WO2015043182A1 - 电致变色材料及其制备方法与组件 - Google Patents

电致变色材料及其制备方法与组件 Download PDF

Info

Publication number
WO2015043182A1
WO2015043182A1 PCT/CN2014/076649 CN2014076649W WO2015043182A1 WO 2015043182 A1 WO2015043182 A1 WO 2015043182A1 CN 2014076649 W CN2014076649 W CN 2014076649W WO 2015043182 A1 WO2015043182 A1 WO 2015043182A1
Authority
WO
WIPO (PCT)
Prior art keywords
thiophene
dimethoxythiophene
ethylhexyloxy
electrochromic
preparation
Prior art date
Application number
PCT/CN2014/076649
Other languages
English (en)
French (fr)
Inventor
徐春叶
陈晓明
Original Assignee
京东方科技集团股份有限公司
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 中国科学技术大学 filed Critical 京东方科技集团股份有限公司
Priority to US14/424,214 priority Critical patent/US9481825B2/en
Publication of WO2015043182A1 publication Critical patent/WO2015043182A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/54Physical properties electrochromatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom

Definitions

  • the present invention relates to the field of electrochromic materials, and more particularly to an electrochromic material and a method of preparing the same, and an assembly comprising the electrochromic material.
  • Electrochromism that is, the material undergoes a redox reaction by injecting or extracting charges under alternating high or low or positive and negative external electric fields, thereby reversibly changing between a low transmittance coloring state and a high transmittance achromatic state.
  • the special phenomenon the appearance of the reversible change of color and transparency, has broad application prospects in the fields of electrochromic windows and electrochromic displays.
  • Electrochromic materials are classified into inorganic electrochromic materials and organic electrochromic materials.
  • a typical representative of electroless electrochromic materials is tungsten trioxide (wo 3 ).
  • electrochromic devices using wo 3 as a functional material have been industrialized.
  • the organic electrochromic materials mainly include polythiophenes and derivatives thereof, viologen, tetrathiafulvalene, metal phthalocyanine compounds and the like. Electrochromic materials using viologen as a functional material have been put to practical use. Compared with inorganic electrochromic materials typified by transition metal oxides, organic electrochromic materials such as polyaniline, polypyrrole, polythiol, and viologen are rich in color and easy to carry out molecular design, and thus are more subject to researchers' favor.
  • the polystyrene has insoluble properties due to the rigidity of the polymer backbone, which makes it difficult to process electrochromic devices using electrochromic polymer materials.
  • Electrochemical polymerization is usually employed to deposit the resulting polymer directly onto the surface of the electrode to form a polymer film.
  • existing electrochemical polymerizations are difficult to handle in the preparation of large-area electrochromic devices. In view of this, the present invention has been specifically proposed.
  • the object of the first aspect of the present invention is to provide a novel polythiaha electrochromic material, the color of which can be converted between red and transparent, with low driving voltage and transparent oxidation state. It can be used in electrochromic windows, color-changing displays, etc. due to its high transmittance, short response time, and sprayable operation.
  • the present invention adopts the following technical solutions:
  • a polythiophene electrochromic material which is [3,4-bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxythiophene] as shown in Formula I
  • the polymer of the present invention is a number average molecular weight in the range of 3.0xl0 4 g / mol -
  • An object of the second aspect of the present invention is to provide a process for producing the above polymer, which is simple and easy to produce and has a high yield, and further improves the generalizability of the polythiophene electrochromic material.
  • the present invention adopts the following technical solutions:
  • the preparation method of the polythioha electrochromic material represented by the above formula I which comprises:
  • Step 1 reacting 3,4-dimethoxythiazol with 2-ethylhexanol under the catalysis of an ether exchange reaction catalyst to obtain 3,4-bis(2-ethylhexyloxy)thiophene;
  • Step 2 Oxidative polymerization of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene under the action of an oxidizing agent to obtain [3, 4 shown in Formula I) a bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxyoxythiophene] copolymer.
  • the ether exchange reaction catalyst in the step 1 may be p-nonylbenzenesulfonic acid, p-aminobenzenesulfonic acid, benzenesulfonic acid or anhydrous sodium hydrogensulfate; preferably p-nonylbenzenesulfonic acid.
  • the reaction solvent may be an organic solvent such as benzene, toluene or dinonylbenzene; preferably toluene.
  • the molar ratio of 3,4-dimethoxythiophene to 2-ethylhexanol is 1:4 to 1:6, and the ratio of 3,4-dimethoxythiophene to 2-ethylhexanol is 1:5, catalyst and 3,4-dimethoxy thiophene feed The molar ratio is 1:10 ⁇ 1:15.
  • the reaction time in step 1 is 24 to 48 hours, and the reaction temperature is 110 to 130 °C.
  • the reaction time is 32 to 40 hours, and the reaction temperature is 118 to 125 °C.
  • the implementation of the step 1 may be, for example,: adding 3,4-dimethoxythiophene, 2-ethylhexanol, p-nonylbenzenesulfonic acid (pTSA) and anthracene to the upper connection of Soxhlet
  • the molar ratio of 3,4-dimethoxythiazol to 2-ethylhexanol is 1:4 ⁇ 1:6, and the molar ratio of catalyst to 3,4-dimethoxythiophene The ratio is 1:10 ⁇ 1:15, the mixture is heated to 110 ⁇ 130 °C and refluxed for 24 ⁇ 48 hours, then cooled to room temperature, washed several times with water, dried with anhydrous sodium sulfate, evaporated to remove solvent, crude product Column chromatography gave an oily liquid which was 3,4-di(2-ethylhexyloxy)-Saha.
  • the oxidizing agent in the step 2 may be a ferric oxidizing agent such as (Fe(C10 4 ) 3 , FeCl 3 , Fe 2 (S0 4 ) 3 ); preferably anhydrous ferric chloride.
  • the reaction solvent is selected from ethyl acetate, chloroform or nitrodecane.
  • the molar amount of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene in step 2 is calculated by m, n and q, respectively, and has the following ratio: 0 ⁇ n ⁇ 0.5m, 0 ⁇ q ⁇ m; oxidant anhydrous ferric chloride is used in an amount of 3,4-di(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene
  • the sum of the amounts of monomeric substances is 5-6 times.
  • the reaction time in step 2 is 24 to 72 hours, and the reaction temperature is 10 to 35 °C.
  • the reaction time is 48-72 hours and the reaction temperature is 20-25 °C.
  • the implementation of the step 2 may be, for example, dissolving anhydrous FeCl 3 in 30 mL of ethyl acetate, stirring in a flask, and 3,4-bis(2-ethylhexyloxy)thiophene, thiophene, The 3,4-dimethoxythiazide was combined and dissolved in ethyl acetate and slowly dropped into the flask through a constant pressure dropping funnel.
  • the molar ratio of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene in the range of m, n and q is 0 ⁇ n ⁇ 0.5 m, 0 ⁇ q ⁇ m.
  • the oxidant anhydrous ferric chloride is used in an amount of 5-6 times the sum of the amounts of the three thiophene monomer materials. After the dropwise addition, the mixture is stirred at 10 to 35 ° C for 24-72 hours, and the reaction mixture is dropped into the sterol.
  • a person skilled in the art can obtain a range of values having different m, n and q according to the ratio of the amounts of the comonomers, which is not limited in the present invention.
  • the specific synthetic route of the preparation method of the present invention is as follows:
  • the object of the third aspect of the invention is to provide the use of the polythiophene electrochromic material in the manufacture of electrochromic devices.
  • the electrochromic device includes, but is not limited to, a smart window, a display, or the like.
  • the present invention further provides a polythiophene electrochromic material (ie, [3,4-bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxythiophene] copolymer) s component.
  • a polythiophene electrochromic material ie, [3,4-bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxythiophene] copolymer
  • the assembly of the present invention is preferably an electrochromic film having a color that can be converted between red and transparent, a low driving voltage, a transparent oxidation state, a high transmittance, a short response time, and a sprayable operation.
  • the redox potential of the polymer film is 0.7V and 0.4V, respectively; the maximum absorption wavelength of the colored state is 530nm, the transmittance is 5.68%, the transmittance difference is 46.8%; the maximum transmittance of the decolorized state is 61.8%; The fading time was 1.5 s and 1.3 s, respectively.
  • the electrochromic thin film of the present invention can be obtained by any of the film forming methods disclosed in the prior art.
  • the preferred film forming method of the present invention is as follows:
  • the present invention provides a novel electrochromic polymer material and a preparation method thereof.
  • the polymer material can be sprayed on the surface of ITO glass or FTO glass to form a film; and, in practical applications, the polymer material has low driving voltage, short response time, and poor transmittance in a colored state and an achromatic state. Larger, with a cycle life of more than 10,000 cycles, it is ideal for applications such as smart windows and electrochromic displays.
  • Figure 1 is a nuclear magnetic resonance spectrum of Compound II
  • Figure 2 is a nuclear magnetic carbon spectrum of Compound II
  • Figure 3 is a nuclear magnetic resonance spectrum of an exemplary copolymer according to the present invention.
  • Figure 5 is a cyclic voltammogram of a film formed according to an exemplary copolymer of the present invention
  • Figure 6 is a schematic view showing the transmittance of a colored state and an achromatic state of a film formed by an exemplary copolymer according to the present invention
  • Figure 7 is a graph showing the difference in transmittance between a colored state and a decolorized state of a film formed by an exemplary copolymer according to the present invention.
  • Figure 8 is a graph showing the multipotential transition of a film formed according to an exemplary copolymer of the present invention
  • Figures 9 and 10 are graphs showing the instantaneous charge of the film formed by the exemplary copolymer according to the present invention in the process of color erasing and coloring, respectively.
  • the present invention provides a polythiophene electrochromic material which is [3,4-bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxythiophene as shown in Formula I. Copolymer
  • the polymer of the present invention has a number average molecular weight ranging from 3.0 x 10 4 g/mol to 5.5 x 10 4 g/mol, further preferably from 3.6 x 10 4 g/mol to 4.5 x 10 4 g/moL.
  • m, n, q within this ratio range can ensure that the obtained polymer has low driving voltage, transparent oxidation state and high transmittance, short response time, sprayable operation, etc. Excellent performance.
  • the invention also provides a preparation method of the polythiophene electrochromic material, which comprises the following steps: Step 1: catalyzing the 3,4-dimethoxy thioha and 2-ethylhexanol under the catalysis of an ether exchange catalyst The reaction takes place to obtain 3,4-bis(2-ethylhexyloxy)thiophene;
  • Step 2 Oxidative polymerization of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene under the action of an oxidizing agent to obtain [3, 4 shown in Formula I) a bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxyoxythiophene] copolymer.
  • the ether exchange reaction catalyst is p-nonylbenzenesulfonic acid, and the reaction solvent is toluene.
  • the selection of this particular catalyst and solvent is effective in catalyzing the ether exchange reaction.
  • step 1 the molar ratio of 3,4-dimethoxythiophene to 2-ethylhexanol is 1:4 to 1:6, preferably 3,4-dimethoxythiazide and 2-ethylhexanol.
  • the molar ratio of the feed is 1:5, and the molar ratio of the catalyst to the 3,4-dimethoxythiophene is 1:10 to 1:15.
  • the above dosage ratio is obtained by the inventors on the basis of a large number of experimental studies, and the amount ratio of the materials is optimized as much as possible while ensuring the synthesis yield.
  • the reaction time in the step 1 is 24 to 48 hours, and the reaction temperature is 110 to 130 °C.
  • the reaction time is from 32 to 40 hours, and the reaction temperature is from 118 to 125 °C. This reaction condition ensures that the ether exchange reaction proceeds to a more complete extent.
  • step 1 is: adding 3,4-dimethoxythiophene, 2-ethylhexanol, p-nonylbenzenesulfonic acid, and toluene to the flask connected to the Soxhlet extractor, 3,4-
  • the molar ratio of dimethoxythiophene to 2-ethylhexanol is 1:4 ⁇ 1:6, and the molar ratio of catalyst to 3,4-dimethoxythiophene is 1:10-1:15.
  • the mixture is heated to 110-130 ° C and kept at reflux for 24 to 48 hours, then cooled to room temperature, washed with water several times, dried over anhydrous sodium sulfate, and the solvent is removed by rotary evaporation.
  • the crude product is purified by column chromatography to give an oily liquid, ie, 3, 4 - bis(2-ethylhexyloxy)thiophene.
  • the oxidizing agent in the step 2 is anhydrous ferric chloride
  • the reaction solvent is selected from the group consisting of ethyl acetate, chloroform or nitrodecane.
  • the anhydrous ferric chloride is oxidizing, and it is possible to better promote chemical oxidative polymerization of the monomer and copolymerization between the monomers in the above specific reaction solvent.
  • the molar amount of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene in step 2 is m, n and q, respectively, and has the following ratio: 0 ⁇ n ⁇ 0.5 m, 0 ⁇ q ⁇ m, preferably 0.4 m ⁇ q ⁇ 0.5 m.
  • the oxidizing agent anhydrous ferric chloride is used in an amount of 5 to 6 times the sum of the amounts of the three thiophene monomer materials.
  • the molar ratio of the above monomers can ensure that the obtained polymer has superior performance such as low driving voltage, transparent oxidized state, high transmittance, short response time, and sprayable operation.
  • the reaction time in the step 2 is 24 to 72 hours, and the reaction temperature is 10 to 35 °C. Preferably, the reaction time is 48-72 hours and the reaction temperature is 20-25 °C.
  • the reaction conditions are mild and can ensure that the polymerization proceeds to a more complete extent.
  • step 2 is: dissolving anhydrous FeCl 3 in 30 mL of ethyl acetate, adding to the flask and stirring, 3,4-bis(2-ethylhexyloxy)thiophene, thiophene, 3,4-dioxane
  • the thiophene was dissolved in ethyl acetate and slowly dropped into the flask through a constant pressure dropping funnel.
  • the molar ratio of 3,4-bis(2-ethylhexyloxy)thiophene, thiophene and 3,4-dimethoxythiophene in the range of m, n and q is 0 ⁇ n ⁇ 0.5 m, 0 ⁇ q ⁇ m.
  • the oxidant anhydrous ferric chloride is used in an amount of 5-6 times the sum of the three thiha monomer materials.
  • the mixture is stirred at 10 to 35 ° C for 24-72 hours, and the reaction mixture is dropped into the sterol.
  • the precipitate was precipitated, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was collected, dissolved in chloroform, stirred, and added to hydrazine hydrate, and the solution was converted to dark red.
  • the excess solvent is spin-dried, and the remaining solution is added dropwise to the sterol precipitate.
  • the filter cake is dissolved in chloroform, the insoluble matter is filtered off, the remaining solution is added dropwise to the sterol precipitate, and the mixture is filtered, and the filter cake is vacuum dried to obtain a red product.
  • copolymer The component of the present invention containing the above polythiophene electrochromic material (i.e., [3,4-bis(2-ethylhexyloxy)thiophene]-thiophene-[3,4-dimethoxythiophene] copolymer)
  • it is an electrochromic film
  • the electrochromic film can be prepared by a common technical means disclosed in the prior art, preferably by spraying.
  • the color of the electrochromic film can be converted between red and transparent, and has the advantages of low driving voltage, transparent oxidation state, high transmittance, short response time, and sprayable operation.
  • the oxidation-reduction potential is 0.7 V and 0.4 V, respectively; the maximum absorption wavelength of the colored state is 530 nm, the transmittance is 5.68%, the transmittance difference is 46.8%; the maximum transmittance of the decolorized state is 61.8%; coloring and fading
  • the time is 1.5 s and 1.3 s, respectively.
  • Example 1 Polythiophene electrochromic material
  • the specific method is as follows:
  • the mixture was stirred at 25 ° C for 48 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 2 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the nuclear magnetic resonance diagram of compound II is shown in Fig. 1, in which the ordinate represents the peak intensity, and the horizontal cross The mark represents the chemical shift.
  • the nuclear magnetic carbon map of Compound II is shown in Figure 2. In the figure, the ordinate represents the peak intensity and the abscissa represents the chemical shift.
  • 11, 14, 23, 24, 29, 31, 39
  • the peak of 73 corresponds to a 2-ethylhexyl carbon atom.
  • Figures 1 and 2 illustrate the correctness of the structure of Compound II.
  • Fig. 3 The nuclear magnetic resonance of the copolymer of the above formula I is shown in Fig. 3.
  • the ordinate represents the peak intensity
  • the abscissa represents the chemical shift
  • the three-peak integral area ratio is 1:5:35.
  • the integrated area ratio of the three-peak theory should be 1: 5:32.
  • Figure 3 illustrates the correctness of the structure of the resulting copolymer.
  • Fig. 4 The Fourier transform infrared spectrum of the obtained copolymer is shown in Fig. 4.
  • the ordinate is the transmittance and the abscissa is the wave number.
  • Figure 4 illustrates the functional group of the final product without design.
  • the number average molecular weight of the copolymer obtained in this example was 4.3 x 10 4 g/mol.
  • the molecular weight of the obtained copolymer was measured by Gel Permeation Chromatography (GPC), and the instrument used was an Agilent LC1200 liquid chromatograph.
  • the specific test conditions were as follows: High performance liquid chromatography grade tetrahydrofuran was used as the mobile phase, the flow rate was 1.0 mL/min, the sample concentration was 1 g/L, the injection volume was 20 ⁇ L, and the calibration curve was generated from monodisperse polystyrene (the same below). .
  • Example 2 Polythiophene electrochromic material
  • the number average molecular weight of the obtained copolymer was 3.6 x 10 4 g/mol, 5.2 x 10 4 g/mol, 4.1 x 10 4 g/mol, 4 ⁇ 5 ⁇ 10 4 g/mol, respectively.
  • the mixture was stirred at 20 ° C for 24 hours, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, and washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 2 to 4 mL of hydrazine hydrate was added. The solution turned dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate. The filter cake was dissolved in chloroform, the insoluble matter was filtered off, the remaining solution was added dropwise to the decyl alcohol precipitate, suction filtered, and the filter cake was collected by vacuum drying to obtain a red product (copolymer). I), yield 20%.
  • the number average molecular weight of the copolymer obtained in this example was 4.1 ⁇ 10 4 g/moL.
  • Example 4 Polythiane electrochromic material
  • the mixture was stirred at 20 ° C for 48 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 4 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.5 ⁇ 10 4 g/moL.
  • Example 5 Polythioha electrochromic material
  • the mixture was stirred at 15 ° C for 48 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 2 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.7 x 10 4 g/moL.
  • Example 6 polythiophene electrochromic material
  • the mixture was stirred at 20 ° C for 72 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 4 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.3 ⁇ 10 4 g/moL.
  • the mixture was stirred at 30 ° C for 48 h, and the reaction mixture was added dropwise to methanol to precipitate, suction-filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 3 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.8 x 10 4 g/moL.
  • Example 8 Polythiophene electrochromic material
  • the mixture was stirred at 10 ° C for 72 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 2 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.0 ⁇ 10 4 g/moL.
  • Example 9 polythiophene electrochromic material
  • the mixture was stirred at 35 ° C for 24 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 4 mL of hydrazine hydrate was added, and the solution was changed. It is dark red. The excess solvent was removed by spin-drying, and the remaining solution was added dropwise to the decyl alcohol precipitate.
  • the number average molecular weight of the copolymer obtained in this example was 4.4 x 10 4 g/moL.
  • Example 10 Polythiophene electrochromic material
  • the mixture was stirred at 25 ° C for 48 h, and the reaction mixture was added dropwise to methanol to precipitate, suction filtered, washed with decyl alcohol until the filtrate was colorless; the filter cake was dissolved in chloroform, stirred, and 3 mL of hydrazine hydrate was added, and the solution was changed. It is dark red.
  • Example 11 A component containing a polythiophene electrochromic material (electrochromic film)
  • the dichlorosilane solution (2 mg/mL) of the copolymer obtained in Examples 1-9 was used, and an air compressor was connected (Zhejiang Yongyuan Electromechanical Manufacturing Co., Ltd., working voltage 220V, theoretical flow rate 89 L/min, exhaust pressure 0.8
  • the MPa) art airbrush spray polymer solution forms an electrochromic film on the surface of the ITO glass.
  • the electrochromic film containing the copolymer obtained in Example 6 was selected for performance test, and the results are as described below.
  • the transmittance of the obtained copolymer film was measured using a V-670 type ultraviolet-visible-near-infrared spectrophotometer (Jasco, Tokyo, Japan), and the wavelength scanning range was 200-1000 nm.
  • the transmission of the colored and decolorized states of the polymer film in this embodiment is shown in Fig. 5.
  • the ordinate represents the transmittance and the abscissa represents the wavelength.
  • the red dotted line curve represents the transmittance of the polymer film in the colored state: the maximum absorption wavelength of the colored state is 530 nm, the transmittance is 5.68%, and the transmittance difference is 46.8%; the black solid curve represents the achromatic state.
  • Transmittance The maximum transmittance of the achromatic state is
  • the transmittance was 61.8%.
  • the difference in transmittance between the colored state and the decolorized state of the polymer film in this embodiment is shown in Fig. 6.
  • the ordinate represents the difference in transmittance
  • the abscissa represents the wavelength, which is caused by the film of the same wavelength light polymer.
  • the cyclic voltammetry curve, the multipotential step curve, and the chrono-electricity curve of the achromatic and coloring process were tested using a CHI-650D electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.).
  • the cyclic voltammetry test conditions are: a scan voltage range of -0.2 to IV, and a scan speed of 0.1 V/s.
  • the cyclic voltammetry curve of the polymer film of this embodiment is shown in Fig. 7, in Fig. 7, the ordinate represents current, and the abscissa represents voltage. This figure shows that the redox potential of the polymer is 0.7 V and 0.4 V, respectively.
  • the multipotential step curve of the polymer film of this embodiment is shown in Fig. 8.
  • the ordinate represents current and the abscissa represents time.
  • the response time was 95% of the time required for the current from highest to zero, with coloring and fading times of 1.5 s and 1.3 s, respectively.
  • the instantaneous charge curve of the process of decolorization and coloration of the polymer film (area 1.92 cm 2 ) of this embodiment is shown in Fig. 9 and Fig. 10.
  • the ordinate in the figure represents the amount of electricity, and the abscissa represents time.
  • This figure illustrates that the charge density decoloration required for the discoloration drive of the polymer film is 0.00342 C/cm 2 , and the coloration is
  • the color of the electrochromic film made of the copolymer material can be converted between red and transparent, and has low driving voltage, transparent oxidation state, high transmittance, short response time, and sprayable operation.
  • the advantages. The embodiments of the present invention may be further combined or substituted, and the above-described embodiments are only for describing the preferred embodiments of the present invention, and are not intended to limit the scope and scope of the present invention. Various changes and modifications made by those skilled in the art to the technical solutions of the present invention are within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一种噻吩类聚合物电致变色材料,其为如式I所示的[3,4- 二(2-乙基己氧基)噻吩]-噻吩-[3,4-二甲氧基噻吩]共聚物,其中,0<n≤0.5m,0<q<m。所述共聚物薄膜颜色可以在红色和透明之间转变,循环寿命大于10000次,其具有驱动电压低、氧化态透明且透过率高、响应时间短、可喷涂操作等特点,可用于电致变色窗、电致变色显示器等器件,具有广阔的应用前景。

Description

电致变色材料及其制备方法与组件 技术领域 本发明涉及电致变色材料领域, 特别涉及一种电致变色材料及其制备 方法, 以及包含该电致变色材料的组件。
背景技术
电致变色, 即材料在交替的高低或正负外电场作用下通过注入或抽取 电荷发生氧化还原反应, 从而在低透过率的着色态和高透过率的消色态之 间发生可逆变化的特殊现象, 外观上表现为颜色及透明度的可逆变化, 在 电致变色窗、 电致变色显示等领域有广阔的应用前景。 电致变色材料分为 无机电致变色材料和有机电致变色材料。 无机电致变色材料的典型代表是 三氧化钨(wo3 ), 目前, 以 wo3为功能材料的电致变色器件已经产业化。 而有机电致变色材料主要有聚噻吩类及其衍生物、 紫罗精类、 四硫富瓦烯、 金属酞菁类化合物等。 以紫罗精类为功能材料的电致变色材料已经得到实 际应用。 相对于以过渡金属氧化物为代表的无机电致变色材料, 有机电致 变色材料如聚苯胺、 聚吡咯、 聚噻哈、 紫罗精等具有色彩丰富、 容易进行 分子设计等优点, 因而更加受到研究者的青睐。
由于聚合物主链的刚性使聚噻哈具有不溶的特性, 这就为使用电致变 色聚合物材料加工制作电致变色器件带来较大的困难。 通常采用电化学聚 合的办法使得到的聚合物直接沉积于电极表面形成聚合物薄膜。 但现有的 电化学聚合在制备大面积电致变色器件时难以胜任。 有鉴于此, 特提出本 发明。
发明内容
本发明第一方面的目的在于提供一种新型的聚噻哈电致变色材料, 所 述材料的颜色可以在红色和透明之间转化, 具有驱动电压低, 氧化态透明 且透过率高、 响应时间短、 可喷涂操作等特点, 可用于电致变色窗、 变色 显示器等器件。
为实现上述目的, 本发明采用如下技术方案:
一种聚噻吩电致变色材料, 其为如式 I所示的 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3,4-二曱氧基噻吩]
Figure imgf000004_0001
其中, 0<n≤0.5m, 0<q<m。 优选地, 0.4m<n<0.5m, 0.4m<q<0.5m。 更具体地, 本发明所述聚合物数均分子量范围为 3.0xl04 g/mol -
5.5xl04 g/mol, 进一步优选 3.6xl04 g/mol-4.5xl04 g/moL
本发明第二方面的目的在于提供一种上述聚合物的制备方法, 所述制 备方法简单易行且收率高, 进一步提高了聚噻吩电致变色材料的可推广性。
为实现上述目的, 本发明采用如下技术方案:
上述式 I所示聚噻哈电致变色材料的制备方法, 其包括:
步骤 1 :将 3,4-二曱氧基噻哈与 2-乙基己醇在醚交换反应催化剂的催化 作用下发生反应得到 3,4-二 (2-乙基己氧基)噻吩;
步骤 2: 使 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩在氧 化剂的作用下发生氧化聚合反应得到式 I所示的 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3,4-二曱氧基噻吩]共聚物。
上述制备方法中, 步骤 1中的醚交换反应催化剂可以为对曱基苯磺酸、 对氨基苯磺酸、 苯磺酸或无水硫酸氢钠; 优选地为对曱基苯磺酸。 反应溶 剂可以为有机溶剂, 例如苯、 曱苯或二曱苯; 优选地为曱苯。
3,4-二曱氧基噻吩与 2-乙基己醇的投料摩尔比为 1:4~1:6,优选 3,4-二曱 氧基噻吩与 2-乙基己醇的投料比为 1:5, 催化剂与 3,4-二曱氧基噻吩的投料 摩尔比为 1:10~1:15。
步骤 1的反应时间为 24~48小时, 反应温度为 110~130°C。优选地, 反 应时间为 32~40小时, 反应温度为 118~125°C。
具体地说, 步骤 1的实施过程可以为 (例如): 将 3,4-二曱氧基噻吩、 2-乙基己醇、 对曱基苯磺酸(pTSA )和曱苯加入上方连接索氏提取器的烧 瓶中, 3,4-二曱氧基噻哈与 2-乙基己醇的投料摩尔比为 1:4~1:6, 催化剂与 3,4-二曱氧基噻吩的投料摩尔比为 1:10~1:15,将混合物加热至 110~130°C并 回流 24~48 小时, 然后冷却至室温, 水洗若干次, 无水^ <酸钠干燥, 旋转 蒸发除去溶剂, 粗产物经柱层析得到油状液体, 即为 3,4-二 (2-乙基己氧基) 塞哈。
上述制备方法中, 步骤 2 中的氧化剂可以为三价铁氧化剂, 例如 (Fe(C104)3、 FeCl3、 Fe2(S04)3); 优选地为无水三氯化铁。 反应溶剂选自乙酸 乙酯、 氯仿或硝基曱烷。
步骤 2中 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩的摩尔 用量分别以 m、 n和 q计, 其具有如下配比关系: 0<n≤0.5m, 0<q<m; 氧化 剂无水三氯化铁的用量为 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基 噻吩三种单体物质的量之和的 5~6倍。
步骤 2的反应时间为 24~72小时, 反应温度为 10~35°C。优选地, 反应 时间为 48-72小时, 反应温度为 20~25°C。
具体地说,步骤 2的实施过程可以为(例如):将无水 FeCl3溶解于 30mL 乙酸乙酯, 加入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩、 噻吩、 3,4-二曱 氧基噻哈合并溶解于乙酸乙酯并经恒压滴液漏斗緩慢滴入烧瓶。 以 m、 n 和 q计, 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩的摩尔用量 配比范围为 0<n≤0.5m, 0<q<m。 氧化剂无水三氯化铁用量为三种噻吩类单 体物质的量之和的 5~6倍, 滴加完毕后在 10~35°C搅拌 24-72小时, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入水合肼, 溶液转变为深红色。 旋干过量溶剂, 剩余溶液滴 入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物。
本领域技术人员可以根据各共聚单体的用量比来得到具有不同 m、 n 和 q的取值范围, 本发明对此不再 限定。
更优选地, 本发明所述制备方法的具体合成路线如下:
Figure imgf000006_0001
I 本发明第三方面的目的在于提供所述聚噻吩电致变色材料在用于制造 电致变色装置中的应用。 其中, 所述的电致变色装置包括但不限于智能窗、 显示器等。
此外, 本发明进一步提供包括上述聚噻吩电致变色材料(即 [3,4-二 (2- 乙基己氧基)噻吩] -噻吩 _[3,4-二曱氧基噻吩]共聚物 ) 的组件。
本发明所述的组件优选为电致变色薄膜, 该电致变色薄膜具有颜色可 以在红色和透明之间转化, 驱动电压低, 氧化态透明且透过率高、 响应时 间短、 可喷涂操作的优点。 该聚合物薄膜的氧化还原电位分别为 0.7V和 0.4V; 着色态最大吸收波长为 530nm, 透过率 5.68%, 透过率差 46.8%; 消 色态最大透过率为 61.8%; 着色和褪色时间分别为 1.5 s和 1.3 s。
本发明所述电致变色薄膜可以采用现有技术公开的任一种成膜方法制 备得到, 本发明优选的成膜方法如下:
替换页(细则第 26条) 配制所述聚合物的二氯曱烷溶液, 使用喷涂装置 (包括但不限于连接 有空气压缩机的美工喷笔)喷涂聚合物溶液于氧化铟锡(ITO )玻璃或掺杂 氟的 Sn02 ( FTO )玻璃的表面形成电致变色薄膜。 其中, 所述二氯曱烷溶 液中聚合物的浓度为 2~5 mg/mL。
采用上述技术方案, 本发明提供了一种新型电致变色聚合物材料及其 制备方法。 该聚合物材料可以溶液形式喷涂在 ITO玻璃或 FTO玻璃表面成 膜; 而且, 在实际应用中发现该聚合物材料具有驱动电压低, 响应时间较 短, 着色态和消色态的透过率差较大, 循环寿命大于 10000次等特点, 非 常适合应用于智能窗、 电致变色显示器等器件。
附图说明
图 1为化合物 II的核磁氢谱图;
图 2为化合物 II的核磁碳谱图;
图 3为根据本发明示例性共聚物的核磁氢谱图;
图 4为根据本发明示例性共聚物的傅里叶变换红外谱图;
图 5为根据本发明示例性共聚物所形成薄膜的循环伏安曲线图; 图 6为根据本发明示例性共聚物所形成薄膜着色态和消色态的透过率 示意图;
图 7为根据本发明示例性共聚物所形成薄膜着色态和消色态的透过率 差示意图;
图 8为根据本发明示例性共聚物所形成薄膜的多电位间跃曲线图; 图 9、 图 10分别为根据本发明示例性共聚物所形成薄膜在消色和着色 过程的即时电量曲线图。
具体实施方式
本发明提供一种聚噻吩电致变色材料, 其为如式 I所示的 [3,4-二 (2-乙 基己氧基)噻吩] -噻吩 -[3 ,4-二曱氧基噻吩]共聚物
Figure imgf000008_0001
I
其中, 0<n≤0.5m, 0<q<m。 优选地 0.4m<n≤0.5m, 0.4m<q<0.5m。 更具体地, 本发明所述聚合物的数均分子量范围为 3.0xl04 g/mol - 5.5xl04 g/mol, 进一步优选 3.6xl04 g/mol-4.5xl04 g/moL
m、 n、 q在该比例范围内 (优选在所限定的数均分子量范围内), 能够 确保所得聚合物具有驱动电压低, 氧化态透明且透过率高、 响应时间短、 可喷涂操作等优异性能。
本发明还提供了所述聚噻吩电致变色材料的制备方法, 其包括: 步骤 1 :将 3,4-二曱氧基噻哈与 2-乙基己醇在醚交换反应催化剂的催化 作用下发生反应得到 3,4-二 (2-乙基己氧基)噻吩;
步骤 2: 使 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩在氧 化剂的作用下发生氧化聚合反应得到式 I所示的 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3,4-二曱氧基噻吩]共聚物。
优选地, 在上述制备方法的步骤 1 中醚交换反应催化剂为对曱基苯磺 酸, 反应溶剂为曱苯。 这种特定催化剂和溶剂的选择能够有效地催化醚交 换反应。
步骤 1中 3,4-二曱氧基噻吩与 2-乙基己醇的投料摩尔比为 1:4~1:6, 优 选 3,4-二曱氧基噻哈与 2-乙基己醇的投料摩尔比为 1:5, 催化剂与 3,4-二曱 氧基噻吩的投料摩尔比为 1:10~1:15。 上述用量比是发明人在大量实验研究 的基础上得到的, 在保证合成产率的情况下, 使物料的用量比尽可能得到 优化控制。
步骤 1中反应时间为 24~48小时, 反应温度为 110~130°C。优选地, 反 应时间为 32~40小时,反应温度为 118~125°C。该反应条件能够保证醚交换 反应进行至较完全的程度。 具体地说, 步骤 1为: 将 3,4-二曱氧基噻吩、 2-乙基己醇、 对曱基苯磺 酸和曱苯加入上方连接索氏提取器的烧瓶中, 3,4-二曱氧基噻吩与 2-乙基己 醇的投料摩尔比为 1:4~1:6, 催化剂与 3,4-二曱氧基噻吩的投料摩尔比为 1:10-1 :15,将混合物加热至 110~130°C并保持回流 24~48小时,然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 即 3,4-二 (2-乙基己氧基)噻吩。
优选地, 步骤 2 中氧化剂为无水三氯化铁, 反应溶剂选自乙酸乙酯、 氯仿或硝基曱烷。 无水三氯化铁具有氧化性, 在上述特定反应溶剂中能够 更好地促成单体的化学氧化聚合以及单体间的共聚。
步骤 2中 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩的摩尔 用量分别以 m、 n和 q计, 具有如下配比关系: 0<n≤0.5m, 0<q<m, 优选 0.4m<q<0.5m。氧化剂无水三氯化铁用量为三种噻吩类单体物质的量之和的 5~6倍。上述单体用量的摩尔配比能够确保所得聚合物具有驱动电压低, 氧 化态透明且透过率高、 响应时间短、 可喷涂操作等优越性能。
步骤 2中反应时间为 24~72小时, 反应温度为 10~35°C。优选地, 反应 时间为 48-72小时, 反应温度为 20~25°C。 该反应条件温和, 能够保证聚合 反应进行至较完全的程度。
具体地说, 步骤 2为: 将无水 FeCl3溶解于 30mL乙酸乙酯, 加入烧瓶 搅拌, 将 3,4-二 (2-乙基己氧基)噻吩、 噻吩、 3,4-二曱氧基噻吩合并溶解于 乙酸乙酯并经恒压滴液漏斗緩慢滴入烧瓶。 以 m、 n和 q计, 3,4-二 (2-乙基 己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩的摩尔用量配比范围为 0<n≤0.5m, 0<q<m。 氧化剂无水三氯化铁用量为三种噻哈类单体物质的量之和的 5~6 倍,滴加完毕后在 10~35°C搅拌 24-72小时,将反应混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯仿, 搅拌, 加入水合肼, 溶液转变为深红色。 旋干过量溶剂, 剩余溶液滴入曱醇沉淀, 抽滤, 滤饼 溶于氯仿, 滤去不溶物, 剩余溶液滴入曱醇沉淀, 抽滤, 收集滤饼真空干 燥得红色产物, 即为目标共聚物。 本发明所述含有上述聚噻吩电致变色材料 (即 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3,4-二曱氧基噻吩]共聚物) 的组件优选为电致变色薄膜, 所述的 电致变色薄膜可采用现有技术公开的常用技术手段制备而成, 优选采用喷 涂法。 所述电致变色薄膜的颜色可以在红色和透明之间转化, 并具有驱动 电压低, 氧化态透明且透过率高、 响应时间短、 可喷涂操作的优点。 其氧 化还原电位分别为 0.7 V和 0.4 V; 着色态最大吸收波长为 530nm, 透过率 为 5.68%, 透过率差达 46.8%; 消色态的最大透过率为 61.8%; 着色和褪色 时间分别为 1.5 s和 1.3 s。
以下以具体实施例的形式对本发明的技术方案作进一步详细介绍: 实施例 1 聚噻吩电致变色材料 按照上述合成路线制备如式 I所示的聚噻吩电致变色材料, 其为 3,4- 二 (2-乙基己氧基)噻吩、 噻吩与 3,4-二曱氧基噻吩的三元共聚物, 其中, n=0.5m, q=0.5m。 具体方法如下:
( 1 )将 3,4-二曱氧基噻吩 ( 5g, 35mmol )、 2-乙基己醇 ( 18.23g, 140mmol )、 对曱基苯磺酸( 0.65g, 3.5mmol )和 350ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 120°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 即 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 65%;
( 2 )将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 25mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、噻吩( 0.247g, 2.94mmol )、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 25°C下搅拌 48h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 2mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 35%。
其中, 化合物 II的核磁氢语图见图 1 , 图中纵坐标代表峰强度, 横坐 标代表化学位移。 δ = 6.16的峰对应噻哈环 2-、 5-位氢原子, δ = 3.85, 3.84, 1.75, 1.32, 0.90的峰对应 2-乙基己基氢原子。 化合物 II的核磁碳语图见图 2, 图中纵坐标代表峰强度, 横坐标代表化学位移。 δ = 148的峰对应噻吩环 3-、 4-位碳原子, δ = 97的峰对应噻吩环 2-、 5-位碳原子, δ = 11 , 14, 23, 24, 29, 31 , 39, 73的峰对应 2-乙基己基碳原子。 图 1和图 2说明了化合 物 II结构的正确性。
上述所得式 I所示的共聚物的核磁氢语见图 3,图 3中纵坐标代表峰强 度,横坐标代表化学位移,其中 (400 MHz, CDC13): 7.00 (br, 1H)、 3.90 (br, 5H)、 3.00-0.50 (br, 35H), 三峰积分面积比为 1:5:35。 按照投料比 [3,4-二 (2- 乙基己氧基)噻吩]: 噻吩 : [3,4-二曱氧基噻吩] = 1 :0.5 :0.5, 三峰理论积分 面积比应为 1:5:32。 图 3说明了所得共聚物结构的正确性。
所得共聚物的傅里叶变换红外谱图见图 4, 图 4中纵坐标为透过率,横 坐标为波数。 其中, 664 cm-1峰为噻吩 C-S伸缩振动吸收, 727、 772 cm"1 峰为噻 ^=C-H面外弯曲振动吸收, 1014 cm-1峰为 C-C伸缩振动吸收, 1366 cm"1峰为 C-0伸缩振动吸收, 1456 cm"1峰为噻吩 C=C骨架振动和 -C¾-对 称弯曲振动吸收, 1519 cm-1峰为噻吩 C=C骨架振动吸收, 2858、 2926 cm"1 峰为烷基链 C-H伸缩振动吸收, 2956 cm 1峰为噻哈环 C-H伸缩振动吸收。 图 4说明终产物的结构没有设计之外的官能团。
本实施例所得共聚物的数均分子量为 4.3xl04 g/mol。 所得共聚物的分 子量通过凝胶渗透色谱法( Gel Permeation Chromatography, 简称 GPC )测 定,使用的仪器是安捷伦(Agilent ) LC1200液相色语仪。具体测试条件为: 使用高效液相色谱级四氢呋喃作为流动相, 流速 1.0 mL/min,样品浓度为 1 g/L, 注射体积为 20微升, 校正曲线由单分散聚苯乙烯生成(下同)。 实施例 2 聚噻吩电致变色材料
与实施例 1相比, 区别仅在于: 将上述制备共聚物过程中原料单体的 摩尔用量配比改为 n=0.4m, q=0.6m,或 n=0.5m, q=0.8m,或 n=0.3m, q=0.6m, 或 n=0.5m, q=0.45m。所得共聚物的数均分子量依次为 3.6xl04 g/mol, 5.2xl04 g/mol, 4.1xl04 g/mol, 4·5χ104 g/mol。 实施例 3 聚噻吟电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 ( 18.23g , 140mmol )、 对曱基苯磺酸(0.65g, 3.5mmol )和 300mL曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 120°C并保持回流 24h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 60%;
( 2 )将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 30mL氯仿, 加入烧 瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、 噻吩 ( 0.247g, 2.94mmol )、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于氯仿并经 恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 20°C下搅拌 24h, 将反应混合 物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯仿, 搅拌, 加入 2~4mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩余 溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入曱 醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 20%。
本实施例所得共聚物的数均分子量为 4.1xl04 g/moL 实施例 4 聚噻吟电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 ( 18.23g , 140mmol )、 对曱基苯磺酸(0.65g, 3.5mmol )和 250mL曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 125°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 70%; ( 2 )将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 20mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol)、噻吩(0.247g, 2.94mmol )、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 20°C下搅拌 48h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 4mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 30%。
本实施例所得共聚物的数均分子量为 4.5xl04 g/moL 实施例 5 聚噻哈电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 ( 18.23g , 140mmol )、 对曱基苯磺酸( 0.65g, 3.5mmol )和 350ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 115°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 75%;
( 2 )将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 25mL硝基曱烷, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、噻吩( 0.247g, 2.94mmol )、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于硝基曱烷 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 15°C下搅拌 48h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 2mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 25%。
本实施例所得共聚物的数均分子量为 4.7xl04 g/moL 实施例 6聚噻吩电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g, 35mmol)、 2-乙基己醇 ( 18.23g, 140mmol)、 对曱基苯磺酸( 0.65g, 3.5mmol)和 300ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 120°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 65%;
(2)将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 35mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol)、噻吩( 0.247g, 2.94mmol)、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 20°C下搅拌 72h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 4mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I), 产率 35%。
本实施例所得共聚物的数均分子量为 4.3xl04 g/moL 实施例,聚噻吩电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g, 35mmol)、 2-乙基己醇 ( 18.23g, 140mmol)、 对曱基苯磺酸( 0.65g, 3.5mmol)和 250ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 120°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 60%;
(2)将无水 FeCl3 ( 11.44g, 70.56mmol )溶解于 20mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol)、噻吩( 0.247g, 2.94mmol)、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 30°C下搅拌 48h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 3mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 30%。
本实施例所得共聚物的数均分子量为 4.8xl04 g/moL 实施例 8 聚噻吩电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 (22.79g , 175mmol )、 对曱基苯磺酸( 0.65g, 3.5mmol )和 350ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 110°C并保持回流 48h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 55%;
( 2 )将无水 FeCl3 ( 9.53g, 70.56mmol )溶解于 25mL硝基曱烷, 加入 烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、 噻吩( 0.099g, 1.18mmol )、 3,4-二曱氧基噻哈( 0.678g, 4.70mmol )合并溶解于硝基曱烷 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 10°C下搅拌 72h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 2mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 25%。
本实施例所得共聚物的数均分子量为 4.0xl04 g/moL 实施例 9聚噻吩电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 (27.35g , 210mmol )、 对曱基苯磺酸( 0.52g, 2.9mmol )和 300ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 130°C并保持回流 24h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 1 ), 产率 50%;
( 2 )将无水 FeCl3 ( 10.23g, 70.56mmol )溶解于 35mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、噻吩( 0.247g, 2.94mmol )、 3,4-二曱氧基噻吩( 0.382g, 2.65mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 35°C下搅拌 24h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 4mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 30%。
本实施例所得共聚物的数均分子量为 4.4xl04 g/moL 实施例 10 聚噻吩电致变色材料
本实施例所述制备方法的具体合成步骤如下:
( 1 )将 3,4-二曱氧基噻吩(5g , 35mmol )、 2-乙基己醇 (27.35g , 210mmol )、 对曱基苯磺酸( 0.43g, 2.3mmol )和 250ml曱苯加入上方连接 索氏提取器的烧瓶中, 将混合物加热至 118°C并保持回流 40h, 然后冷却至 室温, 水洗若干次, 无水硫酸钠干燥, 旋转蒸发除去溶剂, 粗产物经柱层 析得到油状液体, 得 3,4-二 (2-乙基己氧基)噻吩(化合物 II ), 产率 50%;
( 2 )将无水 FeCl3 ( 10.87g, 70.56mmol )溶解于 20mL乙酸乙酯, 加 入烧瓶搅拌, 将 3,4-二 (2-乙基己氧基)噻吩(2g, 5.88mmol )、噻吩(0.197g, 2.35mmol )、 3,4-二曱氧基噻吩(0.424§, 2.94mmol )合并溶解于乙酸乙酯 并经恒压滴液漏斗緩慢滴入烧瓶。 滴加完毕后在 25°C下搅拌 48h, 将反应 混合物滴入曱醇中沉淀, 抽滤, 用曱醇洗涤至滤液无色; 收集滤饼溶于氯 仿, 搅拌, 加入 3mL水合肼, 溶液转变为深红色。 旋干除去过量溶剂, 剩 余溶液滴入曱醇沉淀, 抽滤, 滤饼溶于氯仿, 滤去不溶物, 剩余溶液滴入 曱醇沉淀, 抽滤, 收集滤饼真空干燥得红色产物 (共聚物 I ), 产率 30%。
本实施例所得共聚物的数均分子量为 4.9xl04 g/moL 实施例 11 含有聚噻吩电致变色材料的组件 (电致变色薄膜)
配置实施例 1-9所得共聚物的二氯曱烷溶液(5mg/mL ),使用连接有空 气压缩机(浙江永源机电制造有限公司,工作电压 220V,理论流量 89 L/min, 排气压力 0.8MPa )的美工喷笔喷涂聚合物溶液于 ITO玻璃的表面形成所述 的电致变色薄膜。 实施例 12含有聚噻吩电致变色材料的组件 (电致变色薄膜)
配置实施例 1-9所得共聚物的二氯曱烷溶液(2mg/mL ),使用连接有空 气压缩机(浙江永源机电制造有限公司,工作电压 220V,理论流量 89 L/min, 排气压力 0.8MPa )的美工喷笔喷涂聚合物溶液于 ITO玻璃的表面形成电致 变色薄膜。
选择含有实施例 6所得共聚物的电致变色薄膜进行性能测试, 结果如 下文所述。
使用 V-670型紫外 -可见 -近红外分光光度计 ( Jasco公司, 东京, 日本) 测试所得共聚物薄膜透过率, 波长扫描范围为 200-1000nm。 本实施例所述 聚合物薄膜着色态和消色态的透过率示意图见图 5,图 5中纵坐标代表透过 率, 横坐标代表波长。 红色点划线曲线代表聚合物薄膜在着色态的透过率 情况: 着色态的最大吸收波长为 530nm, 透过率 5.68%, 透过率差 46.8%; 黑色实线曲线代表其在消色态的透过率情况: 消色态的最大透过率在
610.5nm, 透过率为 61.8%。
本实施例所述聚合物薄膜着色态和消色态的透过率差示意图见图 6,图 中纵坐标代表透过率差, 横坐标代表波长, 此曲线由对同一波长光线聚合 物薄膜消色态透过率减去着色态透过率得到。 此图说明在 568nm处, 着色 态和消色态的透过率差达到最大, 为 49.8%, 对比度为 57.88: 8.1=7.15: 1。 使用 CHI-650D型电化学工作站 (上海辰华仪器有限公司)测试所得共聚 物薄膜的循环伏安曲线、 多电位阶跃曲线、 以及消色和着色过程的计时电 量曲线。 具体地, 循环伏安测试条件为: 扫描电压范围 -0.2至 IV, 扫描速 度 0.1V/s。 多电位阶跃测试条件为: 阶跃电压 1 = IV, 电压加载时间 = 2 s; 阶跃电压 2 = -0.2 V, 电压加载时间 = 2 s。 消色过程计时电量曲线测试条件 为: 加载电压 =1 V, 脉冲宽度 =2 s。 着色过程计时电量曲线测试条件为; 加 载电压 =-0.2 V, 脉冲宽度 =2 s。
本实施例所述聚合物薄膜的循环伏安曲线见图 7,图 7中纵坐标代表电 流,横坐标代表电压。此图说明聚合物的氧化还原电位分别为 0.7 V和 0.4 V。
本实施例所述聚合物薄膜的多电位阶跃曲线见图 8,图 8中纵坐标代表 电流, 横坐标代表时间。 以电流从最高到零所需时间的 95%为响应时间, 着色和褪色时间分别为 1.5 s和 1.3 s。
本实施例所述聚合物薄膜(面积 1.92 cm2 )消色和着色过程的即时电量 曲线见图 9、 图 10。 图中的纵坐标表示电量, 横坐标表示时间。 此图说明 聚合物薄膜变色驱动所需的电荷密度消色为 0.00342 C/cm2, 着色为
0.0001713 C/cm2
由此可见, 由所述共聚物材料制成的电致变色薄膜的颜色可以在红色 和透明之间转化, 并具有驱动电压低, 氧化态透明且透过率高、 响应时间 短、 可喷涂操作的优点。 上述实施例中的实施方案可以进一步组合或者替换, 且上述实施例仅 是对本发明的优选实施例进行描述, 并非对本发明的构思和范围进行限定, 在不脱离本发明设计思想的前提下, 本领域中专业技术人员对本发明的技 术方案作出的各种变化和改进, 均属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种聚噻吩电致变色材料, 其为如式 I所示的 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3,4-二曱氧基噻吩]
Figure imgf000019_0001
其中, 0<n≤0.5m, 0<q<m。
2、 根据权利要求 1 所述的聚噻吩电致变色材料, 其特征在于, 0.4m<n<0.5m, 0.4m<q<0.5m。
3、 根据权利要求 1所述的聚噻吩电致变色材料, 其特征在于, 所述聚合物 的数均分子量范围为 3.0xl04 g/mol ~ 5.5xl04 g/mol。
4、 权利要求 1-3任一项所述的聚噻哈电致变色材料的制备方法, 其包括: 步骤 1 : 将 3,4-二曱氧基噻吩与 2-乙基己醇在醚交换反应催化剂的催化 作用下发生反应得到 3,4-二 (2-乙基己氧基)噻吩;
步骤 2: 使 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩在氧化 剂的作用下发生氧化聚合反应得到式 I所示的 [3,4-二 (2-乙基己氧基)噻 吩] -噻吩 -[3 ,4-二曱氧基噻吩]共聚物。
5、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 1中醚交换反 应的催化剂为对曱基苯磺酸, 反应溶剂为曱苯。
6、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 1中 3,4-二曱 氧基噻吩与 2-乙基己醇的投料摩尔比为 1:4~1:6, 催化剂与 3,4-二曱氧基噻 吩的投料摩尔比为 1:10~1 :15。
7、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 1中反应时间 为 24~48小时, 反应温度为 110~130°C。
8、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 2中氧化剂为 无水三氯化铁, 反应溶剂选自乙酸乙酯、 氯仿或硝基曱烷。
9、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 2中 3,4-二 (2- 乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩的摩尔用量分别以 m、 n和 q 计, 其具有如下配比关系: 0<n≤0.5m, 0<q<m, 所述氧化剂为无水三氯化 铁, 并且其用量为 3,4-二 (2-乙基己氧基)噻吩、 噻吩和 3,4-二曱氧基噻吩三 种单体物质的量之和的 5~6倍。
10、 根据权利要求 4所述的制备方法, 其特征在于: 所述步骤 2中反应时 间为 24~72小时, 反应温度为 10~35°C。
11、权利要求 1-3中任一项所述的聚噻哈电致变色材料在制造电致变色装置 中的应用。
12、 含有权利要求 1-3中任一项所述的聚噻吩电致变色材料的组件。
13、根据权利要求 12所述的组件,其特征在于所述的组件为电致变色薄膜。
14、 根据权利要求 13所述的组件, 其特征在于所述电致变色薄膜的成膜方 法为: 配置所述聚噻哈电致变色材料的二氯曱烷溶液, 使用喷涂装置喷涂 所述溶液于 ITO玻璃或 FTO玻璃的表面形成电致变色薄膜。
PCT/CN2014/076649 2013-09-29 2014-04-30 电致变色材料及其制备方法与组件 WO2015043182A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,214 US9481825B2 (en) 2013-09-29 2014-04-30 Electrochromic material, method for preparing the same and component comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310455207.3 2013-09-29
CN201310455207.3A CN103524718B (zh) 2013-09-29 2013-09-29 一种红色电致变色材料及其制备方法与组件

Publications (1)

Publication Number Publication Date
WO2015043182A1 true WO2015043182A1 (zh) 2015-04-02

Family

ID=49927100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076649 WO2015043182A1 (zh) 2013-09-29 2014-04-30 电致变色材料及其制备方法与组件

Country Status (3)

Country Link
US (1) US9481825B2 (zh)
CN (1) CN103524718B (zh)
WO (1) WO2015043182A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417976A (zh) * 2022-09-19 2022-12-02 湖南大学 亲水性红色至透明电致变色聚合物及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524718B (zh) * 2013-09-29 2015-09-02 京东方科技集团股份有限公司 一种红色电致变色材料及其制备方法与组件
CN104986966A (zh) * 2015-04-30 2015-10-21 西安工业大学 一种与ito共价键接的电致变色聚噻吩衍生物薄膜的制备方法
CN114853988B (zh) * 2022-05-13 2024-04-12 江苏慧智新材料科技有限公司 含噻吩嵌入单元电致变色聚合物、制备方法、薄膜及器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151224A (en) * 1988-05-05 1992-09-29 Osaka Gas Company, Ltd. Tetrasulfonated metal phthalocyanine doped electrically conducting electrochromic poly(dithiophene) polymers
US5300575A (en) * 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
US20020196518A1 (en) * 2001-06-25 2002-12-26 University Of Washington Electrochromic organic polymer synthesis and devices utilizing electrochromic organic polymers
CN1688633A (zh) * 2002-09-24 2005-10-26 E.I.内穆尔杜邦公司 用聚合物酸胶体制备的可水分散的聚噻吩
CN101983356A (zh) * 2008-03-24 2011-03-02 佛罗里达大学研究基金公司 双活化膜电致色显示装置
CN102443144A (zh) * 2010-10-08 2012-05-09 中国科学院化学研究所 支链聚噻吩衍生物及其制备方法和用途
CN103524718A (zh) * 2013-09-29 2014-01-22 京东方科技集团股份有限公司 一种红色电致变色材料及其制备方法与组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936245B (zh) * 2011-08-15 2016-08-24 南开大学 光电材料制备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151224A (en) * 1988-05-05 1992-09-29 Osaka Gas Company, Ltd. Tetrasulfonated metal phthalocyanine doped electrically conducting electrochromic poly(dithiophene) polymers
US5300575A (en) * 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
US20020196518A1 (en) * 2001-06-25 2002-12-26 University Of Washington Electrochromic organic polymer synthesis and devices utilizing electrochromic organic polymers
CN1688633A (zh) * 2002-09-24 2005-10-26 E.I.内穆尔杜邦公司 用聚合物酸胶体制备的可水分散的聚噻吩
CN101983356A (zh) * 2008-03-24 2011-03-02 佛罗里达大学研究基金公司 双活化膜电致色显示装置
CN102443144A (zh) * 2010-10-08 2012-05-09 中国科学院化学研究所 支链聚噻吩衍生物及其制备方法和用途
CN103524718A (zh) * 2013-09-29 2014-01-22 京东方科技集团股份有限公司 一种红色电致变色材料及其制备方法与组件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, SHENG ET AL., SYNTHESIS AND CHARACTERIZATION OF ELECTROCHROMIC POLY(3, 4-DIOCTYLOXYTHIOPHENE, vol. 41, no. 02, 30 June 2009 (2009-06-30), pages 135 - 140 *
LA, MING ET AL.: "Organic Thiophene Derivatives as Electrochromic Materials", PROGRESS IN CHEMISTRY, vol. 21, no. 06, 31 March 2009 (2009-03-31), pages 1268 - 1274 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417976A (zh) * 2022-09-19 2022-12-02 湖南大学 亲水性红色至透明电致变色聚合物及其制备方法和应用
CN115417976B (zh) * 2022-09-19 2023-10-27 湖南大学 亲水性红色至透明电致变色聚合物及其制备方法和应用

Also Published As

Publication number Publication date
US9481825B2 (en) 2016-11-01
CN103524718B (zh) 2015-09-02
US20160046858A1 (en) 2016-02-18
CN103524718A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2015090124A1 (zh) 蓝色电致变色化合物及其制备方法与含有其的组件
CN102060982A (zh) 含萘[1,2-c:5,6-c]二[1,2,5]噻二唑的有机半导体材料及其应用
CN110092891B (zh) 一种噻吩并噻吩类的电致变色聚合物及其制备方法
CN114907551B (zh) 一种红色电致变色聚合物、制备方法、薄膜及器件
CN105315273A (zh) 一种多受体结构小分子化合物、制备方法及用途
WO2015043182A1 (zh) 电致变色材料及其制备方法与组件
CN112430314B (zh) 含引达省并二噻吩结构的电致变色聚合物及制备方法、聚合物薄膜与应用
CN112126043B (zh) 一种以四联噻吩为变色主体的可溶性电致变色聚合物及制备与应用
CN114605620A (zh) 一种电致变色聚合物及其制备方法和电致变色薄膜
CN103554139A (zh) 一种噻吩稠合的2,1,3-苯并二唑衍生物及其聚合物
CN114853987A (zh) 一种含二氧噻吩和9,9`-螺二芴结构的电致变色共聚物及其制备方法和聚合物薄膜
CN114853988B (zh) 含噻吩嵌入单元电致变色聚合物、制备方法、薄膜及器件
Kuai et al. Self-assembled flexible metallo-supramolecular film based on Fe (II) ion and triphenylamine-subsituted alkyl terpyridine towards electrochromic application
CN114349937B (zh) 一种水醇溶性电致变色聚合物及其制备方法和应用
CN107739430B (zh) 一种全色段电制变色聚合物及其制备方法
CN106632438B (zh) 一种基于乙炔基桥联的A-π-D-π-A型BODIPY衍生物及其制备方法
CN112500556B (zh) 供体受体型电致变色聚合物及制备方法、电致变色薄膜与应用
CN112430313B (zh) 含苯并二噻吩结构的电致变色聚合物及制备方法、电致变色薄膜与应用
CN108840993B (zh) 一种d-a-d′非对称结构的聚合膜pewt及其制备方法与应用
CN115926119A (zh) 一种宽波段吸收的电致变色聚合物及其制备方法和一种电致变色薄膜
CN114230581B (zh) 一种多齿有机配体及其制备方法和应用、金属超分子聚合物及其制备方法
CN112500557B (zh) 基于5-氟-2,1,3-苯并噻二唑非对称给体-受体-给体型电致变色聚合物及应用
CN108929297B (zh) 一种含不对称荧光团结构的二酐单体及其制备方法和应用
CN114920910B (zh) 一种可溶液加工的黄色-蓝色电致变色聚合物及其制备方法和应用
CN107955139B (zh) 一种含薁共轭聚合物、其中间体及应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14424214

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14847376

Country of ref document: EP

Kind code of ref document: A1