WO2015042802A1 - 基带处理系统、基带信号处理方法和基站 - Google Patents

基带处理系统、基带信号处理方法和基站 Download PDF

Info

Publication number
WO2015042802A1
WO2015042802A1 PCT/CN2013/084191 CN2013084191W WO2015042802A1 WO 2015042802 A1 WO2015042802 A1 WO 2015042802A1 CN 2013084191 W CN2013084191 W CN 2013084191W WO 2015042802 A1 WO2015042802 A1 WO 2015042802A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
data
interface
baseband
uplink
Prior art date
Application number
PCT/CN2013/084191
Other languages
English (en)
French (fr)
Inventor
蒋亚军
王珏平
王吉滨
李波杰
张锦芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/084191 priority Critical patent/WO2015042802A1/zh
Priority to CN201380001340.XA priority patent/CN104662956B/zh
Publication of WO2015042802A1 publication Critical patent/WO2015042802A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Baseband processing system baseband signal processing method and base station
  • Embodiments of the present invention relate to the field of communications, and in particular, to a baseband processing system, a baseband signal processing method, and a base station.
  • BACKGROUND In an existing distributed base station with remote radio frequency, the entire base station is divided into a baseband processing unit (BBU, BaseBand Unit) and a remote radio unit (RRU, Radio Remote Uni).
  • BBU baseband processing unit
  • RRU Remote Radio Unit
  • the RRU is placed at an access point far from the BBU, and the BBU and the RRU are connected by fiber to transmit a baseband wireless digital signal through a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the wireless spectrum is wider and wider, which can reach 20MHz to 100MHz, and supports multiple inputs.
  • joint processing techniques such as MIM0 (Mul t ip le Input Mul t iple Output) has led to an increase in the bandwidth required to transmit baseband wireless digital signals between the near-end BBU and the far-end RRU, such as Digital transmission of I/Q signals.
  • each RRU is configured with 4 antennas, and the data transmission rate between the BBU and the RRU is as high as 11.8Gbps, thus effectively reducing the near
  • the data transmission bandwidth between the end BBU and the remote RRU is very important.
  • the embodiments of the present invention provide a baseband processing system, a baseband signal processing method, and a base station, so as to effectively reduce the remote device and the near-end device when the baseband signals are jointly processed in multiple sites or multiple cells. Transmission bandwidth between.
  • a baseband processing system comprising a baseband combining unit and at least one baseband processing unit, wherein each of the baseband processing units is coupled at a remote end and at least one remote radio unit RRU, the baseband The combining unit is located at a proximal end and is connected to at least one of the baseband processing units through a hybrid interface;
  • the baseband processing system processes uplink wireless signal data
  • the baseband processing unit is configured to obtain pre-uplink processing data after the pre-processing of the uplink radio signal data received from the at least one RRU, and transmit the to-be-uplink processing data to the uplink interface through the hybrid interface.
  • the baseband association unit where the pre-processing includes at least each processing step before radio frame de-frame processing and radio frame de-frame processing;
  • the baseband association unit configured to perform uplink uplink processing on the uplink processing data to be received from the at least one of the baseband processing units, to obtain upper layer protocol data that can be sent to the base station control node, where the uplink joint processing is at least Including the upper layer protocol processing in the uplink direction; or, when the baseband processing system processes the downlink upper layer protocol data,
  • the baseband association unit is configured to perform downlink joint processing after downlink downlink protocol data received from the base station control node, and obtain downlink joint processing data, and transmit the downlink joint processing data to the baseband by using the hybrid interface.
  • a processing unit where the downlink joint processing includes at least an upper layer protocol processing in a downlink direction;
  • the baseband processing unit is configured to perform downlink processing on the downlink pre-processing data received from the baseband association unit to obtain downlink radio signal data that can be sent to at least one of the RRUs, where The processing includes at least each processing step after radio frame framing processing and radio frame framing processing.
  • the to-be-uplink processing data includes at least one of the following interface signals: a first interface, a second interface, and a third interface, where the first interface For the interface between the deframe processing and the demodulation processing of the radio frame, the second interface is an interface between the demodulation processing and the decoding processing, and the third interface is an interface between the decoding processing and the upper layer protocol processing.
  • the baseband processing unit is specifically configured to:
  • uplink radio signal data received from the at least one RRU according to the transmission bandwidth of the hybrid interface is subjected to at least radio frame de-frame processing to obtain uplink to-be-processed data.
  • the baseband processing unit includes a first determining module and a first processing module:
  • the first determining module is configured to determine, according to a transmission bandwidth of the hybrid interface, a proportion of signal data of different interfaces in the uplink processing data to be uplinked, where the different interfaces include at least one of the following: a first interface, a second interface And a third interface;
  • the first processing module is configured to perform pre-processing on the uplink wireless signal data received from the at least one RRU according to the proportion of the signal data of each interface determined by the first determining module in the uplink processing data to be uplinked. Get the data to be processed in the uplink.
  • the first determining module is specifically configured to:
  • the transmission bandwidth of the hybrid interface is higher than the data bandwidth of the first interface, determine that the proportion of the signal data of the first interface in the uplink processing data is 100%; or
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the first interface, determine, according to a preset rule, a proportion of signal data of different interfaces in the uplink processing data to be uplinked; or
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the first interface, obtain a joint processing scheme of the uplink wireless signal data received from the at least one RRU, and perform uplink uplink according to signal data of different interfaces.
  • the ratio of the ratio of the processing data to the performance benefit of the different joint processing schemes and the joint processing scheme of the uplink radio signal data received from the at least one RRU determine the proportion of the signal data of the different interfaces in the uplink processing data to be uplinked ;
  • the data bandwidth of the first interface is a bandwidth determined by the data after the radio frame de-frame processing is completed according to the radio signal data of the uplink radio signal data received from the at least one RRU.
  • the baseband association unit is specifically configured to:
  • to-be-uplink processing data includes data of the first interface
  • the data is subjected to joint demodulation processing, joint decoding processing, and upper layer protocol processing to obtain upper layer protocol data that can be sent to the base station control node;
  • uplink processing data to be uplink includes data of the second interface, performing joint decoding processing and upper layer protocol processing on the data of the second interface to obtain upper layer protocol data that can be sent to the base station control node;
  • the data of the third interface is processed by the upper layer protocol to obtain upper layer protocol data that can be sent to the base station control node.
  • the downlink joint processing data includes at least signal data of the following interfaces: a fourth interface, a fifth interface, and a sixth interface, where the fourth interface is An interface between the radio frame group frame processing and the modulation processing, the fifth interface is an interface between the modulation processing and the encoding processing, and the sixth interface is an interface between the encoding processing and the upper layer protocol processing.
  • the baseband association unit is specifically configured to:
  • the baseband joint unit includes a second determining module and a second processing module:
  • the second determining module is configured to determine, according to a transmission bandwidth of the hybrid interface, a ratio of signal data of different interfaces in downlink joint processing data, where the different interfaces include at least one of the following: a fourth interface, a fifth interface, and Sixth interface;
  • the second processing module is configured to complete downlinking of the downlink upper layer protocol data received by the base station control node according to a ratio of signal data of each interface determined by the second determining module in downlink joint processing data. After the joint processing, the downlink joint processing data is obtained.
  • the second determining module is specifically configured to: If the transmission bandwidth of the hybrid interface is higher than the data bandwidth of the fourth interface, determine that the proportion of the signal data of the fourth interface in the downlink joint processing data is 100%; or
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the fourth interface, determine, according to a preset rule, a ratio of signal data of different interfaces in the downlink joint processing data; or, if the transmission bandwidth of the hybrid interface Obtaining a joint processing scheme of the downlink upper layer protocol data received from the base station control node, lower than or equal to a data bandwidth of the fourth interface, and proportions of downlink signal processing data according to signal data of different interfaces Determining a correspondence between performance benefits of different joint processing schemes and a joint processing scheme of downlink upper layer protocol data received from the base station control node, determining a ratio of signal data of different interfaces in downlink joint processing data;
  • the data bandwidth of the fourth interface is a bandwidth determined according to data obtained by performing modulation processing on the downlink upper layer protocol data received from the base station control node.
  • the baseband processing unit is specifically configured to:
  • the processing steps of performing radio frame framing processing and radio frame framing processing on the data of the fourth interface may be sent to at least one of the RRUs.
  • the downlink joint processing data includes the data of the fifth interface
  • the data of the fifth interface is modulated, and the processing steps after the radio frame framing and the radio frame framing are obtained to at least one Decoding the downlink wireless signal data sent by the RRU;
  • the base station control node is a base station controller, or a core network.
  • a method of baseband signal processing is provided, the method comprising:
  • the baseband processing unit in the baseband processing system obtains the uplink processing data to be uplinked after the uplink wireless signal data received by the at least one RRU connected to the baseband processing unit is completed, and the uplink processing data to be uplink is mixed.
  • the interface is transmitted to the baseband joint unit, where the pre-processing includes at least each processing step before the radio frame de-frame processing and the radio frame de-frame processing;
  • the baseband association unit in the baseband processing system obtains uplink protocol data that can be generated from the base station control node after the uplink joint processing data is received from the at least one baseband processing unit, where the uplink association is generated.
  • the processing includes at least an upper layer protocol processing; or, when the baseband processing system processes downlink upper layer protocol data,
  • the baseband joint unit in the baseband processing system obtains downlink joint processing data after performing downlink downlink processing on the downlink upper layer protocol data received by the base station control node, and transmits the downlink joint processing data through the hybrid interface.
  • the baseband processing unit in the baseband processing system obtains downlink radio signal data that can be sent to at least one of the RRUs after the downlink processing data received by the baseband association unit is post-processed, where The post processing includes at least each processing step after radio frame framing processing and radio frame framing processing.
  • the to-be-uplink processing data includes at least one of the following interface signal data: a first interface, a second interface, and a third interface, where the first interface For the interface between the deframe processing and the demodulation processing of the radio frame, the second interface is an interface between the demodulation processing and the decoding processing, and the third interface is an interface between the decoding processing and the upper layer protocol processing.
  • the baseband processing unit in the baseband processing system receives the at least one RRU connected to the baseband processing unit After the uplink wireless signal data is pre-processed, the data to be processed by the uplink is obtained:
  • the baseband processing unit in the baseband processing system obtains uplink uplink processing data from at least one RRU according to a transmission bandwidth of the hybrid interface, at least through radio frame deframing processing.
  • the baseband processing unit in the baseband processing system receives the uplink wireless received by the at least one RRU connected to the baseband processing unit. After the signal data is pre-processed, the data to be processed in the uplink is obtained:
  • the interface includes at least one of the following: a first interface, a second interface, and a third interface;
  • the determining, according to a transmission bandwidth of the hybrid interface, determining a proportion of signal data of different interfaces in the uplink processing data to be uplink including:
  • the transmission bandwidth of the hybrid interface is higher than the data bandwidth of the first interface, determine that the proportion of the signal data of the first interface in the uplink processing data is 100%; or
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the first interface, determine, according to a preset rule, a proportion of signal data of different interfaces in the uplink processing data to be uplinked; or
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the first interface, Obtaining a joint processing scheme of the uplink radio signal data received from the at least one RRU, according to a ratio of signal data of different interfaces in a joint processing data to be uplinked, and a correspondence between performance gains of different joint processing schemes and the slave
  • the joint processing scheme of the uplink radio signal data received by the at least one RRU determines the proportion of the signal data of the different interfaces in the uplink processing data to be uplinked;
  • the data bandwidth of the first interface is a bandwidth determined by the data after the radio frame de-frame processing is completed according to the radio signal data of the uplink radio signal data received from the at least one RRU.
  • the baseband joint unit in the baseband processing system receives the uplink processing data to be uplinked from at least one of the baseband processing units After the uplink joint processing is completed, the upper layer protocol data that can be generated to the base station control node is obtained, including:
  • uplink processing data to be uplink includes data of the first interface, performing joint demodulation processing, joint decoding processing, and upper layer protocol processing on the data of the first interface to obtain upper layer protocol data that can be sent to the base station control node;
  • uplink processing data to be uplink includes data of the second interface, performing joint decoding processing and upper layer protocol processing on the data of the second interface to obtain upper layer protocol data that can be sent to the base station control node;
  • the uplink processing data to be uplink includes the data of the third interface
  • the data of the third interface is processed by the upper layer protocol to obtain upper layer protocol data that can be sent to the base station control node.
  • the downlink joint processing data includes at least signal data of the following interfaces: a fourth interface, a fifth interface, and a sixth interface, where the fourth interface is An interface between the radio frame group frame processing and the modulation processing, the fifth interface is an interface between the modulation processing and the encoding processing, and the sixth interface is an interface between the encoding processing and the upper layer protocol processing.
  • the baseband joint unit in the baseband processing system is to be controlled by the base station
  • the data includes:
  • the baseband joint unit in the baseband processing system obtains downlink joint processing data according to the transmission bandwidth of the hybrid interface.
  • the baseband association unit includes a second determining module and a second processing module:
  • the second determining module is configured to determine, according to a transmission bandwidth of the hybrid interface, a ratio of signal data of different interfaces in downlink joint processing data, where the different interfaces include at least one of the following: a fourth interface, a fifth interface, and Sixth interface;
  • the second processing module is configured to complete downlinking of the downlink upper layer protocol data received by the base station control node according to a ratio of signal data of each interface determined by the second determining module in downlink joint processing data. After the joint processing, the downlink joint processing data is obtained.
  • Determining, according to a transmission bandwidth of the hybrid interface, a proportion of signal data of different interfaces in downlink combined processing data including:
  • the transmission bandwidth of the hybrid interface is lower than or equal to the data bandwidth of the fourth interface, determine, according to a preset rule, a ratio of signal data of different interfaces in the downlink joint processing data; or, if the transmission bandwidth of the hybrid interface Obtaining a joint processing scheme of the downlink upper layer protocol data received from the base station control node, lower than or equal to a data bandwidth of the fourth interface, and proportions of downlink signal processing data according to signal data of different interfaces Determining the correspondence between the performance benefits of the different joint processing schemes and the joint processing scheme of the downlink upper layer protocol data received from the base station control node to determine signal data of different interfaces in the downlink joint processing data proportion;
  • the data bandwidth of the fourth interface is a bandwidth determined according to data obtained by performing modulation processing on the downlink upper layer protocol data received from the base station control node.
  • the baseband processing unit in the baseband processing unit obtains downlink radio signal data that can be sent to the at least one RRU after the downlink processing data received from the baseband association unit is post-processed, and includes:
  • the processing steps of performing radio frame framing processing and radio frame framing processing on the data of the fourth interface may be sent to at least one of the RRUs.
  • the downlink joint processing data includes the data of the fifth interface
  • the data of the fifth interface is modulated, and the processing steps after the radio frame framing and the radio frame framing are obtained to at least one Decoding the downlink wireless signal data sent by the RRU;
  • the data of the sixth interface is subjected to encoding processing, modulation processing, radio frame framing processing, and radio frame framing processing, and then sent to at least one of the RRUs.
  • Downstream wireless signal data If the downlink joint processing data includes the data of the sixth interface, the data of the sixth interface is subjected to encoding processing, modulation processing, radio frame framing processing, and radio frame framing processing, and then sent to at least one of the RRUs.
  • the base station control node is a base station controller, or a core network.
  • a base station in a third aspect, includes:
  • At least one remote radio unit RRU such as the baseband processing system of any of the preceding claims, wherein each baseband processing unit in the baseband processing system is coupled at a remote end and at least one of the RRUs, in a baseband processing system
  • the baseband joint unit is deployed at the near end.
  • the RRUs connected to each baseband processing unit are the same site or the same ' ⁇ !, zone RRU.
  • the baseband signal processing is performed by the baseband processing unit and the baseband joint unit, the baseband processing unit is deployed close to the RRU, the baseband joint unit is deployed at the near end, and multiple sites or multiple cells transmitted between the near-end device and the remote device are
  • the joint processing data bandwidth is reduced, the data transmission bandwidth between the near-end device and the remote device is effectively reduced, and since the hybrid interface between the baseband processing unit and the baseband joint unit can transmit data of multiple interfaces, the control can be flexibly controlled. Transmission bandwidth and performance gains for joint processing of multiple sites or multiple cells.
  • FIG. 1 is a schematic structural diagram of a baseband processing system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of baseband signal processing according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a baseband processing system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a baseband processing system according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for processing a baseband signal according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for processing a baseband signal according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present invention. detailed description
  • the baseband processing system, method, and distributed base station according to the embodiments of the present invention may be used in a base station in a communication system of various standards, such as a base station (node B, a cylinder called a NodeB) or an evolved base station (evolved node B).
  • a base station node B, a cylinder called a NodeB
  • an evolved base station evolved node B
  • the baseband processing system can include at least one baseband processing unit 101 and baseband combining unit 102, each baseband processing unit 101 being coupled to baseband combining unit 102 via a hybrid transmission interface.
  • the baseband processing unit 101 can be deployed at a remote end close to the RRU, and connected to at least one RRU.
  • the baseband processing unit 101 is connected at the remote end and the same site or multiple RRUs of the same ' ⁇ !, zone, and the baseband association unit 102 can be near
  • the end deployment is connected to at least one baseband processing unit 101 for processing joint processing of signal data between multiple sites or multiple cells.
  • the far end here is the position adjacent to the antenna, which is the far end relative to the equipment room, and the near end is usually the position deployed in the equipment room.
  • the uplink radio signal data received from the RRU is processed by the baseband processing system to complete the baseband signal processing in the uplink direction, and then sent to the base station control node; the downlink upper layer protocol data received from the base station control node in the downlink direction is completed by the baseband processing system.
  • the direction baseband signal is processed and sent to the RRU.
  • the baseband processing system sequentially processes the uplink wireless signal data received from the at least one remote radio unit RRU through the following steps:
  • the upper layer protocol processing in the uplink direction such as: a media access control (MAC) protocol, and a radio link control (RLC) protocol, obtain upper layer protocol data that can be sent to the base station control node;
  • MAC media access control
  • RLC radio link control
  • the baseband processing system sequentially processes the downlink upper layer protocol data received from the base station control node through the following steps:
  • the downlink upper layer protocol data received from the base station control node is processed by the upper layer protocol in the downlink direction, for example, MAC protocol and RLC protocol processing;
  • Encoding processing modulation processing, radio frame framing, inverse fast Fourier transform (iFFT, inverse Fast fourier transform ) The conversion and force of frequency domain data to time domain data.
  • iFFT inverse fast Fourier transform
  • CP head medium RF channel transmission processing.
  • the baseband processing system can be used to process uplink wireless signal data, including:
  • the baseband processing unit 101 is configured to perform pre-processing on the uplink radio signal data received by the at least one RRU connected to the baseband processing unit, and obtain the uplink processing data to be uplinked, and transmit the uplink processing data to be sent to the uplink through the hybrid interface.
  • the baseband association unit 102 wherein the pre-processing includes at least each processing step before the radio frame de-frame processing and the radio frame de-frame processing.
  • the baseband association unit 102 is configured to perform uplink uplink processing on the uplink processing data to be received from the at least one baseband processing unit 101 to obtain upper layer protocol data that can be sent to the base station control node, where the uplink joint processing includes at least uplink Upper layer protocol processing of the direction.
  • the base station control node here may be a base station controller or a core network.
  • the baseband processing system can also be used to process downlink upper layer protocol data, including:
  • the baseband association unit 102 is configured to perform downlink downlink processing on the downlink upper layer protocol data received from the base station control node, and obtain the downlink joint processing data, and transmit the downlink joint processing data to the baseband processing unit 101 through the hybrid interface.
  • the downlink joint processing includes at least an upper layer protocol processing in a downlink direction;
  • the baseband processing unit 101 is configured to perform downlink processing on the downlink joint processing data received from the baseband association unit 102 to obtain downlink radio signal data that can be sent to at least one of the RRUs, where the post processing includes at least wireless
  • Each processing step after frame framing processing and radio frame framing processing may be divided between the different processing steps described above.
  • an interface between the radio frame deframing processing and the demodulation processing may be used as the first interface, and the demodulation processing and the decoding processing are performed.
  • the interface between the decoding is a second interface
  • the interface between the decoding process and the upper layer protocol processing is a third interface; or
  • the interface between the radio frame framing processing and the modulation processing can be used as the fourth interface.
  • the interface between the modulation processing and the encoding processing is used as the fifth interface, and the interface between the encoding processing and the upper layer protocol processing is the sixth interface.
  • the signal data of the first interface is the signal data of the radio frame de-frame processing of the received uplink radio signal data by the baseband processing system
  • the signal data of the second interface is that the baseband processing system further completes the signal data of the first interface.
  • Demodulating the processed signal data, the signal data of the third interface is signal data of the baseband processing system further performing the decoding process on the signal data of the second interface.
  • the signal data of the sixth interface is the signal data of the upper layer protocol processed by the downlink upper layer protocol data received by the baseband processing system
  • the signal data of the fifth interface is the signal of the sixth interface of the baseband processing system.
  • the data further completes the encoded signal data
  • the signal data of the fourth interface is signal data that the baseband processing system further performs modulation processing on the signal data of the fifth interface.
  • the baseband signal processing may further divide more interfaces between different processes, and the embodiment of the present invention is not limited thereto.
  • the processing steps of the baseband signal processing in the uplink direction or the downlink direction may be performed by the baseband processing unit 101, or may be performed by the baseband association unit 102, or the baseband processing unit 101 and the baseband association unit 102 may perform the baseband signal processing together. .
  • the baseband processing unit 101 performs the intermediate radio frequency channel receiving process, the cyclic prefix (CP) prefix, and the fast Fourier transform (FFT) to convert the time domain data to the frequency domain data.
  • Wireless frame deframing processing, baseband combining unit 102 performs demodulation processing, decoding processing, and upper layer protocol processing; or
  • the baseband processing unit 101 completes the radio frequency channel transmission processing, adds the CP header, iFFT performs frequency domain data to time domain data conversion, radio frame framing processing, and modulation processing, and the baseband association unit 102 performs encoding processing and upper layer protocol processing. .
  • the baseband processing unit 101 performs the intermediate radio frequency channel receiving process, the CP (cyclic prefix) header, and the fast Fourier transform (FFT) to convert the time domain data to the frequency domain data.
  • the element 102 performs decoding processing and upper layer protocol processing; or
  • the baseband processing unit 101 completes the radio frequency channel transmission processing, adds the CP header, iFFT performs frequency domain data to time domain data conversion, radio frame framing processing, baseband association unit 102 completion, modulation processing, encoding processing, and upper layer protocol. deal with.
  • the baseband processing system is operative to process upstream wireless signal data.
  • the baseband processing unit 101 can obtain the uplink processing data to be processed by at least the intermediate radio frequency channel receiving process, the de-CP header, the FFT, and the radio frame de-frame processing on the received uplink radio signal data.
  • the pre-processing of the baseband processing unit 101 is further performed. Demodulation processing and decoding processing may be further included.
  • the uplink processing data to be uplink transmitted on the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 includes signal data of at least one interface, where the interface may be the first interface, the second interface, and the third interface.
  • the signal data of the first interface and the signal data of the second interface are included in the uplink processing data, and, for example, the uplink processing data only includes the first Signal data of an interface, it should be noted that the embodiments herein are only examples, and the embodiments of the present invention are not limited thereto.
  • the baseband association unit 102 if the data to be uplink received from the baseband processing unit 101 includes the data of the first interface, performs joint demodulation processing, joint decoding processing, and upper layer protocol processing in the uplink direction. Upper layer protocol data that can be sent to the base station control node; or
  • the data to be uplink received from the baseband processing unit 101 includes the data of the second interface
  • the data of the second interface is jointly decoded and processed by the upper layer protocol to obtain upper layer protocol data that can be sent to the base station control node;
  • the data to be uplinked from the baseband processing unit 101 includes the data of the third interface
  • the data of the third interface is processed by the upper layer protocol to obtain upper layer protocol data that can be sent to the base station control node.
  • the uplink processing data includes the uplink
  • the signal data of the other interfaces is divided between different processing steps in the baseband signal processing, and the baseband association unit 102 can complete the subsequent processing steps corresponding to the interface for the signal data of the interfaces, and details are not described herein again. .
  • the bandwidth of the data obtained after each step of processing is sequentially decreased.
  • the uplink radio signal data is processed by the intermediate radio frequency channel.
  • the bandwidth of the data is larger than the bandwidth of the data obtained by the demodulation processing of the uplink radio signal data by the radio frame.
  • the bandwidth of the data obtained after the demodulation processing of the uplink radio signal data by the radio frame is larger than that obtained after the decoding of the uplink radio signal data. Data, and so on.
  • the obtained data of the first interface has a larger bandwidth than the data of the second interface, and the second interface
  • the bandwidth of the data is greater than the bandwidth of the data of the third interface.
  • the uplink radio signal data received from the at least one RRU is sequentially completed in the above processing steps, the data obtained after each step of the data obtained by the processing of the uplink radio signal data of the other station or the cell is processed by the corresponding step.
  • the performance benefits of uplink joint processing are also different.
  • the joint processing scheme of uplink radio signal data of multiple cells or stations is a combining processing scheme in which the receiving antenna output signal to noise ratio is the largest
  • the baseband joint unit 102 performs radio frame deframing for uplink radio signal data of multiple stations or cells. After processing the data, the performance benefit of the uplink joint processing is higher than the performance benefit of the uplink joint processing of the data after the wireless frame decoding.
  • the baseband joint unit 102 performs uplinking on the data of the first interface in the uplink joint processing data.
  • the performance benefit of the joint processing is higher than the performance benefit of the uplink joint processing of the data of the third interface in the uplink joint processing data.
  • the baseband processing unit 101 can Specifically, the uplink radio signal data received from the at least one RRU is obtained by performing at least one uplink processing data according to the transmission bandwidth of the hybrid interface, and the uplink processing data to be uplink is transmitted to the baseband association through the hybrid interface. Unit 102.
  • the baseband processing unit 101 may include a first determining module and a first processing module, where the first determining module is specifically configured to determine, according to a transmission bandwidth of the hybrid interface with the baseband combining unit 102, signal data of each interface to be uplinked and fed. The ratio in the data is processed.
  • the interface here may be the foregoing first interface, or the second interface, or the third interface, or the baseband processing unit 101 may divide more other interfaces between different processes.
  • the first processing module is configured to: after the uplink radio signal data received from the at least one RRU is processed according to the proportion of the signal data of each interface determined by the first determining module in the uplink processing data to be processed, obtain the uplink processing data to be uplinked.
  • the first determining module is specifically configured to: when the bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is sufficient, satisfying that the baseband processing unit 101 receives the received from the at least one RRU.
  • the data of the first interface obtained by the uplink wireless signal data pre-processing is transmitted, that is, when the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is higher than the data bandwidth of the first interface, it is determined
  • the uplink joint processing data is the data of the first interface, that is, the proportion of the signal data of the first interface in the uplink processing data to be uplink is 100%.
  • the first determining module is specifically configured to: when the bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is limited, the baseband processing unit 101 cannot receive the received from the at least one RRU.
  • the transmission of the data of the first interface obtained by the pre-processing of the uplink wireless signal data that is, the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 is lower than or equal to the data bandwidth of the first interface.
  • the proportion of the signal data of the different interfaces in the uplink processing data to be uplink may be determined according to a preset rule.
  • the proportion of the signal data defining the first interface in the preset rule is 50% in the data to be uplink combined processing, and the second connection
  • the ratio of the signal data of the port to the uplink processing data is 10%, and the ratio of the signal data of the third interface to the uplink processing data is 40%;
  • the first processing module receives the uplink wireless from the at least one RRU. After the signal data completes the radio frame de-frame processing, the signal data of the first interface is obtained, and the ratio of the signal data of the second interface to the uplink processed data and the estimated bandwidth of the signal data of the second interface are obtained from the first interface.
  • the signal data determines that a part of the decoding process is completed to obtain the signal data of the third interface.
  • the signal data of the first interface in the uplink combined processing data accounts for 50%
  • the signal data of the second interface accounts for 10%
  • the signal data of the third interface accounts for 40%.
  • the first processing module completes the radio frame de-frame processing from the uplink signal data received by the at least one RRU, and obtains the bandwidth of the first interface data to be 2 Mbits per second (bps, bit per second).
  • the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 is 1.5 Mbps, and the bandwidth of the signal data of the second interface obtained by demodulating the signal data of the first interface is relative to the first interface.
  • the bandwidth of the signal data is 0.6 times, and the bandwidth of the signal data of the third interface obtained by the decoding of the signal data of the second interface is 0.5 times that of the signal data of the second interface, and the first determining module is preset according to the preset.
  • the rule determines that the proportion of the signal data of the first interface in the uplink processing data is 50%, and the ratio of the signal data of the second interface to the uplink processing data is 10%, and the signal data of the third interface is to be uplinked.
  • the signal data of the first interface in the uplink processing data to be processed is 0.5 Mbps
  • the signal data of the second interface is 0.1 Mbps
  • the signal data of the third interface is 0.4 Mbps
  • the bandwidth of the uplink processing data is 1 Mbps. It should be noted that the foregoing is merely an example, and the embodiment of the present invention is not limited thereto.
  • the baseband processing unit 101 when the bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is limited, the baseband processing unit 101 cannot satisfy the uplink wireless signal data received from the at least one RRU.
  • the transmission of the data of the first interface obtained during processing that is, the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 is lower than or equal to the data bandwidth of the first interface, and the first determining module is specifically used for And obtaining a joint processing scheme of the currently received uplink radio signal data, that is, a joint processing scheme of multiple sites or multiple cells corresponding to the baseband processing system, and proportion of the signal data of the different interfaces in the uplink processing data to be uplinked
  • the correspondence between the performance gains of different joint processing schemes and the joint processing scheme of the currently received uplink wireless signal data determines the proportion of signal data of different interfaces in the uplink processing data to be uplinked.
  • the joint processing scheme may be a combined processing scheme in which the receiving antenna output signal-to-noise ratio is the largest, and the cylinder is called a maximum ratio combining (MRC) scheme, and may also be a combined processing scheme in which the receiving antenna output signal-to-interference ratio is the largest. It is called a interference rejection combining (IRC) scheme, and it can also be a combined processing scheme of interference cancellation (IC). It should be noted that this is only an example, and the joint processing scheme may have other schemes. Embodiments of the invention are not limited thereto.
  • the correspondence between the proportion of the signal data of the different interfaces in the uplink processing data and the performance benefit of the different joint processing schemes may be estimated by the first determining module according to the corresponding model, or may be pre-based
  • the secondary test data is obtained, and the embodiment of the present invention is not limited thereto.
  • the joint processing scheme for obtaining the currently received uplink wireless signal data is an MRC, and determining, according to the foregoing correspondence, that the proportion of the signal data of the first interface in the uplink combined processing data is 70%, the second The proportion of the signal data of the interface is 10%, and the proportion of the signal data of the third interface is 20%.
  • the performance of the MRC is optimal; if the first determining module obtains the currently received uplink wireless signal
  • the joint processing scheme of the data is IRC. According to the above correspondence, it is determined that the proportion of the signal data of the first interface in the uplink processing data is 60%, and the proportion of the signal data of the second interface is 20%, and the third The signal data of the interface accounts for 20%.
  • the first processing module according to the proportion of the signal data of each interface determined by the first determining module in the uplink processing data to be processed, the uplink radio signal data currently received from the at least one RRU is processed to obtain the uplink processing data to be uplinked.
  • the foregoing embodiments are not mentioned here.
  • the baseband processing system is operative to process downstream upper layer protocol data.
  • the baseband association unit 102 may process the downlink intermediate layer data of the received downlink upper layer protocol data to obtain downlink downlink processing data.
  • the downlink joint processing of the baseband joint unit 102 may further include an encoding process and a modulation process.
  • the downlink joint processing data transmitted on the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 includes signal data of at least one interface, where the interface may be the foregoing fourth interface, fifth interface, sixth interface, or
  • the downlink joint processing data includes the signal data of the fourth interface and the signal data of the sixth interface, and, for example, only the fourth interface is included in the downlink joint processing data.
  • the signal data should be described as an example, and the embodiment of the present invention is not limited thereto.
  • Baseband processing unit 101 if the number of downlink joint processing received from baseband association unit 102 According to the data including the fourth interface, the data of the fourth interface is subjected to radio frame framing processing and processing steps after the radio frame framing processing to obtain downlink radio signal data that can be sent to the RRU; or
  • the data of the fifth interface is included in the downlink joint processing data received from the baseband joint unit 102, the data of the fifth interface is subjected to modulation processing, and the processing steps after the radio frame framing processing and the radio frame framing processing are obtained to the RRU.
  • the downlink joint processing data received from the baseband association unit 102 includes data of the sixth interface
  • the data of the sixth interface is subjected to encoding processing, modulation processing, radio frame framing processing, and processing after radio frame framing processing.
  • the step obtains downlink wireless signal data that can be sent to the RRU.
  • the baseband processing unit 101 may The signal data completes the subsequent processing steps corresponding to the interface, and details are not described herein again.
  • the bandwidth of the data obtained after each step of processing is sequentially increased, for example, the bandwidth of the data obtained after the encoding process is performed.
  • the bandwidth of the data obtained after the downlink upper layer protocol data is encoded is smaller than the bandwidth of the data obtained after the modulation processing, and so on. That is, for the same input, that is, the downlink upper layer protocol data received from the base station control node, the data of the fourth interface obtained by the baseband processing system is larger than the bandwidth of the data of the fifth interface, and the fifth The bandwidth of the data of the interface is greater than the bandwidth of the data of the sixth interface.
  • the downlink upper layer protocol data of the data obtained after each step of the processing is compared with other stations or cells.
  • the performance gains are also different.
  • the baseband association unit 102 can be specifically configured to receive from the base station control node according to the transmission bandwidth of the hybrid interface.
  • the downlink upper layer protocol data is processed by the upper layer protocol in the downlink direction to obtain the downlink joint processing data, and the downlink joint processing data is transmitted to the baseband processing unit 101 through the hybrid interface.
  • the baseband association unit 102 may include a second determining module and a second processing module, where the second determining module is specifically configured to determine, according to a transmission bandwidth of the hybrid interface between the baseband processing unit 101, signal data of each interface in downlink combined processing.
  • the ratio in the data, the interface here may be the foregoing fourth interface, or the fifth interface, or the sixth interface, or the baseband association unit 102 may divide more other interfaces between different processes.
  • the second processing module is specifically configured to obtain downlink joint processing data according to the proportion of the signal data of each interface determined by the second determining module in the downlink joint processing data to the downlink upper layer protocol data completion processing received from the base station control node.
  • the second determining module is specifically configured to: when the bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is sufficient, satisfying that the baseband combining unit 102 receives the received from the base station control node.
  • the data of the fourth interface obtained by the downlink upper layer protocol data downlink processing is transmitted, that is, when the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is higher than the data bandwidth of the fourth interface, the downlink is determined.
  • the joint processing data is the data of the fourth interface, that is, the proportion of the signal data of the fourth interface in the downlink joint processing data is 100%.
  • the second determining module is specifically configured to: when the bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102 is limited, the baseband processing unit 101 cannot be received by the baseband processing node.
  • the transmission of the data of the fourth interface obtained when the downlink upper layer protocol data downlink processing is performed, that is, the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 is lower than or equal to the data bandwidth of the fourth interface.
  • the proportion of the signal data defining the fourth interface in the downlink joint processing data is 50%, and the ratio of the signal data of the fifth interface in the downlink joint processing data is 10%, and the signal data of the sixth interface is The ratio of the downlink joint processing data is 40%; the second processing module obtains the signal data of the sixth interface after performing the upper layer protocol processing in the downlink direction on the downlink upper layer protocol data received from the base station control node, according to the signal data of the fifth interface.
  • the ratio of the downlink joint processing data and the estimated bandwidth of the signal data of the fifth interface are determined from the signal data of the sixth interface to complete a part of the encoding process to obtain the signal data of the fifth interface, according to the signal data of the fourth interface.
  • the ratio of the downlink joint processing data and the estimated bandwidth of the signal data of the fourth interface determine, from the signal data of the fifth interface, that a part of the modulation processing is completed to obtain the signal data of the fourth interface.
  • the signal data of the fourth interface in the downlink joint processing data accounts for 50%
  • the signal data of the fifth interface accounts for 10%
  • the signal data of the sixth interface accounts for 40%.
  • the bandwidth of the second processing module from the base station control node is 0.6 Mbits per second (bps, bit per second), and the hybrid interface between the baseband processing unit 101 and the baseband combining unit 102.
  • the transmission bandwidth is 1.5 Mbps
  • the signal data of the fifth interface is 0.6 times the bandwidth of the signal data with the fourth interface
  • the bandwidth of the signal data of the sixth interface is 0.5 times that of the signal data of the fifth interface. Therefore, it can be estimated that the bandwidth of the data of the fourth interface obtained from the base station control processing and the modulation processing is 2 Mbps
  • the second determining module determines the proportion of the signal data of the fourth interface in the downlink joint processing data according to the preset rule.
  • the ratio of the signal data of the fifth interface in the downlink joint processing data is 10%
  • the ratio of the signal data of the sixth interface in the downlink joint processing data is 40%
  • the signal data of the second processing module from the sixth interface 0.4Mbps is divided as part of the downlink joint processing data, and 0.2Mbps is used for encoding to obtain the signal data of the fifth interface.
  • the second processing module determines 0.1 Mbps as part of the downlink joint processing data from the signal data of the fifth interface, and 0.3 Mbps is used for the fourth processing.
  • the signal data of the interface is 0.5 Mbps
  • the signal data of the fifth interface is 0.1 Mbps
  • the signal data of the sixth interface is 0.4 Mbps
  • the bandwidth of the downlink joint processing data is 1 Mbps.
  • the downlink uplink protocol data downlink association received by the baseband association unit 102 from the base station control node cannot be satisfied.
  • the transmission of the data of the fourth interface obtained during processing that is, the transmission bandwidth of the hybrid interface between the baseband processing unit 101 and the baseband association unit 102 is lower than or equal to the data bandwidth of the fourth interface, and the second determining module is specifically used for Obtaining a joint processing scheme of multiple sites or multiple cells corresponding to the current baseband processing system, according to the correspondence between the proportion of the signal data of the different interfaces in the downlink joint processing data and the performance gains of different joint processing methods and the obtained
  • the joint processing scheme determines the proportion of signal data of different interfaces in the downlink joint processing data. Similar to the upstream direction, it will not be described here.
  • the correspondence between the ratio of the signal data of the different interfaces in the downlink joint processing data and the performance gain of the different joint processing methods may be estimated by the second determining module according to the corresponding model, or may be previously determined according to the multiple times.
  • the test data acquisition, the embodiment of the present invention is not limited thereto.
  • the second processing module obtains downlink joint processing data according to the ratio of the signal data of each interface determined by the second determining module in the downlink joint processing data to the downlink upper layer protocol data currently received from the base station control node, and may refer to the foregoing implementation. For example, it will not be described here.
  • the baseband processing system of the embodiment of the present invention is used for the baseband signal processing in the uplink direction, the baseband processing unit at the remote end is deployed near the RRU to complete the pre-processing of the uplink wireless signal data.
  • the bandwidth of the to-be-uplink processing data of multiple sites or multiple cells transmitted to the near-end baseband joint unit is reduced, which effectively reduces the data transmission bandwidth between the near-end device and the remote device.
  • the data transmission rate between the near-end BBU and the remote RRU will be as high as 11.8 Gbps.
  • the baseband processing system of the embodiment of the present invention since the pre-processing is completed in the baseband processing unit, for example, after the de-CP header, the FFT, the de-frame processing is completed in the baseband processing unit, and then sent to the baseband joint unit, the remote end
  • the mixed interface data bandwidth between the baseband processing unit and the near-end baseband joint unit can be reduced to 6.5 Gbps, that is, in a new form, the bandwidth required for transmission of the time-domain baseband digital signal is reduced compared to the prior art.
  • FIG. 3 is a schematic structural diagram of a baseband processing system according to another embodiment of the present invention.
  • the baseband processing system may include a baseband combining unit 302 and at least one baseband processing unit 301, and each baseband processing unit 301 transmits by hybrid transmission.
  • the interface is coupled to baseband syndication unit 302.
  • the baseband processing unit 301 can be deployed at a remote end close to the RRU, and connected to at least one RRU.
  • the baseband processing unit 301 is connected at the remote end and the same site or multiple RRUs of the same ' ⁇ !, the baseband joint unit 302 can be near
  • the end deployment is connected to at least one baseband processing unit 301 for processing joint processing of signal data between multiple sites or multiple cells.
  • the far end here is the position adjacent to the antenna, which is the far end relative to the equipment room, and the near end is usually the position deployed in the equipment room. among them,
  • the baseband processing unit 301 includes a first memory 3011 and a first processor 3012.
  • the first memory 3011 is coupled to the first processor 3012.
  • the first memory 3011 stores a set of program codes, and the first memory 3011 may include non-easy Loss of memory.
  • the first processor 3012 can be a CPU, or an ASIC, or one or more configured to implement embodiments of the present invention. Integrated circuit.
  • the first processor 3012 is configured to invoke the program code stored in the first memory 3011 for executing:
  • the processing includes at least each processing step before the radio frame deframing processing and the radio frame deframing processing;
  • the baseband association unit 302 includes a second memory 3021 and a second processor 3022, wherein the second memory 3021 is coupled to the second processor 3022, wherein the second memory 3021 stores a set of program codes, and the second memory 3021 may include non-easy Loss of memory.
  • the second processor 3022 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the second processor 3022 is configured to invoke the program code stored in the second memory 3021 for execution:
  • the uplink processing is performed, and the uplink protocol processing is performed to obtain the upper layer protocol data that can be generated by the base station control node.
  • the uplink joint processing includes at least the upper layer protocol processing in the uplink direction.
  • . 4 is a schematic structural diagram of a baseband processing system according to another embodiment of the present invention.
  • the baseband processing system may include a baseband combining unit 402 and at least one baseband processing unit 401, and each baseband processing unit 401 transmits by hybrid transmission.
  • the interface is coupled to baseband association unit 402.
  • the baseband processing unit 401 can be deployed at a remote end close to the RRU, and connected to at least one RRU.
  • the baseband processing unit 401 is connected at the remote end and the same site or multiple RRUs of the same ' ⁇ !, zone, and the baseband association unit 402 can be near
  • the end deployment is connected to at least one baseband processing unit 401 for processing joint processing of signal data between multiple sites or multiple cells.
  • the far end here is adjacent
  • the position of the antenna is remote relative to the equipment room, and the near end is usually deployed in the equipment room. among them,
  • the baseband processing unit 401 includes a first memory 4011 and a first processor 4012.
  • the first memory 4011 is coupled to the first processor 4012, wherein the first memory 4011 stores a set of program codes, and the first memory 4011 may include non-easy Loss of memory.
  • the first processor 4012 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the first processor 4012 is configured to invoke the program code stored in the first memory 4011 for executing:
  • the downlink wireless signal data that can be sent to the at least one RRU is obtained, where the post processing includes at least each of the radio frame framing processing. Processing steps and radio frame framing.
  • the baseband association unit 402 includes a second memory 4021 and a second processor 4022, wherein the second memory 4021 is connected to the second processor 4022, wherein the second memory 4021 stores a set of program codes, and the second memory 4021 may include non-easy Loss of memory.
  • the second processor 4022 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the second processor 4022 is configured to invoke the program code stored in the second memory 4021, and is configured to: perform downlink-to-downlink processing data, and transmit the downlink joint processing data to the baseband processing unit 401 through a hybrid interface, where The downlink joint processing includes at least upper layer protocol processing in the downlink direction.
  • FIG. 5 is a flowchart of a method for processing a baseband signal according to another embodiment of the present invention.
  • the baseband processing system is configured to process uplink wireless signal data.
  • the method may include: Step 501: The baseband processing unit in the baseband processing system completes the pre-processing of the uplink radio signal data received by the at least one RRU connected to the baseband processing unit, and obtains the uplink processing data to be uplinked, and passes the uplink processing data to be uplinked.
  • the hybrid interface is transmitted to the baseband joint unit, wherein the pre-processing includes at least each processing step before the radio frame de-frame processing and the radio frame de-frame processing.
  • Step 502 The baseband association unit in the baseband processing system obtains uplink protocol data that can be sent to the base station control node after the uplink joint processing data is received from the at least one baseband processing unit, where the uplink joint processing includes at least Upper layer protocol processing.
  • the baseband signal processing method provided by the embodiment of the present invention may be performed by the baseband processing system provided in FIG. 1 or FIG. 3.
  • the baseband processing system provided in FIG. 1 or FIG. 3 For detailed description of each step, reference may be made to the description of the embodiment shown in FIG. 1 or FIG. Narration.
  • the baseband signal information processing method provided by the embodiment of the present invention is performed by the baseband processing system, and the pre-processing of the uplink wireless signal data is completed by deploying the baseband processing unit at the remote end near the RRU, so that multiple sites transmitted to the near-end baseband joint unit are performed. Or the bandwidth of the uplink processing combined data of multiple cells is reduced, effectively reducing the data transmission bandwidth between the near-end device and the remote device, and the hybrid interface between the baseband processing unit and the baseband combining unit can transmit multiple interfaces. Data, which can flexibly control the transmission bandwidth and performance gain of joint processing of multiple sites or multiple cells.
  • Figure 6 is a flowchart of a method for processing a baseband signal according to another embodiment of the present invention.
  • the baseband processing system is configured to process downlink upper layer protocol data. As shown in the figure, the method may include:
  • Step 601 The baseband joint unit in the baseband processing system completes downlink joint processing data from the downlink upper layer protocol data received by the base station control node, and obtains downlink joint processing data, and passes the downlink joint processing data to the baseband joint unit and the baseband processing unit.
  • the inter-mixed interface is transmitted to the baseband processing unit, where the downlink joint processing includes at least upper layer protocol processing in the downlink direction.
  • Step 602 The baseband processing unit in the baseband processing system obtains downlink wireless data that can be sent to the at least one RRU by performing post processing on the downlink joint processing data received by the baseband joint unit.
  • Signal data, wherein the post processing includes at least each processing step after radio frame framing processing and radio frame framing processing.
  • the baseband signal processing method provided by the embodiment of the present invention may be performed by the baseband processing system provided in FIG. 1 or FIG. 4.
  • the baseband processing system provided in FIG. 1 or FIG. 4 For detailed description of each step, reference may be made to the description of the embodiment shown in FIG. 1 or FIG. Narration.
  • the baseband signal information processing method provided by the embodiment of the present invention is performed by the baseband processing system. Since the downlink baseband processing unit performs the downlink joint processing, the baseband processing unit deployed at the far end close to the RRU completes the post processing, so that the near end device and the far end device The combined processing data bandwidth of multiple sites or multiple cells transmitted between end devices is reduced, effectively reducing the data transmission bandwidth between the near-end device and the remote device, and due to the mixing between the baseband processing unit and the baseband combining unit The interface can transmit data of multiple interfaces, and can flexibly control the transmission bandwidth and performance gain of joint processing of multiple sites or multiple cells.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present invention. As shown in the figure, the base station may include:
  • the RRU 701 to which each baseband processing unit is connected may be the same site or an RRU of the same cell.
  • the baseband processing system 702 may be the baseband processing system shown in FIG. 1 or FIG. 3 or FIG. 4, and the baseband processing system has been described in the foregoing embodiments, and details are not described herein again.
  • the base station completes the pre-processing of the uplink wireless signal data or the post-processing of the downlink data by the RRU deployment baseband processing unit located at the same site or the same cell at the remote end, so that the base station is transmitted to the proximal baseband joint unit.
  • the combined processing data bandwidth of one site or multiple cells is reduced, effectively reducing the data transmission bandwidth between the near-end device and the remote device, and
  • the hybrid interface between the baseband processing unit and the baseband joint unit can transmit data of multiple interfaces, and can flexibly control transmission bandwidth and performance benefit of joint processing of multiple sites or multiple cells.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
  • CD compact disc
  • DVD digital versatile disc
  • a floppy disc a digital versatile disc
  • Blu-ray disc wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data.

Abstract

本发明实施例公开了一种基带处理系统、基带信号处理方法和基站。一种基带处理系统,包括基带联合单元和至少一个基带处理单元,基带处理单元用于将从至少一个所述远端射频单元RRU接收到的上行无线信号数据完成前置处理后得到上行联合处理数据,并将所述上行联合处理数据通过所述混合接口传输至基带联合单元,基带联合单元用于将从至少一个基带处理单元接收到的上行联合处理数据完成联合处理处理后得到可向基站控制节点发送的上层协议数据。从而使得传输到近端基带联合单元的多个站点或多个小区的上行联合处理数据带宽减小,降低了近端设备和远端设备之间数据传输带宽。本发明实施例还公开了基带信号处理方法和基站。

Description

基带处理系统、 基带信号处理方法和基站
技术领域
本发明实施例涉及通信领域, 尤其涉及基带处理系统、 基带信号处理方法 和基站。 背景技术 在现有的射频拉远的分布式基站中,整个基站被划分为基带处理单元( BBU, BaseBand Uni t )和远端射频单元 ( RRU, Radio Remote Uni t ) 。 其中 RRU被放 置在离 BBU较远的接入点处, BBU和 RRU之间通过光纤连接起来以通用公共无线 接口 (CPRI , common publ i c radio interface )接口传输基带无线数字信号。
随着长期演进系统(LTE, Long Term Evolut ion )等超 3代通信系统以及 第 4 代通信系统技术的出现, 无线频谱宽度越来越大, 可以达到 20MHz 至 100MHz , 同时由于支持多路输入多路输出 (MIM0 , Mul t ip le Input Mul t iple Output )等联合处理技术的出现, 导致在近端的 BBU和远端的 RRU之间传输基 带无线数字信号所需要的带宽越来越大, 例如, 采用数字方式传输 I/Q信号, 在一个 20MHz带宽系统中, 有 3个扇区, 每个 RRU配置 4根天线, BBU与 RRU之 间的数据传输率将高达 11. 8Gbps , 因此有效降低近端 BBU与远端 RRU之间的数 据传输带宽, 显得非常重要。 发明内容
有鉴于此, 本发明实施例提供了一种基带处理系统、 基带信号处理方法和 基站, 以实现在多个站点或者多个小区的基带信号联合处理时, 有效降低远端 设备和近端设备之间的传输带宽。
第一方面, 提供了基带处理系统, 该基带处理系统包括基带联合单元和 至少一个基带处理单元, 其中, 每个所述基带处理单元在远端和至少一个远 端射频单元 RRU 连接, 所述基带联合单元位于近端, 通过混合接口与至少 一个所述基带处理单元连接; 所述基带处理系统处理上行的无线信号数据时,
所述基带处理单元,用于将从至少一个所述 RRU接收到的上行无线信号 数据完成前置处理后得到待上行联合处理数据, 并将所述待上行联合处理数 据通过所述混合接口传输至所述基带联合单元, 其中, 所述前置处理至少包 括无线帧解帧处理之前的各处理步骤以及无线帧解帧处理;
所述基带联合单元, 用于将从至少一个所述基带处理单元接收到的待上 行联合处理数据完成上行联合处理后得到可向基站控制节点发送的上层协议 数据, 其中, 所述上行联合处理至少包括上行方向的上层协议处理; 或者, 所述基带处理系统处理下行的上层协议数据时,
所述基带联合单元, 用于将从所述基站控制节点接收到的下行的上层协 议数据完成下行联合处理后得到下行联合处理数据, 并将所述下行联合处理 数据通过所述混合接口传输至基带处理单元, 其中, 所述下行联合处理至少 包括下行方向的上层协议处理;
所述基带处理单元, 用于将从所述基带联合单元接收到的所述下行前置处 理数据完成后置处理后得到可向至少一个所述 RRU发送的下行无线信号数据, 其中, 所述后置处理至少包括无线帧组帧处理之后的各处理步骤以及无线帧组 帧处理。
在第一方面的第一种可能的实现方式中, 所述待上行联合处理数据至少包 括以下一种接口的信号数据: 第一接口、 第二接口和第三接口, 其中, 所述第 一接口为无线帧解帧处理和解调处理之间的接口, 所述第二接口为解调处理和 解码处理之间的接口, 所述第三接口为解码处理和上层协议处理之间的接口。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中所述基带处理单元, 具体用于:
用于根据所述混合接口的传输带宽将从至少一个所述 RRU接收到的上 行无线信号数据至少经过无线帧解帧处理得到待上行联合处理数据。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述基带处理单元包括第一确定模块和第一处理模块:
所述第一确定模块, 用于根据所述混合接口的传输带宽确定不同接口的 信号数据在待上行联合处理数据中的比例,所述不同接口至少包括以下一种: 第一接口, 第二接口和第三接口;
所述第一处理模块, 用于根据所述第一确定模块确定的各接口的信号数据 在待上行联合处理数据中的比例对所述从至少一个 RRU接收到的上行无线信 号数据完成前置处理得到待上行联合处理数据。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述第一确定模块, 具体用于,
如果所述混合接口的传输带宽高于第一接口的数据带宽, 确定第一接口 的信号数据在待上行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 根据预设规则确定不同接口的信号数据在待上行联合处理数据中的比例; 或 者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 获取所述从至少一个 RRU接收到的上行无线信号数据的联合处理方案, 根 据不同接口的信号数据在待上行联合处理数据中的比例和不同的联合处理方 案的性能收益的对应关系和所述从至少一个 RRU接收到的上行无线信号数 据的联合处理方案确定不同接口的信号数据在待上行联合处理数据中的比 例;
其中,
所述第一接口的数据带宽为根据所述从至少一个 RRU接收到的上行无 线信号数据的无线信号数据完成无线帧解帧处理后的数据确定的带宽。
结合第一方面的前述各种可能的实现方式,在第五种可能的实现方式中, 所述基带联合单元, 具体用于:
如果所述待上行联合处理数据包括第一接口的数据, 将所述第一接口的 数据进行联合解调处理, 联合解码处理以及上层协议处理得到可向基站控制 节点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第二接口的数据, 将所述第二接口的 数据进行联合解码处理以及上层协议处理得到可向基站控制节点发送的上层 协议数据; 或者,
如果所述待上行联合处理数据包括第三接口的数据, 将所述第三接口的数 据经过上层协议处理后得到可向基站控制节点发送的上层协议数据。
在第一方面的第六种可能的实现方式中, 所述下行联合处理数据至少包括 以下一种接口的信号数据: 第四接口、 第五接口和第六接口, 其中, 所述第四 接口为无线帧组帧处理和调制处理之间的接口, 所述第五接口为调制处理和编 码处理之间的接口, 所述第六接口为编码处理和上层协议处理之间的接口。
结合第一方面或第一方面的第六种可能的实现方式, 在第一方面的第七 种可能的实现方式中, 所述基带联合单元, 具体用于:
用于根据所述混合接口的传输带宽将从所述基站控制节点接收到的下行的 结合第一方面的第六种可能的实现方式, 在第一方面的第八种可能的实 现方式中, 所述基带联合单元包括第二确定模块和第二处理模块:
所述第二确定模块, 用于根据所述混合接口的传输带宽确定不同接口的 信号数据在下行联合处理数据中的比例, 所述不同接口至少包括以下一种: 第四接口, 第五接口和第六接口;
所述第二处理模块, 用于根据所述第二确定模块确定的各接口的信号数据 在下行联合处理数据中的比例对所述从所述基站控制节点接收到的下行的上 层协议数据完成下行联合处理后得到下行联合处理数据。
结合第一方面的第八种可能的实现方式, 在第一方面的第九种可能的实现 方式中,
所述第二确定模块, 具体用于, 如果所述混合接口的传输带宽高于第四接口的数据带宽, 确定第四接口 的信号数据在下行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 根据预设规则确定不同接口的信号数据在下行联合处理数据中的比例;或者, 如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 获取所述从所述基站控制节点接收到的下行的上层协议数据的联合处理方 案, 根据不同接口的信号数据在下行联合处理数据中的比例和不同的联合处 理方案的性能收益的对应关系和所述从所述基站控制节点接收到的下行的上 层协议数据的联合处理方案确定不同接口的信号数据在下行联合处理数据中 的比例;
其中,
所述第四接口的数据带宽为根据所述从所述基站控制节点接收到的下行 的上层协议数据完成调制处理后的数据确定的带宽。
结合第一方面的第六种可能的实现方式、 或者第七种可能的实现方式, 或者第八种可能的实现方式或者第九种可能的实现方式, 在第十种可能的实 现方式中, 所述基带处理单元, 具体用于:
如果所述下行联合处理数据包括所述第四接口的数据, 将所述第四接口 的数据进行无线帧组帧处理以及无线帧组帧处理之后的各处理步骤得到可向 至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括所述第五接口的数据, 将所述第五接口 的数据进行调制处理, 无线帧组帧处理以及无线帧组帧处理之后的各处理步 骤得到可向至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括第六接口的数据, 将所述第六接口的数 据进行编码处理, 调制处理, 无线帧组帧处理以及无线帧组帧处理之后得到 可向至少一个所述 RRU发送的下行的无线信号数据。 结合第一方面的前述各种可能的实现方式, 在第十一种可能的实现方式中, 所述基站控制节点为基站控制器, 或者, 核心网。 第二方面, 提供了基带信号处理的方法, 该方法包括:
基带处理系统处理上行的无线信号数据时,
所述基带处理系统中的基带处理单元将与该基带处理单元相连接的至少 一个 RRU接收到的上行无线信号数据完成前置处理后得到待上行联合处理 数据, 并将待上行联合处理数据通过混合接口传输至基带联合单元, 其中, 所述前置处理至少包括无线帧解帧处理之前的各处理步骤以及无线帧解帧处 理;
所述基带处理系统中的基带联合单元将从至少一个所述基带处理单元接 收到的待上行联合处理数据完成上行联合处理后得到可向基站控制节点发生 的上层协议数据, 其中, 所述上行联合处理至少包括上层协议处理; 或者, 所述基带处理系统处理下行的上层协议数据时,
所述基带处理系统中的基带联合单元将从所述基站控制节点接收到的下 行的上层协议数据完成下行联合处理后得到下行联合处理数据, 并将所述下 行联合处理数据通过所述混合接口传输至基带处理单元, 其中, 所述下行联 合处理至少包括下行方向的上层协议处理;
所述基带处理系统中的基带处理单元将从所述基带联合单元接收到的所述 下行联合处理数据完成后置处理后得到可向至少一个所述 RRU发送的下行无 线信号数据, 其中, 所述后置处理至少包括无线帧组帧处理之后的各处理步骤 以及无线帧组帧处理。
在第二方面的第一种可能的实现方式中, 所述待上行联合处理数据至少包 括以下一种接口的信号数据: 第一接口、 第二接口和第三接口, 其中, 所述第 一接口为无线帧解帧处理和解调处理之间的接口, 所述第二接口为解调处理和 解码处理之间的接口, 所述第三接口为解码处理和上层协议处理之间的接口。 结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中所述基带处理系统中的基带处理单元将与该基带处理单元相连接的 至少一个 RRU接收到的上行无线信号数据完成前置处理后得到待上行联合 处理数据包括:
所述基带处理系统中的基带处理单元根据所述混合接口的传输带宽将从 至少一个 RRU接收到的上行无线信号数据至少经过无线帧解帧处理得到待 上行联合处理数据。
结合第二方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述基带处理系统中的基带处理单元将与该基带处理单元相连接的至少一个 RRU 接收到的上行无线信号数据完成前置处理后得到待上行联合处理数据 包括:
根据所述混合接口的传输带宽确定各接口的信号数据在待上行联合处理 数据中的比例, 所述接口至少包括以下一种: 第一接口, 第二接口和第三接 口;
根据所述各接口的信号数据在待上行联合处理数据中的比例对所述从至 少一个 RRU接收到的上行无线信号数据完成前置处理得到待上行联合处理 数据。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述根据所述混合接口的传输带宽确定不同接口的信号数据在待上行联合处 理数据中的比例, 包括:
如果所述混合接口的传输带宽高于第一接口的数据带宽, 确定第一接口 的信号数据在待上行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 根据预设规则确定不同接口的信号数据在待上行联合处理数据中的比例; 或 者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 获取所述从至少一个 RRU接收到的上行无线信号数据的联合处理方案, 根 据不同接口的信号数据在待上行联合处理数据中的比例和不同的联合处理方 案的性能收益的对应关系和所述从至少一个 RRU接收到的上行无线信号数 据的联合处理方案确定不同接口的信号数据在待上行联合处理数据中的比 例;
其中,
所述第一接口的数据带宽为根据所述从至少一个 RRU接收到的上行无 线信号数据的无线信号数据完成无线帧解帧处理后的数据确定的带宽。
结合第二方面的前述各种可能的实现方式,在第五种可能的实现方式中, 所述基带处理系统中的基带联合单元将从至少一个所述基带处理单元接收到 的待上行联合处理数据完成上行联合处理后得到可向基站控制节点发生的上 层协议数据, 包括:
如果所述待上行联合处理数据包括第一接口的数据, 将所述第一接口的 数据进行联合解调处理, 联合解码处理以及上层协议处理得到可向基站控制 节点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第二接口的数据, 将所述第二接口的 数据进行联合解码处理以及上层协议处理得到可向基站控制节点发送的上层 协议数据; 或者,
如果所述待上行联合处理数据包括第三接口的数据, 将所述第三接口的 数据经过上层协议处理后得到可向基站控制节点发送的上层协议数据。
在第二方面的第六种可能的实现方式中, 所述下行联合处理数据至少包括 以下一种接口的信号数据: 第四接口、 第五接口和第六接口, 其中, 所述第四 接口为无线帧组帧处理和调制处理之间的接口, 所述第五接口为调制处理和编 码处理之间的接口, 所述第六接口为编码处理和上层协议处理之间的接口。
结合第二方面或第二方面的第六种可能的实现方式, 在第二方面的第七 种可能的实现方式中, 所述基带处理系统中的基带联合单元将从所述基站控 数据包括:
所述基带处理系统中的基带联合单元根据所述混合接口的传输带宽将从 议处理得到下行联合处理数据。
结合第二方面的第六种可能的实现方式, 在第二方面的第八种可能的实 现方式中, 所述基带联合单元包括第二确定模块和第二处理模块:
所述第二确定模块, 用于根据所述混合接口的传输带宽确定不同接口的 信号数据在下行联合处理数据中的比例, 所述不同接口至少包括以下一种: 第四接口, 第五接口和第六接口;
所述第二处理模块, 用于根据所述第二确定模块确定的各接口的信号数据 在下行联合处理数据中的比例对所述从所述基站控制节点接收到的下行的上 层协议数据完成下行联合处理后得到下行联合处理数据。
结合第二方面的第八种可能的实现方式, 在第二方面的第九种可能的实现 方式中,
所述根据所述混合接口的传输带宽确定不同接口的信号数据在下行联合 处理数据中的比例, 包括:
如果所述混合接口的传输带宽高于第四接口的数据带宽, 确定第四接口 的信号数据在下行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 根据预设规则确定不同接口的信号数据在下行联合处理数据中的比例;或者, 如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 获取所述从所述基站控制节点接收到的下行的上层协议数据的联合处理方 案, 根据不同接口的信号数据在下行联合处理数据中的比例和不同的联合处 理方案的性能收益的对应关系和所述从所述基站控制节点接收到的下行的上 层协议数据的联合处理方案确定不同接口的信号数据在下行联合处理数据中 的比例;
其中,
所述第四接口的数据带宽为根据所述从所述基站控制节点接收到的下行 的上层协议数据完成调制处理后的数据确定的带宽。
结合第二方面的第六种可能的实现方式、 或者第七种可能的实现方式, 或者第八种可能的实现方式或者第九种可能的实现方式, 在第十种可能的实 现方式中, 所述基带处理系统中的基带处理单元将从所述基带联合单元接收 到的所述下行联合处理数据完成后置处理后得到可向至少一个所述 RRU发 送的下行无线信号数据, 包括:
如果所述下行联合处理数据包括所述第四接口的数据, 将所述第四接口 的数据进行无线帧组帧处理以及无线帧组帧处理之后的各处理步骤得到可向 至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括所述第五接口的数据, 将所述第五接口 的数据进行调制处理, 无线帧组帧处理以及无线帧组帧处理之后的各处理步 骤得到可向至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括第六接口的数据, 将所述第六接口的数 据进行编码处理, 调制处理, 无线帧组帧处理以及无线帧组帧处理之后得到 可向至少一个所述 RRU发送的下行的无线信号数据。
结合第二方面的前述各种可能的实现方式, 在第十一种可能的实现方式中, 所述基站控制节点为基站控制器, 或者, 核心网。
第三方面, 提供了一种基站, 该基站包括:
至少一个远端射频单元 RRU,如上述任一项所述的基带处理系统,其中, 所述基带处理系统中的每个基带处理单元在远端和至少一个所述 RRU连接, 基带处理系统中的基带联合单元在近端部署。
在第三方面的第一种可能实现方式中, 每个基带处理单元连接的 RRU是同 一站点或者同一'■!、区的 RRU。 通过上述方案,基带信号处理由基带处理单元和基带联合单元共同完成, 基带处理单元靠近 RRU 部署, 基带联合单元近端部署, 近端设备和远端设 备之间传输的多个站点或多个小区的联合处理数据带宽减小, 有效降低了近 端设备和远端设备之间数据传输带宽, 并且由于基带处理单元和基带联合单 元之间的混合接口可以传输多种接口的数据, 可以灵活控制多个站点或多个 小区联合处理的传输带宽和性能收益。 附图说明
图 1 为本发明一实施例提供的基带处理系统的结构示意图;
图 2为本发明另一实施例提供的基带信号处理的示意图;
图 3为本发明另一实施例提供的基带处理系统的结构示意图;
图 4为本发明另一实施例提供的基带处理系统的结构示意图;
图 5为本发明另一实施例提供的基带信号处理方法的流程图;
图 6为本发明另一实施例提供的基带信号处理方法的流程图;
图 7为本发明另一实施例提供的基站的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 可以理解的是, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护 的范围。
本发明实施例的基带处理系统、 方法和分布式基站可以通过基站 (node B , 筒称为 NodeB ) 或演进型基站 (evolved node B , 筒称为 eNodeB ) 等各 种制式的通信系统中的基站设备来实现。
图 1为本发明一实施例提供的基带处理系统的结构示意图, 如图所示, 该基带处理系统可以包括至少一个基带处理单元 101和基带联合单元 102, 每个基带处理单元 101通过混合传输接口与基带联合单元 102连接。
基带处理单元 101可以在远端靠近 RRU部署, 和至少一个 RRU连接, 例如, 基带处理单元 101在远端和同一站点或者同一'■!、区的多个 RRU连接, 基带联合单元 102可以在近端部署, 和至少一个基带处理单元 101连接, 用 于处理多个站点或者多个小区之间信号数据的联合处理。 这里的远端为邻近 天线的位置, 相对于机房而言为远端, 近端则通常为部署在机房中的位置。
上行方向,从 RRU接收到的上行无线信号数据经基带处理系统完成上行 方向的基带信号处理后发送至基站控制节点; 下行方向从基站控制节点接收 到的下行的上层协议数据经基带处理系统完成下行方向的基带信号处理后发 送至 RRU。
可参见图 2, 给出了基带信号处理的示意图, 上行方向, 基带处理系统 对于从至少一个远端射频单元 RRU接收到的上行无线信号数据依次经过下 述步骤处理:
中射频通道接收处理、 去循环前缀(CP, cyclic prefix ) 头、 快速傅里叶 变换( FFT , fast fourier transform )进行时域数据到频域数据的转换、 无线帧 解帧处理、 解调处理、 解码处理;
然后再经过上行方向的上层协议处理, 如: 媒体接入控制(MAC, media access control ) 协议、 无线链路控制 ( RLC, radio link control ) 协议得到可 向基站控制节点发送的上层协议数据;
相应地, 下行方向, 基带处理系统对于从基站控制节点接收到的下行的 上层协议数据依次经过下述步骤处理:
从基站控制节点接收到的下行的上层协议数据先经过下行方向的上层协 议处理, 如: MAC协议、 RLC协议处理;
然后经过:
编码处理、调制处理、无线帧组帧处理、快速傅里叶逆变换( iFFT, inverse fast fourier transform )进行频域数据到时域数据的转换、 力。 CP头、 中射频通 道发送处理。
基带处理系统可用于处理上行无线信号数据, 具体包括:
基带处理单元 101 , 用于将与该基带处理单元相连接的至少一个 RRU接 收到的上行无线信号数据完成前置处理后得到待上行联合处理数据, 并将待 上行联合处理数据通过混合接口传输至基带联合单元 102, 其中前置处理至 少包括无线帧解帧处理之前的各处理步骤以及无线帧解帧处理。
基带联合单元 102, 用于将从至少一个基带处理单元 101接收到的待上 行联合处理数据完成上行联合处理后得到可向基站控制节点发送的上层协议 数据, 其中, 所述上行联合处理至少包括上行方向的上层协议处理。 这里的 基站控制节点可以是基站控制器, 也可以是核心网。
基带处理系统也可用于处理下行上层协议数据, 具体包括:
基带联合单元 102, 用于将从基站控制节点接收到的下行的上层协议数 据完成下行联合处理后得到下行联合处理数据, 并将所述下行联合处理数据 通过所述混合接口传输至基带处理单元 101 , 其中, 所述下行联合处理至少 包括下行方向的上层协议处理;
基带处理单元 101 , 用于将从基带联合单元 102接收到的下行联合处理 数据完成后置处理后得到可向至少一个所述 RRU发送的下行无线信号数据, 其中, 所述后置处理至少包括无线帧组帧处理之后的各处理步骤以及无线帧 组帧处理。 为了方便描述, 可以在上述不同处理步骤之间划分出多个接口, 例如, 上行方向, 可以将无线帧解帧处理和解调处理之间的接口作为第一接口, 解 调处理和解码处理之间的接口为第二接口, 解码处理和上层协议处理之间的 接口为第三接口; 或者,
下行方向,可以将无线帧组帧处理和调制处理之间的接口作为第四接口, 调制处理和编码处理之间的接口作为第五接口, 编码处理和上层协议处理之 间的接口为第六接口。
可见, 第一接口的信号数据是基带处理系统将接收到的上行无线信号数 据完成了无线帧解帧处理的信号数据, 第二接口的信号数据是基带处理系统 将第一接口的信号数据进一步完成解调处理的信号数据, 第三接口的信号数 据是基带处理系统将第二接口的信号数据进一步完成解码处理的信号数据。
类似地, 第六接口的信号数据是基带处理系统将接收到的下行的上层协 议数据完成了下行方向的上层协议处理的信号数据, 第五接口的信号数据是 基带处理系统将第六接口的信号数据进一步完成编码处理的信号数据, 第四 接口的信号数据是基带处理系统将第五接口的信号数据进一步完成调制处理 的信号数据。
需要说明的是, 上述只是举例, 基带信号处理还可以在不同的处理之间 划分出更多接口, 本发明实施例不限于此。
上述上行方向或者下行方向的基带信号处理的各处理步骤可以是由基带 处理单元 101完成, 也可以是由基带联合单元 102完成, 还可以是基带处理 单元 101和基带联合单元 102共同完成基带信号处理。
例如, 上行方向, 基带处理单元 101完成中射频通道接收处理、 去循环 前缀(CP, cyclic prefix ) 头、 快速傅里叶变换(FFT, fast fourier transform ) 进行时域数据到频域数据的转换、 无线帧解帧处理, 基带联合单元 102完成 解调处理、 解码处理和上层协议处理; 或者,
下行方向,基带处理单元 101完成中射频通道发送处理、加 CP头、 iFFT 进行频域数据到时域数据的转换、 无线帧组帧处理、 调制处理, 基带联合单 元 102完成编码处理和上层协议处理。
又例如, 上行方向, 基带处理单元 101完成中射频通道接收处理、 去循 环前缀( CP, cyclic prefix )头、 快速傅里叶变换( FFT, fast fourier transform ) 进行时域数据到频域数据的转换、 无线帧解帧处理、 解调处理, 基带联合单 元 102完成解码处理和上层协议处理; 或者,
下行方向,基带处理单元 101完成中射频通道发送处理、加 CP头、 iFFT 进行频域数据到时域数据的转换、无线帧组帧处理,基带联合单元 102完成、 调制处理、 编码处理和上层协议处理。
需要说明的是, 上述只是举例, 本发明实施例并不限于此。
在本发明的一个实施例中,基带处理系统用于处理上行的无线信号数据。 基带处理单元 101可以对所接收到的上行无线信号数据至少经过中射频通道 接收处理、 去 CP头、 FFT、 无线帧解帧处理得到待上行联合处理数据, 当然 基带处理单元 101的前置处理还可以进一步包括解调处理和解码处理。
基带处理单元 101和基带联合单元 102之间的混合接口上传输的待上行 联合处理数据包括至少一种接口的信号数据, 这里的接口可以为前述第一接 口、 第二接口、 第三接口, 也可以为不同处理之间划分出的更多的其他接口, 例如, 待上行联合处理数据中包括第一接口的信号数据和第二接口的信号数 据, 又例如, 待上行联合处理数据中只包括第一接口的信号数据, 需要说明 的是, 这里均只是举例, 本发明实施例不限于此。
基带联合单元 102, 如果从基带处理单元 101接收到的待上行联合处理 数据中包括第一接口的数据, 将第一接口的数据进行联合解调处理, 联合解 码处理以及上行方向的上层协议处理得到可向基站控制节点发送的上层协议 数据; 或者,
如果从基带处理单元 101接收到的待上行联合处理数据中包括第二接口 的数据, 将第二接口的数据进行联合解码处理以及上层协议处理得到可向基 站控制节点发送的上层协议数据; 或者,
如果从基带处理单元 101接收到的待上行联合处理数据中包括第三接口 的数据, 将所述第三接口的数据经过上层协议处理后得到可向基站控制节点 发送的上层协议数据。
需要说明的是, 上述只是举例, 如果待上行联合处理数据中包括上行方 向的基带信号处理中不同的处理步骤之间划分出更多的其他接口的信号数 据, 则基带联合单元 102可以对这些接口的信号数据完成与该接口相应的后 续处理步骤, 在此不再赘述。
从至少一个 RRU接收到的上行无线信号数据在依次完成上述基带信号 处理的处理步骤时, 其每一步处理后得到的数据的带宽依次减小, 例如, 上 行无线信号数据经过中射频通道处理后得到的数据的带宽大于上行无线信号 数据经无线帧解帧处理后得到的数据的带宽, 上行无线信号数据经过无线帧 解帧处理后得到的数据的带宽要大于上行无线信号数据经过解码处理后得到 的数据, 依次类推。 也就是说, 对于相同的输入, 即从至少一个 RRU接收 到的上行无线信号数据, 经过基带处理系统处理, 得到的第一接口的数据的 带宽大于第二接口的数据的带宽, 第二接口的数据的带宽大于第三接口的数 据的带宽。
另一方面,从至少一个 RRU接收到的上行无线信号数据在依次完成上述 处理步骤时, 其每一步处理后得到的数据的与其他站点或者小区的上行无线 信号数据经过相应步骤处理后得到的数据按照不同的联合处理方案处理时, 上行联合处理的性能收益也不相同。 例如, 多个小区或者站点的上行无线信 号数据的联合处理方案为接收天线输出信噪比最大的合并处理方案时, 基带 联合单元 102对于多个站点或者小区的上行无线信号数据经过无线帧解帧处 理后的数据, 进行上行联合处理的性能收益要高于其经过无线帧解码后的数 据进行上行联合处理的性能收益。 也就是说, 多个小区或者站点的上行无线 信号数据的联合处理方案为接收天线输出信噪比最大的合并处理方案时, 基 带联合单元 102对待上行联合处理数据中的第一接口的数据进行上行联合处 理的性能收益高于对上行联合处理数据中的第三接口的数据进行上行联合处 理的性能收益。
为了保证当前从至少一个 RRU接收到的上行无线信号数据经过基带处 理单元 101处理后能全部发送到基带联合单元 102, 基带处理单元 101可以 具体用于根据混合接口的传输带宽将从至少一个 RRU接收到的上行无线信 号数据至少经过无线帧解帧处理后得到待上行联合处理数据, 并将待上行联 合处理数据通过混合接口传输至基带联合单元 102。
基带处理单元 101可以包括第一确定模块和第一处理模块, 其中, 第一确定模块, 具体用于根据和基带联合单元 102之间的混合接口的传 输带宽确定各个接口的信号数据在待上行联合处理数据中的比例, 这里的接 口可以是前述第一接口, 或者第二接口, 或者第三接口, 还可以是基带处理 单元 101在不同的处理之间划分出更多的其他接口。
第一处理模块, 具体用于根据第一确定模块确定的各接口的信号数据在 待上行联合处理数据中的比例对从至少一个 RRU接收到的上行无线信号数 据完成处理得到待上行联合处理数据。
在本发明的另一个实施例中, 第一确定模块具体用于, 当基带处理单元 101和基带联合单元 102之间的混合接口的带宽充足,满足基带处理单元 101 对从至少一个 RRU接收到的上行无线信号数据前置处理时得到的第一接口 的数据的传输时, 即, 基带处理单元 101和基带联合单元 102之间的混合接 口的传输带宽高于第一接口的数据带宽时, 确定待上行联合处理数据中均为 第一接口的数据, 也就是说, 第一接口的信号数据在待上行联合处理数据中 的比例为 100%。
在本发明的另一个实施例中, 第一确定模块具体用于, 当基带处理单元 101和基带联合单元 102之间的混合接口的带宽受限, 无法满足基带处理单 元 101对从至少一个 RRU接收到的上行无线信号数据前置处理时得到的第 一接口的数据的传输, 即, 基带处理单元 101和基带联合单元 102之间的混 合接口的传输带宽低于或者等于第一接口的数据带宽, 为了保证当前所有接 收到的 RRU的上行信号数据均传输至基带联合单元 102, 可以根据预设规则 确定不同接口的信号数据在待上行联合处理数据中的比例。 例如, 预设规则 中定义第一接口的信号数据在待上行联合处理数据中的比例为 50%, 第二接 口的信号数据在待上行联合处理数据中的比例为 10%, 第三接口的信号数据 在待上行联合处理数据中的比例为 40%;第一处理模块对于从至少一个 RRU 接收到的上行无线信号数据完成无线帧解帧处理后得到第一接口的信号数 据, 根据第二接口的信号数据在待上行联合处理数据中的比例以及预估的第 二接口的信号数据的带宽从第一接口的信号数据中确定出一部分完成解调处 理得到第二接口的信号数据, 根据第三接口的信号数据在待上行联合处理数 据中的比例以及预估的第三接口的信号数据的带宽从第二接口的信号数据中 确定出一部分完成解码处理得到第三接口的信号数据。 经过基带处理单元 101前置处理后, 待上行联合处理数据中第一接口的信号数据占比 50%, 第 二接口的信号数据占比 10%, 第三接口的信号数据占比 40%。
为了更清楚的说明上述处理过程, 假设第一处理模块将从至少一个 RRU 接收到的上行信号数据完成无线帧解帧处理后得到第一接口数据的带宽为 2M比特每秒(bps , bit per second ) , 基带处理单元 101和基带联合单元 102 之间的混合接口的传输带宽为 1.5Mbps, 第一接口的信号数据经过解调处理 后得到的第二接口的信号数据的带宽相对于与第一接口的信号数据的带宽为 0.6倍,第二接口的信号数据经过解码处理后得到的第三接口的信号数据的带 宽相对于第二接口的信号数据的带宽为 0.5倍, 第一确定模块根据预设规则 中确定第一接口的信号数据在待上行联合处理数据中的比例为 50% , 第二接 口的信号数据在待上行联合处理数据中的比例为 10%, 第三接口的信号数据 在待上行联合处理数据中的比例为 40%, 第一处理模块从第一接口的信号数 据中划分出 0.5Mbps作为待上行联合处理数据中的一部分, 另外 1.5Mbps用 于经过解调处理得到第二接口的信号数据, 此时, 第二接口的信号数据的带 宽为 1.5M X 0.6 = 0.9Mbps, 第一处理模块再从第二接口的信号数据中确定出 0.1Mbps作为待上行联合处理数据中的一部分, 另外 0.8Mbps用于经过解码 处理得到第三接口的信号数据, 第三接口的信号数据的带宽为 0.8M X 0.5 = 0.4Mbps, 因此第一处理模块对接收到的至少一个 RRU的上行无线信号数据 完成处理得到的待上行联合处理数据中第一接口的信号数据为 0.5Mbps, 第 二接口的信号数据为 0.1Mbps , 第三接口的信号数据为 0.4Mbps, 待上行联 合处理数据的带宽为 lMbps。 需要说明的是上述只是举例说明, 本发明实施 例不限于此。
在本发明的另一实施例中, 当基带处理单元 101和基带联合单元 102之 间的混合接口的带宽受限, 无法满足基带处理单元 101 对从至少一个 RRU 接收到的上行无线信号数据前置处理时得到的第一接口的数据的传输, 即, 基带处理单元 101和基带联合单元 102之间的混合接口的传输带宽低于或者 等于第一接口的数据带宽, 第一确定模块, 具体用于, 获取当前接收到的上 行无线信号数据的联合处理方案, 也即基带处理系统对应的多个站点或者多 个小区的联合处理方案, 根据不同接口的信号数据在待上行联合处理数据中 的比例和不同的联合处理方案的性能收益的对应关系和当前接收到的上行无 线信号数据的联合处理方案确定不同接口的信号数据在待上行联合处理数据 中的比例。 例如, 联合处理方案可以是接收天线输出信噪比最大的合并处理 方案, 筒称为最大比例合并 ( maximum ratio combining , MRC ) 方案, 也可 以是接收天线输出信干比最大的合并处理方案, 筒称为干扰抑制合并 ( interference rejection combining , IRC )方案,还可以是干扰抵消 ( interference cancellation , IC ) 的合并处理方案, 需要说明的是, 这里只是举例说明, 联 合处理方案还可以有其他方案, 本发明实施例并不限于此。
例如, 不同接口的信号数据在待上行联合处理数据中的比例和不同的联 合处理方案的性能收益的对应关系如下表所示:
Figure imgf000021_0001
需要说明的是, 不同接口的信号数据在待上行联合处理数据中的比例和 不同的联合处理方案的性能收益的对应关系可以由第一确定模块根据相应的 模型进行预估,也可以预先根据多次测试数据获取,本发明实施例不限于此。
第一确定模块, 获取到当前接收到的上行无线信号数据的联合处理方案 为 MRC, 根据上述对应关系, 确定待上行联合处理数据中第一接口的信号数 据所占的比例为 70% , 第二接口的信号数据所占的比例为 10%, 第三接口的 信号数据所占的比例为 20%, 此时, MRC性能收益最优; 若第一确定模块, 获取到当前接收到的上行无线信号数据的联合处理方案为 IRC, 根据上述对 应关系,确定待上行联合处理数据中第一接口的信号数据所占的比例为 60% , 第二接口的信号数据所占的比例为 20%, 第三接口的信号数据所占的比例为 20% , 此时, IRC 性能收益最优; 以此类推, 不再赘述。 需要说明的是, 上 述只是举例, 本发明实施例并不限于此。 第一处理模块, 根据第一确定模块 确定的各接口的信号数据在待上行联合处理数据中的比例对当前从至少一个 RRU接收到的上行无线信号数据完成处理得到待上行联合处理数据,可参见 前述实施例, 在此不再赞述。
在本发明的另一个实施例中, 基带处理系统用于处理下行的上层协议数 据。 基带联合单元 102可以对所接收到的下行的上层协议数据至少经过下行 方向的上层协议处理得到下行联合处理数据, 当然基带联合单元 102的下行 联合处理还可以进一步包括编码处理和调制处理。
基带处理单元 101和基带联合单元 102之间的混合接口上传输的下行联 合处理数据包括至少一种接口的信号数据,这里的接口可以为前述第四接口、 第五接口、 第六接口, 也可以为不同处理之间划分出的更多的其他接口, 例 如, 下行联合处理数据中包括第四接口的信号数据和第六接口的信号数据, 又例如, 下行联合处理数据中只包括第四接口的信号数据, 需要说明的是, 这里均只是举例, 本发明实施例不限于此。
基带处理单元 101 , 如果从基带联合单元 102接收到的下行联合处理数 据中包括第四接口的数据, 将第四接口的数据经过无线帧组帧处理以及无线 帧组帧处理之后的处理步骤得到可向 RRU发送的下行的无线信号数据; 或 者,
如果从基带联合单元 102接收到的下行联合处理数据中包括第五接口的 数据, 将第五接口的数据经过调制处理, 无线帧组帧处理以及无线帧组帧处 理之后的处理步骤得到可向 RRU发送的下行的无线信号数据; 或者,
如果从基带联合单元 102接收到的下行联合处理数据中包括第六接口的 数据, 将所述第六接口的数据经过编码处理、 调制处理, 无线帧组帧处理以 及无线帧组帧处理之后的处理步骤得到可向 RRU发送的下行的无线信号数 据。
需要说明的是, 上述只是举例, 如果下行联合处理数据中包括下行方向 的基带信号处理中不同的处理步骤之间划分出更多的其他接口的信号数据, 则基带处理单元 101可以对这些接口的信号数据完成与该接口相应的后续处 理步骤, 在此不再赘述。
从基站控制节点接收到的下行的上层协议数据在依次完成上述基带信号 处理的处理步骤时, 其每一步处理后得到的数据的带宽依次增加, 例如, 下 过编码处理后得到的数据的带宽, 下行的上层协议数据经过编码处理后得到 的数据的带宽小于经过调制处理后的得到的数据的带宽, 依次类推。 也就是 说, 对于相同的输入, 即从从基站控制节点接收到的下行的上层协议数据, 经过基带处理系统处理, 得到的第四接口的数据的带宽大于第五接口的数据 的带宽, 第五接口的数据的带宽大于第六接口的数据的带宽。
另一方面, 和上行方向类似, 从基站控制节点接收到的下行的上层协议 数据在依次完成上述处理步骤时, 其每一步处理后得到的数据的与其他站点 或者小区的下行的上层协议数据经过相应步骤处理后得到的数据按照不同的 联合处理方案进行下行联合处理时, 性能收益也不相同。 为了保证当前从基站控制节点接收到的下行上层协议数据经过基带联合 单元 102处理后能全部发送到基带处理单元 101 , 基带联合单元 102可以具 体用于根据混合接口的传输带宽将从基站控制节点接收到的下行上层协议数 据至少经过下行方向的上层协议处理后得到下行联合处理数据, 并将下行联 合处理数据通过混合接口传输至基带处理单元 101。
基带联合单元 102可以包括第二确定模块和第二处理模块, 其中, 第二确定模块, 具体用于根据和基带处理单元 101之间的混合接口的传 输带宽确定各个接口的信号数据在下行联合处理数据中的比例, 这里的接口 可以是前述第四接口, 或者第五接口, 或者第六接口, 还可以是基带联合单 元 102在不同的处理之间划分出更多的其他接口。
第二处理模块, 具体用于根据第二确定模块确定的各接口的信号数据在 下行联合处理数据中的比例对从基站控制节点接收到的下行上层协议数据完 成处理得到下行联合处理数据。
在本发明的另一个实施例中, 第二确定模块具体用于, 当基带处理单元 101和基带联合单元 102之间的混合接口的带宽充足,满足基带联合单元 102 对从基站控制节点接收到的下行上层协议数据下行联合处理时得到的第四接 口的数据的传输时, 即, 基带处理单元 101和基带联合单元 102之间的混合 接口的传输带宽高于第四接口的数据带宽时, 确定下行联合处理数据中均为 第四接口的数据, 也就是说, 第四接口的信号数据在下行联合处理数据中的 比例为 100%。
在本发明的另一个实施例中, 第二确定模块具体用于, 当基带处理单元 101和基带联合单元 102之间的混合接口的带宽受限, 无法满足基带处理单 元 101对从基站控制节点接收到的下行上层协议数据下行联合处理时得到的 第四接口的数据的传输, 即, 基带处理单元 101和基带联合单元 102之间的 混合接口的传输带宽低于或者等于第四接口的数据带宽, 为了保证当前从基 站控制节点接收到的下行上层协议数据经基带联合单元 102下行联合处理后 均传输至基带处理单元 101 , 可以根据预设规则确定不同接口的信号数据在 下行联合处理数据中的比例。 例如, 预设规则中定义第四接口的信号数据在 下行联合处理数据中的比例为 50% , 第五接口的信号数据在下行联合处理数 据中的比例为 10% , 第六接口的信号数据在下行联合处理数据中的比例为 40%; 第二处理模块对于从基站控制节点接收到的下行上层协议数据完成下 行方向的上层协议处理后得到第六接口的信号数据, 根据第五接口的信号数 据在下行联合处理数据中的比例以及预估的第五接口的信号数据的带宽从第 六接口的信号数据中确定出一部分完成编码处理得到第五接口的信号数据, 根据第四接口的信号数据在下行联合处理数据中的比例以及预估的第四接口 的信号数据的带宽从第五接口的信号数据中确定出一部分完成调制处理得到 第四接口的信号数据。 经过基带联合单元 102处理后, 下行联合处理数据中 第四接口的信号数据占比 50% , 第五接口的信号数据占比 10% , 第六接口的 信号数据占比 40%。
为了更清楚的说明上述处理过程, 假设第二处理模块将从基站控制节点 据的带宽为 0.6M比特每秒 (bps , bit per second ) , 基带处理单元 101和基 带联合单元 102之间的混合接口的传输带宽为 1.5Mbps , 第五接口的信号数 据相对于与第四接口的信号数据的带宽为 0.6倍, 第六接口的信号数据的带 宽相对于第五接口的信号数据的带宽为 0.5倍, 从而可以估计出将从基站控 处理以及调制处理后得到的第四接口的数据的带宽为 2Mbps , 第二确定模块 根据预设规则中确定第四接口的信号数据在下行联合处理数据中的比例为 50% , 第五接口的信号数据在下行联合处理数据中的比例为 10% , 第六接口 的信号数据在下行联合处理数据中的比例为 40% , 第二处理模块从第六接口 的信号数据中划分出 0.4Mbps 作为下行联合处理数据中的一部分, 另外 0.2Mbps 用于经过编码处理得到第五接口的信号数据, 此时, 第五接口的信 号数据的带宽为 0.2M/0.5 = 0.4Mbps, 第二处理模块再从第五接口的信号数 据中确定出 0.1Mbps作为下行联合处理数据中的一部分, 另外 0.3Mbps用于 经过调制处理得到第四接口的信号数据, 第四接口的信号数据的带宽为 0.3M/0.6 = 0.5Mbps , 因此第二处理模块对从基站控制节点接收到的下行上层 协议数据完成处理得到的下行联合处理数据中第四接口的信号数据为 0.5Mbps,第五接口的信号数据为 0.1Mbps,第六接口的信号数据为 0.4Mbps, 下行联合处理数据的带宽为 lMbps。 需要说明的是上述数值均只是方便举例 说明, 本发明实施例不限于此。
在本发明的另一实施例中, 当基带处理单元 101和基带联合单元 102之 间的混合接口的带宽受限, 无法满足基带联合单元 102对从基站控制节点接 收到的下行上层协议数据下行联合处理时得到的第四接口的数据的传输,即, 基带处理单元 101和基带联合单元 102之间的混合接口的传输带宽低于或者 等于第四接口的数据带宽, 第二确定模块, 具体用于, 获取当前基带处理系 统对应的多个站点或者多个小区的联合处理方案, 根据不同接口的信号数据 在下行联合处理数据中的比例和不同的联合处理方法的性能收益的对应关系 和获取到的联合处理方案确定不同接口的信号数据在下行联合处理数据中的 比例。 和上行方向类似, 这里不再赘述。
需要说明的是, 不同接口的信号数据在下行联合处理数据中的比例和不 同的联合处理方法的性能收益的对应关系可以由第二确定模块根据相应的模 型进行预估, 也可以预先根据多次测试数据获取, 本发明实施例不限于此。
第二处理模块, 根据第二确定模块确定的各接口的信号数据在下行联合 处理数据中的比例对当前从基站控制节点接收到的下行上层协议数据完成处 理得到下行联合处理数据, 可参见前述实施例, 在此不再赘述。 通过本发明实施例的基带处理系统用于上行方向的基带信号处理时, 由 于在远端靠近 RRU 部署基带处理单元完成上行无线信号数据的前置处理, 使得传输到近端基带联合单元的多个站点或多个小区的待上行联合处理数据 带宽减小, 有效降低了近端设备和远端设备之间数据传输带宽。 例如, 在一 个 20MHz带宽系统中, 有 3个扇区, 每个 RRU配置 4根天线, 现有技术中近端 的 BBU与远端的 RRU之间的数据传输率将高达 1 1. 8Gbps , 而采用本发明实施例 的基带处理系统, 由于在基带处理单元中完成前置处理, 例如, 在基带处理 单元中完成去 CP头、 FFT、 解帧处理后, 再发送给基带联合单元, 则远端的 基带处理单元和近端的基带联合单元之间的混合接口数据带宽可以缩小到 6.5Gbps , 也就是说, 采用新形态, 比现有技术的传输时域基带数字信号所需 的带宽压缩了约 45%。 并且由于基带处理单元和基带联合单元之间的混合接 口可以传输多种接口的数据, 可以灵活控制多个站点或多个小区联合处理的 传输带宽和性能收益。 本发明实施例的基带处理系统也可以用于下行方向的 基带信号处理, 其效果类似, 不再赘述。 图 3为本发明另一实施例提供的基带处理系统的结构示意图,如图所示, 该基带处理系统可以包括基带联合单元 302和至少一个基带处理单元 301 , 每个基带处理单元 301通过混合传输接口与基带联合单元 302连接。
基带处理单元 301可以在远端靠近 RRU部署, 和至少一个 RRU连接, 例如, 基带处理单元 301在远端和同一站点或者同一'■!、区的多个 RRU连接, 基带联合单元 302可以在近端部署, 和至少一个基带处理单元 301连接, 用 于处理多个站点或者多个小区之间信号数据的联合处理。 这里的远端为邻近 天线的位置, 相对于机房而言为远端, 近端则通常为部署在机房中的位置。 其中,
基带处理单元 301 包括第一存储器 3011和第一处理器 3012, 第一存储 器 3011和第一处理器 3012相连接,其中, 第一存储器 3011中存储一组程序 代码, 第一存储器 3011可以包括非易失性存储器。 第一处理器 3012可以是 一个 CPU, 或者是 ASIC , 或者是被配置成实施本发明实施例的一个或多个 集成电路。 第一处理器 3012用于调用第一存储器 3011中存储的程序代码, 用于执行:
将与该基带处理单元相连接的至少一个 RRU接收到的上行无线信号数 据完成前置处理后得到待上行联合处理数据, 并将待上行联合处理数据通过 混合接口传输至基带联合单元 302, 其中前置处理至少包括无线帧解帧处理 之前的各处理步骤以及无线帧解帧处理;
基带联合单元 302包括第二存储器 3021和第二处理器 3022, 第二存储 器 3021和第二处理器 3022相连接,其中, 第二存储器 3021中存储一组程序 代码, 第二存储器 3021可以包括非易失性存储器。 第二处理器 3022可以是 一个 CPU, 或者是 ASIC, 或者是被配置成实施本发明实施例的一个或多个 集成电路。 第二处理器 3022用于调用第二存储器 3021中存储的程序代码, 用于执行:
从至少一个基带处理单元 301接收到的待上行联合处理数据完成上行联 合处理后得到可向基站控制节点发生的上层协议数据, 其中, 上行联合处理 至少包括上行方向的上层协议处理。
本发明实施例的基带处理系统中各组成部分, 可以用于实现前述实施例 中对应组成部分的功能, 其实现原理和技术效果类似, 可以参见前述实施例 中的相关记载, 此处不再赘述。 图 4为本发明另一实施例提供的基带处理系统的结构示意图,如图所示, 该基带处理系统可以包括基带联合单元 402和至少一个基带处理单元 401 , 每个基带处理单元 401通过混合传输接口与基带联合单元 402连接。
基带处理单元 401可以在远端靠近 RRU部署, 和至少一个 RRU连接, 例如, 基带处理单元 401在远端和同一站点或者同一'■!、区的多个 RRU连接, 基带联合单元 402可以在近端部署, 和至少一个基带处理单元 401连接, 用 于处理多个站点或者多个小区之间信号数据的联合处理。 这里的远端为邻近 天线的位置, 相对于机房而言为远端, 近端则通常为部署在机房中的位置。 其中,
基带处理单元 401 包括第一存储器 4011和第一处理器 4012, 第一存储 器 4011和第一处理器 4012相连接,其中, 第一存储器 4011中存储一组程序 代码, 第一存储器 4011可以包括非易失性存储器。 第一处理器 4012可以是 一个 CPU, 或者是 ASIC, 或者是被配置成实施本发明实施例的一个或多个 集成电路。 第一处理器 4012用于调用第一存储器 4011中存储的程序代码, 用于执行:
将从基带联合单元 402接收到的下行联合处理数据完成后置处理后得到 可向至少一个所述 RRU发送的下行无线信号数据, 其中, 所述后置处理至 少包括无线帧组帧处理之后的各处理步骤以及无线帧组帧处理。
基带联合单元 402包括第二存储器 4021和第二处理器 4022, 第二存储 器 4021和第二处理器 4022相连接,其中, 第二存储器 4021中存储一组程序 代码, 第二存储器 4021可以包括非易失性存储器。 第二处理器 4022可以是 一个 CPU, 或者是 ASIC, 或者是被配置成实施本发明实施例的一个或多个 集成电路。 第二处理器 4022用于调用第二存储器 4021中存储的程序代码, 用于执行: 到下行联合处理数据, 并将所述下行联合处理数据通过混合接口传输至基带 处理单元 401 , 其中, 所述下行联合处理至少包括下行方向的上层协议处理。
本发明实施例的基带处理系统中各组成部分, 可以用于实现前述实施例 中对应组成部分的功能, 其实现原理和技术效果类似, 可以参见前述实施例 中的相关记载, 此处不再赘述。 图 5为本发明另一实施例提供的基带信号处理方法的流程图, 用于基带 处理系统处理上行的无线信号数据, 如图所示, 该方法可以包括: 步骤 501、 基带处理系统中的基带处理单元将与该基带处理单元相连接 的至少一个 RRU接收到的上行无线信号数据完成前置处理后得到待上行联 合处理数据, 并将待上行联合处理数据通过混合接口传输至基带联合单元, 其中前置处理至少包括无线帧解帧处理之前的各处理步骤以及无线帧解帧处 理。
步骤 502、 基带处理系统中的基带联合单元将从至少一个基带处理单元 接收到的待上行联合处理数据完成上行联合处理后得到可向基站控制节点发 生的上层协议数据, 其中, 上行联合处理至少包括上层协议处理。
本发明实施例提供的基带信号处理方法可由图 1或者图 3中提供的基带 处理系统来执行, 关于每个步骤的详细说明可参见图 1或者图 3所示实施例 的描述, 在此不再赘述。
本发明实施例提供的基带信号信息处理方法由基带处理系统来执行, 由 于在远端靠近 RRU 部署基带处理单元完成上行无线信号数据的前置处理, 使得传输到近端基带联合单元的多个站点或多个小区的待上行联合处理数据 带宽减小, 有效降低了近端设备和远端设备之间数据传输带宽, 并且由于基 带处理单元和基带联合单元之间的混合接口可以传输多种接口的数据, 可以 灵活控制多个站点或多个小区联合处理的传输带宽和性能收益。 图 6为本发明另一实施例提供的基带信号处理方法的流程图, 用于基带 处理系统处理下行的上层协议数据, 如图所示, 该方法可以包括:
步骤 601、 基带处理系统中的基带联合单元将从基站控制节点接收到的 下行的上层协议数据完成下行联合处理后得到下行联合处理数据, 并将下行 联合处理数据通过基带联合单元和基带处理单元之间的混合接口传输至基带 处理单元, 其中, 下行联合处理至少包括下行方向的上层协议处理。
步骤 602、 基带处理系统中的基带处理单元将从基带联合单元接收到的 下行联合处理数据完成后置处理后得到可向至少一个 RRU发送的下行无线 信号数据, 其中, 后置处理至少包括无线帧组帧处理之后的各处理步骤以及 无线帧组帧处理。
本发明实施例提供的基带信号处理方法可由图 1或者图 4中提供的基带 处理系统来执行, 关于每个步骤的详细说明可参见图 1或者图 4所示实施例 的描述, 在此不再赘述。
本发明实施例提供的基带信号信息处理方法由基带处理系统来执行, 由 于在近端基带联合单元完成下行联合处理, 远端靠近 RRU 部署的基带处理 单元完成后置处理, 使得近端设备和远端设备之间传输的多个站点或多个小 区的联合处理数据带宽减小, 有效降低了近端设备和远端设备之间数据传输 带宽, 并且由于基带处理单元和基带联合单元之间的混合接口可以传输多种 接口的数据, 可以灵活控制多个站点或多个小区联合处理的传输带宽和性能 收益。 图 7为本发明另一实施例提供的基站的结构示意图, 如图所示, 该基站 可以包括:
至少一个 RRU701和基带处理系统 702, 其中, 基带处理系统 702中的 每个基带处理单元在远端和至少一个 RRU701连接, 基带处理系统 702中的 基带联合单元在近端部署。
每个基带处理单元连接的 RRU701 可以是同一站点或者同一小区的 RRU。
基带处理系统 702可以为图 1或者图 3或者图 4所示的基带处理系统, 由于在前述实施例中, 已经对基带处理系统进行了说明, 在此不再赘述。
本发明实施例提供的基站由于在远端靠近同一站点或者同一小区的 RRU 部署基带处理单元完成上行无线信号数据的前置处理或者下行数据的 后置处理, 使得传输到近端基带联合单元的多个站点或多个小区的联合处理 数据带宽减小, 有效降低了近端设备和远端设备之间数据传输带宽, 并且由 于基带处理单元和基带联合单元之间的混合接口可以传输多种接口的数据, 可以灵活控制多个站点或多个小区联合处理的传输带宽和性能收益。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件 实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上 的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和 通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序 的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但 不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其 他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储 具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他 介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是 使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 (DSL ) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么 同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无 线技术包括在所属介质的定影中。 如本发明所使用的,盘( Disk )和碟( disc ) 包括压缩光碟(CD ) 、 激光碟、 光碟、 数字通用光碟(DVD ) 、 软盘和蓝光 光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面 的组合也应当包括在计算机可读介质的保护范围之内。 总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定 本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1. 一种基带处理系统, 其特征在于, 所述基带处理系统包括基带联合 单元和至少一个基带处理单元, 其中,
每个所述基带处理单元在远端和至少一个远端射频单元 RRU连接, 所述基带联合单元位于近端, 通过混合接口与至少一个所述基带处理单 元连接;
所述基带处理系统处理上行的无线信号数据时,
所述基带处理单元, 用于将从至少一个所述 RRU接收到的上行无线信 号数据完成前置处理后得到待上行联合处理数据,并将所述待上行联合处理 数据通过所述混合接口传输至所述基带联合单元, 其中, 所述前置处理至少 包括无线帧解帧处理之前的各处理步骤以及无线帧解帧处理;
所述基带联合单元, 用于将从至少一个所述基带处理单元接收到的所述 待上行联合处理数据完成上行联合处理后得到可向基站控制节点发送的上 层协议数据, 其中, 所述上行联合处理至少包括上行方向的上层协议处理; 或者,
所述基带处理系统处理下行的上层协议数据时,
所述基带联合单元, 用于将从所述基站控制节点接收到的下行的上层协 议数据完成下行联合处理后得到下行联合处理数据,并将所述下行联合处理 数据通过所述混合接口传输至基带处理单元, 其中, 所述下行联合处理至少 包括下行方向的上层协议处理;
所述基带处理单元, 用于将从所述基带联合单元接收到的所述下行联合 处理数据完成后置处理后得到可向至少一个所述 RRU发送的下行无线信号 数据, 其中, 所述后置处理至少包括无线帧组帧处理之后的各处理步骤以及 无线帧组帧处理。
2、 根据权利要求 1 所述的基带处理系统, 其特征在于, 所述待上行联 合处理数据至少包括以下一种接口的信号数据: 第一接口、 第二接口和第三 接口, 其中, 所述第一接口为无线帧解帧处理和解调处理之间的接口, 所述 第二接口为解调处理和解码处理之间的接口,所述第三接口为解码处理和上 层协议处理之间的接口。
3、 根据权利要求 1或者 2所述的基带处理系统, 其特征在于, 所述基 带处理单元, 具体用于:
用于根据所述混合接口的传输带宽将从至少一个所述 RRU接收到的上 行无线信号数据至少经过无线帧解帧处理得到所述待上行联合处理数据。
4、 根据权利要求 2所述的基带处理系统, 其特征在于, 所述基带处理 单元包括第一确定模块和第一处理模块:
所述第一确定模块, 用于根据所述混合接口的传输带宽确定不同接口的 信号数据在所述待上行联合处理数据中的比例,所述不同接口至少包括以下 一种: 第一接口, 第二接口和第三接口;
所述第一处理模块, 用于根据所述第一确定模块确定的各接口的信号数 据在所述待上行联合处理数据中的比例对所述从至少一个 RRU接收到的上 行无线信号数据完成前置处理得到待上行联合处理数据。
5、 根据权利要求 4所述的基带处理系统, 其特征在于, 所述第一确定 模块, 具体用于,
如果所述混合接口的传输带宽高于第一接口的数据带宽, 确定第一接口 的信号数据在所述待上行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 根据预设规则确定不同接口的信号数据在所述待上行联合处理数据中的比 例; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 获取所述从至少一个 RRU接收到的上行无线信号数据的联合处理方案, 根 据不同接口的信号数据在所述待上行联合处理数据中的比例和不同的联合 处理方案的性能收益的对应关系和所述从至少一个 RRU接收到的上行无线 信号数据的联合处理方案确定不同接口的信号数据在所述待上行联合处理 数据中的比例;
其中,
所述第一接口的数据带宽为根据所述从至少一个 RRU接收到的上行无 线信号数据的无线信号数据完成无线帧解帧处理后的数据确定的带宽。
6、 根据权利要求 2至 5任一项所述的基带处理系统, 其特征在于, 所 述基带联合单元, 具体用于:
如果所述待上行联合处理数据包括第一接口的数据,将所述第一接口的 数据进行联合解调处理,联合解码处理以及上行方向的上层协议处理得到可 向基站控制节点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第二接口的数据,将所述第二接口的 数据进行联合解码处理以及上行方向的上层协议处理得到可向基站控制节 点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第三接口的数据,将所述第三接口的 数据经过上行方向的上层协议处理后得到可向基站控制节点发送的上层协 议数据。
7、 根据权利要求 1 所述的基带处理系统, 其特征在于, 所述下行联合 处理数据至少包括以下一种接口的信号数据: 第四接口、 第五接口和第六接 口, 其中, 所述第四接口为无线帧组帧处理和调制处理之间的接口, 所述第 五接口为调制处理和编码处理之间的接口,所述第六接口为编码处理和上层 协议处理之间的接口。
8、 根据权利要求 1或者 7所述的基带处理系统, 其特征在于, 所述基 带联合单元, 具体用于:
用于根据所述混合接口的传输带宽将从所述基站控制节点接收到的下 行的上层协议数据至少经过下行方向的上层协议处理得到所述下行联合处 理数据。
9、 根据权利要求 7所述的基带处理系统, 其特征在于, 所述基带联合 单元包括第二确定模块和第二处理模块:
所述第二确定模块, 用于根据所述混合接口的传输带宽确定不同接口的 信号数据在所述下行联合处理数据中的比例,所述不同接口至少包括以下一 种: 第四接口, 第五接口和第六接口;
所述第二处理模块, 用于根据所述第二确定模块确定的各接口的信号数
10、 根据权利要求 9所述的基带处理系统, 其特征在于, 所述第二确定 模块, 具体用于,
如果所述混合接口的传输带宽高于第四接口的数据带宽, 确定第四接口 的信号数据在所述下行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 根据预设规则确定不同接口的信号数据在所述下行联合处理数据中的比例; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 获取所述从所述基站控制节点接收到的下行的上层协议数据的联合处理方 案,根据不同接口的信号数据在所述下行联合处理数据中的比例和不同的联 合处理方案的性能收益的对应关系和所述从所述基站控制节点接收到的下 行的上层协议数据的联合处理方案确定不同接口的信号数据在所述下行联 合处理数据中的比例;
其中,
所述第四接口的数据带宽为根据所述从所述基站控制节点接收到的下 行的上层协议数据完成调制处理后的数据确定的带宽。
11. 根据权利要求 7至 10任一项所述的基带处理系统, 其特征在于, 所述基带处理单元, 具体用于:
如果所述下行联合处理数据包括所述第四接口的数据,将所述第四接口 的数据进行无线帧组帧处理以及无线帧组帧处理之后的各处理步骤得到可 向至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括所述第五接口的数据,将所述第五接口 的数据进行调制处理,无线帧组帧处理以及无线帧组帧处理之后的各处理步 骤得到可向至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括第六接口的数据,将所述第六接口的数 据进行编码处理, 调制处理, 无线帧组帧处理以及无线帧组帧处理之后得到 可向至少一个所述 RRU发送的下行的无线信号数据。
12、 根据权利要求 1至 11任一项所述的基带处理系统, 其特征在于, 所述基站控制节点为基站控制器, 或者, 核心网。
13、 一种基带信号处理的方法, 其特征在于, 所述方法包括:
基带处理系统处理上行的无线信号数据时,
所述基带处理系统中的基带处理单元将与该基带处理单元相连接的至 少一个 RRU接收到的上行无线信号数据完成前置处理后得到待上行联合处 理数据, 并将所述待上行联合处理数据通过混合接口传输至基带联合单元, 其中,所述前置处理至少包括无线帧解帧处理之前的各处理步骤以及无线帧 解帧处理;
所述基带处理系统中的基带联合单元将从至少一个所述基带处理单元 接收到的所述待上行联合处理数据完成上行联合处理后得到可向基站控制 节点发生的上层协议数据, 其中, 所述上行联合处理至少包括上行方向的上 层协议处理; 或者,
所述基带处理系统处理下行的上层协议数据时, 所述基带处理系统中的基带联合单元将从所述基站控制节点接收到的 下行的上层协议数据完成下行联合处理后得到下行联合处理数据,并将所述 下行联合处理数据通过所述混合接口传输至基带处理单元, 其中, 所述下行 联合处理至少包括下行方向的上层协议处理;
所述基带处理系统中的基带处理单元将从所述基带联合单元接收到的 所述下行联合处理数据完成后置处理后得到可向至少一个所述 RRU发送的 下行无线信号数据, 其中, 所述后置处理至少包括无线帧组帧处理之后的各 处理步骤以及无线帧组帧处理。
14、 根据权利要求 13所述的方法, 其特征在于, 所述上行联合处理数 据至少包括以下一种接口的信号数据: 第一接口、 第二接口和第三接口, 其 中, 所述第一接口为无线帧解帧处理和解调处理之间的接口, 所述第二接口 为解调处理和解码处理之间的接口,所述第三接口为解码处理和上层协议处 理之间的接口。
15、 根据权利要求 13或者 14所述的方法, 其特征在于, 所述基带处理 系统中的基带处理单元将与该基带处理单元相连接的至少一个 RRU接收到 的上行无线信号数据完成前置处理后得到所述待上行联合处理数据包括: 所述基带处理系统中的基带处理单元根据所述混合接口的传输带宽将 从至少一个 RRU接收到的上行无线信号数据至少经过无线帧解帧处理得到 所述待上行联合处理数据。
16、 根据权利要求 14所述的方法, 其特征在于, 所述基带处理系统中 的基带处理单元将与该基带处理单元相连接的至少一个 RRU接收到的上行 无线信号数据完成前置处理后得到所述待上行联合处理数据包括:
根据所述混合接口的传输带宽确定各接口的信号数据在所述待上行联 合处理数据中的比例, 所述接口至少包括以下一种: 第一接口, 第二接口和 第三接口; 述从至少一个 RRU接收到的上行无线信号数据完成前置处理得到所述待上 行联合处理数据。
17、 根据权利要求 16所述的方法, 其特征在于, 所述根据所述混合接 口的传输带宽确定不同接口的信号数据在所述待上行联合处理数据中的比 例, 包括:
如果所述混合接口的传输带宽高于第一接口的数据带宽, 确定第一接口 的信号数据在所述待上行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 根据预设规则确定不同接口的信号数据在所述待上行联合处理数据中的比 例; 或者,
如果所述混合接口的传输带宽低于或者等于所述第一接口的数据带宽, 获取所述从至少一个 RRU接收到的上行无线信号数据的联合处理方案, 根 据不同接口的信号数据在所述待上行联合处理数据中的比例和不同的联合 处理方案的性能收益的对应关系和所述从至少一个 RRU接收到的上行无线 信号数据的联合处理方案确定不同接口的信号数据在所述待上行联合处理 数据中的比例;
其中,
所述第一接口的数据带宽为根据所述从至少一个 RRU接收到的上行无 线信号数据的无线信号数据完成无线帧解帧处理后的数据确定的带宽。
18、 根据权利要求 14至 17任一项所述的方法, 其特征在于, 所述基带 处理系统中的基带联合单元将从至少一个所述基带处理单元接收到的所述 待上行联合处理数据完成上行联合处理后得到可向基站控制节点发生的上 层协议数据, 包括:
如果所述待上行联合处理数据包括第一接口的数据,将所述第一接口的 数据进行联合解调处理,联合解码处理以及上行方向的上层协议处理得到可 向基站控制节点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第二接口的数据,将所述第二接口的 数据进行联合解码处理以及上行方向的上层协议处理得到可向基站控制节 点发送的上层协议数据; 或者,
如果所述待上行联合处理数据包括第三接口的数据,将所述第三接口的 数据经过上行方向的上层协议处理后得到可向基站控制节点发送的上层协 议数据。
19、 根据权利要求 13所述的方法, 其特征在于, 所述下行联合处理数 据至少包括以下一种接口的信号数据: 第四接口、 第五接口和第六接口, 其 中, 所述第四接口为无线帧组帧处理和调制处理之间的接口, 所述第五接口 为调制处理和编码处理之间的接口,所述第六接口为编码处理和上层协议处 理之间的接口。
20、 根据权利要求 13或者 19所述的方法, 其特征在于, 所述基带处理 系统中的基带联合单元将从所述基站控制节点接收到的下行的上层协议数 据完成下行联合处理后得到所述下行联合处理数据包括:
所述基带处理系统中的基带联合单元根据所述混合接口的传输带宽将 从所述基站控制节点接收到的下行的上层协议数据至少经过下行方向的上 层协议处理得到所述下行联合处理数据。
21、 根据权利要求 19所述的方法, 其特征在于, 所述基带处理系统中 的基带联合单元将从所述基站控制节点接收到的下行的上层协议数据完成 下行联合处理后得到所述下行联合处理数据包括:
根据所述混合接口的传输带宽确定各个接口的信号数据在所述下行联 合处理数据中的比例, 所述接口至少包括以下一种: 第四接口, 第五接口和 第六接口;
根据所述各接口的信号数据在所述下行联合处理数据中的比例对所述 到所述下行联合处理数据。
22、 根据权利要求 21 所述的方法, 其特征在于, 所述根据所述混合接 口的传输带宽确定不同接口的信号数据在所述下行联合处理数据中的比例, 包括:
如果所述混合接口的传输带宽高于第四接口的数据带宽, 确定第四接口 的信号数据在所述下行联合处理数据中的比例为 100%; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 根据预设规则确定不同接口的信号数据在所述下行联合处理数据中的比例; 或者,
如果所述混合接口的传输带宽低于或者等于所述第四接口的数据带宽, 获取所述从所述基站控制节点接收到的下行的上层协议数据的联合处理方 案,根据不同接口的信号数据在所述下行联合处理数据中的比例和不同的联 合处理方案的性能收益的对应关系和所述从所述基站控制节点接收到的下 行的上层协议数据的联合处理方案确定不同接口的信号数据在所述下行联 合处理数据中的比例;
其中,
所述第四接口的数据带宽为根据所述从所述基站控制节点接收到的下 行的上层协议数据完成调制处理后的数据确定的带宽。
23、 根据权利要求 19至 22任一项所述的方法, 其特征在于, 所述基带 处理系统中的基带处理单元将从所述基带联合单元接收到的所述下行联合 处理数据完成后置处理后得到可向至少一个所述 RRU发送的下行无线信号 数据, 包括:
如果所述下行联合处理数据包括所述第四接口的数据,将所述第四接口 的数据进行无线帧组帧处理以及无线帧组帧处理之后的各处理步骤得到可 向至少一个所述 RRU发送的下行的无线信号数据; 或者, 如果所述下行联合处理数据包括所述第五接口的数据,将所述第五接口 的数据进行调制处理,无线帧组帧处理以及无线帧组帧处理之后的各处理步 骤得到可向至少一个所述 RRU发送的下行的无线信号数据; 或者,
如果所述下行联合处理数据包括第六接口的数据, 将所述第六接口的数 据进行编码处理, 调制处理, 无线帧组帧处理以及无线帧组帧处理之后得到 可向至少一个所述 RRU发送的下行的无线信号数据。
24、 根据权利要求 13至 23任一项所述的方法, 其特征在于, 所述基站 控制节点为基站控制器, 或者, 核心网。
25、 一种基站, 其特征在于, 所述基站包括:
至少一个远端射频单元 RRU, 如权利要求 1至 12任一项所述的基带处 理系统, 其中, 所述基带处理系统中的每个基带处理单元在远端和至少一个 所述 RRU连接, 基带处理系统中的基带联合单元在近端部署。
26、 根据权利要求 25所述的基站, 其特征在于, 每个基带处理单元连 接的 RRU是同一站点或者同一'〗、区的 RRU。
PCT/CN2013/084191 2013-09-25 2013-09-25 基带处理系统、基带信号处理方法和基站 WO2015042802A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/084191 WO2015042802A1 (zh) 2013-09-25 2013-09-25 基带处理系统、基带信号处理方法和基站
CN201380001340.XA CN104662956B (zh) 2013-09-25 2013-09-25 基带处理系统、基带信号处理方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084191 WO2015042802A1 (zh) 2013-09-25 2013-09-25 基带处理系统、基带信号处理方法和基站

Publications (1)

Publication Number Publication Date
WO2015042802A1 true WO2015042802A1 (zh) 2015-04-02

Family

ID=52741758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084191 WO2015042802A1 (zh) 2013-09-25 2013-09-25 基带处理系统、基带信号处理方法和基站

Country Status (2)

Country Link
CN (1) CN104662956B (zh)
WO (1) WO2015042802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586869A (zh) * 2020-04-29 2020-08-25 广州技象科技有限公司 一种窄带物联网系统的网关物理层

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015154228A1 (zh) * 2014-04-08 2015-10-15 华为技术有限公司 一种数据处理方法、组网装置及无线系统
CN107852281B (zh) * 2015-07-10 2020-08-25 华为技术有限公司 基带处理器、基站、用户设备、及其方法
CN106487670A (zh) * 2016-10-14 2017-03-08 深圳三星通信技术研究有限公司 一种cpri网关设备及基站前传网络系统
CN110392451B (zh) * 2018-04-18 2022-07-12 京信网络系统股份有限公司 基站系统
CN109526067A (zh) * 2018-12-11 2019-03-26 深圳市联智物联网科技有限公司 一种定位基站
CN111083808B (zh) * 2019-12-31 2024-02-27 京信网络系统股份有限公司 基于波分复用的基站系统、数据传输方法和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217786A (zh) * 2008-01-02 2008-07-09 华为技术有限公司 一种基带资源共享方法、通信系统及设备
CN101291158A (zh) * 2008-05-28 2008-10-22 华为技术有限公司 一种基带系统、基站和支持更软切换的处理方法
CN101505500A (zh) * 2009-03-11 2009-08-12 中国移动通信集团公司 一种负载均衡设备以及分布式基站系统及其通信方法
CN102316055A (zh) * 2011-09-06 2012-01-11 中兴通讯股份有限公司 一种基带单元、bbu、rru及基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101843132A (zh) * 2007-10-30 2010-09-22 Lm爱立信电话有限公司 分布式天线系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217786A (zh) * 2008-01-02 2008-07-09 华为技术有限公司 一种基带资源共享方法、通信系统及设备
CN101291158A (zh) * 2008-05-28 2008-10-22 华为技术有限公司 一种基带系统、基站和支持更软切换的处理方法
CN101505500A (zh) * 2009-03-11 2009-08-12 中国移动通信集团公司 一种负载均衡设备以及分布式基站系统及其通信方法
CN102316055A (zh) * 2011-09-06 2012-01-11 中兴通讯股份有限公司 一种基带单元、bbu、rru及基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586869A (zh) * 2020-04-29 2020-08-25 广州技象科技有限公司 一种窄带物联网系统的网关物理层

Also Published As

Publication number Publication date
CN104662956B (zh) 2018-10-19
CN104662956A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
WO2015042802A1 (zh) 基带处理系统、基带信号处理方法和基站
JP5678181B2 (ja) チャネル状態情報基準信号の送信の存在時におけるレートマッチングモードの変更
US9602182B2 (en) Baseband processing apparatus in radio communication system and radio communication
US20190372697A1 (en) Multi-codeword transmission method and apparatus
JP7138172B2 (ja) 初期許可不要伝送の決定のための方法、デバイス、及びシステム
US20170289920A1 (en) Method and Apparatus for Resource and Power Allocation in Non-Orthogonal Uplink Transmissions
EP3408959A1 (en) Systems and methods for determining harq-ack transmission timing for shortened tti
CN115442902A (zh) 信息传输方法及装置
JP7268051B2 (ja) 物理アップリンク制御チャネルリソースの選択
EP3641202A1 (en) Downlink control information transmission and reception methods and devices
WO2018201831A1 (zh) 通信方法和装置
WO2018202017A1 (zh) 一种信息传输方法和装置
WO2018191968A1 (zh) 信号质量控制方法及基站
JP2020516158A (ja) 復調参照信号のオーバーヘッドを低減するためのシステムおよび方法
JP2020014215A (ja) 無線通信装置
JP2019036910A (ja) 無線通信装置および無線通信方法
JP7146042B2 (ja) 無線通信装置および無線通信方法
KR20210135549A (ko) 비면허 스펙트럼에 대한 pdsch의 자원 매핑을 위한 방법 및 장치
JP2019165513A (ja) 無線通信装置および無線通信方法
EP3809752B1 (en) Electronic device, wireless communication method and computer readable medium
JP2018050126A (ja) 無線通信装置、無線通信端末および無線通信方法
WO2018227752A1 (zh) 数据传输方法及相关设备
WO2024053284A1 (ja) 基地局、無線端末、及びこれらの方法
CN109818711A (zh) 一种bundling大小确定方法、用户终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894746

Country of ref document: EP

Kind code of ref document: A1