WO2015037352A1 - 多波長放射温度計および多波長放射温度計測方法 - Google Patents

多波長放射温度計および多波長放射温度計測方法 Download PDF

Info

Publication number
WO2015037352A1
WO2015037352A1 PCT/JP2014/069899 JP2014069899W WO2015037352A1 WO 2015037352 A1 WO2015037352 A1 WO 2015037352A1 JP 2014069899 W JP2014069899 W JP 2014069899W WO 2015037352 A1 WO2015037352 A1 WO 2015037352A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
temperature
radiation
dimensional
depth
Prior art date
Application number
PCT/JP2014/069899
Other languages
English (en)
French (fr)
Inventor
敦史 谷口
渡辺 正浩
達雄 針山
啓晃 笠井
宮本 敦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112014003549.1T priority Critical patent/DE112014003549T5/de
Publication of WO2015037352A1 publication Critical patent/WO2015037352A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/601Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using spectral scanning

Definitions

  • the present invention relates to a multi-wavelength radiation thermometer and a multi-wavelength radiation temperature measuring method.
  • the measurement target is based on N (N is an integer of 3 or more) spectral radiance L i of thermal radiation emitted from the surface of the measurement object.
  • N is an integer of 3 or more
  • L i spectral radiance of thermal radiation emitted from the surface of the measurement object.
  • M is an integer equal to or smaller than (N ⁇ 2)
  • N spectral emissivities corresponding to the spectral radiance L i are unknowns.
  • thermometer To calculate the spectral radiance L i and the measured spectral radiance L i o A radiation thermometer is described, wherein the temperature T of the object to be measured is obtained assuming that the temperature obtained by the calculation when the difference between the two becomes equal to or less than a predetermined value is the temperature T of the object to be measured. ing.
  • Patent Document 2 discloses a three-dimensional shape in which molten slag flowing down from a furnace outlet is simultaneously observed from different directions to measure the three-dimensional shape of the molten slag.
  • the three-dimensional shape measuring means uses an optical means arranged at least at three or more positions spaced in the circumferential direction of the molten slag, and the fixed coordinate in the axial direction of the streaks of the molten slag flowing down from the discharge port
  • An ellipse that detects the plane coordinates of a total of six or more points of contact formed on the cross section by a tangent line connecting the cross section at the point and the optical means, and includes all of the six points of contact from the value of the plane coordinates.
  • the optical means is an imaging means for taking a two-dimensional image of the molten slag, and obtains a luminance distribution of the surface of the three-dimensional shape of the molten slag based on a plurality of luminance distributions of the two-dimensional images.
  • a temperature measurement means for obtaining a three-dimensional surface temperature distribution of the molten slag based on the correlation between the molten slag and the temperature information of the molten slag being included in the input information.
  • Patent Document 1 information on the temperature distribution can be obtained, but information on the depth cannot be obtained.
  • the temperature and shape are simultaneously measured by an imaging unit that captures a two-dimensional image arranged at three or more locations, but only the contour is detected, and the diameter and distortion of the cylinder are simple. Only shape measurement is possible.
  • an object of the present invention is to provide a multi-wavelength radiation thermometer and a multi-wavelength radiation temperature measurement method that can achieve both highly accurate temperature measurement and shape measurement.
  • the present invention provides a diaphragm that blocks a part of thermal radiation generated from a test object, and a two-dimensional diffraction element that disperses thermal radiation that has passed through the diaphragm according to a wavelength region.
  • a multi-wavelength radiation thermometer comprising a two-dimensional sensor that detects thermal radiation dispersed by a two-dimensional diffraction element as a two-dimensional image is provided.
  • the thermal radiation emitted from the test object is shielded by a diaphragm, and the thermal radiation transmitted through the diaphragm is dispersed for each wavelength by a two-dimensional diffraction element, and the thermal radiation dispersed by the two-dimensional diffraction element.
  • a multi-wavelength radiation temperature measuring method characterized by detecting light as a two-dimensional image.
  • the present invention relates to a measurement method and apparatus for achieving both high-precision temperature measurement and shape measurement, and a diaphragm that blocks a part of heat radiation light generated from a test object, and transmits through the diaphragm.
  • a multi-wavelength radiation thermometer comprising a two-dimensional diffraction element that disperses thermal radiation light according to a wavelength region and a two-dimensional sensor that detects thermal radiation light dispersed by the two-dimensional diffraction element is provided.
  • FIG. 1 shows a configuration of a multiwavelength radiation thermometer having a shape measuring function.
  • this multi-wavelength radiation thermometer two-dimensional spectral elements are used to acquire wavelength information in two-dimensional space by one imaging, thereby realizing highly accurate temperature measurement that has not been possible in the past.
  • the spectral image capturing unit 120 acquires a total of three-dimensional information of the two-dimensional space and the one-dimensional wavelength of the infrared ray 101 to be detected, which is thermal radiation emitted from the test object 100 to be inspected.
  • the spectral image capturing unit 110 includes a wavelength cut filter 111, an objective lens 112, an encoding diaphragm 113 that is one of the diaphragms that shields part of the heat radiation light generated from the test object 100, a collimator lens 114, and a wavelength region.
  • the two-dimensional diffractive element 115 that disperses the thermal radiation light according to the above, an imaging lens 116 that forms an image of the dispersed thermal radiation light, and a two-dimensional sensor 117 that detects the imaged thermal radiation light.
  • the spectral image capturing unit 110 is housed in the thermostatic cover 120 so that the temperature state is constant in order to suppress changes in the characteristics of the optical element due to temperature changes and noise suppression of the two-dimensional sensor 117.
  • the constant temperature cover 120 is provided with a measurement window 121 that transmits the test infrared ray 101 emitted from the test object 100 and guides the test infrared ray 101 to the spectral image capturing unit 110.
  • the subsequent processing flow is shown in FIG.
  • An image is acquired by the spectral image capturing unit 110 (S100), and the image acquired in S100 is subjected to image processing by the processing unit 130, and a depth distribution and a temperature distribution in two-dimensional space are calculated (S101).
  • the depth distribution and temperature distribution calculated in S101 are stored in the storage unit 140 (S102), and the determination unit 150 determines whether the depth and temperature are normal (S103), and the temperature and depth information and S103 are determined.
  • the determination result is displayed on the display unit 160 (S104).
  • the test infrared light 101 passes through only a desired wavelength range by the wavelength cut filter 111, then enters the objective lens 112, and enters the coding diaphragm 113 placed on the pupil plane behind the objective lens 112.
  • a schematic diagram of the encoding diaphragm 113 is shown in FIG.
  • the encoding diaphragm 113 used in the present embodiment blocks the heat radiation light at an arbitrary position and transmits the heat radiation light at a position other than the shielded position.
  • a normal stop has a circular shape, whereas an encoded stop arbitrarily places a light shielding position on the space.
  • the diaphragm is not limited to the sign or the diaphragm 113, and any diaphragm may be used as long as it can block the heat radiation light.
  • This method is called Depth From Defocus (DFD).
  • DFD Depth From Defocus
  • the depth information can be easily estimated from one image by using the Levin coding aperture.
  • DFD is applied mainly to the visible range in the field of machine vision and the like.
  • an infrared ray is applied to the light shielding portion. It is necessary to select a medium that does not transmit light, and to suppress expansion of the coded diaphragm 113 itself by absorbing infrared rays.
  • the test infrared light 101 that has passed through the encoding diaphragm 113 is collimated by a collimator lens 114 to obtain a primary image of the test object 100.
  • the two-dimensional diffractive element 115 is placed at the primary image formation position, dispersed according to the wavelength region, and imaged on the two-dimensional sensor 117 by the imaging lens 116.
  • a schematic diagram of the two-dimensional diffraction element 115 is shown in FIG. It is made of a material that transmits the test infrared ray 101, and the height differs depending on the position.
  • an image as shown in FIG. 5 is obtained on the two-dimensional sensor 117 by controlling the diffraction direction of the diffracted light.
  • Zero-order diffracted light is obtained in the central portion (normal imaging result).
  • 1st- and 2nd-order diffracted light is obtained in a state where dispersion is applied in a plurality of directions around the periphery.
  • These 1st and 2nd order diffracted lights can be regarded as projections of the spatial two-dimensional (x, y) and one-dimensional wavelength ( ⁇ ) three-dimensional data cubes shown in FIG. 6 from various directions. Therefore, the three-dimensional cube of FIG.
  • CT Computer Tomography Imaging Spectrometer
  • CCDs complementary metal-oxide-semiconductor
  • CMOSs complementary metal-oxide-semiconductor
  • the test infrared light is in the near infrared region, so a CCD sensor using InGaAs that can detect about 0.9 to 1.5 ⁇ m is used.
  • a dynamic range of about 50 dB is required to measure about 1000 ° C. ⁇ 300 ° C. in the wavelength band of 0.9 to 1.5 ⁇ m. If a high dynamic range sensor is not available, multiple measurements with different sensitivities are required.
  • the processing unit 130 includes a depth calculation unit 131 and a temperature calculation unit 132.
  • An image obtained by passing through the encoding aperture 113 is a greatly blurred image as it is.
  • a restoration process using PSF (Point Spread Function) according to the shape of the encoding diaphragm 113 is performed to obtain clear images and depth information (details are described in A. Levin, ACM Transactions on Graphics, 3, 2007.).
  • PSF Point Spread Function
  • the 0th-order light portion at the center portion shown in FIG. 5 corresponds to the image obtained by the normal optical system. This depth distribution of the 0th-order light portion is referred to as a depth distribution image.
  • the temperature calculation unit 132 will be described.
  • the three-dimensional data cube shown in FIG. 6 is reconstructed from the image including a plurality of diffracted lights shown in FIG.
  • CTIS a reconstruction method using a linear model can be used.
  • the output image g for each wavelength represented by the three-dimensional data cube is the product of the system matrix H and the input image f (image shown in FIG. 5).
  • f (x, y, ⁇ ) is obtained.
  • EM Expectation Maximization
  • MART Multiplicative Algebraic Reconstruction Technique
  • the system matrix H is obtained in advance by calibration using light having a known two-dimensional shape and wavelength. By this pre-calibration, the transmittance of the measurement window 121, the wavelength cut filter 111, and other optical elements, the diffraction efficiency of the two-dimensional diffraction grating 115, and the detection efficiency of the two-dimensional sensor 117 are also calibrated.
  • the spectral emissivity is obtained from f (x, y, ⁇ ).
  • f (x i , y i , ⁇ 1 ) I 1
  • f (x i , y i , ⁇ 2 ) I 2
  • F (x i , y i , ⁇ N ) I N
  • FIG. 8A shows the plot results of I 1 , I 2 ,..., I N when the vertical axis represents luminance and the horizontal axis represents wavelength.
  • the test object 100 is a black body that absorbs 100% of light
  • a spectrum black body radiation indicated by a solid line
  • the amount of radiated light is reduced depending on the material and the surface state.
  • the black body radiation amount is 1, the attenuation factor of I is called emissivity, and the emissivity for each wavelength is called spectral emissivity.
  • the blackbody radiation spectrum P j follows the Planck equation
  • h is the Planck constant
  • c is the speed of light
  • k is the Boltzmann constant
  • T is the temperature of the test object.
  • the spectrum I j actually obtained is obtained by multiplying each wavelength of the spectrum P j of black body radiation by the spectral emissivity ⁇ j .
  • I j / I j + 1 assuming that ⁇ j and ⁇ j + 1 are equal at two wavelengths by using ⁇ j as an external parameter in single wavelength measurement to obtain temperature T
  • a method for obtaining the temperature T is widely used.
  • a spectral emissivity equation approximated as a function of the spectral wavelength is used.
  • the spectral emissivity characteristics of the object to be measured include phase transformation, alloying, oxidation, surface roughness, and the like. Since it always fluctuates due to changes, there are many cases where it deviates from an assumed function, and there is a problem that accuracy of temperature measurement cannot be secured.
  • the temperature calculation unit 132 utilizes a multi-wavelength spectrum and calculates the spectral emissivity with high accuracy. This will be described with reference to FIG. Consider derivation of emissivity ⁇ 2 at wavelength ⁇ 2 .
  • the spectral emissivity ⁇ j can be described by a simple function in the local region. Here, it is assumed to be linear as follows.
  • Equation 3 Assuming that the spectral emissivity is as in (Equation 4), (Equation 3) is described by three variables: coefficient a, b, and temperature T. Therefore, the coefficients a and b can be calculated from the luminances at the minimum of three wavelengths within the range where the assumption of (Equation 4) holds.
  • FIG. 8 (b) it shows a case of using the intensity I 1, I 2, I 3 in the lambda 2 and the left and right ⁇ 1, ⁇ 3.
  • the spectral emissivity can be calculated with high accuracy for each pixel.
  • data in the vicinity of a certain wavelength in the air absorption spectrum is excluded in advance because it causes an error.
  • the temperature for each pixel of f (x, y, ⁇ ) is calculated.
  • the calculation of emissivity was repeated in a local range to obtain the spectral emissivity ⁇ j .
  • the evaluation function E is defined as follows.
  • T that minimizes the evaluation function E is derived by optimization calculation, and the derived T is defined as the temperature at the pixel.
  • the depth and temperature calculated by the processing unit 130 are stored in the storage unit 140. However, the user can determine the necessity of storage and select ON / OFF.
  • the determination unit 150 determines normality / abnormality of the measurement target from the depth and temperature calculated by the processing unit 130.
  • a depth distribution image pixel or a region composed of a plurality of pixels and a depth allowable range are set in advance. If the measured value does not fall within the allowable range within the set pixel or a region composed of a plurality of pixels, it is determined that there is an abnormality. Note that the average value of the region and the measured value may be compared.
  • a normality / abnormality is determined by setting a pixel or a region composed of a plurality of pixels and an allowable temperature range for the temperature distribution image, and comparing with a measured value.
  • the normal / abnormal determination result is displayed on the display unit 160 together with the depth and the temperature measurement result.
  • a GUI (Graphical User Interface) 170 of the display unit 160 is shown in FIG.
  • the measurement result is displayed in the measurement result display window 173.
  • the depth and temperature are expressed simultaneously in one image by expressing the depth by hue and the temperature by brightness.
  • the temperature may be expressed by RGB and the depth may be expressed by brightness.
  • the relationship between the displayed color, brightness, depth, and temperature is indicated by a color bar 174.
  • the measurement time is displayed on the time display window 175.
  • the save check box 176 is checked, all the continuously measured results are saved.
  • it is possible to determine normality / abnormality by setting conditions in advance.
  • Region 177 used for determination And a depth or temperature that is an allowable value is set (not shown).
  • the judgment box 178 normal is displayed when the value is within the allowable value, and abnormal is displayed when the value is outside the allowable value.
  • a modification of the first embodiment will be shown.
  • the temperature calculation unit 132 several variations are conceivable for modeling the change in ⁇ with respect to the change in ⁇ provided for obtaining the temperature T.
  • This modification is a method that uses only the assumption that the spectral emissivity at close wavelengths is a close value. That is, there is an effect that it is possible to flexibly cope with the conversion of the spectral emissivity depending on the material and the surface state by not providing a restriction such as applying a function to the wavelength distribution of the spectral emissivity.
  • the spectral emissivity ⁇ j satisfying (Equation 3) is derived as follows.
  • the present embodiment not only the temperature information of the test object 100 but also the depth information can be obtained with high accuracy by using the encoding diaphragm 113. Further, it is possible to obtain temperature information with high accuracy by repeating the calculation of the spectral emissivity for the local wavelength range.
  • FIG. 10 shows a configuration diagram of the second embodiment.
  • the encoding diaphragm 113 is a normal circular diaphragm 118.
  • image restoration processing that is necessary when the encoding diaphragm 113 is inserted becomes a problem. Therefore, by using a normal circular aperture 118 instead of the encoding aperture 113, image restoration processing can be omitted and the processing speed can be increased.
  • DFD developed by Zhuo et al. Applicable to the circular diaphragm 118 is applied.
  • the depth calculation unit 131 is different from the first embodiment due to the difference in the aperture shape.
  • the processing content of the depth calculation unit 131 in the present embodiment is as follows.
  • the 0th order term of the image including a plurality of diffraction orders obtained in FIG. 5 is extracted and subjected to DFD processing.
  • Edges are extracted from each of the smoothed images obtained by smoothing the 0th-order term image and the 0th-order term image with PSF simulating lens characteristics, the ratio of the respective edge images is derived, and noise removal and complement processing are performed.
  • a depth image is obtained by applying. Zhuo et al. Used a Gaussian function assuming a thin lens model, but by applying an actual lens PSF, a more accurate depth image can be calculated.
  • a circular aperture 118 is used instead of the encoding aperture 113, and restoration processing is performed by applying PSF, so that a more accurate depth image can be obtained compared to the first embodiment. it can.
  • Examples 1 and 2 a method for measuring the specimen 100 using a single multi-wavelength radiation thermometer was shown.
  • the information regarding the shape is only the depth with respect to the observation direction.
  • a system using multi-wavelength radiation thermometers 201, 202, and 203 having a plurality of depth calculation functions as shown in FIG. 11 is proposed.
  • the operations of the multi-wavelength radiation thermometers 201, 202, and 203 and the processing method in the processing unit 130 are the same as those in the first embodiment.
  • An integration unit 210 that integrates the depth information individually processed by the multi-wavelength radiation thermometers 201, 202, and 203 calculated by the processing unit 130 is added.
  • Fig. 12 shows the measurement flow. Images are acquired from the spectral image capturing units 110 of the three multi-wavelength radiation thermometers (S200), and the three images acquired in S200 are subjected to image processing by the processing unit 130, and the depth distribution in two-dimensional space. And a temperature distribution are calculated (S201). In S201, the depth information calculated from each of the three multi-wavelength radiation thermometers is integrated (S202). The temperature distribution calculated in S201 and the depth information integrated in S202 are stored in the storage unit 140 (S203). The determination unit 150 determines whether the depth and temperature are normal (S204), and displays the temperature and depth information and the determination result of S204 on the display unit 160 (S205).
  • the integration of the three depth images may be integrated on the basis of the coordinate values of each multi-wavelength radiation thermometer obtained in advance in a three-dimensional coordinate system in which the vertical and horizontal directions of the image are xy and the depth is z, You may integrate the three-dimensional point group calculated
  • the depth information calculated from each of the plurality of multi-wavelength radiation thermometers is integrated, and the depth information from a plurality of observation directions is integrated.
  • Temperature information can be managed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本発明は、高精度な温度計測と、形状計測を両立する計測方法およびその装置に関するものであって、被検物から発生される熱放射光の一部を遮光する絞りと、絞りを透過した熱放射光を波長領域に応じて分散させる2次元回折素子と、2次元回折素子によって分散された熱放射光を検出する2次元センサとを備える多波長放射温度計を提供する。

Description

多波長放射温度計および多波長放射温度計測方法
 本発明は、多波長放射温度計および多波長放射温度計測方法に関する。
 従来の放射温度を計測する方法として、特許文献1では、被測定物表面から放射された熱放射光のN個(Nは3以上の整数)の分光放射輝度Li をもとに前記被測定物表面の温度Tを測定する多波長を用いた放射測温方法において前記分光放射輝度Li に対応するN個の分光放射率をM個(Mは(N-2)以下の整数)の未知数を含んだ被測定物表面の状態に固有の分光波長の関数として予め測定に基づいて近似し、仮定の温度T′及びM個の仮定の未知数を近似した分光波長の関数としての前記分光放射率の式に代入して得られる分光放射輝度Li と、測定して得られる実測分光放射輝度Li oとの差が所定の値以下になるまで仮定の温度T′及びM個の仮定の未知数を変えて演算を行い、前記分光放射輝度Li と前記実測分光放射輝度Li oとの差が所定の値以下になったときの前記演算により得られた温度を前記被測定物の温度Tであるとして前記被測定物の温度Tを求めることを特徴とする放射温度計が記載されている。
 また、温度と形状を一つのシステムで管理する手法として、特許文献2には、炉の排出口から流下する溶融スラグを異なる方向から同時に観測して前記溶融スラグの3次元形状を測定する3次元形状測定手段と、前記溶融スラグの温度を測定する温度測定手段とを備え、前記溶融スラグの3次元形状を少なくとも含む入力情報に基づいて、前記溶融スラグの排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段とを備えることを特徴とする溶融スラグ流の監視装置について記載されている。
 前記3次元形状測定手段は、前記溶融スラグの周方向に間隔をあけて少なくとも3箇所以上に配置した光学的手段を用いて、前記排出口から流下する前記溶融スラグの筋の軸方向の一定座標点における横断面と前記光学的手段とを結ぶ接線により前記横断面上に形成される合計6点以上の接点の平面座標を検出し、前記平面座標の値から前記6点の接点を全て含む楕円曲線を求め、前記楕円曲線により表されるデータを前記溶融スラグの筋の軸方向に関して階層的に求めることにより、前記溶融スラグの筋ごとの3次元表面形状を求め、これにより前記排出口から流下する前記溶融スラグの全ての筋についての3次元表面形状を求める。
 また、前記光学的手段は前記溶融スラグの2次元画像を撮影する撮像手段であり、複数の前記2 次元画像の輝度分布に基づいて前記溶融スラグの3次元形状の表面の輝度分布を求め、輝度と温度との相関に基づいて、前記溶融スラグの3次元の表面温度分布を求める温度測定手段をさらに備え、前記入力情報に前記溶融スラグの温度情報を含むことを特徴とする溶融スラグ流の監視装置が記載されている。
特開平5-231944号公報 特開2006-118744号公報
 特許文献1では、温度分布の情報を求めることができるものの、奥行きの情報を求めることができない。
 特許文献2では、3か所以上に配置した2次元画像を撮影する撮像手段により、温度と形状を同時計測しているが、輪郭のみを検出しており、円筒の直径やゆがみなどの単純な形状の計測しかできない。
 上記問題点に鑑み、本発明は、高精度な温度計測と、形状計測を両立する多波長放射温度計および多波長放射温度計測方法を提供することを目的とする。
 上記課題を解決するため、本発明は、被検物から発生される熱放射光の一部を遮光する絞りと、絞りを透過した熱放射光を波長領域に応じて分散させる2次元回折素子と、2次元回折素子によって分散された熱放射光を2次元画像として検出する2次元センサとを備える多波長放射温度計を提供する。
 また、本発明は、被検物から発せられる熱放射光を絞りにより遮光し、絞りを透過した熱放射光を波長ごとに2次元回折素子により分散させ、2次元回折素子によって分散された熱放射光を2次元画像として検出することを特徴とする多波長放射温度計測方法を提供する。
 本発明によれば、上記問題点に鑑み、高精度な温度計測と、形状計測を両立する多波長放射温度計および多波長放射温度計測方法を提供することができる。
本発明の実施例1に係る多波長放射温度計の構成を示すブロック図である。 本発明の実施例1に係る多波長放射温度計による計測手順を示すフロー図である。 本発明の実施例1に係る符号化絞りを示す模式図である。 本発明の実施例1に係る2次元回折素子を示す模式図である。 本発明の実施例1に係る2次元センサにて撮像される画像の模式図である。 本発明の実施例1に係る3次元データキューブを示す模式図である。 本発明の実施例1に係る多波長温度計の処理部の構成を示すブロック図である。 本発明の実施例1に係る分光放射率の算出方法を説明する模式図である。 本発明の実施例1に係るGUIを示す模式図である。 本発明の実施例2に係る多波長放射温度計の構成を示すブロック図である。 本発明の実施例3に係る多波長放射温度計を複数用いた管理システムの構成を示すブロック図である。 本発明の実施例3に係る多波長放射温度計を複数用いた管理システムによる計測手順を示すフロー図である。
本発明は、高精度な温度計測と、形状計測を両立する計測方法およびその装置に関するものであって、被検物から発生される熱放射光の一部を遮光する絞りと、絞りを透過した熱放射光を波長領域に応じて分散させる2次元回折素子と、2次元回折素子によって分散された熱放射光を検出する2次元センサとを備える多波長放射温度計を提供するものである。
 以下に、本発明の実施例を、図面を用いて説明する。
 本発明の実施例1を図1~図9を用いて説明する。図1に形状計測機能を備えた多波長放射温度計の構成を示す。本多波長放射温度計では、2次元分光素子を用いて空間2次元における波長情報を1回の撮像にて取得することで、従来にない高精度な温度計測を実現する。
 検査対象である被検物100より放射された熱放射光である被検赤外線101の空間2次元と波長1次元の計3次元情報を分光画像撮像部120にて取得する。分光画像撮像部110は、波長カットフィルタ111、対物レンズ112、被検物100から発生される熱放射光の一部を遮光する絞りの1つである符号化絞り113、コリメータレンズ114、波長領域に応じて熱放射光を分散させる2次元回折素子115、分散した熱放射光を結像させる結像レンズ116、そして結像した熱放射光を検出する2次元センサ117より構成される。
 なお、分光画像撮像部110は、温度変化による光学素子の特性変化や、2次元センサ117のノイズ抑制のため、温度状態が一定となるように恒温カバー120に収められている。恒温カバー120には計測窓121が設けてあり、被検物100から放射される被検赤外線101を透過し、分光画像撮像部110に被検赤外線101を導く構成となっている。
 以降の処理フローを図2に示す。分光画像撮像部110にて画像を取得し(S100)、S100にて取得した画像は処理部130にて画像処理が施され、空間2次元における奥行分布と温度分布が算出される(S101)。S101にて算出された奥行分布と温度分布は保存部140にて保存される(S102)とともに、判定部150において奥行と温度が正常か否かを判定され(S103)、温度と奥行情報およびS103による判定結果を表示部160に表示する(S104)。
 各部位の役割を詳細に説明する。被検赤外線101は、波長カットフィルタ111にて所望の波長範囲のみを透過した後、対物レンズ112に入射し、その後方の瞳面に載置された符号化絞り113に入射する。符号化絞り113の模式図を図3に示す。
 本実施例で用いられる符号化絞り113は任意の位置で熱放射光を遮光し、遮光された位置以外の位置で熱放射光を透過するものである。通常の絞りは円形状をしているのに対し、符号化絞りは遮光する位置を空間上に任意に配置している。絞りは符号か絞り113に限らず、熱放射光を遮断するものであれば任意のものを用いてよい。ただし、本実施例のように符号化絞り113を用いて、明暗の位置を適切に設計することで、取得した画像のぼけ具合と奥行に強い相関を持たせることができ、ぼけ具合から奥行情報を推定することが可能となる。
 この手法は、Depth From Defocus(DFD)と呼ばれている。特にLevinの符号化絞りを用いることで1枚の画像から奥行の情報を容易に推定することができる。DFDは、マシンビジョンの分野などで主に可視域を対象に応用されているが、本実施例のように赤外線にて用いる場合、奥行情報の推定精度を確保するためには、遮光部に赤外線を透過しない媒質を選択すること、赤外線を吸収することによる符号化絞り113そのものの膨張を抑制することなどが必要となる。
 ここで、温度による符号化絞りの膨張は、恒温カバー120にて抑制する。符号化絞り113を透過した被検赤外線101を、コリメータレンズ114によりコリメートし、被検物100の1次結像を得る。この1次結像位置に2次元回折素子115を置き、波長領域に応じて分散させ、結像レンズ116により、2次元センサ117上に結像する。2次元回折素子115の模式図を図4に示す。被検赤外線101を透過する材質で作られており、位置ごとに高さが異なる。
 この構造により、回折光の回折方向を制御することで2次元センサ117上では、図5に示すような画像が得られる。中心部分に0次回折光が得られる(通常の結像結果)。また、その周辺に1,2次回折光が複数の方向に、分散がかけられた状態で得られる。これらの1,2次回折光は、図6に示す空間2次元(x、y)、波長1次元(λ)の3次元データキューブを、様々な方向から射影したものとみなすことができる。したがって、複数の1,2次回折光から医療分野にて広く用いられているCT(Computed Tomography)技術を用いて図6の3次元キューブを再構築することが可能となる。
 この手法はCTIS(Computed Tomography Imaging Spectrometer)と呼ばれる。このとき、波長カットフィルタ111の透過波長範囲を適切に決めておくことで、各回折光が重なり合うことなく、所望の3次元データキューブを高精度の算出することが可能となる。
 なお、2次元センサ117には、各種CCDやCMOS等を用いることができる。特に、被検物100の温度が1000℃とすると、被検赤外線は近赤外領域となるため、0.9~1.5μm程度が検出可能なInGaAsを用いたCCDセンサを用いる。温度計測においては、0.9~1.5μmの波長帯域において、1000℃±300℃程度を計測するには約50dBのダイナミックレンジが求められる。高ダイナミックレンジのセンサが手に入らない場合は、異なる感度での複数回計測が必要となる。
 本実施例では、このようにして取得した2次元、かつ多波長の画像を用いて、画像の各画素における温度を高精度に算出することを可能とする。また、光学系に符号化絞り113を導入することで各画素の奥行情報を得ることができる。
 次に取得したデータの処理部130に関して説明する。処理部の詳細を図7に示す。分光画像撮像部110の2次元センサ117にて取得した画像を処理部130に入力する。処理部130は、奥行算出部131、および温度算出部132からなる。
 奥行算出部の処理内容を説明する。符号化絞り113を透過して得られた画像は、そのままでは、大きくぼけた画像となる。符号化絞り113の形状に応じたPSF(Point Spread Function)による復元処理を施し、鮮明な画像および奥行情報を取得する(詳細はA. Levin, ACM Transactions on Graphics, 3, 2007.に記載)。2次元センサ117にて得られた画像は、図5に示す中心部分の0次光部分が通常の光学系にて取得した画像に対応している。この、0次光部分の奥行分布を奥行分布画像と呼ぶ。
 次に、温度算出部132について説明する。はじめに、図5に示す複数の回折光を含んだ画像より、図6に示す3次元データキューブを再構築する。CTISでは、線形モデルを用いた再構築方法を用いることができる。3次元データキューブが表す各波長ごとの出力画像gは、システム行列Hと入力画像f(図5に示す画像)の積で、
Figure JPOXMLDOC01-appb-M000001
と表すことができる。この式より、f(x、y、λ)を求める。このとき、Expectation Maximization(EM) Method、およびMultiplicative Algebraic Reconstruction Technique(MART)などを用いることができる。ここで、システム行列Hは、事前に2次元形状および波長が既知の光を用いた較正により、事前に求めておく。この事前較正により、計測窓121、波長カットフィルタ111、その他光学素子の透過率、2次元回折格子115の回折効率、2次元センサ117の検出効率も較正する。
 引き続き、f(x、y、λ)から分光放射率を求める。以降、簡単のため、画像f(x、y、λ)の1画素において温度を算出することを考える。ここで、f(xi、yi、λ1)=I1、f(xi、yi、λ2)=I2、…、f(xi、yi、λN)=INとする。図8(a)に縦軸に輝度、横軸に波長とした場合のI1 、I2、…、INのプロット結果を示す。被検物100が光を100%吸収する黒体の場合、実線で示したスペクトル(黒体輻射)が得られるが、材質や表面状態によって放射光量が減少する。黒体の放射光量を1とした場合の、Iの減衰率を放射率と呼び、波長ごとの放射率を分光放射率と呼ぶ。黒体輻射のスペクトルPjはプランクの式にしたがい、
Figure JPOXMLDOC01-appb-M000002
と書くことができる。ここでhはプランク定数、cは光速、kはボルツマン定数、Tは被検物の温度を示す。
 実際に得られるスペクトルIjは、黒体輻射のスペクトルPjの各波長に分光放射率εjをかけることにより、
Figure JPOXMLDOC01-appb-M000003
と表される。
 市販の放射温度計においては、単波長計測にてεjを外部パラメータとして与え温度Tを求める方法や、2波長にてεj、εj+1が等しいと仮定しIj/Ij+1より温度Tを求める方法が広く利用されている。
 また、特許文献1に記載の方法では、分光波長の関数として近似した分光放射率の式を用いるが、被測定物の分光放射率の特性は相変態、合金化、酸化、表面粗さ等の変化により常に変動しているため、想定した関数を逸脱する場合も多く、温度測定の精度を確保できないという課題があった。
 温度算出部132では、上記課題を解決するため多波長スペクトルを活用し、高精度に分光放射率を算出する。図8(b)を参照しながら説明する。波長λ2における放射率ε2 の導出を考える。分光放射率εjが局所領域においては、単純な関数で記述できる。ここでは、線形とし以下のように仮定する。
Figure JPOXMLDOC01-appb-M000004
 分光放射率を(数4)のように仮定すると、(数3)は係数a, b, 温度Tの3つの変数にて記述される。したがって、(数4)の仮定が成立する範囲内の最低3波長における輝度より、係数a, bを算出することができる。図8(b)では、λ2と左右のλ1、λ3における強度I1 、I2、I3を用いた場合を示している。波長λj(j=2~N-1)に対して逐次的に計算を繰り返すことで分光放射率εj(j=2~N-1)を求めることができる。さらに、すべての画素に対して同様に演算を繰り返すことで、各画素ごとに分光放射率を高精度に算出できる。なお、分光放射率を求める際に、空気の吸収スペクトルのある波長付近のデータは、誤差要因となるためあらかじめ除外しておく。
 以上のように求めた分光放射率εjの結果を用いて、f(x、y、λ)の画素ごとの温度を算出する。前述の方法では、局所的な範囲において放射率の計算を繰り返し、分光放射率εjを得た。この分光放射率εjすべてを用いて温度Tを求めることで、計測のバラつきを低減し、精度向上を図る。ここで、評価関数Eを以下のように定義する。
Figure JPOXMLDOC01-appb-M000005
この評価関数Eを最小とするようなTを最適化計算により導出し、導出されたTをその画素における温度とする。
 同様の計算を全ての画素について行いf(x、y、λ)の画素ごとの温度を得る。以上より、既存手法のように事前に放射率を与えることなく、かつ高精度に温度の2次元の温度分布画像を算出することができる。
 処理部130にて算出した奥行と温度は、保存部140に保存される。ただし、ユーザが保存の必要性を判断し、ON/OFFを選択することができる。
 判定部150では、処理部130にて算出した奥行と温度より、計測対象の正常/異常を判定する。事前に奥行分布画像の画素もしくは複数画素からなる領域、および奥行の許容範囲を設定しておく。設定した画素もしくは複数画素からなる領域内において、計測値が許容範囲内に入っていない場合は異常と判定する。なお、領域の平均値と計測値との比較を行ってもよい。温度に関しても同様に、温度分布画像に対して、画素もしくは複数画素からなる領域、温度の許容範囲を設定し、計測値との比較を行うことで正常/異常を判定する。この正常/異常の判定結果は、奥行および温度計測結果とともに表示部160に表示する。
 表示部160のGUI(Graphical User Interface)170を図9に示す。測定を開始する開始ボタン171および測定を停止する停止ボタン172がある。開始ボタン171を押すと計測が連続で行われる。計測結果表示ウインドウ173に計測結果が表示される。例えば奥行を色相にて表現し、温度を明るさで表現することで1枚の画像にて奥行と温度を同時に表現する。ここで、温度をRGB,奥行を明るさで表現しても構わない。表示している色、明るさと奥行、温度の関係はカラーバー174に示す。また、計測時刻を時刻表示ウィンドウ175に表示する。
 保存チェックボックス176にチェックがある場合は、連続して計測される結果が全て保存される。また、条件設定を事前に行っておくことで、正常/異常の判定が可能となる。判定に用いる領域177
を設定し、許容値となる奥行もしくは温度を設定する(図示せず)。判定ボックス178には、許容値以内の場合は正常、許容値外のときは異常と表示される。
 実施例1の変形例を示す。温度算出部132において、温度Tを求めるために設けたλの変化に対するεの変化に関するモデル化にはいくつかのバリエーションが考えられる。本変形例は、近接する波長での分光放射率は近い値となるという仮定のみを用いる方法である。すなわち、分光放射率の波長分布に関数を当てはめるなどの制約を設けないことで、材質や表面状態による分光放射率の変換により柔軟に対応可能となるという効果がある。(数3)を満たす分光放射率εj を以下のように導出する。
Figure JPOXMLDOC01-appb-M000006
ただし、∥ ∥n はLnノルムを表す。ここで、係数β、m1, n1, m2, n2は測定対象の分光放射率の波長依存性によって適切な条件が異なるため、計測前に事前準備として適切な係数を選択しておく。(数6)により求めた分光放射率を(数3)に代入し、温度Tを以下のように得る。
Figure JPOXMLDOC01-appb-M000007
この(数6)(数7)の計算を各画素に対して実施し、温度分布画像を得る。
 以上より、本実施例によれば、符号化絞り113を用いることで被検物100の温度情報だけでなく、奥行情報も高精度に得ることができる。また、局所的な波長範囲について分光放射率の算出を繰り返すことにより高精度に温度情報を得ることができる。
 実施例2の構成図を図10に示す。実施例1の構成図である図1との違いは、符号化絞り113を通常の円形絞り118にしたことである。高速な温度計測が必要とされる場合においては、符号化絞り113が入ることにより必要となる画像復元処理が課題となる。そこで、符号化絞り113に変わり通常の円形絞り118を用いることで、画像復元処理を省き、処理の高速化を可能とする。奥行計測には、円形絞り118に適用可能なZhuoらの開発したDFDを適用する。絞り形状の違いに伴って、奥行算出部131が実施例1と異なる。
 本実施例における奥行算出部131の処理内容は以下の通りである。図5で得られた複数回折次数を含む画像の0次項を抽出し、DFDの処理を施す。0次項画像と、0次項画像をレンズ特性を模したPSFにて平滑化して得た平滑化画像のそれぞれからエッジを抽出し、それぞれのエッジ画像の比を導出し、ノイズ除去、および補完処理を施すことで奥行画像を得る。Zhuoらは、画像のぼけを薄肉レンズモデルを想定しガウス関数としたが、実際のレンズのPSFを適用することで、より高精度な奥行画像の算出が可能となる。
 本実施例によれば、符号化絞り113に代えて円形絞り118を用いて、PSFを適用して復元処理を行うこととで実施例1に比較してより高精度ナ奥行画像を得ることができる。
 実施例1,2では、単一の多波長放射温度計を用いた被検物100の計測方法を示した。単一のセンサを用いた場合、形状に関する情報は観察方向に対する奥行のみである。しかし、熱間鍛造や熱間圧延に用いるには、さまざまな観察方向からの3次元形状の管理が必要となることも多い。そのような場合を想定し、図11に示すように複数の奥行算出機能を備えた多波長放射温度計201、202、203を用いたシステムを提案する。各多波長放射温度計201,202,203の動作、処理部130での処理方法は実施例1と同様である。処理部130にて算出された多波長放射温度計201,202,203のそれぞれ個別に処理された奥行情報を統合する統合部210を加えた。
 計測フローを図12に示す。3つの多波長放射温度計の分光画像撮像部110よりそれぞれ画像を取得し(S200)、S200にて取得した3枚の画像は処理部130にて画像処理が施され、空間2次元における奥行分布と温度分布が算出される(S201)。S201にて3つの多波長放射温度計からそれぞれ算出された奥行情報を統合(S202)する。S201にて算出された温度分布、S202にて統合された奥行情報は保存部140にて保存される(S203)。判定部150において奥行と温度が正常か否かを判定され(S204)、温度と奥行情報およびS204による判定結果を表示部160に表示する(S205)。3つの奥行画像の統合は、画像の縦横をxy、奥行をzとした3次元座標系において、事前に求めておいた各多波長放射温度計の座標値を基準として統合してもよいし、奥行画像から求めた3次元点群同士をICP(Iterative Closest Point)法などを用いて統合してもよい。
 本実施例によれば、複数の多波長放射温度計201、202、203を用いることで、複数の多波長放射温度計からそれぞれ算出された奥行情報を統合し、複数の観察方向からの奥行情報・温度情報の管理が可能となる。
 これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 100・・・被検物  101・・・被検赤外線  110・・・分光画像撮像部  111・・・波長カットフィルタ  112・・・対物レンズ  113・・・符号化絞り  114・・・コリメータレンズ  115・・・2次元回折素子  116・・・結像レンズ  117・・・2次元センサ  118・・・円形絞り  120・・・恒温カバー  121・・・計測窓  130・・・処理部  131・・・奥行算出部  132・・・温度算出部  140・・・保存部  150・・・判定部  160・・・表示部  170・・・GUI  171・・・開始ボタン  172・・・停止ボタン  173・・・計測結果表示ウインドウ  174・・・カラーバー  175・・・時刻表示ウインドウ  176・・・保存チェックボックス  177・・・領域  178・・・判定ボックス  201,202,203・・・多波長温度計  210・・・統合部。

Claims (14)

  1.  被検物から発生される熱放射光の一部を遮光する絞りと、
     前記絞りを透過した熱放射光を波長領域に応じて分散させる2次元回折素子と、
     前記2次元回折素子によって分散された熱放射光を検出する2次元センサとを備える多波長放射温度計。
  2.  前記絞りは、任意の位置で前記熱放射光を遮光し、遮光された位置以外の位置で前記熱放射光を透過する符号化絞りであることを特徴とする請求項1に記載の多波長放射温度計。
  3.  前記2次元センサで検出した局所的な熱放射光の波長範囲について分光放射率の算出を繰り返すことで、温度分布を算出する温度算出部を備える請求項1に記載の多波長放射温度計。
  4.  前記2次元センサで検出した2次元画像に復元処理を施し、被検物の奥行情報を取得する奥行算出部を備えることを特徴とする請求項1に記載の多波長放射温度計。
  5.  前記奥行算出部はDepth From Defocusにより奥行情報を推定することを特徴とする請求項4に記載の多波長放射温度計。
  6.  前記奥行算出部で算出した奥行と許容値とを比較し、正常または異常を判定する判定部を備える請求項4に記載の多波長放射温度計。
  7.  前記温度算出部で算出した温度と許容値とを比較し、正常または異常を判定する判定部を備える請求項3に記載の多波長放射温度計。
  8.  被検物から発せられる熱放射光を絞りにより遮光し、
     前記絞りを透過した熱放射光を波長領域に応じて2次元回折素子により分散させ、
    前記2次元回折素子によって分散された熱放射光を検出して2次元画像を得ることを特徴とする多波長放射温度計測方法。
  9.  前記絞りは、任意の位置で前記熱放射光を遮光し、遮光された位置以外の位置で前記熱放射光を透過する符号化絞りであることを特徴とする請求項8に記載の多波長放射温度計測方法。
  10.  前記2次元センサで検出した局所的な熱放射光の波長範囲について分光放射率の算出を繰り返すことで、温度分布を算出することを特徴とする請求項8に記載の多波長放射温度計測方法。
  11.  前記2次元センサで検出した2次元画像に復元処理を施し、被検物の奥行情報を取得することを特徴とする請求項8に記載の多波長放射温度計測方法。
  12.  Depth From Defocusにより奥行情報を推定することを特徴とする請求項11に記載の多波長放射温度計測方法。
  13.  算出した奥行と許容値とを比較し、正常または異常を判定することを特徴とする請求項11に記載の多波長放射温度計測方法。
  14.  温度と許容値とを比較し、正常または異常を判定することを特徴とする請求項10に記載の多波長放射温度計測方法。
PCT/JP2014/069899 2013-09-12 2014-07-29 多波長放射温度計および多波長放射温度計測方法 WO2015037352A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014003549.1T DE112014003549T5 (de) 2013-09-12 2014-07-29 Thermometer für Mehrwellenlängen-Strahlungen und Verfahren zur Messung einer Temperatur von Mehrwellenlängen-Strahlungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013188944A JP2015055547A (ja) 2013-09-12 2013-09-12 多波長放射温度計および多波長放射温度計測方法
JP2013-188944 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037352A1 true WO2015037352A1 (ja) 2015-03-19

Family

ID=52665474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069899 WO2015037352A1 (ja) 2013-09-12 2014-07-29 多波長放射温度計および多波長放射温度計測方法

Country Status (3)

Country Link
JP (1) JP2015055547A (ja)
DE (1) DE112014003549T5 (ja)
WO (1) WO2015037352A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073008A (zh) * 2016-12-12 2019-07-30 株式会社Posco 高炉出铁口温度测量装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179932A (ja) * 2017-04-21 2018-11-15 日本アビオニクス株式会社 赤外線撮影装置、赤外線撮影システム及び赤外線撮影方法
JP7243707B2 (ja) * 2018-02-22 2023-03-22 コニカミノルタ株式会社 監視システムおよび監視システムの制御方法
JP7073472B2 (ja) * 2020-11-27 2022-05-23 日本アビオニクス株式会社 赤外線撮影装置、赤外線撮影システム及び赤外線撮影方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231944A (ja) * 1992-02-21 1993-09-07 Sumitomo Metal Ind Ltd 多波長を用いた放射測温方法
JPH07167713A (ja) * 1993-12-15 1995-07-04 Sumitomo Metal Ind Ltd 多波長放射温度計
US6522403B2 (en) * 2000-12-04 2003-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events
JP2003214956A (ja) * 2002-01-17 2003-07-30 Toshiba Corp 温度測定方法、温度測定装置、半導体装置の製造方法、及び記憶媒体
JP2013164420A (ja) * 2007-07-06 2013-08-22 Nikon Corp 計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231944A (ja) * 1992-02-21 1993-09-07 Sumitomo Metal Ind Ltd 多波長を用いた放射測温方法
JPH07167713A (ja) * 1993-12-15 1995-07-04 Sumitomo Metal Ind Ltd 多波長放射温度計
US6522403B2 (en) * 2000-12-04 2003-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events
JP2003214956A (ja) * 2002-01-17 2003-07-30 Toshiba Corp 温度測定方法、温度測定装置、半導体装置の製造方法、及び記憶媒体
JP2013164420A (ja) * 2007-07-06 2013-08-22 Nikon Corp 計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073008A (zh) * 2016-12-12 2019-07-30 株式会社Posco 高炉出铁口温度测量装置
EP3553189A4 (en) * 2016-12-12 2019-12-04 Posco DEVICE FOR MEASURING TEMPERATURE OF HOUSING HOLE OF HIGH STOVE

Also Published As

Publication number Publication date
JP2015055547A (ja) 2015-03-23
DE112014003549T5 (de) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2015037352A1 (ja) 多波長放射温度計および多波長放射温度計測方法
JP6322939B2 (ja) 撮像システム及び色検査システム
CN104318550A (zh) 八通道多光谱成像数据处理方法
Benes et al. Multi-focus thermal image fusion
CN113865717B (zh) 一种基于高速相机的瞬态高温比色测温装置
US20100033721A1 (en) System and method for measuring reflectance of object
CN102257822B (zh) 摄像装置和使用它的测距装置
US9194798B2 (en) Imaging based refractometer for hyperspectral refractive index detection
Beuckels et al. Development of an image-based measurement instrument for gloss characterization
JP2022023916A (ja) 脈波検出装置、脈波検出方法、および情報処理プログラム
Hahn et al. Detailed characterization of a hyperspectral snapshot imager for full-field chromatic confocal microscopy
KR101129327B1 (ko) 이미지 기반 반사율 측정 시스템 및 방법
CN111462254B (zh) 一种多光谱监测方法与系统
US9250186B2 (en) Profilometry systems and methods based on absorption and optical frequency conversion
JP2013033006A (ja) 分光情報取得装置、分光情報取得方法及び分光情報取得用プログラム
CN105784121B (zh) 九通道自适应大范围二维温度场测量装置及其测量方法
CN107810395A (zh) 红外成像检测器
KR100983877B1 (ko) 물체의 반사율을 측정하는 시스템 및 방법
JP2004147651A (ja) 植生のヘルスモニタリング方法
JP6750672B2 (ja) ガス観測方法
Klein Multispectral imaging and image processing
Darrodi et al. A ground truth data set for Nikon camera's spectral sensitivity estimation
KR102322871B1 (ko) 필터 어레이, 이를 포함하는 이미지 센서 및 적외선 카메라
JP6372018B2 (ja) 計測装置および計測方法
JP2003166880A (ja) 温度計測手段を有する撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003549

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843749

Country of ref document: EP

Kind code of ref document: A1