WO2015042875A1 - 波长选择开关和控制波长选择开关中的空间相位调制器的方法 - Google Patents

波长选择开关和控制波长选择开关中的空间相位调制器的方法 Download PDF

Info

Publication number
WO2015042875A1
WO2015042875A1 PCT/CN2013/084468 CN2013084468W WO2015042875A1 WO 2015042875 A1 WO2015042875 A1 WO 2015042875A1 CN 2013084468 W CN2013084468 W CN 2013084468W WO 2015042875 A1 WO2015042875 A1 WO 2015042875A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
selective switch
phase modulator
wavelength selective
optical signal
Prior art date
Application number
PCT/CN2013/084468
Other languages
English (en)
French (fr)
Inventor
刘宁
赵晗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13894231.3A priority Critical patent/EP3043495B1/en
Priority to CN201380001972.6A priority patent/CN104756422B/zh
Priority to PCT/CN2013/084468 priority patent/WO2015042875A1/zh
Publication of WO2015042875A1 publication Critical patent/WO2015042875A1/zh
Priority to US15/080,922 priority patent/US9660723B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/0028Construction using free space propagation (e.g. lenses, mirrors) using holograms

Definitions

  • the present invention relates to the field of optical networks, and more particularly to wavelength selective switches in the field of optical networks and methods of controlling spatial phase modulators in wavelength selective switches. Background technique
  • RO ADM Reconfiguration Optical Add/Drop Multiplexer
  • the optical-electrical-optical (Optical Electrical Optical) conversion in the system link is decreasing, and the direct test of the bit error rate becomes more and more in the electrical layer. Difficulty, and only testing the bit error rate at the link terminal is not conducive to fault location.
  • Optical performance monitoring Dynamic Dense Wavelength Division Multiplex (DWDM)
  • DWDM Dynamic Dense Wavelength Division Multiplex
  • optical power monitoring can reflect the basic working state of the channel and guide the system to perform automatic power balancing; optical signal to noise ratio ("OSNR") monitoring can accurately reflect signal quality; dispersion monitoring can Reflecting the dispersion state of the channel to guide the system to perform dispersion compensation in the optical layer or the electrical layer.
  • OSNR optical signal to noise ratio
  • dispersion monitoring can Reflecting the dispersion state of the channel to guide the system to perform dispersion compensation in the optical layer or the electrical layer.
  • a solution for OPM of a ROADM is to use an external OPM module outside the wavelength selection switch (Wavelength Selective Switch, called "WSS”), and separate the main optical channel signal to be monitored in the ROADM by a splitter. A small part is then monitored with the OPM module.
  • WSS Wavelength Selective Switch
  • a tunable optical filter Tunable Optical Filter, called “TOF”
  • TOF Tunable Optical Filter
  • a wavelength demultiplexer (Demultiplxer) can also be used to perform wavelength demultiplexing of the combined optical signal from the spatial dimension, so that only one signal of the combined optical signal is received at the same output position. Extracted to monitor the performance of this single channel optical signal.
  • the method uses an external OPM module to monitor the performance of the ROADM.
  • the OPM module needs to use a tunable optical filter or a wavelength demultiplexer to separate the single-wavelength optical signals for monitoring, thereby significantly increasing the size of the system. And increase the cost of the system. Summary of the invention
  • Embodiments of the present invention provide a wavelength selective switch and a method of controlling a spatial phase modulator in a wavelength selective switch, capable of performing performance monitoring on a single wavelength optical signal, and capable of reducing system volume and cost.
  • a wavelength selective switch comprising: a first branching wave multiplexing device for spatially separating the multi-wavelength optical signals input from the input end of the wavelength selective switch a single-wavelength optical signal; a spatial phase modulator, configured to respectively change a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, wherein the spatial phase modulator is further configured to use the plurality of single-wavelength lights
  • the first single-wavelength optical signal in the signal is separated into a first beam and a second beam, the first beam being incident on an output end of the wavelength selective switch, the second beam being incident on a monitoring end of the wavelength selective switch; And being disposed at the monitoring end for receiving the second light beam; and a performance monitoring device for performing performance monitoring on the second light beam received by the photodetector.
  • a first sub-space phase modulator of the spatial phase modulator for controlling the first single-wavelength optical signal includes a first pixel array and a first a two-pixel array, the first pixel array is configured to control the first light beam to be incident on the output end, and the second pixel array is configured to control the second light beam to be incident on the monitoring end.
  • the first sub-space phase modulator of the spatial phase modulator for controlling the first single-wavelength optical signal is formed as a holographic diffraction grating
  • the first subspace phase modulator is configured to control the first beam to be transmitted along the main order of the holographic diffraction grating, and to control the second beam to be transmitted along the non-primary direction of the holographic diffraction grating.
  • the first light beam The intensity is greater than the intensity of the second beam.
  • the spatial phase modulator is further configured to: at least two single-wavelength optical signals of the plurality of single-wavelength optical signals in different time dimensions Each of the single-wavelength optical signals included is separately separated into two partial beams, and a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are incident on the wavelength selective switch a monitoring end.
  • the spatial phase modulator is further configured to: at least two single-wavelength optical signals of the plurality of single-wavelength optical signals in different spatial dimensions Each of the single-wavelength optical signals included is separately separated into two partial beams, and a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are respectively incident on the wavelength selective switch At least two monitoring ends located at different locations.
  • the wavelength selection switch further includes At least one of the following devices: a first collimator, a first beam deforming device, and a first polarization converting device, wherein the multi-wavelength optical signal passes through the first collimator, the first beam deforming device, and the After at least one of the first polarization conversion devices, is incident on the first demultiplexing device.
  • the wavelength selection switch further includes a second partial wave multiplexing device, wherein a plurality of single-wavelength optical signals whose transmission direction is changed by the spatial phase modulator pass through the second partial wave multiplexing device, and are incident on an output end and a monitoring end of the wavelength selective switch At least one of them.
  • the wavelength selection switch further includes At least one of the following devices: a second collimator, a second beam deforming device, and a second polarization converting device, wherein the plurality of single-wavelength optical signals pass through the second collimator, the second beam deforming device And at least one of the second polarization conversion device is incident on at least one of an output end and a monitoring end of the wavelength selective switch.
  • the wavelength selection switch further includes At least one of the following devices: an input side focus lens and an output side focus lens, The plurality of single-wavelength optical signals are incident on the spatial phase modulator after passing through the input side focusing lens; or the plurality of single-wavelength optical signals outputted through the spatial phase modulator are concentrated by the output side focusing lens and output.
  • the spatial phase modulator is Silicon-based liquid crystal LCOS.
  • a method of controlling a spatial phase modulator in a wavelength selective switch comprising: a first demultiplexing multiplexer for transmitting a multi-wavelength optical signal input from an input of the wavelength selective switch, Spatially separating into a plurality of single-wavelength optical signals; a spatial phase modulator for respectively changing a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, wherein the spatial phase modulator is further configured to The first single-wavelength optical signal of the plurality of single-wavelength optical signals is separated into a first beam and a second beam, the first beam being incident on an output end of the wavelength selective switch, the second beam being incident on the wavelength selective switch for monitoring a photodetector disposed at the monitoring end for receiving the second beam; a performance monitoring device for performing performance monitoring on the second beam received by the photodetector; the method comprising: determining the spatial phase a first pixel array and a second pixel array of the modulator for controlling the first single
  • a method for controlling a spatial phase modulator in a wavelength selective switch comprising: a first demultiplexing multiplexer for transmitting a multi-wavelength optical signal input from an input of the wavelength selective switch, Spatially separating into a plurality of single-wavelength optical signals; a spatial phase modulator for respectively changing a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, wherein the spatial phase modulator is further configured to The first single-wavelength optical signal of the plurality of single-wavelength optical signals is separated into a first beam and a second beam, the first beam being incident on an output end of the wavelength selective switch, the second beam being incident on the wavelength selective switch for monitoring a photodetector disposed at the monitoring end for receiving the second beam; a performance monitoring device for performing performance monitoring on the second beam received by the photodetector; the method comprising: determining the spatial phase a first subspace phase modulator of the modulator for controlling the first single wavelength optical signal; controlling
  • 1 is a schematic block diagram of a wavelength selective switch in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a spatial phase modulator in accordance with an embodiment of the present invention.
  • FIG. 3 is another schematic block diagram of a spatial phase modulator in accordance with an embodiment of the present invention.
  • FIG. 4 is another schematic block diagram of a wavelength selective switch in accordance with an embodiment of the present invention.
  • FIG. 5 is still another schematic block diagram of a wavelength selective switch according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow diagram of a method of controlling a spatial phase modulator in a wavelength selective switch, in accordance with an embodiment of the present invention.
  • Figure 7 is another schematic flow diagram of a method of controlling a spatial phase modulator in a wavelength selective switch in accordance with an embodiment of the present invention.
  • Figure 8 is a schematic block diagram of an apparatus for controlling a spatial phase modulator in a wavelength selective switch, in accordance with an embodiment of the present invention.
  • Figure 9 is another schematic block diagram of an apparatus for controlling a spatial phase modulator in a wavelength selective switch in accordance with an embodiment of the present invention. detailed description
  • FIG. 1 shows a schematic block diagram of a wavelength selective switch 100 in accordance with an embodiment of the present invention.
  • the wavelength selective switch 100 includes:
  • the first branching and multiplexing device 110 is configured to spatially separate the multi-wavelength optical signals input from the input end 170 of the wavelength selective switch 100 into a plurality of single-wavelength optical signals;
  • the spatial phase modulator 120 is configured to respectively change a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, where the spatial phase modulator 120 is further configured to use the first one of the plurality of single-wavelength optical signals a single wavelength optical signal is separated into a first beam and a second beam, the first beam is incident on the output end 150 of the wavelength selective switch 100, the second beam is incident on the monitoring end 160 of the wavelength selective switch 100;
  • the photodetector 130 is disposed at the monitoring end 160 for receiving the second beam; and the performance monitoring device 140 is configured to perform performance monitoring on the second beam received by the photodetector 130.
  • the wavelength selective switch 100 may include a first demultiplexing device 110, a spatial phase modulator 120, a photodetector 130, and a performance monitoring device 140; in addition, the wavelength selection
  • the switch 100 can also include an input terminal 170, an output terminal 150, and a monitoring terminal 160, wherein an input signal can enter the wavelength selective switch 100 from the input terminal 170, and a portion of the optical signal can be output from the output terminal 150 to achieve a single wavelength The selection of the optical signal; and another portion of the optical signal may be output from the monitoring terminal 160 to monitor the optical signal of some or all of the wavelengths output by the wavelength selective switch 100.
  • the first demultiplexing device 110 is, for example, a grating device, and a multi-wavelength optical signal having multiple wavelengths input through the input terminal 170, for example, multi-wavelength light having two or more wavelengths.
  • a signal after passing through the first demultiplexing device 110, a spatially separated plurality of single-wavelength optical signals having a single wavelength; the single-wavelength optical signals passing through the spatial phase modulator
  • the transmission directions of the plurality of single-wavelength optical signals are changed, so that each single can be made.
  • the wavelength optical signal is output to a desired position, in particular, a single-wavelength optical signal can be output to at least two different fixed positions desired; that is, the spatial phase modulator can each part of the light included in each single-wavelength optical signal.
  • the signals are individually controlled so that each A portion of the optical signal is output to a desired location.
  • the spatial phase modulator 120 is further configured to spatially separate the first single-wavelength optical signal into the first beam and the second beam,
  • the first light beam is incident on the output end 150, and the second light beam is incident on the monitoring end 160;
  • the photodetector 130 disposed at the monitoring end 160 can detect the second light beam and pass through the performance monitoring device 140.
  • the second beam is monitored for performance, whereby performance monitoring of the first single wavelength optical signal can be performed.
  • the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the second light beam included in the single-wavelength optical signal is incident on the
  • the monitoring terminal of the wavelength selective switch enables performance monitoring of single-wavelength optical signals without adding additional tunable optical filters or wavelength demultiplexing devices, thereby reducing system size and system structure The complexity and ability to significantly reduce system costs.
  • the first single-wavelength optical signal may be any one of a plurality of single-wavelength optical signals; it is also understood that the single-wavelength optical signal may have a single central wavelength.
  • the optical signal but the embodiment of the invention is not limited thereto.
  • the first single-wavelength optical signal may further include multiple single-wavelength optical signals, and for each single-wavelength signal, the spatial phase modulator may separate the single-wavelength optical signal into the first a light beam and a second light beam, wherein the first light beam is incident on an output end of the wavelength selective switch, and the second light beam is incident on a monitoring end of the wavelength selective switch.
  • the photodetector may be a device that converts the received optical signal into an electrical signal.
  • the photodetector 130 may be a photodiode, a PIN photodiode, an avalanche photodiode, etc., but Embodiments of the invention are not limited thereto.
  • the performance monitoring device 140 can monitor, for example, the optical power of the optical signal, and can also monitor the optical signal-to-noise ratio (OSNR) of the optical signal, and can also monitor the dispersion of the optical signal.
  • OSNR optical signal-to-noise ratio
  • the embodiments of the present invention are not limited thereto.
  • the second light beam may be incident on other optical components before being incident on the photodetector, for example, may be split by a splitter, or The embodiment of the present invention is not limited thereto by focusing by a focusing lens.
  • the photodetector and the performance monitoring device may be separately disposed, or may be integrally configured as a performance monitoring module, but the embodiment of the present invention is not limited thereto.
  • the spatial phase modulator may be a switching engine that adopts multiple pixel points, wherein each pixel point may be separately controlled.
  • each pixel point can be formed into a phase grating, and each pixel point can have a different gray value, so that the formed phase grating can produce different diffraction effects. , or the optical signal after passing through the phase grating has different deflection directions.
  • the spatial phase modulator is a liquid crystal on silicon (Liquid Crystal On Silicon, referred to as "LCOS"). It should be understood that the embodiment of the present invention is only described by taking LCOS as an example, but the embodiment of the present invention is not limited thereto, and the spatial phase modulator may also be other devices capable of implementing the above functions.
  • LCOS liquid crystal on silicon
  • the first sub-space phase modulator of the spatial phase modulator 120 for controlling the first single-wavelength optical signal comprises a first pixel array and a second pixel array, the first The pixel array is configured to control the first light beam to be incident on the output end 150, and the second pixel array is configured to control the second light beam to be incident on the monitoring end 160.
  • the spatial phase modulator may include a plurality of subspace spatial modulators for respectively controlling different single wavelength optical signals, and each subspace spatial phase modulator may include a pixel array formed of a plurality of pixels, for example, a first subspace
  • the phase modulator can include a first pixel array and a second pixel array.
  • the spatial phase modulator 120 is taken as an example for the LCOS.
  • the LCOS can be formed by a plurality of multi-pixel dots and loaded on different pixel points by different voltage levels, and each pixel point can independently control its phase, thereby making The phase grating formed by these pixels can control the deflection angle of the optical signal.
  • each single-wavelength optical signal is controlled by thousands of pixels, but in theory, a grating formed by about 100 pixels can effectively control the deflection angle of the light.
  • the pixel points can be divided into a first pixel array formed by class A pixels and by B.
  • a second pixel array formed by pixel-like pixels.
  • a portion of the pixel such as a class B pixel, is used to control the first beam included in the single-wavelength optical signal such that the first beam is incident on the output of the wavelength selective switch; and another portion of the pixel, such as a class A pixel And controlling the second light beam included in the single-wavelength optical signal such that the second light beam is incident on the monitoring end of the wavelength selective switch for optical performance monitoring.
  • the more pixel points the higher the diffraction efficiency of the formed phase grating, and the smaller the crosstalk between channels.
  • the required isolation is low, thus A smaller portion of the single wavelength optical signal that can be controlled by a small number of pixel points is used for the OPM. That is, in the embodiment of the present invention, optionally, the intensity of the first beam is greater than the intensity of the second beam, so that a small amount of single-wavelength optical signals are used for the OPM, and most of the single-wavelength optical signals are output from the WSS. Output, which can reduce d, the insertion loss of the system.
  • the second sub-pixel array ij included by the first sub-space phase modulator such as the class A pixel shown in FIG. 2 may be continuous in the first sub-space phase modulator.
  • the area, as shown in the left figure of FIG. 2 may also be a discontinuous area in the first subspace phase modulator, as shown in the right diagram of FIG. 2, wherein the first pixel array is spaced apart from the second pixel array. arrangement.
  • the first subspace phase modulator for controlling the first single wavelength optical signal may be a continuous region in the spatial phase modulator for controlling each single wavelength optical signal, It may be a discontinuous area, for example, the first subspace phase modulator may be spaced apart from the spatial phase modulator portion for controlling other single wavelength optical signals, but embodiments of the invention are not limited thereto.
  • the LCOS for the OPM can output the optical signal to be detected to the monitoring end by controlling the phase of each pixel, and can scatter the light that does not need to be monitored to the fiber-free portion. . Since LCOS for OPM and LCOS for WSS can be independently controlled, the added OPM function does not affect the functional implementation of WSS.
  • a spatial phase modulator such as a liquid crystal liquid crystal LCOS can be formed by using a phase modulation characteristic of a spatial phase modulator by loading different pixel points on different pixel points to form a phase grating; After the phase grating of the grating, multiple diffraction orders are produced.
  • the optical signal transmitted along the first-order diffraction order is also referred to as the optical signal transmitted along the primary direction, for example, as shown in FIG. 3.
  • the optical signal is input to the monitoring end of the WSS.
  • a holographic diffraction grating can be formed on the LCOS by precisely designing the gray value of each pixel, and effectively controlling the deflection of the non-primary order diffracted light.
  • Direction, making most of the non-primary order diffracted light from fixed supervision The probe output is used for OPM.
  • the first subspace phase modulator of the spatial phase modulator 120 for controlling the first single wavelength optical signal is formed as a holographic diffraction grating, and the first subspace phase modulator is used.
  • the first light beam is controlled to be transmitted in a primary direction of the holographic diffraction grating, and the second light beam is controlled to be transmitted in a non-primary direction of the holographic diffraction grating.
  • the first single when it is required to perform performance monitoring on a single-wavelength signal light, for example, when the first single-wavelength optical signal needs to be detected, the first single can be controlled according to the gray value of each pixel that is pre-designed.
  • the first subspace phase modulator of the wavelength optical signal is controlled such that the first beam transmitted along the primary direction of the holographic diffraction grating formed by the first subspace phase modulator is incident on the output of the wavelength selective switch, Most of the second light beam transmitted in the non-primary direction of the holographic diffraction grating is incident on the monitoring end of the wavelength selective switch.
  • the first sub-space phase modulator can be controlled according to the gray value of each pixel designed in advance, so that most of the other non-primary stages are along The directionally transmitted beam is scattered to the position where no output fiber is emitted.
  • the system insertion loss can be further reduced, and crosstalk which may be formed can be avoided, and the anti-interference ability of the system can be improved.
  • the spatial phase modulator controlling the plurality of single-wavelength optical signals may be controlled according to the gray value of each pixel point designed in advance, so as to be respectively controlled along the first subspace phase modulator for controlling the second single wavelength.
  • Most of the optical signals transmitted by the non-primary level of the holographic diffraction grating formed by the spatial phase modulator such as the second subspace phase modulator of the optical signal may be incident on the fixed monitoring end of the wavelength selective switch; that is, the spatial phase modulator may When the primary-order diffracted light output position is changed, most of the other non-primary-order diffracted light output positions may be unchanged.
  • the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the second light beam included in the single-wavelength optical signal is incident on the
  • the monitoring terminal of the wavelength selective switch enables performance monitoring of single-wavelength optical signals without adding additional tunable optical filters or wavelength demultiplexing devices, thereby reducing system size and insertion loss. Reduce the complexity of the system structure, and can significantly reduce the system cost and improve the system's anti-interference ability.
  • the spatial phase modulator is described for controlling the transmission direction of a single single-wavelength optical signal; the following will describe the space from the perspective of multiple single-wavelength optical signals.
  • the phase modulator controls the direction of transmission of multiple single-wavelength optical signals.
  • the spatial phase modulator 120 is further configured to: use, in different time dimensions, each single-wavelength light included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals.
  • the signals are respectively separated into two partial beams, and a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are incident on a monitoring terminal 160 of the wavelength selective switch.
  • the first subspace phase modulator of the spatial phase modulator 120 for controlling the first single wavelength optical signal may control the first single wavelength optical signal to include the first light beam at the first Inputting to a monitoring terminal 160 of the wavelength selective switch 100;
  • the second subspace phase modulator of the spatial phase modulator 120 for controlling the second single-wavelength optical signal can control the second single-wavelength optical signal to include A beam is input to a fixed monitoring terminal 160 of the wavelength selective switch 100 at a second time.
  • the single-wavelength optical signal to be monitored can be output to the fixed monitoring end for monitoring the optical performance in different time dimensions according to the monitoring requirement, that is, the single-wavelength optical signals of different wavelengths can be incident on the same monitoring end in a time-sharing manner, so that Optical performance monitoring of different single-wavelength optical signals.
  • the first subspace phase modulator may control a part of the beam of each single wavelength optical signal included in the at least two single wavelength optical signals to be time-divisionally incident to a monitoring of the wavelength selective switch.
  • End 160, and the first subspace phase modulator can further control another partial beam of each single wavelength optical signal included in the at least two single wavelength optical signals, which can be incident into at least one of the wavelength selective switches in a time division manner
  • the output end 150 can be incident on at least two output terminals 150 at different positions of the wavelength selective switch, respectively, but the embodiment of the invention is not limited thereto.
  • the spatial phase modulator 120 is further configured to: use, in different spatial dimensions, each single-wavelength light included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals.
  • the signals are respectively separated into two partial beams, and a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are respectively incident on at least two of the wavelength selective switches at different positions Monitoring terminal 160.
  • the first subspace phase modulator of the spatial phase modulator 120 for controlling the first single wavelength optical signal may control the first beam input of the first single wavelength optical signal to be input to the wavelength. Selecting a fixed monitoring end 161 of the switch 100; the second subspace phase modulator of the spatial phase modulator 120 for controlling the second single wavelength optical signal can control the second single wave
  • the first light beam included in the long light signal is input to another fixed monitoring terminal 162 of the wavelength selective switch 100; and the third subspace phase modulator of the spatial phase modulator 120 for controlling the third single wavelength optical signal can be controlled
  • the first light beam included in the third single-wavelength optical signal is input to a further fixed monitoring terminal 163 of the wavelength selective switch 100. Therefore, each single-wavelength optical signal of the plurality of single-wavelength optical signals can be separately output to a plurality of different positions from different spatial dimensions, so that optical performance monitoring of each single-wavelength optical signal can be performed simultaneously.
  • At least two monitoring ends 160 located at different positions, and another partial beam may be incident on the at least one output end 150 of the wavelength selective switch in a time-sharing manner, or may be incident on at least two of the wavelength selective switches respectively at different positions.
  • the output terminal 150 but the embodiment of the present invention is not limited thereto.
  • the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the second light beam included in the single-wavelength optical signal is incident on the
  • the monitoring terminal of the wavelength selective switch enables performance monitoring of single-wavelength optical signals without adding additional tunable optical filters or wavelength demultiplexing devices, thereby reducing system size and insertion loss. Reduce the complexity of the system structure, and can significantly reduce the system cost and improve the system's anti-interference ability.
  • the wavelength selective switch 100 further includes at least one of the following devices: a first collimator 210, a first beam deforming device, and a first polarization converting device 220, wherein The multi-wavelength optical signal is incident on the first demultiplexing device 110 after passing through at least one of the first collimator 210, the first beam deforming device, and the first polarization converting device 220.
  • the multi-wavelength optical signal can enter the input fiber array from the input end 170 of the wavelength selective switch 100, and then the first collimator 210 can collimate the multi-wavelength optical signal.
  • the multi-wavelength optical signal after the direct transmission may be directly incident on the first demultiplexing device 110, or may be incident on the first beam deforming device and/or the first polarization converting device 220, and may be deformed by the first beam.
  • the device and/or the first polarization conversion device 220 adjusts the shape and/or polarization state of the incident multi-wavelength optical signal and then enters the first demultiplexing device 110.
  • the incident multi-wavelength optical signal After the incident multi-wavelength optical signal is demultiplexed by the first demultiplexing device 110, it can be spatially separated into a plurality of single-wavelength optical signals; the plurality of single-wavelength optical signals can be directly incident on the spatial phase modulator 120, After passing through the input side focusing lens 260, as shown in FIG. 4 or FIG. 5, incident on the Spatial phase modulator 120.
  • the spatial phase modulator 120 changes the transmission directions of the single-wavelength optical signals included in the plurality of single-wavelength optical signals, the single-wavelength optical signals may be directly incident on the output end 150 or the monitoring end 160 of the wavelength selective switch 100. It can be output after being concentrated by the output side focusing lens 270, for example, as shown in FIG. 4 or FIG.
  • the wavelength selective switch 100 further includes at least one of the following devices: an input side focusing lens 260 and an output side focusing lens 270, wherein the plurality of single wavelength optical signals pass through The input side focusing lens 260 is incident on the spatial phase modulator 120; or a plurality of single-wavelength optical signals outputted through the spatial phase modulator 120 are concentrated by the output side focusing lens 270 and output.
  • the wavelength selective switch 100 further includes a second partial wave multiplexing device 230, wherein the transmission direction is changed by the spatial phase modulator 120. After the plurality of single-wavelength optical signals pass through the second demultiplexing device 230, they are incident on at least one of the output terminal 150 and the monitoring terminal 160 of the wavelength selective switch 100.
  • the wavelength selective switch 100 further includes at least one of the following devices: a second collimator 240, a second beam deforming device, and a second polarization converting device 250, wherein The plurality of single-wavelength optical signals are incident on the output end 150 of the wavelength selective switch 100 after passing through at least one of the second collimator 240, the second beam deforming device, and the second polarization converting device 250. And at least one of the monitoring ends 160.
  • the single-wavelength optical signals that change the transmission direction by the spatial phase modulator may be combined by the second demultiplexing device 230 and then incident on the output terminal 150 of the wavelength selective switch 100 and / Or monitor terminal 160. That is, the monitoring terminal 160 of the wavelength selective switch 100 can perform optical performance monitoring on the single-wavelength optical signal, and can also perform optical performance monitoring on the multi-wavelength optical signal formed by the plurality of single-wavelength optical signals, and the embodiment of the present invention is not limited thereto.
  • the plurality of single-wavelength optical signals or the plurality of multi-wavelength optical signals may be collimated by the second collimator 240, and/or pass through the second beam deforming device and the second polarization.
  • the conversion device 250 is incident on the output 150 and/or the monitor terminal 160 of the wavelength selective switch 100 after adjustment of the shape and polarization state.
  • the collimator may be used for collimating the input optical signal
  • the collimator is, for example, a group of lens groups
  • the beam deforming device and the polarization converting device may be used to change the input respectively.
  • the shape and polarization state of the optical signal, the beam deforming device or the polarization converting device may also be composed of one or more sets of lens groups; the focusing lens may be used to converge or concentrate the input optical signal
  • the focusing lens may be a single lens or a lens group, and the embodiment of the invention is not limited thereto.
  • the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the second light beam included in the single-wavelength optical signal is incident on the
  • the monitoring terminal of the wavelength selective switch enables performance monitoring of single-wavelength optical signals without adding additional tunable optical filters or wavelength demultiplexing devices, thereby reducing system size and insertion loss. Reduce the complexity of the system structure, and can significantly reduce the system cost and improve the system's anti-interference ability.
  • a wavelength selective switch according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 5, and a spatial phase modulator for controlling a wavelength selective switch according to an embodiment of the present invention will be described in detail below with reference to FIGS. 6 to 9. Method and apparatus.
  • the wavelength selective switch includes: a first demultiplexing multiplexer for selecting a switch from the wavelength, in accordance with an embodiment of the present invention.
  • the multi-wavelength optical signal input at the input end is spatially separated into a plurality of single-wavelength optical signals; the spatial phase modulator is configured to respectively change a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, where The spatial phase modulator is further configured to separate the first single-wavelength optical signal of the plurality of single-wavelength optical signals into a first beam and a second beam, the first beam being incident on an output end of the wavelength selective switch, the first Two light beams are incident on the monitoring end of the wavelength selective switch; a photodetector is disposed at the monitoring end for receiving the second light beam; and a performance monitoring device is configured to perform performance on the second light beam received by the photodetector Monitoring
  • the method 500 includes:
  • the method for controlling a spatial phase modulator in a wavelength selective switch controls a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, so that without adding an additional tunable optical filter or wavelength demultiplexing device, Capable of monitoring performance of single-wavelength optical signals, thereby reducing system size, reducing system complexity, and significantly reducing system cost.
  • the first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal comprises a first pixel array and a second pixel array, the first pixel The array is configured to control the first light beam to be incident on the output end, and the second pixel array is configured to control the second light beam to be incident on the monitoring end.
  • the first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal is formed as a holographic diffraction grating, and the first subspace phase modulator is used for The first light beam is controlled to be transmitted in a primary direction of the holographic diffraction grating, and the second light beam is controlled to be transmitted in a non-primary direction of the holographic diffraction grating.
  • the intensity of the first light beam is greater than the intensity of the second light beam.
  • the spatial phase modulator is further configured to: use, in different time dimensions, each single-wavelength optical signal included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals. Separating into two partial beams respectively, a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are incident on a monitoring end of the wavelength selective switch.
  • the spatial phase modulator is further configured to: use, in different spatial dimensions, each single-wavelength optical signal included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals. Separating into two partial beams, each of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals, at least two of which are respectively incident at different positions of the wavelength selective switch end.
  • the wavelength selective switch further includes at least one of the following devices: a first collimator, a first beam deforming device, and a first polarization converting device, wherein the multi-wavelength light
  • the signal passes through the first beam splitter, the first beam deforming device, and the first polarization converting device, and is incident on the first branching wave multiplexing device.
  • the wavelength selective switch further includes a second demultiplexing wave multiplexer, wherein the plurality of single-wavelength optical signals whose transmission direction is changed by the spatial phase modulator pass the second partial wave After merging the device, it is incident on at least one of an output end and a monitoring end of the wavelength selective switch.
  • the wavelength selective switch further includes at least one of the following devices: a second collimator, a second beam deforming device, and a second polarization converting device, wherein the plurality of singles The wavelength optical signal passes through the second collimator, the second beam deforming device, and the second polarized turn After at least one of the devices is replaced, at least one of an output of the wavelength selective switch and a monitoring terminal is incident.
  • the wavelength selective switch further includes at least one of the following devices: an input side focusing lens and an output side focusing lens, wherein the plurality of single wavelength optical signals are focused through the input side After the lens, incident on the spatial phase modulator; or a plurality of single-wavelength optical signals output through the spatial phase modulator are concentrated by the output side focusing lens and output.
  • the spatial phase modulator is a liquid crystal on silicon (LCOS).
  • LCOS liquid crystal on silicon
  • the method for controlling a spatial phase modulator in a wavelength selective switch controls a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • Figure 7 also illustrates another method 600 of controlling a spatial phase modulator in a wavelength selective switch, wherein the wavelength selective switch comprises: a first split wave combining device for from the wavelength, in accordance with an embodiment of the present invention a multi-wavelength optical signal input at an input end of the selection switch, spatially separated into a plurality of single-wavelength optical signals; a spatial phase modulator for respectively changing a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals
  • the spatial phase modulator is further configured to separate the first single-wavelength optical signal of the plurality of single-wavelength optical signals into a first beam and a second beam, where the first beam is incident on an output end of the wavelength selective switch
  • the second light beam is incident on the monitoring end of the wavelength selective switch;
  • the photodetector is disposed at the monitoring end for receiving the second light beam; and the performance monitoring device is configured to receive the second light received by the photodetector Beam performance monitoring;
  • the method 600 includes:
  • S610 Determine a first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal.
  • S620 controlling the first subspace phase modulator to transmit the first light beam included in the first single wavelength optical signal along a primary level of the holographic diffraction grating formed by the first subspace phase modulator;
  • the first subspace phase modulator is controlled such that the second light beam included in the first single wavelength optical signal is transmitted in a non-primary direction of the holographic diffraction grating.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the wavelength selection switch 100, and the above-described and other operations and/or functions of the respective modules in the wavelength selective switch 100 can be as shown in FIGS. 1 to 5, and are not described herein again.
  • the method for controlling a spatial phase modulator in a wavelength selective switch controls a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • the first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal comprises a first pixel array and a second pixel array, the first pixel The array is configured to control the first light beam to be incident on the output end, and the second pixel array is configured to control the second light beam to be incident on the monitoring end.
  • the first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal is formed as a holographic diffraction grating, and the first subspace phase modulator is used for The first light beam is controlled to be transmitted in a primary direction of the holographic diffraction grating, and the second light beam is controlled to be transmitted in a non-primary direction of the holographic diffraction grating.
  • the intensity of the first light beam is greater than the intensity of the second light beam.
  • the spatial phase modulator is further configured to: use, in different time dimensions, each single-wavelength optical signal included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals. Separating into two partial beams respectively, a part of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals are incident on a monitoring end of the wavelength selective switch.
  • the spatial phase modulator is further configured to: use, in different spatial dimensions, each single-wavelength optical signal included in at least two single-wavelength optical signals of the plurality of single-wavelength optical signals. Separating into two partial beams, each of the two partial beams of each single-wavelength optical signal included in the at least two single-wavelength optical signals, at least two of which are respectively incident at different positions of the wavelength selective switch end.
  • the wavelength selective switch further includes at least one of the following devices: a first collimator, a first beam deforming device, and a first polarization converting device, wherein the multi-wavelength light
  • the signal passes through the first beam splitter, the first beam deforming device, and the first polarization converting device, and is incident on the first branching wave multiplexing device.
  • the wavelength selective switch further includes a second demultiplexing wave multiplexer, wherein the plurality of single-wavelength optical signals whose transmission direction is changed by the spatial phase modulator pass the second partial wave After merging the device, it is incident on at least one of an output end and a monitoring end of the wavelength selective switch.
  • the wavelength selective switch further includes at least one of the following devices: a second collimator, a second beam deforming device, and a second polarization converting device, wherein the plurality of singles The wavelength optical signal passes through at least one of the second collimator, the second beam deforming device, and the second polarization converting device, and is incident on at least one of an output end and a monitoring end of the wavelength selective switch.
  • the wavelength selective switch further includes at least one of the following devices: an input side focusing lens and an output side focusing lens, wherein the plurality of single wavelength optical signals are focused through the input side After the lens, incident on the spatial phase modulator; or a plurality of single-wavelength optical signals output through the spatial phase modulator are concentrated by the output side focusing lens and output.
  • the spatial phase modulator is a liquid crystal on silicon (LCOS). Therefore, the method for controlling a spatial phase modulator in a wavelength selective switch according to an embodiment of the present invention controls a spatial phase modulator such that a first light beam included in the single-wavelength optical signal is incident on an output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device. Reduce the size of the system, reduce the complexity of the system structure, and significantly reduce system costs.
  • LCOS liquid crystal on silicon
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association that describes the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, separately In the three cases of B.
  • the character "/" in this article generally means that the contextual object is an "or" relationship.
  • an embodiment of the present invention further provides an apparatus 700 for controlling a spatial phase modulator in a wavelength selective switch.
  • the apparatus 700 includes a processor 710, a memory 720, and a bus system 730.
  • the processor 710 and the memory 720 are connected by a bus system 730 for storing instructions for executing instructions stored in the memory 720.
  • the processor 710 is configured to: determine a first pixel array and a second pixel array of the spatial phase modulator for controlling the first single-wavelength optical signal; and control the first pixel array to enable the first single wavelength
  • the first light beam included in the optical signal is incident on the output end of the wavelength selective switch; and the second pixel array is controlled such that the second light beam included in the first single-wavelength optical signal is incident on the monitoring end of the wavelength selective switch.
  • the wavelength selective switch includes: a first demultiplexing wave multiplexer for spatially separating the multi-wavelength optical signals input from the input end of the wavelength selective switch into a plurality of single-wavelength optical signals; the spatial phase modulator And for respectively changing a transmission direction of each single-wavelength optical signal included in the plurality of single-wavelength optical signals, wherein the spatial phase modulator is further configured to separate the first single-wavelength optical signal of the plurality of single-wavelength optical signals a first beam and a second beam, the first beam being incident on an output end of the wavelength selective switch, the second beam being incident on a monitoring end of the wavelength selective switch; a photodetector disposed at the monitoring end for receiving The second light beam; a performance monitoring device for performing performance monitoring on the second light beam received by the photodetector.
  • the processor 710 may be a central processing unit (Central)
  • the processing unit may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable Logic devices, discrete gates or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 720 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of memory 720 may also include non-volatile random access memory. For example, the memory 720 can also store information of the device type.
  • the bus system 730 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 730 in the figure.
  • each step of the above method may be integrated by hardware in the processor 710.
  • the logic circuit or the instruction in the form of software is completed.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 720.
  • the processor 710 reads the information in the memory 720 and completes the steps of the above method in combination with hardware. To avoid repetition, it will not be described in detail here.
  • wavelength selective switches controlled by apparatus 700 in accordance with embodiments of the present invention may correspond to wavelength selective switch 100 in embodiments of the present invention, and that the above and other operations and/or functions of the various modules of the wavelength selective switches As shown in FIG. 1 to FIG. 5, for the sake of cleaning, no further details are provided herein.
  • the apparatus for controlling the spatial phase modulator in the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • the apparatus for controlling the spatial phase modulator in the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • an embodiment of the present invention further provides an apparatus 800 for controlling a spatial phase modulator in a wavelength selective switch.
  • the apparatus 800 includes a processor 810, a memory 820, and a bus system 830.
  • the processor 810 and the memory 820 are connected by a bus system 830 for storing instructions, and the processor 810 is configured to execute instructions stored by the memory 820.
  • the processor 810 is configured to: determine a first subspace phase modulator of the spatial phase modulator for controlling the first single wavelength optical signal; and control the first subspace phase modulator to cause the first single
  • the first light beam included in the wavelength optical signal is transmitted along a primary direction of the holographic diffraction grating formed by the first subspace phase modulator; and the first subspace spatial modulator is controlled such that the first single wavelength optical signal includes The two beams are transmitted along the non-primary direction of the holographic diffraction grating.
  • the processor 810 may be a central processing unit (a central processing unit), and the processor 810 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of memory 820 may also include non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 820.
  • the processor 810 reads the information in the memory 820 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • wavelength selective switches controlled by apparatus 800 in accordance with embodiments of the present invention may correspond to wavelength selective switch 100 in embodiments of the present invention, and that the above and other operations and/or functions of the various modules of the wavelength selective switches As shown in FIG. 1 to FIG. 5, for the sake of cleaning, no further details are provided herein.
  • the apparatus for controlling the spatial phase modulator in the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • the apparatus for controlling the spatial phase modulator in the wavelength selective switch of the embodiment of the present invention controls the spatial phase modulator such that the first light beam included in the single-wavelength optical signal is incident on the output end of the wavelength selective switch, and the single wavelength The second light beam included in the optical signal is incident on the monitoring end of the wavelength selective switch, thereby enabling performance monitoring of the single-wavelength optical signal without adding an additional tunable optical filter or wavelength demultiplexing device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk and the like, which can store program codes.

Abstract

本发明公开了一种波长选择开关和控制波长选择开关中的空间相位调制器的方法。该波长选择开关包括:第一分波合波器件,用于将输入的多波长光信号在空间上分离成多个单波长光信号;空间相位调制器,用于分别改变多个单波长光信号包括的各单波长光信号的传输方向,其中,空间相位调制器还用于将多个单波长光信号中的第一单波长光信号分离为第一光束和第二光束,该第一光束入射到波长选择开关的输出端,该第二光束入射到波长选择开关的监测端;光电探测器,设置在监测端,用于接收该第二光束;性能监测器件,用于对接收到的该第二光束进行性能监测。本发明实施例的波长选择开关和方法,能够对单波长光信号进行性能监测,并能够减小系统体积和成本。

Description

波长选择开关和控制波长选择开关中的空间相位调制器的方法 技术领域
本发明涉及光网络领域,尤其涉及光网络领域中的波长选择开关和控制 波长选择开关中的空间相位调制器的方法。 背景技术
随着网络流量和带宽的飞速增长,运营商对于底层的波分网络的智能调 度功能的需求越来越迫切, 这导致可重构光分插复用器 (Reconfiguration Optical Add/Drop Multiplexer, 筒称为 "RO ADM" )逐渐为越来越多的运营 商的网络所采用。 网络中引入 ROADM后,运营商可以快速地提供波长级的 业务, 从而便于进行网络规划和维护, 并能够降低运营费用和维护成本。
另外, 在光通信长距离传输网络中, 系统链路中光-电-光 ( Optical Electrical Optical, 筒称为 'ΌΕΟ" )转换呈减少趋势, 在电层直接测试误码 率变得越来越困难, 而仅在链路终端测试误码率并不利于故障定位。 随着光 网络中传输容量的增大和灵活性的提升, 系统的复杂度越来越高。 为了有效 地控制和管理光网络, 对光网络中的高速密集波分复用 ( Dense Wavelength Division Multiplex , 筒称为 " DWDM " ) 信号进行光性能监测 ( Optical Performance Monitoring, 筒称为 'ΌΡΜ" ) 的重要性越来越高。
例如, 光功率监测能够反映信道基本工作状态, 并指导系统执行自动功 率均衡; 光信噪比(Optical Signal to Noise Ratio, 筒称为 "OSNR" )监测能 够比较准确地反映信号质量; 色散监测可以反映信道的色散状态, 以指导系 统在光层或电层进行色散补偿等。 这些参数成为重要的光性能监测内容, 有 助于光网络的损伤抑制、 故障定位、 劣化探测、 备份和恢复等, 从而有利于 光网络的稳定工作。 因此, 对于网络中的所有重要网元都需要进行光性能监 测, 那么对 ROADM进行光性能监测也是必须的。
目前,对 ROADM进行 OPM的一种方案是在波长选择开关( Wavelength Selective Switch, 筒称为 "WSS" )外采用外置 OPM模块, 将 ROADM中需 要监测的主光通道信号用分光器分出一小部分,然后用 OPM模块进行监测。 一方面, 在 OPM模块中, 可以采用可调光滤波器( Tunable Optical Filter , 筒称为 "TOF" )扫描待测光信号, 以从时间维度上对合波光信号进行波长 解复用。 在同一时刻从合波光信号中提取一路光, 以对该路单通道光信号进 行性能监测。 另一方面, 在 OPM 模块中, 也可以采用波长解复用器 ( Demultiplxer ), 以从空间维度上对合波光信号进行波长解复用, 从而在同 一输出位置上合波光信号中只有一路信号被提取出来, 以对这路单通道光信 号进行性能监测。
该方法采用的外置 OPM模块对 ROADM进行性能监测, 该 OPM模块 中需要采用可调光滤波器或波长解复用器, 以分离出单波长光信号进行监 测, 从而显著增加了系统的尺寸, 并增加了系统的成本。 发明内容
本发明实施例提供了一种波长选择开关和控制波长选择开关中的空间 相位调制器的方法, 能够对单波长光信号进行性能监测, 并能够减小系统体 积和成本。
第一方面, 提供了一种波长选择开关, 该波长选择开关包括: 第一分波 合波器件, 用于将从该波长选择开关的输入端输入的多波长光信号、 在空间 上分离成多个单波长光信号; 空间相位调制器, 用于分别改变该多个单波长 光信号包括的各单波长光信号的传输方向, 其中, 该空间相位调制器还用于 将该多个单波长光信号中的第一单波长光信号分离为第一光束和第二光束, 该第一光束入射到该波长选择开关的输出端,该第二光束入射到该波长选择 开关的监测端; 光电探测器, 设置在该监测端, 用于接收该第二光束; 性能 监测器件, 用于对该光电探测器接收到的该第二光束进行性能监测。
结合第一方面, 在第一方面的第一种可能的实现方式中, 该空间相位调 制器的用于控制该第一单波长光信号的第一子空间相位调制器包括第一像 素阵列和第二像素阵列, 该第一像素阵列用于控制该第一光束入射到该输出 端, 该第二像素阵列用于控制该第二光束入射到该监测端。
结合第一方面, 在第一方面的第二种可能的实现方式中, 该空间相位调 制器的用于控制该第一单波长光信号的第一子空间相位调制器形成为全息 衍射光栅, 该第一子空间相位调制器用于控制该第一光束沿该全息衍射光栅 的主级次方向传输, 并控制该第二光束沿该全息衍射光栅的非主级次方向传 输。
结合第一方面, 在第一方面的第三种可能的实现方式中, 该第一光束的 强度大于该第二光束的强度。
结合第一方面, 在第一方面的第四种可能的实现方式中, 该空间相位调 制器还用于在不同时间维度上、将该多个单波长光信号中的至少两个单波长 光信号包括的每个单波长光信号、 分别分离为两部分光束, 该至少两个单波 长光信号包括的每个单波长光信号的该两部分光束中的一部分光束、分时入 射到该波长选择开关的一个监测端。
结合第一方面, 在第一方面的第五种可能的实现方式中, 该空间相位调 制器还用于在不同空间维度上、将该多个单波长光信号中的至少两个单波长 光信号包括的每个单波长光信号、 分别分离为两部分光束, 该至少两个单波 长光信号包括的每个单波长光信号的该两部分光束中的一部分光束、分别入 射到该波长选择开关的位于不同位置的至少两个监测端。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第六种可能的实现方式中, 该波长选择开 关还包括下列器件中的至少一种器件: 第一准直器、 第一光束变形器件和第 一偏振转换器件, 其中, 该多波长光信号经过该第一准直器、 该第一光束变 形器件和该第一偏振转换器件中的至少一种器件后,入射到该第一分波合波 器件。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第七种可能的实现方式中, 该波长选择开 关还包括第二分波合波器件, 其中, 传输方向经该空间相位调制器改变后的 多个单波长光信号经过该第二分波合波器件后,入射到该波长选择开关的输 出端和监测端中的至少一种。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第八种可能的实现方式中, 该波长选择开 关还包括下列器件中的至少一种器件: 第二准直器、 第二光束变形器件和第 二偏振转换器件, 其中, 该多个单波长光信号经过该第二准直器、 该第二光 束变形器件和该第二偏振转换器件中的至少一种器件后,入射到该波长选择 开关的输出端和监测端中的至少一种。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第九种可能的实现方式中, 该波长选择开 关还包括下列器件中的至少一种器件: 输入侧聚焦透镜和输出侧聚焦透镜, 其中, 该多个单波长光信号经过该输入侧聚焦透镜后, 入射到该空间相位调 制器; 或经该空间相位调制器输出的多个单波长光信号经该输出侧聚焦透镜 会聚后输出。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第十种可能的实现方式中, 该空间相位调 制器为硅基液晶 LCOS。
第二方面, 提供了一种控制波长选择开关中的空间相位调制器的方法, 括: 第一分波合波器件, 用于将从该波长选择开关的输入端输入的多波长光 信号、 在空间上分离成多个单波长光信号; 空间相位调制器, 用于分别改变 该多个单波长光信号包括的各单波长光信号的传输方向, 其中, 该空间相位 调制器还用于将该多个单波长光信号中的第一单波长光信号分离为第一光 束和第二光束, 该第一光束入射到该波长选择开关的输出端, 该第二光束入 射到该波长选择开关的监测端; 光电探测器, 设置在该监测端, 用于接收该 第二光束; 性能监测器件, 用于对该光电探测器接收到的该第二光束进行性 能监测; 该方法包括: 确定该空间相位调制器的用于控制该第一单波长光信 号的第一像素阵列和第二像素阵列;控制该第一像素阵列以使得该第一单波 长光信号包括的第一光束入射到该波长选择开关的输出端; 控制该第二像素 阵列以使得该第一单波长光信号包括的第二光束入射到该波长选择开关的 监测端。
第三方面, 提供了一种控制波长选择开关中的空间相位调制器的方法, 括: 第一分波合波器件, 用于将从该波长选择开关的输入端输入的多波长光 信号、 在空间上分离成多个单波长光信号; 空间相位调制器, 用于分别改变 该多个单波长光信号包括的各单波长光信号的传输方向, 其中, 该空间相位 调制器还用于将该多个单波长光信号中的第一单波长光信号分离为第一光 束和第二光束, 该第一光束入射到该波长选择开关的输出端, 该第二光束入 射到该波长选择开关的监测端; 光电探测器, 设置在该监测端, 用于接收该 第二光束; 性能监测器件, 用于对该光电探测器接收到的该第二光束进行性 能监测; 该方法包括: 确定该空间相位调制器的用于控制该第一单波长光信 号的第一子空间相位调制器; 控制该第一子空间相位调制器以使得该第一单 波长光信号包括的第一光束沿该第一子空间相位调制器形成的全息衍射光 栅的主级次方向传输;控制该第一子空间相位调制器以使得该第一单波长光 信号包括的第二光束沿该全息衍射光栅的非主级次方向传输。
基于上述技术方案, 本发明实施例的波长选择开关和控制波长选择开关 中的空间相位调制器的方法, 通过控制空间相位调制器, 使得单波长光信号 包括的第一光束入射到波长选择开关的输出端, 并且该单波长光信号包括的 第二光束入射到波长选择开关的监测端,从而在不增加额外的可调光滤波器 或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够 减小系统的体积, 降低系统结构的复杂度, 并能够显著地降低系统成本。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的波长选择开关的示意性框图。
图 2是根据本发明实施例的空间相位调制器的示意性框图。
图 3是根据本发明实施例的空间相位调制器的另一示意性框图。
图 4是根据本发明实施例的波长选择开关的另一示意性框图。
图 5是根据本发明实施例的波长选择开关的再一示意性框图。
图 6是根据本发明实施例的控制波长选择开关中的空间相位调制器的方 法的示意性流程图。
图 7是根据本发明实施例的控制波长选择开关中的空间相位调制器的方 法的另一示意性流程图。
图 8是根据本发明实施例的控制波长选择开关中的空间相位调制器的装 置的示意性框图。
图 9是根据本发明实施例的控制波长选择开关中的空间相位调制器的装 置的另一示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
图 1示出了根据本发明实施例的波长选择开关 100的示意性框图。如图 1所示, 该波长选择开关 100包括:
第一分波合波器件 110, 用于将从该波长选择开关 100的输入端 170输 入的多波长光信号、 在空间上分离成多个单波长光信号;
空间相位调制器 120, 用于分别改变该多个单波长光信号包括的各单波 长光信号的传输方向, 其中, 该空间相位调制器 120还用于将该多个单波长 光信号中的第一单波长光信号分离为第一光束和第二光束, 该第一光束入射 到该波长选择开关 100的输出端 150,该第二光束入射到该波长选择开关 100 的监测端 160;
光电探测器 130, 设置在该监测端 160, 用于接收该第二光束; 性能监测器件 140, 用于对该光电探测器 130接收到的该第二光束进行 性能监测。
具体而言, 例如, 如图 1所示, 波长选择开关 100可以包括第一分波合 波器件 110、 空间相位调制器 120、 光电探测器 130和性能监测器件 140; 另 夕卜, 该波长选择开关 100还可以包括输入端 170、 输出端 150和监测端 160, 其中, 输入信号可以从该输入端 170进入该波长选择开关 100, —部分光信 号可以从该输出端 150输出, 实现对单波长光信号的选择; 并且另一部分光 信号可以从该监测端 160输出, 以对该波长选择开关 100输出的部分或全部 波长的光信号进行监测。
在本发明实施例中, 该第一分波合波器件 110例如为光栅器件, 通过输 入端 170输入的具有多个波长的多波长光信号, 例如具有两个或更多个波长 的多波长光信号, 经过该第一分波合波器件 110后可以形成空间上分离的多 个具有单一波长的单波长光信号; 这些单波长光信号经过空间相位调制器
120调制后, 例如通过分别改变这些多个单波长光信号包括的各单波长光信 号的反射角度或折射角度后,使得这些多个单波长光信号的传输方向发生改 变, 从而可以使得每个单波长光信号输出至期望的位置, 特别是可以使得一 个单波长光信号输出至期望的至少两个不同的固定位置; 即该空间相位调制 器可以对每个单波长光信号所包括的每一部分光信号进行单独控制,使得每 一部分光信号输出至期望的位置。
例如, 对于该多个单波长光信号中的第一单波长光信号而言, 该空间相 位调制器 120还用于将该第一单波长光信号空间上分离为第一光束和第二光 束, 该第一光束入射到该输出端 150, 该第二光束入射到该监测端 160; 从 而设置在该监测端 160的光电探测器 130可以探测到该第二光束, 并通过性 能监测器件 140对该第二光束进行性能监测, 由此可以对该第一单波长光信 号进行性能监测。
因此, 本发明实施例的波长选择开关, 通过控制空间相位调制器, 使得 单波长光信号包括的第一光束入射到波长选择开关的输出端, 并且该单波长 光信号包括的第二光束入射到波长选择开关的监测端,从而在不增加额外的 可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监 测, 由此能够减小系统的体积, 降低系统结构的复杂度, 并能够显著地降低 系统成本。
应理解, 在本发明实施例中, 该第一单波长光信号可以为多个单波长光 信号中的任意一种单波长光信号; 还应理解, 该单波长光信号可以为具有单 一中心波长的光信号, 但本发明实施例并不限于此。 例如, 在本发明实施例 中, 该第一单波长光信号还可以包括多种单波长光信号, 对于每种单波长信 号而言, 空间相位调制器都可以将该单波长光信号分离为第一光束和第二光 束, 其中该第一光束入射到波长选择开关的输出端, 该第二光束入射到波长 选择开关的监测端。
还应理解, 在本发明实施例中, 光电探测器可以为将接收的光信号转换 为电信号的器件, 例如, 该光电探测器 130可以为光电二极管、 PIN光电二 极管、 雪崩光电二极管等, 但本发明实施例并不限于此。
还应理解, 在本发明实施例中, 性能监测器件 140例如可以对光信号的 光功率进行监测, 也可以对光信号的光信噪比 OSNR进行监测,还可以对光 信号的色散等进行监测, 但本发明实施例并不以此为限。
还应理解, 在本发明实施例中, 为了便于对光信号进行更好的监测, 第 二光束入射到光电探测器之前, 还可以入射到其它光学器件, 例如可以经分 光器进行分光,也可以经过聚焦透镜进行会聚等,本发明实施例并不限于此。 另外, 在本发明实施例中, 还可以理解, 光电探测器和性能监测器件可以分 别独立设置,也可以整体设置成性能监测模块,但本发明实施例并不限于此。 在本发明实施例中, 空间相位调制器可以为采用多个像素点的交换引 擎, 其中, 每个像素点可以单独控制。 具体地, 例如, 通过改变每个像素点 上加载的电压大小, 可以使得各像素点形成相位光栅, 并且各像素点可以具 有不同的灰度值, 从而可以使得形成的相位光栅产生不同的衍射效果, 或经 过该相位光栅后的光信号具有不同的偏折方向。
可选地, 在本发明实施例中, 该空间相位调制器为硅基液晶 (Liquid Crystal On Silicon, 筒称为 "LCOS" )。 应理解, 本发明实施例仅以 LCOS为 例进行说明, 但本发明实施例并不限于此, 空间相位调制器还可以是能够实 现上述功能的其它器件。
在本发明实施例中, 可选地, 该空间相位调制器 120的用于控制该第一 单波长光信号的第一子空间相位调制器包括第一像素阵列和第二像素阵列, 该第一像素阵列用于控制该第一光束入射到该输出端 150, 该第二像素阵列 用于控制该第二光束入射到该监测端 160。
应理解, 空间相位调制器可以包括多个子空间相位调制器, 用于分别控 制不同的单波长光信号,每个子空间相位调制器可以包括由多个像素形成的 像素阵列, 例如, 第一子空间相位调制器可以包括第一像素阵列和第二像素 阵列。
以该空间相位调制器 120为 LCOS为例进行说明,该 LCOS可以由多个 多像素点形成, 通过不同的电压大小加载在不同的像素点上, 每个像素点可 以独立控制其相位,从而使得这些像素点形成的相位光栅能够控制光信号的 偏折角度。通常而言,每个单波长光信号由上千个像素点来控制,但理论上, 大约 100个像素点形成的光栅就可以有效地控制光线的偏折角度。
因此,可以将控制单个单波长光信号的上千个像素点分为两部分,例如, 如图 2所示,可以将这些像素点分为由 A类像素点形成的第一像素阵列和由 B类像素点形成的第二像素阵列。 其中, 一部分像素点, 例如 B类像素点, 用于控制该单波长光信号包括的第一光束,使得该第一光束入射到波长选择 开关的输出端; 另一部分像素点, 例如 A类像素点, 可以用于控制该单波长 光信号包括的第二光束, 使得该第二光束入射到波长选择开关的监测端, 以 用于光性能监测。
在本发明实施例中, 像素点越多, 形成的相位光栅的衍射效率越高, 信 道间的串扰就越小。 而对光性能监测 OPM而言, 要求的隔离度较低, 因而 可以由少量的像素点控制的较小部分的单波长光信号用于 OPM。 即在本发 明实施例中, 可选地, 该第一光束的强度大于该第二光束的强度, 从而少量 的单波长光信号用于 OPM,而大部分的单波长光信号从 WSS的输出端输出, 由此可以减 d、系统的插损。
应理解, 在本发明实施例中, 第一子空间相位调制器包括的第二像素阵 歹 ij ,例如图 2中所示的 A类像素点,可以为第一子空间相位调制器中的连续 区域, 如图 2中的左图所示, 也可以为第一子空间相位调制器中的非连续区 域, 如图 2中的右图所示, 其中该第一像素阵列与第二像素阵列间隔排列。
还应理解, 在本发明实施例中, 用于控制第一单波长光信号的第一子空 间相位调制器,在用于控制各单波长光信号的空间相位调制器中可以为连续 区域, 也可以为非连续区域, 例如该第一子空间相位调制器可以与用于控制 其它单波长光信号的空间相位调制器部分间隔排列,但本发明实施例并不限 于此。
还应理解, 在本发明实施例中, 用于 OPM的 LCOS通过控制每个像素 点的相位, 可以将需要检测的光信号输出到监测端, 并可以将不需要监测的 光散射到无光纤处。 由于用于 OPM的 LCOS和用于 WSS的 LCOS可以分 别独立控制, 因而增加的 OPM功能不会影响 WSS的功能实现。
上述实施例中的例如为硅基液晶 LCOS的空间相位调制器,利用空间相 位调制器的相位调制特性, 通过不同的电压大小加载在不同像素点上面, 可 以形成相位光栅; 入射光通过该作为衍射光栅的相位光栅后, 将产生多个衍 射级次。其中,单波长光信号经过第一子空间相位调制器的第一像素阵列后, 只有沿一级衍射级次传输的光信号, 也称为沿主级次方向传输的光信号, 例 如如图 3所示, 沿 m=+l方向传输的光信号, 输入到 WSS的输出端; 并且 单波长光信号经过第一子空间相位调制器的第二像素阵列后,也只有沿主级 次方向传输的光信号输入到 WSS的监测端。 沿其它非主级次的光信号, 例 如如图 3所示, 沿 m=+2、 m=0、 m=-l或 m=-2方向传输的光信号, 则传输 到无输出光纤的位置后被散射而衰减掉, 甚至有部分非主级次的光信号会进 入到其它输出端或检测端, 成为串扰信号。
为了充分利用非主阶次的衍射能量, 并避免可能形成的串扰, 可以通过 精确设计各像素点的灰度值, 使得 LCOS上形成一个全息衍射光栅, 并有效 控制非主级次衍射光的偏转方向,使得大部分的非主级次衍射光从固定的监 测端输出, 以用于 OPM。
可选地, 在本发明实施例中, 该空间相位调制器 120的用于控制该第一 单波长光信号的第一子空间相位调制器形成为全息衍射光栅, 该第一子空间 相位调制器用于控制该第一光束沿该全息衍射光栅的主级次方向传输, 并控 制该第二光束沿该全息衍射光栅的非主级次方向传输。
具体而言, 当需要对某个单波长信号光进行性能监测时, 例如需要对第 一单波长光信号进行检测时, 可以按照预先设计的各像素点的灰度值, 对控 制该第一单波长光信号的第一子空间相位调制器进行控制,使得沿该第一子 空间相位调制器形成的全息衍射光栅的主级次方向传输的第一光束入射到 波长选择开关的输出端, 而沿该全息衍射光栅的大部分非主级次方向传输的 第二光束入射到波长选择开关的监测端。
而当不需要对该单波长信号光进行性能监测时, 则可以按照预先设计的 各像素点的灰度值, 对第一子空间相位调制器进行控制, 使得沿大部分的其 他非主级次方向传输的光束照射到无输出光纤的位置上散射掉。
由于上述方法充分利用了散射浪费掉的其他非主级次的衍射光,从而不 仅可以进一步减小系统插损, 还可以避免可能形成的串扰, 提高系统的抗干 扰能力。
应理解, 可以按照预先设计的各像素点的灰度值, 对控制多个单波长光 信号的空间相位调制器进行控制, 使得分别沿第一子空间相位调制器、 用于 控制第二单波长光信号的第二子空间相位调制器等空间相位调制器形成的 全息衍射光栅的大部分非主级次方向传输的光信号,可以入射到波长选择开 关的固定监测端; 即空间相位调制器可以设计成使主级次衍射光输出位置发 生变化时, 大部分的其他非主级次衍射光的输出位置可以不变。
因此, 本发明实施例的波长选择开关, 通过控制空间相位调制器, 使得 单波长光信号包括的第一光束入射到波长选择开关的输出端, 并且该单波长 光信号包括的第二光束入射到波长选择开关的监测端,从而在不增加额外的 可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监 测, 由此能够减小系统的体积和插损, 降低系统结构的复杂度, 并能够显著 地降低系统成本, 提高系统的抗干扰能力。
上文中从单个单波长光信号的角度,描述了空间相位调制器对单个单波 长光信号的传输方向的控制; 下面将从多个单波长光信号的角度, 描述空间 相位调制器对多个单波长光信号的传输方向的控制。
在本发明实施例中, 可选地, 该空间相位调制器 120还用于在不同时间 维度上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波 长光信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单 波长光信号的该两部分光束中的一部分光束、分时入射到该波长选择开关的 一个监测端 160。
例如, 如图 4所示, 该空间相位调制器 120的用于控制第一单波长光信 号的第一子空间相位调制器, 可以控制该第一单波长光信号包括的第一光束 在第一时刻输入到波长选择开关 100的一个监测端 160; 该空间相位调制器 120的用于控制第二单波长光信号的第二子空间相位调制器, 可以控制该第 二单波长光信号包括的第一光束在第二时刻输入到波长选择开关 100的一个 固定监测端 160。 从而可以按照监测需求从不同时间维度上、 将需要监测的 单波长光信号输出到固定的监测端进行光性能监测, 即不同波长的单波长光 信号可以分时地入射到相同的监测端, 以分别对不同的单波长光信号进行光 性能监测。
应理解, 在本发明实施例中, 第一子空间相位调制器可以控制该至少两 个单波长光信号包括的每个单波长光信号的其中一部分光束分时入射到该 波长选择开关的一个监测端 160, 而该第一子空间相位调制器还可以控制该 至少两个单波长光信号包括的每个单波长光信号的另一部分光束, 既可以分 时地入射到该波长选择开关的至少一个输出端 150, 又可以分别入射到该波 长选择开关的至少两个位于不同位置的输出端 150, 但本发明实施例并不限 于此。
在本发明实施例中, 可选地, 该空间相位调制器 120还用于在不同空间 维度上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波 长光信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单 波长光信号的该两部分光束中的一部分光束、分别入射到该波长选择开关的 位于不同位置的至少两个监测端 160。
例如, 如图 5所示, 该空间相位调制器 120的用于控制第一单波长光信 号的第一子空间相位调制器, 可以控制该第一单波长光信号包括的第一光束 输入到波长选择开关 100的一个固定监测端 161 ; 该空间相位调制器 120的 用于控制第二单波长光信号的第二子空间相位调制器, 可以控制该第二单波 长光信号包括的第一光束输入到波长选择开关 100 的另一个固定监测端 162; 并且该空间相位调制器 120的用于控制第三单波长光信号的第三子空 间相位调制器,可以控制该第三单波长光信号包括的第一光束输入到波长选 择开关 100的再一个固定监测端 163。 从而可以从不同空间维度上、 将多个 单波长光信号中的各个单波长光信号、 分别输出到多个不同位置, 以可以同 时分别对各个单波长光信号进行光性能监测。
应理解, 在本发明实施例中, 对于该空间相位调制器 120在不同空间维 度上、 将该每个单波长光信号分别分离的两部分光束, 其中一部分光束可以 分别入射到该波长选择开关的位于不同位置的至少两个监测端 160, 而另一 部分光束既可以分时地入射到该波长选择开关的至少一个输出端 150, 又可 以分别入射到该波长选择开关的至少两个位于不同位置的输出端 150, 但本 发明实施例并不限于此。
因此, 本发明实施例的波长选择开关, 通过控制空间相位调制器, 使得 单波长光信号包括的第一光束入射到波长选择开关的输出端, 并且该单波长 光信号包括的第二光束入射到波长选择开关的监测端,从而在不增加额外的 可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监 测, 由此能够减小系统的体积和插损, 降低系统结构的复杂度, 并能够显著 地降低系统成本, 提高系统的抗干扰能力。
在本发明实施例中, 可选地, 该波长选择开关 100还包括下列器件中的 至少一种器件:第一准直器 210、第一光束变形器件和第一偏振转换器件 220, 其中, 该多波长光信号经过该第一准直器 210、 该第一光束变形器件和该第 一偏振转换器件 220中的至少一种器件后,入射到该第一分波合波器件 110。
例如, 如图 4或图 5所示, 多波长光信号可以从波长选择开关 100的输 入端 170进入输入光纤阵列, 然后第一准直器 210可以对该多波长光信号进 行准直, 经过准直之后的多波长光信号可以直接入射到该第一分波合波器件 110, 也可以先入射到第一光束变形器件和 /或该第一偏振转换器件 220, 并 可以由该第一光束变形器件和 /或该第一偏振转换器件 220 对入射的多波长 光信号的形状和 /或偏振态进行调节后, 再入射到该第一分波合波器件 110。
入射的多波长光信号经第一分波合波器件 110分波后, 可以在空间上分 离成多个单波长光信号; 该多个单波长光信号可以直接入射到空间相位调制 器 120, 也可以经过输入侧聚焦透镜 260后, 如图 4或图 5所示, 入射到该 空间相位调制器 120。 该空间相位调制器 120分别改变该多个单波长光信号 包括的各单波长光信号的传输方向后,各单波长光信号可以直接入射到波长 选择开关 100的输出端 150或监测端 160, 也可以经输出侧聚焦透镜 270会 聚后输出, 例如, 如图 4或图 5所示。
即可选地, 在本发明实施例中, 该波长选择开关 100还包括下列器件中 的至少一种器件: 输入侧聚焦透镜 260和输出侧聚焦透镜 270, 其中, 该多 个单波长光信号经过该输入侧聚焦透镜 260后, 入射到该空间相位调制器 120; 或经该空间相位调制器 120输出的多个单波长光信号经该输出侧聚焦 透镜 270会聚后输出。
在本发明实施例中, 可选地, 如图 4或图 5所示, 该波长选择开关 100 还包括第二分波合波器件 230, 其中, 传输方向经该空间相位调制器 120改 变后的多个单波长光信号经过该第二分波合波器件 230后,入射到该波长选 择开关 100的输出端 150和监测端 160中的至少一种。
可选地, 如图 4或图 5所示, 该波长选择开关 100还包括下列器件中的 至少一种器件:第二准直器 240、第二光束变形器件和第二偏振转换器件 250, 其中, 该多个单波长光信号经过该第二准直器 240、 该第二光束变形器件和 该第二偏振转换器件 250中的至少一种器件后, 入射到该波长选择开关 100 的输出端 150和监测端 160中的至少一种。
即在本发明实施例中, 经空间相位调制器改变传输方向的各单波长光信 号, 可以经第二分波合波器件 230合波后, 入射到该波长选择开关 100的输 出端 150和 /或监测端 160。 即该波长选择开关 100的监测端 160可以对单波 长光信号进行光性能监测,也可以对多个单波长光信号形成的多波长光信号 进行光性能监测, 本发明实施例并不限于此。
另外, 在本发明实施例中, 多个单波长光信号或多个多波长光信号可以 经过该第二准直器 240准直后,和 /或经过该第二光束变形器件和该第二偏振 转换器件 250进行形状和偏振态的调节后,入射到该波长选择开关 100的输 出端 150和 /或监测端 160。
应理解,在本发明实施例中,准直器可以用于对输入的光信号进行准直, 该准直器例如为一组透镜组; 光束变形器件和偏振转换器件可以分别用于改 变输入的光信号的形状和偏振态, 该光束变形器件或该偏振转换器件也可以 由一组或多组透镜组构成; 聚焦透镜可以用于对输入的光信号进行会聚或聚 焦等, 该聚焦透镜可以为单片透镜, 也可以为透镜组, 本发明实施例并不限 于此。
因此, 本发明实施例的波长选择开关, 通过控制空间相位调制器, 使得 单波长光信号包括的第一光束入射到波长选择开关的输出端, 并且该单波长 光信号包括的第二光束入射到波长选择开关的监测端,从而在不增加额外的 可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监 测, 由此能够减小系统的体积和插损, 降低系统结构的复杂度, 并能够显著 地降低系统成本, 提高系统的抗干扰能力。
上文中结合图 1至图 5 ,详细描述了根据本发明实施例的波长选择开关, 下面将结合图 6至图 9, 详细描述根据本发明实施例的控制波长选择开关中 的空间相位调制器的方法和装置。
图 6示出了根据本发明实施例的控制波长选择开关中的空间相位调制器 的方法 500, 其中, 该波长选择开关包括: 第一分波合波器件, 用于将从该 波长选择开关的输入端输入的多波长光信号、在空间上分离成多个单波长光 信号; 空间相位调制器, 用于分别改变该多个单波长光信号包括的各单波长 光信号的传输方向, 其中, 该空间相位调制器还用于将该多个单波长光信号 中的第一单波长光信号分离为第一光束和第二光束, 该第一光束入射到该波 长选择开关的输出端, 该第二光束入射到该波长选择开关的监测端; 光电探 测器, 设置在该监测端, 用于接收该第二光束; 性能监测器件, 用于对该光 电探测器接收到的该第二光束进行性能监测;
如图 6所示, 方法 500, 包括:
S510 ,确定该空间相位调制器的用于控制该第一单波长光信号的第一像 素阵列和第二像素阵列;
S520,控制该第一像素阵列以使得该第一单波长光信号包括的第一光束 入射到该波长选择开关的输出端;
S530 ,控制该第二像素阵列以使得该第一单波长光信号包括的第二光束 入射到该波长选择开关的监测端。
因此, 本发明实施例的控制波长选择开关中的空间相位调制器的方法, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
在本发明实施例中, 可选地, 该空间相位调制器的用于控制该第一单波 长光信号的第一子空间相位调制器包括第一像素阵列和第二像素阵列, 该第 一像素阵列用于控制该第一光束入射到该输出端,该第二像素阵列用于控制 该第二光束入射到该监测端。
在本发明实施例中, 可选地, 该空间相位调制器的用于控制该第一单波 长光信号的第一子空间相位调制器形成为全息衍射光栅, 该第一子空间相位 调制器用于控制该第一光束沿该全息衍射光栅的主级次方向传输, 并控制该 第二光束沿该全息衍射光栅的非主级次方向传输。
在本发明实施例中,可选地,该第一光束的强度大于该第二光束的强度。 在本发明实施例中, 可选地, 该空间相位调制器还用于在不同时间维度 上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波长光 信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单波长 光信号的该两部分光束中的一部分光束、分时入射到该波长选择开关的一个 监测端。
在本发明实施例中, 可选地, 该空间相位调制器还用于在不同空间维度 上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波长光 信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单波长 光信号的该两部分光束中的一部分光束、分别入射到该波长选择开关的位于 不同位置的至少两个监测端。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 第一准直器、 第一光束变形器件和第一偏振转换器件, 其中, 该 多波长光信号经过该第一准直器、该第一光束变形器件和该第一偏振转换器 件中的至少一种器件后, 入射到该第一分波合波器件。
在本发明实施例中,可选地,该波长选择开关还包括第二分波合波器件, 其中,传输方向经该空间相位调制器改变后的多个单波长光信号经过该第二 分波合波器件后, 入射到该波长选择开关的输出端和监测端中的至少一种。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 第二准直器、 第二光束变形器件和第二偏振转换器件, 其中, 该 多个单波长光信号经过该第二准直器、该第二光束变形器件和该第二偏振转 换器件中的至少一种器件后,入射到该波长选择开关的输出端和监测端中的 至少一种。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 输入侧聚焦透镜和输出侧聚焦透镜, 其中, 该多个单波长光信号 经过该输入侧聚焦透镜后, 入射到该空间相位调制器; 或经该空间相位调制 器输出的多个单波长光信号经该输出侧聚焦透镜会聚后输出。
在本发明实施例中, 可选地, 该空间相位调制器为硅基液晶 LCOS。 应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。 的波长选择开关 100, 并且波长选择开关 100中的各个模块的上述和其它操 作和 /或功能可以如图 1至图 5所示, 为了筒洁, 在此不再赘述。
因此, 本发明实施例的控制波长选择开关中的空间相位调制器的方法, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
图 7还示出了根据本发明实施例的控制波长选择开关中的空间相位调制 器的另一方法 600, 其中, 该波长选择开关包括: 第一分波合波器件, 用于 将从该波长选择开关的输入端输入的多波长光信号、在空间上分离成多个单 波长光信号; 空间相位调制器, 用于分别改变该多个单波长光信号包括的各 单波长光信号的传输方向, 其中, 该空间相位调制器还用于将该多个单波长 光信号中的第一单波长光信号分离为第一光束和第二光束, 该第一光束入射 到该波长选择开关的输出端, 该第二光束入射到该波长选择开关的监测端; 光电探测器, 设置在该监测端, 用于接收该第二光束; 性能监测器件, 用于 对该光电探测器接收到的该第二光束进行性能监测;
如图 7所示, 方法 600, 包括:
S610,确定该空间相位调制器的用于控制该第一单波长光信号的第一子 空间相位调制器; S620,控制该第一子空间相位调制器以使得该第一单波长光信号包括的 第一光束沿该第一子空间相位调制器形成的全息衍射光栅的主级次方向传 输;
S630,控制该第一子空间相位调制器以使得该第一单波长光信号包括的 第二光束沿该全息衍射光栅的非主级次方向传输。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。 的波长选择开关 100, 并且波长选择开关 100中的各个模块的上述和其它操 作和 /或功能可以如图 1至图 5所示, 为了筒洁, 在此不再赘述。
因此, 本发明实施例的控制波长选择开关中的空间相位调制器的方法, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
在本发明实施例中, 可选地, 该空间相位调制器的用于控制该第一单波 长光信号的第一子空间相位调制器包括第一像素阵列和第二像素阵列, 该第 一像素阵列用于控制该第一光束入射到该输出端,该第二像素阵列用于控制 该第二光束入射到该监测端。
在本发明实施例中, 可选地, 该空间相位调制器的用于控制该第一单波 长光信号的第一子空间相位调制器形成为全息衍射光栅, 该第一子空间相位 调制器用于控制该第一光束沿该全息衍射光栅的主级次方向传输, 并控制该 第二光束沿该全息衍射光栅的非主级次方向传输。
在本发明实施例中,可选地,该第一光束的强度大于该第二光束的强度。 在本发明实施例中, 可选地, 该空间相位调制器还用于在不同时间维度 上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波长光 信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单波长 光信号的该两部分光束中的一部分光束、分时入射到该波长选择开关的一个 监测端。 在本发明实施例中, 可选地, 该空间相位调制器还用于在不同空间维度 上、将该多个单波长光信号中的至少两个单波长光信号包括的每个单波长光 信号、 分别分离为两部分光束, 该至少两个单波长光信号包括的每个单波长 光信号的该两部分光束中的一部分光束、分别入射到该波长选择开关的位于 不同位置的至少两个监测端。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 第一准直器、 第一光束变形器件和第一偏振转换器件, 其中, 该 多波长光信号经过该第一准直器、该第一光束变形器件和该第一偏振转换器 件中的至少一种器件后, 入射到该第一分波合波器件。
在本发明实施例中,可选地,该波长选择开关还包括第二分波合波器件, 其中,传输方向经该空间相位调制器改变后的多个单波长光信号经过该第二 分波合波器件后, 入射到该波长选择开关的输出端和监测端中的至少一种。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 第二准直器、 第二光束变形器件和第二偏振转换器件, 其中, 该 多个单波长光信号经过该第二准直器、该第二光束变形器件和该第二偏振转 换器件中的至少一种器件后,入射到该波长选择开关的输出端和监测端中的 至少一种。
在本发明实施例中, 可选地, 该波长选择开关还包括下列器件中的至少 一种器件: 输入侧聚焦透镜和输出侧聚焦透镜, 其中, 该多个单波长光信号 经过该输入侧聚焦透镜后, 入射到该空间相位调制器; 或经该空间相位调制 器输出的多个单波长光信号经该输出侧聚焦透镜会聚后输出。
在本发明实施例中, 可选地, 该空间相位调制器为硅基液晶 LCOS。 因此, 本发明实施例的控制波长选择开关中的空间相位调制器的方法, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
另外, 本文中术语 "系统" 和 "网络" 在本文中常被可互换使用。 本文 中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种 关系, 例如, A和 /或 B, 可以表示: 单独存在 A , 同时存在 A和 B, 单独存 在 B这三种情况。另外,本文中字符 "/" ,一般表示前后关联对象是一种 "或" 的关系。
如图 8所示, 本发明实施例还提供了一种控制波长选择开关中的空间相 位调制器的装置 700, 该装置 700包括处理器 710、 存储器 720和总线系统 730。 其中, 处理器 710和存储器 720通过总线系统 730相连, 该存储器 720 用于存储指令, 该处理器 710用于执行该存储器 720存储的指令。 其中, 该 处理器 710用于: 确定该空间相位调制器的用于控制该第一单波长光信号的 第一像素阵列和第二像素阵列; 控制该第一像素阵列以使得该第一单波长光 信号包括的第一光束入射到该波长选择开关的输出端; 控制该第二像素阵列 以使得该第一单波长光信号包括的第二光束入射到该波长选择开关的监测 端。
其中, 该波长选择开关包括: 第一分波合波器件, 用于将从该波长选择 开关的输入端输入的多波长光信号、 在空间上分离成多个单波长光信号; 空 间相位调制器,用于分别改变该多个单波长光信号包括的各单波长光信号的 传输方向, 其中, 该空间相位调制器还用于将该多个单波长光信号中的第一 单波长光信号分离为第一光束和第二光束, 该第一光束入射到该波长选择开 关的输出端, 该第二光束入射到该波长选择开关的监测端; 光电探测器, 设 置在该监测端, 用于接收该第二光束; 性能监测器件, 用于对该光电探测器 接收到的该第二光束进行性能监测。
应理解,在本发明实施例中,该处理器 710可以是中央处理单元(Central
Processing Unit, 筒称为 "CPU" ), 该处理器 710还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 720可以包括只读存储器和随机存取存储器, 并向处理器 710 提供指令和数据。存储器 720的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 720还可以存储设备类型的信息。
该总线系统 730除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 730。
在实现过程中, 上述方法的各步骤可以通过处理器 710中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 720, 处理器 710读取存储器 720中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
还应理解,根据本发明实施例的控制波长选择开关中的空间相位调制器 的装置 700中的各个模块的上述和其它操作和 /或功能,为了实现图 6中的方 法的相应流程, 为了筒洁, 在此不再赘述。
还应理解,根据本发明实施例的装置 700所控制的波长选择开关可对应 于本发明实施例中的波长选择开关 100, 并且该波长选择开关中的各个模块 的上述和其它操作和 /或功能可以如图 1至图 5所示, 为了筒洁,在此不再赘 述。
因此, 本发明实施例的控制波长选择开关中的空间相位调制器的装置, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
如图 9所示, 本发明实施例还提供了一种控制波长选择开关中的空间相 位调制器的装置 800, 该装置 800包括处理器 810、 存储器 820和总线系统 830。 其中, 处理器 810和存储器 820通过总线系统 830相连, 该存储器 820 用于存储指令, 该处理器 810用于执行该存储器 820存储的指令。 其中, 该 处理器 810用于: 确定该空间相位调制器的用于控制该第一单波长光信号的 第一子空间相位调制器; 控制该第一子空间相位调制器以使得该第一单波长 光信号包括的第一光束沿该第一子空间相位调制器形成的全息衍射光栅的 主级次方向传输; 控制该第一子空间相位调制器以使得该第一单波长光信号 包括的第二光束沿该全息衍射光栅的非主级次方向传输。
应理解,在本发明实施例中,该处理器 810可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 810还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 820可以包括只读存储器和随机存取存储器, 并向处理器 810 提供指令和数据。存储器 820的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 820还可以存储设备类型的信息。
该总线系统 830除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 830。
在实现过程中, 上述方法的各步骤可以通过处理器 810中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 820, 处理器 810读取存储器 820中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
还应理解,根据本发明实施例的控制波长选择开关中的空间相位调制器 的装置 800中的各个模块的上述和其它操作和 /或功能,为了实现图 7中的方 法的相应流程, 为了筒洁, 在此不再赘述。
还应理解,根据本发明实施例的装置 800所控制的波长选择开关可对应 于本发明实施例中的波长选择开关 100, 并且该波长选择开关中的各个模块 的上述和其它操作和 /或功能可以如图 1至图 5所示, 为了筒洁,在此不再赘 述。
因此, 本发明实施例的控制波长选择开关中的空间相位调制器的装置, 通过控制空间相位调制器,使得单波长光信号包括的第一光束入射到波长选 择开关的输出端, 并且该单波长光信号包括的第二光束入射到波长选择开关 的监测端, 从而在不增加额外的可调光滤波器或波长解复用器件的情况下, 能够对单波长光信号进行性能监测, 由此能够减小系统的体积, 降低系统结 构的复杂度, 并能够显著地降低系统成本。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种波长选择开关, 其特征在于, 包括:
第一分波合波器件, 用于将从所述波长选择开关的输入端输入的多波长 光信号、 在空间上分离成多个单波长光信号;
空间相位调制器,用于分别改变所述多个单波长光信号包括的各单波长 光信号的传输方向, 其中, 所述空间相位调制器还用于将所述多个单波长光 信号中的第一单波长光信号分离为第一光束和第二光束, 所述第一光束入射 到所述波长选择开关的输出端, 所述第二光束入射到所述波长选择开关的监 测端;
光电探测器, 设置在所述监测端, 用于接收所述第二光束;
性能监测器件, 用于对所述光电探测器接收到的所述第二光束进行性能 监测。
2、 根据权利要求 1所述的波长选择开关, 其特征在于, 所述空间相位 调制器的用于控制所述第一单波长光信号的第一子空间相位调制器包括第 一像素阵列和第二像素阵列, 所述第一像素阵列用于控制所述第一光束入射 到所述输出端, 所述第二像素阵列用于控制所述第二光束入射到所述监测 端。
3、 根据权利要求 1所述的波长选择开关, 其特征在于, 所述空间相位 调制器的用于控制所述第一单波长光信号的第一子空间相位调制器形成为 全息衍射光栅,所述第一子空间相位调制器用于控制所述第一光束沿所述全 息衍射光栅的主级次方向传输, 并控制所述第二光束沿所述全息衍射光栅的 非主级次方向传输。
4、 根据权利要求 1所述的波长选择开关, 其特征在于, 所述第一光束 的强度大于所述第二光束的强度。
5、 根据权利要求 1所述的波长选择开关, 其特征在于, 所述空间相位 调制器还用于在不同时间维度上、将所述多个单波长光信号中的至少两个单 波长光信号包括的每个单波长光信号、 分别分离为两部分光束, 所述至少两 个单波长光信号包括的每个单波长光信号的所述两部分光束中的一部分光 束、 分时入射到所述波长选择开关的一个监测端。
6、 根据权利要求 1所述的波长选择开关, 其特征在于, 所述空间相位 调制器还用于在不同空间维度上、将所述多个单波长光信号中的至少两个单 波长光信号包括的每个单波长光信号、 分别分离为两部分光束, 所述至少两 个单波长光信号包括的每个单波长光信号的所述两部分光束中的一部分光 束、 分别入射到所述波长选择开关的位于不同位置的至少两个监测端。
7、 根据权利要求 1至 6中任一项所述的波长选择开关, 其特征在于, 所述波长选择开关还包括下列器件中的至少一种器件: 第一准直器、 第一光 束变形器件和第一偏振转换器件, 其中, 所述多波长光信号经过所述第一准 直器、 所述第一光束变形器件和所述第一偏振转换器件中的至少一种器件 后, 入射到所述第一分波合波器件。
8、 根据权利要求 1至 6中任一项所述的波长选择开关, 其特征在于, 所述波长选择开关还包括第二分波合波器件, 其中, 传输方向经所述空间相 位调制器改变后的多个单波长光信号经过所述第二分波合波器件后,入射到 所述波长选择开关的输出端和监测端中的至少一种。
9、 根据权利要求 1至 6中任一项所述的波长选择开关, 其特征在于, 所述波长选择开关还包括下列器件中的至少一种器件: 第二准直器、 第二光 束变形器件和第二偏振转换器件, 其中, 所述多个单波长光信号经过所述第 二准直器、所述第二光束变形器件和所述第二偏振转换器件中的至少一种器 件后, 入射到所述波长选择开关的输出端和监测端中的至少一种。
10、 根据权利要求 1至 6中任一项所述的波长选择开关, 其特征在于, 所述波长选择开关还包括下列器件中的至少一种器件: 输入侧聚焦透镜和输 出侧聚焦透镜, 其中, 所述多个单波长光信号经过所述输入侧聚焦透镜后, 入射到所述空间相位调制器; 或经所述空间相位调制器输出的多个单波长光 信号经所述输出侧聚焦透镜会聚后输出。
11、 根据权利要求 1至 6中任一项所述的波长选择开关, 其特征在于, 所述空间相位调制器为硅基液晶 LCOS。
12、 一种控制波长选择开关中的空间相位调制器的方法, 其特征在于, 所述波长选择开关包括根据权利要求 1至 11中任一项所述的波长选择开关, 所述方法包括:
确定所述空间相位调制器的用于控制所述第一单波长光信号的第一像 素阵列和第二像素阵列;
控制所述第一像素阵列以使得所述第一单波长光信号包括的第一光束 入射到所述波长选择开关的输出端; 控制所述第二像素阵列以使得所述第一单波长光信号包括的第二光束 入射到所述波长选择开关的监测端。
13、 一种控制波长选择开关中的空间相位调制器的方法, 其特征在于, 所述波长选择开关包括根据权利要求 1至 11中任一项所述的波长选择开关, 所述方法包括:
确定所述空间相位调制器的用于控制所述第一单波长光信号的第一子 空间相位调制器;
控制所述第一子空间相位调制器以使得所述第一单波长光信号包括的 第一光束沿所述第一子空间相位调制器形成的全息衍射光栅的主级次方向 传输;
控制所述第一子空间相位调制器以使得所述第一单波长光信号包括的 第二光束沿所述全息衍射光栅的非主级次方向传输。
PCT/CN2013/084468 2013-09-27 2013-09-27 波长选择开关和控制波长选择开关中的空间相位调制器的方法 WO2015042875A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13894231.3A EP3043495B1 (en) 2013-09-27 2013-09-27 Wavelength selective switch and method for controlling spatial phase modulator in wavelength selective switch
CN201380001972.6A CN104756422B (zh) 2013-09-27 2013-09-27 波长选择开关和控制波长选择开关中的空间相位调制器的方法
PCT/CN2013/084468 WO2015042875A1 (zh) 2013-09-27 2013-09-27 波长选择开关和控制波长选择开关中的空间相位调制器的方法
US15/080,922 US9660723B2 (en) 2013-09-27 2016-03-25 Wavelength selective switch and method for controlling spatial phase modulator in wavelengths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084468 WO2015042875A1 (zh) 2013-09-27 2013-09-27 波长选择开关和控制波长选择开关中的空间相位调制器的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/080,922 Continuation US9660723B2 (en) 2013-09-27 2016-03-25 Wavelength selective switch and method for controlling spatial phase modulator in wavelengths

Publications (1)

Publication Number Publication Date
WO2015042875A1 true WO2015042875A1 (zh) 2015-04-02

Family

ID=52741819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084468 WO2015042875A1 (zh) 2013-09-27 2013-09-27 波长选择开关和控制波长选择开关中的空间相位调制器的方法

Country Status (4)

Country Link
US (1) US9660723B2 (zh)
EP (1) EP3043495B1 (zh)
CN (1) CN104756422B (zh)
WO (1) WO2015042875A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680317A (zh) * 2016-01-12 2016-06-15 上海理工大学 基于宽光谱分束合束的波长可调节光源构建方法
WO2016176536A1 (en) 2015-04-30 2016-11-03 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode
US9660723B2 (en) 2013-09-27 2017-05-23 Huawei Technologies Co., Ltd. Wavelength selective switch and method for controlling spatial phase modulator in wavelengths

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452950B (zh) * 2013-07-16 2018-11-16 日本电信电话株式会社 光信号处理装置
CN108700735B (zh) 2016-08-26 2020-04-28 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN110494801B (zh) * 2017-05-26 2020-12-22 华为技术有限公司 一种波长选择开关、交换引擎及其相位调制方法
CN110244307B (zh) * 2018-03-08 2022-11-01 姚晓天 一种基于光技术测量物体距离和空间位置的方法及装置
CN110730034B (zh) * 2018-07-16 2022-02-25 华为技术有限公司 频偏处理方法、装置、设备及存储介质
JP7131315B2 (ja) * 2018-11-12 2022-09-06 株式会社Jvcケンウッド 位相変調装置及び位相変調方法
CN112737683B (zh) * 2019-10-14 2023-05-16 华为技术有限公司 功率均衡器及功率均衡器的调节方法
CN112689209B (zh) * 2020-12-17 2022-03-25 武汉邮电科学研究院有限公司 一种基于lcos控制的多用户接入跟踪系统及方法
CN115248481A (zh) * 2021-04-26 2022-10-28 华为技术有限公司 波长选择开关的串扰抑制方法、装置及波长选择开关
US11722236B1 (en) * 2022-04-05 2023-08-08 Ii-Vi Delaware, Inc. Polarization-maintaining wavelength selective switch for free-space optical communication
CN115173937B (zh) * 2022-06-24 2023-05-26 烽火通信科技股份有限公司 一种自动调测锁定光模块波长的方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155162A (zh) * 2006-09-28 2008-04-02 冲电气工业株式会社 光时分复用差分相位调制信号生成装置
JP2009130618A (ja) * 2007-11-22 2009-06-11 Hitachi Communication Technologies Ltd 光伝送システムおよび光ノード
CN102970099A (zh) * 2012-10-30 2013-03-13 武汉邮电科学研究院 Roadm节点和光波长矫正移频器及实现方法
CN103222214A (zh) * 2012-11-12 2013-07-24 华为技术有限公司 波分复用光网络传输的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501877B1 (en) * 1999-11-16 2002-12-31 Network Photonics, Inc. Wavelength router
JP4476140B2 (ja) * 2005-03-07 2010-06-09 富士通株式会社 波長選択スイッチ
US8055140B2 (en) * 2009-11-10 2011-11-08 Fujitsu Limited Reducing cross-phase modulation using group delay
JP2012217050A (ja) * 2011-03-31 2012-11-08 Fujitsu Ltd 光受信回路及び帯域幅制御方法
JP5838532B2 (ja) * 2011-06-15 2016-01-06 国立研究開発法人情報通信研究機構 波長選択偏波制御器
US8867917B2 (en) * 2011-06-27 2014-10-21 Finisar Corporation Optical wavelength selective switch calibration system
CA2907695A1 (en) * 2013-03-20 2014-09-25 Nistica, Inc. Wavelength selective switch having integrated channel monitor
US20140313469A1 (en) * 2013-04-22 2014-10-23 Nec Laboratories America, Inc. RECONFIGURABLE 1xN FEW-MODE FIBER OPTICAL SWITCH BASED ON A SPATIAL LIGHT MODULATOR
WO2015042875A1 (zh) 2013-09-27 2015-04-02 华为技术有限公司 波长选择开关和控制波长选择开关中的空间相位调制器的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155162A (zh) * 2006-09-28 2008-04-02 冲电气工业株式会社 光时分复用差分相位调制信号生成装置
JP2009130618A (ja) * 2007-11-22 2009-06-11 Hitachi Communication Technologies Ltd 光伝送システムおよび光ノード
CN102970099A (zh) * 2012-10-30 2013-03-13 武汉邮电科学研究院 Roadm节点和光波长矫正移频器及实现方法
CN103222214A (zh) * 2012-11-12 2013-07-24 华为技术有限公司 波分复用光网络传输的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043495A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660723B2 (en) 2013-09-27 2017-05-23 Huawei Technologies Co., Ltd. Wavelength selective switch and method for controlling spatial phase modulator in wavelengths
WO2016176536A1 (en) 2015-04-30 2016-11-03 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode
EP3289702A4 (en) * 2015-04-30 2018-12-19 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode
CN105680317A (zh) * 2016-01-12 2016-06-15 上海理工大学 基于宽光谱分束合束的波长可调节光源构建方法

Also Published As

Publication number Publication date
CN104756422A (zh) 2015-07-01
EP3043495A1 (en) 2016-07-13
EP3043495B1 (en) 2017-11-22
US9660723B2 (en) 2017-05-23
US20160211912A1 (en) 2016-07-21
EP3043495A4 (en) 2016-09-07
CN104756422B (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2015042875A1 (zh) 波长选择开关和控制波长选择开关中的空间相位调制器的方法
KR102039597B1 (ko) 집적 채널 모니터를 포함하는 파장 선택 스위치
US8965203B1 (en) Flexible non-modular data center with reconfigurable extended-reach optical network fabric
US8995832B2 (en) Transponder Aggregator-based optical loopback in a MD-ROADM
JP5871056B2 (ja) 波長選択スイッチ、可変分散補償器、監視装置、監視方法、光伝送装置及び光伝送システム
EP2667230A1 (en) Wavelength-division multiplexer, optical switch apparatus, and optical switch control method
EP3327956B1 (en) Wavelength selective switch and optical signal transmission system
US11372163B2 (en) Wavelength switching apparatus and system
CN111221081B (zh) 一种基于LCoS的波长选择开关
US10298319B2 (en) Optical switch, and optical node monitoring system and monitoring method
WO2021185231A1 (zh) 一种光开关和基于光开关的光性能检测方法
RU2607724C2 (ru) Волновой мультиплексор и способ и программа для идентификации неисправного участка
CN110557218B (zh) 一种波长选择开关的校准方法及装置
US10666375B2 (en) Signal monitoring method and apparatus for wavelength selective switch WSS
US11899244B2 (en) Wavelength selective switch
US8027583B2 (en) Wavelength division multiplexed systems with optical performance monitors
US9755738B2 (en) Crosstalk suppression in a multi-photodetector optical channel monitor
JP6434879B2 (ja) 光信号モニタ装置
EP4318066A1 (en) Optical switching device, optical switching method, optical switching node and system
JP2010114507A (ja) 光通信装置及びこの光通信装置における誤接続監視方法
WO2011133128A1 (en) Wavelength division multiplexed systems with optical performance monitors
CN116865848A (zh) 光链路检测方法及装置
JP2014092661A (ja) 多波長光信号の光−光型シリアル−パラレル変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013894231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013894231

Country of ref document: EP