WO2022010042A1 - 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치 - Google Patents

안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치 Download PDF

Info

Publication number
WO2022010042A1
WO2022010042A1 PCT/KR2020/014168 KR2020014168W WO2022010042A1 WO 2022010042 A1 WO2022010042 A1 WO 2022010042A1 KR 2020014168 W KR2020014168 W KR 2020014168W WO 2022010042 A1 WO2022010042 A1 WO 2022010042A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
patch
metal strip
length
radiation
Prior art date
Application number
PCT/KR2020/014168
Other languages
English (en)
French (fr)
Inventor
강승택
이창형
서예준
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2022010042A1 publication Critical patent/WO2022010042A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the present invention relates to a high-performance antenna device for 5G, and more particularly, attaches a meta-surface Transmitarray that serves as an electromagnetic wave lens to the upper part of a patch array antenna, and is fixed from the array patch antenna by the transmitter array It relates to an antenna device having a transmitter array that overcomes radiation deterioration of a laminated void for improving an antenna beam that prevents adverse effects of a back cover that is spaced apart to cause impedance mismatch and antenna radiation characteristics deterioration.
  • Wireless communication technology can be used in various ways such as wireless local area network, Bluetooth, and near field communication (NFC) represented by Wi-Fi technology as well as commercialized mobile communication network access.
  • NFC near field communication
  • a mobile communication service is gradually evolving from a voice call service to a high-speed, high-capacity service (eg, a high-definition video streaming service).
  • An electronic device implementing such a wireless communication technology may be a terminal device (Handset or Terminal) as an example, and a back cover of a certain thickness is coupled to the top of the array patch antenna contained in the terminal device, which results in the impedance of the array patch antenna There is a problem in that the matching is broken and the antenna performance is deteriorated.
  • the back cover of the terminal devices interferes with the impedance matching of the antenna in the emerging 5G millimeter wave, deteriorates the antenna performance, and causes the radiation pattern to be distorted.
  • the present invention attaches a meta-surface transmitter array serving as an electromagnetic wave lens to the upper part of the patch array antenna, and is spaced apart from the array patch antenna by the transmitter array to match the impedance.
  • an object of the present invention is to provide an antenna device having a transmitter array that overcomes radiation deterioration of a laminated void for improving an antenna beam that prevents adverse effects of a back cover causing deterioration of antenna radiation characteristics.
  • An antenna device having a transmitter array that overcomes radiation deterioration of a laminated void for improving an antenna beam according to a feature of the present invention for achieving the above object
  • a patch array antenna comprising a first substrate and a radiation patch formed on the first substrate and radiating an electromagnetic wave signal
  • a second substrate having a predetermined thickness formed on the radiation patch and having a first dielectric constant
  • It is formed on the second substrate and converts the wavefront of electromagnetic waves radiated from the patch array antenna to perform impedance matching in an operable frequency band of the patch array antenna, and a plurality of unit cells spaced apart at regular intervals and arranged side by side Transmit Array consisting of;
  • An antenna device having a transmitter array that overcomes radiation deterioration of a laminated void for improving an antenna beam according to the characteristics of the present invention
  • a patch array antenna comprising a first substrate and a radiation patch formed on the first substrate and radiating an electromagnetic wave signal
  • a second substrate having a predetermined thickness formed on the radiation patch and having a first dielectric constant
  • a transmitter array in which a plurality of unit cells are spaced apart at regular intervals and arranged side by side;
  • the present invention provides impedance matching and impedance matching in mm-wave, where performance is deteriorated by attaching a transmitter array of a layer made of a metasurface acting as an electromagnetic wave lens to the upper part of the patch array antenna. It has the effect of improving the antenna gain.
  • the present invention has an effect that can be applied to a thin planar structure of an electronic product because beamforming is possible not only in direct contact with the radiator but also in contact between the transmitter array and the cell phone cover.
  • FIG. 1 is a view showing a top view of an antenna device having a transmitter array overcoming radiation degradation of a laminated void for improving an antenna beam according to a first embodiment of the present invention.
  • Figure 2 is a side cross-sectional view showing the configuration of an antenna device having a transmitter array (Transmitarray) overcoming the radiation deterioration of the laminated void for improving the antenna beam according to the first embodiment of the present invention.
  • Transmitarray transmitter array
  • FIG 3 is a diagram showing the configuration of a unit cell according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a reflection coefficient and an impedance according to the first embodiment of the present invention.
  • 5 is a view showing the scattering coefficient according to whether or not the transmitter array is attached according to an embodiment of the present invention.
  • FIG. 6 is a view showing a radiation pattern result in a state in which a metasurface unit cell is formed on the lower surface of the back cover according to an embodiment of the present invention.
  • FIG. 7 is a view showing the three-dimensional radiation pattern of FIG. 6 as a one-dimensional radiation pattern.
  • FIG. 8 is a view showing an antenna device having a transmitter array overcoming radiation deterioration of a laminated pore for improving an antenna beam according to a second embodiment of the present invention as viewed from above.
  • FIG. 9 is a side cross-sectional view showing the configuration of an antenna device having a transmitter array overcoming radiation degradation of a laminated void for improving an antenna beam according to a second embodiment of the present invention.
  • FIG. 10 is a diagram showing the configuration of a unit cell according to a second embodiment of the present invention.
  • FIG. 1 is a view showing an antenna device having a transmitter array overcoming radiation deterioration of a laminated void for improving an antenna beam according to a first embodiment of the present invention, viewed from above
  • FIG. 2 is a view showing the present invention
  • FIG. 3 is a unit according to the first embodiment of the present invention.
  • It is a diagram showing the configuration of a cell
  • FIG. 4 is a diagram showing the relationship between the reflection coefficient and the impedance according to the first embodiment of the present invention.
  • An antenna device 100 having a transmitter array overcoming radiation degradation of a laminated pore for improving an antenna beam includes a first substrate 111 made of a dielectric material, and a first substrate A patch array antenna 110 is formed in which a plurality of radiation patches 112 emitting electromagnetic wave signals are formed on the 111 , and a small gap 113 that is a constant space is formed on the radiation patch 112 , and the first A second substrate 120 having a relative permittivity is formed, and a single-layer metal transmitter array 130 is formed on the second substrate 120 to improve the beam directionality of the patch array antenna 110 . .
  • a back cover 140 such as a mobile phone cover is formed on the transmitter array 130 .
  • the transmitter array 130 of the present invention also contacts the radiator and performs a beamforming function even in contact with the cell phone cover.
  • Transmit array 130 serves as an electromagnetic wave lens of the patch array antenna 110, is formed vertically upwardly spaced apart from the patch array antenna 110, the unit cells 150 are spaced apart at regular intervals so that a plurality of them are side by side arranged and formed.
  • the transmit array 130 is a layer of a metasurface where a plurality of unit cells 150 are gathered, and the metasurface represents a thin layer that changes the characteristics of electromagnetic waves to suit the purpose (refractive index, wavefront conversion).
  • the back cover 140 without a layer on the meta surface makes the patch array antenna 110 an inductive component to reduce electrical performance (S 11 , system transmission/reception rate) by impedance mismatch, and electromagnetic waves crush the
  • Each unit cell 150 is a single-layer dielectric in which a metal strip 151 of a certain length is formed to be long, and rectangular parasitic elements 152 and square parasitic elements 153 are arranged at regular intervals on the left and right sides of the metal strip 151 . left and formed
  • the metal strip 151 serves as a source of secondary radiation and forms a capacitive component while capturing the electric field polarization of the electromagnetic wave radiated from the patch array antenna 110 .
  • the rectangular parasitic element 152 and the square parasitic element 153 adjust the parallel capacitance coupling because the series capacitance component formed in the metal strip 151 is too large, and adjust the wavefront of the electromagnetic wave of the radiating element .
  • Each unit cell 150 generates a capacitive component to compensate the inductive component of the back cover 140 and the patch array antenna 110 with a capacitive component to match, and thus impedance matching is performed to improve electrical performance. improved, and the electromagnetic wave beam can form good directivity.
  • Impedance matching compensates the inductive component of the back cover 140 and the patch array antenna 110 with the capacitive component of the transmitter array 130 to create a state in which there is no imaginary component.
  • Each unit cell 150 is formed to correspond to one-to-one radiation patches 112 spaced vertically upwards.
  • the transmitter array 130 is designed to convert the wavefront of electromagnetic waves radiated from the patch array antenna 110 .
  • the transmitter array 130 converts the wavefront of electromagnetic waves radiated from the patch array antenna 110 to perform impedance matching in an operable frequency band of the patch array antenna 110, thereby increasing the antenna gain.
  • the transmitter array 130 converts a radiation wave incident from the patch array antenna 110 to perform impedance matching in a millimeter wave (mm-wave), and thus performs a function of increasing an antenna gain.
  • mm-wave millimeter wave
  • the second substrate 120 has a dielectric constant of 3 to 4 and a thickness of 200 ⁇ m.
  • the cover member 140 has a dielectric constant of 6 to 8 and a thickness of 500 ⁇ m.
  • the single-layer metasurface unit cell 150 includes a metal strip 151 of a certain length formed longer than the length of the radiation patch 112, and rectangular parasitic elements on the upper left and right sides of the metal strip 151 ( 152) is formed, and two square parasitic elements 153 are electromagnetically coupled to the left and right in the middle of the metal strip 151 to effect capacitance required for impedance matching of the patch array antenna 110 in the back cover environment.
  • the length of the metal strip 151 is 13.4 mm, the width of the metal strip 151 is 0.95 mm, the length of the first side of the rectangular parasitic element 152 is 5.2 mm, the length of the second side of the rectangular parasitic element 152 is 1.5 mm, the length of one side of the square parasitic element 153 is 1.5 mm, the separation distance between the metal strip 151 and the rectangular parasitic element 152 is 0.1 mm, the separation distance between the metal strip 151 and the square parasitic element 153 is 0.1 mm, the separation distance between the square parasitic element 153 and the square parasitic element 153 is 0.1 mm, and the separation distance between the rectangular parasitic element 152 and the square parasitic element 153 is 1.55 mm.
  • FIG. 4 is a graph showing the complex Cartesian coordinate system by converting the relationship between the reflection coefficient and the impedance into a formula of a complex number circle.
  • FIG. 4 (a) shows the impedance matching point 10 when there is only the patch array antenna 110
  • FIG. 4 (b) is a back cover 140 spaced a certain distance from the top of the patch array antenna 110. is formed, the impedance matching point 10 is shown
  • FIG. 4 ( c ) is a transformer consisting of a layer of a metasurface where a plurality of unit cells 150 are gathered at a predetermined distance on top of the patch array antenna 110 .
  • the impedance matching point 10 is indicated.
  • FIG. 5 is a view showing the scattering coefficient according to whether or not the transmitter array is attached according to an embodiment of the present invention
  • FIG. 6 is a state in which a metasurface unit cell is formed on the lower surface of the back cover according to an embodiment of the present invention. It is a view showing the radiation pattern result
  • FIG. 7 is a view showing the three-dimensional radiation pattern of FIG. 6 as a one-dimensional radiation pattern.
  • the reflection coefficient S 11 indicates that the impedance matching state of the patch array antenna 110 is good by printing the plurality of unit cells 150 on the lower surface of the back cover 140 .
  • the 5G operating frequency, the minimum scattering coefficient S 11 that is, it shows a good resonance state.
  • the impedance matching characteristic is deteriorated.
  • 5G is an abbreviation of 5th Generation, meaning 5th generation mobile communication, and the term 5G is used because it is about the design of a transmitter array operating at 28 GHz, which is the 5G operating frequency. Accordingly, the transmitter array 130 operates at 28 GHz, which is the operating frequency of 5th generation mobile communication (5G).
  • the radiation pattern results obtained an antenna gain of about 13 dBi and a beam width of about 20 degrees at 28 GHz, which is a 5G operating frequency.
  • the patch array antenna 110 When the patch array antenna 110 operates in air, it shows good radiation pattern results. However, when combined with the back cover 140 , there is serious performance degradation due to the adverse effect of the back cover 140 . It is possible to obtain a higher antenna gain than the reference antenna (Antenna Only) in the air by maximizing the antenna gain through the transmitter array 130 .
  • FIG. 8 is a view showing an antenna device having a transmitter array overcoming radiation deterioration of a laminated void for improving an antenna beam according to a second embodiment of the present invention, as viewed from above
  • FIG. 9 is a view of the present invention. It is a side cross-sectional view showing the configuration of an antenna device having a transmitter array that overcomes radiation degradation of the laminated void for improving the antenna beam according to the second embodiment
  • FIG. 10 is a unit according to the second embodiment of the present invention. It is a diagram showing the configuration of a cell.
  • An antenna device 100 having a transmitter array overcoming radiation degradation of a laminated pore for improving an antenna beam includes a first substrate 111 made of a dielectric material, and a first substrate A patch array antenna 110 is formed in which a plurality of radiation patches 112 emitting electromagnetic wave signals are formed on the 111 , and a small gap 113 that is a constant space is formed on the radiation patch 112 , and the first A second substrate 120 having a relative permittivity is formed, and a single-layer metal transmitter array 160 is formed on the second substrate 120 to improve the beam directionality of the patch array antenna 110 . .
  • a back cover 140 such as a mobile phone cover is formed on the transmitter array 160 .
  • Transmit array 160 serves as an electromagnetic wave lens of the patch array antenna 110, is formed vertically upwardly spaced apart from the patch array antenna 110, the unit cells 170 are spaced apart at regular intervals so that a plurality of them are side by side arranged and formed.
  • Each unit cell 170 is formed by successively combining a cross-shaped metal pattern with a single-layer dielectric in the vertical direction.
  • Each unit cell 170 has a metal strip 171 of a certain length is formed to be long, and bar-shaped parasitic elements 172 and 173 are extended to the left and right of the metal strip 171 and are electromagnetically coupled, and the metal strip 171 is formed. ), the rod-shaped parasitic elements 172 and 173 are formed at regular intervals in the vertical direction.
  • the metal strip 171 serves as a source of secondary radiation and forms a capacitive component while catching the electric field polarization of the electromagnetic wave radiated from the patch array antenna 110 .
  • the parasitic elements 172 and 173 adjust the parallel capacitance coupling because the series capacitance component formed in the metal strip 171 is too large, and adjusts the wavefront of the electromagnetic wave of the radiating element.
  • Each unit cell 170 generates a capacitive component to compensate the inductive component of the back cover 140 and the patch array antenna 110 with a capacitive component to match, and thus impedance matching to improve electrical performance improved, and the electromagnetic wave beam can form good directivity.
  • the length of the metal strip 171 is 10.7 mm, the width of the metal strip 171 is 1 mm, and the length of the parasitic elements 172 and 173 is 3.5 mm in the perpendicular direction of the metal strip 171 .
  • Each of the unit cells 170 is formed to correspond to the vertically upwardly spaced radiation patch 112 one-to-one.
  • the transmitter array 160 is designed to convert the wavefront of electromagnetic waves radiated from the patch array antenna 110 .
  • the transmitter array 160 converts the electromagnetic wave wavefront radiated from the patch array antenna 110 to perform impedance matching in an operable frequency band of the patch array antenna 110 , thereby increasing the antenna gain. do.
  • the transmitter array 160 converts a radiation wave incident from the patch array antenna 110 to perform impedance matching in a millimeter wave (mm-wave), thereby increasing an antenna gain.
  • mm-wave millimeter wave
  • the transmitter array 160 operates at 28 GHz, which is the operating frequency of 5th generation mobile communication (5G).
  • the transmitter array 160 of the present invention also contacts the radiator and performs a beamforming function even in contact with the cell phone cover.
  • the present invention has an effect that can be applied to the thin planar structure of electronic products using the transmitter arrays (130, 160).
  • the present invention converts a radiation wave incident from a patch array antenna to perform impedance matching in a millimeter wave (mm-wave), and thus performs a function of increasing an antenna gain to be applied to a thin planar structure of an electronic product such as a mobile phone.
  • mm-wave millimeter wave

Abstract

안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치는 패치 배열 안테나의 상부에 전자파 렌즈 역할을 하는 메타표면의 트랜스밋어레이(Transmitarray)를 접촉 부착하며, 그 위에 핸드폰 커버와 같은 백커버를 접촉 형성하여 트랜스밋어레이에 의해 임피던스 정합과 안테나 이득을 향상시키는 효과가 있다. 본 발명은 방사체에 직접 닿는 것뿐만 아니라 트랜스밋어레이와 핸드폰 커버가 접촉하여도 빔포밍이 가능하여 전자제품의 얇은 평면형 구조에 적용할 수 있는 효과가 있다.

Description

안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치
본 발명은 5G용 고성능 안테나 장치에 관한 것으로서, 더욱 상세하게는 패치 배열 안테나의 상부에 전자파 렌즈 역할을 하는 메타표면의 트랜스밋어레이(Transmitarray)를 부착하며, 트랜스밋어레이에 의해 배열 패치 안테나로부터 일정 공간 이격되어 임피던스 부정합 및 안테나 방사특성 열화를 일으키는 백커버의 악영향을 방지하는 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치에 관한 것이다.
무선 통신 기술은 상용화된 이동통신망 접속뿐만 아니라 와이파이(Wi-Fi) 기술로 대표되는 근거리 무선통신(Wireless Local Area Network), 블루투스(Bluthooth), 근접무선통신(Near Field Communication, NFC) 등 다양한 방식으로 구현된다. 이동통신 서비스는 음성 통화 서비스로부터 시작되어 초고속, 대용량 서비스(예를 들면, 고화질 동영상 스트리밍 서비스)로 점차 진화하고 있다.
이러한 무선 통신 기술을 구현하는 전자장치는 단말장치(Handset 또는 Terminal)를 일례로 들 수 있는데, 단말장치에 담은 배열 패치 안테나의 상부에 일정 두께의 백커버를 결합하는데, 이로 인하여 배열 패치 안테나의 임피던스 정합이 깨지고, 안테나 성능이 저하되는 문제점에 봉착한다.
단말장치들의 백커버는 현재 대두되고 있는 5G 밀리미터파에서 안테나의 임피던스 정합을 방해하고, 안테나 성능을 열화시키며, 방사 패턴이 일그러지는 문제점이 발생한다.
이와 같은 문제점을 해결하기 위하여, 본 발명은 패치 배열 안테나의 상부에 전자파 렌즈 역할을 하는 메타표면의 트랜스밋어레이(Transmitarray)를 부착하며, 트랜스밋어레이에 의해 배열 패치 안테나로부터 일정 공간 이격되어 임피던스 부정합 및 안테나 방사특성 열화를 일으키는 백커버의 악영향을 방지하는 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 특징에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치는,
제1 기판과 상기 제1 기판의 위에 형성되어 전자기파 신호를 방사하는 방사 패치로 이루어진 패치 배열 안테나;
상기 방사 패치의 위에 형성되어 제1 비유전율을 가진 일정 두께의 제2 기판;
상기 제2 기판의 위에 형성되어 상기 패치 배열 안테나로부터 방사되는 전자기파의 파면을 변환하여 상기 패치 배열 안테나의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 일정 간격마다 이격되어 복수개가 나란하게 배열된 단위 셀로 이루어진 트랜스밋어레이; 및
상기 트랜스밋어레이의 위에 형성되어 제2 비유전율을 가진 일정 두께의 백커버를 포함하는 것을 특징으로 한다.
본 발명의 특징에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치는,
제1 기판과 상기 제1 기판의 위에 형성되어 전자기파 신호를 방사하는 방사 패치로 이루어진 패치 배열 안테나;
상기 방사 패치의 위에 형성되어 제1 비유전율을 가진 일정 두께의 제2 기판;
상기 제2 기판의 위에 형성되어 상기 패치 배열 안테나로부터 방사되는 전자기파의 파면을 변환하여 상기 패치 배열 안테나의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 십자가 형태의 금속 패턴을 상하 방향으로 연달아 결합하여 형성된 단위 셀을 일정 간격마다 이격되어 복수개가 나란하게 배열된 트랜스밋어레이; 및
상기 트랜스밋어레이의 위에 형성되어 제2 비유전율을 가진 일정 두께의 백커버를 포함하는 것을 특징으로 한다.
전술한 구성에 의하여, 본 발명은 패치 배열 안테나의 상부에 전자파 렌즈 역할을 하는 메타표면으로 이루어진 층의 트랜스밋어레이(Transmitarray)를 부착하여 성능이 열화되는 밀리미터파(mm-wave)에서 임피던스 정합과 안테나 이득을 향상시키는 효과가 있다.
본 발명은 방사체에 직접 닿는 것뿐만 아니라 트랜스밋어레이와 핸드폰 커버가 접촉하여도 빔포밍이 가능하여 전자제품의 얇은 평면형 구조에 적용할 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치를 위에서 본 모습을 나타낸 도면이다.
도 2는 본 발명의 제1 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치의 구성을 나타낸 측단면도이다.
도 3은 본 발명의 제1 실시예에 따른 단위 셀의 구성을 나타낸 도면이다.
도 4는 본 발명의 제1 실시예에 따른 반사계수와 임피던스와의 관계를 표시한 도면이다.
도 5는 본 발명의 실시예에 따른 트랜스밋어레이의 부착 여부에 따른 산란계수를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 백커버의 하부면에 메타표면 단위 셀을 형성한 상태의 방사패턴 결과를 나타낸 도면이다.
도 7은 도 6의 3차원 방사패턴을 1차원 방사패턴으로 나타낸 도면이다.
도 8은 본 발명의 제2 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치를 위에서 본 모습을 나타낸 도면이다.
도 9는 본 발명의 제2 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치의 구성을 나타낸 측단면도이다.
도 10은 본 발명의 제2 실시예에 따른 단위 셀의 구성을 나타낸 도면이다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 제1 실시예에 따른안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치를 위에서 본 모습을 나타낸 도면이고, 도 2는 본 발명의 제1 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치의 구성을 나타낸 측단면도이고, 도 3은 본 발명의 제1 실시예에 따른 단위 셀의 구성을 나타낸 도면이며, 도 4는 본 발명의 제1 실시예에 따른 반사계수와 임피던스와의 관계를 표시한 도면이다.
본 발명의 제1 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치(100)는 유전체로 이루어진 제1 기판(111)과, 제1 기판(111)의 위에 전자기파 신호를 방사하는 방사 패치(112)가 복수로 형성된 패치 배열 안테나(110)를 형성하고, 방사 패치(112)의 위에 일정한 공간인 초소형 갭(113)을 형성하고, 제1 비유전율을 가진 제2 기판(120)을 형성하고, 제2 기판(120)의 위에 패치 배열 안테나(110)의 빔 방향성을 향상시키는 단층 메탈 재질의 트랜스밋어레이(Transmitarray)(130)를 형성한다.
트랜스밋어레이(130)의 위에는 핸드폰 커버와 같은 백커버(140)를 형성한다.
본 발명의 트랜스밋어레이(130)는 방사체에도 접촉하고, 핸드폰 커버에 접촉해도 빔포밍 기능을 수행한다.
트랜스밋어레이(130)는 패치 배열 안테나(110)의 전자파 렌즈 역할을 하고, 패치 배열 안테나(110)로부터 수직 상방으로 이격되어 형성하고, 단위 셀(150)이 일정 간격마다 이격되어 복수개가 나란하게 배열되어 형성된다.
트랜스밋어레이(130)는 복수의 단위 셀(150)이 모인 메타표면의 층이며, 메타표면은 전자기파의 특성을 목적(굴절율, 파면 변환)에 맞게 바꾸는 얇은 층을 나타낸다.
메타표면의 층이 없는 백커버(140)는 패치 배열 안테나(110)를 인덕티브(Inductive) 성분으로 만들어 임피던스 불균형(Impedance Mismatch)에 의한 전기적 성능(S11, 시스템 송수신율)을 저하시키며, 전자기파를 찌그러트린다.
각각의 단위 셀(150)은 단층의 유전체로 일정한 길이의 금속 스트립(151)이 길게 형성되고, 금속 스트립(151)의 좌우에 직사각형 기생소자(152)과 정사각형 기생소자(153)가 일정한 간격을 두고 형성된다.
금속 스트립(151)은 패치 배열 안테나(110)로부터 방사되는 전자기파의 전기장 편파를 잡아주면서 2차 방사의 소스(Source) 역할과 커패시티브(Capacitive) 성분을 형성한다.
직사각형 기생소자(152)과 정사각형 기생소자(153)는 금속 스트립(151)에서 형성되는 직렬 커패시던스 성분이 너무 크기 때문에 병렬 커패시던스 결합으로 조정해주며, 방사 요소의 전자기파의 파면을 조정해준다.
각각의 단위 셀(150)은 커패시티브 성분을 생성하여 백커버(140)와 패치 배열 안테나(110)의 인덕티브 성분을 커패시티브 성분으로 보상하여 정합하고, 이에 따라 임피던스 매칭되어 전기적 성능이 좋아지며, 전자기파 빔이 지향성을 좋게 형성할 수 있다.
임피던스 매칭은 백커버(140)와 패치 배열 안테나(110)의 인덕티브 성분을 트랜스밋어레이(130)의 커패시티브 성분으로 보상하여 허수(Imaginary) 성분이 없는 상태를 만든다.
각각의 단위 셀(150)은 수직 상방으로 이격된 방사 패치(112)를 일대일로 대응되도록 형성한다.
트랜스밋어레이(130)는 패치 배열 안테나(110)로부터 방사되는 전자기파의 파면을 변환되도록 설계된다.
특히, 트랜스밋어레이(130)는 패치 배열 안테나(110)로부터 방사되는 전자기파의 파면을 변환하여 패치 배열 안테나(110)의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 이에 따라 안테나 이득을 높이는 기능을 수행한다.
또한, 트랜스밋어레이(130)는 패치 배열 안테나(110)로부터 입사된 방사파를 변환하여 밀리미터파(mm-wave)에서 임피던스 정합을 수행하며, 이에 따라 안테나 이득을 높이는 기능을 수행한다.
제2 기판(120)은 비유전율이 3 내지 4이고, 두께가 200㎛를 가진다.
커버부재(140)는 비유전율이 6 내지 8이고, 두께가 500㎛를 가진다.
도 3에 도시된 바와 같이, 단층 메타표면 단위 셀(150)은 방사 패치(112)의 길이보다 길게 형성된 일정한 길이의 금속 스트립(151)과, 금속 스트립(151)의 위쪽 좌우에 직사각형 기생소자(152)가 형성되고, 금속 스트립(151)의 중간 좌우에 2개씩의 정사각형 기생소자(153)가 전자기 결합을 하여 백커버 환경에 있는 패치 배열 안테나(110)의 임피던스 정합에 요구되는 커패시던스 효과를 만든다.
금속 스트립(151)의 길이는 13.4mm, 금속 스트립(151)의 폭은 0.95mm, 직사각형 기생소자(152)의 제1 면의 길이는 5.2mm, 직사각형 기생소자(152)의 제2 면의 길이는 1.5mm, 정사각형 기생소자(153)의 일면 길이는 1.5mm, 금속 스트립(151)과 직사각형 기생소자(152)의 이격 거리는 0.1mm, 금속 스트립(151)과 정사각형 기생소자(153)의 이격 거리는 0.1mm, 정사각형 기생소자(153)와 정사각형 기생소자(153)의 이격 거리는 0.1mm, 직사각형 기생소자(152)와 정사각형 기생소자(153)의 이격 거리는 1.55mm이다.
도 4는 반사계수와 임피던스와의 관계를 복소수의 원의 공식으로 변환하여 복소 직교좌표계 표시한 것이다.
도 4의 (a)는 패치 배열 안테나(110)만 있을 때 임피던스 정합 지점(10)을 나타내고, 도 4의 (b)는 패치 배열 안테나(110)의 상부에 일정 거리 이격되어 백커버(140)를 형성한 경우, 임피던스 정합 지점(10)을 나타내며, 도 4의 (c)는 패치 배열 안테나(110)의 상부에 일정 거리 이격되어 복수의 단위 셀(150)이 모인 메타표면의 층으로 이루어진 트랜스밋어레이(130)가 형성되고, 그 위에 백커버(140)를 형성한 경우, 임피던스 정합 지점(10)을 나타낸다.
도 4의 (b)는 임피던스 정합 지점(10)이 Gamma
Figure PCTKR2020014168-appb-I000001
즉, 중심으로부터 일정 거리 떨어져 있어 임피던스 불균형(Impedance Mismatch)을 표시하고, 도 4의 (c)는 패치 배열 안테나(110)의 위에 백커버(140)가 형성되어 있음에도 불구하고 트랜스밋어레이(130)에 의해 임피던스 정합 지점(10)이 반사계수 = 0에 근접하여 임피던스 매칭되므로 반사계수(S11) 특성과 방사 특성이 향상되는 것을 볼 수 있다.
도 5는 본 발명의 실시예에 따른 트랜스밋어레이의 부착 여부에 따른 산란계수를 나타낸 도면이고, 도 6은 본 발명의 실시예에 따른 백커버의 하부면에 메타표면 단위 셀을 형성한 상태의 방사패턴 결과를 나타낸 도면이고, 도 7은 도 6의 3차원 방사패턴을 1차원 방사패턴으로 나타낸 도면이다.
도 5에 도시된 바와 같이, 반사계수 S11는 백커버(140)의 하부면에 복수의 단위 셀(150)을 프린팅하여 패치 배열 안테나(110)의 임피던스 정합 상태가 양호함을 나타낸다.
5G 운용 주파수인 28GHz에서 최소의 산란계수 S11, 즉 양호한 공진 상태를 보인다. 반면에 단위 셀(150)이 없이 백커버(140)와 패치 배열 안테나(110)의 사이의 공간이 좁은 경우, 임피던스 정합 특성의 열화를 보여준다.
5G는 5th Generation의 약어로 5세대 이동통신을 의미하고, 5G 운용 주파수인 28GHz에서 동작하는 트랜스밋어레이 설계에 관한 내용이므로 5G라는 용어를 사용한다. 따라서, 트랜스밋어레이(130)는 5세대 이동통신(5th Generation, 5G)의 운용 주파수인 28GHz에서 동작한다.
도 6에 도시된 바와 같이, 방사패턴 결과는 5G 운용 주파수인 28GHz에서 약 13dBi의 안테나 이득과 20도 정도의 빔폭을 얻었다.
도 7은 본 발명의 빔 향상용 트랜스밋어레이의 특징을 보여준다. 패치 배열 안테나(110)가 공기 중에서 동작할 경우에 양호한 방사패턴 결과를 보여준다. 그러나 백커버(140)와 결합시 백커버(140)의 악영향으로 인해 심각한 성능 열화가 있다. 이를 트랜스밋어레이(130)를 통해 안테나 이득을 극대화하여 공기 중에 기준 안테나(Antenna Only)보다 더 높은 안테나 이득을 얻을 수 있다.
도 8은 본 발명의 제2 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치를 위에서 본 모습을 나타낸 도면이고, 도 9는 본 발명의 제2 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치의 구성을 나타낸 측단면도이며, 도 10은 본 발명의 제2 실시예에 따른 단위 셀의 구성을 나타낸 도면이다.
본 발명의 제2 실시예에 따른 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이(Transmitarray)를 구비한 안테나 장치(100)는 유전체로 이루어진 제1 기판(111)과, 제1 기판(111)의 위에 전자기파 신호를 방사하는 방사 패치(112)가 복수로 형성된 패치 배열 안테나(110)를 형성하고, 방사 패치(112)의 위에 일정한 공간인 초소형 갭(113)을 형성하고, 제1 비유전율을 가진 제2 기판(120)을 형성하고, 제2 기판(120)의 위에 패치 배열 안테나(110)의 빔 방향성을 향상시키는 단층 메탈 재질의 트랜스밋어레이(Transmitarray)(160)를 형성한다.
트랜스밋어레이(160)의 위에는 핸드폰 커버와 같은 백커버(140)를 형성한다.
트랜스밋어레이(160)는 패치 배열 안테나(110)의 전자파 렌즈 역할을 하고, 패치 배열 안테나(110)로부터 수직 상방으로 이격되어 형성하고, 단위 셀(170)이 일정 간격마다 이격되어 복수개가 나란하게 배열되어 형성된다.
각각의 단위 셀(170)은 단층의 유전체로 십자가 형태의 금속 패턴을 상하 방향으로 연달아 결합하여 형성된다.
각각의 단위 셀(170)은 일정한 길이의 금속 스트립(171)이 길게 형성되고, 금속 스트립(171)의 좌우에 막대 형상의 기생소자(172, 173)가 연장되어 전자기 결합되고, 금속 스트립(171)에서 막대 형상의 기생소자(172, 173)가 상하 방향으로 일정 간격마다 형성된다.
금속 스트립(171)은 패치 배열 안테나(110)로부터 방사되는 전자기파의 전기장 편파를 잡아주면서 2차 방사의 소스(Source) 역할과 커패시티브(Capacitive) 성분을 형성한다.
기생소자(172, 173)는 금속 스트립(171)에서 형성되는 직렬 커패시던스 성분이 너무 크기 때문에 병렬 커패시던스 결합으로 조정해주며, 방사요소의 전자기파의 파면을 조정해준다.
각각의 단위 셀(170)은 커패시티브 성분을 생성하여 백커버(140)와 패치 배열 안테나(110)의 인덕티브 성분을 커패시티브 성분으로 보상하여 정합하고, 이에 따라 임피던스 매칭되어 전기적 성능이 좋아지며, 전자기파 빔이 지향성을 좋게 형성할 수 있다.
금속 스트립(171)의 길이는 10.7mm, 금속 스트립(171)의 폭은 1mm, 기생소자(172, 173)의 길이는 금속 스트립(171)의 직각 방향의 길이로 3.5mm이다.
각각의 단위 셀(170)은 수직 상방으로 이격된 방사 패치(112)를 일대일로 대응되도록 형성한다.
트랜스밋어레이(160)는 패치 배열 안테나(110)로부터 방사되는 전자기파의 파면을 변환되도록 설계된다.
특히, 트랜스밋어레이(160)는 패치 배열 안테나(110)로부터 방사되는 전자기파 파면을 변환하여 패치 배열 안테나(110)의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 이에 따라 안테나 이득을 높이는 기능을 수행한다.
또한, 트랜스밋어레이(160)는 패치 배열 안테나(110)로부터 입사된 방사파를 변환하여 밀리미터파(mm-wave)에서 임피던스 정합을 수행하며, 이에 따라 안테나 이득을 높이는 기능을 수행한다.
트랜스밋어레이(160)는 5세대 이동통신(5th Generation, 5G)의 운용 주파수인 28GHz에서 동작한다.
본 발명의 트랜스밋어레이(160)는 방사체에도 접촉하고, 핸드폰 커버에 접촉해도 빔포밍 기능을 수행한다.
본 발명은 트랜스밋어레이(130, 160)를 이용하여 전자제품의 얇은 평면형 구조에 적용할 수 있는 효과가 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 패치 배열 안테나로부터 입사된 방사파를 변환하여 밀리미터파(mm-wave)에서 임피던스 정합을 수행하며, 이에 따라 안테나 이득을 높이는 기능을 수행하여 핸드폰과 같은 전자제품의 얇은 평면형 구조에 적용할 수 있다.

Claims (9)

  1. 제1 기판과 상기 제1 기판의 위에 형성되어 전자기파 신호를 방사하는 방사 패치로 이루어진 패치 배열 안테나;
    상기 방사 패치의 위에 형성되어 제1 비유전율을 가진 일정 두께의 제2 기판;
    상기 제2 기판의 위에 형성되어 상기 패치 배열 안테나로부터 방사되는 전자기파의 파면을 변환하여 상기 패치 배열 안테나의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 일정 간격마다 이격되어 복수개가 나란하게 배열된 단위 셀로 이루어진 트랜스밋어레이; 및
    상기 트랜스밋어레이의 위에 형성되어 제2 비유전율을 가진 일정 두께의 백커버를 포함하는 것을 특징으로 하는 안테나 장치.
  2. 제1항에 있어서,
    상기 각각의 단위 셀은 상기 방사 패치의 길이보다 길게 형성된 일정한 길이의 금속 스트립을 통해 상기 패치 배열 안테나로부터 방사되는 전자기파의 전기장 편파를 잡아주면서 커패시티브(Capacitive) 성분을 형성하고, 상기 금속 스트립의 위쪽 좌우에 직사각형 기생소자가 형성되고, 상기 금속 스트립의 중간 좌우에 정사각형 기생소자에 의해 병렬 커패시던스 결합으로 상기 패치 배열 안테나의 임피던스 정합에 요구되는 커패시던스 효과를 형성하는 것을 특징으로 하는 안테나 장치.
  3. 제1항에 있어서,
    상기 각각의 단위 셀은 수직 상방으로 이격된 상기 방사 패치를 일대일로 대응되도록 형성하는 것을 특징으로 하는 안테나 장치.
  4. 제2항에 있어서,
    상기 금속 스트립의 길이는 13.4mm, 상기 금속 스트립의 폭은 0.95mm, 상기 직사각형 기생소자의 제1 면의 길이는 5.2mm, 상기 직사각형 기생소자의 제2 면의 길이는 1.5mm, 상기 정사각형 기생소자의 일면 길이는 1.5mm, 상기 금속 스트립과 상기 직사각형 기생소자의 이격 거리는 0.1mm, 상기 금속 스트립과 상기 정사각형 기생소자의 이격 거리는 0.1mm, 상기 직사각형 기생소자와 상기 정사각형 기생소자의 이격 거리는 1.55mm인 것을 특징으로 하는 안테나 장치.
  5. 제1 기판과 상기 제1 기판의 위에 형성되어 전자기파 신호를 방사하는 방사 패치로 이루어진 패치 배열 안테나;
    상기 방사 패치의 위에 형성되어 제1 비유전율을 가진 일정 두께의 제2 기판;
    상기 제2 기판의 위에 형성되어 상기 패치 배열 안테나로부터 방사되는 전자기파의 파면을 변환하여 상기 패치 배열 안테나의 동작 가능한 주파수 대역에서 임피던스 정합을 수행하며, 십자가 형태의 금속 패턴을 상하 방향으로 연달아 결합하여 형성된 단위 셀을 일정 간격마다 이격되어 복수개가 나란하게 배열된 트랜스밋어레이; 및
    상기 트랜스밋어레이의 위에 형성되어 제2 비유전율을 가진 일정 두께의 백커버를 포함하는 것을 특징으로 하는 안테나 장치.
  6. 제5항에 있어서,
    상기 각각의 단위 셀은 상기 방사 패의 길이보다 길게 형성된 일정한 길이의 금속 스트립을 통해 상기 패치 배열 안테나로부터 방사되는 전자기파의 전기장 편파를 잡아주면서 커패시티브(Capacitive) 성분을 형성하고, 상기 금속 스트립의 좌우에 형성된 막대 형상의 기생소자에 의해 병렬 커패시던스 결합되고, 상기 금속 스트립에서 상기 막대 형상의 기생소자가 상하 방향으로 일정 간격마다 형성되어 상기 패치 배열 안테나의 임피던스 정합에 요구되는 커패시던스 효과를 형성하는 것을 특징으로 하는 안테나 장치.
  7. 제5항에 있어서,
    상기 각각의 단위 셀은 수직 상방으로 이격된 상기 방사 패치를 일대일로 대응되도록 형성하는 것을 특징으로 하는 안테나 장치.
  8. 제6항에 있어서,
    상기 금속 스트립의 길이는 10.7mm, 상기 금속 스트립의 폭은 1mm, 상기 기생소자의 길이는 상기 금속 스트립의 직각 방향의 길이로 3.5mm인 것을 특징으로 하는 안테나 장치.
  9. 제1항 또는 제5항에 있어서,
    상기 트랜스밋어레이는 5세대 이동통신(5th Generation, 5G)의 운용 주파수인 28GHz에서 동작하는 것을 특징으로 하는 안테나 장치.
PCT/KR2020/014168 2020-07-08 2020-10-16 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치 WO2022010042A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200084227A KR102377695B1 (ko) 2020-07-08 2020-07-08 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치
KR10-2020-0084227 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022010042A1 true WO2022010042A1 (ko) 2022-01-13

Family

ID=79553294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014168 WO2022010042A1 (ko) 2020-07-08 2020-10-16 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치

Country Status (2)

Country Link
KR (1) KR102377695B1 (ko)
WO (1) WO2022010042A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377700A (zh) * 2022-08-22 2022-11-22 电子科技大学长三角研究院(湖州) 加载变容二极管的一维宽角度扫描可重构反射表面阵列

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214832A1 (en) * 2005-03-24 2006-09-28 Lee Gregory S System and method for efficient, high-resolution microwave imaging using complementary transmit and receive beam patterns
KR20100051136A (ko) * 2006-08-25 2010-05-14 레이스팬 코포레이션 메타물질 구조물에 기초된 안테나
KR20140031360A (ko) * 2014-02-22 2014-03-12 이은형 에어스트립 방사체 및 급전구조를 갖는 고효율 안테나
KR20180030213A (ko) * 2015-08-25 2018-03-21 후아웨이 테크놀러지 컴퍼니 리미티드 다중 빔 안테나 어레이 어셈블리를 위한 메타물질 기반 트랜스밋어레이
US20190081409A1 (en) * 2017-09-13 2019-03-14 Metawave Corporation Method and apparatus for a passive radiating and feed structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542829B1 (ko) * 2003-09-09 2006-01-20 한국전자통신연구원 송/수신용 고이득 광대역 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
KR101983552B1 (ko) 2018-05-17 2019-05-29 인천대학교 산학협력단 안테나 빔 향상용 전자파 렌즈, 이를 구비한 안테나 장치 및 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214832A1 (en) * 2005-03-24 2006-09-28 Lee Gregory S System and method for efficient, high-resolution microwave imaging using complementary transmit and receive beam patterns
KR20100051136A (ko) * 2006-08-25 2010-05-14 레이스팬 코포레이션 메타물질 구조물에 기초된 안테나
KR20140031360A (ko) * 2014-02-22 2014-03-12 이은형 에어스트립 방사체 및 급전구조를 갖는 고효율 안테나
KR20180030213A (ko) * 2015-08-25 2018-03-21 후아웨이 테크놀러지 컴퍼니 리미티드 다중 빔 안테나 어레이 어셈블리를 위한 메타물질 기반 트랜스밋어레이
US20190081409A1 (en) * 2017-09-13 2019-03-14 Metawave Corporation Method and apparatus for a passive radiating and feed structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377700A (zh) * 2022-08-22 2022-11-22 电子科技大学长三角研究院(湖州) 加载变容二极管的一维宽角度扫描可重构反射表面阵列
CN115377700B (zh) * 2022-08-22 2023-11-14 电子科技大学长三角研究院(湖州) 加载变容二极管的一维宽角度扫描可重构反射表面阵列

Also Published As

Publication number Publication date
KR20220006362A (ko) 2022-01-17
KR102377695B1 (ko) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2016064212A1 (en) Antenna apparatus for use in wireless devices
WO2016003237A1 (ko) 무선 통신 기기에서 안테나 장치
WO2011087177A1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
WO2020204578A1 (en) Radiating element of antenna and antenna
WO2015041422A1 (ko) 안테나 장치 및 그를 구비하는 전자 기기
WO2022103159A1 (ko) 안테나 모듈 및 이를 포함하는 무선 통신 단말기
WO2013094976A1 (ko) 패치 안테나 엘리먼트
WO2021040254A1 (en) Dual-band and dual-polarized mm-wave array antennas with improved side lobe level (sll) for 5g terminals
WO2018203640A1 (ko) 안테나 모듈
WO2010076982A2 (ko) 무한 파장 안테나 장치
WO2018236174A1 (ko) 고 이득 안테나
WO2019194357A1 (ko) 1차원 강한 결합 다이폴 배열 안테나
WO2010038929A1 (ko) 다층 안테나
WO2017222114A1 (ko) 차량용 안테나
WO2022010042A1 (ko) 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치
WO2019199050A1 (en) Antenna and unit-cell structure
WO2016126038A1 (ko) 안테나 구조물
WO2020083075A1 (zh) 终端
CN209056615U (zh) 用于移动终端的毫米波无源多波束阵列装置
WO2020262942A1 (ko) Uwb 안테나 모듈
WO2022019722A1 (ko) 무선 통신 시스템에서 안테나 필터 및 이를 포함하는 전자 장치
KR102333839B1 (ko) 안테나 이득 향상용 메타 콘택트 렌즈 트랜스밋어레이를 구비한 빔포밍 장치
WO2021125466A1 (ko) 전자기 밴드갭 구조물
WO2021010685A1 (ko) Uwb 안테나 모듈
WO2022005082A1 (ko) 경량 패치 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944212

Country of ref document: EP

Kind code of ref document: A1