WO2018202017A1 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2018202017A1
WO2018202017A1 PCT/CN2018/085174 CN2018085174W WO2018202017A1 WO 2018202017 A1 WO2018202017 A1 WO 2018202017A1 CN 2018085174 W CN2018085174 W CN 2018085174W WO 2018202017 A1 WO2018202017 A1 WO 2018202017A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
message
random access
information
base station
Prior art date
Application number
PCT/CN2018/085174
Other languages
English (en)
French (fr)
Inventor
黄煌
颜矛
向高
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018202017A1 publication Critical patent/WO2018202017A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method and apparatus.
  • beamforming techniques are used to limit the energy of the transmitted signal to a certain beam direction, thereby increasing signal and reception efficiency.
  • Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity.
  • the transmit beam and the receive beam need to be matched (beam aligned), so that the receive beam obtains a better signal quality from the transmit beam, otherwise higher communication efficiency cannot be achieved or even impossible.
  • Communication In general, the matching of the transmit beam and the receive beam can be achieved by beam scanning.
  • a relatively wide beam can be adopted for initial downlink synchronization and uplink synchronization, thereby reducing the number of beams to be scanned and reducing resource waste.
  • the wide beam brings a lower gain, which results in low communication efficiency.
  • the application provides an information transmission method and apparatus to adapt to the development of the NR system.
  • the present application provides an information transmission method and apparatus.
  • the information transmission method may include: transmitting configuration information of the reference signal and an uplink grant to the terminal, where the configuration information of the reference signal is sent in a random access procedure. Then, the receiving terminal transmits the beam indication information by using the time-frequency resource indicated by the uplink grant. In this way, by transmitting the configuration information of the reference signal in the random access process, the terminal can start performing the process of determining the beam indication information in the random access process, and the technical solution can be applied to the NR system.
  • the subject of the method may be a base station.
  • the configuration information of the reference signal is transmitted in system information or message 2 or message 4 in the random access procedure.
  • the uplink grant is sent in message 2 or message 4 in the random access procedure; or the uplink grant is sent after message 4 in the random access procedure.
  • the time-frequency resource indicated by the uplink grant may be the time-frequency resource in the message 3, or the time-frequency resource in the feedback message of the message 4, or the time-frequency resource in other messages in the prior art, and may be other time. Frequency resources.
  • the method may further include: receiving first request information sent by the terminal, where the first request information is used to request configuration information of the reference signal.
  • the first request information may be carried in a message in the prior art, such as the message 3 of the random access procedure.
  • the application is not limited thereto.
  • the method may further comprise: transmitting the reference signal in message 2 or message 4 of the random access procedure, or transmitting the reference signal after transmitting the message 4.
  • multiple reference signals are sent through multiple beams, where one or more reference signals are transmitted through each beam, and time domain and/or frequency domain resources may be multiplexed between reference signals transmitted by different beams.
  • the beam indicated by the beam indication information may be one of the multiple beams, for example, one beam whose channel quality meets a preset condition.
  • the present application further provides an information transmission apparatus, which can implement the information transmission method described in the first aspect.
  • the device may be a base station, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus may include: a sending unit and a receiving unit; wherein the sending unit is configured to send configuration information of the reference signal and an uplink grant to the terminal, where the configuration information of the reference signal is in the random access process Sent in.
  • the receiving unit is configured to receive beam indication information that is sent by the terminal by using the time-frequency resource indicated by the uplink grant.
  • the present application provides another method and apparatus for transmitting information.
  • the information transmission method may include: receiving configuration information of the reference signal sent by the base station and an uplink grant, where the configuration information of the reference signal is received in a random access procedure. Then, the beam indication information is sent to the base station by using the time-frequency resource indicated by the uplink grant.
  • the beneficial effects can be referred to above.
  • the execution body of the method may be a terminal.
  • the configuration information of the reference signal is transmitted in system information or message 2 or message 4 in the random access procedure.
  • this application is not limited to this.
  • the uplink grant is received in Message 2 or Message 4 in the random access procedure; or the uplink grant is received after Message 4 in the random access procedure.
  • this application is not limited to this.
  • the method may further include: transmitting first request information to the base station; wherein the first request information is used to request configuration information of the reference signal.
  • the first request information may be carried in the message 3 or other messages in the prior art.
  • the application is not limited thereto.
  • the method may further include: receiving the reference signal according to the configuration information of the reference signal.
  • the reference signal sent by the base station is received in the message 4 in the random access procedure according to the configuration information of the reference signal; or, according to the configuration information of the reference signal, after receiving the message 4 in the random access procedure, Receiving a reference signal sent by the base station.
  • the present application further provides an information transmission apparatus, which can implement the information transmission method described in the second aspect.
  • the device may be a base station, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include: a receiving unit and a transmitting unit.
  • the receiving unit may be configured to receive configuration information and an uplink grant of the reference signal sent by the base station, where the configuration information of the reference signal is received in a random access procedure.
  • the sending unit may be configured to send the beam indication information to the base station by using the time-frequency resource indicated by the uplink grant.
  • the present application provides another information transmission method and apparatus.
  • the method may include: transmitting configuration information of the reference signal to the terminal, where the configuration information of the reference signal is sent in a random access procedure, to instruct the terminal to send the reference signal according to the reference signal configuration information. . Then, the reference signal sent by the terminal is received, and the beam indication information is sent to the terminal according to the reference signal.
  • the beneficial effects can be referred to above.
  • the subject of the method may be a base station.
  • the configuration information of the reference signal is sent in message 2 or message 4 in the system information or random access procedure.
  • this application is not limited to this.
  • the method may further include: receiving second request information sent by the terminal, for requesting to acquire beam indication information. Then, the beam indication information is determined according to the second request information and the reference signal.
  • the second request information may be carried in the message 3 in the random access process, or in other messages in the prior art.
  • the application is not limited thereto.
  • the present application further provides an information transmission apparatus, which can implement the information transmission method described in the third aspect.
  • the device may be a terminal, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the third aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include: a transmitting unit and a receiving unit.
  • the sending unit may be configured to send configuration information of the reference signal to the terminal, where the configuration information of the reference signal is sent in a random access procedure, to instruct the terminal to send the reference signal according to the reference signal configuration information.
  • the receiving unit may be configured to receive the reference signal sent by the terminal, and send the beam indication information to the terminal according to the reference signal.
  • the present application provides another information transmission method and apparatus.
  • the method may include: receiving configuration information of a reference signal sent by a base station, where configuration information of the reference signal is received in a random access procedure; and transmitting a reference to the base station according to configuration information of the reference signal Signal; receiving beam indication information sent by the base station.
  • the beneficial effects can be referred to above.
  • the execution body of the method may be a terminal.
  • the configuration information of the reference signal is received in the system information or message 2 or message 4 in the random access procedure, of course, not limited thereto.
  • the method may further include: sending second request information to the base station, where the second request information is used to request to acquire beam indication information.
  • the second request information may be carried in the message 3 in the random access process, or in other messages in the prior art.
  • the application is not limited thereto.
  • the present application further provides an information transmission apparatus, which can implement the information transmission method of the fourth aspect.
  • the device may be a terminal, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fourth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include: a receiving unit and a transmitting unit.
  • the receiving unit may be configured to receive configuration information of the reference signal sent by the base station, where the configuration information of the reference signal is received in a random access procedure.
  • the sending unit may be configured to send the reference signal to the base station according to the configuration information of the reference signal.
  • the receiving unit is further configured to: receive beam indication information sent by the base station.
  • the sending the reference signal to the base station according to the configuration information of the reference signal may include: transmitting, by using multiple beams, a reference signal to the base station according to the configuration information of the reference signal; wherein, each beam is passed One or more reference signals are transmitted, and time domain and/or frequency domain resources can be multiplexed between reference signals transmitted through different beams.
  • the beam indicated by the beam indication information may be one of the multiple beams, for example, one beam whose channel quality meets a preset condition.
  • the beam indication information includes at least one of the following: an index of the beam, an index of the port corresponding to the beam, an index of the reference signal corresponding to the beam, and the like.
  • the reference signal includes any one of the following: CSI-RS, DMRS, etc., and may also be a reference signal designed to implement the technical solution provided by the present application.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • any of the devices or computer storage media or computer program products provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the beneficial effects in the corresponding methods. , will not repeat them here.
  • FIG. 1 is a schematic structural diagram of a system applicable to a technical solution provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a wide beam and a narrow beam associated with the wide beam according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of interaction of a random access method in an LTE system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of interaction of a random access method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a random access method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another random access method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of interaction of an information transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of interaction of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another random access method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of interaction of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of interaction of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of another random access method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of interaction of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of interaction of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another information transmission apparatus according to an embodiment of the present application.
  • the technical solution provided by the present application can be applied to various communication systems using multi-beam technology.
  • the existing communication system adopts multi-beam technology, 5G communication system, future evolution system or multiple communication fusion systems, and the like.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra high reliability and ultra low latency communication
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to, a communication scenario between the terminal and the terminal, a communication scenario between the base station and the base station, a communication scenario between the base station and the terminal, and the like.
  • the technical solution provided by the embodiment of the present application can also be applied to a scenario between a terminal and a terminal in a
  • FIG. 1 shows a schematic diagram of a communication system that can include at least one base station 100 (only one shown) and one or more terminals 200 connected to base station 100.
  • Base station 100 can be a device that can communicate with terminal 200.
  • the base station 100 can be a relay station or an access point or the like.
  • the base station 100 may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a wideband code.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the base station 100 may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the terminal 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy, or UE device, etc.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • a beam and a beam pair link are introduced into the communication system.
  • a beam is a communication resource.
  • the beam may comprise a wide beam, or a narrow beam, or other type of beam.
  • the technique of forming a beam may be a beamforming technique or other technical means.
  • the beamforming technology may specifically be a digital beamforming technique, an analog beamforming technique, or a hybrid beamforming technique. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams. Alternatively, multiple beams having the same or similar communication characteristics can be considered as one beam.
  • a beam can correspond to one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam may refer to a distribution of signal strengths that are formed in different directions of space after the signal is transmitted through the antenna.
  • the receive beam may refer to a signal strength distribution of wireless signals received from the antenna in different directions in space. It can be understood that one or more antenna ports forming one beam can also be regarded as one antenna port set.
  • the beam pair is built on the concept of the beam.
  • a beam pair typically includes one transmit beam of the transmitting device and one receive beam of the receiving device.
  • both a transmitting device and a receiving device can generate multiple beams.
  • beam alignment is required to select a beam pair with better channel quality.
  • Beam alignment can include downlink beam alignment and uplink beam alignment.
  • the process of downlink beam alignment may include: the base station transmitting one or more reference signals to the terminal by using each of the transmit beams, wherein the reference signals transmitted by different transmit beams may be multiplexed with each other (for example, by time division and frequency).
  • the time domain and/or the frequency domain resource multiplexing are performed by using a frequency division, a code division method or a combination thereof; the terminal respectively receives a reference signal transmitted by each of the transmission beams of the base station through each of the plurality of reception beams, and then, And estimating, according to the received multiple reference signals, a channel quality of each of the transmit beams of the base station to each receive beam of the terminal, and determining a beam pair whose channel quality meets a preset condition, and indicating the transmit beam in the beam pair
  • the information also referred to as beam indication information
  • the base station can use the transmit beam in the beam pair to send a control channel, a data channel, or a sounding signal, etc.
  • the terminal can use the receive beam in the beam pair to receive a control channel, a data channel, a sounding signal, and the like sent by the base station.
  • the base station can generate three transmit beams, labeled as beams 1, 2, and 3, respectively; the terminal can generate two receive beams, labeled as beams a, b, respectively. Then, the base station transmits the reference signals 1, 2, 3 through the beams 1, 2, 3 respectively; the terminal receives the reference signals 1, 2, 3 through the beam a, and receives the reference signals 1, 2, 3 through the beam b, and then, according to the The received reference signals determine beam pairs for transmitting these reference signals (specifically: beam pairs formed by beam 1 and beam a, beam pairs formed by beam 2 and beam a, beam pairs formed by beam 3 and beam a, beam 1 and beam The beam quality of the beam pair formed by b, the beam pair formed by beam 2 and beam b, the beam pair formed by beam 3 and beam b, and a beam pair satisfying the preset condition is determined, assuming that the determined beam pair is beam 3 and The beam pair formed by the beam a can feed back information of the indicator beam 3 to the base station.
  • the process of uplink beam alignment may include: the terminal transmitting one or more reference signals to the base station by using each of the transmit beams, wherein the reference signals transmitted by different transmit beams may be multiplexed with resources (for example, by time division and frequency)
  • the time division and/or the frequency domain resource multiplexing are performed by using a sub-band, a code division method or a combination thereof;
  • the base station receives a reference signal transmitted by each of the plurality of reception beams, and receives a reference signal transmitted by each transmission beam of the terminal, and then And estimating, according to the received multiple reference signals, a channel quality of each of the transmit beams of the terminal to each receive beam of the base station, and determining a beam pair whose channel quality meets a preset condition.
  • the terminal may use the transmit beam in the beam pair to send a control channel, a data channel, or a sounding signal, etc.
  • the base station may use the receive beam in the beam pair to receive a control channel, a data channel, a sounding signal, and the like sent by the terminal.
  • the beam pair determined in the process of downlink beam alignment and the beam pair determined in the uplink beam alignment process may be the same beam pair or different beam pairs.
  • the first beam pair refers to a beam pair determined in a downlink beam coarse adjustment process (ie, a downlink beam preliminary alignment process).
  • the base station may send a downlink synchronization signal block to the terminal through the transmit beam in the first beam pair.
  • the downlink synchronization signal block is used for downlink initial time and frequency synchronization.
  • the second beam pair refers to the beam pair determined in the uplink beam coarse adjustment process (ie, the uplink beam preliminary alignment process).
  • the third beam pair means that the channel command determined in the downlink beam coarse adjustment process is better than one beam pair of the first beam pair, and the base station can send the downlink synchronization signal block to the terminal through the transmit beam in the third beam pair.
  • the target beam pair refers to the beam pair determined in the downlink/uplink beam fine adjustment process (ie, the downlink/upstream preliminary fine alignment process).
  • a beam associated with a beam refers to a plurality of narrow beams having substantially the same coverage as the wide beam and having substantially the same coverage.
  • the "wide beam” here is relative to the “narrow beam” here.
  • the present application is not limited to the extent to which "substantially the same” is the same, which can be determined according to the understanding of those skilled in the art.
  • FIG. 2 a schematic diagram of multiple narrow beams related to a wide beam provided by the present application, wherein the narrow beam includes a narrow beam 1 and a narrow beam 2 .
  • a beam associated with a transmit beam in a first beam pair "a receive beam associated with a first beam pair”, and the like are referred to.
  • the number of beams associated with the transmit beam in the first beam pair and the number of beams associated with the receive beam in the first beam pair may or may not be equal.
  • Reference signal may be a reference signal in the prior art, such as but not limited to a channel state information reference signal (CSI-RS) or a demodulation reference signal (DMRS). It may also be a reference signal designed to implement the technical solution provided by the present application.
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the configuration information of the reference signal may include, but is not limited to, information indicating a time-frequency resource location of the reference signal, density of the time-frequency resource, port information corresponding to the reference signal, multiplexing mode of the reference signal, and the like.
  • the beam indication information may include, but is not limited to, at least one of the following: an index of the beam, an index of the antenna port corresponding to the beam, an index of the reference signal corresponding to the beam, a synchronization signal block time index, and the like.
  • the beam indication information may be a CSI-RS port number or a DMRS port number corresponding to the beam.
  • the index of the beam, the index of the antenna port, and the index of the reference signal are not limited, and may be, for example, a relative index or an absolute index.
  • the index of the reference signal may be a time index of the transmitted reference signal; if multiple reference signals are frequency division multiplexed, the index of the reference signal may be a transmission reference. The frequency index of the signal, etc.
  • first the terms “first”, “second”, etc. are used herein to distinguish different objects and are not intended to limit the order.
  • first symbol group and the second symbol group are merely for distinguishing different symbol groups, and their order is not limited.
  • beam alignment can be achieved using a random access procedure.
  • the base station sends system information to the terminal, for example, system information block-2 (SIB2).
  • SIB2 system information block-2
  • the terminal receives the system information sent by the base station, and obtains parameter configuration information of the random access preamble according to the system information, and then generates a random access preamble according to the parameter configuration information, and sends a random access preamble to the base station.
  • the random access preamble is used to carry the preamble sequence, and the preamble sequence can be used to identify the terminal and the like.
  • a variety of preamble formats are defined in LTE, and the lengths of different preamble formats may be different.
  • the information indicating the preamble format adopted by the terminal can be carried in the system information.
  • S103 The base station receives the random access preamble sent by the terminal, and detects the received random access preamble. If the preamble sequence is detected, and the delay of the channel transmitting the preamble sequence is estimated, the random access is sent to the terminal. Response (ie message 2).
  • the random access response may carry an index of the preamble sequence, a time advance, an uplink grant information, and the like.
  • the uplink grant information may be used to indicate that the terminal sends the time-frequency resource of the message 3.
  • the terminal needs to wait for a random access response (RAR) sent by the base station.
  • RAR random access response
  • the random access response time window may be carried in the system information, where the random access response time window refers to a time period in which the terminal attempts to receive the random access response after transmitting the random access preamble. If the terminal receives the random access response in the random access response time window, the message 3 is sent on the time-frequency resource specified by the random access response; if the terminal does not receive the random access response in the random access response time window , this random access process failed. The terminal can re-initiate the random access procedure.
  • S104 The terminal receives the random access response sent by the base station, and sends the message 3 on the time-frequency resource specified by the uplink grant information of the random access response.
  • S105 The base station receives the random access response sent by the terminal, and sends a message 4 to the terminal, where the terminal receives the message 4 sent by the base station.
  • Message 3 and Message 4 can be used to prevent conflicts.
  • Figure 4 illustrates the downlink beam alignment process using a random access procedure.
  • the specific random access procedure can be combined with the random access procedure in FIG.
  • the base station sends system information to the terminal by using a transmit beam in the first beam pair.
  • S202 The terminal receives the system information sent by the base station by using the receive beam in the first beam pair, and obtains parameter configuration information of the random access preamble according to the system information, and then generates a random access preamble according to the parameter configuration information.
  • S203 The terminal sends a random access preamble to the base station by using a transmit beam in the second beam pair.
  • the base station receives the random access preamble sent by the terminal by using the receive beam in the second beam pair, and sends the message 2 to the base station by using the transmit beam in the first beam pair.
  • uplink beam alignment is implemented by switching beam pairs in a random access procedure.
  • the first beam pair is the beam pair determined during the downlink beam alignment process
  • the second beam pair is the beam pair used in a successful random access procedure.
  • the second beam pair can be considered as the beam pair determined during the uplink beam alignment process.
  • S203 may be performed multiple times by switching beam pairs.
  • S205 The terminal sends the message 3 to the base station by using the transmit beam in the second beam pair on the time-frequency resource specified by the message 2.
  • the base station receives the message 3 sent by the terminal by using the receive beam in the second beam pair, and sends the message 4 to the terminal by using the transmit beam in the first beam pair.
  • the terminal receives the message 4 through the receive beam in the first beam pair.
  • the implementation process of the method interaction diagram shown in FIG. 4 can be as shown in FIG. 5.
  • the base station can generate beams 1, 2, 3, and the terminal can generate beams a, b.
  • a beam pair composed of the beam 2 and the beam a with the first beam pair and the second beam pair will be described as an example.
  • the embodiment of the present application provides an information transmission method and device, which can enable the terminal to perform the determination of the beam indication information during the random access process by transmitting the configuration information of the reference signal in the random access process. process.
  • the concepts of beam coarse tuning and beam fine tuning are introduced.
  • the beam alignment (including uplink beam alignment and downlink beam alignment) involved in the technical solution shown in FIG. 4 may be referred to as “beam coarse adjustment”, and the beam pair involved in the technical solution provided below is specifically The quasi-process is called "beam fine tuning.”
  • the beam indication information fed back in the technical solution provided by the present application may be indication information of a transmit beam in a beam pair obtained by beam fine adjustment.
  • the basic principle of this embodiment is that a wide beam pair obtained by coarse beam tuning starts a random access process, and transmits configuration information of the reference signal in a random access process to start performing beam fine tuning. In this way, the time required for beam alignment can be saved as much as possible on the basis of obtaining the beam performance gain.
  • the transmitting device and the receiving device can perform multiple beam fine adjustments.
  • the transmitting device (including the base station or the terminal) may be provided with at least two sets of beamforming devices/modules to generate at least two types of beams, each type of beam may include at least two beams, each of which has a different width.
  • the at least two beams include: a first type of beam and a second type of beam.
  • the width of the first type of beam is greater than the width of the second type of beam.
  • the first type of beam may be referred to as a wide beam, and the second type of beam. It can be called a narrow beam.
  • at least two beams further comprise: a third type of beam, and the third type of beam has a smaller width than the second type of beam, the second type of beam is a wide beam relative to the third type of beam.
  • the base station can generate at least two types of beams.
  • the terminal can generate at least two types of beams.
  • the message in the random access process of the LTE system (for example, system information, message 2, message 3, message 4, etc.) is taken as an example, which can save signaling overhead.
  • any of the following information (including configuration information of a reference signal, indication information of a transmit beam in a target beam pair, an uplink grant, etc.) is carried in which message, this application This is not limited.
  • the base station can generate a wide beam: beams 1, 2, and 3, and narrow beams: beams 21, 22, and 23
  • the terminal can generate beams a, b.
  • the first beam pair and the second beam pair are the same, and is a beam pair composed of beam 2 and beam a
  • the target beam pair is a beam pair composed of beam 22 and beam a.
  • the base station transmits a reference signal in message 2.
  • the reference signal carried in the message 2 may be a reference signal of the LTE system message 2 itself, or may be a reference signal designed to implement the technical solution provided by the present application.
  • the same time domain resource and/or frequency domain resource may be multiplexed by the reference signal transmitted by different beams.
  • the multiplexing mode may include but is not limited to at least one of the following: time division multiplexing, frequency division multiplexing, code division multiplexing. .
  • the schematic diagram of the random access procedure can be as shown in FIG. 6.
  • the base station transmits configuration information and a reference signal of the reference signal in message 2.
  • the terminal feeds back the indication information of the transmit beam in the target beam pair in message 3.
  • the method may include the following steps S301 to S307:
  • the base station receives the random access preamble sent by the terminal by using the receive beam in the second beam pair, and sends the message 2 to the base station by using multiple beams related to the transmit beam in the first beam pair.
  • One or more messages 2 can be sent by each beam, and the message 2 carries configuration information and a reference signal of the reference signal.
  • the configuration information of the reference signal carried in the message 2 may be carried on the time-frequency resource where the data of the message 2 is located; or the configuration information of the reference signal carried in the downlink control information (DCI) corresponding to the message 2 is carried.
  • DCI downlink control information
  • the terminal receives the base station and the first beam respectively according to the configuration information of the reference signal by using a receive beam in the first beam pair (or each of a plurality of beams related to the receive beam in the first beam pair).
  • the terminal sends a message 3 to the base station by using the transmit beam in the second beam pair on the time-frequency resource specified by the message 2.
  • the message 3 carries the indication information of the transmit beam in the target beam pair.
  • the method may further include: the base station sends an uplink grant to the terminal, the terminal receives the uplink grant, and sends the indication information of the transmit beam in the target beam pair on the time-frequency resource indicated by the uplink grant.
  • the time-frequency resource may be a part of the time-frequency resources occupied by the message 3, and may be other resources. This application does not limit this.
  • the base station receives the message 3 sent by the terminal by using the receive beam in the second beam pair; and sends the message 4 to the terminal by using the transmit beam in the first beam pair (or the transmit beam in the target beam pair).
  • the terminal receives the message 4 through the receive beam in the target beam pair.
  • the message 4 can be sent to the terminal through the transmit beam, such that the target beam pair is compared to the transmit beam in the first beam pair.
  • the transmitted beam is narrower, and the narrow beam has higher antenna gain, that is, the gain brought by transmitting and receiving signals is higher, so that higher signal reception quality can be obtained, and signal transmission efficiency is higher.
  • the base station transmits configuration information of the reference signal in the system information, and transmits the reference signal in the message 2.
  • the terminal feeds back the indication information of the transmit beam in the target beam pair in message 3.
  • FIG. 8 is a schematic diagram of interaction of an information transmission method provided by an embodiment of the present application.
  • the method shown in FIG. 8 may include the following steps S401 to S407:
  • the base station sends system information to the terminal by using a transmit beam in the first beam pair, where the system information carries configuration information of the reference signal.
  • the base station receives the random access preamble sent by the terminal by using the receive beam in the second beam pair, and generates a message 2 according to the configuration information of the reference signal; and respectively, by using multiple beams associated with the transmit beam in the first beam pair.
  • Message 2 is sent to the terminal, wherein one or more messages 2 can be transmitted through each beam, and the message 2 carries the reference signal.
  • the base station transmits a reference signal in message 4.
  • the reference signal carried in the message 4 may be a reference signal of the LTE system message 4 itself, or may be a reference signal designed to implement the technical solution provided by the present application.
  • the same time domain resource and/or frequency domain resource may be multiplexed by the reference signal transmitted by different beams.
  • the multiplexing mode may include but is not limited to at least one of the following: time division multiplexing, frequency division multiplexing, code division multiplexing. .
  • a schematic diagram of the random access procedure can be as shown in FIG.
  • the base station transmits configuration information of the reference signal in message 2 and a reference signal in message 4. After the message 4, the terminal feeds back the indication information of the transmit beam in the target beam pair.
  • the method may include the following steps S501 to S508:
  • the base station receives the random access preamble sent by the terminal by using the receive beam in the second beam pair, and sends the message 2 to the base station by using the transmit beam in the first beam pair, where the message 2 carries the configuration information of the reference signal.
  • the base station receives the message 3 sent by the terminal by using the receiving beam in the second beam pair, and sends the message 4 to the terminal by using multiple beams related to the transmitting beam in the first beam pair; wherein, each beam can be One or more messages 4 are sent, and the message 4 carries the reference signal.
  • the terminal receives the receiving beam in the first beam pair (or one or more beams related to the receiving beam in the first beam pair), and receives the base station through the first beam pair according to the configuration information of the reference signal. Transmitting a beam 4 message sent by a plurality of beams; then, determining a target beam pair based on the reference signals in the plurality of messages 4.
  • the terminal sends the feedback information of the message 4 by using the transmit beam in the second beam pair.
  • the feedback information of the message 4 includes the indication information of the transmit beam in the target beam pair.
  • the indication information of the transmit beam in the target beam pair may also not be carried in the feedback information of the message 4.
  • the application is not limited to this.
  • the method may include: S401 to S404, and S505 to S508.
  • the base station transmits the configuration information of the test signal in the system information.
  • the base station transmits configuration information and a reference signal of the reference signal in message 4. After the message 4, the terminal feeds back the indication information of the transmit beam in the target beam pair.
  • the method may include the following steps S601-S609:
  • the base station receives the message 3 sent by the terminal by using the receive beam in the second beam pair; and sends the message 4 to the terminal by using multiple beams related to the transmit beam in the first beam pair; wherein, each beam can be One or more messages 4 are transmitted, and the message 4 carries configuration information and a reference signal of the reference signal.
  • the configuration information of the reference signal carried in the message 4 may be carried on the time-frequency resource where the data of the message 4 is located; or the configuration information of the reference signal carried in the DCI corresponding to the message 4.
  • the application is not limited to this.
  • Scenario 3 The base station transmits a reference signal after message 4.
  • the reference signal may be a reference signal in the prior art, or may be a reference signal designed to implement the technical solution provided by the present application.
  • a schematic diagram of the random access procedure can be as shown in FIG.
  • the base station transmits configuration information of the reference signal in message 4 and transmits the reference signal after message 4. After the message 4, the terminal feeds back the indication information of the transmit beam in the target beam pair.
  • the method may include the following steps S701 to S709:
  • the base station receives the message 3 sent by the terminal by using the receive beam in the second beam pair, and sends the message 4 to the terminal by using the transmit beam in the first beam pair.
  • the message 4 carries the configuration information of the reference signal.
  • the terminal receives the message 4 sent by the base station through the receiving beam in the first beam pair.
  • the base station sends a reference signal to the terminal by using multiple beams related to the transmit beam in the first beam pair; wherein one or more reference signals can be sent through each beam.
  • the terminal receives, by the receiving beam in the first beam pair (or one or more beams related to the receiving beam in the first beam pair), according to the configuration information of the reference signal, respectively, the receiving base station and the first beam pair Transmitting a reference signal transmitted by a plurality of beams associated with the beam; and then determining a target beam pair based on the plurality of reference signals.
  • the configuration information that the base station sends the reference signal in the message 4 may be replaced by the configuration information that the base station sends the reference signal in the message 2, or the configuration information of the reference signal is sent in the system information, and the specific implementation process may refer to The relevant steps in the above embodiments are not repeated here.
  • the terminal may adjust the terminal receive beam according to the reference signal.
  • the method may further include: the terminal transmitting request information to the base station, the request information being used to request configuration information of the reference signal.
  • the request information may be carried in the message 3.
  • the terminal when the terminal sends the request information to the base station, the terminal does not limit the information.
  • the terminal when the terminal needs to send data, the terminal sends the request information to the base station, so that the base station sends configuration information of the reference signal to the terminal according to the indication information, and allocates a time-frequency resource that feeds back information indicating the transmit beam in the target beam pair.
  • the method may further include: the base station sending an uplink grant to the terminal, where the uplink grant is used to indicate a time-frequency resource used by the terminal to feed back indication information of the transmit beam in the target beam pair.
  • the uplink authorization may be carried in the message 2 or the message 4.
  • the application is of course not limited thereto.
  • the message may be a message transmitted during a random access procedure, or may be a message transmitted after a random access procedure.
  • the uplink grant may be transmitted before the message 3, for example, the uplink grant bearer is in the message 2, and the time-frequency resource indicated by the uplink grant may be the resource in the message 3.
  • This embodiment can be applied to the embodiment shown in FIG. 7 or FIG. 8, but the present application is not limited thereto.
  • the uplink grant may be transmitted before the feedback information of the message 4, for example, the uplink grant is carried in the message 2 or the message 4, and the time-frequency resource indicated by the uplink grant may be the feedback of the message 4. Resources in the information.
  • This embodiment can be applied to the embodiment shown in FIG. 10 or FIG. 11, but the present application is not limited thereto.
  • the time-frequency resource indicated by the uplink grant may not be a resource in a certain message in the random access procedure, for example, may be in the random access procedure, after sending the message 4, to the terminal Send an upstream license. It should be understood by those skilled in the art that in this case, the terminal feeds back the indication information of the transmit beam in the target beam pair on the time-frequency resource indicated by the uplink grant.
  • the message 3 carries the indication information, where the indication information indicates that the base station sends an uplink grant to the terminal in the message 4, and the terminal feeds back the target beam pair on the time-frequency resource specified by the uplink grant included in the message 4. Information about the transmitted beam.
  • the terminal carries the indication information in the message 3, the indication information instructing the base station to send the reference signal and/or the reference signal configuration information in the message 4.
  • the first beam pair determined after the preliminary alignment of the downlink beam is performed between the base station and the terminal is a beam pair with better downlink channel quality, but other beam pairs with better channel quality than the first beam pair may exist. .
  • a beam pair in which one channel quality is superior to the first beam pair is hereinafter referred to as a "third beam pair".
  • the method may further include: the terminal sending the indication information to the base station, where the indication information is used to indicate the third beam pair.
  • the indication information may be an explicit indication information or an implicit indication information.
  • the indication information may be carried in a message in the prior art, such as message 3.
  • the application is not limited to this.
  • the third beam pair may be indicated by information such as a time index of a downlink synchronization signal block transmitted on the third beam pair, or an index of a transmission beam in the third beam pair.
  • beam fine alignment can be implemented based on the third beam pair, that is, the base station transmits a reference signal to the terminal by using multiple beams related to the transmit beam in the third beam pair, wherein each beam transmits one or more
  • the reference signal may be carried in the message 2 or the message 4, although the application is not limited thereto. It should be understood by those skilled in the art that when the features in the embodiment are applied to any of the embodiments provided above, some of the terms may need to be modified accordingly, and are not described herein again. In this embodiment, it can be understood that one of the beam pairs (ie, the first beam pair) initially determined by the downlink beam preliminary alignment process starts to perform a random access procedure, and continues to perform the downlink beam while performing the random access procedure.
  • the terminal determines a beam pair with better channel quality
  • the information of the transmit beam in the beam pair is fed back, thereby performing beam fine alignment based on the beam pair.
  • the beam gain can be improved while saving the execution time of the random access process.
  • the base station may send a data channel, a control channel, a sounding signal, and the like to the terminal through the transmit beam in the target beam pair, and the terminal may receive the transmit data channel sent by the base station by using the receive beam in the target beam pair. , control channels and sounding signals, etc., to improve beam performance gain.
  • the terminal can generate at least two types of beams.
  • the base station can generate at least two types of beams.
  • the method may include the following steps S801 to S804:
  • the base station sends configuration information of the reference signal to the terminal by using the transmit beam in the first beam pair, where the configuration information of the reference signal may be sent in the system information or the message 2 or the message 4.
  • the terminal receives configuration information of the reference signal sent by the base station by using the receive beam in the first beam pair, and sends a reference to the base station by using multiple beams related to the transmit beam in the second beam pair according to the configuration information of the reference signal.
  • a signal wherein one or more reference signals are transmitted to the base station by each beam, and time domain and/or frequency domain resources may be multiplexed between reference signals transmitted through different beams.
  • step S802 may be performed after the terminal receives the message 4 in the random access procedure, which is of course not limited thereto.
  • the base station sends, by using a receive beam in the second beam pair (or one or more beams related to the receive beam in the second beam pair), each beam of the receiving terminal related to the transmit beam in the second beam pair.
  • the reference signal and the target beam pair are determined based on the received reference signal.
  • the base station sends the indication information of the transmit beam in the target beam pair to the terminal by using the transmit beam in the first beam pair (or the transmit beam in the target beam pair).
  • the terminal receives information of the transmit beam in the target beam pair transmitted by the base station through the receive beam in the first beam pair.
  • the terminal may send a data channel, a control channel, a sounding signal, and the like to the base station through the transmit beam in the target beam pair, and the base station may receive the transmit data channel and control sent by the receive beam in the target beam pair.
  • each network element such as a base station or a terminal.
  • each network element such as a base station or a terminal.
  • it includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide a function module into a base station or a terminal according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions:
  • the embodiment of the invention further provides an information transmission device.
  • the information transmission device can be a base station.
  • Figure 15 shows a schematic diagram of a simplified base station structure.
  • the base station includes a 1501 part and a 1502 part.
  • the 1501 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1502 part is mainly used for baseband processing and control of base stations.
  • the 1501 portion may be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 1502 portion is typically the control center of the base station and may be generally referred to as a processing unit for controlling the base station to perform the steps performed by the base station in any of the above-described Figures 7, 8, 10, 11, 13, or 14. For details, please refer to the description of the relevant part above.
  • the transceiver unit of the 1501 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 1501 portion may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 1501 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 1502 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to the base station control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the sending unit may be configured to: send configuration information of the reference signal and an uplink grant to the terminal, where the configuration information of the reference signal is sent in a random access procedure.
  • the receiving unit may be configured to: receive beam indication information that is sent by the terminal by using a time-frequency resource indicated by the uplink grant.
  • the sending unit may be configured to send configuration information of the reference signal to the terminal, where the configuration information of the reference signal is sent in a random access procedure, to instruct the terminal to send according to the reference signal configuration information.
  • Reference signal may be configured to receive a reference signal sent by the terminal, and send beam indication information to the terminal according to the reference signal.
  • the configuration information of the reference signal is sent in system information or message 2 or message 4 in the random access procedure.
  • the uplink grant is sent in message 2 or message 4 in the random access procedure; or the uplink grant is sent after message 4 in the random access procedure.
  • the receiving unit is further configured to: receive first request information sent by the terminal, where the first request information is used to request configuration information of the reference signal.
  • the first request information may be carried in message 3 of the random access procedure.
  • the sending unit is further configured to: send the reference signal in message 2 or message 4 of the random access procedure, or send the reference signal after sending the message 4.
  • the sending unit is further configured to: send multiple reference signals by using multiple beams, where each beam sends one or more reference signals, and the beam indicated by the beam indication information is one of the multiple beams. Beam.
  • the embodiment of the invention further provides an information transmission device, which may be a terminal.
  • the terminal can be used to perform the steps performed by the terminal in any of Figures 7, 8, 10, 11, 13, or 14.
  • Figure 16 shows a simplified schematic diagram of the terminal structure. It is convenient for understanding and illustration.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminals, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminals may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal, and the processor having the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1601 and a processing unit 1602.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1601 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1601 is regarded as a sending unit, that is, the transceiver unit 1601 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the receiving unit may be configured to receive configuration information and an uplink grant of a reference signal sent by a base station, where configuration information of the reference signal is received in a random access procedure.
  • the sending unit may be configured to: send the beam indication information to the base station by using the time-frequency resource indicated by the uplink grant.
  • the receiving unit may be configured to receive configuration information of a reference signal sent by a base station, where configuration information of the reference signal is received in a random access procedure.
  • the sending unit may be configured to send a reference signal to the base station according to the configuration information of the reference signal.
  • the receiving unit is further configured to receive beam indication information sent by the base station.
  • the configuration information of the reference signal is received in system information or message 2 or message 4 in the random access procedure.
  • the uplink grant is sent in message 2 or message 4 in the random access procedure; or the uplink grant is sent after message 4 in the random access procedure.
  • the sending unit is further configured to: send the first request information to the base station; where the first request information is used to request configuration information of the reference signal.
  • the first request information may be carried in the message 3.
  • the receiving unit is further configured to: receive the reference signal according to the configuration information of the reference signal.
  • the reference signal is received in the message 4 in the random access procedure according to the configuration information of the reference signal; or, according to the configuration information of the reference signal, after receiving the message 4 in the random access procedure, the receiving base station sends Reference signal.
  • the receiving unit 1502 is further configured to: send the second request information to the base station, where the second request information is used to request to obtain the beam indication information.
  • the second request information may be carried in the message 3 in the random access process, or in other messages in the prior art.
  • the application is not limited thereto.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信息传输方法和装置,涉及通信技术领域,用以适应新无线(new radio,NR)的发展。该方法可以包括:向终端发送参考信号的配置信息和上行授权,其中,所述参考信号的配置信息是在随机接入过程中发送的;接收所述终端通过所述上行授权所指示的时频资源,发送的波束指示信息。

Description

一种信息传输方法和装置
本申请要求于2017年05月05日提交中国专利局、申请号为201710313782.8、申请名称为“一种信息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法和装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在5G以及未来无线通信系统中,波束成型技术用来将传输信号的能量限制在某个波束方向内,从而增加信号和接收的效率。波束成型技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。然而,在采用波束成型技术的通信网络中,需要将发送波束和接收波束匹配(波束对准),使得接收波束获得来自发送波束比较好的信号质量,否则无法取得比较高的通信效率甚至无法进行通信。通常,可以通过波束扫描来实现发送波束和接收波束的匹配。然而,当发送波束和接收波束数量比较多的时候,波束扫描会耗费大量的时间与资源。因此,在使用多波束的通信网络中,可采取比较宽的波束,来进行初始下行同步和上行同步,从而降低需要扫描的波束数量,并减少资源浪费。然而,宽波束带来的增益比较低,会造成通信效率低。为了取得更高的数据通信效率,需要使用更高增益的波束,则需要降低波束宽度。
发明内容
本申请提供一种信息传输方法和装置,以适应NR系统的发展。
第一方面,本申请提供了一种信息传输方法和装置。
在一种可能的设计中,该信息传输方法可以包括:向终端发送参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中发送的。然后,接收终端通过上行授权所指示的时频资源,发送的波束指示信息。这样,通过在随机接入过程中发送参考信号的配置信息,使得终端在随机接入过程中,即可开始执行确定波束指示信息的过程,该技术方案可适用于NR系统。该方法的执行主体可以是基站。
在一种可能的设计中,参考信号的配置信息是在随机接入过程中的系统信息或消息2或消息4中发送的。
在一种可能的设计中,上行授权是在随机接入过程中的消息2或消息4中发送的;或者,上行授权是在随机接入过程中的消息4之后发送的。上行授权所指示的时频资源可以是消息3中的时频资源,或消息4的反馈消息中的时频资源,或现有技术中的其他消息中的时频资源,另外还可以是其他时频资源。
在一种可能的设计中,该方法还可以包括:接收终端发送的第一请求信息,其中,第一请求信息用于请求参考信号的配置信息。其中,第一请求信息可以携带在现有技术中的一个消息中,例如随机接入过程的消息3中,当然本申请不限于此。
在一种可能的设计中,该方法还可以包括:在随机接入过程的消息2或消息4中发送参考信号,或者在发送消息4之后,发送参考信号。可选的,通过多个波束发送多个参考信号,其中,通过每个波束发送一个或多个参考信号,不同波束发送的参考信号之间可以复用时域和/或频域资源。该情况下,波束指示信息所指示的波束可以是该多个波束中的其中一个波束,例如可以是信道质量满足预设条件的一个波束。
相应的,本申请还提供了一种信息传输装置,该装置可以实现第一方面所述的信息传输方法。例如,该装置可以是基站,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:发送单元和接收单元;其中,发送单元用于向终端发送参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中发送的。接收单元用于接收终端通过上行授权所指示的时频资源,发送的波束指示信息。
第二方面,本申请提供了另一种信息传输方法和装置。
在一种可能的设计中,该信息传输方法可以包括:接收基站发送的参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中接收的。然后,通过上行授权所指示的时频资源,向基站发送波束指示信息。其有益效果可参考上文。该方法的执行主体可以是终端。
在一种可能的设计中,参考信号的配置信息是在随机接入过程中的系统信息或消息2或消息4中发送的。当然本申请不限于此。
在一种可能的设计中,上行授权是在随机接入过程中的消息2或消息4中接收的;或上行授权是在随机接入过程中的消息4之后接收的。当然本申请不限于此。
在一种可能的设计中,该方法还可以包括:向基站发送第一请求信息;其中,第一请求信息用于请求参考信号的配置信息。其中,该第一请求信息可以携带在消息3或现有技术中的其他消息中,当然本申请不限于此。
在一种可能的设计中,该方法还可以包括:根据参考信号的配置信息,接收参考信号。可选的,根据参考信号的配置信息,在随机接入过程中的消息4中接收基站发送的参考信号;或者,根据参考信号的配置信息,在接收到随机接入过程中的消息4之后,接收基站发送的参考信号。
相应的,本申请还提供了一种信息传输装置,该装置可以实现第二方面所述的信息传输方法。例如,该装置可以是基站,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:接收单元和发送单元。其中,接收单元可以用于接收基站发送的参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中接收的。发送单元可以用于通过上行授权所指示的时频资源,向基站发送波束指示信息。
第三方面,本申请提供了另一种信息传输方法和装置。
在一种可能的设计中,该方法可以包括:向终端发送参考信号的配置信息,其中,参考信号的配置信息是在随机接入过程中发送的,以指示终端根据参考信号配置信息发送参考信号。然后,接收终端发送的参考信号,并根据参考信号向终端发送波束指示信息。其有益效果可参考上文。该方法的执行主体可以是基站。
在一种可能的设计中,参考信号的配置信息是在系统信息或随机接入过程中的消息2或消息4中发送的。当然本申请不限于此。
在一种可能的设计中,该方法还可以包括:接收终端发送的第二请求信息,用于请求获取波束指示信息。然后,根据第二请求信息和参考信号,确定波束指示信息。其中,第二请求信息可以携带在随机接入过程中的消息3中,或现有技术的其他消息中,当然本申请不限于此。
相应的,本申请还提供了一种信息传输装置,该装置可以实现第三方面所述的信息传输方法。例如,该装置可以是终端,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:发送单元和接收单元。其中,发送单元可以用于向终端发送参考信号的配置信息,其中,参考信号的配置信息是在随机接入过程中发送的,以指示终端根据参考信号配置信息发送参考信号。接收单元可以用于接收终端发送的参考信号,并根据参考信号向终端发送波束指示信息。
第四方面,本申请提供了另一种信息传输方法和装置。
在一种可能的设计中,该方法可以包括:接收基站发送的参考信号的配置信息,其中,参考信号的配置信息是在随机接入过程中接收的;根据参考信号的配置信息向基站发送参考信号;接收基站发送的波束指示信息。其有益效果可参考上文。该方法的执行主体可以是终端。
在一种可能的设计中,参考信号的配置信息是在随机接入过程中的系统信息或消息2或消息4中接收的,当然不限于此。
在一种可能的设计中,该方法还可以包括:向基站发送第二请求信息,其中,第二请求信息用于请求获取波束指示信息。其中,第二请求信息可以携带在随机接入过程中的消息3中,或现有技术的其他消息中,当然本申请不限于此。
相应的,本申请还提供了一种信息传输装置,该装置可以实现第四方面的信息传输方法。例如,该装置可以是终端,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第四方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:接收单元和发送单元。其中,接收单元可以用于接收基站发送的参考信号的配置信息,其中,参考信号的配置信息是在随机接入过程中接收的。发送单元可以用于根据参考信号的配置信息向基站发送参考信号。接收单元还可以用于:接收基站发送的波束指示信息。
在一种可能的设计中,根据所述参考信号的配置信息向基站发送参考信号,可以包括:根据所述参考信号的配置信息,通过多个波束向基站发送参考信号;其中,通过每个波束发送一个或多个参考信号,通过不同波束发送的参考信号之间可以复用时域和/或频域资源。该情况下,波束指示信息所指示的波束可以是该多个波束中的其中一个波束,例如可以是信道质量满足预设条件的一个波束。
基于上文任一方面提供的任一可能的设计,波束指示信息包括以下信息中的至少一种:波束的索引,波束对应的端口的索引,波束对应的参考信号的索引等。
基于上文任一方面提供的任一可能的设计,所述参考信号包括以下任一种:CSI-RS,DMRS等,另外也可以是为了实现本申请提供的技术方案而设计的参考信号。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
可以理解地,上述提供的任一种装置或计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的技术方案所适用的一种系统架构示意图;
图2为本申请实施例提供的一种宽波束和与该宽波束相关的窄波束的示意图;
图3为本申请实施例提供的一种LTE系统中随机接入方法的交互示意图;
图4为本申请实施例提供的一种随机接入方法的交互示意图;
图5为本申请实施例提供的一种随机接入方法的过程示意图;
图6为本申请实施例提供的另一种随机接入方法的过程示意图;
图7为本申请实施例提供的一种信息传输方法的交互示意图;
图8为本申请实施例提供的另一种信息传输方法的交互示意图;
图9为本申请实施例提供的另一种随机接入方法的过程示意图;
图10为本申请实施例提供的另一种信息传输方法的交互示意图;
图11为本申请实施例提供的另一种信息传输方法的交互示意图;
图12为本申请实施例提供的另一种种随机接入方法的过程示意图;
图13为本申请实施例提供的另一种信息传输方法的交互示意图;
图14为本申请实施例提供的另一种信息传输方法的交互示意图;
图15为本申请实施例提供的一种信息传输装置的结构示意图;
图16为本申请实施例提供的另一种信息传输装置的结构示意图。
具体实施方式
本申请提供的技术方案可以应用于各种使用了多波束技术的通信系统,例如,现有通信系统基础上采用多波束技术,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,基站与基站之间的通信场景,基站与终端之间的通信场景等。本申请实施例提供的技术方案也可以应用于5G通信系统中的终端与终端之间的通信,或基站与基站之间的通信等场景中。
图1给出了一种通信系统示意图,该通信系统可以包括至少一个基站100(仅示出1个)以及与基站100连接的一个或多个终端200。
基站100可以是能和终端200通信的设备。基站100可以是中继站或接入点等。基站100可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站100还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
波束(beam)和波束对(beam pair link,BPL)被引入到通信系统中。波束是一种通信资源。波束可包括宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形(beamforming)技术或者其他技术手段。波束成形技术具体可以为数字波束成形技术、模拟波束成形技术、混合波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为一个波束。一个波束可以对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可看作是一个天线端口集。波束对建立在波束的概念 上。一个波束对通常包括发射端设备的一个发射波束和接收端设备的一个接收波束。
在通信系统中,例如,NR系统中,发射端设备和接收端设备均可生成多个波束。在传输数据之前,需要先进行波束对准,以选择出信道质量较好的一个波束对。波束对准可以包括下行波束对准和上行波束对准。
例如,下行波束对准的过程可以包括:基站通过每个发射波束向终端发送一个或多个参考信号,其中,通过不同发射波束发送的参考信号之间可以进行资源复用(例如通过时分、频分、码分方式或其结合方式进行时域和/或频域资源复用);终端分别通过多个接收波束中的每个接收波束,接收基站的每个发射波束发送的参考信号,然后,根据所接收的多个参考信号估计出基站的每个发射波束到终端的每个接收波束的信道质量,并确定信道质量满足预设条件的一个波束对,并将该波束对中的指示发射波束的信息(也可称为波束指示信息)反馈给基站。后续,基站可以利用该波束对中的发射波束发送控制信道、数据信道或者探测信号等,终端可以利用该波束对中的接收波束接收基站发送的控制信道、数据信道或者探测信号等。
例如,假设基站可生成3个发射波束,分别标记为波束1、2、3;终端可生成2个接收波束,分别标记为波束a、b。那么,基站通过波束1、2、3分别发送参考信号1、2、3;终端通过波束a接收参考信号1、2、3,并通过波束b接收参考信号1、2、3,然后,根据所接收的参考信号确定传输这些参考信号的波束对(具体为:波束1与波束a构成的波束对,波束2与波束a构成的波束对,波束3与波束a构成的波束对,波束1与波束b构成的波束对,波束2与波束b构成的波束对,波束3与波束b构成的波束对)的信道质量,并确定满足预设条件的一个波束对,假设确定的波束对是波束3与波束a构成的波束对,则可以将指示波束3的信息反馈给基站。
例如,上行波束对准的过程可以包括:终端通过每个发射波束向基站发送一个或多个参考信号,其中,通过不同发射波束发送的参考信号之间可以进行资源复用(例如通过时分、频分、码分方式或其结合方式进行时域和/或频域资源复用);基站分别通过多个接收波束中的每个接收波束,接收终端的每个发射波束发送的参考信号,然后,根据所接收的多个参考信号估计出终端的每个发射波束到基站的每个接收波束的信道质量,并确定信道质量满足预设条件的一个波束对。后续,终端可以利用该波束对中的发射波束发送控制信道、数据信道或者探测信号等,基站可以利用该波束对中的接收波束接收终端发送的控制信道、数据信道或者探测信号等。
下行波束对准的过程中所确定的波束对和上行波束对准过程中所确定的波束对可以是同一个波束对,也可以是不同的波束对。
下面对本申请中涉及的部分用语进行解释说明,以方便理解:
第一波束对,指下行波束粗调过程(即下行波束初步对准过程)中确定的波束对。基站可以通过第一波束对中的发射波束向终端发送下行同步信号块。其中,下行同步信号块用于下行初始时间和频率同步。
第二波束对,指上行波束粗调过程(即上行波束初步对准过程)中确定的波束对。
第三波束对,指下行波束粗调过程中确定的信道指令优于第一波束对的一个波束对,基站可以通过第三波束对中的发射波束向终端发送下行同步信号块。
目标波束对,指下行/上行波束精调过程(即下行/上行初步精对准过程)中确定的 波束对。
与一波束相关的波束,即与一宽波束相关的窄波束,是指与宽波束的方向大致相同,覆盖范围大致相同的多个窄波束。其中,这里的“宽波束”是相对于这里的“窄波束”而言的。本申请对“大致相同”是在哪个范围内相同不进行限定,其可根据本领域技术人员的理解而定。示例的,如图2所示,为本申请提供的一种与宽波束相关的多个窄波束的示意图,其中,窄波束包括窄波束1和窄波束2。
本申请中涉及了“与第一波束对中的发射波束相关的波束”、“与第一波束对中的接收波束相关波束”等。其中,与第一波束对中的发射波束相关波束的数量,和与第一波束对中的接收波束相关的波束的数量可以相等,也可以不相等。
参考信号:可以是现有技术中的一种参考信号,例如但不限于信道状态信息参考信号(channel state information reference signal,CSI-RS)或者解调参考信号(demodulation reference signal,DMRS)等。也可以是为了实现本申请提供的技术方案而设计的参考信号。
参考信号的配置信息,可以包括但不限于:指示参考信号的时频资源位置的信息,时频资源的密度、参考信号对应的端口信息,参考信号的复用方式等。
波束指示信息,可以包括但不限于以下至少一种:波束的索引、波束对应的天线端口的索引,波束对应的参考信号的索引,下行同步信号块的时间索引(synchronization signal block time index)等。例如,波束指示信息可以是波束对应的CSI-RS端口号或者DMRS端口号等。本申请对波束的索引,天线端口的索引和参考信号的索引均不进行限定,例如可以是相对索引也可以是绝对索引。可选的,若多个参考信号之间时分复用,则参考信号的索引可以是发送参考信号的时间索引;若多个参考信号之间频分复用,则参考信号的索引可以是发送参考信号的频率索引等。
本文中的术语“多个”是指两个或两个以上。
本文中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一符号组和第二符号组仅仅是为了区分不同的符号组,并不对其先后顺序进行限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
当引入波束的概念之后,可以利用随机接入过程实现波束对准。
下面结合图3,以LTE系统为例,对随机接入过程进行说明。
S101:基站向终端发送系统信息(system information),例如,系统信息块2(system information block-2,SIB2)。
S102:终端接收基站发送的系统信息,并根据系统信息获取随机接入前导的参数配置信息,然后根据该参数配置信息生成随机接入前导,向基站发送随机接入前导。
随机接入前导用于承载前导序列,前导序列可以用于标识终端等。LTE中定义了多种前导格式,不同前导格式的时间长度可以不同。指示终端采用的前导格式的信息可在系统信息中携带。
S103:基站接收终端发送的随机接入前导,并对接收到的随机接入前导进行检测, 若检测到前导序列,并且估计出传输该前导序列的信道的时延,则向终端发送随机接入响应(即消息2)。
随机接入响应可携带前导序列的索引、时间提前量(time advance),上行授权(uplink grant)信息等。上行授权信息可用于指示终端发送消息3的时频资源。
需要说明的是,终端在发送完一个随机接入前导之后,需要等待基站发送的随机接入响应(random access response,RAR)。在LTE系统中,可在系统信息中携带随机接入响应时间窗,随机接入响应时间窗是指终端发送随机接入前导之后,尝试接收随机接入响应的时间段。若终端在随机接入响应时间窗内接收到了随机接入响应,则在随机接入响应指定的时频资源上发送消息3;若终端在随机接入响应时间窗内没有接收到随机接入响应,则本次随机接入过程失败。终端可以重新发起随机接入过程。
S104:终端接收基站发送的随机接入响应,并在随机接入响应的上行授权信息指定的时频资源上发送消息3。
S105:基站接收终端发送的随机接入响应,并向终端发送消息4,终端接收基站发送的消息4。
至此,本次随机接入过程结束。其中,消息3和消息4可用于防止冲突。
图4示出了,利用随机接入过程进行下行波束对准过程。具体随机接入过程可结合图3中的随机接入过程。
S201:基站通过第一波束对中的发射波束向终端发送系统信息。
S202:终端通过第一波束对中的接收波束接收基站发送的系统信息,并根据系统信息获取随机接入前导的参数配置信息,然后根据该参数配置信息生成随机接入前导。
S203:终端通过第二波束对中的发射波束向基站发送随机接入前导。
S204:基站通过第二波束对中的接收波束接收终端发送的随机接入前导,并通过第一波束对中的发射波束向基站发送消息2。
结合图4所示的随机接入过程及其相关描述,可以理解:在随机接入过程中,通过切换波束对来实现上行波束对准。第一波束对是在下行波束对准过程中确定的波束对,第二波束对是一次成功的随机接入过程所使用的波束对。第二波束对可以认为是上行波束对准过程中所确定的波束对。在某些情况下,例如,在随机接入失败的情况下可以通过切换波束对,多次执行S203。
S205:终端通过第二波束对中的发射波束,在消息2指定的时频资源上,向基站发送消息3。
S206:基站通过第二波束对中的接收波束,接收终端发送的消息3;并通过第一波束对中的发射波束,向终端发送消息4。终端通过第一波束对中的接收波束,接收消息4。
图4所示的方法交互图的实现过程可如图5所示。在图5中,基站可产生波束1、2、3,终端可产生波束a、b。并且,为了方便描述,以第一波束对和第二波束对是波束2和波束a构成的波束对为例进行说明。
本申请实施例提供了一种信息传输方法和装置,该技术方案可通过在随机接入过程中发送参考信号的配置信息,使得终端在随机接入过程中,即可开始执行确定波束指示信息的过程。
在本申请的一个实施例中,引入了波束粗调和波束精调的概念。具体的,可以将图4所示的技术方案中涉及的波束对准(包括上行波束对准和下行波束对准)称为“波束粗调”,将下文中提供的技术方案中涉及的波束对准过程称为“波束精调”。该情况下,本申请提供的技术方案中反馈的波束指示信息,可以是波束精调得到的波束对中的发射波束的指示信息。本实施例的基本原理为:通过波束粗调得到的宽波束对开始进行随机接入过程,并在随机接入过程中发送参考信号的配置信息,以开始执行波束精调。这样,能够在获得波束性能增益的基础上,尽量节省波束对准所需的时间。
在有的实施方式中,发射端设备和接收端设备可以执行多次波束精调。发射端设备(包括基站或终端)可以设置至少两套波束成型器件/模块,以产生至少两类波束,每类波束可以包括至少两个波束,每类波束的宽度不同。例如,至少两个波束包括:第一类波束和第二类波束,第一类波束的宽度大于第二类波束的宽度,该情况下,第一类波束可称为宽波束,第二类波束可称为窄波束。可以理解的,,假设至少两个波束还包括:第三类波束,且第三类波束的宽度小于第二类波束,则相对第三类波束而言,第二类波束为宽波束。
下面以本申请提供的方法应用于下行波束精对准过程为例进行说明,在下行波束精对准过程中,基站可产生至少两类波束。可选的,终端可产生至少两类波束。
需要说明的是,下文中以复用LTE系统的随机接入过程中的消息(例如系统信息,消息2,消息3,消息4等)为例进行说明,这样可以节省信令开销。在本申请的其他实现方式中,下文中的任一信息(包括参考信号的配置信息、目标波束对中的发射波束的指示信息、上行授权(uplink grant)等)携带在哪个消息中,本申请对此不进行限定。
另外需要说明的是,下文具体示例(如图6、9、12)中,是以如下场景进行说明的:基站可产生宽波束:波束1、2、3,窄波束:波束21、22、23,终端可产生波束a、b。并且,为了描述方便,以第一波束对和第二波束对相同,且是波束2和波束a构成的波束对,目标波束对是波束22和波束a构成的波束对。
下面通过发送参考信号的时机区分不同场景,以说明本申请提供的下行波束精对准方法:
场景1:基站在消息2中发送参考信号。消息2中携带的参考信号可以是LTE系统消息2本身的参考信号,也可以是为了实现本申请提供的技术方案而设计的参考信号。通过不同波束发送的参考信号可以复用相同的时域资源和/或频域资源,例如,复用方式可以包括但不限于以下至少一种:时分复用、频分复用、码分复用。该场景中,随机接入过程的示意图可以如图6所示。
在本申请的一个实施例中,基站在消息2中发送参考信号的配置信息和参考信号。终端在消息3中反馈目标波束对中的发射波束的指示信息。如图7所示,该方法可以包括以下步骤S301~S307:
S301~S303:可参考S201~S203部分的相关描述,当然本申请不限于此。
S304:基站通过第二波束对中的接收波束接收终端发送的随机接入前导,并通过与第一波束对中的发射波束相关的多个波束分别向基站发送消息2。其中,通过每个波束可以发送一个或多个消息2,消息2中携带参考信号的配置信息和参考信号。
消息2中携带的参考信号的配置信息可以承载在消息2的数据所在的时频资源上;或者,承载在消息2对应的下行控制信息(downlink control information,DCI)中携带参考信号的配置信息。当然本申请并不限于此。
S305:终端通过第一波束对中的接收波束(或与第一波束对中的接收波束相关的多个波束中的每个波束),根据参考信号的配置信息,分别接收基站通过与第一波束对中的发射波束相关的多个波束发送的消息2;然后,根据多个消息2中的参考信号,确定目标波束对。
该步骤的具体实现过程可参考上文提供的下行波束对准过程,此处不再赘述。
S306:终端通过第二波束对中的发射波束,在消息2指定的时频资源上,向基站发送消息3,其中,消息3中携带目标波束对中的发射波束的指示信息。
在一种实现方式中,该方法还可以包括:基站向终端发送上行授权,终端接收该上行授权,并在该上行授权所指示的时频资源上,发送目标波束对中的发射波束的指示信息。其中,时频资源可以是消息3所占的时频资源中的部分资源,另外,还可以是其他的资源,本申请对此不进行限定。
S307:基站通过第二波束对中的接收波束,接收终端发送的消息3;并通过第一波束对中的发射波束(或目标波束对中的发射波束),向终端发送消息4。终端通过目标波束对中的接收波束,接收消息4。
由于在S306中,基站已获知目标波束对中的发射波束,因此,在S307中,可以通过该发射波束向终端发送消息4,这样,由于相比第一波束对中的发射波束,目标波束对中的发射波束更窄,窄波束具有更高的天线增益,即发送和接收信号时带来的增益更高,因此能够获取更高的信号接收质量,信号传输的效率更高。
在本申请的一个实施例中,基站在系统信息中发送参考信号的配置信息,在消息2中发送参考信号。终端在消息3中反馈目标波束对中的发射波束的指示信息。
如图8所示,为本申请实施例提供的一种信息传输方法的交互示意图。图8所示的方法可以包括以下步骤S401~S407:
S401:基站通过第一波束对中的发射波束向终端发送系统信息,其中,该系统信息中携带参考信号的配置信息。
S402~S403:可参考S202~S203部分的相关描述,当然本申请不限于此。
S404:基站通过第二波束对中的接收波束接收终端发送的随机接入前导,并按照参考信号的配置信息,生成消息2;并通过与第一波束对中的发射波束相关的多个波束分别向终端发送消息2,其中,通过每个波束可以发送一个或多个消息2,消息2中携带参考信号。
S405~S407:可参考S305~S307部分的相关描述,当然本申请不限于此。
场景2:基站在消息4中发送参考信号。消息4中携带的参考信号可以是LTE系统消息4本身的参考信号,也可以是为了实现本申请提供的技术方案而设计的参考信号。通过不同波束发送的参考信号可以复用相同的时域资源和/或频域资源,例如,复用方式可以包括但不限于以下至少一种:时分复用、频分复用、码分复用。该场景中,随机接入过程的示意图可以如图9所示。
在本申请的一个实施例中,基站在消息2中发送参考信号的配置信息,在消息4 中发送参考信号。终端在消息4之后,反馈目标波束对中的发射波束的指示信息。如图10所示,该方法可以包括以下步骤S501~S508:
S501~S503:可参考S201~S203部分的相关描述,当然本申请不限于此。
S504:基站通过第二波束对中的接收波束接收终端发送的随机接入前导,并通过第一波束对中的发射波束向基站发送消息2,其中消息2中携带参考信号的配置信息。
S505:可参考S205部分的相关描述,当然本申请不限于此。
S506:基站通过第二波束对中的接收波束,接收终端发送的消息3;并通过与第一波束对中的发射波束相关的多个波束,向终端发送消息4;其中,通过每个波束可以发送一个或多个消息4,消息4中携带参考信号。
S507:终端通过第一波束对中的接收波束(或与第一波束对中的接收波束相关的一个或多个波束),根据参考信号的配置信息,分别接收基站通过与第一波束对中的发射波束相关的多个波束发送的消息4;然后,根据多个消息4中的参考信号,确定目标波束对。
该步骤的具体实现过程可参考上文提供的下行波束对准过程,此处不再赘述。
S508:终端通过第二波束对中的发射波束,发送消息4的反馈信息;其中,消息4的反馈信息中包括目标波束对中的发射波束的指示信息。目标波束对中的发射波束的指示信息也可以不携带在消息4的反馈信息中。当然本申请并不限于此。
在本申请的一个实施例中,可以包括:S401~S404,以及S505~S508。该情况下,基站在系统信息中发送考信号的配置信息。
在本申请的一个实施例中,基站在消息4中发送参考信号的配置信息和参考信号。终端在消息4之后,反馈目标波束对中的发射波束的指示信息。如图11所示,该方法可以包括以下步骤S601~S609:
S601~S605:可参考S201~S205部分的相关描述,当然本申请不限于此。
S606:基站通过第二波束对中的接收波束,接收终端发送的消息3;并通过与第一波束对中的发射波束相关的多个波束,向终端发送消息4;其中,通过每个波束可以发送一个或多个消息4,消息4中携带参考信号的配置信息和参考信号。
消息4中携带的参考信号的配置信息可以承载在消息4的数据所在的时频资源上;或者,承载在消息4对应的DCI中携带参考信号的配置信息。当然本申请并不限于此。
S607~S608:可参考S507~S508部分的相关描述,当然本申请不限于此。
场景3:基站在消息4之后发送参考信号。该参考信号可以是现有技术中的一种参考信号,也可以是为了实现本申请提供的技术方案而设计的参考信号。该场景中,随机接入过程的示意图可以如图12所示。
在本申请的一个实施例中,基站在消息4中发送参考信号的配置信息,并在消息4之后发送参考信号。终端在消息4之后,反馈目标波束对中的发射波束的指示信息。如图13所示,该方法可以包括以下步骤S701~S709:
S701~S705:可参考S201~S205部分的相关描述,当然本申请不限于此。
S706:基站通过第二波束对中的接收波束,接收终端发送的消息3;并通过第一波束对中的发射波束,向终端发送消息4;其中,消息4中携带参考信号的配置信息。终端通过第一波束对中的接收波束,接收基站发送的消息4。
S707:基站通过与第一波束对中的发射波束相关的多个波束,向终端发送参考信号;其中,通过每个波束可以发送一个或多个参考信号。
S708:终端通过第一波束对中的接收波束(或与第一波束对中的接收波束相关的一个或多个波束),根据参考信号的配置信息,分别接收基站通过与第一波束对中的发射波束相关的多个波束发送的参考信号;然后,根据多个参考信号,确定目标波束对。
S709:可参考S508部分的相关描述,当然本申请不限于此。
可选的,基站在消息4中发送参考信号的配置信息,可以被替换为基站在消息2中发送参考信号的配置信息,或在系统信息中发送参考信号的配置信息,其具体实现过程可参考上文实施例中的相关步骤,此不不再赘述。
在场景3的各实施例中,终端可以根据参考信号调整终端接收波束。
基于上文提供的任一实施例,该方法还可以包括:终端向基站发送请求信息,该请求信息用于请求参考信号的配置信息。可选的,该请求信息可以携带在消息3中,当然本申请不限于此。本申请实施例对终端在何种情况下,终端向基站发送请求信息不进行限定。例如,终端在有数据需要发送时,向基站发送请求信息,以使得基站根据该指示信息,为终端发送参考信号的配置信息,以及分配反馈指示目标波束对中发射波束的信息的时频资源。
基于上文提供的任一实施例,该方法还可以包括:基站向终端发送上行授权,其中,上行授权用于指示终端反馈目标波束对中的发射波束的指示信息时所使用的时频资源。其中,上行授权可以承载在消息2或消息4中,当然本申请并不限于此。该消息可以是随机接入过程中传输的消息,也可以是随机接入过程之后传输的消息。
在本申请的一个实施例中,上行授权可以是在消息3之前传输的,例如上行授权承载在消息2中,则上行授权所指示的时频资源可以是消息3中的资源。该实施例可应用于图7或图8所示的实施例中,当然本申请并不限于此。
在本申请的一个实施例中,上行授权可以是在消息4的反馈信息之前传输的,例如上行授权承载在消息2或消息4中,则上行授权所指示的时频资源可以是消息4的反馈信息中的资源。该实施例可应用于图10或图11所示的实施例中,当然本申请不限于此。
在本申请的一个实施例中,上行授权所指示的时频资源可以不是随机接入过程中的某一消息中的资源,例如,可以是在随机接入过程中,发送消息4之后,向终端发送上行授权。本领域技术人员应当理解,该情况下,终端在上行授权所指示的时频资源上反馈目标波束对中的发射波束的指示信息。
本申请的一个实施例中,在消息3中携带指示信息,该指示信息指示基站在消息4中发送上行授权给终端,终端在消息4中包含的上行授权指定的时频资源上反馈目标波束对中的发射波束的信息。
在本申请的一个实施例中,终端在消息3中携带指示信息,该指示信息指示基站在消息4中发送参考信号和/或参考信号配置信息。
可以理解的,基站和终端之间执行下行波束初步对准后确定的第一波束对,是下行信道质量较好的一个波束对,但是可能存在其他的信道质量优于第一波束对的波束 对。下文中将其中的一个信道质量优于第一波束对的波束对称为“第三波束对”。
基于此,在本申请的一个实施例中,该方法还可以包括:终端向基站发送指示信息,其中,指示信息用于指示第三波束对。该指示信息可以是显式指示信息,也可以是隐式指示信息。该指示信息可以携带在现有技术中的一个消息中,例如消息3。当然本申请并不限于此。例如,可以通过第三波束对上发送的下行同步信号块的时间索引,或第三波束对中的发射波束的索引等信息来指示第三波束对。该情况下,可以基于该第三波束对实现波束精对准,即基站通过与第三波束对中的发射波束相关的多个波束向终端发送参考信号,其中,每个波束发送一个或多个参考信号,该参考信号可以承载在消息2或消息4中,当然本申请不限于此。本领域技术人员应该理解,在将该实施例中的特征应用于上文提供的任一实施例中时,部分用语可能需要随之修改,此处不再赘述。该实施例中,可以理解为:通过下行波束初步对准过程初步确定的一个波束对(即第一波束对)开始执行随机接入过程,并在执行随机接入过程的同时,继续执行下行波束初步对准,然后,在终端确定了信道质量更好的波束对的情况下,反馈该波束对中的发射波束的信息,从而基于该波束对进行波束精对准。这样,能够在节省随机接入过程的执行时间的同时,提高波束增益。
在上述任一实施例中,后续,基站可以通过目标波束对中的发射波束向终端发送数据信道、控制信道和探测信号等,终端可以通过目标波束对中的接收波束接收基站发送的发送数据信道、控制信道和探测信号等,从而提高波束性能增益。
本领域技术人员应当理解的时,在不冲突的情况下,上文中的不同实施例中的特征可以进行重组,从而得到一个新的实施例,此处不再赘述。
上述各实施例描述的是如何进行下行波束精对准的过程,下文中描述如何进行上行波束精对准的过程。在上行波束精对准过程中,终端可产生至少两类波束。可选的,基站可产生至少两类波束。
如图14所示,该方法可以包括以下步骤S801~S804:
S801:基站通过第一波束对中的发射波束向终端发送参考信号的配置信息,其中,参考信号的配置信息可以是在系统信息或消息2或消息4中发送的。
其中,S801的具体实现过程可以参考上文,此处不再赘述。
S802:终端通过第一波束对中的接收波束接收基站发送的参考信号的配置信息,并根据参考信号的配置信息,通过与第二波束对中的发射波束相关的多个波束,向基站发送参考信号,其中,通过每个波束向基站发送一个或多个参考信号,通过不同波束发送的参考信号之间可以复用时域和/或频域资源。
可选的,步骤S802可以在终端接收到随机接入过程中的消息4之后执行,当然不限于此。
S803:基站通过第二波束对中的接收波束(或与第二波束对中的接收波束相关的一个或多个波束),接收终端的与第二波束对中的发射波束相关的每个波束发送的参考信号,并根据所接收的参考信号,确定目标波束对。
S804:基站通过第一波束对中的发射波束(或目标波束对中的发射波束)向终端发送目标波束对中的发射波束的指示信息。终端通过第一波束对中的接收波束接收基站发送的目标波束对中的发射波束的信息。
在本实施例中,后续,终端可以通过目标波束对中的发射波束向基站发送数据信道、控制信道和探测信号等,基站可以通过目标波束对中的接收波束接收终端发送的发送数据信道、控制信道和探测信号等,从而提高波束性能增益。
本领域技术人员应当理解的时,在不冲突的情况下,上文中的不同实施例中的特征可以进行重组,从而得到一个新的实施例,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站或者终端。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站或者终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
本发明实施例还提供一种信息传输装置。该信息传输装置可以是基站。图15示出了一种简化基站结构示意图。基站包括1501部分以及1502部分。1501部分主要用于射频信号的收发以及射频信号与基带信号的转换;1502部分主要用于基带处理,对基站进行控制等。1501部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1502部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述图7、8、10、11、13或14任一附图中关于基站所执行的步骤。具体可参见上述相关部分的描述。
1501部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将1501部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1501部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1502部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,所述发送单元可以用于:向终端发送参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中发送的。所述接收单元可以用于:接收终端通过上行授权所指示的时频资源,发送的波束指示信息。
在另一种实现方式中,所述发送单元可以用于向终端发送参考信号的配置信息, 其中,参考信号的配置信息是在随机接入过程中发送的,以指示终端根据参考信号配置信息发送参考信号。所述接收单元可以用于接收终端发送的参考信号,并根据参考信号向终端发送波束指示信息。
可选的,参考信号的配置信息是在随机接入过程中的系统信息或消息2或消息4中发送的。
可选的,上行授权是在随机接入过程中的消息2或消息4中发送的;或者,上行授权是在随机接入过程中的消息4之后发送的。
可选的,所述接收单元还可以用于:接收终端发送的第一请求信息,其中,第一请求信息用于请求参考信号的配置信息。第一请求信息可以携带在随机接入过程的消息3中。
可选的,发送单元还可以用于:在随机接入过程的消息2或消息4中发送参考信号,或者在发送消息4之后,发送参考信号。
可选的,发送单元还可以用于:通过多个波束发送多个参考信号,其中,每个波束发送一个或多个参考信号,波束指示信息所指示的波束是该多个波束中的其中一个波束。
本发明实施例还提供一种信息传输装置,该信息传输装置可以是终端。该终端可以用于执行图7、8、10、11、13或14任一附图中终端所执行的步骤。图16示出了一种简化的终端结构示意图。便于理解和图示方便,图16中,终端以手机作为例子。如图2所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图16所示,终端包括收发单元1601和处理单元1602。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1601中用于实现接收功能的器件视为接收单元,将收发单元1601中用于实现发送功能的器件视为发送单元,即收发单元1601包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接 收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,所述接收单元可以用于接收基站发送的参考信号的配置信息和上行授权,其中,参考信号的配置信息是在随机接入过程中接收的。所述发送单元可以用于:通过上行授权所指示的时频资源,向基站发送波束指示信息。在另一种实现方式中,所述接收单元可以用于接收基站发送的参考信号的配置信息,其中,参考信号的配置信息是在随机接入过程中接收的。所述发送单元可以用于根据参考信号的配置信息向基站发送参考信号。所述接收单元还可以用于接收基站发送的波束指示信息。
可选的,参考信号的配置信息是在随机接入过程中的系统信息或消息2或消息4中接收的。
可选的,上行授权是在随机接入过程中的消息2或消息4中发送的;或者,上行授权是在随机接入过程中的消息4之后发送的。
可选的,所述发送单元还可以用于:向基站发送第一请求信息;其中,第一请求信息用于请求参考信号的配置信息。该第一请求信息可以携带在消息3中。
可选的,所述接收单元还可以用于:根据参考信号的配置信息,接收参考信号。可选的,根据参考信号的配置信息,在随机接入过程中的消息4中接收参考信号;或者,根据参考信号的配置信息,在接收到随机接入过程中的消息4之后,接收基站发送的参考信号。
可选的,接收单元1502还可以用于:向基站发送第二请求信息,其中,第二请求信息用于请求获取波束指示信息。其中,第二请求信息可以携带在随机接入过程中的消息3中,或现有技术的其他消息中,当然本申请并不限于此。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不 排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种信息传输方法,其特征在于,包括:
    向终端发送参考信号的配置信息和上行授权,其中,所述参考信号的配置信息是在随机接入过程中发送的;
    接收所述终端通过所述上行授权所指示的时频资源发送的波束指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述参考信号的配置信息是在所述随机接入过程中的消息2或消息4中发送的。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述上行授权是在所述随机接入过程中的消息2或消息4中发送的;
    或者,所述上行授权是在所述随机接入过程中的消息4之后发送的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端在所述随机接入过程中发送的消息3,其中,所述消息3中携带第一请求信息,用于请求所述参考信号的配置信息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    在所述随机接入过程中的消息4中发送所述参考信号;
    或者,发送消息4之后,发送所述参考信号。
  6. 根据利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    通过多个波束发送多个所述参考信号;其中,通过每个波束发送一个或多个所述参考信号,所述波束指示信息所指示的波束是所述多个波束中的其中一个波束。
  7. 一种信息传输方法,其特征在于,包括:
    接收基站发送的参考信号的配置信息和上行授权,其中,所述参考信号的配置信息是在随机接入过程中接收的;
    通过所述上行授权所指示的时频资源,向所述基站发送波束指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述参考信号的配置信息是在所述随机接入过程中的消息2或消息4中接收的。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述上行授权是在所述随机接入过程中的消息2或消息4中接收的;
    或者,所述上行授权是在所述随机接入过程中的消息4之后接收的。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,在接收基站发送的参考信号的配置信息之前,所述方法包括:
    在所述随机接入过程中的消息3中,向所述基站发送第一请求信息;其中,所述第一请求信息用于请求所述参考信号的配置信息。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,所述方法还包括:
    根据所述参考信号的配置信息,在所述随机接入过程中的消息4中接收所述基站发送的所述参考信号;
    或者,根据所述参考信号的配置信息,在接收到消息4之后,接收所述基站发送的所述参考信号。
  12. 一种信息传输方法,其特征在于,包括:
    向终端发送参考信号的配置信息,其中,所述参考信号的配置信息是在随机接入 过程中发送的;
    接收所述终端发送的参考信号;
    根据所述参考信号,向所述终端发送波束指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述参考信号的配置信息是在所述随机接入过程中的消息2或消息4中发送的。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    接收所述终端在所述随机接入过程中的发送的消息3,其中,所述消息3中携带第二请求信息,用于请求获取波束指示信息;
    根据所述第二请求信息和所述参考信号,确定所述波束指示信息。
  15. 一种信息传输方法,其特征在于,包括:
    接收基站发送的参考信号的配置信息,其中,所述参考信号的配置信息是在随机接入过程中接收的;
    根据所述参考信号的配置信息向所述基站发送参考信号;
    接收所述基站发送的波束指示信息。
  16. 根据权利要求15所述的方法,其特征在于,所述参考信号的配置信息是在随机接入过程中的消息2或消息4接收的。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    在所述随机接入过程中的消息3中,向所述基站发送第二请求信息,其中,所述第二请求信息用于请求获取波束指示信息。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,根据所述参考信号的配置信息向所述基站发送参考信号,包括:
    根据所述参考信号的配置信息,通过多个波束向所述基站发送参考信号;其中,通过每个波束发送一个或多个参考信号,所述波束指示信息所指示的波束是所述多个波束中的其中一个波束。
  19. 根据权利要求1至18任一项所述的方法,其特征在于,所述波束指示信息包括以下信息中的至少一种:波束的索引,波束对应的端口的索引,波束对应的参考信号的索引。
  20. 根据权利要求1至19任一项所述的方法,其特征在于,所述参考信号包括以下任一种:信道状态信息参考信号CSI-RS,解调参考信号DMRS。
  21. 一种信息传输装置,用于执行如权利要求1至20任一项所述的方法。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时,使得如权利要求1至20任一项所述的方法被执行。
PCT/CN2018/085174 2017-05-05 2018-04-28 一种信息传输方法和装置 WO2018202017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313782.8A CN108809585B (zh) 2017-05-05 2017-05-05 一种信息传输方法和装置
CN201710313782.8 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018202017A1 true WO2018202017A1 (zh) 2018-11-08

Family

ID=64016824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085174 WO2018202017A1 (zh) 2017-05-05 2018-04-28 一种信息传输方法和装置

Country Status (2)

Country Link
CN (1) CN108809585B (zh)
WO (1) WO2018202017A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123888A1 (en) * 2019-01-18 2022-04-21 Zte Corporation Information Transmission Method and Apparatus, Communication Device, Communication Node and Computer-Readable Storage Medium
US20220191709A1 (en) * 2019-03-19 2022-06-16 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method user equipment and base station
WO2022265542A1 (en) * 2021-06-14 2022-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Early beam management for wireless communication network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014363B (zh) * 2019-12-19 2022-06-10 维沃移动通信有限公司 Dmrs端口指示的方法及设备
WO2022170624A1 (en) * 2021-02-12 2022-08-18 Qualcomm Incorporated Beam selection for random access in a hierarchical beam architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765792A (zh) * 2011-06-17 2014-04-30 三星电子株式会社 用于在毫米波移动宽带通信系统中支持网络进入的装置和方法
US20160183234A1 (en) * 2014-12-19 2016-06-23 Electronics And Telecommunications Research Institute Method and apparatus for beam switching in mobile communication network
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2620033B1 (en) * 2010-09-22 2017-09-13 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for establishing a radio connection in a communication system
KR101957698B1 (ko) * 2012-02-06 2019-03-14 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 상향링크 자원 할당 방법 및 장치
CN105453629B (zh) * 2013-08-05 2019-03-15 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置
WO2015042858A1 (zh) * 2013-09-27 2015-04-02 华为技术有限公司 通信的方法、用户设备和基站
JP2015185953A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置
KR101925698B1 (ko) * 2014-03-25 2018-12-05 텔레폰악티에볼라겟엘엠에릭슨(펍) 빔 기반의 물리적 랜덤 액세스를 위한 시스템 및 방법
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765792A (zh) * 2011-06-17 2014-04-30 三星电子株式会社 用于在毫米波移动宽带通信系统中支持网络进入的装置和方法
US20160183234A1 (en) * 2014-12-19 2016-06-23 Electronics And Telecommunications Research Institute Method and apparatus for beam switching in mobile communication network
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "RACH Procedures and Resource Configuration", 3GPP RSG RAN WG1 MEETING #88 R1-1701724, 17 February 2017 (2017-02-17), pages 1 - 2, XP051208890 *
HUAWEI: "UL beam management", 3GPP RSG RAN WG1 MEETING #88B RL-1704231, 7 April 2017 (2017-04-07), XP051242383 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123888A1 (en) * 2019-01-18 2022-04-21 Zte Corporation Information Transmission Method and Apparatus, Communication Device, Communication Node and Computer-Readable Storage Medium
US20220191709A1 (en) * 2019-03-19 2022-06-16 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method user equipment and base station
WO2022265542A1 (en) * 2021-06-14 2022-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Early beam management for wireless communication network

Also Published As

Publication number Publication date
CN108809585A (zh) 2018-11-13
CN108809585B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2018202017A1 (zh) 一种信息传输方法和装置
CN112152687B (zh) 通信方法、终端及网络设备
WO2018201913A1 (zh) 信息的上报、接收方法、装置及计算机可读存储介质
WO2018210243A1 (zh) 一种通信方法和装置
WO2017135455A1 (ja) ユーザ装置、及びランダムアクセス方法
WO2020228589A1 (zh) 通信方法和通信装置
US20200092768A1 (en) User equipment (ue) and method for performing random access for beamforming-based connected mode handover
WO2018202178A1 (zh) 波束恢复方法及装置
CN109257754B (zh) 一种上报及确定波束信息的方法和装置
US20220225425A1 (en) Random Access Method And Apparatus
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
JP2018537032A (ja) キャリアアグリゲーションで通信するための方法
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
JP2022520269A (ja) ランダムアクセス方法および装置
CN114765506A (zh) 辅链路的psfch传输方法及装置、计算机可读存储介质
CN116783840A (zh) 对多trp场景中波束组报告的增强
EP3641147A1 (en) Indicating and information determining method and device
US9432958B2 (en) Method and its apparatus for transmitting a continuous signal
CN111279624A (zh) 客户端设备、网络接入节点及其方法
CN115804228A (zh) 用于通信的方法、设备和计算机存储介质
CN111919472B (zh) 用于bwp的随机接入响应
WO2018137401A1 (zh) 数据发送方法、装置、网络侧设备、终端和存储介质
CN111757351B (zh) 数据接收和发送方法及装置
KR20220150571A (ko) 랜덤 액세스 제어 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794121

Country of ref document: EP

Kind code of ref document: A1