WO2021185231A1 - 一种光开关和基于光开关的光性能检测方法 - Google Patents

一种光开关和基于光开关的光性能检测方法 Download PDF

Info

Publication number
WO2021185231A1
WO2021185231A1 PCT/CN2021/080961 CN2021080961W WO2021185231A1 WO 2021185231 A1 WO2021185231 A1 WO 2021185231A1 CN 2021080961 W CN2021080961 W CN 2021080961W WO 2021185231 A1 WO2021185231 A1 WO 2021185231A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
sub
port
wdm
Prior art date
Application number
PCT/CN2021/080961
Other languages
English (en)
French (fr)
Inventor
王亮
孟岩
唐江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21771887.3A priority Critical patent/EP4106234A4/en
Publication of WO2021185231A1 publication Critical patent/WO2021185231A1/zh
Priority to US17/933,166 priority patent/US11962352B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29391Power equalisation of different channels, e.g. power flattening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/005Arbitration and scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • This application relates to the field of optical communications, and in particular to an optical switch and an optical performance detection method based on the optical switch.
  • the photoelectric conversion in the system link shows a decreasing trend, and it becomes more and more difficult to directly test the bit error rate at the electrical layer, and it is not conducive to fault location to test the bit error rate only at the link terminal.
  • OPM optical performance monitoring
  • DWDM Dense Wavelength Division Multiplex
  • OPM Wavelength Selective Switch
  • WSS Wavelength Selective Switch
  • the above performs wavelength demultiplexing on the input optical signal to achieve single-wave performance detection.
  • installing an OPM module outside the WSS significantly increases the size of the system, which is not conducive to the miniaturization of the system.
  • the embodiments of the present application provide an optical switch and an optical performance detection method based on the optical switch.
  • the optical detection device is integrated inside the optical switch, and the existing device in the optical switch can be used to detect the optical performance of the demultiplexed optical signal. , It is convenient to realize the miniaturization of the system.
  • the present application provides an optical switch including at least one first port, at least one second port, a first wavelength division multiplexing WDM device, an optical splitter, an optical detection device, and an optical switching device.
  • the first port is used to transmit the input first optical signal to the first WDM device, and the first optical signal is a multi-wavelength signal.
  • the first WDM device is used for demultiplexing the first optical signal.
  • the splitter is used for splitting the demultiplexed first optical signal to obtain the first sub-signal and the second sub-signal.
  • the optical switching device is used for optical switching of the first sub-signal.
  • the second port is used to output the first sub-signal after optical switching.
  • the optical detection device is used for detecting the optical performance of the second sub-signal.
  • the optical splitter can divide the demultiplexed optical signal into two paths, one of which is input to the optical switching device for optical switching, and the other is input to the optical detection device for optical performance detection.
  • the optical detection device is integrated inside the optical switch, and the existing device in the optical switch can be reused to detect the optical performance of the demultiplexed optical signal, which is convenient to realize the miniaturization of the system.
  • the light spot distributed on the optical switching device of the first sub-signal is the same as the light spot distributed on the light detecting device of the second sub-signal. It should be understood that, in order to minimize the crosstalk between the signals of each wavelength, maximize the degree of separation, and have the best distribution linearity, the light spots of the signals of each wavelength distributed on the optical switching device are the smallest. Then, the light spot of each wavelength signal distributed on the light detection device 105 is also the smallest, which avoids the overlap between the light spots and facilitates detection.
  • the optical switch further includes a beam shaping device.
  • the beam shaping device is used for shaping the input first optical signal.
  • the first WDM device is specifically used for demultiplexing the shaped first optical signal.
  • shaping the beam can reduce the beam divergence angle and improve the beam quality.
  • the optical switch further includes a beam collimating device.
  • the beam collimating device is used for beam collimation of the first optical signal after the demultiplexing.
  • the beam splitter is specifically used to split the first optical signal after the beam is collimated to obtain the first sub-signal and the second sub-signal.
  • the separated wavelength signals may be angularly separated in space. Therefore, beam collimation of the separated wavelength signals can facilitate the convergence of the wavelength signals to the optical splitter.
  • the optical switch further includes a second WDM device.
  • the second WDM device is used for multiplexing the first sub-signal after optical switching.
  • the second port is specifically used to output the combined first sub-signal. It should be understood that after the completion of optical switching, signals of various wavelengths also need to be multiplexed first and then output. The multiplexing is achieved through the second WDM device, which improves the practicability of the solution.
  • the second port is also used to transmit the input second optical signal to the second WDM device, and the second optical signal is a multi-wavelength signal.
  • the second WDM device is also used for demultiplexing the second optical signal.
  • the optical switching device is also used to perform optical switching on the demultiplexed second optical signal.
  • the optical splitter is also used for splitting the second optical signal after optical switching to obtain the third sub-signal and the fourth sub-signal.
  • the first WDM device is also used for multiplexing the third sub-signal.
  • the first port is also used to output the combined third sub-signal.
  • the light detecting device is used for detecting the light performance of the fourth sub-signal.
  • the ports on both sides of the optical switch can be input and output ports for each other.
  • the optical switching device can optically exchange optical signals in two different directions, and the optical detection device can also perform optical switching on optical signals in two different directions.
  • the optical signal performs optical performance detection, which improves the scalability of the solution.
  • the optical detection device is specifically configured to detect the optical power of each wavelength signal in the second sub-signal.
  • the optical detection device is specifically configured to detect the frequency deviation of each wavelength signal in the second sub-signal.
  • optical performance detection can include the detection of multiple parameters, including optical power and optical signal-to-noise ratio (OSNR), etc. These parameters become an important content of optical performance detection and contribute to the development of optical networks. Damage suppression, fault location, degradation detection, backup and recovery, etc., are conducive to the stable operation of the optical network.
  • OSNR optical signal-to-noise ratio
  • the type of photodetection device includes at least a photodiode array (PDA), a charge coupled device (CCD), and a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS).
  • PDA photodiode array
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the type of the first WDM device includes at least a grating.
  • the types of optical switching devices include at least Liquid Crystal on Silicon (LCOS) and Micro-Electro-Mechanical System (MEMS).
  • the present application provides an optical switch, including at least one first port, at least one second port, a first wavelength division multiplexing WDM device, an optical splitter, an optical detection device, and an optical switching device.
  • the first port is used to transmit the input first optical signal to the first WDM device, and the first optical signal is a multi-wavelength signal.
  • the first WDM device is used for demultiplexing the first optical signal.
  • the optical switching device is used to perform optical switching on the first optical signal.
  • the optical splitter is used for splitting the first optical signal after optical switching to obtain the first sub-signal and the second sub-signal.
  • the second port is used to output the first sub-signal.
  • the optical detection device is used for detecting the optical performance of the second sub-signal.
  • each wavelength signal after demultiplexing is first split, and then optical switching and optical detection are performed respectively.
  • the separated wavelength signals can be optically exchanged first, and then split after the optical exchange.
  • the split light is output from the second port, and the other light is input to the optical detection device for Light performance testing.
  • the structure of the optical switch provided in this application is enriched.
  • the light spot distributed on the optical switching device of the first optical signal is the same as the light spot distributed on the light detecting device of the second sub-signal.
  • the optical switch further includes a beam shaping device.
  • the beam shaping device is used for shaping the input first optical signal.
  • the first WDM device is specifically used for demultiplexing the shaped first optical signal.
  • the optical switch further includes a beam collimating device.
  • the beam collimating device is used for beam collimation of the first optical signal after the demultiplexing.
  • the optical switching device is specifically configured to perform optical switching on the first optical signal after the light beam is collimated.
  • the optical switch further includes a second WDM device.
  • the second WDM device is used for multiplexing the first sub-signal.
  • the second port is specifically used to output the combined first sub-signal.
  • the second port is also used to transmit the input second optical signal to the second WDM device, and the second optical signal is a multi-wavelength signal.
  • the second WDM device is also used for demultiplexing the second optical signal.
  • the splitter is also used to split the demultiplexed second optical signal to obtain a third sub-signal and a fourth sub-signal.
  • the optical switching device is also used to perform optical switching on the third sub-signal.
  • the first port is also used to output the third sub-signal after optical switching.
  • the light detection device is also used to perform light performance detection on the fourth sub-signal.
  • the optical detection device is specifically configured to detect the optical power of each wavelength signal in the second sub-signal.
  • the optical detection device is specifically configured to detect the frequency deviation of each wavelength signal in the second sub-signal.
  • the types of light detection devices include at least PDA, CCD, and CMOS; the types of the first WDM device include at least gratings; and the types of optical switching devices include at least LCOS and MEMS.
  • the present application provides a method for detecting optical performance based on an optical switch.
  • the optical switch includes at least one first port, at least one second port, a first wavelength division multiplexing WDM device, an optical splitter, an optical detection device, and an optical switch.
  • Exchange device includes: transmitting the input first optical signal to the first WDM device through the first port, where the first optical signal is a multi-wavelength signal.
  • the first optical signal is demultiplexed by the first WDM device.
  • the demultiplexed first optical signal is split by the splitter to obtain the first sub-signal and the second sub-signal.
  • the first sub-signal is optically exchanged by the optical switching device.
  • the first sub-signal after optical switching is output through the second port.
  • the optical performance of the second sub-signal is detected by the optical detection device.
  • the light spot distributed on the optical switching device of the first sub-signal is the same as the light spot distributed on the light detecting device of the second sub-signal.
  • the optical switch further includes a beam shaping device.
  • the method further includes: shaping the input first optical signal by the beam shaping device.
  • the shaped first optical signal is specifically demultiplexed by the first WDM device.
  • the optical switch further includes a beam collimating device.
  • the method further includes: performing beam collimation on the demultiplexed first optical signal by a beam collimating device.
  • the first optical signal after the beam collimation is specifically split by the beam splitter to obtain the first sub-signal and the second sub-signal.
  • the optical switch further includes a second WDM device.
  • the method further includes: multiplexing the optically-switched first sub-signal through the second WDM device.
  • the combined first sub-signal is output through the second port.
  • the method further includes: transmitting the input second optical signal to the second WDM device through the second port, where the second optical signal is a multi-wavelength signal.
  • the second optical signal is demultiplexed by the second WDM device.
  • the demultiplexed second optical signal is optically exchanged by the optical switching device.
  • the second optical signal after optical switching is split by the splitter to obtain the third sub-signal and the fourth sub-signal.
  • the third sub-signal is multiplexed by the first WDM device.
  • the combined third sub-signal is output through the first port.
  • the optical performance of the fourth sub-signal is detected by the optical detection device.
  • detecting the optical performance of the second sub-signal by the optical detection device includes: detecting the optical power of each wavelength signal in the second sub-signal by the optical detection device; or, detecting the optical power of the second sub-signal by the optical detection device. The frequency deviation of each wavelength signal in the sub-signal.
  • the types of light detection devices include at least PDA, CCD, and CMOS; the types of the first WDM device include at least gratings; and the types of optical switching devices include at least LCOS and MEMS.
  • the present application provides a method for detecting optical performance based on an optical switch.
  • the optical switch includes at least one first port, at least one second port, a first wavelength division multiplexing WDM device, an optical splitter, an optical detection device, and an optical switch.
  • Exchange device includes: transmitting the input first optical signal to the first WDM device through the first port, where the first optical signal is a multi-wavelength signal.
  • the first optical signal is demultiplexed by the first WDM device.
  • the first optical signal is optically exchanged by the optical switching device.
  • the first optical signal after optical switching is split by the splitter to obtain the first sub-signal and the second sub-signal.
  • the first sub-signal is output through the second port.
  • the optical performance of the second sub-signal is detected by the optical detection device.
  • the light spot distributed on the optical switching device of the first optical signal is the same as the light spot distributed on the light detecting device of the second sub-signal.
  • the optical switch further includes a beam shaping device; the method further includes: shaping the input first optical signal by the beam shaping device.
  • the reshaped first optical signal is demultiplexed by the first WDM device.
  • the optical switch further includes a beam collimating device.
  • the method further includes: performing beam collimation on the demultiplexed first optical signal by a beam collimating device.
  • the first optical signal after the light beam is collimated is optically exchanged by the optical switching device.
  • the optical switch further includes a second WDM device.
  • the method further includes: multiplexing the first sub-signal by the second WDM device.
  • the combined first sub-signal is output through the second port.
  • the method further includes: transmitting the input second optical signal to the second WDM device through the second port, and the second optical signal is a multi-wavelength signal.
  • the second WDM device is also used for demultiplexing the second optical signal.
  • the splitter is also used to split the demultiplexed second optical signal to obtain a third sub-signal and a fourth sub-signal.
  • the optical switching device is also used to perform optical switching on the third sub-signal.
  • the first port is also used to output the third sub-signal after optical switching.
  • the optical detection device is also used to detect the optical performance of the fourth sub-signal.
  • detecting the optical performance of the second sub-signal by the optical detection device includes: detecting the optical power of each wavelength signal in the second sub-signal by the optical detection device. Or, the frequency deviation of each wavelength signal in the second sub-signal is detected by the optical detection device.
  • the types of light detection devices include at least PDA, CCD, and CMOS; the types of the first WDM device include at least gratings; and the types of optical switching devices include at least LCOS and MEMS.
  • the internal structure of the optical switch is provided with a WDM device, an optical splitter, an optical detection device, and an optical switching device.
  • the WDM device demultiplexes the input optical signal.
  • the splitter can divide the demultiplexed optical signal into two paths, one of which is input to the optical switching device for optical switching, and the other is input to the optical detection device for optical performance detection.
  • the optical detection device is integrated inside the optical switch, and the existing device in the optical switch can be reused to detect the optical performance of the demultiplexed optical signal, which is convenient to realize the miniaturization of the system.
  • FIG. 1 is a schematic structural diagram of a first optical switch provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a second optical switch provided by an embodiment of this application.
  • Figure 3 is a schematic diagram of light spots distributed on the optical switching device and the optical detecting device
  • FIG. 4 is a schematic structural diagram of a third optical switch provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another optical path of the optical switch provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a fourth optical switch provided by an embodiment of the application.
  • FIG. 7 is the first optical performance detection method based on an optical switch in an embodiment of the application.
  • FIG. 8 is a second optical performance detection method based on an optical switch in an embodiment of the application.
  • the embodiments of the present application provide an optical switch and an optical performance detection method based on the optical switch.
  • the optical detection device is integrated inside the optical switch, and the existing device in the optical switch can be used to detect the optical performance of the demultiplexed optical signal. , It is convenient to realize the miniaturization of the system.
  • the terms "first”, “second”, “third”, “fourth”, etc. (if any) in the description and claims of this application and the above-mentioned drawings are used to distinguish similar objects, without having to use To describe a specific order or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances so that the embodiments described herein can be implemented in a sequence other than the content illustrated or described herein.
  • FIG. 1 is a schematic structural diagram of a first optical switch provided by an embodiment of this application.
  • the optical switch includes at least one first port 101, a first Wavelength Division Multiplex (WDM) device 102, an optical splitter 103, an optical switching device 104, an optical detection device 105, and at least one second port 106.
  • WDM Wavelength Division Multiplex
  • the first port 101 transmits the input first optical signal to the first WDM device 102, where the first optical signal is a multi-wavelength signal.
  • the first WDM device 102 demultiplexes the first optical signal to achieve spatial separation of signals of various wavelengths.
  • the splitter 103 divides the demultiplexed first optical signal into two paths, which are the first sub-signal and the second sub-signal respectively.
  • the first sub-signal is input to the optical switching device 104, and the second sub-signal is input to the optical detection device. 105.
  • the optical switching device 104 performs optical switching on the first sub-signal and outputs it from the second port 106.
  • the optical detection device 105 performs optical performance detection (Optical Performance Monitoring, OPM) on the second sub-signal.
  • OPM optical Performance Monitoring
  • the type of the light detection device 105 may include a photodiode array (PDA), a charge coupled device (CCD), and a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS), etc., which are not specifically mentioned here. limited.
  • a control circuit may be provided on the periphery of the light detection device 105 to control the light detection device 105 to complete photoelectric conversion.
  • the mixer in the optical detection device 105 can be used to mix the local oscillator optical signal with the optical signal to be detected (the second sub-signal), and then the mixed optical signal is input to the PDA, and the control circuit controls the PDA to remove the optical signal.
  • the signal is converted into an electrical signal, and then input to an analog-to-digital converter for sampling to obtain a detection signal for OPM.
  • OPM may include the detection of multiple parameters, including optical power and optical signal-to-noise ratio (Optical Signal to Noise Ratio, OSNR), etc., which are not specifically limited here.
  • the optical power detection can reflect the basic working status of the channel and guide the system to perform automatic power equalization.
  • OSNR detection can more accurately reflect the signal quality.
  • the light detection device 105 may also be used for frequency offset correction. Specifically, since the optical detection device 105 simultaneously detects each multi-wavelength signal in space, the frequency deviation of each multi-wavelength signal has uniformity, that is, all the wavelength signals have a uniform frequency offset. The optical detection device 105 can use a wavelength with a very high wavelength accuracy as a reference to correct all wavelength signals. In addition, the spectrum shape scanned by the optical detection device 105 can also be fed back to the optical switching device 104, so that the optical switching device 104 realizes real-time filter spectrum correction.
  • the optical splitter 103 performs optical splitting according to the ratio of optical power, that is, the optical power of the first sub-signal and the second sub-signal are different, but the number of wavelength signals in the first sub-signal and the second sub-signal is the same.
  • the first WDM device 102 demultiplexes to obtain 80 wavelength signals
  • the two sub-signals obtained by the splitter 103 also include these 80 wavelength signals.
  • the main function of the optical switch is to realize optical switching, most of the light after splitting needs to be input to the optical switching device 104, and a small part of the light is input to the optical detection device 105.
  • the splitting ratio of the optical splitter 103 is 98:2, that is, the optical splitter 103 inputs an optical signal that accounts for 98% of the total power to the optical switching device 104, and inputs an optical signal that accounts for 2% of the total power to the optical detection device 105.
  • the optical power of the optical signal input to the optical detection device 105 does not exceed 10% of the total power, and the application specifically does not limit the splitting ratio of the optical splitter 103.
  • the signals of each wavelength after demultiplexing are first split, and then optical switching and optical detection are performed respectively.
  • the separated wavelength signals can be optically exchanged first, and then split after the optical exchange.
  • the split light is output from the second port 106, and the other light is input to the optical detection device 105 for OPM. This will be further explained below.
  • FIG. 2 is a schematic structural diagram of a second optical switch provided by an embodiment of the application.
  • the first port 101 transmits the input first optical signal to the first WDM device 102, where the first optical signal is a multi-wavelength signal.
  • the first WDM device 102 demultiplexes the first optical signal to achieve spatial separation of signals of various wavelengths.
  • the optical switching device 104 optically exchanges signals of each wavelength after demultiplexing.
  • the optical splitter 103 splits the optical signal after optical switching to obtain two sub-signals. One of the sub-signals is output from the second port 106, and the other sub-signal is input to the optical detection device 105 for OPM.
  • Fig. 3 is a schematic diagram of light spots distributed on the light switching device and the light detecting device. It should be understood that, in order to minimize the crosstalk between the signals of each wavelength, maximize the degree of separation, and have the best distribution linearity, the light spots of the signals of each wavelength distributed on the optical switching device 104 are the smallest. Then, the distance between the beam splitter 103 and the optical switching device 104 and the distance between the beam splitter 103 and the light detecting device 105 can be adjusted to realize that the light spot distributed on the light switching device 104 is the same as the light spot distributed on the light detecting device 105. . That is, the light spot of each wavelength signal distributed on the light detection device 105 is the smallest, which avoids the overlap between the light spots and facilitates the detection.
  • a lens may also be provided between the beam splitter 103 and the light detection device 105 to realize that the light spot distributed on the light exchange device 104 is the same as the light spot distributed on the light detection device 105. It can be understood that, in practical applications, the light spot distributed on the light switching device 104 and the light spot distributed on the light detecting device 105 may not be exactly the same. The size of the distributed light spots has a certain ratio, and the specific requirements are subject to actual requirements, which are not limited here.
  • the optical switch provided in this application may specifically refer to a wavelength selective switch (Wavelength Selective Switch, WSS).
  • WSS wavelength selective switch
  • the optical switching device 104 in the optical switch may specifically be Liquid Crystal on Silicon (LCOS) or Micro-Electro-Mechanical System (MEMS), etc., used to implement all-optical cross connect (Optical Cross Connect, OXC). ), the specific device is not limited here.
  • LCOS Liquid Crystal on Silicon
  • MEMS Micro-Electro-Mechanical System
  • OXC All-optical cross connect
  • FIG. 4 is a schematic structural diagram of a third optical switch provided by an embodiment of the application.
  • a second WDM device 107 may also be provided in the optical switch. Specifically, the second WDM device 107 first multiplexes each wavelength signal after optical switching and then outputs it. For example, 80 wavelength signals after optical switching need to be output from 8 ports, then the second WDM device 107 can multiplex the 1st to 10th wavelength signals and output from port 1, and combine the 11th to 20th wavelength signals Multiplex and output from port 2, and so on.
  • the first WDM device 102 may also have a wave combining function.
  • the second WDM device 107 may also have a demultiplexing function in addition to the introduced multiplexing function.
  • the first WDM device 102 and the second WDM device 107 may be devices that spatially separate or combine signals of various wavelengths, such as a grating, which is not limited here.
  • the WDM device used for wave splitting can also be called a "wave splitter” or a "demultiplexer”.
  • the WDM device used for multiplexing can also be referred to as a "multiplexer” or "multiplexer”.
  • FIG. 5 is a schematic diagram of another optical path of the optical switch provided by an embodiment of the application.
  • the second port 106 transmits the input second optical signal to the second WDM device 107, where the second optical signal is a multi-wavelength signal.
  • the second WDM device 107 demultiplexes the first optical signal to achieve spatial separation of the signals of each wavelength.
  • the optical switching device 104 optically exchanges signals of each wavelength after demultiplexing.
  • the optical splitter 103 splits the optical signal after optical switching to obtain two sub-signals. One sub-signal is output from the first port 101 after being multiplexed by the first WDM device 102, and the other sub-signal is input to the optical detection device 105 for OPM.
  • the ports on both sides can be optical switches with input and output ports for each other, and the optical switching device 104 needs to perform optical switching of optical signals in two different directions.
  • the plane of the optical switching device 104 may be divided into two areas (for example, a first area and a second area). Each wavelength signal from the first port 101 forms a light spot in the first area, and each wavelength signal from the second port 106 forms a light spot in the second area.
  • the optical detection device 105 can also use a similar manner to distinguish the wavelength signals from different ports.
  • the optical switch provided in the embodiment of the present application may be a unidirectional optical switch, for example, a 1 in, N out or N in, 1 out optical switch formed by a first port 101 and N second ports 106.
  • the optical switch provided in the embodiment of the present application may be a bidirectional optical switch, for example, an optical switch formed by M first ports 101 and N second ports 106 can realize M in, N out and N in and M out. Among them, if it is a two-way optical switch, the ports on both sides need to be equipped with WDM devices, which are used to demultiplex and then detect the input optical signal.
  • FIG. 6 is a schematic structural diagram of a fourth optical switch provided by an embodiment of the application.
  • the optical switch may also be provided with a beam shaping device 108 and a beam collimating device 109.
  • the beam shaping device 108 shapes the input optical signal to reduce the beam divergence angle and improve the beam quality.
  • the first WDM device 102 demultiplexes the shaped optical signal. Since the demultiplexed wavelength signals may be angularly separated in space, the beam collimating device 109 can perform beam collimation on the demultiplexed wavelength signals.
  • the beam splitter 103 separates the signals of each wavelength after the beam is collimated.
  • the beam shaping device 108 and the beam collimating device 109 may be a diffractive optical element (DOE) or a combination of lenses, etc., which are not specifically limited here.
  • DOE diffractive optical element
  • the internal structure of the optical switch is provided with a WDM device, an optical splitter, an optical detection device, and an optical switching device.
  • the WDM device demultiplexes the input optical signal.
  • the splitter can divide the demultiplexed optical signal into two paths, one of which is input to the optical switching device for optical switching, and the other is input to the optical detection device for optical performance detection.
  • the optical detection device is integrated inside the optical switch, and the existing device in the optical switch can be reused to detect the optical performance of the demultiplexed optical signal, which is convenient to realize the miniaturization of the system.
  • this solution divides the wavelengths in space and performs optical performance detection on signals of multiple wavelengths at the same time, without the need for wave-by-wave detection in time, which improves the detection efficiency.
  • optical switch in the embodiment of the present application is described above.
  • this application also provides a method for detecting optical performance based on an optical switch
  • the optical switch used to implement the optical performance detection method may be the optical switch in any one of the embodiments shown in FIG. 1, FIG. 2, FIG. 4, FIG. 5, and FIG. 6.
  • the optical switch shown in FIG. 1 and FIG. 2 are used as examples to introduce the optical performance detection method provided in the present application.
  • FIG. 7 is the first optical performance detection method based on an optical switch in an embodiment of the application.
  • the optical performance detection method includes the following steps.
  • the first optical signal is a multi-wavelength signal
  • the first WDM device can spatially separate the multi-wavelength signals.
  • the distance between the beam splitter and the light switch device or the distance between the beam splitter and the light detection device can be adjusted to realize that the light spot distributed on the light switch device is the same as the light spot distributed on the light detection device.
  • the light spot of each wavelength signal distributed on the optical switching device is the smallest.
  • the light spot of each wavelength signal distributed on the light detection device is the smallest, which avoids the overlap between the light spots and facilitates the detection.
  • a lens may also be arranged between the beam splitter and the light detection device to realize that the light spot distributed on the light exchange device is the same as the light spot distributed on the light detection device.
  • the light spot distributed on the optical switching device may not be exactly the same as the light spot distributed on the light detecting device.
  • the size of the light spot distributed on the light switching device is the same as the size of the light spot distributed on the light detecting device. There is a certain percentage, and the specific requirements are subject to actual requirements, which are not limited here.
  • a second WDM device (as shown in FIG. 4) may be provided in the optical switch.
  • the second WDM device may be used to multiplex the optically-switched wavelength signals before outputting. For example, 80 wavelength signals after optical switching need to be output from 8 ports, then the second WDM device 107 can multiplex the 1st to 10th wavelength signals and output from port 1, and combine the 11th to 20th wavelength signals Multiplex and output from port 2, and so on.
  • the ports on both sides of the optical switch may be input and output ports for each other.
  • the embodiment of the first port input and the second port output has been introduced above.
  • the following describes an embodiment of the second port input and the first port output.
  • the input second optical signal is transmitted to the second WDM device through the second port, where the second optical signal is a multi-wavelength signal.
  • the first optical signal is demultiplexed by the second WDM device to realize the spatial separation of the signals of each wavelength.
  • the demultiplexed wavelength signals are optically exchanged by the optical switching device.
  • the optical signal after optical switching is split by the optical splitter to obtain two sub-signals.
  • One sub-signal is output from the first port 101 after being multiplexed by the first WDM device, and the other sub-signal is input to the optical detection device 105 for optical Performance testing.
  • FIG. 8 is a second optical performance detection method based on an optical switch in an embodiment of the application.
  • the optical performance detection method includes the following steps.
  • the demultiplexed optical signal is first split by the splitter, and then one of the split lights is optically switched by the optical switching device.
  • the demultiplexed optical signal is optically exchanged by the optical switching device first, and then the optically exchanged optical signal is split by the optical splitter.
  • FIGS. 4 to 4 The related description of the embodiment shown in FIG. 6 will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种光开关和基于光开关的光性能检测方法,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。该光开关包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置。第一端口用于将输入的第一光信号传输至第一WDM装置,第一光信号为多波长信号。第一WDM装置用于对第一光信号进行分波。分光器用于对分波后的第一光信号进行分光得到第一子信号和第二子信号。光交换装置用于对第一子信号进行光交换。第二端口用于输出光交换后的第一子信号。光检测装置用于对第二子信号进行光性能检测。

Description

一种光开关和基于光开关的光性能检测方法
本申请要求于2020年3月20日提交中国国家知识产权局、申请号为202010205015.7、发明名称为“一种光开关和基于光开关的光性能检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种光开关和基于光开关的光性能检测方法。
背景技术
在光通信长距离传输网络中,系统链路中光电转换呈减少趋势,在电层直接测试误码率变得越来越困难,而仅在链路终端测试误码率并不利于故障定位。随着光网络中传输容量的增大和灵活性的提升,系统的复杂度越来越高。为了有效地控制和管理光网络,对光网络中的高速密集波分复用(Dense Wavelength Division Multiplex,DWDM)信号进行光性能监测(Optical Performance Monitoring,OPM)的重要性越来越高。
目前进行OPM的一种方案是在波长选择开关(Wavelength Selective Switch,WSS)外采用外置OPM模块,将原本输入到WSS的光信号分出一部分输入到OPM模块,OPM模块可以从时间或空间维度上对输入的光信号进行波长解复用,以实现单波性能检测。然而,在WSS外再设置OPM模块显著增加了系统的尺寸,不利于系统的小型化。
发明内容
本申请实施例提供了一种光开关和基于光开关的光性能检测方法,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。
第一方面,本申请提供了一种光开关,包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置。第一端口用于将输入的第一光信号传输至第一WDM装置,第一光信号为多波长信号。第一WDM装置用于对第一光信号进行分波。分光器用于对分波后的第一光信号进行分光得到第一子信号和第二子信号。光交换装置用于对第一子信号进行光交换。第二端口用于输出光交换后的第一子信号。光检测装置用于对第二子信号进行光性能检测。
在该实施方式中,分光器可以将分波后的光信号分成两路,其中一路输入到光交换装置用于进行光交换,另一路输入到光检测装置进行光性能检测。通过这种设计方式,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。
在一些可能的实施方式中,第一子信号在光交换装置上分布的光斑与第二子信号在光检测装置上分布的光斑相同。应理解,为了使各波长信号相互之间的串扰最小,分离程度最大, 且分布线性度最好,在光交换装置上分布的各波长信号的光斑是最小的。那么,光检测装置105上分布的各波长信号的光斑也是最小的,避免了各光斑之间的交叠,便于检测。
在一些可能的实施方式中,光开关还包括光束整形装置。光束整形装置用于对输入的第一光信号进行整形。第一WDM装置具体用于对整形后的第一光信号进行分波。在该实施方式中,对光束进行整形可以减小光束发散角并提高光束质量。
在一些可能的实施方式中,光开关还包括光束准直装置。光束准直装置用于对分波后的第一光信号进行光束准直。分光器具体用于对光束准直后的第一光信号进行分光得到第一子信号和第二子信号。在该实施方式中,分波后的各波长信号由于在空间上可能有角度分离,因此,对分波后的各波长信号进行光束准直可以方便各波长信号向分光器汇聚。
在一些可能的实施方式中,光开关还包括第二WDM装置。第二WDM装置用于对光交换后的第一子信号进行合波。第二端口具体用于输出合波后的第一子信号。应理解,完成光交换之后的各波长信号也有先合波再输出的需求,通过第二WDM装置实现合波,提高了本方案的实用性。
在一些可能的实施方式中,第二端口还用于将输入的第二光信号传输至第二WDM装置,第二光信号为多波长信号。第二WDM装置还用于对第二光信号进行分波。光交换装置还用于对分波后的第二光信号进行光交换。分光器还用于对光交换后的第二光信号进行分光得到第三子信号和第四子信号。第一WDM装置还用于对第三子信号进行合波。第一端口还用于输出合波后的第三子信号。光检测装置用于对第四子信号进行光性能检测。在该实施方式中,光开关两侧的端口可以互为输入输出端口,那么,光交换装置可以对两个不同方向上的光信号进行光交换,光检测装置也可以对两个不同方向上的光信号进行光性能检测,提高了本方案的扩展性。
在一些可能的实施方式中,光检测装置具体用于检测第二子信号中每个波长信号的光功率。或者,光检测装置具体用于检测第二子信号中每个波长信号的频偏。应理解,光性能检测可以包括多种参数的检测,这些参数包括光功率和光信噪比(Optical Signal to Noise Ratio,OSNR)等,这些参数成为光性能检测的重要内容,有助于光网络的损伤抑制、故障定位、劣化探测、备份和恢复等,从而有利于光网络的稳定工作。
在一些可能的实施方式中,光检测装置的类型至少包括光电二极管阵列(Photo diode Array,PDA)、电荷耦合元件(Charge Coupled Device,CCD)和互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)。第一WDM装置的类型至少包括光栅。光交换装置的类型至少包括硅基液晶(Liquid Crystal on Silicon,LCOS)和微机电系统(Micro-Electro-Mechanical System,MEMS)。
第二方面,本申请提供了一种光开关,包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置。第一端口用于将输入的第一光信号传输至第一WDM装置,第一光信号为多波长信号。第一WDM装置用于对第一光信号进行分波。光交换装置用于对第一光信号进行光交换。分光器用于对光交换后的第一光信号进行分光得到第一子信号和第二子信号。第二端口用于输出第一子信号。光检测装置用于对第二子信号进行光性能检测。
可以理解的是,不同于第一方面提供的光开关的光开关中,分波后的各波长信号先分光 再分别进行光交换和光检测。在第二方面提供的光开关中,分别后的各波长信号可以先进行光交换,光交换之后再进行分光,分光后的一路光从第二端口输出,另一路光输入到光检测装置用于光性能检测。丰富了本申请所提供的光开关的结构。
在一些可能的实施方式中,第一光信号在光交换装置上分布的光斑与第二子信号在光检测装置上分布的光斑相同。
在一些可能的实施方式中,光开关还包括光束整形装置。光束整形装置用于对输入的第一光信号进行整形。第一WDM装置具体用于对整形后的第一光信号进行分波。
在一些可能的实施方式中,光开关还包括光束准直装置。光束准直装置用于对分波后的第一光信号进行光束准直。光交换装置具体用于对光束准直后的第一光信号进行光交换。
在一些可能的实施方式中,光开关还包括第二WDM装置。第二WDM装置用于对第一子信号进行合波。第二端口具体用于输出合波后的第一子信号。
在一些可能的实施方式中,第二端口还用于将输入的第二光信号传输至第二WDM装置,第二光信号为多波长信号。第二WDM装置还用于对第二光信号进行分波。分光器还用于对分波后的第二光信号进行分光得到第三子信号和第四子信号。光交换装置还用于对第三子信号进行光交换。第一端口还用于输出光交换后的第三子信号。光检测装置还用于对第四子信号进行光性能检测。
在一些可能的实施方式中,光检测装置具体用于检测第二子信号中每个波长信号的光功率。或者,光检测装置具体用于检测第二子信号中每个波长信号的频偏。
在一些可能的实施方式中,光检测装置的类型至少包括PDA、CCD和CMOS;第一WDM装置的类型至少包括光栅;光交换装置的类型至少包括LCOS和MEMS。
第三方面,本申请提供了一种基于光开关的光性能检测方法,光开关包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置。方法包括:通过第一端口将输入的第一光信号传输至第一WDM装置,第一光信号为多波长信号。通过第一WDM装置对第一光信号进行分波。通过分光器对分波后的第一光信号进行分光得到第一子信号和第二子信号。通过光交换装置对第一子信号进行光交换。通过第二端口输出光交换后的第一子信号。通过光检测装置对第二子信号进行光性能检测。
在一些可能的实施方式中,第一子信号在光交换装置上分布的光斑与第二子信号在光检测装置上分布的光斑相同。
在一些可能的实施方式中,光开关还包括光束整形装置。方法还包括:通过光束整形装置对输入的第一光信号进行整形。通过第一WDM装置具体对整形后的第一光信号进行分波。
在一些可能的实施方式中,光开关还包括光束准直装置。方法还包括:通过光束准直装置对分波后的第一光信号进行光束准直。通过分光器具体对光束准直后的第一光信号进行分光得到第一子信号和第二子信号。
在一些可能的实施方式中,光开关还包括第二WDM装置。方法还包括:通过第二WDM装置对光交换后的第一子信号进行合波。通过第二端口输出合波后的第一子信号。
在一些可能的实施方式中,方法还包括:通过第二端口将输入的第二光信号传输至第二WDM装置,第二光信号为多波长信号。通过第二WDM装置对第二光信号进行分波。通过光交换装置对分波后的第二光信号进行光交换。通过分光器对光交换后的第二光信号进行分光得 到第三子信号和第四子信号。通过第一WDM装置对第三子信号进行合波。通过第一端口输出合波后的第三子信号。通过光检测装置对第四子信号进行光性能检测。
在一些可能的实施方式中,通过光检测装置对第二子信号进行光性能检测包括:通过光检测装置检测第二子信号中每个波长信号的光功率;或者,通过光检测装置检测第二子信号中每个波长信号的频偏。
在一些可能的实施方式中,光检测装置的类型至少包括PDA、CCD和CMOS;第一WDM装置的类型至少包括光栅;光交换装置的类型至少包括LCOS和MEMS。
第四方面,本申请提供了一种基于光开关的光性能检测方法,光开关包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置。方法包括:通过第一端口将输入的第一光信号传输至第一WDM装置,第一光信号为多波长信号。通过第一WDM装置对第一光信号进行分波。通过光交换装置对第一光信号进行光交换。通过分光器对光交换后的第一光信号进行分光得到第一子信号和第二子信号。通过第二端口输出第一子信号。通过光检测装置对第二子信号进行光性能检测。
在一些可能的实施方式中,第一光信号在光交换装置上分布的光斑与第二子信号在光检测装置上分布的光斑相同。
在一些可能的实施方式中,光开关还包括光束整形装置;方法还包括:通过光束整形装置对输入的第一光信号进行整形。通过第一WDM装置对整形后的第一光信号进行分波。
在一些可能的实施方式中,光开关还包括光束准直装置。方法还包括:通过光束准直装置对分波后的第一光信号进行光束准直。通过光交换装置对光束准直后的第一光信号进行光交换。
在一些可能的实施方式中,光开关还包括第二WDM装置。方法还包括:通过第二WDM装置对第一子信号进行合波。通过第二端口输出合波后的第一子信号。
在一些可能的实施方式中,方法还包括:通过第二端口还用于将输入的第二光信号传输至第二WDM装置,第二光信号为多波长信号。通过第二WDM装置还用于对第二光信号进行分波。通过分光器还用于对分波后的第二光信号进行分光得到第三子信号和第四子信号。通过光交换装置还用于对第三子信号进行光交换。通过第一端口还用于输出光交换后的第三子信号。通过光检测装置还用于对第四子信号进行光性能检测。
在一些可能的实施方式中,通过光检测装置对第二子信号进行光性能检测包括:通过光检测装置检测第二子信号中每个波长信号的光功率。或者,通过光检测装置检测第二子信号中每个波长信号的频偏。
在一些可能的实施方式中,光检测装置的类型至少包括PDA、CCD和CMOS;第一WDM装置的类型至少包括光栅;光交换装置的类型至少包括LCOS和MEMS。
本申请实施例中,在光开关的内部结构中设置有WDM装置、分光器、光检测装置和光交换装置。WDM装置对输入的光信号进行分波。分光器可以将分波后的光信号分成两路,其中一路输入到光交换装置用于进行光交换,另一路输入到光检测装置进行光性能检测。通过这种设计方式,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。
附图说明
图1为本申请实施例提供的第一种光开关的结构示意图;
图2为本申请实施例提供的第二种光开关的结构示意图;
图3为光交换装置和光检测装置上分布的光斑示意图;
图4为本申请实施例提供的第三种光开关的结构示意图;
图5为本申请实施例提供的光开关的另一种光路示意图;
图6为本申请实施例提供的第四种光开关的结构示意图;
图7为本申请实施例中第一种基于光开关的光性能检测方法;
图8为本申请实施例中第二种基于光开关的光性能检测方法。
具体实施方式
本申请实施例提供了一种光开关和基于光开关的光性能检测方法,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例提供的第一种光开关的结构示意图。光开关包括至少一个第一端口101、第一波分复用(Wavelength Division Multiplex,WDM)装置102、分光器103、光交换装置104、光检测装置105和至少一个第二端口106。
第一端口101将输入的第一光信号传输至第一WDM装置102,其中,第一光信号为多波长信号。第一WDM装置102对第一光信号进行分波,实现各波长信号在空间上的分离。分光器103将分波后的第一光信号分成两路,分别是第一子信号和第二子信号,其中,第一子信号输入到光交换装置104,第二子信号输入到光检测装置105。光交换装置104对第一子信号进行光交换,并从第二端口106输出。光检测装置105对第二子信号进行光性能检测(Optical Performance Monitoring,OPM)。
光检测装置105的类型可以包括光电二极管阵列(Photo diode Array,PDA)、电荷耦合元件(Charge Coupled Device,CCD)和互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)等,具体此处不做限定。另外,该光检测装置105的外围还可以设置有控制电路,用于控制光检测装置105完成光电转换。
下面对光检测装置105实现OPM的具体方式进行介绍。例如,可以首先使用光检测装置105中的混频器将本振光信号与待检测光信号(第二子信号)混频,然后将混频后的光信号输入PDA,控制电路控制PDA将光信号转换为电信号,然后输入到模数转换器采样,获得用于OPM的检测信号。应理解,OPM可以包括多种参数的检测,这些参数包括光功率和光信噪 比(Optical Signal to Noise Ratio,OSNR)等,具体此处不做限定。其中,光功率检测能够反映信道基本工作状态,并指导系统执行自动功率均衡。OSNR检测能够比较准确地反映信号质量。这些参数成为光性能检测的重要内容,有助于光网络的损伤抑制、故障定位、劣化探测、备份和恢复等,从而有利于光网络的稳定工作。
在一种可能的实施方式中,该光检测装置105还可以用于频偏校正。具体地,由于光检测装置105对空间上的各多波长信号同时进行检测,各多波长信号的频偏具有统一性,即所有波长信号具有一个统一的频率偏移量。光检测装置105可以利用一个波长精度非常高的波长作为参考校正所有的波长信号。另外,光检测装置105扫描出来的谱形还可以反馈至光交换装置104,使得光交换装置104实现实时滤波谱的校正。
应理解,分光器103是按照光功率的比例进行分光,即第一子信号和第二子信号的光功率不同,但是第一子信号和第二子信号中的各波长信号的数量相同。例如,第一WDM装置102分波得到80个波长信号,分光器103分光得到的两路子信号也都包括这80个波长信号。另外,由于光开关的主要功能是实现光交换,因此需要将分光后的大部分光输入到光交换装置104,少部分光输入到光检测装置105。例如,分光器103的分光比是98:2,即分光器103将占总功率98%的光信号输入到光交换装置104,将占总功率2%的光信号输入到光检测装置105。通常情况下,输入到光检测装置105的光信号的光功率不超过总功率的10%,本申请具体不限定分光器103的分光比。
上文介绍的图1所示的光开关中,分波后的各波长信号先分光再分别进行光交换和光检测。除此之外,分别后的各波长信号可以先进行光交换,在光交换之后再进行分光,分光后的一路光从第二端口106输出,另一路光输入到光检测装置105用于OPM。下面进行进一步说明。
图2为本申请实施例提供的第二种光开关的结构示意图。通过对比图1和图2所示的结构可以看出区别在于,分光器103和光交换装置104在光路上的先后位置发生了变化。具体地,第一端口101将输入的第一光信号传输至第一WDM装置102,其中,第一光信号为多波长信号。第一WDM装置102对第一光信号进行分波,实现各波长信号在空间上的分离。光交换装置104对分波后的各波长信号进行光交换。分光器103对光交换后的光信号进行分光得到两路子信号,其中一路子信号从第二端口106输出,另一路子信号输入到光检测装置105用于OPM。
图3为光交换装置和光检测装置上分布的光斑示意图。应理解,为了使各波长信号相互之间的串扰最小,分离程度最大,且分布线性度最好,在光交换装置104上分布的各波长信号的光斑是最小的。那么,可以通过调整分光器103和光交换装置104之间的距离以及分光器103与光检测装置105之间的距离,以实现光交换装置104上分布的光斑与光检测装置105上分布的光斑相同。即在光检测装置105上分布的各波长信号的光斑是最小的,避免了各光斑之间的交叠,便于检测。在一些可能的实施方式中,也可以通过在分光器103和光检测装置105之间设置透镜,以实现光交换装置104上分布的光斑与光检测装置105上分布的光斑相同。可以理解的是,在实际应用中,光交换装置104上分布的光斑与光检测装置105上分布的光斑也可以不完全相同,例如,光交换装置104上分布的光斑大小与光检测装置105上分布的光斑大小具有一定比例,具体以实际需求为准,此处不做限定。
本申请所提供的光开关具体可以是指波长选择开关(Wavelength Selective Switch,WSS)。光开关中的光交换装置104具体可以是硅基液晶(Liquid Crystal on Silicon,LCOS)或微机电系统(Micro-Electro-Mechanical System,MEMS)等用于实现全光交叉连接(Optical cross connect,OXC)的装置,具体此处不做限定。
图4为本申请实施例提供的第三种光开关的结构示意图。在实际应用中,完成光交换之后的各波长信号也有先合波再输出的需求,因此,光开关中还可以设置有第二WDM装置107。具体地,第二WDM装置107对光交换后的各波长信号先进行合波再输出。例如,光交换后的80个波长信号需要从8个端口输出,那么第二WDM装置107可以将第1至第10个波长信号合波并从端口1输出,将第11至第20个波长信号合波并从端口2输出,以此类推。
应理解,第一WDM装置102除了介绍的分波功能外,也可以具有合波功能。同理,第二WDM装置107除了介绍的合波功能外,也可以具有分波功能。具体地,第一WDM装置102和第二WDM装置107可以是光栅等将各波长信号在空间上进行分离或合并的装置,此处不做限定。其中,用于分波的WDM装置也可以是称作“分波器”或“解复用器”。用于合波的WDM装置也可以称作“合波器”或“复用器”。
上文介绍了光信号由光开关一侧端口输入并从另一侧端口输出的光路。应理解,在实际应用中,光开关两侧的端口可以互为输入输出端口。也就是说,图4中所示的光路是可逆的,下面进一步进行说明。
图5为本申请实施例提供的光开关的另一种光路示意图。具体地,第二端口106将输入的第二光信号传输至第二WDM装置107,其中,第二光信号为多波长信号。第二WDM装置107对第一光信号进行分波,实现各波长信号在空间上的分离。光交换装置104对分波后的各波长信号进行光交换。分光器103对光交换后的光信号进行分光得到两路子信号,其中一路子信号经过第一WDM装置102的合波后从第一端口101输出,另一路子信号输入到光检测装置105用于OPM。
结合图4和图5所示的实施例可知,对于两侧的端口可以互为输入输出端口的光开关,其中的光交换装置104需要对两个不同方向上的光信号进行光交换。为了避免相互之间的干扰,可以将光交换装置104的平面分成两个区域(例如第一区域和第二区域)。来自第一端口101的各波长信号在第一区域形成光斑,来自第二端口106的各波长信号在第二区域形成光斑。同理,光检测装置105也可以采用类似的方式区分来自不同端口的波长信号。
应理解,本申请实施例所提供的光开关可以是单向光开关,例如,1个第一端口101和N个第二端口106形成的1进N出或N进1出的光开关。此外,本申请实施例所提供的光开关可以是双向光开关,例如,M个第一端口101和N个第二端口106形成的可以实现M进N出和N进M出的光开关。其中,若是双向光开关,两侧的端口都需要配置WDM装置,用于对输入的光信号先分波再检测。
图6为本申请实施例提供的第四种光开关的结构示意图。光开关中还可以设置光束整形装置108和光束准直装置109。具体地,光束整形装置108对输入的光信号进行整形,以减小光束发散角并提高光束质量。第一WDM装置102对整形后的光信号进行分波。分波后的各波长信号由于在空间上可能有角度分离,因此,通过光束准直装置109可以对分波后的各波长信号进行光束准直。分光器103对光束准直后的各波长信号进行分光。其中,光束整形装 置108和光束准直装置109可以是衍射光学元件(Diffractive optical element,DOE)或透镜组合等,具体此处不做限定。
本申请实施例中,在光开关的内部结构中设置有WDM装置、分光器、光检测装置和光交换装置。WDM装置对输入的光信号进行分波。分光器可以将分波后的光信号分成两路,其中一路输入到光交换装置用于进行光交换,另一路输入到光检测装置进行光性能检测。通过这种设计方式,光检测装置集成在光开关内部,可以复用光开关中已有的装置对分波后的光信号进行光性能检测,便于实现系统的小型化。另外,本方案是空间上分波长并同时对多个波长信号进行光性能检测,而无需在时间上一波一波检测,提高了检测效率。
上面对本申请实施例中的光开关进行了介绍。此外,本申请还提供了一种基于光开关的光性能检测方法
需要说明的是,用于实现光性能检测方法的光开关可以是如图1、图2、图4、图5和图6中任一实施例中的光开关。为了简化描述,下面分别以图1和图2所示的光开关为例对本申请提供的光性能检测方法进行介绍。
图7为本申请实施例中第一种基于光开关的光性能检测方法。请结合图1所示的光开关,在该实施例中,光性能检测方法包括如下步骤。
701、通过所述第一端口将输入的第一光信号传输至所述第一WDM装置。
702、通过所述第一WDM装置对第一光信号进行分波。
应理解,第一光信号为多波长信号,第一WDM装置可以在空间上将各多波长信号进行分离。
703、通过分光器对分波后的第一光信号进行分光得到第一子信号和第二子信号。
704、通过光交换装置对第一子信号进行光交换。
705、通过第二端口输出所述光交换后的第一子信号。
706、通过光检测装置对所述第二子信号进行光性能检测。
可以通过调整分光器和光交换装置之间的距离或者分光器与光检测装置之间的距离,以实现光交换装置上分布的光斑与光检测装置上分布的光斑相同。其中,为了使各波长信号相互之间的串扰最小,分离程度最大,且分布线性度最好,在光交换装置上分布的各波长信号的光斑是最小的。那么,光检测装置上分布的各波长信号的光斑是最小的,避免了各光斑之间的交叠,便于检测。在一些可能的实施方式中,也可以通过在分光器和光检测装置之间设置透镜,以实现光交换装置上分布的光斑与光检测装置上分布的光斑相同。可以理解的是,在实际应用中,光交换装置上分布的光斑与光检测装置上分布的光斑也可以不完全相同,例如,光交换装置上分布的光斑大小与光检测装置上分布的光斑大小具有一定比例,具体以实际需求为准,此处不做限定。
在实际应用中,完成光交换之后的各波长信号也有先合波再输出的需求,因此,光开关中还可以设置有第二WDM装置(如图4所示)。具体地,可以通过第二WDM装置对光交换后的各波长信号先进行合波再输出。例如,光交换后的80个波长信号需要从8个端口输出,那么第二WDM装置107可以将第1至第10个波长信号合波并从端口1输出,将第11至第20个波长信号合波并从端口2输出,以此类推。
应理解,光开关两侧的端口可以互为输入输出端口。上文介绍了第一端口输入,第二端 口输出的实施例。下面介绍第二端口输入,第一端口输出的实施例。具体地可以参照图5,通过第二端口将输入的第二光信号传输至第二WDM装置,其中,第二光信号为多波长信号。通过第二WDM装置对第一光信号进行分波,实现各波长信号在空间上的分离。通过光交换装置对分波后的各波长信号进行光交换。通过分光器对光交换后的光信号进行分光得到两路子信号,其中一路子信号经过第一WDM装置的合波后从第一端口101输出,另一路子信号输入到光检测装置105用于光性能检测。
图8为本申请实施例中第二种基于光开关的光性能检测方法。请结合图2所示的光开关,在该实施例中,光性能检测方法包括如下步骤。
801、通过第一端口将输入的第一光信号传输至第一WDM装置。
802、通过第一WDM装置对第一光信号进行分波。
803、通过光交换装置对第一光信号进行光交换。
804、通过分光器对光交换后的第一光信号进行分光得到第一子信号和第二子信号。
805、通过第二端口输出第一子信号。
806、通过光检测装置对第二子信号进行光性能检测。
需要说明的是,图8所示的实施例与图7所示的实施例的主要区别在于,分光器和光交换装置在光路上的先后位置发生了变化,具体可以参照图1所示的光开关和图2所示的光开关。即图7所示的实施例中,先通过分光器对分波后的光信号进行分光,再通过光交换装置对分光后的其中一路光进行光交换。图8所示的实施例中,先通过光交换装置对分波后的光信号进行光交换,再通过分光器对光交换后的光信号进行分光。除了上述区别之外,其他方面与图7所示的实施例类似,此处不再赘述。
需要说明的是,除了上述介绍的采用图1和图2所示的光开关的光性能检测外,其他基于图4至图6所示实施例中光开关的光性能检测方法可以参阅图4至图6所示实施例部分的相关描述,具体此处不做赘述。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种光开关,其特征在于,包括:至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置;
    所述第一端口用于将输入的第一光信号传输至所述第一WDM装置,所述第一光信号为多波长信号;
    所述第一WDM装置用于对所述第一光信号进行分波;
    所述分光器用于对所述分波后的第一光信号进行分光得到第一子信号和第二子信号;
    所述光交换装置用于对所述第一子信号进行光交换;
    所述第二端口用于输出所述光交换后的第一子信号;
    所述光检测装置用于对所述第二子信号进行光性能检测。
  2. 根据权利要求1所述的光开关,其特征在于,所述第一子信号在所述光交换装置上分布的光斑与所述第二子信号在所述光检测装置上分布的光斑相同。
  3. 根据权利要求1或2所述的光开关,其特征在于,所述光开关还包括光束整形装置;
    所述光束整形装置用于对输入的所述第一光信号进行整形;
    所述第一WDM装置具体用于对所述整形后的第一光信号进行分波。
  4. 根据权利要求1至3中任一项所述的光开关,其特征在于,所述光开关还包括光束准直装置;
    所述光束准直装置用于对所述分波后的第一光信号进行光束准直;
    所述分光器具体用于对所述光束准直后的第一光信号进行分光得到第一子信号和第二子信号。
  5. 根据权利要求1至4中任一项所述的光开关,其特征在于,所述光开关还包括第二WDM装置;
    所述第二WDM装置用于对所述光交换后的第一子信号进行合波;
    所述第二端口具体用于输出所述合波后的第一子信号。
  6. 根据权利要求5所述的光开关,其特征在于,
    所述第二端口还用于将输入的第二光信号传输至所述第二WDM装置,所述第二光信号为多波长信号;
    所述第二WDM装置还用于对所述第二光信号进行分波;
    所述光交换装置还用于对所述分波后的第二光信号进行光交换;
    所述分光器还用于对所述光交换后的第二光信号进行分光得到第三子信号和第四子信号;
    所述第一WDM装置还用于对所述第三子信号进行合波;
    所述第一端口还用于输出所述合波后的第三子信号;
    所述光检测装置用于对所述第四子信号进行光性能检测。
  7. 根据权利要求1至6中任一项所述的光开关,其特征在于,所述光检测装置具体用于检测所述第二子信号中每个波长信号的光功率;
    或者,
    所述光检测装置具体用于检测所述第二子信号中每个波长信号的频偏。
  8. 根据权利要求1至7中任一项所述的光开关,其特征在于,所述光检测装置的类型至少包括光电二极管阵列PDA、电荷耦合元件CCD和互补金属氧化物半导体CMOS;所述第一WDM装置的类型至少包括光栅;所述光交换装置的类型至少包括硅基液晶LCOS和微机电系统MEMS。
  9. 一种光开关,其特征在于,包括:至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置;
    所述第一端口用于将输入的第一光信号传输至所述第一WDM装置,所述第一光信号为多波长信号;
    所述第一WDM装置用于对所述第一光信号进行分波;
    所述光交换装置用于对所述第一光信号进行光交换;
    所述分光器用于对所述光交换后的第一光信号进行分光得到第一子信号和第二子信号;
    所述第二端口用于输出所述第一子信号;
    所述光检测装置用于对所述第二子信号进行光性能检测。
  10. 根据权利要求9所述的光开关,其特征在于,所述第一光信号在所述光交换装置上分布的光斑与所述第二子信号在所述光检测装置上分布的光斑相同。
  11. 根据权利要求9或10所述的光开关,其特征在于,所述光开关还包括第二WDM装置;
    所述第二WDM装置用于对所述第一子信号进行合波;
    所述第二端口具体用于输出所述合波后的第一子信号。
  12. 根据权利要求11所述的光开关,其特征在于,
    所述第二端口还用于将输入的第二光信号传输至所述第二WDM装置,所述第二光信号为多波长信号;
    所述第二WDM装置还用于对所述第二光信号进行分波;
    所述分光器还用于对所述分波后的第二光信号进行分光得到第三子信号和第四子信号;
    所述光交换装置还用于对所述第三子信号进行光交换;
    所述第一端口还用于输出所述光交换后的第三子信号;
    所述光检测装置还用于对所述第四子信号进行光性能检测。
  13. 一种基于光开关的光性能检测方法,其特征在于,所述光开关包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置;所述方法包括:
    通过所述第一端口将输入的第一光信号传输至所述第一WDM装置,所述第一光信号为多波长信号;
    通过所述第一WDM装置对所述第一光信号进行分波;
    通过所述分光器对所述分波后的第一光信号进行分光得到第一子信号和第二子信号;
    通过所述光交换装置对所述第一子信号进行光交换;
    通过所述第二端口输出所述光交换后的第一子信号;
    通过所述光检测装置对所述第二子信号进行光性能检测。
  14. 根据权利要求13所述的方法,其特征在于,所述第一子信号在所述光交换装置上分 布的光斑与所述第二子信号在所述光检测装置上分布的光斑相同。
  15. 一种基于光开关的光性能检测方法,其特征在于,所述光开关包括至少一个第一端口、至少一个第二端口、第一波分复用WDM装置、分光器、光检测装置和光交换装置;所述方法包括:
    通过所述第一端口将输入的第一光信号传输至所述第一WDM装置,所述第一光信号为多波长信号;
    通过所述第一WDM装置对所述第一光信号进行分波;
    通过所述光交换装置对所述第一光信号进行光交换;
    通过所述分光器对所述光交换后的第一光信号进行分光得到第一子信号和第二子信号;
    通过所述第二端口输出所述第一子信号;
    通过所述光检测装置对所述第二子信号进行光性能检测。
PCT/CN2021/080961 2020-03-20 2021-03-16 一种光开关和基于光开关的光性能检测方法 WO2021185231A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21771887.3A EP4106234A4 (en) 2020-03-20 2021-03-16 OPTICAL SWITCH AND OPTICAL SWITCH BASED OPTICAL PERFORMANCE TEST METHOD
US17/933,166 US11962352B2 (en) 2020-03-20 2022-09-19 Optical switch and optical performance monitoring method based on optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010205015.7A CN113497665A (zh) 2020-03-20 2020-03-20 一种光开关和基于光开关的光性能检测方法
CN202010205015.7 2020-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/933,166 Continuation US11962352B2 (en) 2020-03-20 2022-09-19 Optical switch and optical performance monitoring method based on optical switch

Publications (1)

Publication Number Publication Date
WO2021185231A1 true WO2021185231A1 (zh) 2021-09-23

Family

ID=77770719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080961 WO2021185231A1 (zh) 2020-03-20 2021-03-16 一种光开关和基于光开关的光性能检测方法

Country Status (4)

Country Link
US (1) US11962352B2 (zh)
EP (1) EP4106234A4 (zh)
CN (1) CN113497665A (zh)
WO (1) WO2021185231A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268066B (zh) * 2022-07-11 2023-05-30 安徽共芯光子科技有限公司 一种具有通道检测和自动校准功能的波长选择开关
CN116017214B (zh) * 2022-11-30 2024-01-26 上海欣诺通信技术股份有限公司 一种基于光纤通信的故障诊断系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267156A (zh) * 1999-03-12 2000-09-20 马科尼通讯有限公司 信号传输系统
US6559984B1 (en) * 1999-04-02 2003-05-06 Korea Advanced Institute Science And Technology Apparatus for monitoring optical path based on the identification of optical cross-connect input ports
CN1422465A (zh) * 2000-04-06 2003-06-04 马科尼通讯有限公司 波分复用(wdm)信号监视器
CN1863026A (zh) * 2005-05-12 2006-11-15 中兴通讯股份有限公司 采用多波长激光器的波分复用终端设备
CN101309113A (zh) * 2008-07-11 2008-11-19 烽火通信科技股份有限公司 光传送网络中光电联合监测的装置和方法
CN104635334A (zh) * 2013-11-15 2015-05-20 华为技术有限公司 一种3d-mems光开关
CN209148907U (zh) * 2018-11-06 2019-07-23 浙江光泰激光科技有限公司 一种带射频检测光开关

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867289A (en) * 1996-12-24 1999-02-02 International Business Machines Corporation Fault detection for all-optical add-drop multiplexer
US6657952B1 (en) * 1997-11-28 2003-12-02 Nec Corporation Ring network for sharing protection resource by working communication paths
AU2001292895A1 (en) * 2000-09-22 2002-04-02 Movaz Networks, Inc. Variable transmission multi-channel optical switch
US6980737B1 (en) * 2000-10-16 2005-12-27 Nortel Networks Limited Method and apparatus for rapidly measuring optical transmission characteristics in photonic networks
US20020141009A1 (en) * 2001-03-28 2002-10-03 Jin Yu Performance monitoring for multi-port optical devices and systems
JP4448721B2 (ja) * 2004-03-29 2010-04-14 富士通株式会社 波長分波ユニット
CA2571836A1 (en) * 2004-07-15 2006-01-19 Metconnex Canada Inc. Shared optical performance monitoring
US7366370B2 (en) * 2004-08-20 2008-04-29 Nortel Networks Limited Technique for photonic switching
JP4727485B2 (ja) * 2006-03-31 2011-07-20 富士通株式会社 光伝送装置
US8131123B2 (en) * 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267156A (zh) * 1999-03-12 2000-09-20 马科尼通讯有限公司 信号传输系统
US6559984B1 (en) * 1999-04-02 2003-05-06 Korea Advanced Institute Science And Technology Apparatus for monitoring optical path based on the identification of optical cross-connect input ports
CN1422465A (zh) * 2000-04-06 2003-06-04 马科尼通讯有限公司 波分复用(wdm)信号监视器
CN1863026A (zh) * 2005-05-12 2006-11-15 中兴通讯股份有限公司 采用多波长激光器的波分复用终端设备
CN101309113A (zh) * 2008-07-11 2008-11-19 烽火通信科技股份有限公司 光传送网络中光电联合监测的装置和方法
CN104635334A (zh) * 2013-11-15 2015-05-20 华为技术有限公司 一种3d-mems光开关
CN209148907U (zh) * 2018-11-06 2019-07-23 浙江光泰激光科技有限公司 一种带射频检测光开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4106234A4

Also Published As

Publication number Publication date
US20230013921A1 (en) 2023-01-19
US11962352B2 (en) 2024-04-16
EP4106234A1 (en) 2022-12-21
EP4106234A4 (en) 2023-08-09
CN113497665A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
US7711270B2 (en) Optical node and optical add/drop multiplexer
US8315522B2 (en) Wavelength routing system
US11962352B2 (en) Optical switch and optical performance monitoring method based on optical switch
US8693869B2 (en) Optical transport apparatus and optical transport system
US9215028B2 (en) Photonic switch chip for scalable reconfigurable optical add/drop multiplexer
US20120002964A1 (en) Optical add drop multiplexer
US7877011B2 (en) Optical switch and optical crossconnect apparatus
Frisken et al. Wavelength-selective reconfiguration in transparent agile optical networks
US11870552B2 (en) Apparatus and method for coherent optical multiplexing 1+1 protection
WO2014141281A1 (en) Routing in an sdm optical communication network
JP5636712B2 (ja) 信号光処理装置、光伝送装置及び信号光処理方法
US6574386B1 (en) Dynamically reconfigurable optical switching system
JP5681394B2 (ja) 光電気ハイブリッドノード
Seno et al. Wavelength selective devices for SDM applications based on SPOC platform
Sakaguchi et al. SDM-WDM hybrid reconfigurable add-drop nodes for self-homodyne photonic networks
JP2008109248A (ja) 波長選択スイッチ回路および波長パス切替装置
Yoshino et al. New Photonic Gateway to handle digital-coherent and IM-DD user terminals and enable turn-back connections in metro/access-integrated all-photonics network
JP5287956B2 (ja) 受動光ネットワーク通信方法及び受動光ネットワーク通信システム
Nakajima et al. Over-100-spatial-channel programmable spectral processor for SDM signal monitoring
Parveen Open Line System components, use cases, and challenges
EP4178219A1 (en) Wavelength selective switch and optical switching device and system
CN116566537A (zh) 可重构光分插复用器及光通信系统
US7133612B1 (en) Bidirectional WDM transmission system having transmission format for reducing adverse effects of filter concatonation
Boertjes Agile subsystems for coherent systems beyond 100G
Aleksi? Optically Transparent Core Nodes for Burst-Switched Networks with Channel Bonding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021771887

Country of ref document: EP

Effective date: 20220915

NENP Non-entry into the national phase

Ref country code: DE