WO2012070650A1 - ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法 - Google Patents

ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法 Download PDF

Info

Publication number
WO2012070650A1
WO2012070650A1 PCT/JP2011/077214 JP2011077214W WO2012070650A1 WO 2012070650 A1 WO2012070650 A1 WO 2012070650A1 JP 2011077214 W JP2011077214 W JP 2011077214W WO 2012070650 A1 WO2012070650 A1 WO 2012070650A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
roll
disk roll
inorganic
wollastonite
Prior art date
Application number
PCT/JP2011/077214
Other languages
English (en)
French (fr)
Inventor
渡辺 和久
耕治 岩田
中山 正章
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2012070650A1 publication Critical patent/WO2012070650A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/181Materials, coatings, loose coverings or sleeves thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/189Disc rollers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Definitions

  • the present invention relates to a disk roll in which a plurality of ring-shaped disk materials are inserted into a rotating shaft, and a conveying surface is formed by the outer peripheral surface of the disk material, a manufacturing method thereof, and a metal plate using the disk roll.
  • the present invention relates to a conveying method and a manufacturing method of plate glass.
  • FIG. 1 is a schematic view showing an example of a disk roll 10.
  • the disk roll 10 is a plate-like sheet having a thickness of about 3 to 6 mm made of an aqueous slurry in which an inorganic fiber such as an aluminosilicate fiber, an inorganic filler such as talc, wollastonite, and mica and an inorganic binder such as clay are blended.
  • the disk roll base material is punched into a ring shape to obtain a disk material 12, and a plurality of the disk materials 12 are inserted into a metal shaft 11 serving as a rotating shaft.
  • a roll-shaped laminate is formed, and the laminate is fixed with a nut 15 or the like in a state where the whole is pressed through the flanges 13 arranged at both ends and a little compression is applied to the disk material 12.
  • the outer peripheral surface of the disk material 12 functions as a transport surface.
  • the disk roll 10 is incorporated in, for example, a plate glass manufacturing apparatus 100 shown in FIG.
  • the sheet glass manufacturing apparatus 100 continuously discharges the glass ribbon 110 from the slit 102 that opens linearly in the melting furnace 101, causes the glass ribbon 110 discharged to flow down, and cools down during the flow. It is an apparatus which manufactures plate glass by making it harden.
  • the disk roll 10 functions as a pair of pulling rolls, and sandwiches the glass ribbon melt 110 and forcibly feeds it downward.
  • each disk material 12 is likely to be deformed or undergo dimensional changes. Further, the component material of the disk material 12 deteriorates due to such high temperature and may cause “powder falling” that separates into powder, and the detached powder adheres to the plate glass located downstream of the disk roll 10. This reduces the yield.
  • the disk roll 10 is strongly required to have excellent heat resistance and a low thermal deformation rate, and the applicant of this application has also been described in advance with wollastonite and ceramic fiber (hereinafter, aluminosilicate).
  • aluminosilicate wollastonite and ceramic fiber
  • the disk roll produced from the base material for disk rolls which has as a main component is also proposed (refer patent document 1).
  • the disk roll described in Patent Document 1 is less susceptible to thermal deformation and deterioration even at high temperatures up to 1200 ° C., and can be suitably used for plate glass production.
  • the surface temperature of the stainless steel plate processed in the annealing furnace may exceed 1200 ° C., and the disk material of the disk roll used in the annealing furnace has to be replaced relatively early, and further heat resistance is increased. Improvement is desired.
  • the present invention has been made in view of such a situation, and provides a disc roll having excellent heat resistance that can sufficiently cope with the conveyance of a metal plate such as a stainless plate processed in an annealing furnace. Objective.
  • the present inventors have found that the heat resistance of the disk material is lowered by the alkali component contained in the clay added as the inorganic binder.
  • the content of the inorganic binder (clay) in the disk material can be kept low, and as a result, the heat resistance of the disk material is further improved. I was able to.
  • the present invention provides a disk roll and a method for producing the disk roll, a method for conveying a metal plate using the disk roll, and a method for producing a plate glass.
  • a disk roll having a rotating shaft and a plurality of ring-shaped disk members fitted to the rotating shaft, and forming a conveying surface by the outer peripheral surface of the disk material,
  • the disc material contains inorganic fibers, wollastonite having a median diameter (D50) of 10 to 80 ⁇ m, and an inorganic binder having a swelling power of 15 ml / 2 g or more.
  • the content of the wollastonite is 10 to 70% by mass of the total amount of the disk material.
  • FIG. 1 is a schematic view showing an example of a disk roll of the present invention.
  • FIG. 2 is a schematic view showing an example of use (plate glass manufacturing apparatus) of the disk roll shown in FIG.
  • the main components of the disk material of the present invention are inorganic fibers, wollastonite having a median diameter (D50) of 10 to 80 ⁇ m, and an inorganic binder having a swelling power of 15 ml / 2 g or more.
  • the disk material may further contain an inorganic filler other than wollastonite (hereinafter also referred to as other inorganic filler) as the inorganic filler.
  • inorganic fibers various inorganic fibers conventionally used in disc rolls can be used as appropriate, and examples thereof include alumina fibers, mullite fibers, silica fibers, aluminosilicate fibers, alkaline earth silicate fibers, and the like. It is done. Among these, alumina fiber, mullite fiber, and aluminosilicate fiber are preferable. Moreover, inorganic fiber can use 2 or more types together as needed.
  • the wet volume of such inorganic fibers is not particularly limited, but may be, for example, 300 to 1000 ml / 5 g, and more preferably 400 to 900 ml / 5 g.
  • the average fiber diameter of the inorganic fibers is not particularly limited, but may be, for example, 3 to 7 ⁇ m, and more preferably 4 to 7 ⁇ m.
  • the content of inorganic fibers is preferably 3 to 30% by mass of the total amount of the disk material. If it is less than 3% by mass, cracks are likely to occur in the disk material when exposed to high temperatures exceeding 1200 ° C. Moreover, the amount of wear of the disk material increases as the content of inorganic fibers increases. Considering cracks and wear of the disk material, the content of inorganic fibers is more preferably 5 to 20% by mass, and further preferably 8 to 15% by mass.
  • a wollastonite (hereinafter also simply referred to as wollastonite) classified to a median diameter (D50) of 10 to 80 ⁇ m is essential.
  • the wollastonite is finer, the amount of wear of the disk material is reduced. Therefore, it is preferable to use wollastonite having a median diameter (D50) of 30 ⁇ m or less. That is, it is preferable to use wollastonite having a median diameter (D50) of 10 to 30 ⁇ m.
  • wollastonite having a large median diameter (D50) exceeding 80 ⁇ m is used, the amount of wear increases, and when exposed to a high temperature exceeding 1200 ° C., the disk material tends to crack.
  • the median diameter (D50) refers to a particle diameter that is 50% integrated from the finer with respect to the particle size distribution.
  • the median diameter of wollastonite can be obtained by a laser diffraction / scattering method for calculating the particle size distribution (particle size) from the light intensity distribution scattered from the particles.
  • laser diffraction particle size distribution manufactured by Shimadzu Corporation Measurement can be performed using a measurement apparatus “ASLD2200”.
  • the content of such wollastonite is preferably 10 to 70% by mass of the total amount of the disk material. As the content of wollastonite increases, the amount of wear of the disk material decreases. On the other hand, when exposed to a high temperature exceeding 1200 ° C., the disk material tends to crack. Considering cracks and wear of the disk material, the content of wollastonite is more preferably 15 to 65% by mass, and further preferably 30 to 55% by mass.
  • the disk material may further contain an inorganic filler other than wollastonite.
  • an inorganic filler that is heat resistant, does not show unnecessary reaction with other compounding materials, is hard, and does not contain particles having a large diameter of, for example, 500 ⁇ m or more.
  • examples of such inorganic powders include talc, alumina, silica, cordierite, mica, calcined kaolin, vermiculite and the like.
  • alumina, silica, cordierite, and mica having high heat resistance can be suitably used.
  • the disk material contains inorganic fibers, wollastonite having a median diameter (D50) of 10 to 80 ⁇ m, inorganic powder as another inorganic filler, and an inorganic binder having a swelling power of 15 ml / 2 g or more. It may be.
  • the content of the inorganic powder as the other inorganic filler is not particularly limited, but is preferably 10 to 70% by mass with respect to the total amount of the disk material. When the content of the inorganic powder is less than 10% by mass, the disk material is likely to crack when exposed to a high temperature exceeding 1200 ° C. Furthermore, the amount of wear of the disk material increases as the content of the inorganic powder increases. Considering cracks and wear of the disk material, the content of the inorganic powder is more preferably 15 to 65% by mass, and more preferably 20 to 50% by mass.
  • the inorganic binder is not particularly limited as long as the swelling power is 15 ml / 2 g or more.
  • a higher swelling force is preferable because the content of the inorganic binder (clay) in the disk material can be suppressed.
  • the swelling power is more preferably 45 ml / 2 g or more.
  • the swelling power of the inorganic binder may be 15 to 100 ml / 2 g, and more preferably 45 to 90 ml / 2 g.
  • such swelling power may be measured according to the Japan Bentonite Industry Association Standard Test Method (JBAS-104-77). Specifically, the measurement may be performed as follows. Weigh accurately 2 g of sample and add to a 100 ml stoppered graduated cylinder containing 100 ml of purified water. At this time, care should be taken that the added sample does not adhere to the inner wall. In addition, the sample is added in several times (about 10 times) so that the sample sufficiently absorbs and disperses, and the next sample is added after most of the previously added samples have settled. After all samples have been added, the cap is closed, and after standing for 24 hours, the volume A (ml) deposited at the bottom of the graduated cylinder is read. The read value A is the swelling force (ml / 2g).
  • JBAS-104-77 Japan Bentonite Industry Association Standard Test Method
  • the content of the inorganic binder having a swelling power of 15 ml / 2 g or more is preferably 1 to 12% by mass of the total amount of the disk material, and if it deviates from this range, the disk material will crack when exposed to a high temperature exceeding 1200 ° C.
  • the amount of wear of the disk material increases as the content of the inorganic binder having a swelling power of 15 ml / 2 g or more increases.
  • the content of the inorganic binder having a swelling power of 15 ml / 2 g or more is more preferably 1 to 8% by mass, more preferably 1.5 to 7% by mass, and more preferably 1.5 to 6% by mass. preferable.
  • Examples of the inorganic binder having a swelling power of 15 ml / 2 g or more in the present invention include clays such as bentonite, purified bentonite, and acid clay, and synthetic mica.
  • Bentonite is a clay mainly composed of montmorillonite.
  • the purified bentonite is a high-purity montmorillonite obtained by purifying bentonite and is also simply referred to as montmorillonite.
  • Montmorillonite is a clay mineral classified as smectite, which is a kind of layered silicate mineral, and is contained in a lot of acid clay in addition to bentonite.
  • Synthetic mica refers to artificially synthesized mica having a composition in which the OH group in the mica structure is substituted with fluorine.
  • Such refined bentonite does not contain other minerals such as quartz, mica, feldspar, and zeolite contained in bentonite, and thus greatly improves the heat resistance and thermal shock resistance of the disk material. That is, it is avoided that alkali components such as sodium and potassium contained in the impurities lower the melting point of wollastonite contained in the disk material and lower the heat resistance.
  • montmorillonite itself has a property of swelling when it comes into contact with water, and purified bentonite also swells in a similar manner, and incorporates other compounding materials between the layers to express a stronger binder action.
  • the disk material does not contain an inorganic binder (clay) other than the above-mentioned inorganic binder having a swelling power of 15 ml / 2 g or more, or has a content of 10% by mass or less. That is, the content of the inorganic binder (clay) having a swelling power of less than 15 ml / 2 g may be 0 to 10% by mass, preferably 0 to 5% by mass.
  • the above-mentioned inorganic fiber, wollastonite having a specific particle median diameter (D50), an inorganic binder having a swelling power of 15 ml / 2 g, and an aqueous slurry containing inorganic powder as required are sucked and dehydrated using a mold. It can be obtained by forming a plate-like sheet material by molding such as molding or paper making, drying the sheet material to obtain a disk roll base material, and punching the disk roll base material into a ring shape.
  • the papermaking method is advantageous in terms of cost, and in order to improve papermaking properties, shape retention and the like in the papermaking method, it is preferable to blend organic fibers, an organic binder, and the like. Any of these may be conventionally used when producing a base material for a disk roll by a papermaking method, and pulp or the like can be used as an organic fiber, and an acrylic resin or an aqueous starch solution can be used as an organic binder.
  • the blending ratio of these other components can be appropriately set as necessary within a range that does not impair the intended effect of the present invention, for example, 1 to 8% organic fiber, 0.5 to 5 % Organic binder may be blended.
  • the bulk density of the disk material is not particularly limited as long as the effects of the present invention can be obtained, but it may be 0.3 to 1.0 g / cm 3 , and should be 0.4 to 0.8 g / cm 3. More preferred is 0.45 to 0.7 g / cm 3 . This is because the compression rate increases as the bulk density of the disk material decreases with respect to the packing density when the disk roll is formed, and the restoring force of the disk roll also improves.
  • the thickness of the base material for the disk material is suitably 2 to 10 mm in the case of the papermaking method, and is suitably 10 to 35 mm in the case of the dehydration molding method. The thicker the disc material, the smaller the number of sheets that can be filled in the shaft.
  • the ring-shaped disk material may be punched out from the plate-shaped disk roll substrate, but the ring-shaped sheet material (disk material) is obtained by suction dehydration molding using a ring-shaped mold. May be obtained directly.
  • the disc material is fired after being punched out from the disc roll base material to exert the binding force of the inorganic binder contained in the disc material, and the organic component is eliminated, and the sintered inorganic material is used.
  • a disc material may be obtained.
  • a plurality of the above disk materials are fitted into a metal (for example, iron) shaft (rotary shaft) to form a roll-shaped laminate,
  • the whole is pressurized through flanges arranged at both ends, and fixed with a nut or the like in a state where a slight compression is applied to the disk material.
  • the packing density of the disk material that is, the density in a state compressed from both sides is not particularly limited as long as the effect of the present invention can be obtained, but is 1.0 to 1.8 g / cm 3 . More preferably, it is 1.1 to 1.6 g / cm 3 , and particularly preferably 1.2 to 1.5 g / cm 3 . Such a packing density is preferable because the above-mentioned characteristics of the disk material can be maximized.
  • the surface hardness is not particularly limited as long as the effect of the present invention can be obtained, but it may be 25 to 65 in terms of durometer D-type hardness, and is 30 to 60, 35 to 55. Also good.
  • Such durometer D-type hardness may be measured with a durometer D-type hardness meter (for example, “Asker D-type rubber hardness meter” manufactured by Kobunshi Keiki Co., Ltd.).
  • the disc roll of the present invention after the disc material is built up, the disc roll may be baked to eliminate the organic components contained in the disc material.
  • the disc roll of the present invention Since the disc roll of the present invention has excellent heat resistance, it is suitable for conveying a metal plate such as a stainless steel plate in an annealing furnace.
  • the bulk density and the heat change rate in 800 degreeC and 1200 degreeC were measured.
  • the heating change rate was determined by holding the disk roll substrate in a heating furnace maintained at 800 ° C. or 1200 ° C. for 180 minutes, and calculating the heating change rate (%) from the dimensional change before and after heating. The results are shown in Table 1 as “Substrate Physical Properties”.
  • the disc roll was placed in the experimental furnace and maintained at a furnace temperature of 1200 ° C., and continuously rotated for 5 hours in a state where a stainless steel rod having a diameter of 30 mm was pressed. Asked. Moreover, the roll surface cooled to room temperature (25 degreeC) after the test was observed, the presence or absence of crack generation was confirmed, and crack resistance was evaluated. Furthermore, the hardness (Shore D) of the roll surface after cooling was measured by “Asker D-type rubber hardness meter” manufactured by Kobunshi Keiki Co., Ltd. The results are shown in Table 1 as “roll physical properties”. As for crack resistance, “A” indicates no crack and “B” indicates occurrence of arc rack.
  • Test 2 Verification of wollastonite content
  • a base material for a disk roll and a disk roll were prepared in the same manner as in Test 1 except that wollastonite having a median diameter (D50) of 23 ⁇ m was used and the content thereof was changed as shown in Table 2.
  • the other compounding materials were the same as those in Test 1.
  • the physical properties of the substrate and the physical properties of the roll were measured in the same manner as in Test 1. The results are shown in Table 2.
  • test no. No. 13 was slightly cracked but the others were generally good.
  • Test 3 Verification of inorganic binder content with swelling power of 15 ml / 2 g or more
  • a base material for a disk roll and a disk roll were prepared in the same manner as in Test 1 except that the content of the inorganic binder having a swelling power of 15 ml / 2 g or more was changed as shown in Table 3.
  • the other compounding materials were the same as those in Test 2.
  • the physical properties of the substrate and the physical properties of the roll were measured in the same manner as in Test 1. The results are shown in Table 3.
  • test no. 14 had cracks. Further, test No. 1 having a content of purified bentonite of 12% by mass. No. 19 was slightly cracked but the others were generally good.
  • Test 4 Verification of inorganic fiber content
  • test No. 3 having a mullite fiber content of 3% by mass. At 20, a slight crack occurred, but the others were generally good.
  • Test 5 Verification of inorganic fiber type
  • aluminosilicate fibers Naichias Co. " “Fine Flex”
  • a disk roll substrate and a disk roll were prepared in the same manner as in Test 1 with the composition shown in Table 5.
  • the physical properties of the substrate and the physical properties of the roll were measured in the same manner as in Test 1. The results are shown in Table 5.
  • test nos. Using aluminosilicate fibers were used. At 29, a slight crack occurred, but the others were generally good.
  • Test 6 Verification of swelling power of inorganic binder
  • bentonite with a swelling power of 50 ml / 2 g used in Test 1 bentonite with a swelling power of 15 ml / 2 g (“Hotaka” manufactured by Toyoshun Co., Ltd.), clay with a swelling power of 5 ml / 2 g (Shintochi Sangyo Co., Ltd.)
  • the other components were used in the same manner as in Test 1 using the compounding materials used in Test 2, and the compounding materials used in Test 2 were prepared.
  • the physical properties of the substrate and the physical properties of the roll were measured in the same manner as in Test 1. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明は、回転軸と、該回転軸に嵌挿された複数枚のリング状のディスク材を有し、前記ディスク材の外周面により搬送面を形成してなるディスクロールにおいて、前記ディスク材が、無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーとを含有する、ディスクロールに関する。

Description

ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法
 本発明は、回転軸にリング状のディスク材を複数枚嵌挿させ、前記ディスク材の外周面により搬送面を形成してなるディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法に関する。
 例えば、溶融炉から流下する板ガラスを搬送したり、焼鈍炉で加熱されたステンレス板等の金属板を搬送するために、ディスクロールが使用されている。図1はディスクロール10の一例を示す概略図である。該ディスクロール10は、アルミノシリケート繊維等の無機繊維と、タルク、ワラストナイト、雲母等の無機充填材と、粘土等の無機バインダーとを配合した水性スラリーを厚さ3~6mm程度の板状に成形してディスクロール用基材とし、該ディスクロール用基材をリング状に打ち抜きディスク材12を得て、このディスク材12を複数枚、回転軸となる金属製のシャフト11に嵌挿してロール状の積層物とし、該積層物を、両端に配したフランジ13を介して全体を加圧してディスク材12に若干の圧縮を加えた状態でナット15等で固定したものである。ディスク材12の外周面が搬送面として機能する。
 上記のディスクロール10は、例えば図2に示す板ガラス製造装置100に組み込まれ、板ガラスの搬送に用いられる。この板ガラス製造装置100は、溶融炉101の線状に開口したスリット102から帯状ガラス溶融物110を連続的に排出し、この排出された帯状のガラス溶融物110を流下させ、流下中に冷却して硬化させることにより板ガラスを製造する装置である。ディスクロール10は一対の引張ロールとして機能し、帯状ガラス溶融物110を挟持して強制的に下方に送出している。
 このように、ディスクロール10は、ガラスの溶融温度に近い高温(800℃前後)に晒されるため、個々のディスク材12は変形したり、寸法変化を起こしやすくなっている。また、このような高温によりディスク材12の構成材料が劣化して粉体となって離脱する「粉落ち」を起こすこともあり、離脱した粉体がディスクロール10の下流に位置する板ガラスに付着して歩留まりを低下させている。
 このような不具合を避けるために、ディスクロール10には耐熱性に優れ、熱変形率が小さいことが強く要求されており、本出願人も先に、ワラストナイトとセラミックファイバー(以下、アルミノシリケート繊維ともいう。)とを主成分とするディスクロール用基材から作製したディスクロールを提案している(特許文献1参照)。
日本国特開平9-301765号公報
 上記特許文献1に記載のディスクロールは、概ね1200℃までの高温でも熱変形や劣化が少なく、板ガラス製造に好適に使用できるものである。しかし、焼鈍炉で処理されるステンレス板はその表面温度が1200℃を超えることもあり、焼鈍炉で使用されるディスクロールのディスク材の比較的早期の交換が余儀なくされており、更なる耐熱性の改善が望まれている。
 本発明はこのような状況に鑑みてなされたものであり、焼鈍炉で処理されるステンレス板等の金属板の搬送にも十分に対応し得る優れた耐熱性を有するディスクロールを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、無機バインダーとして添加する粘土に含まれるアルカリ成分によってディスク材の耐熱性が下がることを見出した。そして、膨潤力が15ml/2g以上の無機バインダーを用いることにより、ディスク材中の無機バインダー(粘土)の含有量を低く抑えることができ、その結果、ディスク材の更なる耐熱性の向上を図ることができた。すなわち、1200℃を超える高温においても寸法変化や組織劣化が従来品と比べて格段に少なく、焼鈍炉でステンレス板等の金属板を搬送する場合にも十分に使用できるディスクロールが得られることを見出した。本発明は、このような知見に基づくものである。
 即ち、本発明は、上記目的を達成するために、下記に示すディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法を提供する。
(1)回転軸と、該回転軸に嵌挿された複数枚のリング状のディスク材を有し、前記ディスク材の外周面により搬送面を形成してなるディスクロールにおいて、
 前記ディスク材が、無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーとを含有する、ディスクロール。
(2)前記無機バインダーがベントナイト、精製ベントナイト、合成マイカ及び酸性白土から選ばれる少なくとも1つである、上記(1)に記載のディスクロール。
(3)前記ワラストナイトの含有量が、ディスク材全量の10~70質量%である、上記(1)または(2)に記載のディスクロール。
(4)前記無機バインダーの含有量が、ディスク材全量の1~12質量%である、上記(1)~(3)の何れか1項に記載のディスクロール。
(5)前記無機繊維の含有量が、ディスク材全量の3~30質量%である、上記(1)~(4)の何れか1項に記載のディスクロール。
(6)前記無機繊維がアルミナ繊維、ムライト繊維及びアルミノシリケート繊維から選ばれる少なくとも1種である、上記(1)~(5)の何れか1項に記載のディスクロール。
(7)回転軸と、該回転軸に嵌挿された複数枚のリング状のディスク材を有し、前記ディスク材の外周面により搬送面を形成してなるディスクロールの製造方法において、
 無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーとを含有するスラリー原料を板状に成形してディスクロール用基材を得る工程と、
 前記ディスクロール用基材からディスク材を打ち抜く工程と、
 前記ディスク材を複数枚回転軸に嵌挿させ、該ディスク材を固定する工程とを備える、
ディスクロールの製造方法。
(8)上記(1)~(6)の何れか1つに記載のディスクロールを用いて焼鈍炉内において金属板を搬送する方法。
(9)上記(1)~(6)の何れか1つに記載のディスクロールを用いて板ガラスを製造する方法。
 本発明によれば、従来よりも格段に耐熱性に優れ、焼鈍炉で金属板等を搬送する場合にも十分に使用可能であるディスクロールが得られる。
図1は、本発明のディスクロールの一例を示す概略図である。 図2は、図1に示すディスクロールの一使用例(板ガラス製造装置)を示す概略図である。
 以下、本発明の実施形態について詳細に説明する。
 本発明のディスク材の主要成分は、無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーである。ここで、後述するように、ディスク材は、無機充填材として、ワラストナイト以外のその他の無機充填材(以下、他の無機充填材ともいう。)をさらに含有してもよい。
 無機繊維としては、従来からディスクロールに用いられている各種無機繊維を適宜用いることができ、その例としてアルミナ繊維、ムライト繊維、シリカ繊維、アルミノシリケート繊維、アルカリ土類ケイ酸塩繊維等が挙げられる。中でも、アルミナ繊維、ムライト繊維、アルミノシリケート繊維が好ましい。また、無機繊維は、必要に応じて2種以上を併用することができる。
 こうした無機繊維のウェットボリュームは、特に制限はないが、例えば300~1000ml/5gであればよく、400~900ml/5gであればさらに好ましい。また、無機繊維の平均繊維径は、特に制限はないが、例えば3~7μmであればよく、4~7μmであればさらに好ましい。また、本発明において、その組成がAl:SiO=90:10~99:1である無機繊維をアルミナ繊維といい、その組成がAl:SiO=70:30~80:20である無機繊維をムライト繊維という。
 また、無機繊維の含有量は、ディスク材全量の3~30質量%が好ましい。3質量%未満では1200℃を超える高温に晒されるとディスク材に亀裂が発生しやすくなる。また、無機繊維の含有量が増すほど、ディスク材の摩耗量が多くなる。ディスク材の亀裂や摩耗を考慮すると、無機繊維の含有量は5~20質量%がより好ましく、8~15質量%がさらに好ましい。
 無機充填材として、メディアン径(D50)が10~80μmに分級したワラストナイト(以下、単にワラストナイトともいう。)を必須に含有する。ワラストナイトは、微細なものほどディスク材の摩耗量が少なくなるため、メディアン径(D50)が30μm以下のワラストナイトを用いることが好ましい。すなわち、メディアン径(D50)が10~30μmのワラストナイトを用いることが好ましい。これに対し、メディアン径(D50)が80μmを超える大径のワラストナイトを用いると、摩耗量が多くなり、更に1200℃を超える高温に晒されるとディスク材に亀裂が発生しやすくなる。
 ここで、メディアン径(D50)とは、粒度分布に対して、細かい方から積算で50%になる粒径をいう。ワラストナイトのメディアン径は、粒子から散乱した光強度分布から粒度分布(粒径)を算出するレーザ回析・散乱法により求めることができ、例えば、株式会社島津製作所製レーザ回析式粒度分布測定装置「ASLD2200」を用いて測定することができる。
 また、こうしたワラストナイトの含有量は、ディスク材全量の10~70質量%が好ましい。ワラストナイトの含有量が増すほどディスク材の摩耗量が少なくなる一方で、1200℃を超える高温に晒されるとディスク材に亀裂が発生しやすくなる。ディスク材の亀裂や摩耗を考慮すると、ワラストナイトの含有量は15~65質量%がより好ましく、30~55質量%がさらに好ましい。
 本発明において、ディスク材は、ワラストナイト以外のその他の無機充填材をさらに含有してもよい。こうした他の無機充填材としては、耐熱性があり、他の配合材料と不要な反応を示すことがなく、硬く、例えば500μm以上の大径の粒子を含まない無機粉末が使用できる。こうした無機粉末としては、例えば、タルク、アルミナ、シリカ、コーディライト、マイカ、焼成カオリン、バーミキュライト等が挙げられる。特に、ディスクロールがステンレス板の焼鈍炉に使われる場合には、耐熱性の高いアルミナ、シリカ、コーディライト、マイカを好適に使用できる。
 すなわち、ディスク材は、無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、他の無機充填材としての無機粉末と、膨潤力が15ml/2g以上の無機バインダーとを含有していてもよい。また、他の無機充填材としての無機粉末の含有量は、特に制限はないが、ディスク材全量の10~70質量%が好ましい。無機粉末の含有量が10質量%未満では、1200℃を超える高温に晒されるとディスク材に亀裂が発生しやすくなる。更に、無機粉末の含有量が増すほどディスク材の摩耗量が多くなる。ディスク材の亀裂や摩耗を考慮すると、無機粉末の含有量は15~65質量%がより好ましく、20~50質量%がより好ましい。
 本発明において、無機バインダーは、膨潤力が15ml/2g以上であれば特に制限はない。膨潤力が高いほど、ディスク材中の無機バインダー(粘土)の含有量を抑えることができるため好ましい。膨潤力は、45ml/2g以上がより好ましい。膨潤力の上限には特に制限はないが、例えば100ml/2g以下であればよい。すわなち、本願において、無機バインダーの膨潤力は15~100ml/2gであればよく、45~90ml/2gであればより好ましい。
 ここで、こうした膨潤力は、日本ベントナイト工業会標準試験方法(JBAS-104-77)に準じて測定すればよい。具体的には以下のように測定すればよい。試料2gを正確に量り、精製水100mlを入れた100mlの共栓付きメスシリンダーに加える。このとき、加えた試料が内壁に付着しないように注意する。また、試料が十分吸水及び分散するように試料を数回(10回程度)に分けて加えるようにするとともに、前に加えた試料のほとんどが沈降してから次の試料を加える。すべての試料を加えたら栓をし、24時間静置後、メスシリンダーの下部に堆積した容積A(ml)を読み取る。読み取った値Aが膨潤力(ml/2g)となる。
 また、膨潤力が15ml/2g以上の無機バインダーの含有量は、ディスク材全量の1~12質量%が好ましく、この範囲を逸脱すると1200℃を超える高温に晒されたときにディスク材に亀裂が発生しやすくなり、また、膨潤力が15ml/2g以上の無機バインダーの含有量が増すほどディスク材の摩耗量が多くなる。ディスク材の亀裂や摩耗を考慮すると、膨潤力が15ml/2g以上の無機バインダーの含有量は1~8質量%がより好ましく、1.5~7質量%、1.5~6質量%がより好ましい。
 本発明における、膨潤力が15ml/2g以上の無機バインダーとしては、例えば、ベントナイトや精製ベントナイト、酸性白土といった粘土や合成マイカが挙げられる。ベントナイトは、モンモリロナイトを主成分とした粘土である。また、精製ベントナイトは、ベントナイトを精製して得られた高純度のモンモリロナイトであり、単にモンモリロナイトとも称される。モンモリロナイトは、層状ケイ酸塩鉱物の1種であるスメクタイトに分類される粘土鉱物であり、ベントナイトの他に酸性白土にも多く含まれる。合成マイカは、マイカ構造中のOH基がフッ素で置換された組成の人工的に合成されたマイカをいう。
 こうした精製ベントナイト(以下、モンモリロナイトともいう。)は、ベントナイトに含まれる石英や雲母、長石、ゼオライトといった他の鉱物を含まないためディスク材の耐熱性や耐熱衝撃性を大幅に向上させる。すなわち、不純物に含まれるナトリウムやカリウムといったアルカリ成分が、ディスク材中にともに含まれるワラストナイトの融点を下げてしまい、耐熱性が低下してしまうことが回避される。また、モンモリロナイト自体が水と接触して膨潤する性質があり、精製ベントナイトも同様に膨潤し、層間に他の配合材料を取り込んで、より強固なバインダー作用を発現する。
 本発明において、ディスク材は、上述した膨潤力が15ml/2g以上の無機バインダー以外の無機バインダー(粘土)は含まないか、含有量が10質量%以下であることが好ましい。すなわち、膨潤力が15ml/2g未満の無機バインダー(粘土)の含有量は0~10質量%、好ましくは0~5質量%であればよい。
 ディスク材は、上記の無機繊維、特定粒メディアン径(D50)のワラストナイト及び膨潤力が15ml/2gの無機バインダー、必要に応じて無機粉末を含む水性スラリーを、成形型を用いた吸引脱水成形等のモールド成形や抄造法により板状のシート材とし、該シート材を乾燥してディスクロール用基材を得て、該ディスクロール用基材をリング状に打ち抜いて得ることができる。但し、シート材にする際に、コスト面では抄造法が有利であり、また抄造法における抄造性や保形性等を向上させるために、有機繊維や有機バインダー等を配合することが好ましい。これらは何れも従来から抄造法によりディスクロール用基材を作製する際に使用されるもので構わず、有機繊維としてはパルプ等を、有機バインダーとしてはアクリル樹脂やデンプン水溶液等を使用できる。尚、これらの他の成分の配合割合は、本発明の所期の効果を損なわない範囲で必要に応じて適宜設定することができ、例えば、1~8%の有機繊維、0.5~5%の有機バインダーを配合してもよい。
 ディスク材の嵩密度は、本発明の効果を得られれば特に制限はないが、0.3~1.0g/cmであればよく、0.4~0.8g/cmであることがより好ましく、0.45~0.7g/cmであることが特に好ましい。これは、ディスクロールとしたときの充填密度に対し、ディスク材の嵩密度が低いほど圧縮率が高くなり、ディスクロールの復元力も良くなるためである。また、ディスク材用基材の厚さは、抄造法の場合は2~10mmが適当であり、脱水成形法の場合は10~35mmが適当である。ディスク材の厚さは、厚いほうがシャフトに充填する枚数が少なくて済み、製造上有利である。
 本発明において、上述したように板状のディスクロール用基材からリング状のディスク材を打ち抜いてもよいが、リング状のモールド型を用いて吸引脱水成形によりリング状のシート材(ディスク材)を直接得てもよい。
 本発明において、ディスク材を、ディスクロール用基材から打ち抜かれた後に焼成して、ディスク材に含まれる無機バインダーの結合力を発揮させるとともに、有機成分を消失させて、焼結した無機材料からなるディスク材を得てもよい。こうした焼成を行うと、有機成分に起因する被搬送物の表面の汚染を抑制することができる。
 ディスクロールにするには、図1に示すように、上記のディスク材を複数枚、金属製(例えば鉄製)のシャフト(回転軸)に嵌挿してロール状の積層物とし、該積層物を、両端に配したフランジを介して全体を加圧してディスク材に若干の圧縮を加えた状態でナット等で固定する。そして、所定のロール径となるようにディスク材の外周面を研削することが好ましい。この研削により搬送面が平滑化される。
 本発明のディスクロールにおいて、ディスク材の充填密度、即ち両側から圧縮した状態における密度は、本発明の効果を得られるのであれば特に制限はないが、1.0~1.8g/cmであればよく、より好ましくは1.1~1.6g/cm、特に好ましくは1.2~1.5g/cmである。このような充填密度であれば、上述したディスク材の特性を最大限に引き出すことができるので好ましい。
 本発明のディスクロールにおいて、表面硬度は、本発明の効果を得られるのであれば特に制限はないが、デュロメータD型硬度で25~65であればよく、30~60、35~55であってもよい。こうしたデュロメータD型硬度は、デュロメータD型硬度計(例えば、高分子計器社製「アスカーD型ゴム硬度計」)で測定すればよい。
 本発明のディスクロールにおいて、ディスク材をビルドアップした後に、ディスクロールを焼成して、ディスク材に含まれる有機成分を消失させてもよい。
 本発明のディスクロールは耐熱性に優れるため、焼鈍炉内でステンレス板のような金属板を搬送するのに好適である。
 また、板ガラスの製造にも適用できる。即ち、図2に示す板ガラス製造装置100に組み込まれ、板ガラスの成形及び搬送に用いることもできる。
 以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
(試験1:ワラストナイトのメディアン径の検証)
 メディアン径(D50)が13μm、20μm、23μm、55μm及び82μmのワラストナイトを用意し、表1に示す配合の水性スラリーを調製し、抄造法により厚さ5mmのシート材を作製した。そして、シート材を乾燥して得たディスクロール用基材から外径80mm、内径30mmのリング状のディスク材を打ち抜き、直径30mm、長さ100mmの鉄製シャフトに嵌挿し、両端をナットで固定して充填密度1.2g/cmのディスクロールを作製した。尚、配合材料の詳細は以下の通りである。
・パルプ:Weigood of Canada Ltd製「HINTON」
・ムライト繊維:Al:SiO=72:28、ウェットボリューム990ml/5g、平均繊維径5μm
・アルミナ粉末:日本軽金属株式会社製「A31」
・シリカ粉末:電気化学工業株式会社製「溶融シリカ」
・精製ベントナイト:クニミネ工業株式会社製「クニピア」
・デンプン:日澱化学株式会社製「ペトロサイズJ」
 そして、ディスクロール用基材については、嵩密度、800℃及び1200℃おける加熱変化率を測定した。尚、加熱変化率は、ディスクロール用基材を800℃または1200℃に維持した加熱炉に180分間保持し、加熱前後の寸法変化量から加熱変化率(%)を求めた。結果を表1に、「基材物性」として示す。
 ディスクロールについては、実験炉に配置して炉内温度1200℃に維持し、直径30mmのステンレス丸棒を押し当てた状態で5時間連続して回転させ、試験前後の外径変化から摩耗量を求めた。また、試験後室温(25℃)に冷却したロール表面を観察し、亀裂発生の有無を確認して耐クラック性を評価した。更に、冷却後のロール表面の硬度(ShoreD)を高分子計器社製「アスカーD型ゴム硬度計」で測定した。結果を表1に、「ロール物性」として示す。耐クラック性は、亀裂なしを「A」、へアークラック発生を「B」とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ワラストナイトのメディアン径(D50)が82μmの試験No.6では、わずかながら亀裂が発生しているものの、その他は概ね良好であった。
(試験2:ワラストナイト含有量の検証)
 メディアン径(D50)23μmのワラストナイトを用い、その含有量を表2に示すように変えた以外は試験1と同様にディスクロール用基材及びディスクロールを作製した。その他の配合材料は、試験1と同じものを用いた。そして、試験1と同様にして、基材物性及びロール物性を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ワラストナイトの含有量が68質量%の試験No.13で、わずかながら亀裂が発生しているものの、その他は概ね良好であった。
(試験3:膨潤力が15ml/2g以上の無機バインダー含有量の検証)
 膨潤力が15ml/2g以上の無機バインダーの含有量を表3に示すように変えた以外は試験1と同様にディスクロール用基材及びディスクロールを作製した。その他の配合材料は、試験2と同じものを用いた。そして、試験1と同様にして、基材物性及びロール物性を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、精製ベントナイトを含まない試験No.14で亀裂が発生していた。また、精製ベントナイトの含有量が12質量%の試験No.19で、わずかながら亀裂が発生したが、その他は概ね良好であった。
(試験4:無機繊維含有量の検証)
 試験2と同じ配合材料を用い、ムライト繊維の含有量を表4に示すように変えた以外は試験1と同様にディスクロール用基材及びディスクロールを作製した。そして、試験1と同様にして、基材物性及びロール物性を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、ムライト繊維の含有量が3質量%の試験No.20で、わずかながら亀裂が発生したが、その他は概ね良好であった。
(試験5:無機繊維種類の検証)
 無機繊維として試験1で用いたムライト繊維のほかに、アルミナ繊維(Al:SiO=97:3、ウェットボリューム450ml/5g、平均繊維径5μm)、アルミノシリケート繊維(ニチアス株式会社製「ファインフレックス」)を用意し、その他は試験2で用いた配合材料を用い、表5に示す配合にて試験1と同様にディスクロール用基材及びディスクロールを作製した。そして、試験1と同様にして、基材物性及びロール物性を測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、アルミノシリケート繊維を用いた試験No.29で、わずかながら亀裂が発生したが、その他は概ね良好であった。
(試験6:無機バインダーの膨潤力の検証)
 試験1で用いた膨潤力が50ml/2gの精製ベントナイトのほかに、膨潤力が15ml/2gのベントナイト(株式会社豊順製「穂高」)、膨潤力が5ml/2gのクレー(新陶産業株式会社製)を用意し、その他は試験2で用いた配合材料を用い、表6に示す配合にて試験1と同様にディスクロール用基材及びディスクロールを作製した。そして、試験1と同様にして、基材物性及びロール物性を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、膨潤力が5ml/2gのクレーを用いた試験No.32で、わずかながら亀裂が発生したが、その他は概ね良好であった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年11月25日出願の日本特許出願2010-262384に基づくものであり、その内容はここに参照として取り込まれる。また、明細書中に記載の文献の全ての内容も、参照として取り込まれる。
10 ディスクロール
11 金属製シャフト
12 ディスク材
13 フランジ
15 ナット
100 板ガラス製造装置
101 溶融炉
102 スリット
110 帯状ガラス溶融物

Claims (9)

  1.  回転軸と、該回転軸に嵌挿された複数枚のリング状のディスク材を有し、前記ディスク材の外周面により搬送面を形成してなるディスクロールにおいて、
     前記ディスク材が、無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーとを含有する、ディスクロール。
  2.  前記無機バインダーがベントナイト、精製ベントナイト、合成マイカ及び酸性白土から選ばれる少なくとも1つである、請求項1に記載のディスクロール。
  3.  前記ワラストナイトの含有量が、ディスク材全量の10~70質量%である、請求項1または2に記載のディスクロール。
  4.  前記無機バインダーの含有量が、ディスク材全量の1~12質量%である、請求項1~3の何れか1項に記載のディスクロール。
  5.  前記無機繊維の含有量が、ディスク材全量の3~30質量%である、請求項1~4の何れか1項に記載のディスクロール。
  6.  前記無機繊維がアルミナ繊維、ムライト繊維及びアルミノシリケート繊維から選ばれる少なくとも1種である、請求項1~5の何れか1項に記載のディスクロール。
  7.  回転軸と、該回転軸に嵌挿された複数枚のリング状のディスク材を有し、前記ディスク材の外周面により搬送面を形成してなるディスクロールの製造方法において、
     無機繊維と、メディアン径(D50)が10~80μmのワラストナイトと、膨潤力が15ml/2g以上の無機バインダーとを含有するスラリー原料を板状に成形してディスクロール用基材を得る工程と、
     前記ディスクロール用基材からディスク材を打ち抜く工程と、
     前記ディスク材を複数枚回転軸に嵌挿させ、該ディスク材を固定する工程とを備える、
    ディスクロールの製造方法。
  8.  請求項1~6の何れか1項に記載のディスクロールを用いて焼鈍炉内において金属板を搬送する方法。
  9.  請求項1~6の何れか1項に記載のディスクロールを用いて板ガラスを製造する方法。
PCT/JP2011/077214 2010-11-25 2011-11-25 ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法 WO2012070650A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-262384 2010-11-25
JP2010262384 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070650A1 true WO2012070650A1 (ja) 2012-05-31

Family

ID=46145987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077214 WO2012070650A1 (ja) 2010-11-25 2011-11-25 ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法

Country Status (1)

Country Link
WO (1) WO2012070650A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174609A1 (en) * 2012-01-05 2013-07-11 Nichias Corporation Disk Roll, Method of Producing the Same, and Method for Producing Glass
US8549753B2 (en) 2009-05-14 2013-10-08 Corning Incorporated Methods of manufacturing a modular pulling roll
WO2014027451A1 (ja) * 2012-08-13 2014-02-20 ニチアス株式会社 ディスクロール及びその基材
WO2015040796A1 (ja) * 2013-09-19 2015-03-26 ニチアス株式会社 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
WO2018037745A1 (ja) * 2016-08-25 2018-03-01 ニチアス株式会社 ディスクロール用基材及びその製造方法並びにディスクロール及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169114A (ja) * 1987-12-23 1989-07-04 Japan Vilene Co Ltd 耐熱性弾性ロールおよびその製造法
JPH05172133A (ja) * 1991-12-24 1993-07-09 Nichias Corp ディスクロール
JP2005036725A (ja) * 2003-07-15 2005-02-10 Nichias Corp 触媒コンバーター用保持材及び触媒コンバーター
JP2009148712A (ja) * 2007-12-21 2009-07-09 Taiheiyo Materials Corp 造粒体、焼結体、及びそれらの製造方法
JP2010111541A (ja) * 2008-11-06 2010-05-20 Nichias Corp ディスク材用基材及びその製造方法、並びにディスクロール
JP2011241920A (ja) * 2010-05-19 2011-12-01 Nichias Corp ディスク材用基材及びその製造方法、並びにディスクロール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169114A (ja) * 1987-12-23 1989-07-04 Japan Vilene Co Ltd 耐熱性弾性ロールおよびその製造法
JPH05172133A (ja) * 1991-12-24 1993-07-09 Nichias Corp ディスクロール
JP2005036725A (ja) * 2003-07-15 2005-02-10 Nichias Corp 触媒コンバーター用保持材及び触媒コンバーター
JP2009148712A (ja) * 2007-12-21 2009-07-09 Taiheiyo Materials Corp 造粒体、焼結体、及びそれらの製造方法
JP2010111541A (ja) * 2008-11-06 2010-05-20 Nichias Corp ディスク材用基材及びその製造方法、並びにディスクロール
JP2011241920A (ja) * 2010-05-19 2011-12-01 Nichias Corp ディスク材用基材及びその製造方法、並びにディスクロール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"NYAD G", NYAD G, 2001, Retrieved from the Internet <URL:http://www.nycominerals.com/files/Wollastonite-NYAD-G-technical-data-sheet.pdf> [retrieved on 20120206] *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549753B2 (en) 2009-05-14 2013-10-08 Corning Incorporated Methods of manufacturing a modular pulling roll
US20130174609A1 (en) * 2012-01-05 2013-07-11 Nichias Corporation Disk Roll, Method of Producing the Same, and Method for Producing Glass
US9051202B2 (en) * 2012-01-05 2015-06-09 Nichias Corporation Method of producing a disk roll
JPWO2014027451A1 (ja) * 2012-08-13 2016-07-25 ニチアス株式会社 ディスクロール及びその基材
WO2014027451A1 (ja) * 2012-08-13 2014-02-20 ニチアス株式会社 ディスクロール及びその基材
KR102061599B1 (ko) * 2012-08-13 2020-01-02 니찌아스 카부시키카이샤 디스크 롤 및 그 기재
US9637413B2 (en) 2012-08-13 2017-05-02 Nichias Corporation Disk roll and substrate therefor
WO2015040796A1 (ja) * 2013-09-19 2015-03-26 ニチアス株式会社 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
KR20160060037A (ko) * 2013-09-19 2016-05-27 니찌아스 카부시키카이샤 내열 롤, 그 제조 방법 및 이를 사용한 판 유리의 제조 방법
CN105555721A (zh) * 2013-09-19 2016-05-04 霓佳斯株式会社 耐热辊、其制造方法以及使用其的板状玻璃的制造方法
JP2015059066A (ja) * 2013-09-19 2015-03-30 ニチアス株式会社 耐熱ロール、その製造方法及びこれを使用した板ガラスの製造方法
US10513456B2 (en) 2013-09-19 2019-12-24 Nichias Corporation Heat-resistant roll, manufacturing method thereof, and plate glass manufacturing method using such heat-resistant roll
TWI633071B (zh) * 2013-09-19 2018-08-21 霓佳斯股份有限公司 耐熱輥、其製造方法及使用其之平板玻璃的製造方法
KR101938464B1 (ko) * 2013-09-19 2019-01-14 니찌아스 카부시키카이샤 내열 롤, 그 제조 방법 및 이를 사용한 판 유리의 제조 방법
WO2018037745A1 (ja) * 2016-08-25 2018-03-01 ニチアス株式会社 ディスクロール用基材及びその製造方法並びにディスクロール及びその製造方法
TWI659000B (zh) * 2016-08-25 2019-05-11 霓佳斯股份有限公司 碟片輥用基材及其製造方法以及碟片輥及其製造方法
KR102038845B1 (ko) 2016-08-25 2019-10-31 니찌아스 카부시키카이샤 디스크롤용 기재 및 그 제조방법 그리고 디스크롤 및 그 제조방법
KR20190032482A (ko) * 2016-08-25 2019-03-27 니찌아스 카부시키카이샤 디스크롤용 기재 및 그 제조방법 그리고 디스크롤 및 그 제조방법
JP2018030761A (ja) * 2016-08-25 2018-03-01 ニチアス株式会社 ディスクロール用基材及びその製造方法並びにディスクロール及びその製造方法
US10793465B2 (en) 2016-08-25 2020-10-06 Nichias Corporation Base material for disk roll, production method thereof, disk roll and production method thereof

Similar Documents

Publication Publication Date Title
KR101304122B1 (ko) 디스크재, 디스크재용 기재의 제조방법 및 디스크롤
TWI403475B (zh) 圓盤輥及圓盤輥用之基材
JP5386150B2 (ja) ディスク材用基材及びその製造方法、並びにディスクロール
WO2012070650A1 (ja) ディスクロール及びその製造方法、並びに該ディスクロールを用いた金属板の搬送方法及び板ガラスの製造方法
US8827883B2 (en) Base material for disk, process for producing the same, and disk roll
TWI572567B (zh) A method of manufacturing the same, and a method of manufacturing the same
TWI382000B (zh) 製造片狀玻璃之拉引滾軸材料
WO2014122717A1 (ja) ディスクロール及びその基材
TWI579247B (zh) 碟片輥筒及其基材
JP4245942B2 (ja) 金属板用ディスクロール及びその製造方法、並びにディスクロール用基材
JP4357858B2 (ja) ディスクロールの製造方法
JP4318555B2 (ja) ディスクロール及びその製造方法、並びにディスクロール用基材
JP2018030761A (ja) ディスクロール用基材及びその製造方法並びにディスクロール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP