WO2015040796A1 - 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法 - Google Patents

耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法 Download PDF

Info

Publication number
WO2015040796A1
WO2015040796A1 PCT/JP2014/004331 JP2014004331W WO2015040796A1 WO 2015040796 A1 WO2015040796 A1 WO 2015040796A1 JP 2014004331 W JP2014004331 W JP 2014004331W WO 2015040796 A1 WO2015040796 A1 WO 2015040796A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
heat
clay
resistant
producing
Prior art date
Application number
PCT/JP2014/004331
Other languages
English (en)
French (fr)
Inventor
渡辺 和久
徹也 三原
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to KR1020167006032A priority Critical patent/KR101938464B1/ko
Priority to US15/022,074 priority patent/US10513456B2/en
Priority to CN201480051930.8A priority patent/CN105555721A/zh
Publication of WO2015040796A1 publication Critical patent/WO2015040796A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/181Materials, coatings, loose coverings or sleeves thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • B24B7/241Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • B24B7/242Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass for plate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making
    • Y10T29/4956Fabricating and shaping roller work contacting surface element
    • Y10T29/49563Fabricating and shaping roller work contacting surface element with coating or casting about a core

Definitions

  • the present invention relates to a heat-resistant roll, a method for producing the heat-resistant roll, and a method for producing a plate glass using the heat-resistant roll, and particularly relates to an improvement in heat-resistant roll characteristics such as low dust generation.
  • a heat-resistant roll provided with a roll part is used to convey a molten glass ribbon.
  • a heat-resistant roll provided with a roll part is used to convey a molten glass ribbon.
  • it is necessary to reduce as much as possible the undesirable effect of the heat-resistant roll on the glass ribbon.
  • Patent Documents 1 to 3 propose to grind the surface of the roll portion for finishing the heat-resistant roll. Further, Patent Document 4 describes that the surface is ground and then smoothed with water.
  • JP 2004-299980 A JP 2007-269604 A JP 2005-520774 A JP 2010-095437 A
  • This invention was made in view of the said subject, Comprising: To provide the heat-resistant roll by which the dust generation property from the surface of a roll part was reduced, its manufacturing method, and the manufacturing method of plate glass using this One of its purposes.
  • a roll part production step for producing a roll part containing 5% by weight or more of a clay mineral for producing a roll part containing 5% by weight or more of a clay mineral
  • a grinding step of grinding the roll surface of the roll part for grinding the roll surface of the roll part
  • a surface treatment step of performing a surface treatment to smooth the ground roll surface in a wet state for performing a surface treatment to smooth the ground roll surface in a wet state
  • a clay coating step of forming a clay-based mineral coating on the surface-treated roll surface A method for producing a heat-resistant roll.
  • a roll part production step for producing a roll part containing 5% by weight or more of a clay mineral for producing a roll part containing 5% by weight or more of a clay mineral;
  • the surface treatment smoothing in the wet state of the surface treatment step the first step of moistening the ground roll surface, and then the second step of smoothing the wet roll surface,
  • the surface treatment step the surface treatment is performed by pressing a wet base material against the roll surface of the rotating roll unit.
  • a heat-resistant roll in which a surface part of a roll part containing 5% by weight or more of a clay mineral is coated with a clay mineral. 11.
  • the heat-resistant roll according to 10 wherein a surface portion of the roll portion is densified as compared to the inside of the roll portion.
  • a heat-resistant roll produced by the method according to any one of 12.1 to 9. 13 The heat-resistant roll according to any one of 10 to 12, wherein the amount of the clay mineral coating is 0.1 g or more in terms of solid content per 1 m 2 of the average surface area. 14.
  • the present invention it is possible to provide a heat-resistant roll having reduced dust generation from the surface of the roll part, a method for producing the heat-resistant roll, and a method for producing a plate glass using the heat-resistant roll.
  • FIG. 1 shows an example of a disk roll 1.
  • the disk roll 1 includes a cylindrical roll portion 10 extending in the longitudinal direction.
  • the roll part 10 is configured by laminating a plurality of disk members 11 containing 5% by weight or more of clay mineral (hereinafter also simply referred to as clay) in the longitudinal direction of the roll part 10. That is, the plurality of disk members 11 constituting the roll unit 10 are fitted and inserted into the shaft unit 20 that serves as the rotation axis of the disk roll 1.
  • the surface of the roll unit 10 is further coated with a clay mineral.
  • the clay mineral that is formed by uniformly dispersing the entire roll unit 10 and the clay mineral that covers the surface may be the same or different.
  • the plurality of stacked disk members 11 are fixed in a compressed state in the longitudinal direction of the shaft portion 20 by flanges 21 and nuts 22 respectively provided at both end portions of the shaft portion 20. Therefore, the surface of the roll unit 10 (hereinafter referred to as “roll surface 12”) is constituted by the outer peripheral surfaces of the plurality of disk members 11 stacked in a compressed state.
  • the structure of the disk roll is not limited to the structure in which the entire shaft is covered with a disk material as shown in FIG. 1.
  • the structure in which the shaft is covered with the disk material only at the portion where the glass contacts There are specifications with a single shaft and those with a removable disk part.
  • This disc roll 1 can be used as a transport roll in the production of plate glass.
  • FIG. 2 an example of the disk roll 1 used as a conveyance roll in manufacture of plate glass is shown.
  • a pair of disk rolls 1 arranged in parallel are installed so as to be rotatable around a shaft portion 20.
  • the disk roll 1 may be connected to a power generation device (not shown). In this case, the disk roll 1 can rotate based on the power generated by the power generation device.
  • the glass ribbon 30 sent in a melted state from the upstream side of the transport path is transported to the downstream side while being sandwiched between the pair of rotating roll portions 10. That is, in the example shown in FIG. 2, the glass ribbon 30 is conveyed vertically downward (the direction indicated by the arrow D shown in FIG. 2).
  • the flat glass can be produced by a float method, a roll-out method, a Colburn method, etc. in addition to the above-described downdraw method.
  • the glass ribbon 30 is gradually cooled by being conveyed by the disc roll 1. Although only a pair of disk rolls 1 is shown in FIG. 2, two or more pairs of disk rolls 1 can be installed along the conveyance path.
  • the disc roll 1 can also be used as a pulling roll that applies tension to the glass ribbon 30 in order to adjust the nominal thickness of the plate glass to be produced.
  • the nominal plate thickness of the plate glass to be manufactured can be adjusted by the pulling speed of the glass ribbon 30 by the pulling roll.
  • the roll surface 12 in contact with the glass ribbon 30 is in contact with the heat resistance to withstand a high temperature above the melting temperature of the glass, the spalling resistance for taking out the roll immediately in case of line trouble, etc. It is desirable to have characteristics such as flexibility that does not damage the glass ribbon 30, durability that can withstand high temperatures for a long time, and low dust generation that does not contaminate the glass ribbon 30.
  • the heat-resistant roll of the present invention refers to a roll having a heat shrinkage of 1% or less as measured by the method described in Examples.
  • the disk roll 1 having such excellent characteristics and a manufacturing method thereof (hereinafter referred to as “the present manufacturing method”) will be described.
  • the disk roll 1 is first assembled using a plurality of disk materials 11.
  • a aqueous slurry is prepared, and a plate-like body (so-called millboard) having a predetermined thickness is manufactured from the aqueous slurry.
  • the aqueous slurry is prepared with a composition corresponding to the composition that the disk material 11 to be finally produced should have. That is, for example, this aqueous slurry contains an amount of clay mineral necessary to achieve a content of 5 wt% or more in the disk material 11 mounted on the disk roll 1.
  • the clay mineral those having the characteristic of being sintered by heating can be preferably used.
  • One type can be used alone or two or more types can be used in combination.
  • refractory clay such as Kibushi clay and Sasame clay, bentonite and kaolin can be used, and the refractory clay can be preferably used.
  • Kibushi clay is preferable because it has a high binder effect by sintering and has few impurities.
  • the aqueous slurry can further contain inorganic fibers and fillers.
  • the inorganic fiber is not particularly limited as long as it is a reinforcing material that enhances the strength of the disk material 11, and any kind of inorganic fiber can be appropriately selected and used. One kind can be used alone, or two or more kinds can be used in combination. Can be used.
  • artificial inorganic fibers such as ceramic fibers, glass fibers, and rock wool fibers can be preferably used. More specifically, for example, alumina fibers, mullite fibers, silica / alumina fibers, and silica fibers excellent in heat resistance can be particularly preferably used.
  • the filler is not particularly limited as long as it contributes to improvement in characteristics such as heat resistance and strength of the disk material 11, and any kind of filler can be appropriately selected and used. More than one type can be used in combination. That is, for example, inorganic fillers such as mica, wollastonite, sepiolite, silica, alumina, cordierite, and calcined kaolin can be used. Mica can be preferably used. Moreover, scaly silica and scaly alumina can be used, and scaly silica is particularly preferred because of its high wear resistance.
  • inorganic fillers such as mica, wollastonite, sepiolite, silica, alumina, cordierite, and calcined kaolin can be used. Mica can be preferably used.
  • scaly silica and scaly alumina can be used, and scaly silica is particularly preferred because of its high wear resistance.
  • the scaly silica is preferably a secondary aggregate formed by overlapping the scaly silica in parallel, or a tertiary aggregate formed by collecting a plurality of the secondary aggregates.
  • flake primary particles of scaly silica are leaf-like silica secondary particles formed by overlapping a plurality of sheets, with the planes oriented in parallel with each other.
  • the leaf-like silica secondary particles may be further three-dimensionally aggregated to form tertiary particles.
  • the leaf-like silica secondary particles and tertiary particles are described in JP-A-2006-143666, Patent Publication 3795671 and the like.
  • the aqueous slurry can further contain an auxiliary agent for improving the properties such as moldability.
  • an auxiliary agent for example, an organic material or an inorganic material that can be eliminated from the disk material 11 by firing the disk material 11 can be used.
  • an organic material an organic binder such as pulp, starch, synthetic resin fibers or particles can be used.
  • a millboard can be produced by forming an aqueous slurry prepared as a mixture of such raw materials into a plate shape and drying it.
  • the forming of the millboard can be preferably performed by a papermaking method using a papermaking machine.
  • the thickness of the mill board can be set to a desired value corresponding to the thickness of the disk material 11, and can be set in the range of 2 to 30 mm, for example.
  • the disk material 11 can be obtained by firing a disk punched from a millboard, or can be a disk itself obtained by punching a millboard without firing.
  • the roll unit 10 including the plurality of disk materials 11 can also be fired.
  • the said roll part 10 can also be baked.
  • the firing conditions are not particularly limited, and can be appropriately changed according to the specifications of the firing furnace, the bulk density and size of the disk material 11, and the like.
  • the firing temperature is not particularly limited, but can be, for example, in the range of 300 to 1000 ° C., preferably in the range of 400 to 900 ° C., and more preferably in the range of 500 to 800 ° C. it can.
  • the firing time is not particularly limited, but can be, for example, in the range of 1 to 24 hours.
  • assistant such as the organic material contained in the mill board, can be lose
  • a disk material 11 made of a sintered inorganic material is obtained. Further, in the disc material 11 after firing, voids derived from the burning of some of the materials accompanying the firing are formed.
  • the disk material 11 can be manufactured by molding. That is, the disk material 11 can be manufactured, for example, by pouring a slurry prepared as a mixture of raw materials as described above into a mold having a predetermined shape corresponding to the shape of the disk material 11 and performing suction dehydration molding. it can. Moreover, the disk material 11 containing the said clay-type mineral can also be manufactured by impregnating the surface of the molded disk with a clay slurry and drying it.
  • the molded disc material 11 can also be fired. Firing conditions such as the firing method, firing time, firing temperature, firing time are the same as described above.
  • the disc material 11 thus obtained contains 5% by weight or more of a clay mineral.
  • the content of the clay mineral is preferably 10% by weight or more, and more preferably 15% by weight or more.
  • the upper limit of the content of the clay mineral can be appropriately set according to the characteristics required for the disk roll 1. That is, the content of the clay mineral is preferably 50% by weight or less, and more preferably 45% by weight or less. When the content of the clay mineral is large, problems such as generation of cracks, formation of cracks, and separation of a plurality of disk members 11 are likely to occur in the roll unit 10, and the disk roll 1 cannot sufficiently exhibit its performance. There is.
  • the content of the clay mineral in the disk material 11 can be, for example, in the range of 5 to 50% by weight, preferably in the range of 10 to 30% by weight, and in the range of 10 to 43% by weight. More preferably.
  • clay minerals kibushi clay and bentonite are preferably included. Each of these contents is preferably 5 to 30% by weight, more preferably 7 to 25% by weight, and still more preferably 8 to 23% by weight.
  • the amount of the inorganic fiber and filler contained in the disk material 11 can be appropriately set according to the types of these materials and the characteristics required for the disk roll 1. That is, the content of inorganic fiber is, for example, preferably 20 to 50% by weight, more preferably 25 to 45% by weight, and further preferably 30 to 43% by weight.
  • the filler content is preferably in the range of 5 to 50% by weight, more preferably in the range of 7 to 40% by weight, and more preferably in the range of 10 to 35% by weight. preferable.
  • Clay-based minerals, inorganic fibers, fillers and organic binders can occupy 90% or more, 95% or more, 98% or more, or 100% of the disc roll.
  • the plurality of disc members 11 manufactured in this way are sequentially fitted into the shaft portion 20. Further, the plurality of disk members 11 stacked along the shaft portion 20 are tightened in the longitudinal direction of the shaft portion 20 by a hydraulic press or the like. The plurality of disk members 11 in a compressed state are sandwiched by a pair of flanges 21 provided at both end portions of the shaft portion 20, and further fixed by a pair of nuts 22. In addition, after inserting the several disc material 11 in the axial part 20, these can also be fixed with the flange 21 and the nut 22 without compressing.
  • the disk roll 1 including the roll unit 10 composed of a plurality of stacked disk members 11 can be assembled.
  • the roll unit 10 can be hardened and densified as compared to the respective disk members 11 before assembly.
  • the roll part 10 is not restricted to what has the several disk material 11 laminated
  • Such a cylindrical molded body can be manufactured by, for example, molding using a raw material mainly composed of the inorganic material as described above.
  • the roll unit 10 is a cylindrical molded body by pouring the slurry prepared as a mixture of raw materials as described above into a mold having a predetermined shape corresponding to the shape of the roll unit 10 and performing suction dehydration molding.
  • a clay mineral may be previously contained in the slurry before molding.
  • the roll part 10 containing the said clay type mineral can also be manufactured by impregnating the surface of the molded cylindrical molded body with a clay slurry and drying it.
  • the roll part 10 can also be made into the inorganic fiber molded object containing a clay-type mineral between fibers. That is, the roll part 10 can be formed by, for example, winding a sheet-like inorganic fiber molded body containing a clay mineral between fibers around the shaft part 20 once or a plurality of times.
  • the roll unit 10 can be manufactured, for example, by impregnating a clay slurry into an inorganic fiber molded body.
  • the roll part 10 can be manufactured by impregnating an inorganic fiber paper with clay slurry and then winding the inorganic fiber paper around the shaft part 20.
  • the inorganic fiber paper containing the said clay mineral can be manufactured by making the slurry containing a clay mineral, and the roll part 10 can also be manufactured then using the said inorganic fiber paper.
  • the roll part 10 can also be manufactured by winding an inorganic fiber blanket around the shaft part 20 and then impregnating the inorganic fiber blanket with a clay slurry and drying it.
  • cylindrical molded bodies and inorganic fiber molded bodies can also be fired.
  • the said roll part 10 after assembling the heat-resistant roll provided with the roll part 10 which has the above several disc materials 11, a cylindrical molded object, or an inorganic fiber molded object, the said roll part 10 can also be baked.
  • the firing conditions are not particularly limited, and can be appropriately changed according to the specifications of the firing furnace, the conditions such as the bulk density and size of the cylindrical molded body and the inorganic fiber molded body.
  • the firing temperature and firing time are the same as described above.
  • FIG. 3 shows the main steps included in the first embodiment of the manufacturing method. At the right end, the outline of the surface is shown.
  • the roll surface 12 of the disc roll 1 assembled in the assembly step is ground. That is, by removing a part of the roll surface 12 in a dry state, the roll surface 12 is smoothed and the diameter of the roll part 10 is adjusted. For example, as shown in FIG. 1, the diameter of the roll part 10 in the longitudinal direction can be adjusted to be constant.
  • the grinding step S10 includes a cutting step S12 and a polishing step S14.
  • a cutting device such as a lathe
  • fine irregularities still remain on the surface.
  • the roll surface 12 is further polished and flattened by a polishing tool such as sandpaper (polishing step S14).
  • polishing step S14 fine particles generated by polishing enter the recess.
  • the grinding and polishing may be performed in one step without separating the grinding step S10 from the cutting step S12 and the polishing step S14, or one of them may be omitted depending on the surface state.
  • a surface treatment is performed in which the roll surface 12 ground in the grinding step S10 is wetted.
  • water is applied to the dried roll surface 12 after grinding (water application step S22).
  • water is used in the present embodiment, it is not particularly limited as long as it is a liquid that does not contain a solute and can be impregnated into the roll surface 12, and any type can be appropriately selected and used. Can be used alone or in combination of two or more. That is, for example, polar solvents such as water, ethanol, and acetone can be preferably used. Among them, water is particularly preferably used because it is easy to handle and can effectively plasticize the clay mineral. Moreover, it is not restricted to application
  • the roll surface 12 can be plasticized by wetting. That is, the fine particles constituting the roll surface 12 are hardened and strongly constrained in the dry state, but soften in the wet state and become relatively easy to deform and move.
  • an external force is further applied to the wet roll surface 12 to smooth the roll surface 12 (a smoothing step S24). That is, for example, the wet roll surface 12 is rubbed to apply a shearing force in a direction along the roll surface 12.
  • the fine particles constituting the convex portion of the roll surface 12 are moved along the roll surface 12 and embedded in the concave portion of the roll surface 12, thereby 12 can be smoothed.
  • the fine particles constituting the roll surface 12 can be filled more densely. That is, since the fine particles can move while being shifted from each other on the wet roll surface 12, the fine particles can be rearranged and refilled so as to be in a more uniform dispersed state under a load of an appropriate pressing force. As a result, the roll surface 12 can be densified.
  • water application step S22 and the leveling step S24 may be performed while rotating the roll unit 10.
  • the surface treatment step S20 may be performed in one step of simultaneously moistening with water without being separated from the water application step S22 and the leveling step S24.
  • FIG. 4 shows an example of a preferred embodiment for realizing the surface treatment described above.
  • FIG. 4 shows a cross section of the roll part 10 cut along the line IV-IV in the disk roll 1 shown in FIG. 1 and a cross section of the base material 40 used for the surface treatment on the roll part 10.
  • the above-described surface treatment is performed by pressing the substrate 40 against the rotating roll surface 12. That is, the roll unit 10 is first rotated in the direction indicated by the arrow R shown in FIG.
  • the base material 40 is pressed against the rotating roll surface 12, and the state is maintained. At this time, as shown in FIG. 4, the base material 40 is preferably disposed along the roll surface 12.
  • FIG. 4 shows only the state in which the base material 40 is disposed along the circumferential direction of the roll surface 12, but the base material 40 is also along the longitudinal direction of the roll surface 12. Can be arranged. Thus, the roll surface 12 is rotated while being in contact with the base material 40.
  • a sheet-like substrate 40 can be preferably used.
  • maintained the liquid contact the roll surface 12 can be used.
  • the leveling step S24 by rotating the roll unit 10 while placing the base material 40 along the circumferential direction of the roll surface 12 by pressing the sheet-like base material 40 against the wet roll surface 12, The roll surface 12 is leveled.
  • a sheet-like base material 40 in which irregularities for polishing are formed on the surface that contacts the roll surface 12, such as sandpaper, can be preferably used.
  • the base material 40 having such a polishing ability movement and refilling of the fine particles constituting the roll surface 12 can be realized as described above.
  • a base material 40 having flexibility that can be arranged along the roll surface 12 can be preferably used.
  • a sheet-like fiber substrate such as a woven fabric or a non-woven fabric, or a sheet-like porous substrate made of a synthetic polymer having flexibility (for example, a foam-molded product) can be preferably used.
  • the sheet-like base material 40 for example, sandpaper in which the unevenness
  • the surface treatment is performed on the roll surface 12 of the roll unit 10 that rotates in one circumferential direction, and the surface treatment is performed by switching the rotation direction of the roll unit 10 to the opposite direction. Iterative processing can be performed once or more.
  • a surface treatment is performed in which the roll surface 12 is wetted while rotating the roll portion 10 in one circumferential direction (for example, the direction indicated by the arrow R shown in FIG. 4).
  • this surface treatment may be carried out in two stages: first moistening and then smoothing.
  • the rotation direction of the roll unit 10 is switched to the opposite direction, and the treatment is repeated. That is, in the repetitive processing, a surface treatment is performed in which the roll surface 12 is wetted while rotating the roll portion 10 in the other circumferential direction (for example, the direction opposite to the direction indicated by the arrow R shown in FIG. 4). Do.
  • the second repetitive treatment is performed by switching the rotation direction of the roll unit 10 to the opposite direction again without drying the roll surface 12 after the first repetitive treatment. I do. That is, in the second repeated treatment, a surface treatment is performed in which the roll surface 12 is wetted while the roll portion 10 is rotated again in the circumferential direction.
  • the surface treatment in the repetitive treatment may also be performed in two stages as described above.
  • the pressing force applied to the roll surface 12 for leveling the roll surface 12 is not particularly limited, and is arbitrarily set within a range where the above-described smoothing and densification of the roll surface 12 can be achieved. be able to.
  • a pressing force in the range of 100 to 2000 N per unit length (1 mm) in the width direction (longitudinal direction of the shaft portion 20) of the substrate 40 (that is, a pressing force in the range of 100 to 2000 N / mm). Can be loaded.
  • the speed at which the roll surface 12 is rotated when the roll surface 12 is leveled is not particularly limited, and is arbitrarily set within a range in which the roll surface 12 can be smoothed and densified as described above. can do.
  • the rotation speed of the roll unit 10 can be set in the range of 10 to 1500 rpm, for example. Further, the peripheral speed of the roll surface 12 can be set, for example, in the range of 1 to 1000 m / min.
  • the roll surface 12 is smoothed using a previously wetted base material, and the surface treatment is performed.
  • a fiber base material or a porous base material that can hold a liquid such as water can be used.
  • a water-containing fiber base material or porous base material made of a hydrophilic material can be preferably used.
  • the wet base material 40 covers a part of the roll surface 12.
  • the roll surface 12 can be efficiently moistened, and the once wet roll surface 12 can be effectively prevented from drying again.
  • clay water is applied to the roll surface 12 subjected to the surface treatment (clay water application step S32). Then, it dries (drying process S34). Drying may be natural drying, but a dryer can also be used. By doing so, a clay mineral film is formed, and unevenness that cannot be sufficiently flattened only by the surface treatment step S20 can be flattened. As a result, dust generation is suppressed.
  • the clay mineral those having a swelling power of 15 ml / 2 g or more can be used, preferably those having 20 ml / 2 g or more, more preferably those having 30 ml / 2 g or more.
  • refractory clay such as Kibushi clay and Sasame clay, bentonite and kaolin can be used.
  • the swelling force may be measured according to the Japan Bentonite Industry Association standard test method (JBAS-104-77). Specifically, the measurement may be performed as follows. Weigh accurately 2 g of sample and add to a 100 ml stoppered graduated cylinder containing 100 ml of purified water. At this time, care should be taken that the added sample does not adhere to the inner wall.
  • the sample is added in several times so that the sample is sufficiently absorbed and dispersed, and the next sample is added after most of the previously added sample has settled.
  • the cap is closed, and after standing for 24 hours, the volume A (ml) deposited at the bottom of the graduated cylinder is read.
  • the value read is the swelling power (ml / 2g).
  • clay water used for coating for example, 1 to 1000 g of clay mineral dissolved or dispersed in 10 L of water can be used.
  • water is used in the present embodiment, any type can be appropriately selected and used as long as it can appropriately dissolve or disperse the clay mineral, and one type can be used alone. Alternatively, two or more types can be used in combination. From the viewpoint of ease of handling, water is preferred.
  • the amount to be coated is preferably an average film thickness of about 0.01 mm to 5 mm, and can be further increased.
  • the solid content per 1 m 2 of the average surface area is about 0.1 to 1000 g, preferably 0.1 to 100 g, more preferably 0.3 to 50 g.
  • the coating may not cover the entire surface. Preferably it is 80% or more, More preferably, it is 90% or more, Most preferably, it is 100%.
  • the clay mineral liquid is deposited on the roll surface 12 by, for example, spraying, dipping, brushing, or dropping.
  • FIG. 5 shows main steps included in the second embodiment of the present invention. At the right end, the outline of the surface is shown.
  • the clay-containing water used in the first embodiment is applied (surface treatment step S40).
  • surface treatment step S40 since grinding process S10 is the same as 1st Embodiment, description is abbreviate
  • clay-containing water is applied (clay water application step S42) and then dried (leveling step S44, drying step S46), and then a clay mineral film is applied as in the first embodiment. Form.
  • a shearing force is applied to the wet roll surface 12 in the direction along the surface 12, and a part of the fine particles constituting the roll surface 12 are applied to the roll surface 12. It moves along, and the unevenness
  • clay minerals contained in the clay water also enter and fill the recesses on the surface 12, and further form a clay film on the surface. Therefore, unevenness that cannot be sufficiently flattened only by the surface treatment step S20 with only water as in the first embodiment can be flattened. As a result, dust generation is suppressed.
  • the roll surface 12 is densified as compared to the inside 13 of the roll unit 10. That is, in the roll part 10, the surface part of predetermined thickness including the outer surface of the said roll part 10 and its vicinity part is locally densified.
  • the thickness may be increased by further forming a clay-based mineral film (performing the clay film coating step S30) as in the first embodiment.
  • the surface 12 of the heat-resistant roll of the present invention is smoothed with dust generation suppressed.
  • the strength is high because of the coating of clay mineral.
  • the arithmetic average roughness Ra of the roll surface 12 measured by the method specified in JIS B 0601-1994 can be 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, and 1.0 ⁇ m or less. It is particularly preferred that
  • the maximum height Ry of the roll surface 12 measured by the method specified in JIS B 0601-1994 can be 25.0 ⁇ m or less, more preferably 15.0 ⁇ m or less, and 10.0 ⁇ m. It is particularly preferred that
  • the ten-point average roughness Rz of the roll surface 12 measured by the method defined in JIS B 0601-1994 can be 25.0 ⁇ m or less, more preferably 15.0 ⁇ m or less. It is particularly preferable that the thickness is 0.0 ⁇ m or less.
  • the roll surface 12 preferably has at least one of the arithmetic average roughness Ra, the maximum height Ry, and the ten-point average roughness Rz within the above range, and particularly preferably all the three are within the above ranges. preferable.
  • the roll part 10 of the heat-resistant roll obtained in the present invention can maintain the same characteristics such as heat resistance before and after the above surface finishing.
  • Example 1 and Comparative Example 1 A disk material having an outer diameter of 60 mm and an inner diameter of 20 mm is punched from the disk roll base material, and roll-built to a length of 100 mm and a packing density of 1.35 g / cm 3 on a stainless steel shaft having a diameter of 20 mm, as shown in FIG. A disc roll 1 was prepared.
  • This disc material 11 contained 10% by weight of xylem clay as clay mineral, 10% by weight bentonite, 40% by weight mullite fiber as inorganic fiber, and 32% by weight mica as filler.
  • the disk roll substrate contained 6% by weight of pulp and 2% by weight of organic binder as auxiliary agents.
  • the assembled disc roll 1 was fired.
  • the pulp and organic binder contained in the disk material 11 were burned off by this firing.
  • the roll surface 12 of the disk roll 1 was ground. Grinding was performed by placing the disk roll 1 in a predetermined drive device, rotating the shaft 20 around the shaft 20, and bringing sandpaper into contact with the rotating roll surface 12.
  • the rotating roll surface 12 is pressed with dust-free paper (Kimwipe, Nippon Paper Crecia Co., Ltd.) previously impregnated with water and held for a predetermined time, thereby holding the roll surface.
  • a surface treatment was performed in which 12 was moistened.
  • the roll surface 12 after the surface treatment was heated and dried.
  • a bentonite aqueous solution was applied to the roll surface 12 subjected to the above surface treatment by spraying and brushing to carry out a coating treatment.
  • the bentonite aqueous solution was prepared by dissolving 50 g of bentonite in 10 L of water. Thereafter, the roll surface 12 was naturally dried to produce the disc roll 1.
  • Comparative Example 1 a disk roll that was subjected to the surface treatment but not subjected to the coating treatment was prepared. The following characteristics were evaluated for each of the disk roll 1 and the disk roll that was not subjected to coating treatment. The results are shown in Table 1.
  • a disk material having an outer diameter of 80 mm and an inner diameter of 30 mm is punched from the ceramic fiber-containing disk roll base material, and a stainless steel shaft having a diameter of 30 mm is provided with a length of 100 mm and a packing density of 1.
  • a roll build was made so as to be 25 g / cm 3 to produce a disk roll.
  • the diameter of the disk roll is 30 mm, and 5 grooves with a width of 2 mm are provided at intervals of 2 mm.
  • the room temperature is 25 After cooling to 0 ° C., the depth of the groove formed on the roll surface of the disk roll was measured.
  • Dust generation property was evaluated by rubbing the roll surface against black drawing paper, thereby measuring the weight of the powder adhering to the drawing paper, and measuring the lightness of the drawing paper with a color difference meter. When a plate glass was actually produced using the above disk roll, there was a significant difference in dust generation.
  • the disc roll obtained by the production method of the present invention can be used for production of plate glass, particularly glass for liquid crystal and glass for plasma display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 粘土系鉱物を5重量%以上含有するロール部を作製するロール部作製工程と、前記ロール部のロール表面を研削する研削工程と、研削された前記ロール表面を湿らせた状態でならす表面処理を行う表面処理工程と、前記表面処理されたロール表面に粘土系鉱物の被膜を形成する粘土被膜工程と、を含む耐熱ロールの製造方法。

Description

耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
 本発明は、耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法に関し、特に、低発塵性等の耐熱ロール特性の向上に関する。
 板ガラスの製造においては、溶融状態のガラスリボンを搬送するために、ロール部を備えた耐熱ロールが用いられる。液晶ディスプレイやプラズマディスプレイに適した高品質の板ガラスを製造するためには、この耐熱ロールがガラスリボンに与える好ましくない影響を可能な限り低減する必要がある。
 そこで、特許文献1~3には、耐熱ロールの仕上げにロール部の表面を研削することが提案されている。さらに、特許文献4では、表面を研削した後、水でならすことが記載されている。
特開2004-299980号公報 特開2007-269604号公報 特表2005-520774号公報 特開2010-095437号公報
 しかしながら、液晶ディスプレイやプラズマディスプレイ等に使用される高品質で薄い板ガラスを製造する場合には、ロール表面には高度なクリーン性が要求される。従って、耐熱ロールにおいて、さらなる発塵性の低下が求められていた。
 本発明は、上記課題に鑑みて為されたものであって、ロール部の表面からの発塵性が低減された耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法を提供することをその目的の一つとする。
 本発明の発明者らは、鋭意検討を重ねた結果、ロール部の表面に粘土系鉱物の被膜を形成することにより、耐熱ロールの特性を実質的に変えることなく、発塵性を低減できることを独自に見出した。
 本発明によれば、以下の耐熱ロールの製造方法等が提供される。
1. 粘土系鉱物を5重量%以上含有するロール部を作製するロール部作製工程と、
 前記ロール部のロール表面を研削する研削工程と、
 研削された前記ロール表面を湿らせた状態でならす表面処理を行う表面処理工程と、
 前記表面処理されたロール表面に粘土系鉱物の被膜を形成する粘土被膜工程と、
 を含む
 耐熱ロールの製造方法。
2.前記表面を被覆する粘土系鉱物の膨潤力が、15ml/2g以上である1に記載の耐熱ロールの製造方法。
3.前記表面を被覆する粘土系鉱物が、ベントナイト、木節粘土、カオリンから選択される1以上である1又は2に記載の耐熱ロールの製造方法。
4.前記粘土被膜工程において、前記表面処理されたロール表面に、粘土系鉱物含有液を付着し、乾燥させて粘土系鉱物の被膜を形成する1~3のいずれかに記載の耐熱ロールの製造方法。
5.粘土系鉱物を5重量%以上含有するロール部を作製するロール部作製工程と、
 前記ロール部のロール表面を研削する研削工程と、
 研削された前記ロール表面を、粘土系鉱物含有液によって湿らせた状態でならす表面処理をし、ロール表面に前記粘土系鉱物の被膜を形成する表面処理工程と、
 を含む、耐熱ロールの製造方法。
6.前記表面処理工程の湿らせた状態でならす表面処理において、研削された前記ロール表面を湿らせる第一工程と、次いで、湿った前記ロール表面をならす第二工程と、を実施することにより、前記表面処理を行う
 1~5のいずれかに記載の耐熱ロールの製造方法。
7.前記第二工程において、湿った前記ロール表面に基材を押し付けつつ前記ロール部を回転させることにより、前記ロール表面をならす
 6に記載の耐熱ロールの製造方法。
8.前記表面処理工程において、回転する前記ロール部の前記ロール表面に、湿らせた基材を押し付けることにより、前記表面処理を行う
 1~7のいずれかに記載の耐熱ロールの製造方法。
9.前記粘土系鉱物の被膜する量が平均表面積1m当たり固形分量で0.1g以上である1~8のいずれかに記載の耐熱ロールの製造方法。
10.粘土系鉱物を5重量%以上含有するロール部の表面部分が、粘土系鉱物で被覆されている、耐熱ロール。
11.前記ロール部の表面部分が、前記ロール部の内部に比べて緻密化されている
 10に記載の耐熱ロール。
12.1~9のいずれかに記載の方法で製造された耐熱ロール。
13.前記粘土系鉱物の被膜する量が平均表面積1m当たり固形分量で0.1g以上である10~12のいずれかに記載の耐熱ロール。
14.10~13のいずれかに記載の耐熱ロールを搬送用ロールとして使用する
 板ガラスの製造方法。
 本発明によれば、ロール部の表面からの発塵性が低減された耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法を提供することができる。
本発明の一実施形態に係る耐熱ロールの一例を示す説明図である。 図1に示す耐熱ロールを使用した板ガラスの製造の一例を示す説明図である。 本発明の第1の実施形態に係る耐熱ロールの製造方法に含まれる主な工程を示す概略図である。 本発明の第1の実施形態に係る耐熱ロールの製造方法における基材を使用した表面処理の一例を示す説明図である。 本発明の第2の実施形態に係る耐熱ロールの製造方法に含まれる主な工程を示す概略図である。
 以下に、本発明の例示の実施形態に係る耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法について、図面を参照しつつ説明する。尚、本実施形態においては、本発明に係る耐熱ロールが、積層された複数のディスク材を有するディスクロールとして実現される例について主に説明するが、本発明は、本実施形態に限られるものではない。
 まず、本実施形態に係るディスクロールの概要と、当該ディスクロールを使用した板ガラスの製造方法について説明する。図1には、ディスクロール1の一例を示す。図1に示すように、ディスクロール1は、その長手方向に延びる円柱状のロール部10を備えている。
 ロール部10は、粘土系鉱物(以下、単に粘土ともいう)を5重量%以上含有する複数のディスク材11が、当該ロール部10の長手方向に積層されることにより構成されている。即ち、ロール部10を構成する複数のディスク材11は、ディスクロール1の回転軸となる軸部20に嵌挿されている。
 本発明において、ロール部10は、さらに表面が粘土系鉱物で被覆されている。ロール部10全体を均一に分散して構成する粘土系鉱物と、表面を被覆する粘土系鉱物は同一でも異なってもよい。
 そして、積層された複数のディスク材11は、軸部20の両端部分にそれぞれ設けられたフランジ21及びナット22によって、当該軸部20の長手方向に圧縮された状態で固定されている。従って、ロール部10の表面(以下、「ロール表面12」という。)は、圧縮状態で積層された複数のディスク材11の外周面が連なることにより構成されている。
 尚、ディスクロールの構造は、図1に示すようにシャフト全体がディスク材で覆われているものに限定されず、例えば、ガラスの接触する部分のみシャフトがディスク材で覆われているもの、単一の軸を有する仕様のもの、ディスク部が取り外し可能なもの等がある。
 このディスクロール1は、板ガラスの製造において、搬送用ロールとして使用できる。図2には、板ガラスの製造において搬送用ロールとして使用されるディスクロール1の一例を示す。図2に示すように、板ガラスの製造装置(不図示)においては、並列に配置された一対のディスクロール1が、その軸部20を中心に回転可能に設置される。尚、ディスクロール1は動力発生装置(不図示)に接続されていてもよい。この場合、ディスクロール1は、動力発生装置が発生させた動力に基づき回転することができる。
 そして、搬送路の上流側から溶融された状態で送られてきたガラスリボン30は、回転する一対のロール部10によって挟持されながら下流側に搬送される。即ち、図2に示す例において、ガラスリボン30は鉛直方向下方(図2に示す矢印Dの指す方向)に搬送される。平板形状ガラスは、上記のダウンドロー法の他に、フロート法、ロールアウト法、コルバーン法等により製造することができる。
 ディスクロール1によって搬送されることにより、ガラスリボン30は徐冷される。尚、図2には、一対のディスクロール1のみを示しているが、搬送路に沿って、二対以上のディスクロール1を設置することもできる。
 また、ディスクロール1は、製造される板ガラスの公称板厚を調整するためにガラスリボン30に張力を加える牽引ロールとしても使用できる。牽引ロールによるガラスリボン30の牽引速度によって、製造される板ガラスの公称板厚を調整することができる。
 このように、板ガラスの製造において、ガラスリボン30と接触するロール表面12は、ガラスの溶融温度以上の高温に耐える耐熱性、ライントラブル等の際直ぐにロールを取り出すための耐スポーリング性、接触するガラスリボン30を傷つけない柔軟性、長時間高温に耐える耐久性、ガラスリボン30を汚染しない低発塵性といった特性を兼ね備えていることが望まれる。
 ここで、本発明の耐熱ロールは、実施例に記載の方法で測定した加熱収縮率が、1%以下のロールをいう。
 次に、このような優れた特性を備えたディスクロール1及びその製造方法(以下、「本製造方法」という。)について説明する。
 本発明の一実施形態によれば、まず、複数のディスク材11を用いてディスクロール1を組み立てる。ディスク材11の製造においては、まず、水性スラリーを調製し、当該水性スラリーから所定厚さの板状体(いわゆるミルボード)を製造する。
 水性スラリーは、最終的に製造されるディスク材11が備えるべき組成に応じた組成で調製する。即ち、例えば、この水性スラリーは、ディスクロール1に装着されたディスク材11において5重量%以上という含有量を達成するために必要な量の粘土系鉱物を含有する。
 粘土系鉱物としては、加熱により焼結する特性を有するものを好ましく使用できる。1種類を単独で又は2種類以上を組み合わせて用いることができる。具体的に、例えば、木節粘土や蛙目粘土等の耐火性粘土や、ベントナイト、カオリンを使用でき、当該耐火性粘土を好ましく使用できる。中でも、木節粘土は、焼結によるバインダー効果が高く、不純物も少ないため好ましい。
 また、水性スラリーは、さらに無機繊維や充填材を含有することもできる。無機繊維としては、ディスク材11の強度を高める補強材となるものであれば特に限られず任意の種類のものを適宜選択して用いることができ、1種類を単独で又は2種類以上を組み合わせて用いることができる。
 即ち、例えば、セラミック繊維、ガラス繊維、ロックウール繊維等の人造無機繊維を好ましく用いることができる。より具体的に、例えば、耐熱性に優れたアルミナ繊維、ムライト繊維、シリカ・アルミナ繊維、シリカ繊維を特に好ましく使用できる。
 充填材としては、ディスク材11の耐熱性や強度等の特性の向上に寄与するものであれば特に限られず任意の種類のものを適宜選択して用いることができ、1種類を単独で又は2種類以上を組み合わせて用いることができる。即ち、例えば、マイカ、ワラストナイト、セピオライト、シリカ、アルミナ、コージェライト、焼成カオリン等の無機充填材を使用でき、中でも高弾性、滑り性、耐摩耗性、耐熱性等の優れた特性を示すマイカを好ましく使用できる。また、鱗片状シリカや鱗片状アルミナを用いることができ、特に鱗片状シリカは摩耗性が高く好ましい。鱗片状シリカは、好ましくは、鱗片状シリカが平行的に重なって形成される2次凝集体、又は前記2次凝集体が複数集まって形成される3次凝集体である。具体的には、鱗片状シリカの薄片1次粒子が互いに面間が平行的に配向し、複数枚重なって形成される葉状シリカ2次粒子である。葉状シリカ2次粒子が、さらに3次元的に凝集して3次粒子を形成してもよい。葉状シリカ2次粒子及び3次粒子については、特開2006-143666,特許公報3795671等に記載されている。
 また、水性スラリーは、成形性等の特性を向上させるための助剤をさらに含有することができる。この助剤としては、例えば、ディスク材11を焼成することにより、当該ディスク材11から消失させることのできる有機材料や無機材料を使用できる。有機材料としては、パルプ、澱粉、合成樹脂の繊維や粒子等の有機バインダーを使用できる。
 このような原料の混合物として調製された水性スラリーを板状に成形し、乾燥させることによりミルボードを製造することができる。ミルボードの成形は、抄造機を用いた抄造法により好ましく行うことができる。ミルボードの厚さは、ディスク材11の厚さに相当する所望の値に設定でき、例えば、2~30mmの範囲とすることができる。
 そして、ミルボードの一部を円盤状に打ち抜き、打ち抜かれた円盤体をディスク材11として得る。尚、ディスク材11の中央には、組み立ての際に軸部20を挿通するための貫通穴が形成される。
 また、ディスク材11は、ミルボードから打ち抜かれた円盤を焼成したものとすることができ、また、焼成することなくミルボードを打ち抜いて得られる円盤そのものとすることもできる。複数のディスク材11を有するディスクロール1を組み立てた後、当該複数のディスク材11を含むロール部10を焼成することもできる。また、ロール部10に対して後述する表面処理工程S20における表面処理を施した後に、当該ロール部10を焼成することもできる。尚、焼成条件は特に制限されず、焼成炉の仕様、ディスク材11のかさ密度や大きさ等の条件に応じて適宜変更することができる。即ち、焼成温度は特に制限されないが、例えば300~1000℃の範囲とすることができ、好ましくは400~900℃の範囲とすることができ、より好ましくは500~800℃の範囲とすることができる。焼成時間は特に制限されないが、例えば1~24時間の範囲とすることができる。
 焼成したディスク材11を製造する場合、当該焼成により、ミルボードに含有されていた有機材料等の助剤を消失させることができる。この結果、焼結した無機材料からなるディスク材11が得られる。また、焼成後のディスク材11には、当該焼成に伴う一部の材料の焼失に由来する空隙が形成される。
 また、ディスク材11は、モールド成形により製造することもできる。即ち、ディスク材11は、例えば、上述のような原料の混合物として調製されたスラリーを、当該ディスク材11の形状に対応する所定形状のモールド型に流し込み、吸引脱水成形することにより製造することができる。また、モールド成形された円盤の表面に粘土スラリーを含浸させ、乾燥させることにより、当該粘土系鉱物を含有するディスク材11を製造することもできる。
 モールド成形されたディスク材11もまた、焼成することができる。焼成方法、焼成時期、焼成温度、焼成時間等の焼成条件は、前記と同じである。
 こうして得られたディスク材11(焼成が行われる場合には焼成後のディスク材11)は、5重量%以上の粘土系鉱物を含有する。この粘土系鉱物の含有量は、さらに10重量%以上とすることが好ましく、15重量%以上とすることがより好ましい。
 一方、粘土系鉱物の含有量の上限は、ディスクロール1に要求される特性に応じて適宜設定することができる。即ち、粘土系鉱物の含有量は、例えば、50重量%以下とすることが好ましく、45重量%以下とすることがより好ましい。粘土系鉱物の含有量が多いと、ロール部10において、割れの発生、クラックの形成、複数のディスク材11の分離といった問題が発生しやすくなり、ディスクロール1がその性能を十分に発揮できないことがある。
 従って、ディスク材11における粘土系鉱物の含有量は、例えば、5~50重量%の範囲とすることができ、10~30重量%の範囲とすることが好ましく、10~43重量%の範囲とすることがより好ましい。
 粘土系鉱物として、木節粘土とベントナイトを含むことが好ましい。これらの含有量はそれぞれ好ましくは5~30重量%、より好ましくは7~25重量%、さらに好ましくは8~23重量%である。
 また、ディスク材11に含有される無機繊維や充填材の量は、これらの材料の種類やディスクロール1に要求される特性に応じて適宜設定することができる。即ち、無機繊維の含有量は、例えば、20~50重量%が好ましく、25~45重量%がさらに好ましく、30~43重量%がさらに好ましい。
 また、充填材の含有量は、たとえば、5~50重量%の範囲とすることが好ましく、7~40重量%の範囲とすることがより好ましく、10~35重量%の範囲とすることがより好ましい。
 粘土系鉱物、無機繊維、充填材及び有機バインダーで、ディスクロールの90%以上、95%以上、98%以上、又は100%を占めることができる。
 こうして製造された複数のディスク材11を順次、軸部20に嵌め入れる。さらに、軸部20に沿って積層された複数のディスク材11を、油圧プレス等により、当該軸部20の長手方向に締め付ける。そして、圧縮された状態の複数のディスク材11を、軸部20の両端部分に設けられた一対のフランジ21により挟み込み、さらに一対のナット22により固定する。尚、複数のディスク材11を軸部20に嵌め入れた後、圧縮することなく、これらをフランジ21及びナット22で固定することもできる。
 こうして、積層された複数のディスク材11からなるロール部10を備えたディスクロール1を組み立てることができる。ロール部10を構成する複数のディスク材11を圧縮して固定することにより、当該ロール部10を、組み立て前の各ディスク材11に比べて硬化させ、また緻密化することができる。
 尚、ロール部10は、上述の積層された複数のディスク材11を有するものに限られない。即ち、ロール部10は、例えば、5重量%以上の粘土系鉱物を含有する1つの円筒状成形体とすることもできる。また、ロール部10は、5重量%以上の粘土系鉱物を含有する複数の円筒状成形体が軸部20に沿って積層されてなるものとすることができる。
 このような円筒状成形体は、例えば、上述のような無機材料を主成分とする原料を使用したモールド成形により製造することができる。この場合、ロール部10は、上述のような原料の混合物として調製されたスラリーを、当該ロール部10の形状に対応する所定形状のモールド型に流し込み、吸引脱水成形することにより、円筒状成形体として製造される。この場合、モールド成形前のスラリーに予め粘土系鉱物を含有させておくこととしてもよい。また、モールド成形された円筒状成形体の表面に粘土スラリーを含浸させ、乾燥させることにより、当該粘土系鉱物を含有するロール部10を製造することもできる。
 また、ロール部10は、繊維間に粘土系鉱物を含有する無機繊維成形体とすることもできる。即ち、ロール部10は、例えば、繊維間に粘土系鉱物を含有するシート状の無機繊維成形体が軸部20に1回又は複数回巻き付けられてなるものとすることができる。
 この場合、ロール部10は、例えば、無機繊維成形体に粘土スラリーを含浸させることにより製造することができる。具体的に、例えば、無機繊維ペーパーに粘土スラリーを含浸させ、次いで、当該無機繊維ペーパーを軸部20に巻き付けることによりロール部10を製造することができる。また、例えば、粘土系鉱物を含有するスラリーを抄造することにより当該粘土系鉱物を含有する無機繊維ペーパーを製造し、次いで、当該無機繊維ペーパーを使用してロール部10を製造することもできる。また、例えば、無機繊維ブランケットを軸部20に巻き付け、次いで、当該無機繊維ブランケットに粘土スラリーを含浸させ、乾燥させることによりロール部10を製造することもできる。
 これら円筒状成形体や無機繊維成形体もまた、焼成することができる。また、上述のような複数のディスク材11、円筒状成形体又は無機繊維成形体を有するロール部10を備えた耐熱ロールを組み立てた後に、当該ロール部10を焼成することもできる。また、ロール部10に対して後述する表面処理工程S20における表面処理を施した後に、当該ロール部10を焼成することもできる。これらの場合も、焼成条件は特に制限されず、焼成炉の仕様、円筒状成形体や無機繊維成形体のかさ密度や大きさ等の条件に応じて適宜変更することができる。焼成温度と焼成時間は、前記と同じである。
 以下、このように製造されたロールの表面仕上げについて、図面を用いて説明する。図3は、本製造方法の第1の実施形態に含まれる主な工程を示す。右端には表面の様子の概略を示す。
 はじめに、研削工程S10において、組立工程で組み立てられたディスクロール1のロール表面12を研削する。即ち、乾燥状態のロール表面12の一部を削り取ることにより、当該ロール表面12を平滑化するとともに、ロール部10の径を調節する。例えば、図1に示すように、ロール部10の長手方向における径を一定に調節することができる。
 本実施形態では、研削工程S10は切削工程S12及び研磨工程S14を含む。
 まず、ロール表面12を旋盤等の切削装置によって切削することにより、ロール表面12上の比較的大きな凹凸を解消する(切削工程S12)。しかしながら、図の右欄に示すように、表面には依然として微小な凹凸は残っている。
 次に、サンドペーパー等の研磨具によってロール表面12をさらに研磨して平坦化する(研磨工程S14)。このとき、図の右欄に示すように、研磨により生じた微粒子が凹に入り込む。
 また、研削工程S10を、切削工程S12及び研磨工程S14と分けずに、切削及び研磨を一工程で行ってもよく、または、表面状態によっては、どちらかを省略してもよい。
 次に、表面処理工程S20において、研削工程S10で研削されたロール表面12を湿らせた状態でならす表面処理を行う。この実施形態では、表面処理工程S20においては、まず、研削後の乾燥したロール表面12に水を塗布する(水塗布工程S22)。
 尚、本実施形態では水を使用したが、ロール表面12に含浸させることができる、溶質を含まない液体であれば特に限られず任意の種類のものを適宜選択して用いることができ、1種類を単独で又は2種類以上を組み合わせて用いることができる。即ち、例えば、水、エタノール、アセトンといった極性溶媒を好ましく使用でき、中でも取り扱いが容易で、粘土系鉱物を効果的に可塑化できることから、水を特に好ましく使用できる。
 また、塗布に限られず、霧吹き等の噴霧器具を用いてもよい。
 ロール表面12は、湿らせることによって可塑化できる。即ち、ロール表面12を構成する微粒子は、乾燥状態では硬化し強く拘束されているが、湿潤状態においては軟化し、変形や移動が比較的容易となる。
 そこで、この表面処理工程S20においては、さらに湿ったロール表面12に外力を加えて、当該ロール表面12をならす(ならし工程S24)。即ち、例えば、湿らせたロール表面12を擦って、当該ロール表面12に沿った方向にせん断力をかける。
 これによって、ロール表面12を構成する微粒子の一部を、当該ロール表面12に沿って移動させることができる。この結果、ロール表面12の凹凸を低減することができる。
 即ち、例えば、図の右欄に示すように、ロール表面12の凸部を構成する微粒子を、当該ロール表面12に沿って移動させて、当該ロール表面12の凹部に埋め込むことにより、当該ロール表面12を平滑化することができる。
 また、ロール表面12を押さえる力を加えることによって、当該ロール表面12を構成する微粒子をより密に充填することもできる。即ち、湿ったロール表面12において、微粒子は互いにずれながら移動できるため、適度な押圧力の負荷によって、微粒子をより均一な分散状態となるように再配置し充填し直すことができる。この結果、ロール表面12を緻密化することができる。
 また、水塗布工程S22とならし工程S24は、ロール部10を回転させながら行ってもよい。
 表面処理工程S20は、水塗布工程S22及びならし工程S24と分けずに、水で湿らすと同時にならす一工程で行ってもよい。
 上記の表面処理工程S20は、図4に示すように基材を用いて実施することができる。
 図4は、上述の表面処理を実現する上で好ましい態様の一例を示す。図4には、図1に示すディスクロール1のうち、IV-IV線で切断したロール部10の断面と、当該ロール部10に対する表面処理に使用される基材40の断面を示している。
 図4に示すように、この例では、回転するロール表面12に基材40を押し付けることにより、上述の表面処理を行う。即ち、まず軸部20を中心にして、ロール部10を図4に示す矢印Rの指す方向に回転させる。
 そして、回転するロール表面12に対して基材40を押し付け、その状態を維持する。このとき、図4に示すように、基材40をロール表面12に沿って配置することが好ましい。尚、図4には、ロール表面12の周方向に沿って基材40が配置されている様子のみを示されているが、当該基材40は、当該ロール表面12の長手方向にも沿うよう配置することができる。こうして、ロール表面12を、基材40に接触させながら回転させることになる。
 基材40としては、例えば、シート状の基材40を好ましく使用できる。
 水塗布工程S22においては、予め液体を保持した基材40をロール表面12に接触させる方法を使用できる。
 ならし工程S24においては、湿ったロール表面12にシート状の基材40を押し付けることにより当該基材40を当該ロール表面12の周方向に沿って配置しつつロール部10を回転させることにより、当該ロール表面12をならす。
 基材40としては、例えば、サンドペーパー等、ロール表面12と接触する表面に研磨用の凹凸が形成されたシート状の基材40を好ましく使用できる。このような研磨能を有する基材40を使用することにより、上述のように、ロール表面12を構成する微粒子の移動及び再充填を実現することができる。
 また、図4に示すように、ロール表面12に沿って配置できる柔軟性を有する基材40を好ましく使用できる。具体的に、例えば、織布や不織布等のシート状繊維基材や、可とう性を有する合成高分子製のシート状多孔質基材(例えば、発泡成形体)を好ましく使用できる。また、上述のように表面に研磨用の凹凸が形成されたシート状の基材40(例えば、サンドペーパー)も好ましく使用できる。
 表面処理工程S20においては、周方向の一方に回転するロール部10のロール表面12に上述の表面処理を施し、さらに、当該ロール部10の回転方向を反対方向に切り換えて上述の表面処理を行う繰り返し処理を1回以上実施することもできる。
 即ち、この場合、まず、ロール部10を周方向の一方(例えば、図4に示す矢印Rの指す方向)に回転させながら、ロール表面12を湿らせた状態でならす表面処理を行う。この表面処理は、上述のように、まず湿らせ、その後にならすという2段階で実施してもよい。
 次いで、表面処理後のロール表面12を乾燥させることなく、ロール部10の回転方向を反対方向に切り換えて、繰り返し処理を行う。即ち、繰り返し処理においては、ロール部10を周方向の他方(例えば、図4に示す矢印Rの指す方向と反対の方向)に回転させながら、ロール表面12を湿らせた状態でならす表面処理を行う。
 さらに、2回目の繰り返し処理を行う場合には、上述の第一の繰り返し処理後のロール表面12を乾燥させることなく、ロール部10の回転方向を再び反対方向に切り換えて、第二の繰り返し処理を行う。即ち、この第二の繰り返し処理においては、ロール部10を再び周方向の一方に回転させながら、ロール表面12を湿らせた状態でならす表面処理を行う。
 そして、3回以上の繰り返し処理を実施する場合には、同様に、ロール部10の回転方向を切り換えて、切り換えられた後の方向に回転するロール部10のロール表面12に表面処理を施す。尚、繰り返し処理における表面処理もまた、上述のように2段階で実施してもよい。
 表面処理工程S20において、ロール表面12をならすために当該ロール表面12に負荷する押圧力は特に限られず、上述のような当該ロール表面12の平滑化及び緻密化を達成できる範囲で任意に設定することができる。
 即ち、上述のようにロール表面12に基材40(例えば、サンドペーパー等の研磨能を有するシート状の基材40)を押し付けて当該ロール表面12をならす場合には、当該ロール表面12に対して、例えば、当該基材40の幅方向(軸部20の長手方向)の単位長さ(1mm)あたり100~2000Nの範囲の押圧力(即ち、100~2000N/mmの範囲の押圧力)を負荷することができる。
 また、表面処理工程S20において、ロール表面12をならす際に当該ロール表面12を回転させる速度は特に限られず、上述のような当該ロール表面12の平滑化及び緻密化を達成できる範囲で任意に設定することができる。
 即ち、ロール部10の回転速度は、例えば、10~1500rpmの範囲とすることができる。また、ロール表面12の周速度は、例えば、1~1000m/分の範囲とすることができる。
 また、表面処理工程S20を1段階で行うときは、予め湿らせた基材を用いてロール表面12をならし、表面処理を行う。
 基材40に水を含ませて使用するときは、例えば、水等の液体を保持できる繊維基材や多孔質基材を使用できる。具体的に、例えば、水を用いて表面処理を行う場合には、親水性の材料から構成された、含水性の繊維基材や多孔質基材を好ましく使用できる。
 湿らせた基材40をロール表面12に沿って配置した状態で、当該ロール表面12を回転させると、湿った基材40がロール表面12の一部を覆っているため、当該基材40からの液体(水分)の徐放により当該ロール表面12を効率よく湿らせることができるとともに、いったん湿ったロール表面12が再び乾燥することを効果的に防止できている。
 次に、粘土被膜工程S30において、上記表面処理を施したロール表面12に粘土水を塗布する(粘土水塗布工程S32)。その後、乾燥する(乾燥工程S34)。乾燥は自然乾燥でよいが、乾燥機を使用することもできる。このようにすることで、粘土系鉱物の被膜が形成され、表面処理工程S20だけでは十分に平坦化できなかった凹凸も、平坦化できるようになる。その結果、発塵が抑制される。
 粘土系鉱物としては、膨潤力15ml/2g以上のものを使用することができ、好ましくは20ml/2g以上のもの、さらに好ましくは30ml/2g以上のものが好ましい。例えば木節粘土や蛙目粘土等の耐火性粘土や、ベントナイト、カオリンを使用できる。
 膨潤力は日本ベントナイト工業会標準試験方法(JBAS-104-77)に準じて測定すればよい。具体的には以下のように測定すればよい。試料2gを正確に量り、精製水100mlを入れた100mlの共栓付きメスシリンダーに加える。このとき、加えた試料が内壁に付着しないように注意する。また、試料が十分吸水及び分散するように試料を数回に分けて加えるようにするとともに、前に加えた試料のほとんどが沈降してから次の試料を加える。すべての試料を加えたら栓をし、24時間静置後、メスシリンダーの下部に堆積した容積A(ml)を読み取る。読み取った値が膨潤力(ml/2g)となる。
 塗布に用いる粘土水としては、例えば、水10Lに粘土系鉱物を1~1000g溶解又は分散させたものを用いることができる。
 尚、本実施形態では水を使用したが、粘土系鉱物を適当に溶解又は分散できるものであれば、特に限られず任意の種類のものを適宜選択して用いることができ、1種類を単独で又は2種類以上を組み合わせて用いることができる。取り扱い易さ等の点から、水が好ましい。
 被覆する量は、好ましくは、平均膜厚0.01mm~5mm程度であり、さらに厚くすることもできる。または、例えば、平均表面積1m当たり固形分量で0.1g~1000g程度であり、好ましくは0.1g~100g、より好ましくは0.3~50gである。
 尚、被覆は表面の全てを被覆していなくてもよい。好ましくは80%以上、より好ましくは90%以上、最も好ましくは100%である。
 粘土系鉱物液を、例えば噴霧する方法、浸漬、はけ塗り、又は滴下等により、ロール表面12上に付着する。
 図5に、本発明の第2の実施形態に含まれる主な工程を示す。右端には表面の様子の概略を示す。
 この実施形態では、研削工程S10の後、水を塗布する代わりに、第1の実施形態において使用した粘土含有水を塗布する(表面処理工程S40)。尚、研削工程S10は第1の実施形態と同じであるため説明を省略する。
 この実施形態では、粘土含有水を塗布し(粘土水塗布工程S42)、ならして乾燥した後(ならし工程S44、乾燥工程S46)、第1の実施形態と同様に粘土系鉱物の被膜を形成する。この工程では、図の右欄に示すように、湿らせたロール表面12に、表面12に沿った方向にせん断力をかけ、ロール表面12を構成する微粒子の一部を、当該ロール表面12に沿って移動させて、ロール表面12の凹凸を低減させる。これと共に、粘土水に含まれる粘土系鉱物も表面12の凹部に入り込みこれを埋め、さらに、表面の上に粘土被膜を形成する。従って、第1の実施形態のような水だけの表面処理工程S20だけでは十分に平坦化できなかった凹凸も、平坦化できるようになる。その結果、発塵が抑制される。
 こうして得られるディスクロール1においては、ロール表面12が、ロール部10の内部13に比べて緻密化されている。即ち、ロール部10においては、当該ロール部10の外表面及びその近傍部分を含む所定厚みの表面部分が局所的に緻密化されている。
 尚、第2の実施形態では、第1の実施形態で実施したように、再度粘土水を付着させて乾燥させる工程(粘土被膜工程S30)は必要ない。しかし、第1の実施形態のようにさらに粘土系鉱物の被膜を形成して(粘土被膜工程S30を実施して)、厚みを増してもよい。
 本発明の耐熱ロールの表面12は発塵が抑制され、平滑化されている。また、粘土系鉱物の被膜が有るため強度も高くなっている。
 JIS B 0601-1994で規定された方法で測定されるロール表面12の算術平均粗さRaは、5.0μm以下とすることができ、3.0μm以下であることがより好ましく、1.0μm以下であることが特に好ましい。
 また、JIS B 0601-1994で規定された方法で測定されるロール表面12の最大高さRyは、25.0μm以下とすることができ、15.0μm以下であることがより好ましく、10.0μm以下であることが特に好ましい。
 また、JIS B 0601-1994で規定された方法で測定されるロール表面12の十点平均粗さRzは、25.0μm以下とすることができ、15.0μm以下であることがより好ましく、10.0μm以下であることが特に好ましい。
 ロール表面12は、その算術平均粗さRa、最大高さRy及び十点平均粗さRzのうち少なくとも一つが上記の範囲であることが好ましく、これら3つの全てについて上記の範囲であることが特に好ましい。
 また、本発明で得られる耐熱ロールのロール部10は、上記の表面仕上げの前後で、同等の耐熱性等の特性を維持することができる。
実施例1、比較例1
 ディスクロール用基材から外径60mm内径20mmのディスク材を打ち抜き、直径20mmのステンレス製シャフトに長さ100mm、充填密度が1.35g/cmになるようにロールビルドし、図1に示すようなディスクロール1を作製した。
 このディスク材11は、粘土系鉱物として10重量%の木節粘土、10重量%のベントナイト、無機繊維として40重量%のムライト繊維、充填材として32重量%のマイカを含有していた。尚、ディスクロール用基材は助剤として6重量%のパルプと2重量%の有機バインダーを含有していた。
 この組み立てられたディスクロール1を焼成した。ディスク材11に含有されていたパルプ及び有機バインダーは、この焼成により焼失させた。
 次いで、このディスクロール1のロール表面12を研削した。研削は、ディスクロール1を所定の駆動装置に設置して軸部20を中心に回転させ、回転するロール表面12にサンドペーパーを接触させることにより行った。
 そして、研削時と同様に、回転するロール表面12に、予め水を含浸させて湿らせた無塵ペーパー(キムワイプ、日本製紙クレシア株式会社)を押し当てて所定時間保持することにより、当該ロール表面12を湿らせた状態でならす表面処理を行った。
 表面処理後のロール表面12を加熱して乾燥させた。
 上記表面処理を行ったロール表面12に、ベントナイト水溶液を霧吹きと刷毛で塗布して被膜処理を行った。ベントナイト水溶液は、水10Lにベントナイト50gを溶解して調製した。その後、ロール表面12を自然乾燥してディスクロール1を製造した。
 比較例1として、上記表面処理は行ったが、上記被膜処理を行っていないディスクロールを準備した。
 ディスクロール1及び被膜処理を行っていないディスクロールそれぞれについて、以下の特性を評価した。結果を表1に示す。
(1)加熱収縮率(耐熱性)
 ディスクロールを900℃で3時間加熱した後、ロールの長さ方向の長さを測定し、下記式に基づいて加熱収縮率を評価した。
[(加熱前の測定値-加熱後の測定値)/加熱前の測定値]×100
(2)耐スポーリング性(耐熱性)
 ディスクロールを、900℃に保持した電気炉に投入し、15時間後に取り出して室温25℃まで急冷した。そして、この加熱及び急冷のサイクルをディスクロールのクラック又はディスクセパレーションが発生するまで繰り返し、クラック又はディスクセパレーションが発生したサイクル数をカウントした。
(3)柔軟性(荷重変形量)
 ディスクロールをシャフトの両端を架台で支持し、ディスク材からなるロール面に圧縮子により8.82N/mmで加圧し、そのときの荷重変形量を測定した。
(4)耐久性(熱間磨耗試験)
 セラミック繊維含有ディスクロール用基材から外径80mm内径30mmのディスク材
を打ち抜き、直径30mmのステンレス製シャフトに、長さ100mm、充填密度が1.
25g/cm3になるようにロールビルドし、ディスクロールを作製した。
 このディスクロールのロール面に2mm間隔で幅2mmの溝加工を5本施した直径30
mmのステンレス製の軸を接触させた状態で、900℃で5時間回転させた後、室温25
℃まで冷却し、ディスクロールのロール表面にできた溝の深さを測定した。
(5)発塵性
 発塵性は、ロール表面を黒色の画用紙に擦り付け、これにより当該画用紙に付着した粉の重量を測定するとともに、当該画用紙の明度を色差計で測定することにより評価した。
 上記のディスクロールを用いて、実際に板ガラスを製造したところ、発塵性に有意な差があった。
(6)表面粗さ
 触針式表面粗さ測定機(JIS B 0651)を使用して、JIS B 0601-1994で規定された方法により測定し、算術平均粗さRa、最大高さRy及び十点平均粗さRzを測定した。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法によって得られたディスクロールは、板ガラス、特に液晶用ガラスやプラズマディスプレイ用ガラスの製造に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (14)

  1.  粘土系鉱物を5重量%以上含有するロール部を作製するロール部作製工程と、
     前記ロール部のロール表面を研削する研削工程と、
     研削された前記ロール表面を湿らせた状態でならす表面処理を行う表面処理工程と、
     前記表面処理されたロール表面に粘土系鉱物の被膜を形成する粘土被膜工程と、
     を含む
     耐熱ロールの製造方法。
  2.  前記表面を被覆する粘土系鉱物の膨潤力が、15ml/2g以上である請求項1に記載の耐熱ロールの製造方法。
  3.  前記表面を被覆する粘土系鉱物が、ベントナイト、木節粘土、カオリンから選択される1以上である請求項1又は2に記載の耐熱ロールの製造方法。
  4.  前記粘土被膜工程において、前記表面処理されたロール表面に、粘土系鉱物含有液を付着し、乾燥させて粘土系鉱物の被膜を形成する請求項1~3のいずれかに記載の耐熱ロールの製造方法。
  5.  粘土系鉱物を5重量%以上含有するロール部を作製するロール部作製工程と、
     前記ロール部のロール表面を研削する研削工程と、
     研削された前記ロール表面を、粘土系鉱物含有液によって湿らせた状態でならす表面処理をし、ロール表面に前記粘土系鉱物の被膜を形成する表面処理工程と、
     を含む、耐熱ロールの製造方法。
  6.  前記表面処理工程の湿らせた状態でならす表面処理において、研削された前記ロール表面を湿らせる第一工程と、次いで、湿った前記ロール表面をならす第二工程と、を実施することにより、前記表面処理を行う
     請求項1~5のいずれかに記載の耐熱ロールの製造方法。
  7.  前記第二工程において、湿った前記ロール表面に基材を押し付けつつ前記ロール部を回転させることにより、前記ロール表面をならす
     請求項6に記載の耐熱ロールの製造方法。
  8.  前記表面処理工程において、回転する前記ロール部の前記ロール表面に、湿らせた基材を押し付けることにより、前記表面処理を行う
     請求項1~7のいずれかに記載の耐熱ロールの製造方法。
  9.  前記粘土系鉱物の被膜する量が平均表面積1m当たり固形分量で0.1g以上である請求項1~8のいずれかに記載の耐熱ロールの製造方法。
  10.  粘土系鉱物を5重量%以上含有するロール部の表面部分が、粘土系鉱物で被覆されている、耐熱ロール。
  11.  前記ロール部の表面部分が、前記ロール部の内部に比べて緻密化されている
     請求項10に記載の耐熱ロール。
  12.  請求項1~9のいずれかに記載の方法で製造された耐熱ロール。
  13.  前記粘土系鉱物の被膜する量が平均表面積1m当たり固形分量で0.1g以上である請求項10~12のいずれかに記載の耐熱ロール。
  14.  請求項10~13のいずれかに記載の耐熱ロールを搬送用ロールとして使用する
     板ガラスの製造方法。
PCT/JP2014/004331 2013-09-19 2014-08-22 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法 WO2015040796A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167006032A KR101938464B1 (ko) 2013-09-19 2014-08-22 내열 롤, 그 제조 방법 및 이를 사용한 판 유리의 제조 방법
US15/022,074 US10513456B2 (en) 2013-09-19 2014-08-22 Heat-resistant roll, manufacturing method thereof, and plate glass manufacturing method using such heat-resistant roll
CN201480051930.8A CN105555721A (zh) 2013-09-19 2014-08-22 耐热辊、其制造方法以及使用其的板状玻璃的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-194326 2013-09-19
JP2013194326A JP6182033B2 (ja) 2013-09-19 2013-09-19 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法

Publications (1)

Publication Number Publication Date
WO2015040796A1 true WO2015040796A1 (ja) 2015-03-26

Family

ID=52688468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004331 WO2015040796A1 (ja) 2013-09-19 2014-08-22 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法

Country Status (6)

Country Link
US (1) US10513456B2 (ja)
JP (1) JP6182033B2 (ja)
KR (1) KR101938464B1 (ja)
CN (2) CN105555721A (ja)
TW (1) TWI633071B (ja)
WO (1) WO2015040796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613493B2 (en) * 2016-07-26 2023-03-28 Corning Incorporated Method of making high quality heat-resistant rolls

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016646B2 (ja) * 2008-09-17 2012-09-05 ニチアス株式会社 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
JP7427383B2 (ja) * 2019-07-29 2024-02-05 日東電工株式会社 ガラス基材の搬送装置、積層ガラスの製造装置および製造方法
CN113956054B (zh) * 2021-10-12 2023-10-20 佛山市天禄智能装备科技有限公司 一种用于回转窑的保温耐火材料及其制备方法
CN115007563B (zh) * 2022-06-13 2023-08-01 广东韶钢松山股份有限公司 连铸密排辊的清理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287823A (ja) * 2000-04-07 2001-10-16 Nichias Corp ディスクロールおよびその作製方法
JP2010095437A (ja) * 2008-09-17 2010-04-30 Nichias Corp 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
WO2012070650A1 (ja) * 2010-11-25 2012-05-31 ニチアス株式会社 ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219059A (en) * 1975-08-04 1977-01-14 Nippon Telegr & Teleph Corp <Ntt> Exclusive or circuit
JP3795671B2 (ja) 1998-05-29 2006-07-12 旭硝子エスアイテック株式会社 シリカ−金属酸化物微粒子複合体を配合した化粧料
KR20040102050A (ko) 2002-03-22 2004-12-03 코닝 인코포레이티드 판유리 제조용 사출 로울러
JP4393781B2 (ja) 2003-03-31 2010-01-06 ニチアス株式会社 ディスクロール及びその製造方法
US8636633B2 (en) 2003-03-31 2014-01-28 Nichias Corporation Disc roll
JP5219059B2 (ja) * 2004-08-10 2013-06-26 独立行政法人産業技術総合研究所 粘土配向膜からなる保護膜
JP2006143666A (ja) 2004-11-22 2006-06-08 Asahi Glass Si-Tech Co Ltd 水性ゲル状組成物及びこれを含有する水性ゲル状化粧料。
JP4731381B2 (ja) 2006-03-31 2011-07-20 ニチアス株式会社 ディスクロール及びディスクロール用基材
US7507194B2 (en) * 2006-11-29 2009-03-24 Corning Incorporated Pulling roll material for manufacture of sheet glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287823A (ja) * 2000-04-07 2001-10-16 Nichias Corp ディスクロールおよびその作製方法
JP2010095437A (ja) * 2008-09-17 2010-04-30 Nichias Corp 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
WO2012070650A1 (ja) * 2010-11-25 2012-05-31 ニチアス株式会社 ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613493B2 (en) * 2016-07-26 2023-03-28 Corning Incorporated Method of making high quality heat-resistant rolls

Also Published As

Publication number Publication date
KR20160060037A (ko) 2016-05-27
KR101938464B1 (ko) 2019-01-14
CN105555721A (zh) 2016-05-04
TWI633071B (zh) 2018-08-21
JP6182033B2 (ja) 2017-08-16
TW201524924A (zh) 2015-07-01
US20160221861A1 (en) 2016-08-04
US10513456B2 (en) 2019-12-24
CN113636834A (zh) 2021-11-12
JP2015059066A (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5016646B2 (ja) 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
WO2015040796A1 (ja) 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
TWI527744B (zh) 碟片之基材,其製造方法及碟片滾筒
US9193532B2 (en) Quick change conveyor roll sleeve assembly and method
TWI518018B (zh) Production method of disc substrate and disc substrate and disc roll
TWI572567B (zh) A method of manufacturing the same, and a method of manufacturing the same
JPH10114412A (ja) 耐火性可成形合成物
KR20070052768A (ko) 디스크 롤
KR20040085077A (ko) 디스크 롤, 디스크 롤 제조 방법 및 디스크 부재의 기재
JP6155185B2 (ja) ディスクロール及びその基材
CN108101346A (zh) 圆盘辊及其基材
JP2004299984A (ja) ディスクロール及びその製造方法
TWI579247B (zh) 碟片輥筒及其基材
JPS63111118A (ja) 耐摩耗性高耐熱ロ−ル
TWI659000B (zh) 碟片輥用基材及其製造方法以及碟片輥及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051930.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006032

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846216

Country of ref document: EP

Kind code of ref document: A1