膜トランジスタは、X線センサ、イメージセンサ等の各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として好適に用いられる。
The use of the thin film transistor 10 of the present embodiment described above is not particularly limited, but exhibits high transport characteristics, for example, an electro-optical device. Specifically, it is suitable for manufacturing a flexible display using a driving element in a display device such as a liquid crystal display device, an organic EL (Electro Luminescence) display device, and an inorganic EL display device, and a resin substrate having low heat resistance.
Further, the thin film transistor manufactured according to the present invention is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).
<液晶表示装置>
 本発明の一実施形態である液晶表示装置について、図5にその一部分の概略断面図を示し、図6に電気配線の概略構成図を示す。
<Liquid crystal display device>
FIG. 5 shows a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the present invention, and FIG. 6 shows a schematic configuration diagram of electrical wiring.
 図5に示すように、本実施形態の液晶表示装置100は、図1に示したトップゲート構造でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護されたゲート電極22上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのR(赤)G(緑)B(青)のカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。 As shown in FIG. 5, the liquid crystal display device 100 according to the present embodiment includes a top contact type TFT 10 having the top gate structure shown in FIG. 1 and a pixel lower electrode on the gate electrode 22 protected by the passivation layer 102 of the TFT 10. 104 and a liquid crystal layer 108 sandwiched between the counter upper electrode 106 and an R (red) G (green) B (blue) color filter 110 for developing different colors corresponding to each pixel. The polarizing plate 112a and 112b are provided on the substrate 12 side and the RGB color filter 110, respectively.
 また、図6に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。 Further, as shown in FIG. 6, the liquid crystal display device 100 of the present embodiment includes a plurality of gate wirings 112 parallel to each other and data wirings 114 intersecting with the gate wirings 112 and parallel to each other. Here, the gate wiring 112 and the data wiring 114 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.
 TFT10のゲート電極22は、ゲート配線112に接続されており、TFT10のソース電極16はデータ配線114に接続されている。また、TFT10のドレイン電極18はゲート絶縁膜20に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。 The gate electrode 22 of the TFT 10 is connected to the gate wiring 112, and the source electrode 16 of the TFT 10 is connected to the data wiring 114. The drain electrode 18 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating film 20 (a conductor is embedded in the contact hole 116). The pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.
<有機EL表示装置>
 本発明の一実施形態に係るアクティブマトリックス方式の有機EL表示装置について、図7に一部分の概略断面図を示し、図8に電気配線の概略構成図を示す。
<Organic EL display device>
FIG. 7 shows a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the present invention, and FIG. 8 shows a schematic configuration diagram of electrical wiring.
 本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1に示したトップゲート構造のTFT10が、パッシベーション層202を備えた基板12上に、駆動用TFT10aおよびスイッチング用TFT10bとして備えられ、TFT10a,10b上に下部電極208および上部電極210に挟まれた有機発光層212からなる有機EL発光素子214を備え、上面もパッシベーション層216により保護された構成となっている。 The active matrix organic EL display device 200 of the present embodiment includes the TFT 10 having the top gate structure shown in FIG. 1 as a driving TFT 10a and a switching TFT 10b on a substrate 12 having a passivation layer 202. , 10b is provided with an organic EL light emitting element 214 composed of an organic light emitting layer 212 sandwiched between a lower electrode 208 and an upper electrode 210, and the upper surface is also protected by a passivation layer 216.
 また、図8に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極22は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極16はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極18は駆動用TFT10aのゲート電極22に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極16は駆動配線224に接続され、ドレイン電極18は有機EL発光素子214に接続される。 As shown in FIG. 8, the organic EL display device 200 according to the present embodiment includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220. I have. Here, the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated. The gate electrode 22 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 16 of the switching TFT 10 b is connected to the data wiring 222. The drain electrode 18 of the switching TFT 10b is connected to the gate electrode 22 of the driving TFT 10a, and the driving TFT 10a is kept on by using the capacitor 226. The source electrode 16 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 18 is connected to the organic EL light emitting element 214.
 なお、図7に示した有機EL表示装置において、上部電極210を透明電極としてトップエミッション型としてもよいし、下部電極208およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。 In the organic EL display device shown in FIG. 7, the upper electrode 210 may be a top emission type using a transparent electrode, or the bottom electrode 208 and each TFT electrode may be a transparent electrode.
<X線センサ>
 本発明の一実施形態であるX線センサについて、図9にその一部分の概略断面図を示し、図10にその電気配線の概略構成図を示す。
<X-ray sensor>
FIG. 9 shows a schematic sectional view of a part of an X-ray sensor according to an embodiment of the present invention, and FIG. 10 shows a schematic configuration diagram of its electrical wiring.
 本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。 The X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed. A passivation film 308 is provided on the TFT 10.
 キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極16およびドレイン電極18のいずれか一方(図9においてはドレイン電極18)と接続されている。 The capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314. The capacitor upper electrode 314 is connected to one of the source electrode 16 and the drain electrode 18 (the drain electrode 18 in FIG. 9) of the TFT 10 through a contact hole 318 provided in the insulating film 316.
 電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
 X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
 上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
The charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
The X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
The upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.
 図10に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。 As shown in FIG. 10, the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wirings 320 and are parallel to each other. Here, the gate wiring 320 and the data wiring 322 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.
 TFT10のゲート電極22は、ゲート配線320に接続されており、TFT10のソース電極16はデータ配線322に接続されている。また、TFT10のドレイン電極18は電荷収集用電極302に接続されており、さらに電荷収集用電極302は、キャパシタ310に接続されている。 The gate electrode 22 of the TFT 10 is connected to the gate wiring 320, and the source electrode 16 of the TFT 10 is connected to the data wiring 322. The drain electrode 18 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.
 本実施形態のX線センサ300において、X線は図9中、上部電極306側から入射してX線変換層304で電子-正孔対を生成する。X線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。 In the X-ray sensor 300 of this embodiment, X-rays enter from the upper electrode 306 side in FIG. 9 and generate electron-hole pairs in the X-ray conversion layer 304. By applying a high electric field to the X-ray conversion layer 304 by the upper electrode 306, the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.
 なお、上記実施形態の液晶表示装置100、有機EL表示装置200、及びX線センサ300においては、トップゲート構造のTFTを備えるものとしたが、TFTはこれに限定されず、図2~図4に示す構造のTFTであってもよい。 In the liquid crystal display device 100, the organic EL display device 200, and the X-ray sensor 300 of the above embodiment, a TFT having a top gate structure is provided. However, the TFT is not limited to this, and FIGS. A TFT having the structure shown in FIG.
 以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。 Examples will be described below, but the present invention is not limited to these examples.
 硝酸インジウム(In(NO・xHO、4N、高純度化学研究所社製)を2-メトキシエタノール(試薬特級、和光純薬工業社製)中に溶解させ、下記表1に示す硝酸インジウム濃度の異なる溶液を作製した。 Indium nitrate (In (NO 3 ) 3 × H 2 O, 4N, manufactured by High Purity Chemical Research Laboratories) was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and shown in Table 1 below. Solutions with different indium nitrate concentrations were prepared.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、以下のように簡易型のTFTを作製した。 Using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, a simple TFT was fabricated as follows.
<実施例1:溶液B→溶液F>
 熱酸化膜付p型Si 1inch□基板上に、溶液Bを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、第1の金属酸化物半導体前駆体膜を得た。
<Example 1: Solution B → Solution F>
The solution B is spin coated on a p-type Si 1inch □ substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute to obtain a first metal oxide. A semiconductor precursor film was obtained.
 得られた第1の金属酸化物半導体前駆体膜に下記条件で紫外線照射処理を行うことで第1の金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所社製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
The obtained first metal oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to convert to the first metal oxide semiconductor film.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
 続いて、得られた第1の金属酸化物半導体膜上に、溶液Fを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、第2の金属酸化物半導体前駆体膜を得た。 Subsequently, solution F is spin-coated on the obtained first metal oxide semiconductor film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute. A metal oxide semiconductor precursor film was obtained.
 得られた第1の金属酸化物半導体膜上の第2の金属酸化物半導体前駆体膜を、第1の金属酸化物半導体膜を得る際に行ったのと同じ条件で紫外線処理を行うことで、第2の金属酸化物半導体前駆体膜を転化させ、第1の金属酸化物半導体膜と一体化した金属酸化物半導体膜を得た。 By subjecting the second metal oxide semiconductor precursor film on the obtained first metal oxide semiconductor film to an ultraviolet treatment under the same conditions as when the first metal oxide semiconductor film was obtained. The second metal oxide semiconductor precursor film was converted to obtain a metal oxide semiconductor film integrated with the first metal oxide semiconductor film.
<実施例2:溶液C→溶液E>
 第1の金属酸化物半導体前駆体膜の形成に溶液Cを、第2の金属酸化物半導体前駆体膜の形成に溶液Eを用いたこと以外は実施例1と同様にして熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。
<Example 2: Solution C → Solution E>
P with a thermal oxide film was applied in the same manner as in Example 1 except that the solution C was used to form the first metal oxide semiconductor precursor film and the solution E was used to form the second metal oxide semiconductor precursor film. A metal oxide semiconductor film was formed on a type Si 1 inch square substrate.
<比較例1:溶液F→溶液B>
 第1の金属酸化物半導体前駆体膜の形成に溶液Fを、第2の金属酸化物半導体前駆体膜の形成に溶液Bを用いたこと以外は実施例1と同様にして熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。
<Comparative Example 1: Solution F → Solution B>
The thermal oxide film-attached p was formed in the same manner as in Example 1 except that the solution F was used for forming the first metal oxide semiconductor precursor film and the solution B was used for forming the second metal oxide semiconductor precursor film. A metal oxide semiconductor film was formed on a type Si 1 inch square substrate.
<比較例2:溶液A>
 熱酸化膜付p型Si 1inch□基板上に、溶液Aを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、第1の金属酸化物半導体前駆体膜を得た。
<Comparative Example 2: Solution A>
A solution A is spin-coated on a p-type Si 1inch □ substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute to obtain a first metal oxide. A semiconductor precursor film was obtained.
 得られた第1の金属酸化物半導体前駆体膜に下記条件で紫外線照射処理を行うことで第1の金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。
 ランプ点灯から3分間で最大値に達し、15mW/cmであった。紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
The obtained first metal oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to convert to the first metal oxide semiconductor film.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25).
The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 . After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
 得られた第1の金属酸化物半導体膜に対し、再度同一条件にて紫外線照射処理を行った。 The obtained first metal oxide semiconductor film was again subjected to ultraviolet irradiation treatment under the same conditions.
<比較例3:溶液D→溶液D>
 第1の金属酸化物半導体前駆体膜の形成に溶液Dを、第2の金属酸化物半導体前駆体膜の形成に溶液Dを用いたこと以外は実施例1と同様にして熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。
<Comparative Example 3: Solution D → Solution D>
P with a thermal oxide film was applied in the same manner as in Example 1 except that the solution D was used to form the first metal oxide semiconductor precursor film and the solution D was used to form the second metal oxide semiconductor precursor film. A metal oxide semiconductor film was formed on a type Si 1 inch square substrate.
<比較例4:溶液E→溶液C>
 第1の金属酸化物半導体前駆体膜の形成に溶液Eを、第2の金属酸化物半導体前駆体膜の形成に溶液Cを用いたこと以外は実施例1と同様にして熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。
<Comparative Example 4: Solution E → Solution C>
P with a thermal oxide film was applied in the same manner as in Example 1 except that the solution E was used for forming the first metal oxide semiconductor precursor film and the solution C was used for forming the second metal oxide semiconductor precursor film. A metal oxide semiconductor film was formed on a type Si 1 inch square substrate.
<実施例3:溶液H→溶液G>
 第1の金属酸化物半導体前駆体膜の形成に溶液Hを、第2の金属酸化物半導体前駆体膜の形成に溶液Gを用いたこと以外は実施例1と同様にして熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。
<Example 3: Solution H → Solution G>
A thermal oxide film-attached p was formed in the same manner as in Example 1 except that the solution H was used for forming the first metal oxide semiconductor precursor film and the solution G was used for forming the second metal oxide semiconductor precursor film. A metal oxide semiconductor film was formed on a type Si 1 inch square substrate.
 実施例1~3及び比較例1~4で作製した金属酸化物半導体膜の膜厚を断面TEM(Transmission Electron Microscope)観察によって確認したところ、全て10.5nm±1.0nmの範囲に収まっており、試料間で膜厚に大きな差がないことが確認された。また、全ての試料において、膜中に明瞭な界面層は確認されなかった。 When the film thicknesses of the metal oxide semiconductor films prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were confirmed by cross-sectional TEM (Transmission Electron Microscope) observation, all were within the range of 10.5 nm ± 1.0 nm. It was confirmed that there was no significant difference in film thickness between samples. In all samples, no clear interface layer was observed in the film.
 上記実施例及び比較例で得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Ti電極を50nmの厚さに成膜した。ソース・ドレイン電極のサイズは各々1mm□とし、電極間距離は0.2mmとした。 The source / drain electrodes were formed by vapor deposition on the oxide semiconductor films obtained in the above examples and comparative examples. The source / drain electrodes were formed by pattern deposition using a metal mask, and a Ti electrode was deposited to a thickness of 50 nm. The size of the source / drain electrodes was 1 mm □, and the distance between the electrodes was 0.2 mm.
[評価]
(移動度)
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
[Evaluation]
(Mobility)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
 図11に実施例1、2及び比較例1~4で作製したTFTのV-I特性を示し、図12に実施例3で作製したTFTのV-I特性を示す。
 また、実施例1~3及び比較例1~4のV-I特性から見積もった線形移動度を表2に示す。
 併せて、実施例1~3及び比較例1~4と同様の手法で作製した金属酸化物半導体膜についてX線反射率測定(X-ray reflectometry:XRR)にて算出した平均膜密度の値を示す。ここで言うところの平均膜密度とはXRRスペクトルから膜厚、膜密度、表面ラフネスをパラメータとしてフィッティングを行う際に、金属酸化物薄膜を密度の異なる複数層のモデルとし、各層の膜密度を膜厚で乗じた値を加算した後に、金属酸化物薄膜の全膜厚で除した値をいう。例えば、金属酸化物薄膜を3層とした場合にシミュレーション結果と良い一致を示す金属酸化物薄膜であって、1層目が膜密度4g/cmで膜厚1nm、2層目が5g/cmで膜厚8nm、3層目が膜密度4g/cmで膜厚1nmとすると、この金属酸化物薄膜の平均膜密度は(4×1+5×8+4×1)/(1+8+1)=4.8g/cmとなる。尚、実測スペクトルとシミュレーション結果が良い一致を示すか否かは信頼性因子(R値)で見積もることが出来、良い一致を示すものは、R値が0.015以下であることを意味する。
Indicates, V g -I d characteristics of the TFT fabricated in Examples 1 and 2 and Comparative Examples 1 to 4 in FIG. 11 shows, V g -I d characteristics of the TFT manufactured in Example 3 in Figure 12.
Also shows the linear mobility was estimated from, V g -I d characteristics of the Examples 1-3 and Comparative Examples 1-4 in Table 2.
In addition, the average film density value calculated by X-ray reflectometry (XRR) for the metal oxide semiconductor films produced by the same method as in Examples 1 to 3 and Comparative Examples 1 to 4 is used. Show. The average film density referred to here is a model of a plurality of layers having different densities of the metal oxide thin film when fitting the film thickness, film density, and surface roughness from the XRR spectrum as parameters. After adding the value multiplied by the thickness, it is the value divided by the total thickness of the metal oxide thin film. For example, when the metal oxide thin film has three layers, the metal oxide thin film shows a good agreement with the simulation results. The first layer has a film density of 4 g / cm 3 , the film thickness is 1 nm, and the second layer is 5 g / cm. 3 is 8 nm, and the third layer has a film density of 4 g / cm 3 and a film thickness of 1 nm. The average film density of the metal oxide thin film is (4 × 1 + 5 × 8 + 4 × 1) / (1 + 8 + 1) = 4.8 g. / Cm 3 . Whether or not the measured spectrum and the simulation result show a good match can be estimated by a reliability factor (R value), and a good match means that the R value is 0.015 or less.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 塗布液の金属モル濃度(mol/L)が1>(C/C)を満たす実施例1~3では、1≦(C/C)である比較例1、3、4や溶液の塗布・乾燥を1回だけ行った比較例2に比べて高い移動度が得られ、且つ高い膜密度が得られた。
 特に、1/3≧(C/C)を満たす実施例1、2では移動度が2cm/Vs前後の高いトランジスタ動作が確認された。
 この結果から、実施例で作製した金属酸化物半導体膜は比較例で作製した金属酸化物半導体膜よりも緻密な膜が形成されたと考えられる。
In Examples 1 to 3 metal molar concentration of the coating solution (mol / L) 1> satisfy the (C 2 / C 1), and 1 ≦ (C 2 / C 1 ) in a comparative example 1, 3 and 4 solutions High mobility was obtained and a high film density was obtained as compared with Comparative Example 2 in which the coating and drying were performed only once.
In particular, in Examples 1 and 2 satisfying 1/3 ≧ (C 2 / C 1 ), a high transistor operation with a mobility of around 2 cm 2 / Vs was confirmed.
From this result, it is considered that the metal oxide semiconductor film manufactured in the example was formed denser than the metal oxide semiconductor film manufactured in the comparative example.
(金属モル濃度と膜厚の関係)
 なお、溶液A~Hについて、スピンコート法によって同じ回転数で塗布した場合、溶液の金属モル濃度と、得られる金属酸化物前駆体膜の膜厚は比例関係にあり、金属酸化物膜の膜厚と金属酸化物膜の膜厚も比例関係にあった。
(Relationship between metal molar concentration and film thickness)
When the solutions A to H are applied at the same rotational speed by spin coating, the metal molar concentration of the solution and the film thickness of the obtained metal oxide precursor film are in a proportional relationship, and the film of the metal oxide film The thickness and the thickness of the metal oxide film were also in a proportional relationship.
<実施例4:溶液B→溶液F→溶液E>
 第1の金属酸化物半導体前駆体膜の形成に溶液Bを、第2の金属酸化物半導体前駆体膜の形成に溶液Fを用い、更に第3の金属酸化物半導体前駆体膜の形成に溶液Eを用い、熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。尚、金属酸化物半導体膜の膜厚が10.5nm±1.0nmの範囲に収まるようにスピンコートの回転数を3000rpmとした。
 本金属酸化物半導体膜上に実施例1~3及び比較例1~4と同様の手法でソース・ドレイン電極を形成し、トランジスタ特性(V-I特性)の測定を行ったところ、線形移動度2.2cm/Vs、平均膜密度5.85g/cmの値を得た。
<Example 4: Solution B → Solution F → Solution E>
The solution B is used to form the first metal oxide semiconductor precursor film, the solution F is used to form the second metal oxide semiconductor precursor film, and the solution is used to form the third metal oxide semiconductor precursor film. Using E, a metal oxide semiconductor film was formed on a p-type Si 1inch □ substrate with a thermal oxide film. The spin coat rotation speed was set to 3000 rpm so that the thickness of the metal oxide semiconductor film was within the range of 10.5 nm ± 1.0 nm.
When the metal oxide to form the source and drain electrodes in the same manner as Examples 1-3 and Comparative Examples 1-4 to the semiconductor film, it was measured transistor characteristics (V g -I d characteristics), linear A mobility of 2.2 cm 2 / Vs and an average film density of 5.85 g / cm 3 were obtained.
<実施例5:溶液F→溶液B→溶液F>
 第1の金属酸化物半導体前駆体膜の形成に溶液Fを、第2の金属酸化物半導体前駆体膜の形成に溶液Bを用い、更に第3の金属酸化物半導体前駆体膜の形成に溶液Fを用い、熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。尚、金属酸化物半導体膜の膜厚が10.5nm±1.0nmの範囲に収まるようにスピンコートの回転数を3000rpmとした。
 本金属酸化物半導体膜上に実施例1~3及び比較例1~4と同様の手法でソース・ドレイン電極を形成し、トランジスタ特性(V-I特性)の測定を行ったところ、線形移動度1.9cm/Vs、平均膜密度5.84g/cmの値を得た。
<Example 5: Solution F → Solution B → Solution F>
The solution F is used to form the first metal oxide semiconductor precursor film, the solution B is used to form the second metal oxide semiconductor precursor film, and the solution is used to form the third metal oxide semiconductor precursor film. Using F, a metal oxide semiconductor film was formed on a p-type Si 1 inch square substrate with a thermal oxide film. The spin coat rotation speed was set to 3000 rpm so that the thickness of the metal oxide semiconductor film was within the range of 10.5 nm ± 1.0 nm.
When the metal oxide to form the source and drain electrodes in the same manner as Examples 1-3 and Comparative Examples 1-4 to the semiconductor film, it was measured transistor characteristics (V g -I d characteristics), linear A mobility of 1.9 cm 2 / Vs and an average film density of 5.84 g / cm 3 were obtained.
<実施例6:溶液C→溶液D→溶液E>
 第1の金属酸化物半導体前駆体膜の形成に溶液Cを、第2の金属酸化物半導体前駆体膜の形成に溶液Dを用い、更に第3の金属酸化物半導体前駆体膜の形成に溶液Eを用い、熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。尚、金属酸化物半導体膜の膜厚が10.5nm±1.0nmの範囲に収まるようにスピンコートの回転数を3000rpmとした。
 本金属酸化物半導体膜上に実施例1~3及び比較例1~4と同様の手法でソース・ドレイン電極を形成し、トランジスタ特性(V-I特性)の測定を行ったところ、線形移動度3.0cm/Vs、平均膜密度5.97g/cmの値を得た。
<Example 6: Solution C-> Solution D-> Solution E>
The solution C is used for forming the first metal oxide semiconductor precursor film, the solution D is used for forming the second metal oxide semiconductor precursor film, and the solution is used for forming the third metal oxide semiconductor precursor film. Using E, a metal oxide semiconductor film was formed on a p-type Si 1inch □ substrate with a thermal oxide film. The spin coat rotation speed was set to 3000 rpm so that the thickness of the metal oxide semiconductor film was within the range of 10.5 nm ± 1.0 nm.
When the metal oxide to form the source and drain electrodes in the same manner as Examples 1-3 and Comparative Examples 1-4 to the semiconductor film, it was measured transistor characteristics (V g -I d characteristics), linear A mobility of 3.0 cm 2 / Vs and an average film density of 5.97 g / cm 3 were obtained.
<比較例5:溶液E→溶液D→溶液C>
 第1の金属酸化物半導体前駆体膜の形成に溶液Eを、第2の金属酸化物半導体前駆体膜の形成に溶液Dを用い、更に第3の金属酸化物半導体前駆体膜の形成に溶液Cを用い、熱酸化膜付p型Si 1inch□基板上に金属酸化物半導体膜を形成した。尚、金属酸化物半導体膜の膜厚が10.5nm±1.0nmの範囲に収まるようにスピンコートの回転数を3000rpmとした。
 本金属酸化物半導体膜上に実施例1~3及び比較例1~4と同様の手法でソース・ドレイン電極を形成し、トランジスタ特性(V-I特性)の測定を行ったところ、線形移動度0.5cm/Vs、平均膜密度5.10g/cmの値を得た。
<Comparative Example 5: Solution E → Solution D → Solution C>
The solution E is used to form the first metal oxide semiconductor precursor film, the solution D is used to form the second metal oxide semiconductor precursor film, and the solution is used to form the third metal oxide semiconductor precursor film. Using C, a metal oxide semiconductor film was formed on a p-type Si 1 inch square substrate with a thermal oxide film. The spin coat rotation speed was set to 3000 rpm so that the thickness of the metal oxide semiconductor film was within the range of 10.5 nm ± 1.0 nm.
When the metal oxide to form the source and drain electrodes in the same manner as Examples 1-3 and Comparative Examples 1-4 to the semiconductor film, it was measured transistor characteristics (V g -I d characteristics), linear A mobility of 0.5 cm 2 / Vs and an average film density of 5.10 g / cm 3 were obtained.
 実施例4~6及び比較例5のV-I特性から見積もった線形移動度及び平均膜密度を表3に示す。 The linear mobility and average film density estimated from, V g -I d characteristics of the Examples 4-6 and Comparative Example 5 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 2013年9月27日に出願された日本国特許出願2013-202364号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2013-202364 filed on September 27, 2013 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (28)

  1.  金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
     前記金属酸化物前駆体膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をCn-1(mol/L)、n回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度をC(mol/L)としたときに、下記式(1)の関係を満たす金属酸化物膜の製造方法。
     1>(C/Cn-1)   (1)
    A step of applying a solution containing a metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and a step of converting the metal oxide precursor film into a metal oxide film alternately Including repeating N times (N represents an integer of 2 or more),
    Metal used in the step of forming the metal oxide precursor film in the (n-1) th time (n represents an integer of 2 or more and N or less) in at least two steps of forming the metal oxide precursor film. The metal molar concentration of the solution containing nitrate is C n-1 (mol / L), and the metal molar concentration of the solution containing metal nitrate used in the step of forming the metal oxide precursor film for the nth time is C n (mol / L). ), A method for producing a metal oxide film satisfying the relationship of the following formula (1).
    1> (C n / C n−1 ) (1)
  2.  前記金属酸化物前駆体膜を形成するN回の工程のうち、少なくとも(N-1)回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度(mol/L)と、N回目に金属酸化物前駆体膜を形成する工程に用いる金属硝酸塩を含む溶液の金属モル濃度(mol/L)とが、前記式(1)の関係を満たす請求項1に記載の金属酸化物膜の製造方法。 Of the N steps of forming the metal oxide precursor film, the metal molar concentration (mol / L) of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film at the (N-1) th time. And the metal molar concentration (mol / L) of the solution containing the metal nitrate used in the step of forming the metal oxide precursor film for the Nth time satisfies the relationship of the formula (1). A method for producing a metal oxide film.
  3.  前記金属酸化物前駆体膜を形成する全ての工程において、金属硝酸塩を含む溶液の金属モル濃度(mol/L)が、前記式(1)の関係を満たす請求項1又は請求項2に記載の金属酸化物膜の製造方法。 The metal molar concentration (mol / L) of the solution containing a metal nitrate satisfies the relationship of the formula (1) in all the steps of forming the metal oxide precursor film. A method for producing a metal oxide film.
  4.  前記式(1)が下記式(2)である請求項1~請求項3のいずれか一項に記載の金属酸化物膜の製造方法。
     1/3≧(C/Cn-1)   (2)
    The method for producing a metal oxide film according to any one of claims 1 to 3, wherein the formula (1) is the following formula (2).
    1/3 ≧ (C n / C n−1 ) (2)
  5.  金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
     前記金属酸化物前駆体膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物前駆体膜の膜厚をPn-1、n回目に形成する金属酸化物前駆体膜の膜厚をPとしたときに、下記式(3)の関係を満たす金属酸化物膜の製造方法。
     1>(P/Pn-1)   (3)
    A step of applying a solution containing a metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and a step of converting the metal oxide precursor film into a metal oxide film alternately Including repeating N times (N represents an integer of 2 or more),
    In at least two steps of forming the metal oxide precursor film, the film thickness of the metal oxide precursor film formed at the (n−1) th time (n represents an integer of 2 or more and N or less) is P n−1 : A method for producing a metal oxide film satisfying the relationship of the following formula (3), where P n is the thickness of the metal oxide precursor film formed at the nth time.
    1> (P n / P n-1 ) (3)
  6.  前記金属酸化物前駆体膜を形成するN回の工程のうち、少なくとも(N-1)回目に形成する金属酸化物前駆体膜の膜厚と、N回目に形成する金属酸化物前駆体膜の膜厚とが、前記式(3)の関係を満たす請求項5に記載の金属酸化物膜の製造方法。 Of the N steps of forming the metal oxide precursor film, the thickness of the metal oxide precursor film formed at least (N-1) and the metal oxide precursor film formed at the Nth time The method for producing a metal oxide film according to claim 5, wherein the film thickness satisfies the relationship of the formula (3).
  7.  前記金属酸化物前駆体膜を形成する全ての工程において、金属酸化物前駆体膜の膜厚が、前記式(3)の関係を満たす請求項5又は請求項6に記載の金属酸化物膜の製造方法。 7. The metal oxide film according to claim 5, wherein the film thickness of the metal oxide precursor film satisfies the relationship of the formula (3) in all steps of forming the metal oxide precursor film. Production method.
  8.  前記式(3)が下記式(4)である請求項5~請求項7のいずれか一項に記載の金属酸化物膜の製造方法。
     1/3≧(P/Pn-1)   (4)
    The method for producing a metal oxide film according to any one of claims 5 to 7, wherein the formula (3) is the following formula (4).
    1/3 ≧ (P n / P n−1 ) (4)
  9.  金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥して金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互にN回(Nは2以上の整数を表す。)繰り返すことを含み、
     前記金属酸化物膜を形成する少なくとも2回の工程において、(n-1)回目(nは2以上N以下の整数を表す。)に形成する金属酸化物膜の膜厚をTn-1、n回目に形成する金属酸化物膜の膜厚をTとしたときに、下記式(5)の関係を満たす金属酸化物膜の製造方法。
     1>(T/Tn-1)   (5)
    A step of applying a solution containing a metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and a step of converting the metal oxide precursor film into a metal oxide film alternately Including repeating N times (N represents an integer of 2 or more),
    In at least two steps of forming the metal oxide film, the thickness of the metal oxide film formed at the (n−1) th time (n represents an integer of 2 or more and N or less) is defined as T n−1 , A method for producing a metal oxide film that satisfies the relationship of the following formula (5), where T n is the thickness of the metal oxide film formed at the nth time.
    1> ( Tn / Tn-1 ) (5)
  10.  前記金属酸化物膜を形成するN回の工程のうち、少なくとも(N-1)回目に形成する金属酸化物膜の膜厚と、N回目に形成する金属酸化物膜の膜厚とが、前記式(5)の関係を満たす請求項9に記載の金属酸化物膜の製造方法。 Of the N steps of forming the metal oxide film, the thickness of the metal oxide film formed at least (N-1) and the thickness of the metal oxide film formed N times The manufacturing method of the metal oxide film of Claim 9 which satisfy | fills the relationship of Formula (5).
  11. 前記金属酸化物膜を形成する全ての工程において、金属酸化物膜の膜厚が、前記式(5)の関係を満たす請求項9又は請求項10に記載の金属酸化物膜の製造方法。 The manufacturing method of the metal oxide film according to claim 9 or 10, wherein the film thickness of the metal oxide film satisfies the relationship of the formula (5) in all steps of forming the metal oxide film.
  12.  前記式(5)が下記式(6)である請求項9~請求項11のいずれか一項に記載の金属酸化物膜の製造方法。
     1/3≧(T/Tn-1)   (6)
    The method for producing a metal oxide film according to any one of claims 9 to 11, wherein the formula (5) is the following formula (6).
    1/3 ≧ (T n / T n−1 ) (6)
  13.  前記金属酸化物前駆体膜を形成する工程において、前記金属硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法により塗布する請求項1~請求項12のいずれか一項に記載の金属酸化物膜の製造方法。 2. In the step of forming the metal oxide precursor film, the solution containing the metal nitrate is applied by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method. A method for producing a metal oxide film according to any one of claims 12 to 12.
  14.  前記金属硝酸塩を含む溶液の金属モル濃度が、0.01mol/L以上0.5mol/L以下である請求項1~請求項13のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 13, wherein a metal molar concentration of the solution containing the metal nitrate is 0.01 mol / L or more and 0.5 mol / L or less.
  15.  前記金属硝酸塩を含む溶液が、少なくとも硝酸インジウムを含む請求項1~請求項14のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 14, wherein the solution containing the metal nitrate contains at least indium nitrate.
  16.  前記硝酸インジウムを含む溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれるいずれか1つ以上の金属原子を含む化合物をさらに含有する請求項15に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 15, wherein the solution containing indium nitrate further contains a compound containing any one or more metal atoms selected from zinc, tin, gallium, and aluminum.
  17.  前記金属酸化物前駆体膜を形成する工程において、前記塗布膜を乾燥する際の前記基板の温度が35℃以上100℃以下である請求項1~請求項16のいずれか一項に記載の金属酸化物膜の製造方法。 The metal according to any one of claims 1 to 16, wherein in the step of forming the metal oxide precursor film, a temperature of the substrate when the coating film is dried is 35 ° C or more and 100 ° C or less. Manufacturing method of oxide film.
  18.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程における前記基板の最高到達温度が200℃以下である請求項1~請求項17のいずれか一項に記載の金属酸化物膜の製造方法。 The maximum reached temperature of the substrate in the step of converting the metal oxide precursor film to the metal oxide film is 200 ° C or lower. The metal oxide film according to any one of claims 1 to 17, Production method.
  19.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程における前記基板の最高到達温度が120℃以上である請求項1~請求項18のいずれか一項に記載の金属酸化物膜の製造方法。 The metal oxide film according to any one of claims 1 to 18, wherein a maximum temperature of the substrate in the step of converting the metal oxide precursor film into the metal oxide film is 120 ° C or higher. Production method.
  20.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に紫外線を照射する工程を含む請求項1~請求項19のいずれか一項に記載の金属酸化物膜の製造方法。 The metal according to any one of claims 1 to 19, wherein the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays. Manufacturing method of oxide film.
  21.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に対し、波長300nm以下の紫外線を10mW/cm以上の強度で照射する工程を含む請求項1~請求項20のいずれか一項に記載の金属酸化物膜の製造方法。 The step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays having a wavelength of 300 nm or less at an intensity of 10 mW / cm 2 or more. The method for producing a metal oxide film according to any one of claims 1 to 20.
  22.  前記金属酸化物前駆体膜に前記紫外線を照射する際に用いる光源が、低圧水銀ランプである請求項20又は請求項21に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 20 or 21, wherein a light source used when irradiating the metal oxide precursor film with the ultraviolet light is a low-pressure mercury lamp.
  23.  請求項1~請求項22のいずれか一項に記載の金属酸化物膜の製造方法を用いて作製された金属酸化物膜。 A metal oxide film produced using the method for producing a metal oxide film according to any one of claims 1 to 22.
  24.  前記金属酸化物膜が金属酸化物半導体膜である請求項1~請求項22のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 22, wherein the metal oxide film is a metal oxide semiconductor film.
  25.  請求項24に記載の金属酸化物膜の製造方法を用いて作製された金属酸化物半導体膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタ。 25. A thin film transistor having an active layer including a metal oxide semiconductor film manufactured using the method for manufacturing a metal oxide film according to claim 24, a source electrode, a drain electrode, a gate insulating film, and a gate electrode.
  26.  請求項25に記載の薄膜トランジスタを備えた表示装置。 A display device comprising the thin film transistor according to claim 25.
  27.  請求項25に記載の薄膜トランジスタを備えたイメージセンサ。 An image sensor comprising the thin film transistor according to claim 25.
  28.  請求項25に記載の薄膜トランジスタを備えたX線センサ。 An X-ray sensor comprising the thin film transistor according to claim 25.
PCT/JP2014/070368 2013-09-27 2014-08-01 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor WO2015045620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167007361A KR101897372B1 (en) 2013-09-27 2014-08-01 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-202364 2013-09-27
JP2013202364A JP6086854B2 (en) 2013-09-27 2013-09-27 Metal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor

Publications (1)

Publication Number Publication Date
WO2015045620A1 true WO2015045620A1 (en) 2015-04-02

Family

ID=52742776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070368 WO2015045620A1 (en) 2013-09-27 2014-08-01 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor

Country Status (3)

Country Link
JP (1) JP6086854B2 (en)
KR (1) KR101897372B1 (en)
WO (1) WO2015045620A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291583A (en) * 2000-04-07 2001-10-19 Seiko Epson Corp Organic el element and manufacturing method of organic el element
JP2010257668A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Organic el display and method of manufacturing the same
JP2010263103A (en) * 2009-05-08 2010-11-18 Konica Minolta Holdings Inc Thin-film transistor, and method of manufacturing the same
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
JP2013018696A (en) * 2011-06-14 2013-01-31 Fujifilm Corp Method for producing amorphous oxide thin film and thin film transistor
JP2013175648A (en) * 2012-02-27 2013-09-05 Panasonic Corp Field effect transistor and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096536A (en) * 2001-06-20 2002-12-31 삼성에스디아이 주식회사 Method of producing electromagnetic shielding screen using indium tin oxide and screen display device comprising the screen
JP2004247716A (en) * 2003-01-23 2004-09-02 Mitsubishi Chemicals Corp Method for manufacturing laminated body
US7745989B2 (en) * 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
JP5499525B2 (en) * 2009-06-15 2014-05-21 大日本印刷株式会社 Semiconductor device manufacturing method and display device
KR101301215B1 (en) * 2011-12-27 2013-08-29 연세대학교 산학협력단 A composition for oxide thin film, preparation method of the composition, methods for forming the oxide thin film using the composition, and an electrical device using the composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291583A (en) * 2000-04-07 2001-10-19 Seiko Epson Corp Organic el element and manufacturing method of organic el element
JP2010257668A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Organic el display and method of manufacturing the same
JP2010263103A (en) * 2009-05-08 2010-11-18 Konica Minolta Holdings Inc Thin-film transistor, and method of manufacturing the same
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
JP2013018696A (en) * 2011-06-14 2013-01-31 Fujifilm Corp Method for producing amorphous oxide thin film and thin film transistor
JP2013175648A (en) * 2012-02-27 2013-09-05 Panasonic Corp Field effect transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP6086854B2 (en) 2017-03-01
KR101897372B1 (en) 2018-09-11
JP2015070082A (en) 2015-04-13
KR20160045132A (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6180908B2 (en) Metal oxide semiconductor film, thin film transistor, display device, image sensor and X-ray sensor
JP6117124B2 (en) Oxide semiconductor film and manufacturing method thereof
JP6181306B2 (en) Method for producing metal oxide film
JP6096102B2 (en) Method for producing metal oxide semiconductor film
US9779938B2 (en) Metal oxide thin film, method of producing same, and coating solution for forming metal oxide thin film used in said method
JP6246952B2 (en) Method for manufacturing oxide protective film, and method for manufacturing thin film transistor
JP6061831B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6177711B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device
JP6271760B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6086854B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor
JP6257799B2 (en) Metal oxide semiconductor film, thin film transistor, and electronic device
JPWO2015182679A1 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, thin film transistor manufacturing method, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007361

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847282

Country of ref document: EP

Kind code of ref document: A1