WO2015040678A1 - コロニー検査プログラム、コロニー検査装置およびコロニー検査方法 - Google Patents

コロニー検査プログラム、コロニー検査装置およびコロニー検査方法 Download PDF

Info

Publication number
WO2015040678A1
WO2015040678A1 PCT/JP2013/075059 JP2013075059W WO2015040678A1 WO 2015040678 A1 WO2015040678 A1 WO 2015040678A1 JP 2013075059 W JP2013075059 W JP 2013075059W WO 2015040678 A1 WO2015040678 A1 WO 2015040678A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
information
specimen
list
colony
Prior art date
Application number
PCT/JP2013/075059
Other languages
English (en)
French (fr)
Inventor
豪一 日高
内藤 宏久
未実子 林
晋 嵯峨
沙知子 宮島
清志 川野
あきら 宮崎
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201380079588.8A priority Critical patent/CN105531738A/zh
Priority to PCT/JP2013/075059 priority patent/WO2015040678A1/ja
Priority to JP2015537451A priority patent/JPWO2015040678A1/ja
Priority to EP13893785.9A priority patent/EP3048577A4/en
Publication of WO2015040678A1 publication Critical patent/WO2015040678A1/ja
Priority to US15/070,939 priority patent/US20160196529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0832Special goods or special handling procedures, e.g. handling of hazardous or fragile goods
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0838Historical data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a colony inspection program, a colony inspection apparatus, and a colony inspection method.
  • Sanitary inspection is performed at the time of shipment of goods. For example, taking food as an example of an article, a part of food is collected as a sample, and the sample is smeared or mixed in a medium prepared in a petri dish, and bacteria contained in the sample are kept at an appropriate temperature on the petri dish. Incubate for a predetermined period of time. Thereafter, a hygiene test is performed by measuring bacterial colonies in the petri dish that has been cultured.
  • the hygiene inspection when the hygiene inspection is performed, information for specifying the specimen, for example, the specimen number, etc. is listed in the order of specimen acceptance. Using such a list, the inspector performs a hygiene test in the order of the samples listed on the list. The inspection results are judged by the person in charge of the inspection to determine whether the results are valid in the order of the list, and whether or not the final inspection is acceptable is determined.
  • listing the samples in the order in which samples are received may cause the following disadvantages.
  • a hygiene inspection is performed after shipment of an item, there may be a situation in which an item that has already arrived at the other party is left unattended and another item that has not arrived at the other party is first subjected to a hygiene inspection.
  • the hygiene inspection of the neglected item is delayed, and the time for displaying the item received from the shipping source facility at the store or the secondary processing of the item received from the shipping source facility is also delayed. Arise.
  • an object of the present invention is to provide a colony inspection program, a colony inspection apparatus, and a colony inspection method that can appropriately set the inspection order or imaging order of specimens.
  • the colony inspection program causes the computer to acquire information for identifying each sample for each of the plurality of samples in which the bacterial colonies are cultured. Furthermore, the colony inspection program is based on the time taken for each piece of information specifying the sample acquired by the computer to arrive at the destination for shipping the item represented by the sample from the facility where the sample is manufactured. Arrange the information that identifies the specimen. Further, the colony inspection program displays a list of information for specifying the samples arranged on the computer.
  • Specimen inspection order or imaging order can be set appropriately.
  • FIG. 1 is a diagram illustrating a configuration of the entire system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating the configuration of the colony inspection apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the data structure of the inspection DB.
  • FIG. 4 is a diagram illustrating a first example of the sample list created by the alignment unit.
  • FIG. 5 is a diagram illustrating a display example of the result determination window.
  • FIG. 6 is a diagram illustrating a second example of the result determination list.
  • FIG. 7 is a diagram illustrating a third example of the result determination list.
  • FIG. 8 is a diagram illustrating an example of a processing operation until the colony inspection device displays a result determination list.
  • FIG. 1 is a diagram illustrating a configuration of the entire system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating the configuration of the colony inspection apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an
  • FIG. 9 is a diagram illustrating an example of the result determination process.
  • FIG. 10 is a diagram illustrating a second example of the sample list created by the alignment unit.
  • FIG. 11 is a diagram illustrating a fourth example of the result determination list.
  • FIG. 12 is a diagram illustrating a fifth example of the result determination list.
  • FIG. 13 is a diagram illustrating a sixth example of the result determination list.
  • FIG. 14 is a diagram illustrating an example of a processing operation until the colony inspection device displays a result determination list.
  • FIG. 15 is a diagram showing a sample list when there are a plurality of transportation times for one lot.
  • FIG. 16 is a diagram illustrating a first example of the sample list in which the sorting unit has rearranged when there are a plurality of transportation times for one lot.
  • FIG. 17 is a diagram illustrating a second example of the sample list in which the sorting unit has rearranged when there are a plurality of transportation times for one lot.
  • FIG. 18 is a diagram illustrating an example of a sample list including an expiration date as an item.
  • FIG. 19 is a diagram illustrating an example of a case where the sorting unit rearranges the sample list including the expiration date as an item.
  • FIG. 20 is a diagram illustrating a hardware configuration of a computer according to the colony inspection apparatus.
  • FIG. 1 is a diagram illustrating a configuration of the entire system according to the first embodiment.
  • the system 10 includes client terminals 200a to 200c, a delivery management system 300, a network 50, and a colony inspection apparatus 100.
  • the client terminals 200a to 200c are connected to the colony inspection apparatus 100 via the network 50.
  • the colony inspection apparatus 100 is connected to the delivery management system 300.
  • the colony inspection device 100 notifies the delivery management system 300 of the inspection result of each item.
  • Each client terminal 200 accesses the colony inspection apparatus 100 via the network 50 and inputs an inspection result to the colony inspection apparatus 100.
  • the delivery management system 300 acquires the inspection result from the colony inspection apparatus 100.
  • a window for inputting an inspection result is referred to as an inspection window.
  • the inspector collects a part of the food as a sample and attaches the sample number.
  • the inspector puts the collected specimen in a petri dish together with the dissolved medium in the case of the pour method, for example, in accordance with various inspection items such as general live bacteria and E. coli.
  • the sample number is written on the petri dish lid so that the corresponding petri dish can be identified.
  • the inspector cultivates the bacteria in each petri dish by keeping each petri dish at a temperature at which the fungus grows for about 1 to 2 days. After incubation, the inspector counts the number of colonies in each petri dish visually or using a colony counter according to the sample list.
  • FIG. 2 is a functional block diagram illustrating the configuration of the colony inspection apparatus according to the first embodiment.
  • the colony inspection apparatus 100 includes an I / F (Interface) 101, a display unit 102, an output unit 103, a control unit 110, and a storage unit 120.
  • the I / F 101 is a communication interface that is connected to the network 50 and transmits data to each terminal device 200 via the network 50.
  • the display unit 102 displays the inspection window of the colony inspection apparatus 100 on the monitor.
  • the output unit 103 outputs the sample list 123 created by the colony inspection apparatus 100.
  • the storage unit 120 stores an examination DB (Database) 121, display data 122, and a sample list 123.
  • the storage unit 120 corresponds to, for example, a semiconductor memory device such as a random access memory (RAM), a read only memory (ROM), and a flash memory, and a storage device such as a hard disk or an optical disk.
  • the test DB 121 is a database for storing test items, test results, transport times, and the like in association with each sample.
  • FIG. 3 is a diagram illustrating an example of the data structure of the inspection DB.
  • the test DB 121 includes a sample No, a sample name, a lot, a shipping factory, a delivery destination, a general viable colony count, an E. coli colony count, a S. aureus colony count, and a test result.
  • the transport time, the petri dish image 1, the petri dish image 2, and the petri dish image 3 are associated with each other.
  • “Specimen No.” is a number uniquely assigned to each specimen. The sample number may be uniquely assigned to each sample on the date of acceptance of the examination.
  • “Sample name” indicates the item to be inspected.
  • “Lot” is a code uniquely assigned to the same item to be inspected.
  • “Shipment factory” indicates the location of the factory to ship the goods.
  • “Destination” indicates a place to deliver the item.
  • “Number of general viable colonies” indicates the number of colonies of general viable bacteria contained in the specimen.
  • “E. coli colony count” indicates the number of E. coli colonies contained in the specimen.
  • the number of S. aureus colonies” indicates the number of S. aureus colonies contained in the specimen.
  • the “inspection result” indicates the result of the hygiene inspection for each item.
  • “inspection result” is “OK” if the result of the hygiene inspection is normal.
  • the “inspection result” is “NG” if the result of the sanitary inspection is abnormal.
  • the “inspection result” is “-” when the hygiene inspection is not performed.
  • Transport time is the time for transporting an item from a shipping factory to a delivery destination.
  • the “petri dish 1” is a petri dish for inspecting general viable bacteria.
  • the “petri dish 2” is a petri dish for inspecting E. coli.
  • “Cheet image 3” is a petri image when inspecting Staphylococcus aureus.
  • the display data 122 is data including each image obtained by photographing the petri dish.
  • an image obtained by photographing a petri dish is referred to as a petri dish image.
  • the display data 122 associates each petri dish image with the sample No. of the corresponding sample.
  • the file format of the display data 122 is, for example, a GIF file, JPEG file, BMP file, or the like.
  • the specimen list 123 includes data of each row acquired from the examination DB 121.
  • the configuration of the inspection list 123 may be the same as that of the inspection DB 121.
  • the sample list 123 is obtained by extracting some rows corresponding to the sample to be examined from the sample DB 121. Therefore, the sample list 123 does not include tested data.
  • the data of each row constituting the sample DB 121 is referred to as sample data.
  • the control unit 110 includes an acquisition unit 111, a specifying unit 112, an alignment unit 113, and a display control unit 114.
  • the function of the control unit 110 can be realized, for example, by a CPU (Central Processing Unit) executing a predetermined program.
  • the function of the control part 110 is realizable by integrated circuits, such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array), for example.
  • goods shipped by facilities such as shipping factories include those with a short expiration date such as fresh food.
  • the facility may ship the goods before the inspection because the freshness of the goods may be impaired if the goods are shipped after the inspection. Then, the facility notifies the inspection result to the other party who delivered the goods after shipment. In this case, processing performed by each component of the control unit 110 will be described below.
  • the acquisition unit 111 acquires information for specifying each sample for each of the plurality of petri dishes containing bacterial colonies. For example, the acquisition unit 111 acquires data from the specimen DB 121 of FIG. 3 to specimen Nos. 111 to 114 to be examined.
  • the identifying unit 112 identifies a specimen in which bacterial colonies are cultured in each of the plurality of petri dishes.
  • the specifying unit 112 specifies each sample by the sample number of the sample data acquired from the sample DB 121.
  • the aligning unit 113 arranges information for identifying the acquired specimen based on the time taken from the facility where the identified specimen is manufactured to the destination to which the item represented by the specimen is shipped. That is, the aligning unit 113 outputs a sample list in which the sample data acquired by the acquiring unit 111 is rearranged in the order of short transportation time.
  • FIG. 4 is a diagram illustrating a first example of a sample list in which sample data is rearranged by the alignment unit.
  • the alignment unit 113 acquires the transport times “20”, “120”, “20”, and “120” from the sample data of the sample numbers “111”, “112”, “113”, and “114”, respectively.
  • the aligning unit 113 rearranges the sample data in the order of short transportation time. That is, the alignment unit 113 rearranges the sample data so that the sample numbers are in the order of “111”, “113”, “114”, and “112”, for example.
  • the alignment unit 113 stores the rearranged sample list 123 in the storage unit 120. That is, the alignment unit 113 outputs a sample list in which the sample Nos acquired by the acquisition unit 111 are rearranged in the order of short transportation time.
  • the alignment unit 113 may reverse the order in the sample list because the transport times of the sample No “111”, the sample No “113”, the sample No “112”, and the sample No “114” are the same.
  • the display control unit 114 displays a result determination window 400 for the inspection supervisor to input the inspection result.
  • the display control unit 114 displays the result determination list 401 in the result determination window 400.
  • the result determination list 401 is a list indicating the number of bacterial colonies corresponding to the test item and the determination result.
  • the display control unit 114 may display the result determination list 401 in the order from the shortest culture time of the bacteria to be tested. For example, the display control unit 114 performs the following processing when the number of colonies of Staphylococcus aureus, Escherichia coli, and general viable bacteria is inspected as inspection items. The display control unit 114 causes the result determination list 401 to display the number of colonies when the inspection of Staphylococcus aureus having the shortest time for culturing each bacterium is completed. Next, the display control unit 114 displays the number of colonies of Escherichia coli having the next shortest time until culturing after the inspection of Staphylococcus aureus is completed. Subsequently, the display control unit 114 displays the number of colonies of general viable bacteria having the longest time until culturing after the inspection of E. coli is completed.
  • FIG. 5 is a diagram showing a display example of the result determination window.
  • the result determination window 400 includes a result determination list 401, an image display field 402, an in-regulation button 410, an out-of-specification button 411, and a confirmation button 412.
  • the result determination list 401 shows the determination result and the number of bacterial colonies corresponding to the test item.
  • the image display column 402 is a column for displaying a petri dish image corresponding to the sample No. selected in the result determination list 401.
  • the regulation button 410 is a button that is pressed when the number of colonies is normal.
  • the non-standard button 411 is a button to be pressed when there is an abnormality in the number of colonies.
  • the confirmation button 412 is a button that is pressed when the selection of the inside button 410 or the outside button 411 is confirmed.
  • the result determination list 401 associates the specimen No., the determination result, and the number of S. aureus colonies.
  • Sample No.” is a number uniquely assigned to each sample, and is the same as that of the sample DB 121.
  • the “judgment result” indicates whether the number of S. aureus colonies is within the regulation or outside the regulation.
  • the “determination result” is “-” when the determination is not performed.
  • the number of S. aureus colonies” indicates the number of S. aureus colonies contained in the specimen.
  • the column of “S. aureus colony count” is “E. coli colony count” when determining the colony count of E. coli, and “General viable colony count” when determining the colony count of general viable bacteria.
  • the display control unit 114 displays the S. aureus result determination list 401 in the result determination window 400.
  • the number of Staphylococcus aureus colonies is entered in the column “Number of Staphylococcus aureus colonies”, but the column “Decision results” is “ ⁇ ”.
  • the display control unit 114 inputs the determination result in the “determination result” field of the result determination window 400 according to the determination result for each sample data input by the inspector. For example, when the in-regulation button 410 is pressed in the result determination window 400, the display control unit 114 causes the storage unit 120 to store determination data including information indicating that the determination result is within the definition. On the other hand, when the non-standard button 411 is pressed in the result determination window 400, the display control unit 114 causes the storage unit 120 to store determination data including information indicating that the determination result is non-standard. That is, the determination data indicates data of each row of the result determination list 401.
  • the display control unit 114 may display the petri dish of the next row in the next result determination list 401 when the inside button 410 or the outside button 411 is pressed in the result determination window 400. . Further, the display control unit 114 may display the next petri dish image when a row in the result determination list is clicked.
  • the display control unit 114 selects the sample number “111” in the result determination window 400 and, when the in-regulation button 410 is pressed by the inspector, sets the determination result to “within regulation”.
  • the display control unit 114 selects the sample number “113” in the result determination window 400, and sets the determination result to “within” when the inspector button 410 is pressed by the inspector.
  • the display control unit 114 selects the sample number “112” in the result determination window 400, and when the in-regulation button 410 is pressed by the inspector, the determination result is set to “within regulation”.
  • the display control unit 114 selects the sample number “114” in the result determination window 400, and sets the determination result to “within” when the inspector button 410 is pressed by the inspector.
  • the result determination list 401 displays the number of S. aureus colonies of each specimen. In addition, the result determination list 401 displays the number of colonies in the order of Staphylococcus aureus, Escherichia coli, and general viable bacteria in the order in which each test ends.
  • the display control unit 114 stores determination data indicating that the determination result is out of specification when the non-specification button 411 is pressed and the confirmation button 412 is further pressed. 120 is stored.
  • the alignment unit 113 rearranges the determination data to the upper level based on the determination result that the determination result is out of regulation.
  • the display control unit 114 reads out the rearranged determination data and outputs it to the result determination window 400.
  • the display control unit 114 stores the determination result in the storage unit 120 as determination data. Further, the alignment unit 113 does not rearrange the sample data because all the determination results are “within regulation”.
  • the display control unit 114 displays the result determination list 401 for E. coli based on the stored determination data.
  • the result determination list 401 the number of E. coli colonies is input in the column of “Escherichia coli colonies”, but since the determination result has not yet been input, the column of “determination results” is “ ⁇ ”. .
  • the display control unit 114 sets the determination result to “within regulation”.
  • the display control unit 114 selects the sample number “113” in the result determination window 400, and sets the determination result to “not specified” when the non-specified button 411 is pressed by the inspector.
  • the display control unit 114 selects the sample number “112” in the result determination window 400 and sets the determination result to “non-standard” when the non-standard button 411 is pressed by the inspector.
  • the display control unit 114 selects the sample number “114” in the result determination window 400, and sets the determination result to “within” when the inspector button 410 is pressed by the inspector.
  • FIG. 6 is a diagram showing a second example of the result determination list.
  • the result determination list 401 in FIG. 6 is obtained by extracting only the result determination list 401 displayed in the result determination window 400. At this time, the result determination list 401 indicates the number of colonies of E. coli for each sample.
  • the determination results of the sample No 112 and the sample No 113 are “not specified”.
  • the display control unit 114 stores the determination result in the storage unit 120 as determination data.
  • the aligning unit 113 rearranges the sample data by setting the sample No. 112 with the shorter transport time to the first row and the sample No. 113 with the next shorter transport time to the second row.
  • the display control unit 114 displays the general viable bacteria result determination list 401 based on the stored determination data. At this time, in the result determination list 401, the number of general viable colonies is input in the “general viable colony count” column, but since the determination result has not yet been input, the “judgment result” column is “-”. It has become.
  • the display control unit 114 stores the determination data in the storage unit 120 based on the determination result in the same manner as in the inspection of S. aureus and E. coli.
  • the display control unit 114 sets the determination result to “non-regulation”.
  • the display control unit 114 selects the sample number “112” in the result determination window 400, and sets the determination result to “not specified” when the non-specified button 411 is pressed by the inspector.
  • the display control unit 114 selects the sample number “111” in the result determination window 400 and sets the determination result to “within” when the inspector button 410 is pressed by the inspector.
  • the display control unit 114 selects the sample number “114” in the result determination window 400, and sets the determination result to “within” when the inspector button 410 is pressed by the inspector.
  • FIG. 7 is a diagram showing a third example of the result determination list.
  • the result determination list 401 in FIG. 7 is obtained by extracting the result determination list 401 portion of the result determination window 400.
  • the display control unit 114 displays each sample data in the result determination list 401 in the order rearranged by the alignment unit 113.
  • the colony testing apparatus 100 updates the “test result” column of the sample list 123 based on the determination data of each test item.
  • the colony testing apparatus 100 inputs “NG” in the “test result” field of the sample list 123 if any of the determination results of each test item includes “not specified”.
  • the colony testing apparatus 100 inputs “OK” in the column of the test result corresponding to the sample No. 111.
  • the colony testing apparatus 100 inputs “NG” in the column of the test result corresponding to the specimen No. 112.
  • the colony testing apparatus 100 inputs “NG” in the column of the test result corresponding to the sample No113.
  • the colony testing apparatus 100 inputs “OK” in the column of the test result of the sample No 114 in the sample list 123.
  • the display control unit 114 displays a petri dish image corresponding to the sample No. in the clicked row.
  • the display control unit 114 may automatically switch to the next petri dish image when the confirmation button 412 is pressed and the determination result is confirmed.
  • FIG. 8 is a diagram illustrating an example of a processing operation until the colony inspection device displays a result determination list.
  • the acquisition unit 111 acquires the sample list 123 from the sample DB 121 (step S10).
  • the sample list 123 is obtained by extracting data of each row corresponding to the sample to be examined from the sample DB 121. Therefore, the sample list 123 does not include tested data.
  • the specifying unit 112 specifies each sample by the sample number of the sample data acquired from the sample DB 121.
  • the aligning unit 113 acquires the transport time for each sample from each sample data in the sample list (step S11). Next, the alignment unit 113 rearranges the sample data in the sample list in ascending order of transport time (step S12). Next, the aligning unit 113 sorts the sample data having a determination result of NG in the sample list (step S13). The alignment unit 113 stores the rearranged sample list in the storage unit 120.
  • the display control unit 114 reads the sample list 123 after the rearrangement from the storage unit 120, and from the sample list 123, displays the “sample No.” and the number of fungal colonies related to the test item for which culture has been completed. Copy to the result determination list 401 of the determination window 400.
  • a display example of the result determination window 400 is shown in FIG.
  • the display control unit 114 displays the result determination list 401 (step S14).
  • the display control unit 114 returns to Step S13.
  • the display control unit 114 ends the process.
  • the display control part 114 may display the result determination list 401 in order with a short culture
  • the display control unit 114 displays the result determination list 401 rearranged by the alignment unit 113 in the result determination window 400.
  • a display example of the result determination window 400 is shown in FIG.
  • the display control unit 114 displays a result determination list 401 for each inspection item.
  • the display control unit 114 displays the number of colonies of Staphylococcus aureus, Escherichia coli, and general viable bacteria on the result determination list 401 as inspection items.
  • the colony inspection apparatus 100 receives the determination results in order from the first display line to the last line of the result determination list 401.
  • the display control unit 114 changes the “determination result” field of the result determination list 401 based on the determination result.
  • the flow of the result determination process performed for each inspection item will be specifically described.
  • FIG. 9 is a diagram illustrating an example of the result determination process.
  • the display control unit 114 displays a petri dish image corresponding to the sample No. in the result determination list 401 in the image display field 402 of the result determination window 400 (step S20).
  • the colony testing apparatus 100 receives the determination result of the sample in the first display line (step S21). If the colony inspection device 100 accepts that the determination result is OK (Yes at Step S22), the colony inspection device 100 proceeds to the process at Step S24. On the other hand, when the colony inspection apparatus 100 accepts that the determination result is NG (No at Step S22), the colony inspection apparatus 100 sets NG as the determination result (Step S23).
  • step S24 when there is a next sample in step S24 (Yes in step S24), the display control unit 114 returns to step S20 and displays the result determination list 401 for the next sample. On the other hand, if there is no next sample in Step S24 (No in Step S24), the display control unit 114 ends the process.
  • the colony testing device 100 acquires information for identifying each specimen for each of a plurality of petri dishes containing bacterial colonies, and a specification for identifying each specimen in which a bacterial colony is cultured in each of the plurality of petri dishes. Part 112. Further, the colony testing apparatus 100 arranges information for identifying the acquired specimens based on the time taken to arrive at the destination to which the item represented by the specimen is shipped from the facility where the identified specimen is manufactured. Part 113. Furthermore, the colony testing apparatus 100 includes a display control unit 114 that displays a list of information for specifying the arranged samples. Thereby, the examination order or imaging order of the specimen can be set appropriately. Details regarding the setting of the shooting order will be described later.
  • the alignment unit 113 arranges information for specifying the samples in the order of short time required for arrival from the facility where the specified sample is manufactured to the destination to which the item represented by the sample is shipped. Accordingly, it is possible to avoid the disadvantage that the hygiene inspection of the left item is delayed, the item arrived from the facility is displayed at the store, and the time when the item received from the facility is secondarily processed is also delayed.
  • Specimen No includes an image of a petri dish in which a plurality of types of bacteria are cultured for one specimen.
  • the alignment unit 113 cultivates the remaining types of bacteria for the sample when an abnormality is determined in any one of the petri dishes in which a plurality of types of bacteria are cultured for one sample. Arrange petri dish images at the top of the list.
  • the acquisition unit 111 acquires sample data from the sample DB 121 of FIG.
  • the specifying unit 112 specifies each sample by the sample number of the sample data acquired from the sample DB 121.
  • the sorting unit 113 sorts the sample data acquired by the acquiring unit 111 based on the transportation time.
  • FIG. 10 is a diagram illustrating a second example of the sample list created by the alignment unit 113.
  • the alignment unit 113 sets the transport times “20”, “120”, “20”, and “120” from the sample data of the sample numbers “111”, “112”, “113”, and “114” of the sample data acquired by the acquisition unit 111. get.
  • the aligning unit 113 rearranges the sample data in the order of long transportation time. That is, the alignment unit 113 rearranges the sample data so that the sample numbers are in the order of “112”, “114”, “111”, and “113”.
  • the alignment unit 113 may reverse the order in the sample list 123 because the transport times of the sample No “111”, the sample No “113”, the sample No “112”, and the sample No “114” are the same.
  • the colony inspection apparatus 100 displays the number of S. aureus colonies in the “number of S. aureus colonies” column of the result determination list 401.
  • the colony testing apparatus 100 displays “-” in the “determination result” column of the result determination list 401. Is displayed.
  • the display control unit 114 inputs the determination result in the “determination result” field according to the determination result for each sample data.
  • the display control unit 114 may display the petri dish of the next row in the next result determination list 401 when the inside button 410 or the outside button 411 is pressed in the result determination window 400. . Further, the display control unit 114 may display the next petri dish image when a row in the result determination list is clicked.
  • FIG. 11 is a diagram illustrating a fourth example of the result determination list. In the example shown in FIG. 11, the number of S. aureus colonies is “0” in all the sample data, and the result determination list when the determination results are all “within regulation” is shown.
  • the display control unit 114 stores the determination result in the storage unit 120 as determination data.
  • the alignment unit 113 does not rearrange the sample data because the determination results are all “within regulation”.
  • the display control unit 114 displays the Escherichia coli result determination list 401 based on the determination data stored in the storage unit 120 after the inspection of Staphylococcus aureus is completed. At this time, the colony testing device 100 displays the number of E. coli colonies in the “E. coli colony count” column of the result determination list 401. In the initial state where the result determination list 401 generated based on the sample list 123 is displayed in the result determination window 400, the colony testing apparatus 100 displays “-” in the “determination result” column of the result determination list 401. Is displayed.
  • FIG. 12 is a diagram illustrating a fifth example of the result determination list. In the example shown in FIG.
  • the colony testing apparatus 100 displays the result determination list 401 based on the rearranged sample list 123 according to the determination result of the number of colonies of Staphylococcus aureus by the alignment unit 113.
  • the determination results of the sample No. 112 and the sample No. 113 are “not specified”.
  • the display control unit 114 stores the determination result in the storage unit 120 as determination data.
  • the alignment unit 113 rearranges the sample list 123 by setting the sample No. 112 as the third row and the sample No. 113 as the fourth row.
  • the display control unit 114 displays the result determination list 401 of general viable bacteria based on the determination data stored in the storage unit 120 after the inspection of E. coli is completed. At this time, the colony inspection apparatus 100 displays the number of general viable colonies in the “number of general viable colonies” column of the result determination list 401. In the initial state where the result determination list 401 generated based on the sample list 123 is displayed in the result determination window 400, the colony testing apparatus 100 displays “-” in the “determination result” column of the result determination list 401. Is displayed.
  • FIG. 13 is a diagram showing a sixth example of the result determination list.
  • the colony testing apparatus 100 displays the result determination list 401 based on the rearranged sample list 123 according to the determination result of the number of colonies of E. coli by the alignment unit 113.
  • the display control unit 114 displays each sample data in the result determination list 401 in the order rearranged by the alignment unit 113.
  • the display control unit 114 stores the determination result in the storage unit 120 as determination data.
  • the colony testing apparatus 100 updates the “test result” column of the sample list 123 based on the determination data of each test item.
  • the colony testing apparatus 100 inputs “NG” in the “test result” field of the sample list 123 if any of the determination results of each test item includes “not specified”.
  • FIG. 14 is a diagram illustrating an example of a processing operation until the colony inspection device displays a result determination list.
  • the acquisition unit 111 acquires some rows of the sample DB 121 as a sample list (step S30).
  • the specifying unit 112 specifies each sample by the sample number of the sample data acquired from the sample DB 121.
  • the aligning unit 113 acquires the transport time for each sample from the sample data (step S31).
  • the aligning unit 113 aligns the sample data in the order of the longer transportation time (step S32).
  • the aligning unit 113 rearranges the sample data with the test result NG to the lower part of the sample list 123 (step S33).
  • the display control unit 114 extracts a part of the sample list 123 and displays it as the result determination list 401.
  • the display control unit 114 displays the result determination list 401 (step S34).
  • the display control unit 114 returns to Step S33.
  • the display control unit 114 ends the process.
  • the aligning unit 113 arranges information for specifying petri dishes in the order of long transportation time.
  • the alignment unit 113 outputs the sample list 123 in which the sample data acquired by the acquisition unit 111 is rearranged in the order of long transportation time.
  • the display control unit 114 causes the result determination list 401 to be displayed in descending order of the culture time of the bacteria to be examined based on the output sample list 123.
  • the colony inspection apparatus 100 displays a petri dish image or the like corresponding to each sample in the order of the result determination list 401.
  • the colony testing apparatus 100 receives an input of the determination result of each sample from the person in charge of inspection. This gives priority to specimen data with a long transportation time, so the arrival of the goods at the destination is not in time for waiting for the test results to appear, and the destination displays and performs secondary processing as scheduled. The disadvantage of not being able to be implemented can be avoided.
  • Sample No. includes an image of a petri dish in which a plurality of types of bacteria are cultured for one sample.
  • the alignment unit 113 cultivates the remaining types of bacteria for the sample when an abnormality is determined in any one of the petri dishes in which a plurality of types of bacteria are cultured for one sample. Arrange petri images at the bottom of the list. As a result, the priority of inspection data including abnormality determination is lowered, so that the arrival of the goods at the destination is not in time for waiting for the inspection result to be output, and the destination displays and performs secondary processing. The disadvantage of not being able to implement as scheduled can be avoided.
  • the storage unit 120 has the sample list 123.
  • the sample list 123 may be stored in a CD-ROM, a DVD disk, a portable recording medium such as a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, or an external storage device.
  • a USB Universal Serial Bus
  • the number of colonies in the petri dish may be counted visually by an inspector or automatically using a device such as a colony counter.
  • Example 1 and Example 2 it has been described that the alignment unit 113 performs the rearrangement according to the transportation time, and further performs the rearrangement according to the determination result of each inspection item. Without being limited thereto, the alignment unit 113 may not perform the rearrangement according to the determination result of each inspection item after the rearrangement is performed according to the transportation time.
  • the display control unit 114 may display the petri dish of the next line in the next result determination list 401 when the inside button 410 or the outside button 411 is pressed in the result determination window 400. Further, the display control unit 114 may display the next petri dish image when a row in the result determination list is clicked.
  • the inspector refers to the specimen No. displayed on the monitor of the apparatus for photographing the petri dish, sets the petri dish corresponding to the specimen No. to the apparatus, and explains that the petri dish is photographed. You may set the order which image
  • the inspector collects a part of the food as a sample and attaches the sample number.
  • the inspection item includes an inspection of the number of colonies of general viable bacteria, Escherichia coli, and Staphylococcus aureus
  • the inspector separates the collected samples into three and puts them in a petri dish.
  • the inspector cultivates the specimen in each petri dish by keeping each petri dish at a temperature at which bacteria can grow easily for about 1 to 2 days.
  • the colony inspection apparatus 100 rearranges the imaging order of the specimens cultured by the inspector based on the food transportation time.
  • the alignment unit 113 first sorts the sample list 123 according to the transport time with respect to the sample list 123 acquired from the examination DB 121.
  • the alignment unit 113 may be arranged in the order of short transportation time as in the first embodiment.
  • the alignment part 113 may arrange in order with long transport time like Example 2.
  • the alignment unit 113 causes the sample data to be displayed on the monitor of the apparatus that images the petri dish in the order in which they are rearranged.
  • the inspector sets the petri dish corresponding to the specimen No. on the apparatus and photographs the specimen.
  • the colony inspection apparatus 100 displays the next sample data after the imaging of the petri dish. Then, after all the inspections are completed, the colony inspection apparatus 100 performs the inspection of each specimen in the order of specimen imaging. Thereby, when the specimens are photographed in the order of the specimens listed in the list, it is possible to avoid the disadvantage that the hygiene test is performed in the order of the specimens for which photographing has been completed.
  • FIG. 15 is a diagram showing a sample list when there are a plurality of transportation times for one lot. Sample data of sample Nos. 111 to 113 have the same sample name but the same lot.
  • Alignment unit 113 rearranges the sample data using the sample having the shortest transportation time among the sample data to which the same lot is attached when shipping the product in a form of performing a hygiene inspection after shipment.
  • FIG. 16 is a diagram showing a first example of the sample list in which the alignment unit has rearranged when there are a plurality of transportation times for one lot.
  • the alignment unit 113 rearranges the sample data using the transport time of the sample No 111 having the shortest transport time “30” among the sample data of the sample Nos. 111 to 113. As shown in FIG. 16, the alignment unit 113 arranges the sample data of the sample Nos. 111 to 113 under the sample No. 115 whose transport time is “20”.
  • the alignment unit 113 rearranges the sample data using the sample having the longest transportation time among the sample data to which the same lot is attached, when the product is shipped in a form of performing a hygiene inspection after the shipment.
  • FIG. 17 is a diagram illustrating a second example of the sample list in which the alignment unit has rearranged when there are a plurality of transportation times for one lot.
  • the alignment unit 113 rearranges the sample data using the transport time of the sample No. 112 having the longest transport time “90” among the sample data of the sample Nos. 111 to 113. As shown in FIG. 17, the aligning unit 113 arranges the sample data of the sample Nos. 111 to 113 under the sample No. 116 whose transport time is “120”.
  • the arrangement unit 113 may arrange the sample data in the order of shortest expiration date or expiration date when there is sample data with the same transportation time and different expiration dates or expiration dates.
  • FIG. 18 is a diagram illustrating an example of a sample list including an expiration date as an item. Sample No 111 and Sample No 113 have the same transport time of “20”. Sample No. 112 and Sample No. 114 have the same transport time of “120”.
  • FIG. 19 is a diagram illustrating an example of a case where the sorting unit rearranges the sample list including the expiration date as an item.
  • the aligning unit 113 sets the sample data of the sample No. 111 whose transport time is “20” and whose expiration date is shorter than that of the sample No. 113 to the first row.
  • the aligning unit 113 sets the sample data of the sample No. 113 whose transport time is “20” in the second row.
  • the aligning unit 113 sets the sample data of the sample No. 114 in the third row whose transport time is “120” and whose expiration date is shorter than that of the sample No. 112.
  • the aligning unit 113 sets the sample data of the sample No.
  • the alignment unit 113 arranges the sample list 123 in the same manner as described above even when the sample list 123 includes the expiration date.
  • FIG. 20 is a diagram illustrating a hardware configuration of a computer according to the colony inspection apparatus.
  • the computer 500 includes a CPU 501 that executes various arithmetic processes, an input device 502 that receives data input from a user, and a monitor 503.
  • the computer 500 also includes a medium reading device 504 that reads a program or the like from a storage medium, an interface device 505 for connecting to another device, and a wireless communication device 506 for connecting to another device wirelessly.
  • the computer 500 also includes a RAM (Random Access Memory) 507 that temporarily stores various information and a hard disk device 508. Each device 501 to 508 is connected to a bus 509.
  • RAM Random Access Memory
  • the hard disk device 508 stores a colony inspection program having the same functions as the processing units of the acquisition unit 111, the identification unit 112, the alignment unit 113, and the display control unit 114 of the control unit 110 illustrated in FIG.
  • the hard disk device 508 stores various data for realizing a colony inspection program.
  • the CPU 501 reads out each program stored in the hard disk device 508, develops it in the RAM 507, and executes it to perform various processes.
  • these programs can cause the computer 500 to function as the acquisition unit 111, the identification unit 112, the alignment unit 113, and the display control unit 114 illustrated in FIG.
  • the computer 500 may read and execute a program stored in a storage medium readable by the computer 500.
  • the storage medium readable by the computer 500 corresponds to, for example, a portable recording medium such as a CD-ROM, a DVD disk, a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, a hard disk drive, and the like.
  • the program may be stored in a device connected to a public line, the Internet, a LAN (Local Area Network), or the like, and the computer 500 may read and execute the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)

Abstract

 コロニー検査装置(100)は、細菌コロニーが含まれた複数の検体のそれぞれについて各検体を特定する情報を取得する。さらに、コロニー検査装置(100)は、取得した検体を特定する情報のそれぞれにおいて、検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、検体を特定する情報を並べる。さらに、コロニー検査装置(100)は、並べた検体を特定する情報を一覧表示する。

Description

コロニー検査プログラム、コロニー検査装置およびコロニー検査方法
 本発明は、コロニー検査プログラム、コロニー検査装置およびコロニー検査方法に関する。
 品物の出荷時には、衛生検査が行われる。例えば、品物として食品を例に挙げると、食品の一部を検体として採取し、検体をシャーレに準備された培地に塗抹または混釈し、シャーレ上で検体に含まれる細菌を適温に保った上で所定の期間にわたって培養する。その後、培養が終わったシャーレ内の細菌コロニーを計測することで衛生検査が実施される。
 このように、衛生検査が実施される場合には、検体の受付順に、検体を特定する情報、例えば検体番号等がリスト化される。かかるリストを用いて、検査員は、リストに登載された検体の順に衛生検査を行う。検査結果は検査責任者によってその結果が妥当かどうかをリスト順に判断され、最終的な検査の合否を判定する。
特開平9-187270号公報 特開2007-094513号公報
 しかしながら、上記の技術では、検体の検査順序を適切に設定できない場合がある。
 すなわち、上述のように、検体の受付順に検体をリスト化するのでは、次のような不利益が生じる場合がある。例えば、品物の出荷後に衛生検査が行われる場合には、既に相手先に届いている品物を放置したままで相手先に届いていない他の品物の衛生検査を先に行ってしまう事態が起こりうる。この場合には、放置された品物の衛生検査が遅れ、出荷元施設から届いた品物を店頭に陳列したり、出荷元施設から届いた品物を二次加工したりする時期も遅れるという不利益が生じる。また、品物の出荷前に衛生検査が行われる場合には、相手先への輸送期間が長い品物を放置したままで輸送機関が短い品物の衛生検査を先に行ってしまう事態が起こりうる。この場合にも、放置された品物の相手先への到着が予定に間に合わず、相手先で店頭への陳列や二次加工を予定通りに実施できないという不利益が生じる。
 なお、ここでは、リストに登載された検体の順に衛生検査が実施される場合について例示したが、リストに登載された検体の順に検体を検査する場合にも、撮影が終了した検体の順に衛生検査が実施されることになるので、同様の不利益が生じる。
 1つの側面では、本発明は、検体の検査順序または撮影順序を適切に設定できるコロニー検査プログラム、コロニー検査装置およびコロニー検査方法を提供することを目的とする。
 第1の案では、コロニー検査プログラムは、コンピュータに細菌コロニーが培養された複数の検体のそれぞれについて各検体を特定する情報を取得させる。さらに、コロニー検査プログラムは、コンピュータに取得した検体を特定する情報のそれぞれにおいて、検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、検体を特定する情報を並べさせる。さらに、コロニー検査プログラムは、コンピュータに並べた検体を特定する情報を一覧表示させる。
 検体の検査順序または撮影順序を適切に設定できる。
図1は、実施例1に係るシステム全体の構成を示す図である。 図2は、実施例1に係るコロニー検査装置の構成を示す機能ブロック図である。 図3は、検査DBのデータ構造の一例を示す図である。 図4は、整列部が作成した検体リストの第一の例を示す図である。 図5は、結果判定ウィンドウの表示例を示す図である。 図6は、結果判定リストの第二の例を示す図である。 図7は、結果判定リストの第三の例を示す図である。 図8は、コロニー検査装置が結果判定リストを表示するまでの処理動作の例を示す図である。 図9は、結果判定処理の一例を示す図である。 図10は、整列部が作成した検体リストの第二の例を示す図である。 図11は、結果判定リストの第四の例を示す図である。 図12は、結果判定リストの第五の例を示す図である。 図13は、結果判定リストの第六の例を示す図である。 図14は、コロニー検査装置が結果判定リストを表示するまでの処理動作の例を示す図である。 図15は、一つのロットに対して複数の輸送時間がある場合の検体リストを示した図である。 図16は、一つのロットに対して複数の輸送時間がある場合に整列部が並び替えをおこなった検体リストの第一の例を示す図である。 図17は、一つのロットに対して複数の輸送時間がある場合に整列部が並び替えをおこなった検体リストの第二の例を示す図である。 図18は、消費期限を項目に含む検体リストの一例を示す図である。 図19は、消費期限を項目に含む検体リストを、整列部が並び替えた場合の一例を示す図である。 図20は、コロニー検査装置に係るコンピュータのハードウェア構成を示す図である。
 以下に、本願の開示するコロニー検査プログラム、コロニー検査装置およびコロニー検査方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 (システム全体の構成)
 次に、実施例1に係るシステム全体の構成について説明する。図1は、実施例1に係るシステム全体の構成を示す図である。図1に示すように、システム10は、クライアント端末200a~200cと、配送管理システム300と、ネットワーク50と、コロニー検査装置100とを有する。
 クライアント端末200a~200cは、ネットワーク50を介してコロニー検査装置100に接続される。また、コロニー検査装置100は、配送管理システム300に接続される。コロニー検査装置100は、各品物の検査結果を配送管理システム300に通知する。各クライアント端末200は、ネットワーク50を介してコロニー検査装置100にアクセスし、検査結果をコロニー検査装置100に入力する。配送管理システム300は、コロニー検査装置100から検査結果を取得する。なお、以降では、検査結果を入力するためのウィンドウを検査ウィンドウと呼ぶ。
 (衛生検査)
 次に、衛生検査の準備として検査員がおこなう作業について具体例を挙げて説明する。例えば、まず、検査員は、食品の一部を検体として採取して検体Noを付す。次いで、検査員は、一般生菌、大腸菌などの各種検査項目にあわせて、採取した検体を、例えば混釈法の場合、溶解させた培地とともにシャーレに入れる。またこの際、該当するシャーレが判別できるように、シャーレ蓋に検体Noを記入する。次いで、検査員は、各シャーレを菌が育ちやすい温度で1~2日程度保温することにより、各シャーレ内の菌を培養する。培養後、検査員は、検体リストに従って各シャーレのコロニー数を目視またはコロニーカウンタを使ってカウントする。
 (コロニー検査装置の機能構成)
 実施例1に係るコロニー検査装置100の機能構成の一例について説明する。図2は、実施例1に係るコロニー検査装置の構成を示す機能ブロック図である。図2に示すように、コロニー検査装置100は、I/F(Interface)101と、表示部102、出力部103と、制御部110と、記憶部120とを有する。I/F101は、ネットワーク50に接続され、ネットワーク50を介して各端末装置200にデータを送信するための通信インターフェースである。表示部102は、コロニー検査装置100の検査ウィンドウをモニタに表示する。また、出力部103は、コロニー検査装置100が作成した検体リスト123を出力する。
 (記憶部の各構成)
 記憶部120は、検査DB(Database)121と、表示データ122と、検体リスト123とを記憶する。記憶部120は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、ハードディスクや光ディスクなどの記憶装置に対応する。
 検査DB121は、検体ごとに検査項目、検査結果および輸送時間等を対応付けて記憶するためのデータベースである。図3は、検査DBのデータ構造の一例を示す図である。図3に示すように、検査DB121は、検体Noと、検体名と、ロットと、出荷工場と、届け先と、一般生菌コロニー数と、大腸菌コロニー数と、黄色ブドウ球菌コロニー数と、検査結果と、輸送時間と、シャーレ画像1と、シャーレ画像2と、シャーレ画像3とを対応付ける。
 「検体No」は、検体ごとに一意に付される番号である。検体Noは、検査受入日で検体ごとに一意に付されてもよい。「検体名」は、検査対象の品物を示す。「ロット」は、検査対象の品物が同じものに一意に付される符号である。「出荷工場」は、品物を出荷する工場の場所を示す。「届け先」は、品物を届ける場所を示す。「一般生菌コロニー数」は、検体に含まれる一般生菌のコロニー数を示す。「大腸菌コロニー数」は、検体に含まれる大腸菌のコロニー数を示す。「黄色ブドウ球菌コロニー数」は、検体に含まれる黄色ブドウ球菌のコロニー数を示す。「検査結果」は、各品物に対する衛生検査の結果を示す。例えば、「検査結果」は、衛生検査の結果が正常であれば、「OK」となる。また、「検査結果」は、衛生検査の結果が異常であれば、「NG」となる。なお、「検査結果」は、衛生検査が実施されていない場合、「-」となっている。「輸送時間」は、出荷工場から届け先に品物を輸送する時間である。「シャーレ画像1」は、一般生菌を検査する際のシャーレ画像である。「シャーレ画像2」は、大腸菌を検査する際のシャーレ画像である。「シャーレ画像3」は、黄色ブドウ球菌を検査する際のシャーレ画像である。
 表示データ122は、シャーレを撮影した各々の画像を含むデータである。以降では、シャーレを撮影した画像をシャーレ画像と呼ぶ。また、表示データ122は、各シャーレ画像を対応する検体の検体Noに対応付けている。なお、表示データ122のファイル形式は、例えば、GIFファイル、JPEGファイル、BMPファイル等である。
 検体リスト123は、検査DB121から取得された各行のデータを含む。検査リスト123の構成は、検査DB121と同一であってもよい。検体リスト123は、検体DB121のこれから検査する検体に対応する一部の行を抽出したものである。従って、検体リスト123は、検査済みのデータを含まない。なお、以降では検体DB121を構成する各行のデータを検体データと呼ぶ。
 (制御部の各構成)
 制御部110は、取得部111と、特定部112と、整列部113と、表示制御部114とを有する。制御部110の機能は、例えば、CPU(Central Processing Unit)が所定のプログラムを実行することで実現することができる。また、制御部110の機能は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路により実現することができる。
 実施例1においては、出荷後に品物を衛生検査する形態について説明する。例えば、出荷工場などの施設が出荷する品物には、生鮮食品等の消費期限の短いものがある。このような品物を輸送する場合、施設は、検査後に品物を出荷すると、品物の鮮度が損なわれる場合があるので、検査をおこなう前に品物を出荷することがある。そして、施設は、出荷後に品物を届けた相手先に検査結果を通知する。この場合において、制御部110の各構成がおこなう処理について以下に説明する。
 取得部111は、細菌コロニーが含まれた複数のシャーレのそれぞれについて各検体を特定する情報を取得する。例えば、取得部111は、図3の検体DB121から検査をおこなう検体No111~114までデータを取得する。
 特定部112は、複数のシャーレのそれぞれにおいて細菌コロニーが培養された検体を特定する。特定部112は、各検体を、検体DB121から取得した検体データの検体Noによって特定する。
 整列部113は、特定した検体を製造した施設から、検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、取得した検体を特定する情報を並べる。すなわち、整列部113は、輸送時間が短い順に、取得部111により取得された検体データを並び替えた検体リストを出力する。
 図4~図8を用いて出荷後に品物を衛生検査する場合の整列部113および表示制御部114の処理について説明する。図4は、整列部によって検体データを並び替えられた検体リストの第一の例を示す図である。整列部113は、検体No「111」「112」「113」「114」の検体データから、輸送時間「20」「120」「20」「120」をそれぞれ取得する。次いで、整列部113は、輸送時間が短い順に、検体データを並び替える。すなわち、整列部113は、例えば、検体Noが「111」「113」「114」「112」の順になるように検体データを並び替える。そして、整列部113は、並び替えた検体リスト123を記憶部120に記憶する。すなわち、整列部113は、輸送時間が短い順に、取得部111により取得された検体Noを並び替えた検体リストを出力する。なお、整列部113は、検体No「111」および検体No「113」、検体No「112」および検体No「114」の輸送時間は同一であるので、検体リストにおいて順序を逆としてもよい。
 表示制御部114は、検査責任者が検査結果を入力するための結果判定ウィンドウ400を表示する。表示制御部114は、結果判定ウィンドウ400に結果判定リスト401を表示する。結果判定リスト401は、検査項目に対応する細菌コロニー数と、判定結果とを示すリストである。
 各検査項目で検査される菌の培養時間は、それぞれ異なる。そこで、表示制御部114は、検査される菌の培養時間が短い順に結果判定リスト401を表示してもよい。例えば、表示制御部114は、検査項目に黄色ブドウ球菌と、大腸菌と、一般生菌のコロニー数の検査があった場合に以下のように処理する。表示制御部114は、各菌を培養するまでの時間が最も短い黄色ブドウ球菌の検査が終了したときにコロニー数を結果判定リスト401に表示させる。次いで、表示制御部114は、黄色ブドウ球菌の検査が終了した後に、培養するまでの時間が次に短い大腸菌のコロニー数を表示させる。次いで、表示制御部114は、大腸菌の検査が終了した後に、培養するまでの時間が最も長い一般生菌のコロニー数を表示させる。
 図5は、結果判定ウィンドウの表示例を示す図である。結果判定ウィンドウ400は、結果判定リスト401と、画像表示欄402と、規定内ボタン410と、規定外ボタン411と、確定ボタン412とを有する。結果判定リスト401は、判定結果と、検査項目に対応する細菌のコロニー数とを示す。画像表示欄402は、結果判定リスト401において選択された検体Noに対応するシャーレ画像を表示する欄である。規定内ボタン410は、コロニー数が正常な場合に押下するボタンである。規定外ボタン411は、コロニー数に異常がある場合に押下するボタンである。確定ボタン412は、規定内ボタン410または規定外ボタン411の選択を確定するときに押下するボタンである。
 次に、結果判定リスト401に含まれる各項目について説明する。結果判定リスト401は、検体Noと、判定結果と、黄色ブドウ球菌のコロニー数とを対応付ける。「検体No」は、検体ごとに一意に付される番号であり、検体DB121のものと同一である。「判定結果」は、黄色ブドウ球菌コロニー数が、規定内であるか規定外であるかを示す。なお、「判定結果」は、判定がおこなわれていない場合、「-」となっている。「黄色ブドウ球菌コロニー数」は、検体に含まれる黄色ブドウ球菌のコロニー数を示す。なお、「黄色ブドウ球菌コロニー数」の欄は、大腸菌のコロニー数を判定する場合、「大腸菌コロニー数」となり、一般生菌のコロニー数を判定する場合、「一般生菌コロニー数」となる。
 整列部113および表示制御部114の処理について具体例を挙げて説明する。まず、表示制御部114は、結果判定ウィンドウ400に、黄色ブドウ球菌の結果判定リスト401を表示する。このとき、結果判定リスト401は、「黄色ブドウ球菌コロニー数」の欄に黄色ブドウ球菌コロニー数が入力されているが、「判定結果」の欄は「-」となっている。
 次いで、表示制御部114は、検査員により入力される検体データごとの判定結果にしたがい結果判定ウィンドウ400の「判定結果」の欄に判定結果を入力する。例えば、表示制御部114は、結果判定ウィンドウ400において、規定内ボタン410が押下された場合、判定結果が規定内である旨の情報を含む判定データを記憶部120に記憶させる。一方、表示制御部114は、結果判定ウィンドウ400において、規定外ボタン411が押下された場合、判定結果が規定外である旨の情報を含む判定データを記憶部120に記憶させる。すなわち、判定データは、結果判定リスト401の各行のデータを示す。なお、表示制御部114は、結果判定ウィンドウ400において、規定内ボタン410または規定外ボタン411が押下されたときに、次の結果判定リスト401内で次の行のシャーレ画像を表示してもよい。また、表示制御部114は、結果判定リストの行をクリックされたときに次のシャーレ画像を表示してもよい。
 例えば、表示制御部114は、結果判定ウィンドウ400において、検体No「111」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。次いで、表示制御部114は、結果判定ウィンドウ400において、検体No「113」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「112」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「114」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。
 現時点において、結果判定リスト401は、各検体の黄色ブドウ球菌のコロニー数を表示している。なお、結果判定リスト401は、各検査が終了する順に、黄色ブドウ球菌、大腸菌、一般生菌の順にコロニー数を表示する。表示制御部114は、各検査結果を表示する結果判定ウィンドウ400において、規定外ボタン411が押下され、さらに確定ボタン412が押下されると、判定結果が規定外である旨の判定データを記憶部120に記憶させる。次いで、整列部113は、判定結果が規定外である旨の判定結果に基づいて当該判定データを上位に並び替える。次いで、表示制御部114は、次の検査項目に移る際に、並び替えられた判定データを読み出し、結果判定ウィンドウ400に出力する。
 例えば、図5の例に示したように、黄色ブドウ球菌コロニー数は、全ての検体データで「0」を示しているので、全ての判定結果に「規定内」が入力されている。表示制御部114は、判定結果を判定データとして記憶部120に記憶させる。また、整列部113は、判定結果が全て「規定内」であるので、検体データの並び替えをおこなわない。
 表示制御部114は、黄色ブドウ球菌の判定が終了した後、記憶された判定データに基づき、大腸菌の結果判定リスト401を表示する。このとき、結果判定リスト401は、「大腸菌コロニー数」の欄に大腸菌コロニー数が入力されているが、まだ判定結果が入力されていないので「判定結果」の欄は「-」となっている。
 次いで、表示制御部114は、例えば、結果判定ウィンドウ400において、検体No「111」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。次いで、表示制御部114は、結果判定ウィンドウ400において、検体No「113」を選択し、検査員により規定外ボタン411が押下されると、判定結果を「規定外」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「112」を選択し、検査員により規定外ボタン411が押下されると、判定結果を「規定外」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「114」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。
 図6は、結果判定リストの第二の例を示す図である。図6の結果判定リスト401は、結果判定ウィンドウ400に表示されている結果判定リスト401の部分のみを抜き出したものである。この時点において、結果判定リスト401は、各検体の大腸菌のコロニー数を示している。図6の結果判定リスト401では、検体No112および検体No113の判定結果が「規定外」となっている。表示制御部114は、判定結果を判定データとして記憶部120に記憶させる。次いで、整列部113は、輸送時間がより短い検体No112を1行目、輸送時間が次に短い検体No113を2行目にして検体データを並び替える。
 表示制御部114は、大腸菌の判定が終了した後、記憶された判定データに基づき、一般生菌の結果判定リスト401を表示する。このとき、結果判定リスト401は、「一般生菌コロニー数」の欄に一般生菌コロニー数が入力されているが、まだ判定結果が入力されていないので「判定結果」の欄は「-」となっている。表示制御部114は、黄色ブドウ球菌および大腸菌の検査と同様に判定結果に基づき判定データを記憶部120に記憶させる。
 次いで、表示制御部114は、例えば、結果判定ウィンドウ400において、検体No「113」を選択し、検査員により規定外ボタン411が押下されると、判定結果を「規定外」とする。次いで、表示制御部114は、結果判定ウィンドウ400において、検体No「112」を選択し、検査員により規定外ボタン411が押下されると、判定結果を「規定外」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「111」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。表示制御部114は、結果判定ウィンドウ400において、検体No「114」を選択し、検査員により規定内ボタン410が押下されると、判定結果を「規定内」とする。
 図7は、結果判定リストの第三の例を示す図である。図7の結果判定リスト401は、結果判定ウィンドウ400の結果判定リスト401の部分を抜き出したものである。表示制御部114は、整列部113によって並び替えられた順に結果判定リスト401に各検体データを表示する。
 次いで、コロニー検査装置100は、各検査項目の判定データに基づいて検体リスト123の「検査結果」の欄を更新する。コロニー検査装置100は、各検査項目の判定結果に「規定外」となっているものが一つでも含まれる場合、検体リスト123の「検査結果」の欄に「NG」を入力する。
 例えば、コロニー検査装置100は、検体No111に対応する検査結果の欄に「OK」を入力する。また、コロニー検査装置100は、検体No112に対応する検査結果の欄に「NG」を入力する。また、コロニー検査装置100は、検体No113に対応する検査結果の欄に「NG」を入力する。また、コロニー検査装置100は、検体リスト123で検体No114の検査結果の欄に「OK」を入力する。
 また、表示制御部114は、結果判定ウィンドウ400において結果判定リスト401の各行がクリックされた際に、クリックされた行の検体Noに対応するシャーレ画像を表示する。なお、表示制御部114は、確定ボタン412が押下され判定結果が確定したときに自動的に次のシャーレ画像に切り替えてもよい。
 (コロニー検査装置における処理の流れ)
 次に、コロニー検査装置100における処理の流れについて説明する。図8は、コロニー検査装置が結果判定リストを表示するまでの処理動作の例を示す図である。まず、取得部111は、検体DB121から検体リスト123を取得する(ステップS10)。例えば、検体リスト123は、検体DB121から、検査対象の検体に対応する各行のデータを抽出したものである。従って、検体リスト123は、検査済みのデータを含まない。次いで、特定部112は、各検体を、検体DB121から取得した検体データの検体Noにより特定する。
 次いで、整列部113は、検体リスト内の各検体データから検体ごとの輸送時間を取得する(ステップS11)。次いで、整列部113は、検体リストにおいて輸送時間が短い順に各検体データを並び替える(ステップS12)。次いで、整列部113は、検体リストにおいて判定結果がNGの検体データを上位に並び替える(ステップS13)。整列部113は、並び替えた検体リストを記憶部120に記憶させる。
 次いで、表示制御部114は、並び替えた後の検体リスト123を記憶部120から読み込み、検体リスト123の中から、「検体No」および培養が終了した検査項目に係る菌類のコロニー数を、結果判定ウィンドウ400の結果判定リスト401にコピーする。なお、結果判定ウィンドウ400の表示例は、図5に示されている。次いで、表示制御部114は、結果判定リスト401を表示する(ステップS14)。次いで、表示制御部114は、次の検査項目がある場合(ステップS15Yes)、ステップS13に戻る。一方、表示制御部114は、次の検査項目がない場合(ステップS15No)、処理を終了させる。なお、各検査項目で検査される菌の培養時間は、それぞれ異なるので、表示制御部114は、検査される菌の培養時間が短い順に結果判定リスト401を表示してもよい。
 (結果判定処理の流れ)
 次に、結果判定処理の流れについて説明する。表示制御部114は、結果判定ウィンドウ400に、整列部113によって並び替えられた結果判定リスト401を表示する。なお、結果判定ウィンドウ400の表示例は、図5に示されている。表示制御部114は、検査項目ごとに結果判定リスト401を表示する。例えば、表示制御部114は、黄色ブドウ球菌、大腸菌、一般生菌のコロニー数を検査項目として、それぞれを結果判定リスト401に表示する。コロニー検査装置100は、結果判定リスト401の表示行1行目から最後の行まで順に判定結果を受け付ける。表示制御部114は、判定結果に基づき結果判定リスト401の「判定結果」の欄を変更する。以下、各検査項目でなされる結果判定処理の流れについて具体的に説明する。
 図9は、結果判定処理の一例を示す図である。まず、表示制御部114は、結果判定ウィンドウ400の画像表示欄402に、結果判定リスト401の検体Noに対応するシャーレ画像を表示する(ステップS20)。次いで、コロニー検査装置100は、判定結果が入力されると、表示行1行目に係る検体の判定結果を受け付ける(ステップS21)。コロニー検査装置100は、判定結果がOKである旨を受け付けた場合(ステップS22Yes)、ステップS24の処理に移る。一方、コロニー検査装置100は、判定結果がNGである旨を受け付けた場合(ステップS22No)、判定結果にNGを設定する(ステップS23)。
 次いで、表示制御部114は、ステップS24において次の検体がある場合(ステップS24Yes)、ステップS20に戻り、次の検体の結果判定リスト401を表示する。一方、表示制御部114は、ステップS24において次の検体がない場合(ステップS24No)、処理を終了させる。
 (実施例1の効果)
 コロニー検査装置100は、細菌コロニーが含まれた複数のシャーレのそれぞれについて各検体を特定する情報を取得する取得部111と、複数のシャーレのそれぞれにおいて細菌コロニーが培養された検体をそれぞれ特定する特定部112とを有する。さらに、コロニー検査装置100は、特定した検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、取得した検体を特定する情報を並べる整列部113を有する。さらに、コロニー検査装置100は、並べた検体を特定する情報を一覧表示する表示制御部114を有する。これにより、検体の検査順序または撮影順序を適切に設定できる。なお、撮影順序の設定に関しての詳細は、後述する。
 また、整列部113は、例えば、特定した検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間が短い順に検体を特定する情報を並べる。これにより、放置された品物の衛生検査が遅れ、施設から届いた品物を店頭に陳列したり、施設から届いた品物を二次加工したりする時期も遅れるという不利益を避けることができる。
 また、検体Noは、一つの検体について複数種類の細菌をそれぞれ培養したシャーレの画像を含む。また、整列部113は、一つの検体について複数種類の細菌を培養したシャーレの画像のうちのいずれか一つで、異常判定がなされた場合に、該検体についての残りの種類の細菌を培養したシャーレの画像をリストの上位に並べる。
 実施例2においては、出荷前に品物を衛生検査する形態について説明する。例えば、施設が出荷する品物には、冷凍食品のように賞味期限が長いものがある。この場合、施設は、検査後に品物を出荷する。この場合に制御部110の各構成がおこなう処理について、以下に説明する。
 取得部111は、図3の検体DB121から衛生検査をおこなう検体No111~114まで検体データを取得する。次いで、特定部112は、各検体を、検体DB121から取得した検体データの検体Noにより特定する。
 整列部113は、輸送時間に基づき取得部111が取得した検体データを並び替える。
 図10を用いて出荷前に品物を衛生検査する場合の整列部113の処理について説明する。図10は、整列部113が作成した検体リストの第二の例を示す図である。整列部113は、取得部111により取得された検体データの検体No「111」「112」「113」「114」の検体データから、各輸送時間「20」「120」「20」「120」を取得する。次いで、整列部113は、輸送時間が長い順に、検体データを並び替える。すなわち、整列部113は、検体Noが「112」「114」「111」「113」の順になるように検体データを並び替える。なお、整列部113は、検体No「111」および検体No「113」、検体No「112」および検体No「114」の輸送時間は同一であるので、検体リスト123において順序を逆としてもよい。
 整列部113および表示制御部114の処理について具体例を挙げて説明する。まず、コロニー検査装置100は、結果判定リスト401の「黄色ブドウ球菌コロニー数」の欄に黄色ブドウ球菌コロニー数を表示させる。また、コロニー検査装置100は、検体リスト123に基づいて生成された結果判定リスト401が結果判定ウィンドウ400に表示される初期の状態では、結果判定リスト401の「判定結果」の欄に「-」を表示する。
 表示制御部114は、検体データごとの判定結果にしたがい「判定結果」の欄に判定結果を入力する。なお、表示制御部114は、結果判定ウィンドウ400において、規定内ボタン410または規定外ボタン411が押下されたときに、次の結果判定リスト401内で次の行のシャーレ画像を表示してもよい。また、表示制御部114は、結果判定リストの行をクリックされたときに次のシャーレ画像を表示してもよい。図11は、結果判定リストの第四の例を示す図である。図11に示した例では、黄色ブドウ球菌コロニー数は、全ての検体データで「0」であり、判定結果が全て「規定内」となった場合の結果判定リストを示している。表示制御部114は、判定結果を判定データとして記憶部120に記憶させる。また、整列部113は、判定結果が全て「規定内」となっているので、検体データの並び替えをおこなわない。
 表示制御部114は、黄色ブドウ球菌の検査が終了した後、記憶部120に記憶された判定データに基づき、大腸菌の結果判定リスト401を表示する。このとき、コロニー検査装置100は、結果判定リスト401の「大腸菌コロニー数」の欄に大腸菌コロニー数を表示させる。また、コロニー検査装置100は、検体リスト123に基づいて生成された結果判定リスト401が結果判定ウィンドウ400に表示される初期の状態では、結果判定リスト401の「判定結果」の欄に「-」を表示させる。図12は、結果判定リストの第五の例を示す図である。図12に示した例では、コロニー検査装置100は、整列部113によって黄色ブドウ球菌のコロニー数の判定結果に従って、並び替えられた検体リスト123に基づき結果判定リスト401を表示させる。図12の結果判定リスト401では、検体No112および検体No113の判定結果が「規定外」となっている。表示制御部114は、判定結果を判定データとして記憶部120に記憶させる。次いで、整列部113は、検体No112を3行目、検体No113を4行目にして検体リスト123を並び替える。
 表示制御部114は、大腸菌の検査が終了した後、記憶部120に記憶されている判定データに基づき、一般生菌の結果判定リスト401を表示する。このとき、コロニー検査装置100は、結果判定リスト401の「一般生菌コロニー数」の欄に一般生菌コロニー数を表示させる。また、コロニー検査装置100は、検体リスト123に基づいて生成された結果判定リスト401が結果判定ウィンドウ400に表示される初期の状態では、結果判定リスト401の「判定結果」の欄に「-」を表示させる。
 図13は、結果判定リストの第六の例を示す図である。図13に示した例では、コロニー検査装置100は、整列部113によって大腸菌のコロニー数の判定結果に従って、並び替えられた検体リスト123に基づき、結果判定リスト401を表示させる。表示制御部114は、整列部113によって並び替えられた順に結果判定リスト401に各検体データを表示する。表示制御部114は、判定結果を判定データとして記憶部120に記憶させる。そして、コロニー検査装置100は、各検査項目の判定データに基づいて検体リスト123の「検査結果」の欄を更新する。コロニー検査装置100は、各検査項目の判定結果に「規定外」となっているものが一つでも含まれる場合、検体リスト123の「検査結果」の欄に「NG」を入力する。
 (コロニー検査装置における処理の流れ)
 次に、コロニー検査装置100における処理の流れについて説明する。図14は、コロニー検査装置が結果判定リストを表示するまでの処理動作の例を示す図である。まず、取得部111は、検体DB121の一部の行を検体リストとして取得する(ステップS30)。次いで、特定部112は、各検体を、検体DB121から取得した検体データの検体Noにより特定する。
 次いで、整列部113は、検体データから検体ごとの輸送時間を取得する(ステップS31)。次いで、整列部113は、輸送時間が長い順に検体データを整列する(ステップS32)。次いで、整列部113は、検査結果がNGの検体データを検体リスト123の下位に並び替える(ステップS33)。次いで、表示制御部114は、検体リスト123の一部を抽出し、結果判定リスト401として表示させる。次いで、表示制御部114は、結果判定リスト401を表示する(ステップS34)。次いで、表示制御部114は、次の検査項目がある場合(ステップS35Yes)、ステップS33に戻る。一方、表示制御部114は、次の検査項目がない場合(ステップS35No)、処理を終了させる。
 (実施例2の効果)
 整列部113は、例えば、輸送時間が長い順にシャーレを特定する情報を並べる。例えば、整列部113は、輸送時間が長い順に、取得部111により取得された検体データを並び替えた検体リスト123を出力する。次いで、表示制御部114は、出力された検体リスト123に基づき、検査される菌の培養時間が長い順に結果判定リスト401を表示させる。次いで、コロニー検査装置100は、結果判定リスト401の順に、各検体に対応するシャーレ画像等を表示させる。このとき、コロニー検査装置100は、検査責任者から各検体の判定結果の入力を受け付ける。これにより、輸送時間が長い検体データを優先させるので検査結果が出るのを待つために品物の相手先への到着が予定に間に合わず、相手先で店頭への陳列や二次加工を予定通りに実施できないという不利益を避けることができる。
 検体Noは、一つの前記検体について複数種類の細菌をそれぞれ培養したシャーレの画像を含む。また、整列部113は、一つの検体について複数種類の細菌を培養したシャーレの画像のうちのいずれか一つで、異常判定がなされた場合に、該検体についての残りの種類の細菌を培養したシャーレの画像をリストの下位に並べる。これにより、異常判定を含む検査データの優先順位を下げさせるので検査結果が出るのを待つために品物の相手先への到着が予定に間に合わず、相手先で店頭への陳列や二次加工を予定通りに実施できないという不利益を避けることができる。
 (他の実施態様)
 実施例1および実施例2においては、記憶部120が検体リスト123を有する旨を説明した。これに限定されず、検体リスト123は、CD-ROMやDVDディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、外部記憶装置に記憶されてもよい。
 また、シャーレ内のコロニー数のカウントは、検査員が目視でカウントしても、コロニーカウンタ等の装置を使用して自動でおこなってもよい。
 実施例1および実施例2においては、整列部113が輸送時間に応じて並び替えを行い、さらに、各検査項目の判定結果にしたがい並び替えをおこなう旨を説明した。これに限定されず、整列部113は、輸送時間で並び替えをおこなった後、各検査項目の判定結果にしたがい並び替えをおこなわなくてもよい。
 表示制御部114は、結果判定ウィンドウ400において、規定内ボタン410または規定外ボタン411が押下されたときに、次の結果判定リスト401内で次の行のシャーレ画像を表示してもよい。また、表示制御部114は、結果判定リストの行をクリックされたときに次のシャーレ画像を表示してもよい。
 (シャーレを撮影する順序)
 実施例1において検査員は、シャーレを撮影する装置のモニタに表示された検体Noを参照して、当該検体Noに対応するシャーレを装置にセットし、シャーレを撮影することを説明した。シャーレを撮影する順序を以下のように設定してもよい。
 まず、検査員は、食品の一部を検体として採取して検体Noを付す。次いで、検査員は、検査項目に一般生菌、大腸菌、黄色ブドウ球菌のコロニー数の検査がある場合、採取した検体を3つに分離してシャーレに入れる。次いで、検査員は、各シャーレを菌が育ちやすい温度で1~2日程度保温することにより、各シャーレ内の検体を培養する。
 一方、コロニー検査装置100は、食品の輸送時間に基づき、検査員によって培養された検体の撮影順序を並び替える。具体的には、整列部113は、まず、検査DB121から取得された検体リスト123に対して、輸送時間に応じて検体リスト123の並び替えをおこなう。例えば、整列部113は、実施例1のように輸送時間が短い順に並べてもよい。また、整列部113は、実施例2のように輸送時間が長い順に並べてもよい。次いで、整列部113は、シャーレを撮影する装置のモニタに、並び替えた順に検体データを表示させる。
 一方、検査員は、シャーレを撮影する装置のモニタに検体Noが示されているので、検体Noに対応するシャーレを装置にセットして検体を撮影する。コロニー検査装置100は、当該シャーレの撮影終了後に、次の検体データを表示させる。そして、コロニー検査装置100は、全ての検査が終了した後、各検体の検査を、検体の撮影順に実施する。これにより、リストに登載された検体の順に検体を撮影する場合に、撮影が終了した検体の順に衛生検査が実施される不利益を避けることができる。
 (一つのロットに対して複数の輸送時間がある場合)
 検査DB121の「ロット」は、検査対象の品物が同じものに一意に付されることを説明した。ロットは、届け先が異なる場合であっても検査対象の品物が同じであれば、同じものが付される場合がある。図15は、一つのロットに対して複数の輸送時間がある場合の検体リストを示した図である。検体No111~113の検体データは、同じ検体名でありながら同じロットが付されている。
 整列部113は、出荷後に品物を衛生検査する形態で出荷する場合に、同じロットが付された検体データのうち、最も輸送時間の短いものを使用して検体データを並び替える。
 図16は、一つのロットに対して複数の輸送時間がある場合に整列部が並び替えをおこなった検体リストの第一の例を示す図である。整列部113は、検体No111~113の検体データのうち、輸送時間が「30」と最も短い検体No111の輸送時間を用いて検体データを並び替える。図16に示すように、整列部113は、輸送時間が「20」の検体No115の下に検体No111~113の検体データを並ばせる。
 一方、整列部113は、出荷後に品物を衛生検査する形態で出荷する場合に、同じロットが付された検体データのうち、最も輸送時間の長いものを使用して検体データを並び替える。
 図17は、一つのロットに対して複数の輸送時間がある場合に整列部が並び替えをおこなった検体リストの第二の例を示す図である。整列部113は、検体No111~113の検体データのうち、輸送時間が「90」と最も長い検体No112の輸送時間を用いて検体データを並び替える。図17に示すように、整列部113は、輸送時間が「120」の検体No116の下に検体No111~113の検体データを並ばせる。
 以上のように、整列部が検体データを並び替えることによりロットが同じ場合、検査結果が同じとなることが多いので、同じロットを一まとめとすることで検査の効率を向上させることができる。
 (賞味期限または消費期限を用いた整列)
 整列部113は、輸送時間が同じで賞味期限または消費期限が異なる検体データがある場合に、賞味期限または消費期限が短い順に検体データを並べてもよい。図18は、賞味期限を項目に含む検体リストの一例を示す図である。検体No111および検体No113は、輸送時間が「20」で同一である。また、検体No112および検体No114は、輸送時間が「120」で同一である。
 図19は、消費期限を項目に含む検体リストを、整列部が並び替えた場合の一例を示す図である。この場合、整列部113は、輸送時間が「20」で消費期限が検体No113よりも短い、検体No111の検体データを一行目にする。次いで、整列部113は、輸送時間が「20」の検体No113の検体データを二行目にする。次いで、整列部113は、輸送時間が「120」で消費期限が検体No112よりも短い、検体No114の検体データを三行目にする。次いで、整列部113は、輸送時間が「120」の検体No112の検体データを四行目にする。これにより、消費期限の短い検体を優先して輸送することができる。なお、整列部113は、検体リスト123が賞味期限を含んでいた場合も、上記と同様に検体リスト123を整列する。
 (表示端末のハードウェア構成)
 図20は、コロニー検査装置に係るコンピュータのハードウェア構成を示す図である。図20が示すように、コンピュータ500は、各種演算処理を実行するCPU501と、ユーザからのデータ入力を受け付ける入力装置502と、モニタ503とを有する。また、コンピュータ500は、記憶媒体からプログラム等を読み取る媒体読取装置504と、他の装置と接続するためのインターフェース装置505と、他の装置と無線により接続するための無線通信装置506とを有する。また、コンピュータ500は、各種情報を一時記憶するRAM(Random Access Memory)507と、ハードディスク装置508とを有する。また、各装置501~508は、バス509に接続される。
 ハードディスク装置508には、図2に示した制御部110の取得部111、特定部112、整列部113および表示制御部114の各処理部と同様の機能を有するコロニー検査プログラムが記憶される。また、ハードディスク装置508には、コロニー検査プログラムを実現するための各種データが記憶される。
 CPU501は、ハードディスク装置508に記憶された各プログラムを読み出して、RAM507に展開して実行することで、各種の処理を行う。また、これらのプログラムは、コンピュータ500を、図2に示した取得部111、特定部112、整列部113および表示制御部114として機能させることができる。
 なお、上記のコロニー検査プログラムは、必ずしもハードディスク装置508に記憶されている必要はない。例えば、コンピュータ500が読み取り可能な記憶媒体に記憶されたプログラムを、コンピュータ500が読み出して実行するようにしてもよい。コンピュータ500が読み取り可能な記憶媒体は、例えば、CD-ROMやDVDディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN(Local Area Network)等に接続された装置にこのプログラムを記憶させておき、コンピュータ500がこれらからプログラムを読み出して実行するようにしてもよい。
100   コロニー検査装置
101   I/F
102   表示部
103   出力部
110   制御部
111   取得部
112   特定部
113   整列部
114   表示制御部
120   記憶部
121   検査DB
122   表示データ
123   検体リスト

Claims (15)

  1.  コンピュータに
     細菌コロニーが培養された複数の検体のそれぞれについて各検体を特定する情報を取得し、
     取得した前記検体を特定する情報のそれぞれにおいて、前記検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、前記検体を特定する情報を並べ、
     並べた前記検体を特定する情報を一覧表示する
    処理を実行させることを特徴とする、コロニー検査プログラム。
  2.  前記並べる処理は、前記時間が短い順に前記検体を特定する情報を並べることを特徴とする請求項1に記載のコロニー検査プログラム。
  3.  前記並べる処理は、前記時間が長い順に前記検体を特定する情報を並べることを特徴とする請求項1に記載のコロニー検査プログラム。
  4.  前記並べる処理は、前記時間が同一である前記検体を特定する情報を並べる場合に、前記検体に代表される品物の賞味期限または消費期限が短い順に前記検体を特定する情報を並べることを特徴とする請求項1に記載のコロニー検査プログラム。
  5.  前記検体を特定する情報には、一つの前記検体について複数種類の細菌をそれぞれ培養したシャーレの画像が対応付けられており、
     前記並べる処理は、一つの前記検体について複数種類の細菌を培養したシャーレの画像のうちのいずれか一つで、異常判定がなされた場合に、該検体についての残りの種類の細菌を培養した前記検体を特定する情報を前記一覧の上位または下位に並べることを特徴とする請求項1に記載のコロニー検査プログラム。
  6.  細菌コロニーが培養された複数の検体のそれぞれについて各検体を特定する情報を取得する取得部と、
     前記取得部が取得した前記検体を特定する情報のそれぞれにおいて、前記検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、前記検体を特定する情報を並べる整列部と、
     前記整列部が並べた前記検体を特定する情報を一覧表示する表示制御部と
     を有することを特徴とする、コロニー検査装置。
  7.  前記整列部は、前記時間が短い順に前記検体を特定する情報を並べることを特徴とする請求項6に記載のコロニー検査装置。
  8.  前記整列部は、前記時間が長い順に前記検体を特定する情報を並べることを特徴とする請求項6に記載のコロニー検査装置。
  9.  前記整列部は、前記時間が同一である前記検体を特定する情報を並べる場合に、前記検体に代表される品物の賞味期限または消費期限が短い順に前記検体を特定する情報を並べることを特徴とする請求項6に記載のコロニー検査装置。
  10.  前記検体を特定する情報には、一つの前記検体について複数種類の細菌をそれぞれ培養したシャーレの画像が対応付けられており、
     前記整列部は、一つの前記検体について複数種類の細菌を培養したシャーレの画像のうちのいずれか一つで、異常判定がなされた場合に、該検体についての残りの種類の細菌を培養した前記検体を特定する情報をリストの上位または下位に並べることを特徴とする請求項6に記載のコロニー検査装置。
  11.  コンピュータが
     細菌コロニーが培養された複数の検体のそれぞれについて各検体を特定する情報を取得し、
     取得した前記検体を特定する情報のそれぞれにおいて、前記検体を製造した施設から、該検体に代表される品物を出荷する相手先に到着するまでにかかる時間に基づいて、前記検体を特定する情報を並べ、
     並べた前記検体を特定する情報を一覧表示する
    処理を実行することを特徴とする、コロニー検査方法。
  12.  前記並べる処理は、前記時間が短い順に前記検体を特定する情報を並べることを特徴とする請求項11に記載のコロニー検査方法。
  13.  前記並べる処理は、前記時間が長い順に前記検体を特定する情報を並べることを特徴とする請求項11に記載のコロニー検査方法。
  14.  前記並べる処理は、前記時間が同一である前記検体を特定する情報を並べる場合に、前記検体に代表される品物の賞味期限または消費期限が短い順に前記検体を特定する情報を並べることを特徴とする請求項11に記載のコロニー検査方法。
  15.  前記検体を特定する情報には、一つの前記検体について複数種類の細菌をそれぞれ培養したシャーレの画像が対応付けられており、
     前記並べる処理は、一つの前記検体について複数種類の細菌を培養したシャーレの画像のうちのいずれか一つで、異常判定がなされた場合に、該検体についての残りの種類の細菌を培養した前記検体を特定する情報をリストの上位または下位に並べることを特徴とする請求項11に記載のコロニー検査方法。
PCT/JP2013/075059 2013-09-17 2013-09-17 コロニー検査プログラム、コロニー検査装置およびコロニー検査方法 WO2015040678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380079588.8A CN105531738A (zh) 2013-09-17 2013-09-17 菌落检查程序、菌落检查装置以及菌落检查方法
PCT/JP2013/075059 WO2015040678A1 (ja) 2013-09-17 2013-09-17 コロニー検査プログラム、コロニー検査装置およびコロニー検査方法
JP2015537451A JPWO2015040678A1 (ja) 2013-09-17 2013-09-17 コロニー検査プログラム、コロニー検査装置およびコロニー検査方法
EP13893785.9A EP3048577A4 (en) 2013-09-17 2013-09-17 COLONIAL INVESTIGATION PROGRAM, COLONIAL INSPECTION DEVICE AND COLONIAL INVESTIGATION PROCEDURE
US15/070,939 US20160196529A1 (en) 2013-09-17 2016-03-15 Colony examination device, colony examination method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075059 WO2015040678A1 (ja) 2013-09-17 2013-09-17 コロニー検査プログラム、コロニー検査装置およびコロニー検査方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/070,939 Continuation US20160196529A1 (en) 2013-09-17 2016-03-15 Colony examination device, colony examination method, and recording medium

Publications (1)

Publication Number Publication Date
WO2015040678A1 true WO2015040678A1 (ja) 2015-03-26

Family

ID=52688365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075059 WO2015040678A1 (ja) 2013-09-17 2013-09-17 コロニー検査プログラム、コロニー検査装置およびコロニー検査方法

Country Status (5)

Country Link
US (1) US20160196529A1 (ja)
EP (1) EP3048577A4 (ja)
JP (1) JPWO2015040678A1 (ja)
CN (1) CN105531738A (ja)
WO (1) WO2015040678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121547A (ja) * 2017-01-30 2018-08-09 大日本印刷株式会社 コロニー検出システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579568A (zh) * 2013-09-30 2016-05-11 富士通株式会社 菌落图像检查程序、菌落图像检查方法以及菌落图像检查装置
EP3757575B1 (en) * 2019-06-24 2023-06-07 F. Hoffmann-La Roche AG Method of operating an analytical laboratory

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187270A (ja) 1996-01-11 1997-07-22 Nishi Nippon Shinku Tank Kk 細菌類の分析方法および同分析装置
JP2003185326A (ja) * 2001-12-14 2003-07-03 Matsushita Electric Ind Co Ltd 食物貯蔵庫
JP2003312836A (ja) * 2002-04-19 2003-11-06 Askul Corp コンベヤシステム
JP2005257652A (ja) * 2004-03-15 2005-09-22 Advance Co Ltd 生体試料の検出装置および解析方法
JP2007094513A (ja) 2005-09-27 2007-04-12 Fujifilm Corp 読影支援システム
JP2007129971A (ja) * 2005-11-11 2007-05-31 Nikon Corp 培養装置
JP2013029916A (ja) * 2011-07-27 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp 製品欠陥要因分析装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409062C (en) * 2003-12-09 2007-12-11 Advanced Risc Mach Ltd Aliasing data processing registers
US7515678B2 (en) * 2005-11-23 2009-04-07 General Electric Company Method and system for performing CT image reconstruction with motion artifact correction
JP2011212013A (ja) * 2010-03-17 2011-10-27 Elmex Ltd フィルム型培地による微生物検査方法およびこの微生物検査方法に用いる画像取込ツ−ル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187270A (ja) 1996-01-11 1997-07-22 Nishi Nippon Shinku Tank Kk 細菌類の分析方法および同分析装置
JP2003185326A (ja) * 2001-12-14 2003-07-03 Matsushita Electric Ind Co Ltd 食物貯蔵庫
JP2003312836A (ja) * 2002-04-19 2003-11-06 Askul Corp コンベヤシステム
JP2005257652A (ja) * 2004-03-15 2005-09-22 Advance Co Ltd 生体試料の検出装置および解析方法
JP2007094513A (ja) 2005-09-27 2007-04-12 Fujifilm Corp 読影支援システム
JP2007129971A (ja) * 2005-11-11 2007-05-31 Nikon Corp 培養装置
JP2013029916A (ja) * 2011-07-27 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp 製品欠陥要因分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3048577A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121547A (ja) * 2017-01-30 2018-08-09 大日本印刷株式会社 コロニー検出システム

Also Published As

Publication number Publication date
EP3048577A1 (en) 2016-07-27
CN105531738A (zh) 2016-04-27
EP3048577A4 (en) 2016-11-09
US20160196529A1 (en) 2016-07-07
JPWO2015040678A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
Zattara et al. Worldwide occurrence records suggest a global decline in bee species richness
Lim et al. Statistical Process Control (SPC) in the food industry–A systematic review and future research agenda
US20140046722A1 (en) System for on-site environment monitoring
Lozano et al. Human mecC-carrying MRSA: Clinical implications and risk factors
Yarbrough et al. Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens
WO2015040678A1 (ja) コロニー検査プログラム、コロニー検査装置およびコロニー検査方法
Proença et al. Lean optimization techniques for improvement of production flows and logistics management: The case study of a fruits distribution center
Roemeling et al. Impact of lean interventions on time buffer reduction in a hospital setting
Papadakis et al. Characterization of bacterial microbiota of PDO Feta cheese by 16S metagenomic analysis
WO2015045012A1 (ja) コロニー検査プログラム、コロニー検査装置およびコロニー検査方法
Jarquin et al. Development of rapid detection and genetic characterization of Salmonella in poultry breeder feeds
Kamilari et al. Metataxonomic mapping of the microbial diversity of Irish and Eastern Mediterranean cheeses
Williams et al. Prevalence of Listeria monocytogenes, Salmonella spp., Shiga toxin-producing Escherichia coli, and Campylobacter spp. in raw milk in the United States between 2000 and 2019: A systematic review and meta-analysis
Martin-Sanchez et al. Comparison of methods to identify and monitor mold damages in buildings
Halim-Lim et al. Food safety knowledge, attitude, and practices of food handlers in restaurants in Malé, Maldives
JP6234138B2 (ja) 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
Macleod et al. An exploration of Listeria monocytogenes, its influence on the UK food industry and future public health strategies
This PM 7/122 (1) Guidelines for the organization of interlaboratory comparisons by plant pest diagnostic laboratories
JP2015171334A (ja) コロニー計数方法、細菌コロニーの結合の発生検出方法、細菌コロニーの計数方法、コロニー計数プログラム及びコロニー計数装置
Izawa et al. Comprehensive fungal community analysis of house dust using next-generation sequencing
Quintana et al. Influence of environmental and productive factors on the biodiversity of lactic acid bacteria population from sheep milk
Barbosa et al. The troublesome ticks research protocol: developing a comprehensive, multidiscipline research plan for investigating human tick-associated disease in Australia
Chalmers et al. A guide to standardise artificial contamination procedures with protozoan parasite oocysts or cysts during method evaluation, using Cryptosporidium and leafy greens as models
Chesov et al. Automated high-throughput digital fluorescence microscopy for TB diagnosis
JP6924398B2 (ja) コロニー検出システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079588.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537451

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013893785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE