WO2015041502A1 - 전파를 이용한 이미지 센싱 장치 - Google Patents

전파를 이용한 이미지 센싱 장치 Download PDF

Info

Publication number
WO2015041502A1
WO2015041502A1 PCT/KR2014/008833 KR2014008833W WO2015041502A1 WO 2015041502 A1 WO2015041502 A1 WO 2015041502A1 KR 2014008833 W KR2014008833 W KR 2014008833W WO 2015041502 A1 WO2015041502 A1 WO 2015041502A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
antenna module
antenna
sensing device
signal
Prior art date
Application number
PCT/KR2014/008833
Other languages
English (en)
French (fr)
Inventor
김문일
김태진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015041502A1 publication Critical patent/WO2015041502A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects

Definitions

  • the present invention relates to an image sensing device capable of detecting an image using radio waves.
  • electromagnetic wave propagation e.g. RF, microwaves, military waves, terahertz waves, etc.
  • insulators such as clothing or bags, and teams weapons concealed in public places like airport Underground is very useful for sensing images for secure search.
  • An object of the present invention is to provide an image sensing device capable of detecting an image in real time using radio waves.
  • the present invention is to provide an image sensing device using a radio wave capable of detecting an image by mounting a multi-sensor on a single chip in the antenna structure connected in the form of a grid or patch array instead of an independent individual antenna.
  • the present invention is to provide an image sensing device using a radio wave that can increase the number of pixels to improve the resolution of the radio wave image and can be reduced in size and light weight.
  • an image sensing device capable of detecting an image using radio waves.
  • the lens An antenna module including a grid array antenna and receiving a radio wave signal focused through the lens using the grid array antenna; And an image processing unit for converting a signal received through the antenna module into an image signal.
  • a DC voltage wire for transmitting DC voltage is transmitted to a point where the metal wire overlaps, and the DC voltage wire may vertically penetrate the substrate.
  • the antenna module may further include a detector for converting the radio signal into a direct current voltage, wherein the detector may be disposed in each cell of the grid array.
  • a metal reflector may be disposed on the rear surface of the antenna module.
  • the grid has a very small cell size compared to the wavelength of the radio waves.
  • the lens An antenna module including a patch array antenna, the antenna module for receiving a focused radio signal through the lens through the patch array; And an image processing unit for converting a signal received through the antenna module into an image signal.
  • Each patch in the patch array antenna may be in the form of a hexagon or a square.
  • the patch size may be reduced due to the edge addition capacitance effect added to the patch.
  • the antenna module further includes a detector for converting the radio signal into a direct current voltage, wherein the detector may be mounted between the patch and the patch.
  • the patch When the patch is hexagonal, the patch may be equipped with three detectors, and each of the three detectors may extract different polarization information.
  • a DC voltage wire is formed at a central point where a null of an electromagnetic signal is generated according to resonance at an operating frequency, and the DC voltage wire penetrates a rear surface of the patch to a substrate. May be connected to transfer the DC voltage to the substrate.
  • the patch array may reduce the size of the patch by increasing the capacitance of each cell by placing a metal surface overlapping the bottom of the patch. This extra edge capacitance in the form of a patch array that places a metal face at the bottom of each patch can provide up to 30 percent patch reduction.
  • the patch array may overlap the patches to increase the pixel count.
  • an image sensing device using radio waves it is possible to detect an image by mounting multiple sensors in an antenna structure connected in a grid or patch array form instead of independent individual antennas.
  • the present invention can increase the pixel count to improve the resolution of the propagated image, and can be made small and light in weight.
  • FIG. 1 is a view schematically showing the configuration of an image sensing device using radio waves according to an embodiment of the present invention.
  • Figure 2 is a block diagram schematically showing the configuration of an antenna module according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an antenna module implemented in a grid form according to an embodiment of the present invention.
  • Figure 4 is a graph showing the reception performance of the antenna unit of the grid form according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an antenna module implemented in the form of a patch array in which each patch is closely disposed according to another embodiment of the present invention
  • FIG. 6 is a diagram illustrating an antenna module implemented in the form of a patch array in which metal patterns are superimposed to increase additional capacitance according to another embodiment of the present invention.
  • FIG. 7 illustrates an antenna module implemented in the form of a patch array in which detectors are individually connected to overlapping metal patterns according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a view schematically showing the configuration of an image sensing device using radio waves according to an embodiment of the present invention
  • Figure 2 is a block diagram schematically showing the configuration of an antenna module according to an embodiment of the present invention
  • 3 is a diagram illustrating an antenna module implemented in a grid form according to an embodiment of the present invention
  • FIG. 4 is a graph illustrating reception performance of an antenna unit in a grid form according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating an antenna module implemented in the form of a patch array in which each patch is closely disposed according to another embodiment of the present invention, and FIG. 6 overlaps a metal pattern for further capacitance increase according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an antenna module implemented in the form of a patch array disposed thereon, and FIG. 7 illustrates a detector separately disposed on an overlapping metal pattern according to another embodiment of the present invention.
  • FIG. I s a diagram illustrating an antenna module implemented in the form of a connected patch array.
  • an image sensing device 100 includes a lens 110, an antenna module 120, and an image processor 130.
  • the lens 110 is a means for focusing a radio wave signal.
  • the lens 110 may focus a radio wave signal emitted through an external object.
  • the propagation signal may be a military wave signal.
  • the radio wave signal emitted by the external object focused through the lens 110 is received through the antenna module 120.
  • the antenna module 120 is a means for receiving a radio wave signal focused through the lens 110.
  • the antenna module 120 includes an antenna unit 210, a detector 220, and a DC voltage wire 230.
  • the antenna unit 210 may be connected in the form of a grid (or mesh) or in the form of a patch array.
  • the antenna unit 210 may be formed in a grid form or a mesh form.
  • the antenna unit 210 may be formed by arranging metal wires on a top surface of a circuit board in a first direction and arranging metal wires in a second direction perpendicular to the first direction.
  • the metal wires may be arranged spaced apart from each other in the first direction and the second direction.
  • the metal wires arranged in the form of a two-dimensional grid or mesh can be spaced at regular intervals to have a cell size of less than 0.1 wavelength.
  • the metal wire may be made of the same or similar metal material as that of the dipole antenna.
  • the detector 220 is disposed at the center of each cell divided according to the cross arrangement of the metal wires in the first direction and the second direction.
  • the detector 220 is a means for converting a radio wave signal received through the antenna unit 210 into a DC voltage and outputting the DC voltage.
  • 4 illustrates a reception performance graph of the antenna unit 210 connected in a grid form. As shown in FIG. 4, it can be seen that the coupling is maximized when providing a capacitive component just before the resistance is shorted to offset the lead inductance of the grid.
  • the detector 220 may be disposed for each cell.
  • each cell has a point where a metal wire crosses each other in a first direction and a second direction (that is, a first point at which the DC voltage wire 230 is disposed and a second at which the DC voltage wire 230 is disposed. Metal wires separated by points).
  • DC voltage wires 230 vertically penetrating the circuit board may be disposed at each point where the metal wires cross. Accordingly, the detector 220 may convert the radio signal into a DC voltage and then output the DC signal to the image processor 130 through the DC voltage wire 230 vertically penetrated along the circuit board.
  • the DC voltage wire 230 vertically penetrates to the rear surface of the substrate and is connected to the image processor 130.
  • the DC voltage wire 230 is a means for outputting the DC voltage converted by each detector 220 to the image processor 130 through the substrate.
  • the antenna unit 210 may be implemented in the form of a patch array.
  • Each patch shape may be hexagonal or rectangular, as shown in FIGS. 5 and 7.
  • Each patch size reduces the spacing between patches, overlaps two patches, or places lumped capacitor elements between patches and patch gaps, resulting in increased capacitance in each cell. Can be reduced.
  • each patch formed in the antenna unit 210 may be arranged spaced apart a predetermined interval, the detection unit 220 is disposed between each patch and each patch.
  • each patch may be equipped with three detectors 220, and each of the three detectors 220 mounted in each patch may extract different polarization information.
  • the capacitance of each cell may be further increased by overlapping and arranging metal surfaces around the patch array.
  • This extra edge capacitance in the form of a patch array that places a metal face at the bottom of each patch can provide up to 30 percent patch reduction.
  • four detection units 220 may be mounted in each cell.
  • Four detection units 220 mounted on each patch may extract two different polarization information, vertical and horizontal.
  • a resonant patch as shown in FIG. 7 may be superimposed on multiple substrates, and a detector may be connected to each patch to solve the problem of FIG. 6.
  • All patches that resonate at the operating frequency generate a null of the electromagnetic signal at the center point of the patch, and a DC voltage wire can be connected to the central point where the null of the electromagnetic signal occurs.
  • the DC voltage wire 230 may be formed to vertically penetrate the circuit board through the patch back surface at the patch center point. Accordingly, the DC voltage converted by the detector 220 may be output to the image processor 130 connected to the substrate through the DC voltage wire.
  • the DC voltage wire 230 is formed at the center point of each patch (ie, the point where the null of the electromagnetic signal is generated) and connected to vertically penetrate the circuit board, thereby detecting the detector 220 without additional DC filter.
  • the DC voltage wire 230 is formed at the center point of each patch (ie, the point where the null of the electromagnetic signal is generated) and connected to vertically penetrate the circuit board, thereby detecting the detector 220 without additional DC filter.
  • the image processor 130 is a means for converting a signal received through the antenna module 120 into an image signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

전파를 이용한 이미지 센싱 장치가 개시된다. 전파를 이용한 이미지 센싱 장치는 렌즈; 그리드 어레이 안테나를 포함하고, 상기 그리드 어레이 안테나를 이용하여 상기 렌즈를 통해 집속된 전파 신호를 수신하는 안테나 모듈; 및 상기 안테나 모듈을 통해 수신된 신호를 영상 신호로 변환하기 위한 영상 처리부를 포함한다.

Description

전파를 이용한 이미지 센싱 장치
본 발명은 전파를 이용하여 이미지를 탐지할 수 있는 이미지 센싱 장치에 관한 것이다.
일반적인 카메라가 사용하는 가시광선은 달리 전자기장 전파(예를 들어, RF, 마이크로웨이브, 밀리터리파, 테라헤르츠파 등)은 의류나 가방과 같은 절연체를 투과하여 공항과 같은 공공 장소에서 은닉된 무기를 팀지하는 보안 검색용 이미지 센싱에 매우 유용하다.
현재는 주로 단일 픽셀 전파 탐지기를 기계적으로 이동시켜 이미지를 스캔하는 방식을 주로 사용하고 있는데, 이는 긴 시간이 소요되고 장비가 대형화되는 단점이 있다.
본 발명은 전파를 이용하여 이미지를 실시간으로 탐지할 수 있는 이미지 센싱 장치를 제공하기 위한 것이다.
또한, 본 발명은 독립된 개별 안테나 대신 그리드 형태 또는 패치 어레이 형태로 연결된 안테나 구조에 다중 센서를 단일 칩에 장착하여 이미지를 탐지할 수 있는 전파를 이용한 이미지 센싱 장치를 제공하기 위한 것이다.
이로 인해, 본 발명은 픽셀 갯수를 증가시켜 전파 이미지의 해상도를 향상시킬 수 있으며 소형 경량화할 수 있는 전파를 이용한 이미지 센싱 장치를 제공하기 위한 것이다.
본 발명의 일 측면에 따르면, 전파를 이용하여 이미지를 탐지할 수 있는 이미지 센싱 장치가 제공된다.
본 발명의 일 실시예에 따르면, 렌즈; 그리드 어레이 안테나를 포함하고, 상기 그리드 어레이 안테나를 이용하여 상기 렌즈를 통해 집속된 전파 신호를 수신하는 안테나 모듈; 및 상기 안테나 모듈을 통해 수신된 신호를 영상 신호로 변환하기 위한 영상 처리부를 포함하는 이미지 센싱 장치가 제공될 수 있다.
상기 그리드 어레이 안테나는, 금속 와이어가 중첩되는 지점에 전파 탐지결과를 전송하는 DC 전압 전달용 DC 볼티지 와이어가 형성되되, 상기 DC 볼티지 와이어는 기판을 수직 관통할 수 있다.
상기 안테나 모듈은 상기 전파 신호를 직류 전압으로 변환하기 위한 검출기를 더 포함하되, 상기 검출기는 상기 그리드 어레이의 각 셀에 배치될 수 있다.
상기 안테나 모듈 후면에는 금속 반사판이 배치될 수 있다.
상기 그리드 어레이 안테나에서 그리드는 전파의 파장에 비해 매우 작은 셀 크기를 갖는다.
본 발명의 다른 실시예에 따르면, 렌즈; 패치 어레이 안테나를 포함하며, 상기 패치 어레이를 통해 상기 렌즈를 통해 집속된 전파 신호를 수신하기 위한 안테나 모듈; 및 상기 안테나 모듈을 통해 수신된 신호를 영상 신호로 변환하기 위한 영상 처리부를 포함하는 이미지 센싱 장치가 제공될 수 있다.
상기 패치 어레이 안테나에서 각 패치의 육각형 또는 사각형 형태일 수 있다.
상기 패치 어레이에서 이웃한 패치와의 간격을 줄일 경우, 패치에 추가되는 가장자리 추가 캐패시턴스 효과로 인해 패치의 크기를 축소시킬 수 있다.
상기 안테나 모듈은, 상기 전파 신호를 직류 전압으로 변환하기 위한 검출기를 더 포함하되, 상기 검출기는 패치와 패치 사이에 장착될 수 있다.
상기 패치가 육각형인 경우, 상기 패치는 3개의 검출기가 장착되고, 상기 3개의 검출기는 각각 상이한 편파 정보를 추출할 수 있다.
상기 패치는 동작 주파수에서의 공진에 따라 전자기장 신호의 널(Null)이 발생되는 중앙 지점에 DC 볼티지 와이어(voltage wire)가 형성되되, 상기 DC 볼티지 와이어는 상기 패치의 후면을 관통하여 기판에 연결되어 상기 직류 전압을 상기 기판으로 전달할 수 있다.
*상기 패치가 사각형 형태인 경우, 상기 패치 어레이는 금속면을 상기 패치 하단에 중첩하여 배치함으로써 각 셀의 정전용량(capacitance)를 증가시켜 패치의 크기를 축소시킬 수 있다. 이렇게 각 패치의 하단에 금속 면을 배치시키는 패치 어레이 형태의 가장자리 추가 캐패시턴스는 최대 30퍼센트의 패치 축소 효과를 제공할 수 있다.
상기 패치 어레이는 상기 패치를 중첩하여 배치시켜 픽셀 카운트를 증가시킬 수 있다.
본 발명의 일 실시예에 따른 전파를 이용한 이미지 센싱 장치를 제공함으로써, 독립된 개별 안테나 대신 그리드 형태 또는 패치 어레이 형태로 연결된 안테나 구조에 다중 센서를 장착하여 이미지를 탐지할 수 있다.
이로 인해, 본 발명은 픽셀 카운트를 증가시켜 전파 이미지의 해상도를 향상시킬 수 있고, 소형 경량화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전파를 이용한 이미지 센싱 장치의 구성을 개략적으로 도시한 도면.
도 2는 본 발명의 일 실시예에 따른 안테나 모듈의 구성을 개략적으로 도시한 블록도.
도 3은 본 발명의 일 실시예에 따른 그리드 형태로 구현된 안테나 모듈을 예시한 도면.
도 4는 본 발명의 일 실시예에 따른 그리드 형태의 안테나부의 수신 성능을 나타낸 그래프.
도 5는 본 발명의 다른 실시예에 따른 각 패치가 근접 배치된 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면.
도 6은 본 발명의 또 다른 실시예에 따른 추가 커패시턴스 증가를 위해 금속 패턴을 중첩 배치한 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면.
도 7은 본 발명의 또 다른 실시예에 따른 중첩 배치된 금속 패턴에 개별적으로 검출기가 연결된 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 전파를 이용한 이미지 센싱 장치의 구성을 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 안테나 모듈의 구성을 개략적으로 도시한 블록도이며, 도 3은 본 발명의 일 실시예에 따른 그리드 형태로 구현된 안테나 모듈을 예시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 그리드 형태의 안테나부의 수신 성능을 나타낸 그래프이며, 도 5는 본 발명의 다른 실시예에 따른 각 패치가 근접 배치된 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면이고, 도 6은 본 발명의 또 다른 실시예에 따른 추가 커패시턴스 증가를 위해 금속 패턴을 중첩 배치한 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면이고, 도 7은 본 발명의 또 다른 실시예에 따른 중첩 배치된 금속 패턴에 개별적으로 검출기가 연결된 패치 어레이 형태로 구현된 안테나 모듈을 예시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 이미지 센싱 장치(100)는 렌즈(110), 안테나 모듈(120) 및 영상 처리부(130)를 포함하여 구성된다.
렌즈(110)는 전파 신호를 집속하기 위한 수단이다.
예를 들어, 렌즈(110)는 외부 객체를 통해 방사된 전파 신호를 집속할 수 있다. 여기서, 전파 신호는 밀리터리파 신호일 수 있다.
렌즈(110)를 통해 집속된 외부 객체에 의해 방사된 전파 신호는 안테나 모듈(120)을 통해 수신된다.
안테나 모듈(120)은 렌즈(110)를 통해 집속된 전파 신호를 수신하기 위한 수단이다.
도 2에 도시된 바와 같이, 안테나 모듈(120)은 안테나부(210), 검출부(220) 및 DC 볼티지 와이어(230)를 포함한다. 여기서, 안테나부(210)는 그리드(또는 메시) 형태로 연결되거나 패치 어레이 형태로 연결될 수 있다.
본 발명의 제1 실시예에 따르면, 안테나부(210)는 그리드 형태 또는 메시 형태로 형성될 수 있다.
도 3를 참조하면, 안테나부(210)는 회로 기판의 상면에 금속 와이어(wire)를 제1 방향으로 배열시키고, 제1 방향과 수직하는 제2 방향으로 금속 와이어를 배열시켜 형성할 수 있다. 금속 와이어는 제1 방향과 제2 방향으로 일정 간격 이격되어 배치될 수 있다.
2차원 그리드 또는 메시 형태로 배열된 금속 와이어는 0.1 파장 미만의 셀 크기를 갖도록 일정 간격 이격되는 것이 가능하다.
금속 와이어는 다이폴 안테나(Dipole Antenna)와 동일 또는 유사한 금속 재질로 구성될 수 있다.
금속 와이어의 제1 방향 및 제2 방향으로의 교차 배열에 따라 구분된 각 셀의 중심에 검출부(220)가 배치된다.
검출부(220)는 안테나부(210)를 통해 수신된 전파 신호를 직류 전압으로 변환하여 출력하기 위한 수단이다. 도 4에는 그리드 형태로 연결된 안테나부(210)의 수신 성능 그래프가 예시되어 있다. 도 4에 도시된 바와 같이, 그리드의 도선 인덕턴스를 상쇄시키기 위해 저항이 쇼트(short)되기 직전 용량성(capacitive) 성분을 제공할 때 커플링(coupling)이 최대가 되는 것을 알 수 있다.
검출부(220)는 도 3에 도시된 바와 같이, 검출부(220)는 각 셀마다 배치될 수 있다.
도 3에서 각 셀은 금속 와이어가 제1 방향 및 제2 방향으로 상호 교차되는 지점(즉, DC 볼티지 와이어(230)가 배치된 제1 지점과 DC 볼티지 와이어(230)가 배치된 제2 지점)에 의해 구분되는 금속 와이어로 정의될 수 있다.
또한, 금속 와이어가 교차된 각 지점에는 회로 기판을 수직 관통하는 DC 볼티지 와이어(230)가 배치될 수 있다. 이에 따라 검출부(220)는 전파 신호를 직류 전압으로 변환한 후 회로 기판을 따라 수직으로 관통된 DC 볼티지 와이어(230)를 통해 영상 처리부(130)로 출력될 수 있다.
DC 볼티지 와이어(230)는 기판 후면까지 수직 관통되어 영상 처리부(130)와 연결된다.
DC 볼티지 와이어(230)는 각 검출부(220)에 의해 변환된 직류 전압을 기판을 통해 영상 처리부(130)로 출력하기 위한 수단이다.
본 발명의 제2 실시예에 따르면, 안테나부(210)는 패치 어레이 형태로 구현될 수 있다. 각 패치 형상은 도 5 및 도 7에 도시된 바와 같이, 육각형 또는 사각형 등일 수 있다.
각 패치 사이즈는 패치간의 간격을 줄이거나 두개의 패치를 중첩(overlap)시키거나 집중 용량(lumped capacitor) 소자를 패치와 패치 간격(Gap)에 배치시켜 결과적으로 각 셀의 정전용량(capacitance)을 증가시킴으로써 축소시킬 수 있다.
본 발명의 제2 실시예에 따르면, 안테나부(210)에 형성된 각 패치는 일정 간격 이격되어 배치될 수 있으며, 각 패치와 각 패치 사이에는 검출부(220)가 배치된다.
이에 따라 결과적으로 육각형 형태의 패치 어레이의 경우, 각 패치는 3개의 검출부(220)가 장착될 수 있으며, 각 패치에 장착된 3개의 검출부(220)는 각각 상이한 편파 정보를 추출할 수 있다.
또한, 도 6과 같이, 패치 어레이가 사각형 형태로 구현되는 경우, 패치 어레이 주변에 금속면을 중첩하여 배열함으로써 각 셀의 정전용량(capacitance)를 더욱 크게 증가시킬 수 있다. 이렇게 각 패치의 하단에 금속 면을 배치시키는 패치 어레이 형태의 가장자리 추가 캐패시턴스는 최대 30퍼센트의 패치 축소 효과를 제공할 수 있다. 사각형 형태의 패치 어레이의 경우, 각 셀당 4개의 검출부(220)가 장착될 수 있다. 각 패치에 장착된 4개의 검출부(220)는 수직과 수평의 두개의 상이한 편파 정보를 추출할 수 있다.
그러나, 패치 간격 조절과 금속면 추가를 통한 각 셀의 정전용량을 증가시키는 것에는 한계가 있다. 또한, 패치 형태로 구성된 셀의 크기는 와이어 그리드 형태와는 달리 높은 픽셀 카운트를 증가시키기에는 한계가 있다.
이에 따라, 패치 어레이를 이용하여 픽셀 카운트를 추가적으로 증가시키기 위해 도 7과 같이 공진하는 패치를 다중 기판에 중첩하여 배치하고, 각 패치에 검출기를 연결하여 도 6의 문제를 해결할 수 있다.
동작 주파수에서 공진하게 되는 모든 패치는 패치 중앙 지점에서 전자기장 신호의 널(Null)이 발생하게 되는데, 해당 전자기장 신호의 널이 발생되는 중앙 지점에 DC 볼티지 와이어를 연결할 수 있다. 해당 DC 볼티지 와이어(230)는 패치 중앙 지점에서 패치 후면을 통해 회로 기판을 수직 관통하도록 형성될 수 있다. 이에 따라, 검출부(220)에 의해 변환된 직류 전압이 DC 볼티지 와이어를 통해 기판에 연결된 영상 처리부(130)로 출력될 수 있다.
이와 같이, DC 볼티지 와이어(230)를 각 패치의 중앙 지점(즉, 전자기장 신호의 널(Null)이 발생되는 지점)에 형성하여 회로 기판을 수직 관통하도록 연결함으로써 추가적인 DC 필터 없이 검출부(220)에 의해 변환된 직류 전압을 추출할 수 있는 이점이 있다.
다시 도 1을 참조하여, 영상 처리부(130)는 안테나 모듈(120)을 통해 수신된 신호를 영상 신호로 변환하기 위한 수단이다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
110: 렌즈
120: 안테나 모듈
130: 영상 처리부

Claims (12)

  1. 렌즈;
    그리드 어레이 안테나를 포함하고, 상기 그리드 어레이 안테나를 이용하여 상기 렌즈를 통해 집속된 전파 신호를 수신하는 안테나 모듈; 및
    상기 안테나 모듈을 통해 수신된 신호를 영상 신호로 변환하기 위한 영상 처리부를 포함하는 이미지 센싱 장치.
  2. 제1 항에 있어서,
    상기 그리드 어레이 안테나는,
    금속 와이어가 중첩되는 지점에 DC 볼티지 와이어가 형성되되,
    상기 DC 볼티지 와이어는 기판을 수직 관통하는 것을 특징으로 하는 이미지 센싱 장치.
  3. 제2 항에 있어서,
    상기 안테나 모듈은
    상기 전파 신호를 직류 전압으로 변환하기 위한 검출기를 더 포함하되,
    상기 검출기는 상기 그리드 어레이의 각 셀에 배치되는 것을 특징으로 하는 이미지 센싱 장치.
  4. 제1 항에 있어서,
    상기 안테나 모듈 후면에는 금속 반사판이 배치되는 것을 특징으로 하는 이미지 센싱 장치.
  5. 제1 항에 있어서,
    상기 그리드 어레이 안테나에서 그리드는 0.1 파장의 셀 크기인 것을 특징으로 하는 이미지 센싱 장치.
  6. 렌즈;
    패치 어레이 안테나를 포함하며, 상기 패치 어레이를 통해 상기 렌즈를 통해 집속된 전파 신호를 수신하기 위한 안테나 모듈; 및
    상기 안테나 모듈을 통해 수신된 신호를 영상 신호로 변환하기 위한 영상 처리부를 포함하는 이미지 센싱 장치.
  7. 제6 항에 있어서,
    상기 패치 어레이 안테나에서 각 패치는 육각형 또는 사각형 형태인 것을 특징으로 하는 이미지 센싱 장치.
  8. 제7 항에 있어서,
    상기 안테나 모듈은,
    상기 전파 신호를 직류 전압으로 변환하기 위한 검출기를 더 포함하되,
    상기 검출기는 패치와 패치 사이에 장착되는 것을 특징으로 하는 이미지 센싱 장치.
  9. 제8 항에 있어서,
    상기 패치가 육각형인 경우, 상기 패치는 3개의 검출기가 장착되고,
    상기 3개의 검출기는 각각 상이한 편파 정보를 추출하는 것을 특징으로 하는 이미지 센싱 장치.
  10. 제8 항에 있어서,
    상기 패치는 동작 주파수에서의 공진에 따라 전자기장 신호의 널(Null)이 발생되는 중앙 지점에 DC 볼티지 와이어(DC voltage wire)가 형성되되,
    상기 DC 볼티지 와이어는 상기 패치의 후면을 관통하여 기판에 연결되어 상기 직류 전압을 상기 기판으로 전달하는 것을 특징으로 하는 이미지 센싱 장치.
  11. 제7 항에 있어서,
    상기 패치가 사각형 형태인 경우, 상기 패치 어레이는 금속면을 상기 패치 하단에 중첩하여 배치함으로써 각 셀의 정전용량(capacitance)를 증가시키는 것을 특징으로 하는 이미지 센싱 장치.
  12. 제7 항에 있어서,
    상기 패치 어레이는 상기 패치를 중첩하여 배치시켜 픽셀 카운트를 증가시키는 것을 특징으로 하는 이미지 센싱 장치.
PCT/KR2014/008833 2013-09-23 2014-09-23 전파를 이용한 이미지 센싱 장치 WO2015041502A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0112540 2013-09-23
KR1020130112540A KR101538221B1 (ko) 2013-09-23 2013-09-23 전파를 이용한 이미지 센싱 장치

Publications (1)

Publication Number Publication Date
WO2015041502A1 true WO2015041502A1 (ko) 2015-03-26

Family

ID=52689102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008833 WO2015041502A1 (ko) 2013-09-23 2014-09-23 전파를 이용한 이미지 센싱 장치

Country Status (2)

Country Link
KR (1) KR101538221B1 (ko)
WO (1) WO2015041502A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799567A (zh) * 2020-07-28 2020-10-20 南京理工大学 一种广角度宽带毫米波平面透镜及其设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901084A (en) * 1988-04-19 1990-02-13 Millitech Corporation Object detection and location system
US20110241969A1 (en) * 2008-12-12 2011-10-06 Nanyang Technological University Grid array antennas and an integration structure
US20110254727A1 (en) * 2010-04-20 2011-10-20 International Business Machines Corporation Phased array millimeter wave imaging techniques
US20120288137A1 (en) * 2007-08-08 2012-11-15 Microsemi Corporation Millimeter Wave Imaging Method and System to Detect Concealed Objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901084A (en) * 1988-04-19 1990-02-13 Millitech Corporation Object detection and location system
US20120288137A1 (en) * 2007-08-08 2012-11-15 Microsemi Corporation Millimeter Wave Imaging Method and System to Detect Concealed Objects
US20110241969A1 (en) * 2008-12-12 2011-10-06 Nanyang Technological University Grid array antennas and an integration structure
US20110254727A1 (en) * 2010-04-20 2011-10-20 International Business Machines Corporation Phased array millimeter wave imaging techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799567A (zh) * 2020-07-28 2020-10-20 南京理工大学 一种广角度宽带毫米波平面透镜及其设计方法
CN111799567B (zh) * 2020-07-28 2021-10-08 南京理工大学 一种广角度宽带毫米波平面透镜及其设计方法

Also Published As

Publication number Publication date
KR20150033056A (ko) 2015-04-01
KR101538221B1 (ko) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2012105784A2 (ko) 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
WO2017039161A1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
WO2019139281A1 (ko) 안테나 장치
WO2011087177A1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
AU2017389088B2 (en) Beam forming auxiliary unit for antenna and terminal including the same
WO2013069866A1 (en) Camera module for vehicle
WO2013119079A1 (ko) 레이더 배열 안테나
AU2017356713B2 (en) Beamforming antenna assembly including metal structure
WO2018230757A1 (ko) 다기능 복합펜스센서를 이용한 외곽 침입 감지 시스템
WO2018236174A1 (ko) 고 이득 안테나
WO2019151796A1 (ko) 반사체를 포함하는 안테나 모듈 및 이를 포함하는 전자장치
WO2015111932A1 (ko) 레이더 시스템의 안테나 장치
WO2011081370A2 (ko) 전력 기기를 위한 부분방전 검출장치
WO2015041502A1 (ko) 전파를 이용한 이미지 센싱 장치
WO2022102862A1 (ko) 5g 듀얼 포트 빔포밍 안테나
CN212303924U (zh) 一种有源电扫阵列天线
KR101842861B1 (ko) 이중 편파 수신을 위한 소형 전파 탐지용 렉테나
WO2017052203A1 (ko) 다수의 렌즈를 이용한 촬상장치
WO2021125466A1 (ko) 전자기 밴드갭 구조물
WO2012044012A2 (en) Multi-resonance tunable antenna
WO2016076605A2 (ko) 휴대용 단말기의 안테나 장치 및 이를 포함하는 휴대용 단말기
WO2012018220A2 (ko) 고조파 방사를 방지한 무선 전력 전원 공급 장치
WO2016117734A1 (ko) 패턴/편파 안테나 장치와 이를 이용한 빔 형성 방법
WO2022010042A1 (ko) 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치
WO2022005082A1 (ko) 경량 패치 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846581

Country of ref document: EP

Kind code of ref document: A1