WO2015040684A1 - 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法 - Google Patents

温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法 Download PDF

Info

Publication number
WO2015040684A1
WO2015040684A1 PCT/JP2013/075066 JP2013075066W WO2015040684A1 WO 2015040684 A1 WO2015040684 A1 WO 2015040684A1 JP 2013075066 W JP2013075066 W JP 2013075066W WO 2015040684 A1 WO2015040684 A1 WO 2015040684A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference electrode
secondary battery
ion secondary
function
thermometer
Prior art date
Application number
PCT/JP2013/075066
Other languages
English (en)
French (fr)
Inventor
篤彦 大沼
安藤 慎輔
貴嗣 上城
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/075066 priority Critical patent/WO2015040684A1/ja
Publication of WO2015040684A1 publication Critical patent/WO2015040684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a reference electrode with a thermometer function, a lithium ion secondary battery with a reference electrode with a thermometer function, a lithium ion secondary battery system with a reference electrode with a thermometer function, and a method for controlling a lithium ion secondary battery.
  • a secondary battery such as a lithium ion secondary battery can have a long life by appropriately controlling the operating conditions. Therefore, it is effective to introduce both a reference electrode and a thermometer sensor into the secondary battery as described in Patent Documents 1 and 2.
  • a thermometer sensor since the thermometer is separated from the reference electrode as a function, and the thermometer is installed outside the secondary battery, the temperature tends to rise inside the secondary battery. It is difficult to control the secondary battery appropriately according to the temperature measured by the thermometer because the distance between the reaction point and the thermometer can be set.
  • thermometer function having a temperature measurement unit and a reference electrode function unit, wherein the temperature measurement unit measures the temperature of a lithium ion secondary battery having a positive electrode and a negative electrode, and in the reference electrode function unit, the positive electrode and the negative electrode A reference electrode with a thermometer function that detects the potential.
  • thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the reference pole with a thermometer function in one Embodiment of this invention. It is the schematic of the structure of the lithium ion secondary battery containing a reference electrode with a thermometer function in one Embodiment of this invention.
  • a reference electrode with a thermometer function which has a function as a temperature sensor and a function as a reference electrode when arranged in a secondary battery having a positive electrode and a negative electrode, provide.
  • a reference electrode and a thermometer in the portion where the positive electrode and negative electrode of the secondary battery face each other, and the area of the positive electrode and negative electrode that can be substantially charged and discharged can be secured.
  • the capacity can be increased.
  • the reference electrode with a thermometer function has a function as a reference electrode, such as lithium manganese spinel, lithium alloy, lithium titanate, lithium transition metal lithium, and metal as a reference electrode functional part. Any one or more of lithium.
  • the composition of these lithium compounds or lithium alloys is not particularly limited.
  • lithium titanate becomes Li 7 Ti 5 O 12 by filling Li 4 Ti 5 O 12 with Li.
  • Li 4 Ti 5 O 12 is defined as the standard (0%), and the state in which lithium is filled and the composition becomes Li 7 Ti 5 O 12 is defined as 100%.
  • the filling rate is 10 to 90%, the potential is stable between 1.5 to 1.6 V (vsLi / Li + ), and can function as a reference electrode.
  • lithium transition metal lithium is stable between 3.5 to 4.0 V (vsLi / Li + ) when the filling rate is 10 to 90%, and can function as a reference electrode. Lithium metal reacts with water and is difficult to use in the atmosphere. In contrast, lithium titanate and lithium transition metal phosphate can be used in the atmosphere because of their slow reaction rate with water.
  • the method for joining the temperature measurement unit such as a metal wire and the reference electrode functional unit is not particularly limited, but there is a method of bonding the temperature measurement unit and the reference electrode functional unit using a polymer as a binder.
  • the temperature measurement unit can evaluate the temperature using either a resistance measurement method for measuring a resistance influenced by temperature or a potential difference measurement method for measuring a potential difference influenced by temperature.
  • a metal or thermistor can be used as the resistor (resistor portion), but it is not particularly limited as long as it does not react with metallic lithium at the potential used.
  • the potential used is 1.5 to 1.6 V (vsLi / Li + ).
  • platinum, nickel, copper, or the like can be used as the metal.
  • the thermistor is not particularly limited, and an NTC thermistor, a PTC thermistor, and a CTR thermistor can be used.
  • germanium, carbon, silicon (PN junction diode) or RuO 2 can be used.
  • the thermistor and the metal resistor materials used for the reference electrode functional part, such as lithium manganese spinel, lithium alloy, lithium titanate, lithium transition metal lithium, and metal lithium are used. It is also possible to do.
  • the resistance value it is sufficient if the resistance value can be measured, the resistance may be measured from the current value by applying a voltage, or the resistance may be measured from the voltage value by applying a current. Good.
  • the lithium ion secondary battery according to an embodiment of the present invention includes an electrode group in which a positive electrode, a separator, and a negative electrode are sequentially stacked, and a reference electrode with a thermometer function installed in the electrode group or the battery case.
  • the positive electrode terminal and the negative electrode terminal are electrically connected to the positive electrode and the negative electrode through the positive electrode tab and the negative electrode tab, respectively, and the lithium ion secondary battery is charged and discharged by an external circuit through the positive electrode terminal and the negative electrode terminal.
  • the electrode group portion has a configuration in which a positive electrode, a separator, a negative electrode, and a separator are sequentially stacked, but these may be stacked many times.
  • a reference electrode with a thermometer function may be inserted between any of the positive electrode, the separator, the negative electrode, and the separator.
  • the shape of the battery includes a wound cylindrical shape, a flat oval shape, a wound square shape, and a laminated shape, and any shape may be selected. Since the reference electrode with a thermometer function is required to have no electrical conductivity in either the positive electrode or the negative electrode, it may be insulated by being covered with a polyolefin-based resin sheet or the like used for the separator.
  • the positive electrode includes a positive electrode active material made of a lithium-containing oxide that can reversibly insert and desorb lithium ions.
  • the type of the positive electrode active material is not particularly limited, and examples thereof include lithium transition metal lithium such as lithium nickelate LiNiO 2 , lithium cobaltate LiCoO 2 , lithium manganate LiMn 2 O 4 , and olivine iron FeLiPO 4 .
  • lithium transition metal lithium such as lithium nickelate LiNiO 2 , lithium cobaltate LiCoO 2 , lithium manganate LiMn 2 O 4 , and olivine iron FeLiPO 4 .
  • One kind or two or more kinds of the above materials may be contained as the positive electrode active material.
  • lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode are inserted in the discharging process.
  • the electrolyte that is an electrolyte.
  • a nonaqueous solution in which 1 mol / l of lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 is used in the battery case. Being injected.
  • the lithium salt is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2, or the like can be used.
  • Solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate.
  • An organic solvent such as (MPC) or ethylpropyl carbonate (EPC), or a solvent of two or more mixed organic compounds is used, but the type is not limited.
  • ion-conducting polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide are used as the electrolyte. These types are not limited.
  • the separator can be omitted.
  • FIG. 2 is a schematic diagram of a reference electrode with a thermometer function in one embodiment of the present invention.
  • the reference electrode 205 with a thermometer function includes a metal or metal alloy wire 201, a metal alloy wire 204, a connection part 202, and a reference electrode function part 203.
  • the metal or metal alloy wire 201 and the metal alloy wire 204 are connected by a connecting portion 202.
  • the connecting portion 202 has a structure in which a metal alloy wire 204 is welded to a metal or metal alloy wire 201.
  • a reference electrode functional part 203 is bonded to the metal alloy wire 204.
  • the connection unit 202 is a temperature measurement unit.
  • the temperature is calculated based on the potential difference generated at the connection unit 202, and the potential as the reference electrode is calculated based on the reference electrode function unit 203.
  • the reference electrode 205 With the thermometer function in FIG. 2, the temperature and potential can be measured with high accuracy.
  • FIG. 3 is a schematic diagram of a reference electrode with a thermometer function in one embodiment of the present invention.
  • the reference electrode 305 with a thermometer function includes a metal or metal alloy wire 301, a resistance unit 302, and a reference electrode function unit 303.
  • a resistor 302 is connected to a metal or metal alloy wire 301.
  • a reference electrode functional unit 303 is bonded to the resistance unit 302.
  • the resistance unit 302 is a temperature measurement unit. The temperature is calculated based on the resistance of the resistance unit 302, and the potential as the reference electrode is calculated based on the reference electrode function unit 303.
  • the reference electrode function unit 303 is bonded to the resistance unit 302, and the function as the thermometer and the function as the reference electrode are located at the same position, so it is easy to grasp the relationship between the potential and the temperature.
  • FIG. 4 is a schematic diagram of a reference electrode with a thermometer function in one embodiment of the present invention.
  • the reference electrode 405 with a thermometer function includes a metal or metal alloy wire 401, a metal alloy wire 404, a connection part 402, and a reference electrode function part 403.
  • the metal or metal alloy wire 401 and the metal alloy wire 404 are connected by a connecting portion 402.
  • a reference electrode function unit 403 is bonded to the connection unit 402.
  • the connection unit 402 is a temperature measurement unit. The temperature is calculated based on the potential difference generated at the connection unit 402, and the potential as the reference electrode is calculated based on the reference electrode function unit 403.
  • FIG. 5 is a schematic diagram of a reference electrode with a thermometer function in one embodiment of the present invention.
  • the reference electrode 505 with a thermometer function includes a metal or metal alloy wire 501 and a resistance portion 502.
  • the resistance unit 502 serves as a temperature measurement unit and a reference electrode function unit. The temperature is calculated based on the resistance of the resistance unit 502, and the potential as the reference electrode is calculated based on the resistance unit 502.
  • the reference electrode functional unit and the temperature measuring unit are made of the same material as the resistance unit 502, so that the structure can be simplified.
  • FIG. 6 is a schematic diagram of a reference electrode with a thermometer function in one embodiment of the present invention.
  • the reference electrode 805 with a thermometer function includes a metal or metal alloy wire 801, a metal alloy wire 804, a thermistor 802, and a reference electrode function unit 803.
  • Metal or metal alloy wire 801 and metal alloy wire 804 are connected by a thermistor 802.
  • a reference electrode functional unit 803 is bonded to the thermistor 802.
  • the thermistor 802 serves as a temperature measurement unit. The temperature is calculated based on the potential difference generated in the thermistor 702, and the potential as the reference electrode is calculated based on the reference electrode function unit 803.
  • FIG. 7 is a schematic diagram of the configuration of a reference electrode-containing lithium ion secondary battery with a thermometer function according to an embodiment of the present invention.
  • a lithium ion secondary battery 600 is arranged between a positive electrode 606 having a positive electrode foil 603 and a positive electrode active material layer 601, a negative electrode 607 having a negative electrode foil 604 and a negative electrode active material layer 602, a positive electrode 606 and a negative electrode 607.
  • the reference electrode 105 with a thermometer function is sandwiched between the two separators 605 and the two separators 605.
  • the reference electrode 105 with a thermometer function is disposed between the positive electrode 606 and the negative electrode 607, the potential and temperature of the portion where the positive electrode 606 and the negative electrode 607 face each other can be measured.
  • FIG. 8 is a schematic view of the configuration of a reference electrode-containing lithium ion secondary battery with a thermometer function according to an embodiment of the present invention.
  • a lithium ion secondary battery 700 includes a positive electrode 606, a negative electrode 607, a separator 605, and a reference electrode 105 with a thermometer function.
  • the reference electrode 105 with a thermometer function is arrange
  • the reference electrode 105 with a thermometer function is disposed outside the positive electrode 606 and the negative electrode 607 facing each other, it is possible to suppress a decrease in the area facing the positive electrode 606 and the negative electrode 607. Further, since there is not much change in the concentration of the electrolytic solution due to the arrangement of the reference electrode 105 with the thermometer function, the potential of the positive electrode 606 and the negative electrode 607 can be accurately measured without being affected by the concentration of the electrolytic solution.
  • FIG. 9 shows a configuration diagram when a positive electrode potential is measured using a reference electrode with a thermometer function as a reference electrode in one embodiment of the present invention.
  • the potential difference between the reference electrode 105 with a thermometer function and the positive electrode 606 is evaluated by a potential difference evaluation device 1101. At this time, one side of the metal wire 101 exiting from the reference electrode 105 with the thermometer function does not contact the wiring exiting from the potential difference evaluation device 1101.
  • FIG. 10 shows a configuration diagram when the negative electrode potential is measured using the reference electrode with a thermometer function as a reference electrode in one embodiment of the present invention.
  • the potential difference between the reference electrode 105 with a thermometer function and the negative electrode 607 is evaluated by a potential difference evaluation device 1101. At this time, one side of the metal wire 101 exiting from the reference electrode 105 with the thermometer function does not contact the wiring exiting from the potential difference evaluation device 1101.
  • FIG. 11 shows a configuration diagram when the reference electrode with a thermometer function in the embodiment of the present invention measures the temperature as a thermometer.
  • Two metal wires 101 coming out from the reference electrode 105 with the thermometer function are connected to the temperature evaluation device 1001 and the temperature is measured from the resistance value.
  • FIG. 12 is a system block diagram of a lithium ion secondary battery system according to an embodiment of the present invention.
  • the control circuit 1602 receives the measurement results from the temperature evaluation device 1001 and the potential difference evaluation device 1101 and charges / discharges the lithium ion secondary battery 700 based on the temperature and voltage via the current detection and current load circuit 1603. Control the amount.
  • the potential difference ⁇ VP between the positive electrode 606 and the reference electrode with a thermometer function and the potential difference ⁇ VN between the negative electrode 607 and the reference electrode with a thermometer function are measured by the reference electrode function unit, and the temperature measurement unit 13 measures the temperature of the lithium ion secondary battery.
  • FIG. 12 is a system block diagram of a lithium ion secondary battery system according to an embodiment of the present invention.
  • the control circuit 1602 receives the measurement results from the temperature evaluation device 1001 and the potential difference evaluation device 1101 and charges / discharges the lithium ion secondary battery 700 based on the temperature and voltage via the current detection and current load circuit 1603. Control
  • Step S1> it is determined whether or not the lithium ion secondary battery is being charged. If it is determined that the battery is not being charged (NO in step S1), the process proceeds to step S6. If it is determined in step S1 that lithium ion secondary battery 1 is being charged (YES in step S1), the process proceeds to step S2.
  • Step S2> The determination unit detects a potential difference ⁇ VP between the positive electrode and the reference electrode and a potential difference ⁇ VN between the negative electrode and the reference electrode.
  • Step S4> The control circuit 1602 determines whether or not the potential difference ⁇ VP is smaller than the specified value A (step S4). Then, if it is determined that potential difference ⁇ VP is equal to or greater than specified value A (NO in step S4), the process proceeds to step S5. On the other hand, if it is determined in step S4 that potential difference ⁇ VP is smaller than specified value A (YES in step S4), the process proceeds to step S6.
  • ⁇ Step S5> In order to prevent metallic lithium from precipitating in the negative electrode, the control circuit 1602 issues a command to the current detection and current load circuit 1603 to control the amount of charge to the lithium ion secondary battery. In addition, for the purpose of preventing the positive electrode from crystal collapse, the control circuit 1602 issues a command to the control circuit 1602 to suppress the amount of charge to the lithium ion secondary battery.
  • the reference electrode made of metallic lithium is provided, and the potential difference ⁇ VP between the positive electrode and the reference and the potential difference ⁇ VN between the negative electrode and the reference electrode are detected.
  • the potential difference ⁇ VN is negative or when the potential difference ⁇ VP is greater than or equal to the specified value A, the charge amount to the lithium ion secondary battery is suppressed.
  • a configuration other than the flowchart of FIG. 13 includes a configuration considering only the potential difference ⁇ VN and a configuration considering only the potential difference ⁇ VP. It is also possible to detect the temperature T and suppress the charge / discharge amount to the lithium ion secondary battery based on the data.
  • the temperature T is used, for example, in step S3 or step S4, when T is greater than or equal to the specified value C, the amount of charge to the lithium ion secondary battery is controlled, and when T is less than the specified value C, step S6 Transfer processing to. It is desirable to control the amount of current to the lithium ion secondary battery based on one or more of ⁇ VP, ⁇ VN, and T.
  • the lithium ion secondary battery as described above and the lithium ion secondary battery system having the lithium ion secondary battery are used for an in-vehicle power storage system used for plug-in hybrid vehicles and electric vehicles, and for generating electric power generated by power generation.
  • the present invention can be applied to a stationary power storage system for temporary storage.
  • thermometer function (1) Production of reference electrode with thermometer function (1-1) Production of reference electrode A with thermometer function Lithium titanate 90 wt. % And polyvinylidene fluoride (PVDF) 10 wt. % Mixture of N-methyl-2-pyrrolidone was added to prepare a reference electrode functional part slurry A.
  • the reference electrode functional part slurry A is applied to a portion of the metal wire of a commercially available platinum resistance thermometer that is not the resistance part, and is vacuum-dried at 120 ° C. for 2 hours, so that the reference electrode A with a thermometer function as shown in FIG. Got.
  • thermometer B In order to fill Li in the reference electrode B with the thermometer function, the same operation as in Example 1 (1) was performed and 50% was filled. As a result, the potential of the reference electrode B with the thermometer function was 1.55 V (vsLi / Li + ). The potential did not change when the Li loading was 20-80%. Further, when the function as a thermometer was examined from the metal or metal alloy wire 201 and the metal alloy wire 204, the error was 2% or less at 25, 50, and 75 ° C., and it was found that this thermometer was effective. (1-3) Production of Reference Electrode C with Thermometer Function The reference electrode functional part slurry A is applied to the resistance part of a metal wire of a commercially available platinum thermometer, and is vacuum-dried at 120 for 2 hours. A reference electrode C with a thermometer function was obtained.
  • thermometer function In order to fill Li in the reference electrode C with the thermometer function, the same operation as in Example 1 (1) was performed and 50% was filled. As a result, the potential of the reference electrode C with the thermometer function was 1.55 V (vsLi / Li + ). The potential did not change when the Li loading was 20-80%. Moreover, when the function as a thermometer was investigated from the two metal or metal alloy wires 301, it was found that the error was 2% or less at 25, 50, and 75 ° C., and this thermometer was effective.
  • thermometer function In order to fill the reference electrode E with the thermometer function with Li, 50% filling was performed in the same manner as in Example 1 (1). As a result, the potential of the reference electrode E with the thermometer function was 1.55 V (vsLi / Li + ). The potential did not change when the Li loading was 20-80%. Moreover, when the function as a thermometer was investigated from the metal or metal alloy wire 801 and the metal alloy wire 804, the error was 2% or less at 25, 50, and 75 ° C., and it was found that this thermometer was effective. (1-6) Preparation of reference electrode F with thermometer function Connect two platinum wires with an adhesive, apply the reference electrode function part slurry A to the connection part, and vacuum dry at 120 ° C. for 2 hours. Thus, a reference electrode F with a thermometer function as shown in FIG. 5 was obtained.
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Example 1 (3) In the lithium ion secondary battery A used in Example 1 (3), the same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to the reference electrode C with a thermometer function.
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Example 1 (3) In the lithium ion secondary battery A used in Example 1 (3), the same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to the reference electrode D with a thermometer function.
  • Example 1 (3) In the lithium ion secondary battery A used in Example 1 (3), the same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to the reference electrode E with a thermometer function.
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Example 1 (3) In the lithium ion secondary battery A used in Example 1 (3), the same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to the reference electrode F with a thermometer function.
  • a separator, a positive electrode A, a separator, a negative electrode A, and a separator were stacked in this order and housed in an exterior member. Thereafter, the reference electrode A with a thermometer function was disposed outside the positive electrode and the negative electrode, the electrolyte solution A was filled up to that portion, and the exterior member was thermally fused and sealed. When arranging the reference electrode A with the thermometer function, a separator was interposed between the positive electrode and the negative electrode. Otherwise, the same test as in Example 1 was performed. As a result, a lithium ion secondary battery G as shown in FIG. 8 was obtained.
  • Example 1 The same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to Li metal as the reference electrode in Example (1).
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Example 1 The same test as in Example 1 was performed except that the reference electrode A with a thermometer function was changed to a platinum resistance thermometer as a thermometer in Example (1).
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.
  • Table 1 shows the results of the positive electrode negative electrode potential and temperature obtained and the presence or absence of electrolyte leakage from the lithium ion secondary battery in 10 days after the test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池にセンサを導入した場合に二次電池内部にある電解液などの溶液が漏れることを防止する。温度計測部および参照極機能部を有する温度計機能付き参照極であって、温度計測部において、正極および負極を有するリチウムイオン二次電池の温度が計測され、参照極機能部において、正極および負極の電位が検出され、参照極機能部は、リチウムマンガンスピネル、リチウム合金、チタン酸リチウム、リン酸遷移金属リチウム、および金属リチウムのいずれか1つ以上を有する温度計機能付き参照極。

Description

温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法
 本発明は、温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法に関する。
 近年、リチウムイオン二次電池に対する開発が盛んに進められている。リチウムイオン二次電池などの二次電池は、充放電を繰り返すことで性能が劣化し寿命が縮まるが、適切に運転条件を制御することによって長寿命化が可能である。適切に運転条件を制御する際の状態検知の手段としては、特許文献1に電池内部に参照極を設置することで各電極の状態を検知し、各電極の劣化速度が低い条件に制御した状態でリチウムイオン二次電池を運転する方法が、開示されている。また、特許文献2にはバッテリパック内部に温度計を配置し、温度を制御した状態でリチウムイオン二次電池を運転する方法が、開示されている。
WO11/033781公報 特表2010-539657公報
 上記のようにリチウムイオン二次電池などの二次電池は、適切に運転条件を制御することによって長寿命化が可能である。そのため、二次電池に特許文献1、2に記載のように参照極と温度計の両センサを導入することが有効である。しかし、特許文献1、2では、温度計が参照極と機能として分離しており、二次電池の外部に温度計が設置されているため、二次電池の内部で温度が上昇しやすい実際に反応が起こる点と温度計とに距離ができ、温度計で計測された温度に従い二次電池を適切に制御することが難しい。一方、リチウムイオン二次電池に、参照極と温度計などの2つ以上のセンサを別々に入れると、センサの接合部の接着が難しく、配線部分の封止が難しくなり、その結果、二次電池内部にある電解液などの溶液が漏れるという問題があった。
 本発明は、二次電池にセンサを導入した場合に二次電池内部にある電解液などの溶液が漏れることを防止することを目的とする。
 本発明の特徴は、例えば以下の通りである。
 温度計測部および参照極機能部を有する温度計機能付き参照極であって、温度計測部において、正極および負極を有するリチウムイオン二次電池の温度が計測され、参照極機能部において、正極および負極の電位が検出される温度計機能付き参照極。
 本発明により、二次電池にセンサを導入した場合に二次電池が液漏れすることを防止できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極の概略図である。 本発明の一実施形態における温度計機能付き参照極入りリチウムイオン二次電池の構成の概略図である。 本発明の一実施形態における温度計機能付き参照極入りリチウムイオン二次電池の構成の概略図である。 本発明の一実施形態における温度計機能付き参照極が参照極として正極電位を測定する際の構成図である。 本発明の一実施形態における温度計機能付き参照極が参照極として負極電位を測定する際の構成図である。 本発明の一実施形態における温度計機能付き参照極が温度計として温度を測定する際の構成図である。 本発明の一実施形態によるリチウムイオン二次電池システムのシステムブロック図である。 本発明の一実施形態における温度計機能付き参照極を用いて測定した正極電位、負極電位を基に二次電池の運転について制御する方法である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本発明の一実施形態では、温度センサとしての機能と、正極および負極を有する二次電池内に配置した際に参照極としての機能と、を有することを特徴とする温度計機能付き参照極を提供する。これにより、二次電池の正極と負極が対面している部分に参照極や温度計を個別に配置する必要がなくなり、実質的に充放電できる正極および負極の面積を確保でき、二次電池の容量を大きくできる。
 本発明の一実施形態における温度計機能付き参照極は、参照極としての機能を持たせるために、参照極機能部としてリチウムマンガンスピネル、リチウム合金、チタン酸リチウム、リン酸遷移金属リチウム、および金属リチウムのいずれか1つ以上を有する。これらのリチウム化合物またはリチウム合金の組成については特に限定しない。例えば、チタン酸リチウムは、Li4Ti512にLiを充填させてLi7Ti512になる。Li4Ti512が基準(0%)、リチウムを充填して組成がLi7Ti512となった状態を100%と定義する。この際に充填率が10~90%では電位が1.5~1.6V(vsLi/Li+)の間で安定となり、参照極として機能させることが可能である。また、リン酸遷移金属リチウムは、充填率が10~90%では3.5~4.0V(vsLi/Li+)の間で安定となり、参照極として機能させることが可能である。リチウム金属は、水と反応するため大気中での使用は難しい。それに対して、チタン酸リチウム、リン酸遷移金属リチウムは水との反応速度が遅いため、大気中でも使用可能である。
 また、金属線などの温度計測部と参照極機能部の接合方法については特に限定されないが、高分子をバインダーとして温度計測部と参照極機能部を接着する方法がある。
 本発明の一実施形態では、温度計測部で、温度によって影響される抵抗を測定する抵抗測定法と温度によって影響される電位差を測定する電位差測定法のいずれかを用いて温度を評価できる。
 抵抗測定法を用いて温度を評価する場合、抵抗体(抵抗部)としては金属やサーミスタを使用することができるが、使用する電位で金属リチウムと反応をしないものであれば特に限定されない。例えば、参照極機能部としてチタン酸リチウムを用いる場合、使用する電位は1.5~1.6V(vsLi/Li+)となる。その場合、金属としては白金、ニッケル、銅などを使用することが可能である。サーミスタも特に限定されないが、NTCサーミスタ、PTCサーミスタ、CTRサーミスタを用いることができる。詳しくは、ゲルマニウム、炭素、シリコン(PN接合ダイオード)やRuO2を用いることができる。
 また、本発明の一実施形態では、サーミスタや金属抵抗体としては、参照極機能部に用いた材料、例えばリチウムマンガンスピネル、リチウム合金、チタン酸リチウム、リン酸遷移金属リチウム、および金属リチウムを使用することも可能である。抵抗測定法にて温度を測定する場合、抵抗値を測定できれば良く、電圧を印加して電流値から抵抗を測定してもよいし、電流を負荷して、電圧値から抵抗を測定してもよい。
 電位差測定法で温度を測定する場合、金属または金属合金線と金属合金線間の電位差を測定することで温度を評価する。この場合、金属または金属合金線と金属合金線を含む熱電対が用いられる。この金属と金属合金線については、接続した場合に電位差が生じて、そのデータを基に温度を測定できれば特に限定はないが、一般的にはクロメル線とアルメル線の組み合わせ、クロメル線とコンスタンタン線の組み合わせ、鉄線とコンスタンタン線の組み合わせ、銅線とコンスタンタン線の組み合わせ、ナイクロシルとナイシル線の組み合わせ、白金線と線の組み合わせ、ロジウム合金線と白金線の組み合わせ、白金ロジウム合金線と白金線の組み合わせ、白金線とロジウム合金線の組み合わせ、白金ロジウム合金と白金ロジウム合金の組み合わせ、タングステンレニウム合金とタングステンレニウム合金の組み合わせ、イリジウムとイリジウムロジウム合金の組み合わせ、ニクロムと金鉄合金の組み合わせ、銅と金コバルト合金の組み合わせなどがあげられる。
 本発明の一実施形態におけるリチウムイオン二次電池は、正極、セパレータ、負極が順に積層された電極群と、電極群または電池ケース内に設置された温度計機能付き参照極と、を有する。正極端子、負極端子はそれぞれ正極タブ、負極タブにより正極、負極と通電しており、リチウムイオン二次電池は正極端子、負極端子を介して外部回路により充放電される。
 電極群部分は正極、セパレータ、負極、セパレータを順に重ね合わせた構成となっているが、これらが何度も積層されていてもよい。また、正極、セパレータ、負極、セパレータのいずれかの間に温度計機能付き参照極が挿入されていてもよい。電池の形状は、捲回円筒型、偏平長円形型、捲回角型、積層型などがあり、いずれの形状を選択してもよい。温度計機能付き参照極は、正極、負極のいずれとも電気導電性は持たないことが求められるため、セパレータに使用されるポリオレフィン系樹脂シートなどで覆われることにより絶縁処理をしてもよい。
 正極は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有酸化物からなる正極活物質を含んでいる。正極活物質の種類は特に制限されないが、例えば、ニッケル酸リチウムLiNiO2や、コバルト酸リチウムLiCoO2、マンガン酸リチウムLiMn24、オリビン鉄FeLiPO4などのリン酸遷移金属リチウムが挙げられる。正極活物質として上記の材料が一種単独または二種以上含まれていてもよい。正極中の正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において、負極中の負極活物質から脱離したリチウムイオンが挿入される。
 負極は、リチウムイオンを可逆的に挿入脱離可能な負極活物質を含んでいる。負極活物質として、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレイ法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、シリコン(Si)、シリコンを混合した黒鉛、難黒鉛化炭素材チタン酸リチウムLi4Ti512などを用いることができる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。負極中の負極活物質は、充電過程において、正極中の正極活物質から脱離したリチウムイオンが挿入され、放電過程においてリチウムイオンが脱離する。
 正極と負極との間には、例えばポリプロピレン製のセパレータを用いる。セパレータとしてポリプロピレン以外にも、ポリエチレンなどのポリオレフィン製の微孔性フィルムや不織布などを用いることができる。
 一つ以上の温度計機能付き参照極が電池ケース内に設置されていれば、温度計機能付き参照極の数、設置場所の指定は特にはない。例えば、電池ケースにおいて、正極とセパレータの間に設置することが可能である。また、負極とセパレータの間に設置することも可能である。正極と負極の間のセパレータを二枚とし、セパレータとセパレータ間に設置することも可能である。さらには、電池ケース内部にて、正極と負極が対面する外側部に設置することも可能である。なお、温度計機能付き参照極において、参照極機能部は電解液と接触し、正極および負極とは非接触に配設される。この温度計機能付き参照極は、金属リチウムが有する基準電位に対する正極および負極の電位を検出するための参照電極として用いられる。
 電解質である電解液には特に制限はないが、例えば体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に六フッ化リン酸リチウムを1mol/l溶解させた非水溶液が、電池ケースに注入されている。
 リチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF6、LiBF4、LiClO4、LiI、LiCl、LiBr等、また、有機リチウム塩では、LiB[OCOCF3]4、LiB[OCOCF2CF3]4、LiPF4(CF3)2、LiN(SO2CF3)2、LiN(SO2CF2CF3)2等を用いることができる。
 溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)等の有機系溶媒、あるいはこれらの2種以上の混合有機化合物の溶媒が用いられているがそれらの種類は制限されない。
 電解質として電解液以外に固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができるがそれらの種類は制限されない。これらの固体高分子電解質を用いた場合、セパレータを省略できる。
 本発明の一実施形態におけるリチウムイオン二次電池において、電池ケースは特に制限はされない。例えばSUSやラミネートパックを用いることができる。
 本発明の一実施形態におけるリチウムイオン二次電池において、正極と1つ以上の参照極の電位差ΔVP1、ΔVP2、ΔVP3、・・・ΔVPN(Nは1以上の整数)および負極と1つ以上の参照極の参照極の電位差ΔVN1、ΔVN2、ΔVN3、・・・ΔVNM(Mは1以上の整数)を外部モニタで測定可能であればよい。参照極の金属線と外部モニタの接続方法などに制限はない。本発明の一実施形態におけるリチウムイオン二次電池において、1つ以上の温度計機能付き参照極により測定した温度T1、T2、T3、・・・TO(Oは1以上の整数)を外部モニタで測定可能であればよい。温度計機能付き参照極の金属線と外部モニタの接続方法などに制限はない。
 図1は、本発明の一実施形態における温度計機能付き参照極の概略図である。図1において、温度計機能付き参照極105は、金属または金属合金線101、抵抗部102、参照極機能部103を有する。金属または金属合金線101に抵抗部102が接続されている。金属または金属合金線101に参照極機能部103が接着されている。図1では、抵抗部102が温度計測部となる。温度は、抵抗部102の抵抗を基に計算され、参照極としての電位は、参照極機能部103を基に計算される。図1における温度計機能付き参照極を採用することにより、温度計機能付き参照極の寿命を長く保てる。
 図2は、本発明の一実施形態における温度計機能付き参照極の概略図である。図2において、温度計機能付き参照極205は、金属または金属合金線201、金属合金線204、接続部202、参照極機能部203を有する。金属または金属合金線201と金属合金線204とは、接続部202で接続されている。接続部202は、金属または金属合金線201に金属合金線204が溶着された構造となっている。金属合金線204に参照極機能部203が接着されている。図2では、接続部202が温度計測部となる。温度は、接続部202で生じる電位差を基に計算され、参照極としての電位は、参照極機能部203を基に計算される。図2における温度計機能付き参照極205を採用することにより、精度よく温度や電位を計測できる。
 図3は、本発明の一実施形態における温度計機能付き参照極の概略図である。図3において、温度計機能付き参照極305は、金属または金属合金線301、抵抗部302、参照極機能部303を有する。金属または金属合金線301に抵抗部302が接続されている。抵抗部302に参照極機能部303が接着されている。図3では、抵抗部302が温度計測部となる。温度は、抵抗部302の抵抗を基に計算され、参照極としての電位は、参照極機能部303を基に計算される。図3では、抵抗部302に参照極機能部303が接着されており、温度計としての機能と参照極としての機能とが同じ位置があるので、電位と温度との関係を把握しやすい。
 図4は、本発明の一実施形態における温度計機能付き参照極の概略図である。図4において、温度計機能付き参照極405は、金属または金属合金線401、金属合金線404、接続部402、参照極機能部403を有する。金属または金属合金線401と金属合金線404とは、接続部402で接続されている。接続部402に参照極機能部403が接着されている。図4では、接続部402が温度計測部となる。温度は、接続部402で生じる電位差を基に計算され、参照極としての電位は、参照極機能部403を基に計算される。
 図5は、本発明の一実施形態における温度計機能付き参照極の概略図である。図5において、温度計機能付き参照極505は、金属または金属合金線501、抵抗部502を有する。抵抗部502が温度計測部、参照極機能部となる。温度は、抵抗部502の抵抗を基に計算され、参照極としての電位は、抵抗部502を基に計算される。図5では、参照極機能部と温度計測部が抵抗部502という同じ材料で構成されているため、構造を単純にできる。
 図6は、本発明の一実施形態における温度計機能付き参照極の概略図である。図6において、温度計機能付き参照極805は、金属または金属合金線801、金属合金線804、サーミスタ802、参照極機能部803を有する。金属または金属合金線801と金属合金線804とは、サーミスタ802で接続されている。サーミスタ802に参照極機能部803が接着されている。図6では、サーミスタ802が温度計測部となる。温度は、サーミスタ702で生じる電位差を基に計算され、参照極としての電位は、参照極機能部803を基に計算される。
 図7は、本発明の一実施形態における温度計機能付き参照極入りリチウムイオン二次電池の構成の概略図である。図7において、リチウムイオン二次電池の600は、正極箔603と正極活物質層601を有する正極606、負極箔604と負極活物質層602を有する負極607、正極606および負極607の間に配置された2つのセパレータ605、2つのセパレータ605に挟まれた温度計機能付き参照極105を有する。温度計機能付き参照極105を正極606および負極607の間に配置した場合、正極606と負極607とが対面する部分の電位および温度を測定できる。
 図8は、本発明の一実施形態における温度計機能付き参照極入りリチウムイオン二次電池の構成の概略図である。図8において、リチウムイオン二次電池の700は、正極606、負極607、セパレータ605、温度計機能付き参照極105を有する。また、温度計機能付き参照極105は、正極606と負極607が相対する外側に配置される。温度計機能付き参照極105を正極606と負極607とが相対する外側に配置した場合、正極606および負極607の間で対面する面積の減少を抑制できる。また、温度計機能付き参照極105を配置したことによる電解液の濃度変化もあまりないため、電解液の濃度などに影響を受けにくく、正極606および負極607の電位を正確に測定できる。
 図9は、本発明の一実施形態における温度計機能付き参照極が参照極として正極電位を測定する際の構成図を示す。温度計機能付き参照極105と正極606間の電位差は電位差評価装置1101により評価される。この際、温度計機能付き参照極105から出た金属線101のうち片側は、電位差評価装置1101から出た配線とは接触しない。
 図10は、本発明の一実施形態における温度計機能付き参照極が参照極として負極電位を測定する際の構成図を示す。温度計機能付き参照極105と負極607間の電位差は電位差評価装置1101により評価される。この際、温度計機能付き参照極105から出た金属線101のうち片側は、電位差評価装置1101から出た配線とは接触しない。
 図11は、本発明の一実施形態における温度計機能付き参照極が温度計として温度を測定する際の構成図を示す。温度計機能付き参照極105から出た2本の金属線101が温度評価装置1001に接続され、その抵抗値から温度が測定される。
 図12は、本発明の一実施形態によるリチウムイオン二次電池システムのシステムブロック図である。図12において、制御回路1602は、温度評価装置1001および電位差評価装置1101からの測定結果を受け取り、電流検出および電流負荷回路1603を介して温度、電圧を基にリチウムイオン2次電池700の充放電量を制御する。リチウムイオン二次電池システムにおいて、参照極機能部により、正極606と温度計機能付き参照極との電位差ΔVP、および、負極607と温度計機能付き参照極との電位差ΔVNが測定され、温度計測部により、リチウムイオン二次電池の温度が測定される
 図13は、本発明の一実施形態における温度計機能付き参照極を用いて測定した正極電位、負極電位を基に二次電池の運転について制御する方法を示す。図13の制御フローチャートを説明する。
<ステップS1>
 初めに、リチウムイオン二次電池が充電中であるか否かを判定する。非充電中と判定すると(ステップS1においてNO)、ステップS6へ処理を移行する。ステップS1においてリチウムイオン二次電池1が充電中であると判定されると(ステップS1においてYES)、ステップS2へ処理を移行する。
<ステップS2>
 判定部は、正極と参照極との電位差ΔVPおよび負極と参照極との電位差ΔVNを検出する。
<ステップS3>
 その次に、まず、制御回路1602は、電位差ΔVNが0、もしくは、規定値Bよりも大きいか否かを判定する。すなわち、温度計機能付き参照極中の参照極が有する基準電位よりも負極の電位の方が高いか否かが判定される。そして、電位差ΔVNが0以下、もしくは、規定値B(規定値が0の場合は0)以下であると判定されると(ステップS3においてNO)、ステップS5へ処理を移行する。ステップS3において、電位差ΔVNが0よりも大きいと判定されると、もしくは、規定値Bよりも大きいと判定されると(ステップS3においてYES)、ステップS4へ処理を移行する。
<ステップS4>
 制御回路1602は、電位差ΔVPが規定値Aよりも小さいか否かを判定する(ステップS4)。そして、電位差ΔVPが規定値A以上であると判定されると(ステップS4においてNO)、ステップS5へ処理を移行する。一方、ステップS4において電位差ΔVPが規定値Aよりも小さいと判定されると(ステップS4においてYES)、ステップS6へ処理を移行する。
<ステップS5>
 負極において金属リチウムが析出するのを防止することを目的として、制御回路1602は電流検出および電流負荷回路1603に指令を出し、リチウムイオン二次電池への充電量を制御させる。また、正極が結晶崩壊するのを防止することを目的として、制御回路1602は制御回路1602に指令を出し、リチウムイオン二次電池への充電量を抑制する。
 以上のように、この実施の形態においては、金属リチウムからなる参照極が設けられ、正極と参照との電位差ΔVPおよび負極と参照極との電位差ΔVNが検出される。そして、電位差ΔVNが負のとき、または電位差ΔVPが規定値A以上のとき、リチウムイオン二次電池への充電量が抑制される。
 図13のフローチャート以外の構成として、電位差ΔVNのみを考慮する構成や、電位差ΔVPのみを考慮する構成も挙げられる。温度Tを検出して、そのデータを基にリチウムイオン二次電池への充放電量を抑制することも可能である。温度Tを利用する場合、例えば、ステップS3またはステップS4において、Tが規定値C以上である場合、リチウムイオン二次電池への充電量が制御され、Tが規定値Cより小さい場合、ステップS6へ処理を移行する。ΔVP、ΔVN、Tのいずれか一つ以上に基づいて、リチウムイオン二次電池への電流量を制御することが望ましい。
 上記のようなリチウムイオン二次電池、そのリチウムイオン二次電池を有するリチウムイオン二次電池システムは、プラグインハイブリッド自動車や電気自動車に用いられる車載用蓄電システム、また、発電により生み出された電力を一時的に保管するための定置用蓄電システムに応用することが可能である。
(1)温度計機能付き参照極の作製
(1-1)温度計機能付き参照極Aの作製
 チタン酸リチウム90wt.%とポリフッ化ビニリデン(PVDF)10wt.%の混合物にN-メチル-2-ピロリドンを加えて混合し、参照極機能部スラリーAを作製した。市販の白金抵抗温度計の金属線のうち抵抗部でない部分にこの参照極機能部スラリーAを塗布し、120℃で2時間真空乾燥することで、図1のような温度計機能付き参照極Aを得た。
 温度計機能付き参照極AにLiを充填するために、グローブボックス中で温度計機能付き参照極Aの参照極機能部スラリーを塗布した部分、セパレータ、Li金属の順に積層し、これらを1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に六フッ化リン酸リチウムを1mol/l溶解させた電解液Aに浸漬させた状態で温度計機能付き参照極AとLi金属の間に電流を流した。Liを50%充填させた。温度計機能付き参照極Aの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また、図10のように温度評価装置1001から引き出された二つの金属または金属合金線101から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下でありこの温度計が有効であることが分かった。
(1-2)温度計機能付き参照極Bの作製
 白金ロジウム合金線と白金線からなる熱電対の白金ロジウム合金と白金の接合部でない部分に上記参照極機能部スラリーAを塗布し、120℃で2時間真空乾燥することで、図2のような温度計機能付き参照極Bを得た。
 温度計機能付き参照極BにLiを充填するために、上記実施例1(1)と同様の作業をして50%充填した結果、温度計機能付き参照極Bの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また、金属または金属合金線201および金属合金線204から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下でありこの温度計が有効であることが分かった。
(1-3)温度計機能付き参照極Cの作製
 市販の白金温度計の金属線のうち抵抗部に上記参照極機能部スラリーAを塗布し、120で2時間真空乾燥することで、図3のような温度計機能付き参照極Cを得た。
 温度計機能付き参照極CにLiを充填するために、上記実施例1(1)と同様の作業をして50%充填した結果、温度計機能付き参照極Cの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また、二つの金属または金属合金線301から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下でありこの温度計が有効であることが分かった。
(1-4)温度計機能付き参照極Dの作製
 白金ロジウム合金線と白金線からなる熱電対の白金ロジウム合金と白金の接合部に上記参照極機能部スラリーAを塗布し、120℃で2時間真空乾燥することで、図4のような温度計機能付き参照極Dを得た。
 温度計機能付き参照極DにLiを充填するために、上記実施例1(1)と同様の作業をして50%充填した結果、温度計機能付き参照極Dの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また金属または金属合金線401および金属合金線404から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下であった。(1-5)温度計機能付き参照極Eの作製
 市販のシリコンダイオード温度センサのダイオード部位でない部分に上記参照極機能部スラリーAを塗布し、120℃で2時間真空乾燥することで、図6のような温度計機能付き参照極Eを得た。
 温度計機能付き参照極EにLiを充填するために、上記実施例1(1)と同様の作業をして50%充填した結果、温度計機能付き参照極Eの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また、金属または金属合金線801および金属合金線804から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下でありこの温度計が有効であることが分かった。
(1-6)温度計機能付き参照極Fの作製
 2本の白金線を接着剤で接続し、その接続部分に上記参照極機能部スラリーAを塗布し、120℃で2時間真空乾燥することで、図5のような温度計機能付き参照極Fを得た。
 温度計機能付き参照極FにLiを充填するために、上記実施例1(1)と同様の作業をして50%充填した結果、温度計機能付き参照極Fの電位は1.55V(vsLi/Li+)となった。Li充填量が20-80%では電位は変化しなかった。また、二つの金属または金属合金線501から温度計としての機能を調べたところ、25、50、75℃で誤差が2%以下でありこの温度計が有効であることが分かった。
(2)温度計機能付き参照極入りリチウムイオン二次電池Aの作製
(2-1)正極の作製
 正極活物質としてLiCO2、導電剤としてアセチレンブラック5wt.%、N-メチル-2-ピロリドン、PVDFを7wt.%を添加して正極スラリーAを作製した。この正極スラリーAを厚み25μmのアルミニウム箔である正極箔に塗布乾燥後、プレス、裁断し、正極Aを得た。
(2-2)負極の作製
 負極活物質として、難黒鉛化炭素、N-メチル-2-ピロリドン、PVDFを10wt.%を添加して負極スラリーAを作製した。この負極スラリーAを厚み10μmの銅箔である負極箔に塗布乾燥後、プレス、裁断し、負極Aを得た。
(2-3)リチウムイオン二次電池Aの作製
 リチウムイオン二次電池Aとして、セパレータ、正極A、セパレータ、温度計機能付き参照極A、セパレータ、負極A、セパレータの順に積層し、これらを外装部材に収納後、電解液Aを充填し、外装部材を熱融着させて封止した。ここで、セパレータには30μmのポリプロピレンとポリエチレン積層多孔質材を用い、外装部材にはラミネートフィルムを用いた。その結果、図7のようなリチウムイオン二次電池Aを得た。
(3)リチウムイオン二次電池Aの充放電試験
 リチウムイオン二次電池Aを25℃、1Cで容量25-75%まで充放電試験を3時間実施した。充放電試験後は50%の容量を充電した状態で保存した。2時間たってから正極と負極の電位を測定した。
 正極電位測定時には図9の回路を組み、正極電位を評価した。その際に参照極の電位は1.55Vで計算した。負極電位測定時には図10の回路を組み、負極電位を評価した。その際に参照極の電位は1.55Vで計算した。
 また、温度測定時には図11の回路を組み、抵抗値を測定することで温度を測定した。表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(3)で用いたリチウムイオン二次電池Aにおいて、温度計機能付き参照極Aを温度計機能付き参照極Bに変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(3)で用いたリチウムイオン二次電池Aにおいて、温度計機能付き参照極Aを温度計機能付き参照極Cに変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(3)で用いたリチウムイオン二次電池Aにおいて、温度計機能付き参照極Aを温度計機能付き参照極Dに変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(3)で用いたリチウムイオン二次電池Aにおいて、温度計機能付き参照極Aを温度計機能付き参照極Eに変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(3)で用いたリチウムイオン二次電池Aにおいて、温度計機能付き参照極Aを温度計機能付き参照極Fに変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
 実施例1(2-3)のリチウムイオン二次電池の作製方法を変えた以外は実施例1と同様の試験を実施した。
 本実施例では、リチウムイオン二次電池Gとして、セパレータ、正極A、セパレータ、負極A、セパレータの順に積層し外装部材に収納させた。その後、温度計機能付き参照極Aを正極と負極の外側に配置し、その部分まで電解液Aを充填し、外装部材を熱融着させて封止した。温度計機能付き参照極Aを配置する際は、正極・負極と触れないようにセパレータを間に入れた。それ以外は実施例1と同様の試験を実施した。その結果、図8のようなリチウムイオン二次電池Gを得た。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
比較例1
 実施例(1)で参照極として温度計機能付き参照極AをLi金属に変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
比較例2
 実施例(1)で温度計として温度計機能付き参照極Aを白金抵抗温度計に変えた以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
比較例3
 実施例(1)で参照極・温度計として温度計機能付き参照極Aを用いたのに対し、白金抵抗温度計とLi金属をそれぞれ入れて電池を作製した。それ以外は実施例1と同様の試験を実施した。
 表1に得られた正極負極電位と温度の結果および試験後10日間でリチウムイオン二次電池から電解液漏れの有無を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、すべての実施例において、正極と負極の電位はLi金属を参照極とした比較例1とほぼ同等な電位を得られた。このことから温度計機能付き参照極が有効に機能していることが確認された。また、温度計としても比較例2の白金抵抗温度計と同様の値を示しており、温度計機能付き参照極が有効に機能していることが確認された。さらに、温度計機能付き参照極では、電池からの配線取り出し部が少ないために液漏れが起こらなかったが、比較例3では配線取り出し部から液漏れが確認された。以上により本発明における温度計機能付き参照極が有効であることが確認された。
(1)温度計機能付き参照極入り積層リチウムイオン二次電池Hの作製
 実施例1(2-3)で作製する際に、正極、セパレータ、負極の順に積層された電極群を10層積層させて積層電池を作製した。その際に5層目の正極・セパレータ・負極間を、正極・セパレータ・温度計機能付き参照極・セパレータ・負極に変えた。それ以外は実施例(1)と同様の方法でリチウムイオン二次電池Hを作製した。
(2)リチウムイオン二次電池Hの充放電試験
 30℃、2Cで容量25-75%まで充放電試験を連続で実施した。充放電時には、一定時間ごとに充放電を止めて正極および負極の電位を測定した。その際、負極の電位が0.2V以下と正極3V以下になった場合、温度は40℃以上になった場合に充放電を休止するように制御して評価した。2000サイクル後の容量維持率は95%であった。
 上記に対してリチウムイオン二次電池Hを用いて、温度や正極および負極の電位により運転状態を制御しないでサイクル試験を実施した。2000サイクル後の容量維持率は90%であった。
 以上より、温度計機能付き参照極により、正極および負極の電位や温度を測定し、それらの値を基にリチウムイオン二次電池の運転方法を制御することで劣化速度を低減できることが確認された。
101 金属または金属合金線
102 抵抗部
103 参照極機能部
105 温度計機能付き参照極
201 金属または金属合金線
202 接続部
203 参照極機能部
204 金属合金線
205 温度計機能付き参照極
301 金属または金属合金線
302 抵抗部
303 参照極機能部
305 温度計機能付き参照極
401 金属または金属合金線
402 接続部
403 参照極機能部
404 金属合金線
405 温度計機能付き参照極
501 金属または金属合金線
502 抵抗部
505 温度計機能付き参照極
600 リチウムイオン二次電池の
601 正極活物質層
602 負極活物質層
603 正極箔
604 負極箔
605 セパレータ
606 正極
607 負極
700 リチウムイオン二次電池
801 金属または金属合金線
802 サーミスタ
803 参照極機能部
804 金属合金線
805 温度計機能付き参照極
1101 電位差評価装置
1001 温度評価装置
1602 制御回路
1603 電流検出および電流負荷回路

Claims (13)

  1.  温度計測部および参照極機能部を有する温度計機能付き参照極であって、
     前記温度計測部において、正極および負極を有するリチウムイオン二次電池の温度が計測され、
     前記参照極機能部において、前記正極および前記負極の電位が検出される温度計機能付き参照極。
  2.  請求項1において、
     前記参照極機能部は、リチウムマンガンスピネル、リチウム合金、チタン酸リチウム、リン酸遷移金属リチウム、および金属リチウムのいずれか1つ以上を有する温度計機能付き参照極。
  3.  請求項1乃至2のいずれかにおいて、
    前記温度計測部は抵抗体である温度計機能付き参照極。
  4.  請求項1乃至2のいずれかにおいて、
     前記温度計測部は熱電対である温度計機能付き参照極。
  5.  請求項3乃至4のいずれかにおいて、
     前記温度計測部に前記参照極機能部が接着されている温度計機能付き参照極。
  6.  請求項3または5のいずれかにおいて、
     前記温度計測部はサーミスタである温度計機能付き参照極。
  7.  請求項1乃至2のいずれかにおいて、
     前記温度計測部および前記参照極機能部は抵抗体である温度計機能付き参照極。
  8.  請求項1乃至7のいずれかの温度計機能付き参照極、前記正極、および、前記負極を有するリチウムイオン二次電池。
  9.  請求項8のリチウムイオン二次電池を有するリチウムイオン二次電池システムであって、
     前記参照極機能部により、前記正極と前記温度計機能付き参照極との電位差ΔVP、および、前記負極と前記温度計機能付き参照極との電位差ΔVNが測定されるリチウムイオン二次電池システム。
  10.  請求項8のリチウムイオン二次電池を有するリチウムイオン二次電池システムであって、
     前記温度計測部により、前記リチウムイオン二次電池の温度Tが測定されるリチウムイオン二次電池システム。
  11.  請求項10において、
     ΔVP、ΔVN、Tのいずれか一つ以上に基づいて、前記リチウムイオン二次電池への充放電量を制御するリチウムイオン二次電池システム。
  12.  請求項11において、
     ΔVPが規定値以上である場合、ΔVNが規定値以下である場合、または、Tが規定値以上である場合、前記リチウムイオン二次電池への充放電量を制御する二次電池システム。
  13.  請求項8のリチウムイオン二次電池を制御するリチウムイオン二次電池の制御方法であって、
     前記参照極機能部により、前記正極と前記温度計機能付き参照極との電位差ΔVP、および、前記負極と前記温度計機能付き参照極との電位差ΔVNが測定されるリチウムイオン二次電池の制御方法。
PCT/JP2013/075066 2013-09-18 2013-09-18 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法 WO2015040684A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075066 WO2015040684A1 (ja) 2013-09-18 2013-09-18 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075066 WO2015040684A1 (ja) 2013-09-18 2013-09-18 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法

Publications (1)

Publication Number Publication Date
WO2015040684A1 true WO2015040684A1 (ja) 2015-03-26

Family

ID=52688371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075066 WO2015040684A1 (ja) 2013-09-18 2013-09-18 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法

Country Status (1)

Country Link
WO (1) WO2015040684A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088311A (ja) * 2016-11-28 2018-06-07 本田技研工業株式会社 二次電池
JP2018519647A (ja) * 2015-08-24 2018-07-19 エルジー・ケム・リミテッド 相対電極電位の測定のための基準電極を含む電池セルの製造方法およびこれによって製造された電池セル
CN111656599A (zh) * 2018-08-29 2020-09-11 株式会社Lg化学 用于制造圆柱形三电极单体的方法和由此制造的圆柱形三电极单体
CN112331945A (zh) * 2020-11-05 2021-02-05 北京国电光宇机电设备有限公司 一种具有测温装置的锂电池及锂电池组
CN114122540A (zh) * 2021-11-15 2022-03-01 电子科技大学 一种温度检测器及其制备方法、锂电池结构组合

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658931A (ja) * 1992-08-10 1994-03-04 Toto Ltd 健康管理装置
JP2001242134A (ja) * 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd pHセンサ
JP2010145380A (ja) * 2008-12-22 2010-07-01 Dkk Toa Corp 酸化還元電位測定装置の電極検査方法及び酸化還元電位測定装置の電極検査用の標準液
JP2010539657A (ja) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. 健康状態監視用の参照電極を備えたリチウム充電式セル
WO2011033781A1 (ja) * 2009-09-18 2011-03-24 パナソニック株式会社 リチウム二次電池における正極活物質の充放電方法、ならびに、リチウム二次電池を備えた充放電システム、電池パック、電池モジュール、電子機器および車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658931A (ja) * 1992-08-10 1994-03-04 Toto Ltd 健康管理装置
JP2001242134A (ja) * 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd pHセンサ
JP2010539657A (ja) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. 健康状態監視用の参照電極を備えたリチウム充電式セル
JP2010145380A (ja) * 2008-12-22 2010-07-01 Dkk Toa Corp 酸化還元電位測定装置の電極検査方法及び酸化還元電位測定装置の電極検査用の標準液
WO2011033781A1 (ja) * 2009-09-18 2011-03-24 パナソニック株式会社 リチウム二次電池における正極活物質の充放電方法、ならびに、リチウム二次電池を備えた充放電システム、電池パック、電池モジュール、電子機器および車両

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519647A (ja) * 2015-08-24 2018-07-19 エルジー・ケム・リミテッド 相対電極電位の測定のための基準電極を含む電池セルの製造方法およびこれによって製造された電池セル
JP2018088311A (ja) * 2016-11-28 2018-06-07 本田技研工業株式会社 二次電池
US10573939B2 (en) 2016-11-28 2020-02-25 Honda Motor Co., Ltd. Secondary battery with film shaped sensor
CN111656599A (zh) * 2018-08-29 2020-09-11 株式会社Lg化学 用于制造圆柱形三电极单体的方法和由此制造的圆柱形三电极单体
US11450878B2 (en) * 2018-08-29 2022-09-20 Lg Energy Solution, Ltd. Method for manufacturing cylindrical three-electrode cell, and cylindrical three-electrode cell manufactured thereby
CN111656599B (zh) * 2018-08-29 2023-09-05 株式会社Lg新能源 用于制造圆柱形三电极单体的方法和由此制造的圆柱形三电极单体
CN112331945A (zh) * 2020-11-05 2021-02-05 北京国电光宇机电设备有限公司 一种具有测温装置的锂电池及锂电池组
CN112331945B (zh) * 2020-11-05 2021-12-07 北京国电光宇机电设备有限公司 一种具有测温装置的锂电池及锂电池组
CN114122540A (zh) * 2021-11-15 2022-03-01 电子科技大学 一种温度检测器及其制备方法、锂电池结构组合

Similar Documents

Publication Publication Date Title
US10700376B2 (en) Methods for fast-charging and detecting lithium plating in lithium ion batteries
JP4439456B2 (ja) 電池パック及び自動車
US11749843B2 (en) Battery module having improved safety, battery pack including battery module, and vehicle including battery pack
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN103490093B (zh) 电极、二次电池、电池组、电动车辆和电力存储系统
JP5779528B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法
WO2015049778A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池システム、リチウムイオン二次電池の電位検出方法、およびリチウムイオン二次電池の制御方法
US20120158330A1 (en) Monitoring system for lithium ion secondary battery and monitoring method thereof
US9190864B2 (en) Charging control method for secondary cell and charging control device for secondary cell
KR20140101429A (ko) 전지
CN105449183A (zh) 非水电解质二次电池用电极活性物质及具备其的非水电解质二次电池
CN105409049A (zh) 非水电解质二次电池和非水电解质二次电池的制造方法
JP6250998B2 (ja) 非水電解質電池及び電池パック
JP6056125B2 (ja) 組電池及び蓄電装置
CN104956514A (zh) 蓄电池系统
WO2015040684A1 (ja) 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法
CN104466261A (zh) 非水电解质二次电池以及电池包
US20180151922A1 (en) Secondary battery
CN110247101B (zh) 用于对电池快速充电的方法
US20160181606A1 (en) Lithium ion secondary battery
CN114072947A (zh) 二次电池、电池包、电动工具、电动式航空器及电动车辆
US10122047B2 (en) Nonaqueous electrolyte secondary battery
EP2860792B1 (en) Non-aqueous electrolyte secondary battery and battery pack
CN105493319A (zh) 负极活性物质、使用该负极活性物质的负极、以及锂离子二次电池
JP2015187949A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP