WO2015037281A1 - 疲労・ストレス検診システム - Google Patents

疲労・ストレス検診システム Download PDF

Info

Publication number
WO2015037281A1
WO2015037281A1 PCT/JP2014/064088 JP2014064088W WO2015037281A1 WO 2015037281 A1 WO2015037281 A1 WO 2015037281A1 JP 2014064088 W JP2014064088 W JP 2014064088W WO 2015037281 A1 WO2015037281 A1 WO 2015037281A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
data
measurement
pulse wave
electrocardiogram
Prior art date
Application number
PCT/JP2014/064088
Other languages
English (en)
French (fr)
Inventor
菊池 修
孝之 松原
益豊 宮本
Original Assignee
株式会社日立システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立システムズ filed Critical 株式会社日立システムズ
Priority to CN201480050426.6A priority Critical patent/CN105578961A/zh
Priority to US14/917,516 priority patent/US20160213296A1/en
Publication of WO2015037281A1 publication Critical patent/WO2015037281A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening

Definitions

  • the present invention relates to a fatigue / stress screening system. More specifically, the subject's biological data (electrocardiogram / pulse wave) is automatically measured and analyzed, and the subject can easily grasp fatigue / stress from the analysis result, and evaluation suitable for fatigue / stress It is related to the fatigue / examination system that can be received.
  • biological data electrocardiogram / pulse wave
  • JP 2010-234000 Cited document 1
  • JP 2001-204714 Cited document 2
  • the biological information measuring unit 5 that measures the heartbeat cycle and the respiratory cycle of the person to be measured, and the heartbeat cycle and the respiratory cycle that are measured from the biological information measuring unit 5, the average heartbeat cycle and the average respiratory cycle are determined.
  • Average period analysis unit 9 to be obtained, heartbeat period interval RR (n) at the nth beat and (n + k) th beat with respect to an arbitrary variable n (n is an integer) and an arbitrary constant k (k ⁇ 1) And RR (n + k) are calculated, and the heartbeat fluctuation analysis unit 10 that inputs these as coordinate points with respect to the two-dimensional coordinate axis, and the ratio r of the average respiratory cycle to the average heartbeat cycle are calculated, and k r is corrected.
  • the cited document 2 states that “the acquisition means for acquiring the subject's heart rate equivalent signal and the respiratory vibration equivalent signal, and the first time / frequency conversion for the beat interval data on the time axis of the heart rate equivalent signal”.
  • Conversion means data specifying means for specifying only data in a frequency band equal to or lower than a predetermined frequency among the data converted by the first conversion means, and frequency / time for the data specified by the data specifying means
  • Patent Document 1 describes a mechanism of a mental stress evaluation unit that analyzes by combining heart rate fluctuation and respiratory information.
  • Patent Document 2 describes a mechanism of a mental stress determination device that can reduce an error based on a sudden change in heart rate.
  • the mental stress evaluation unit of Patent Document 1 and the mental stress determination device of Patent Document 2 are special devices that can be measured objectively and in a short time by a general subject at any time and anywhere. In consideration of grasping in a form in which stress can be seen in a general-purpose portable information device, it is not considered to visually grasp the measurement result of fatigue by the subject himself / herself.
  • Psychiatric disorders such as depression are generally made based on subjective judgments through interviews and interviews with doctors, industrial physicians, and public health nurses. Therefore, for mentally ill people, there is a high threshold, it is difficult to use with care, and there is a dislike for taking time, including waiting for a diagnosis.
  • the present invention makes it possible for anyone to easily grasp the current state of fatigue and stress without preparing a special device, and to obtain information that can be used as a reference for coping methods. Provide a possible fatigue / stress screening system.
  • the electrocardiogram and pulse wave are measured simultaneously, the state of the autonomic nerve is measured from the electrocardiogram and pulse wave data, and the fatigue and analysis result data are centrally managed so that the degree of fatigue and stress tendency can be seen numerically.
  • the fatigue and analysis result data are centrally managed so that the degree of fatigue and stress tendency can be seen numerically.
  • the present invention provides a fatigue / stress screening system that realizes a fatigue / stress screening cloud capable of creating and outputting a fatigue level measurement result report including autonomic nerve evaluation information corresponding to fatigue / analysis result data.
  • the present invention can be provided with an evaluation according to the fatigue / stress state of the subject by comprehensively diagnosing fatigue / stress from the strength and balance of the autonomic nerve, and not a medical person, To provide a fatigue / stress screening system that enables even an amateur to easily understand the coping method based on detailed comments.
  • the present invention has means for measuring the strength and balance of the autonomic nerve and determining the autonomic nerve function for the measurement result.
  • the fatigue / stress screening system of the present invention is: When diagnosing fatigue / stress, the storage means for storing the reference value for each age as master data, the measurement data obtained by measuring the electrocardiogram / pulse wave of the subject and the reference value are compared and determined, A determination means for outputting a determination result divided into classifications, a calculation means for receiving the determination result and calculating an autonomic nervous function age;
  • the determination means includes An autonomic nerve determination unit that determines the strength of the autonomic nerve and an autonomic nerve balance determination unit that determines the balance of the autonomic nerve,
  • the autonomic nerve balance determining means includes A reference value indicating the strength of the autonomic nerve stored in the storage means and a balance reference value of the sympathetic / parasympathetic nerve (LF / HF) are compared, and a plurality of autonomic nerve function age ranks N (for example, 3 classifications: less than low, higher or higher, other standard values), and multiple sympathetic / parasympathetic (LF / HF) rank
  • the fatigue stress screening system is constructed with the portable information device on the client side, the biological measuring instrument, and the fatigue analysis server on the cloud side
  • the subject on the client side can use the existing portable electrocardiogram /
  • the subjects themselves for example, the degree of mental illness such as depression and how to deal with it can be easily learned without being interviewed by medical personnel in the hospital and without worrying about the surrounding people.
  • it can be used as a measure for health management of employees (reduction of the number of long-term leave) in a company and health promotion of residents in a local government (prevention of diseases caused by fatigue and stress).
  • the autonomic nerve is a nerve that regulates the function of the body regardless of your will, and is sympathetic (when active, stressed or nervous) and parasympathetic ( When you are resting, sleeping, or relaxing).
  • Fatigue is generally triggered by the following five stresses.
  • (1) Mental stress on human relations and work (2) Physical stress such as weighted labor (3) Physical stress such as ultraviolet rays and noise (4) Chemical stress such as chemical substances and residual agricultural chemicals (5) Biological stresses such as viral and bacterial infections These five are intertwined in a complex manner, and the balance of the body's nervous system, immune system, and endocrine system is disturbed, and fatigue occurs.
  • the brain functions by the close linkage of the immune system, nervous system, and endocrine system. It is important to live a regular life in order to arrange the work of the brain.
  • (G) Do something bad in the morning, have fun after 15:00 ... If you feel depressed after the evening, you may fall asleep. To do.
  • the fatigue stress screening system collects electrocardiogram and pulse wave data with a biosensor, analyzes heart rate variability from the data, measures the autonomic state, and uses the measured data as a reference for the strength and balance of the autonomic nerve It is a system that quantifies the degree of fatigue and stress tendency by comparing with.
  • a “high-precision autonomic nerve measuring instrument” developed by Fatigue Science Laboratory Co., Ltd. is used as the biosensor.
  • the biosensor measures the electrocardiogram and the pulse wave at the same time, it can be measured with little influence on subject characteristics such as difficulty in taking the pulse wave. For example, if the blood flow is poor due to coldness or the finger skin is thick, the sensor of the measuring instrument may not be able to pick up the pulse wave, but the acceleration pulse wave is calculated from the electrocardiogram and corrected. Further, the measurement can be performed in a short time, for example, about 150 seconds, by simply placing the index fingers of both hands against the sensor.
  • the electrocardiogram / pulse wave data transmitted from the biosensor is received by a dedicated terminal.
  • the dedicated terminal encrypts the received ECG / pulse wave data, for example, and sends it to the cloud-side data center.
  • the server decrypts the encrypted electrocardiogram / pulse wave data, refers to the data used as a criterion for analysis, analyzes the electrocardiogram / pulse wave data, and registers the analysis result in the database.
  • the data used as the judgment criteria is, for example, set by age based on a large number of subject data measured at a medical examination center, etc., and verified with other fatigue / stress biomarkers by a research institution.
  • the analysis result report on the cloud is output (displayed or printed).
  • Communication between the dedicated terminal and the data center is performed by encrypted communication, for example, and the storage and management of health information at the robust and environmentally friendly data center on the cloud side prevents information leakage due to intrusion by third parties. Do.
  • the health information accumulated in the data center on the cloud side is centrally stored and managed so that the accumulated data can be used for various purposes such as data analysis by individual or group using the accumulated data.
  • the measurement results are output in a result report so that they can be communicated in an easy-to-understand manner.
  • the report has a basic information / measurement information area, an autonomic nervous function age area, a heart rate variability area, a sympathetic / parasympathetic nerve area, and an autonomic nerve evaluation area from the top to the bottom.
  • the basic information / measurement information area information on basic information (name, gender, age, etc.) and measurement information (measurement date, measurement time, etc.) about the measurer is displayed.
  • the comparison result between the autonomic nerve function age at the time of measurement and the age of the measurer displays the degree of fatigue in a graph.
  • the vertical axis represents autonomic nervous function (CCVTP), and the horizontal axis represents age.
  • the autonomic nerve function represents the strength of the autonomic nerve (sympathetic nerve / parasympathetic nerve), and the green line “b” indicates that the age average decreases with age.
  • the face mark is the current measured value, and the age equivalent to the strength of the autonomic nerve is expressed as the functional age. The higher the mark, the higher the autonomic nervous function, and the lower it moves due to fatigue.
  • a red line c is a low reference value at that age.
  • the blue line a is the high reference value at that age. If it is more than this, there is a suspicion of measurement noise, and remeasurement is necessary. If it is the same after re-measurement, it is considered to be a correct value and it can be judged that the autonomic nerve function is very high.
  • the average heart rate at the time of measurement and the state of heart rate variability (stretching / shrinking of the heart rate interval) (the fluctuation of heart rate variability) are displayed. * The part where the waveform is dropped at the bottom shows a measurement drop (data missing).
  • the balance between the sympathetic nerve and the parasympathetic nerve is displayed as a graph and a numerical value.
  • the autonomic nerve is composed of a sympathetic nerve and a parasympathetic nerve, and this area represents a balance between them. The more the face mark is displayed on the right, the more sympathetic nerve is dominant (during tension or stress), and the more the face mark is displayed on the left, the more parasympathetic nerve is dominant (when relaxing). In the ideal state, the sympathetic nerve and the parasympathetic nerve work in a balanced manner during the active period and the parasympathetic nerve during the rest period.
  • the autonomic nerve state is comprehensively evaluated in three stages, and advice for making the current state and a better state is displayed. Displays the result of total determination of the autonomic state at the time of measurement from the function (strength) and balance, and displays explanation of the autonomic state at the time of measurement and advice for improving the autonomic function (strength) and balance .
  • the fatigue and stress screening system concerned It is possible to detect and respond to high-risk individuals at an early stage by analyzing regular personal data obtained by sampling during a medical examination. In addition, it is possible to detect and respond to high-risk individuals at an early stage by analyzing regular personal data obtained by sampling during a medical examination.
  • numerical data related to autonomic nerves, degree of fatigue, and stress tendency registered in the database it is possible to evaluate the effects and efficacy of products and services as numerical values.
  • numerical data related to autonomic nerves, degree of fatigue, and stress tendency registered in the database it is possible to evaluate the effects and efficacy of products and services as numerical values.
  • Bias can be eliminated by digitizing the degree of fatigue and stress tendency and comparing with the reference value, and managing the history of numerical data makes it possible to grasp the tendency of the fatigue / stress state. Higher-accuracy screening is possible when used in conjunction with an interview. Also, by calculating the degree of fatigue and stress tendency from the autonomic nerve, it is easily understandable even for non-medical workers.
  • the measurement is performed by instantaneous measurement, that is, only by measuring only the electrocardiogram and pulse wave in about 150 seconds in the day.
  • the measurement timing There is a risk of deriving the results of screening. That is, it is difficult to say that it is an appropriate screening method, and there is a new problem in that it provides accurate screening. Sometimes it can be annoying to the subject about unnecessary worries and anxiety. In other words, no consideration is given to providing judgment and care in accordance with daily living conditions.
  • the present invention for example, a life log (daily time series information such as morning, noon, night, before meals, after meals, before luck, after exercise, etc.) for measuring activity log ( (Activity analysis)
  • the reference value based on the subject measurement data acquired by the system is stored as a master, and the reference value is referred to when performing the fatigue / stress screening judgment from the subject measurement data, and comprehensively determined.
  • a biometric device can be freely carried, a fatigue state is objectively determined on the spot, and the result is output as a report via a portable information terminal (also referred to as a client terminal).
  • a portable information terminal also referred to as a client terminal.
  • FIG. 1 is a diagram for explaining the outline of a fatigue / stress screening system.
  • the fatigue / stress examination system includes a cloud side device 10, a client side device 20, and a network (wired / wireless) 30.
  • the cloud side device 10 has a data center 110 including a database (DB).
  • the data center 110 of the cloud side device 10 has a biometric data measurement control and analysis function, and a control / analysis program (not shown) that also performs measurement data search processing. And it has the function which receives the measurement data transmitted from the client side apparatus 20, analyzes the said data, creates an analysis result report from the said analysis result, and transmits to the portable information terminal 210 of the client side apparatus 20 side. .
  • the data center 110 is used so that it is robust and considers information security, and the user does not have to worry about the maintenance and operation of the server for analyzing the measurement data.
  • a program group such as a control / analysis program and a database (DB) are arranged in the server. Then, the client logs in to the virtual environment so that the program group on the server can be used.
  • DB database
  • the control / analysis program includes a program for controlling the measurement process, information on the biometric instrument, a program for searching the measurement history, a program for generating a fatigue measurement result report, and the like. To store.
  • the client-side device 20 includes a portable information terminal 210, a biological measuring instrument (biological sensor) 220, a printer device (output device) 230, and the like. Then, the portable information terminal 210 of the client side device 20 exchanges data between the biometric instrument 220 and the cloud side device 10.
  • the measurement data of the subject measured by the biological measuring instrument 220 is received, a desired process is performed, and the data is transmitted to the data center 110 side together with the basic information of the subject. Further, it has a function of receiving an analysis result report (described later) R1 transmitted from the cloud side device 10, printing it with the printer 230 of the output device, and outputting it.
  • wireless communication (4G line: LTE is standard) between the cloud side and the client in consideration of portability.
  • LTE Long Term Evolution
  • the analysis result report includes “basic information”, “autonomic nerve function age”, “heart rate variability”, “sympathetic / parasympathetic nerve”, and “autonomic nerve evaluation”. The detailed contents will be described later.
  • the biological measuring instrument 220 has a function of measuring both the electrocardiogram and the pulse wave simultaneously and transmitting them to the portable information terminal 210.
  • the printer 230 prints a report.
  • “Warning”, “Caution”, and “Normal” are expressed by color, for example, “red”, “yellow”, and “blue” face marks. Therefore, a color printer is used.
  • the fatigue / stress screening system is configured so that the server side has as much as possible except for the function of communicating with the biometric device and sending the biometric data to the server on the cloud side. It is good to manage. Thereby, it can be set as the structure which considered the extensibility and security.
  • the configuration which considered the extensibility and security.
  • FIG. 2 is a block diagram of the fatigue / stress screening system of the present invention.
  • the data center 110 has an analysis system.
  • the analysis system includes a fatigue analysis server 1101, a database (storage unit) 1102, a data file transmission / reception IF unit 1103, and the like.
  • the fatigue analysis server 1101 has an analysis engine 11010 that operates based on a control / analysis program (not shown).
  • the analysis engine 11010 includes a biological data analysis unit 11011, a DB search / analysis result writing unit 11012, a comment adding unit 11013, an analysis report (fatigue degree measurement result report) creation unit 11014, an analysis result determination unit 11015, and the like.
  • the biometric data analysis unit 11011 has a function of receiving and analyzing electrocardiogram / pulse wave data transmitted from the portable information terminal 210 of the client side device, and outputting CCVTP, LH, HF, and the like that are fatigue level determination values. .
  • the detailed configuration and function will be described with reference to FIG.
  • the DB search / analysis result writing unit 11012 has a function of searching the database 1102, extracting necessary information, and storing the analysis result in the database 1102.
  • the analysis result determination unit 11015 has a function of determining an analysis result by the biometric data analysis unit 11011. Details will be described later.
  • the analysis report (fatigue degree measurement result report) creation unit 11014 creates a report including analysis results, evaluations, comments, and the like, and designates the report as a fatigue degree measurement result report R1.
  • the comment adding unit 11013 has a function of adding an evaluation / comment (stored in the database 1102) according to the determination result of the analysis result determining unit 11015 that determines the analysis result by the biometric data analyzing unit 11011 to the analysis report R1.
  • the database (storage unit) 1102 has a history care DB 11021. Further, it has a master DB used for determination of measurement results, that is, an autonomic nerve age reference value DB 11022, an autonomic nerve (sympathetic / parasympathetic) evaluation value DB 11023, a comprehensive evaluation DB 11024, and the like.
  • the history care DB 11021 includes subject information (basic information), and stores analysis results obtained by analyzing biological data, determination results thereof, and the like as history care information.
  • the autonomic nerve age reference value (master) DB 11022 stores “autonomic nerve function analysis age reference value” (average value for each age: low value, reference value, high value, etc. for each age) used for determination of measurement results.
  • the autonomic nerve (sympathetic nerve / parasympathetic nerve) evaluation value DB 11023 is “sympathetic / parasympathetic nerve reference value” (evaluation: state comment for each of four classifications and standard (low value, standard) for each four classifications). Value, high value, etc.).
  • the comprehensive evaluation DB 11024 stores a “comprehensive evaluation reference value” used for determination of measurement results. Details of the detailed information of each DB will be described later.
  • Data transmission / reception IF unit (fatigue level measurement result report / subject information transmission / reception unit) 1103 monitors biological information from the client. And it has the function which receives the test subject information F1 of the portable information terminal 210 of the cloud side apparatus 10, and transmits the fatigue degree measurement result report to the portable information terminal 210 of the client side apparatus 20.
  • These subject information F1 and fatigue measurement result report R1 may be transmitted and received in a file format.
  • the portable information terminal 210 is composed of, for example, a notebook personal computer.
  • a description will be given as a dedicated terminal having a file creation function for each subject (user / client).
  • a portable information terminal 210 includes a keyboard (input unit) 2101, a control unit (arithmetic processing unit) 2102, a data transmission / reception IF unit 2103 (subject information / fatigue degree measurement result report transmission / reception unit), a display unit (output unit) 2104, and a subject
  • a file creation unit 2105 a biometric data reception IF unit (BlueTooth (registered trademark) communication unit) 2106, and the like.
  • the communication by the biometric data reception IF unit 2106 uses the well-known BlueTooth.
  • a keyboard (input unit) 2101 displays basic information and measurement of a subject (measurer / client) along each item on a subject information input screen (see FIG. 6) based on the subject information input item setting of display control of the control unit 2102. Information is input.
  • the control unit (arithmetic processing unit) 2102 has a function of controlling each unit.
  • the client side logs in to a server in the virtual environment on the cloud side, and starts the measurement processing program on the cloud side.
  • the guidance of the measurement in the bioinstrument 220 with respect to the display part 2104 and the control of the process of the measurement data in the bioinstrument 220 are performed. That is, according to the guidance display on the display unit 2104, new registration of a subject, reception of a measurement location and measurement time are performed, and measurement data of the biological measuring instrument 220 is processed. In addition, control is performed to search past measurement results.
  • the data transmission / reception IF unit (subject information / fatigue level measurement result report transmission / reception unit) 2103 transmits the subject information F1 to the fatigue analysis server 1101 side and receives the fatigue level measurement result report R1 transmitted from the fatigue analysis server 1101. It has a function.
  • a display unit (output unit) 2104 displays guidance for prompting input of subject information, and also inputs basic information of the subject, measurement data (electrocardiogram / pulse wave) of the biometric instrument 220, and a fatigue measurement result report. It has a function of displaying R1 and the like.
  • a test subject file creation unit 2105 receives basic information input from the keyboard 2101 and creates a desired test subject file (CSV file) F1 as subject information based on a file creation application (not shown).
  • the living body measuring instrument 220 includes an electrocardiogram / pulse wave measuring instrument, and has a transmission IF unit (BlueTooth communication unit) 2201 that simultaneously measures electrocardiogram / pulse wave data and exchanges data with the cloud side.
  • a transmission IF unit Bluetooth communication unit
  • Communication using the electrocardiogram / pulse wave data transmission IF unit 2201 uses BlueTooth.
  • the printer (output unit) 230 prints the fatigue level measurement result report R1.
  • the subject can visually grasp the fatigue measurement result by printing with the printer 230 or displaying on the display unit (output unit) 2104.
  • “caution”, “caution”, and “normal” are expressed by color, for example, “red”, “yellow”, and “blue” face marks.
  • the network 300 transmits and receives information between the data center 110 and the portable information terminal 210, and may be wireless or wired, but in this example, wireless 4G (LTE) is used.
  • LTE wireless 4G
  • FIG. 3 is a block diagram showing an example of an electrocardiogram / pulse wave measuring device, an analysis server, a printer, and a client terminal.
  • the living body measuring device 220 is composed of an existing electrocardiogram / pulse wave measuring device, and has an electrocardiogram / pulse wave measuring device main body (biological sensor) 2201. Electrocardiogram / pulse wave measuring electrodes 2202 and 2203 with which the fingertips are brought into contact are provided at both ends of the electrocardiogram / pulse wave measuring instrument main body (biological sensor) 2201.
  • An electrocardiogram / pulse wave measuring instrument main body (biological sensor) 2201 includes an electrocardiogram measurement unit 2204 that measures electrocardiogram with a current flowing from the finger in contact with the electrodes 2202 and 2203, and a pulse wave that measures the pulse wave.
  • the electrocardiogram and the pulse wave are simultaneously measured by the electrocardiogram / pulse wave measuring instrument main body (biological sensor) 2201.
  • the measurement time can be 1 minute at the shortest, for example, and the measurement value is transmitted to the portable information terminal 210 in real time.
  • the fatigue analysis server 1101 includes an analysis engine 11010 and a DB search / analysis result writing unit 11012.
  • the analysis engine 11010 includes an electrocardiogram analysis unit 110101, a heart rate analysis unit 110102, a pulse wave analysis unit 110103, an autonomic nerve function analysis unit 110104, and the like.
  • the electrocardiogram analysis unit 110101 analyzes the subject's electrocardiogram (see FIG. 4), the pulse wave analysis unit 110103 analyzes the pulse wave (see FIG. 5), and the heart rate analysis unit 110102 analyzes the electrocardiogram / pulse wave. Analyze heart rate variability (length of heart rate cycle).
  • the electrocardiogram analysis unit 110101 analyzes a waveform including P wave, R wave, T wave, QRS wave, and the like, which are measured electrocardiographic data.
  • a waveform including P wave, R wave, T wave, QRS wave, and the like which are measured electrocardiographic data.
  • R waves are not equally spaced, etc.
  • the arrhythmia R wave is high, there is a suspicion of left ventricular hypertrophy, and the ST part is lowered horizontally
  • the pulse wave analysis unit 110103 for example, generates “ejection wave P1” generated when the heart contracts in order to send blood to the whole body, and when the ejection wave reaches the whole body, the peripheral artery or the arterial branch
  • the “AI value” obtained by the ratio (“P2 / P1”) of the “reflected wave P2” generated by reflection at the part or the like is analyzed.
  • the autonomic nervous function analysis unit 110104 measures the state of the autonomic nerve from the electrocardiogram / pulse wave, and analyzes the labor and stress. That is, the autonomic nerve function analysis unit 110104 analyzes the balance and strength of the autonomic nerve that cannot be controlled by one's intention based on the electrocardiogram / pulse wave, analyzes the heart rate variability from the autonomic nerve, Based on these analysis results, an analysis that makes it possible to grasp the state of stress numerically is performed.
  • Autonomic nerves for example, exercise strongly to excite the body, sympathetic nerves that are affected by adrenaline and non-adrenaline, for example, work strongly when calming the body such as during meals and sleep, acetylcholine There are parasympathetic nerves, which act. Therefore, the functional strength and balance of these sympathetic nerves and parasympathetic nerves can be analyzed.
  • the state of the autonomic nerve is obtained from heart rate variability (short and long).
  • the degree of labor is analyzed by analyzing the strength of the autonomic nerve and comparing the strength of the autonomic nerve with a reference (reference value in the evaluation reference DB).
  • the tendency of stress is analyzed by analyzing the balance of autonomic nerves (sympathetic and parasympathetic nerves), and the balance is based on the balance of autonomic nerves (sympathetic nerve / parasympathetic nerve evaluation value DB, autonomic nerve age reference value DB, comprehensive evaluation) Compared with each information of DB), it analyzes and judges.
  • the heart rate analysis unit 110102 analyzes heart rate variability.
  • Heart rate variability is an index of the autonomic tone of the heart by measuring the variability of the heart rate per night. Heart rate variability decreases with aging, and cardiovascular deformation is promoted particularly in elderly people.
  • the total heart rate variability is evaluated and the frequency component of the heart rate rhythm variation is analyzed by power spectrum.
  • the DB search / analysis result writing unit 11012 has a function of receiving the analysis result of each analysis unit, searching the master DBs 11022, 11023, 11024, etc. of the database 1102, and extracting necessary information. Further, it has a function of writing analysis results and determination results in the history care DB 11021 of the database 1102.
  • the analysis report creation unit 11014 has a function of creating an analysis report (see FIG. 12) including information such as autonomic nerve function strength, sympathetic / parasympathetic nerve balance, heart rate variability, evaluation, and advice based on the analysis result.
  • the data transmission / reception IF unit 1103 includes a subject information / biometric data (subject file) receiving unit 11031.
  • the subject information / biometric data (subject file) receiving unit 11031 receives the subject information / biological data from the portable information terminal 210.
  • Secure communication is desirable for transmission / reception of CSV files including biometric data (measurement data) and reports in consideration of theft and loss.
  • FIG. 4 is a diagram showing a normal electrocardiogram and its normal value.
  • the electrocardiogram waveform includes a P wave, an R wave, a T wave, and a U wave, and has the height and width of these waves.
  • FIG. 5 is a diagram showing a calculation formula (P2 / P1) of the pulse wave and AI.
  • an AI value an index representing the load applied to the heart and the hardness of the pulse wave
  • P1 and P2 the ratio of the ejection wave (P1) and the reflected wave (P2) (P1 / P2).
  • FIG. 6 is a diagram showing an example of a subject information input screen on the display screen of the display unit of the portable information terminal.
  • FIG. 6A is a diagram illustrating an example of registering subject information in the case where measurement is performed for the first time using this system.
  • a display screen 2301 for inputting basic information and measurement information is displayed on the display unit 2104 of the portable information terminal 210.
  • input basic information from the input unit (keyboard) 2101 of the portable information terminal, and then register and click (press down) “Register and start measurement” (measurement start button).
  • Examples of basic information include ID, name, gender, date of birth, and the like.
  • FIG. 6B is a screen example in the case of a subject (measurement after the second time) whose measurement history exists in the history care DB 11021 in the past.
  • the “measurement” of the display tag is displayed. Click (press) the “Start” (measurement start button).
  • 6C is an example of a screen on which measurement data is displayed when measurement is started by operating the “measurement start” (measurement start button) in FIGS. 6A and 6B, and creation of a subject file based on the data. It is the figure which showed typically the report output of the fatigue degree measurement result.
  • the measurement start button when the measurement start button is operated to start measurement, the electrocardiogram / pulse wave data of the biosensor 220 is received, and the waveform of the electrocardiogram, pulse wave, and acceleration pulse wave is transmitted to the portable information terminal. Displayed in real time in the measurement screen display area 21002 of the display unit 2104 of 210.
  • Subject information including basic information / measurement information
  • measurement data including electrocardiogram / pulse data
  • subject file creation unit 2105 and a data file transmission / reception IF unit (subject file & fatigue measurement result report transmission / reception) Part) 1103 to the cloud-side data center 110 as a subject file (including electrocardiogram / pulse wave data) F1.
  • the client side performs the following processing.
  • Guidance is displayed on the display screen 2100 on how to use and measure the biometric instrument 220 so that even the first subject can operate the measurement (not shown). Further, during the measurement, an electrocardiogram and a pulse wave are displayed on the spot (see FIG. 6C), and an operation for confirming that the measurement is correctly performed is performed. Details are as follows.
  • Measurement location and measurement time reception (screen)>
  • measurement information indicating “measurement location” and the like registered in the history care DB 11021 is selected.
  • the “measurement location” is new, the information regarding the “measurement location” input from the keyboard is received and additionally registered in the history care DB 11021.
  • “Measurement time” is displayed on the display screen by default, so change it only when necessary.
  • ⁇ Guidance display (screen)> An operation procedure such as how to turn on the biometric instrument 220 is displayed on the display screen, and a measurement start is accepted.
  • the electrocardiogram / pulse wave data (waveform of the measurement situation) of the biological measuring instrument 220 is displayed in the display area 21002 in real time.
  • an acceleration pulse wave is calculated from the electrocardiogram, and this waveform is displayed in the same manner.
  • the measurement time is executed only for the time received in the measurement information.
  • the electrocardiogram / pulse wave data measured by the biometric instrument 220 is transmitted to the mobile information terminal 210 on the client side.
  • the portable information terminal 210 displays the measurement end guidance on the display screen when the specified measurement time ends. Further, a file is generated from the measurement data and transmitted to the cloud side fatigue analysis server 1101 side. After transmitting the file, the file is deleted from the portable information terminal 210 in consideration of security.
  • FIG. 7 is a diagram schematically illustrating a processing flow of the cloud side device.
  • the data center 110 receives a subject file (including electrocardiogram / pulse wave data) from a portable information terminal of a client side device at a subject file (subject information & biometric data) receiving unit 1103. Then, it is registered in the database 1102.
  • a subject file including electrocardiogram / pulse wave data
  • subject file subject information & biometric data
  • the data center 110 analyzes the electrocardiogram / pulse wave data of the subject file by a fatigue analysis system (analysis engine) 1101.
  • analysis engine analysis engine
  • the state of the autonomic nerve is first measured from the electrocardiogram / pulse wave, and then the strength of the autonomic nerve is compared with the reference of the reference information DB 11022 to analyze the degree of fatigue.
  • an analysis report creation unit 11014 creates an analysis report from the analysis result.
  • the analysis report includes information such as subject information, autonomic nervous function age, heart rate variability, sympathetic / parasympathetic nerve (LF / HF), and autonomic nerve evaluation.
  • the analysis result / autonomic nerve evaluation association unit 1013 associates the autonomic nerve evaluation information (autonomous nerve evaluation comment) in the autonomic nerve evaluation information DB 11023 with the analysis result to obtain a fatigue degree measurement result report.
  • the cloud side performs the following processing.
  • ⁇ Analysis processing (internal processing)> After confirming that the monitored measurement file has been received, it is input to the analysis engine of the fatigue analysis server 1101, and an index (CCVTP, LH, HF, etc.) necessary for fatigue level determination is calculated.
  • a fatigue measurement result report is generated based on the determined degree of fatigue and transmitted to the mobile information terminal 210 on the client side.
  • the portable information terminal 210 receives and displays a fatigue measurement result report from the fatigue analysis server 1101.
  • 8 to 11 are diagrams showing table contents of a sympathetic / parasympathetic nerve evaluation value, an autonomic nerve age reference value, a comprehensive evaluation, and a history DB as typical masters used in the fatigue / stress screening system.
  • FIG. 8 is a diagram showing information on autonomic nerve evaluation values, that is, sympathetic / parasympathetic nerve evaluation values (master).
  • the sympathetic / parasympathetic nerve evaluation value has an attribute name column and a remarks column.
  • attribute name column 110231 for example, “expiration date start date, end date” (master expiration date), “LF / HF rank” (4 classifications: extreme value, high value, reference value, low value), “rank” Range Start, End ”(LF / HF range for each of four classifications.“ Standard: Low value: 0.0 to 0.8 ”,“ Standard: 0.8 to 2.0 ”,“ High value: 2.0 to 5.0, extreme value: 5.0-), “evaluation” (comment of status for each 4 categories), “remarks”, “icon color” (face marker color for each 4 categories. Low value: yellow, Standard: blue, high value: yellow, extreme value: red), “registration date”, “registration ID”, “update date”, “update ID”, and the like are stored.
  • FIG. 9 is a diagram showing information on the autonomic nerve age reference value (master).
  • the autonomic nerve age reference value (master) has an attribute name column and a remarks column.
  • the attribute name column 110211 includes, for example, “expiration date start date and end date” (master expiration date), “age” (each age), “low value” (low value for each age), and “reference value”. Information such as (reference value for each age), “high value” (high value for each age), “registration date / time”, “registration ID”, “update date / time”, “update ID”, and the like is stored.
  • age-specific criteria are formulated based on clinical trial data at the screening center, and correlations with other biomarkers are verified by research institutions and used as criteria for highly reliable fatigue / stress determination. .
  • FIG. 10 is a diagram showing information on comprehensive evaluation (master).
  • the autonomic nerve age reference value (master) has an attribute name column and a remarks column.
  • the attribute name column 110241 includes, for example, “expiration date_start date”, “expiration date_end date” (master expiration date shown in the remarks column), “LF / HF rank” (4 classifications), “autonomous nerve” Functional age rank (3 categories; 3 categories: lower than age, higher or higher, and other standard values), “Comprehensive evaluation rank” (advice according to 12 categories), “Comprehensive evaluation”, “Self-care advice” ”(Advice according to 12 classifications), icon color (set one from blue, yellow and red according to 12 classifications),“ registration date / time ”,“ registration ID ”,“ update date / time ”,“ update ID ”, etc. Contains information.
  • FIG. 11 is a diagram showing information in the history care DB.
  • the history care DB has an attribute name column and a remarks column.
  • the attribute name column 110231 for example, “user ID” (user ID on the measuring side), “test subject ID” (subject information), “subject name” (subject information), “measurement start date” (measurement) Information), "measurement location code” (measurement information), “measurement location name” (measurement information), “sensor measurement date” (measurement information), “measurement time (seconds)” (measurement information), “sensor name” ( Measurement Information), “Gender” (Measurement Information), “Age” (Measurement Information), “Average RR (AA)” (Measurement Information), “Average Heart Rate (Pulse Rate)” (Analysis result),“ average HF ”(analysis result),“ average LF ”(analysis result),“ average HF + LF ”
  • FIG. 12 is a diagram showing a report example of the fatigue level measurement result.
  • the fatigue level measurement result report 2300 includes a basic information / measurement information area 2301, an autonomic nervous function age area 2302, a heart rate variability area 2303, a sympathetic / parasympathetic nerve area 2304, and an evaluation area 2305.
  • the basic information / measurement information area 2301 is a display area for displaying information related to the measurement environment / measurement person of the measurer (subject).
  • the area includes information at the time of measurement, measurement date, measurement time, and the like. Is displayed.
  • the basic information / measurement information area 2301 displays the name, gender, age as basic information of the subject, and the measurement location and measurement time as measurement information.
  • the autonomic nervous function age area 2302 is a display area that displays the functional age by comparing the autonomic nerve strength and the strength that decreases with aging with the average value of each age.
  • the neurological function age is displayed.
  • the vertical axis represents the autonomic nervous function (CCVTP), and the horizontal axis represents the age.
  • the autonomic nerve function represents the strength of the autonomic nerve (sympathetic nerve / parasympathetic nerve), and it can be seen that the green line b decreases with age on average.
  • the face mark H1 is a measurement value this time, and represents the age average equivalent to the strength of the autonomic nerve as a functional age. The higher the mark, the higher the autonomic nervous function, and the lower it moves due to fatigue.
  • a red line c is a low reference value at that age. Below this, it becomes an indicator that the function is degraded.
  • the blue line a is the high reference value at that age. If it is more than this, there is a suspicion of measurement noise, and remeasurement is required. If it is the same after re-measurement, it is considered to be a correct value and it can be judged that the autonomic nerve function is very high.
  • ⁇ Autonomic nerve function age (intensity of autonomic nerve function)> That is, in the autonomic nervous function age area 2302, as a standard display, the high value, median value, and low value of CCVTP for each age from 20 years old to 70 years old are displayed in a graph.
  • (a) is a high value
  • (b) is a median value
  • (C) is a low value.
  • the value of CCVTP of the measurement result of the subject is plotted on the vertical axis
  • the age of the subject is plotted on the horizontal axis.
  • a face mark is displayed on the plot. When the measured value is lower than the low value of the subject's age, a yellow face mark is plotted.
  • the heart rate variability area 2303 is an area for displaying the average heart rate, and the average heart rate and fluctuation at the time of measurement are displayed in the area. That is, the measured average heart rate and heart rate variability (the expansion and contraction of the heart rate interval) are displayed as a graph. The portion where the waveform is dropped at the bottom represents a measurement drop (data loss).
  • Heart rate fluctuation is displayed as a line graph.
  • the autonomic nerve is composed of the sympathetic nerve and the parasympathetic nerve, and this area represents the balance between them.
  • the sympathetic nerve and the parasympathetic nerve it is ideal that the sympathetic nerve works in a balanced state and the parasympathetic nerve works in a rest period.
  • the evaluation area 2305 is a display area for displaying an evaluation and a comment based on the functional age and balance of the autonomic nerve.
  • the autonomic nerve state at the time of measurement is determined based on the function (strength) and balance in total. Represents the result. Explanation of autonomic state at the time of measurement and advice for improving autonomic function (strength) and balance are displayed.
  • the evaluation area 2305 displays the comprehensive evaluation and advice determined from the autonomic nervous function age (autonomic nerve function strength) and the sympathetic / parasympathetic balance.
  • FIG. 13 is a diagram showing a sequence between an electrocardiogram / pulse wave measuring instrument, a portable information terminal, a fatigue analysis server (including an analysis engine), and a processing flow of each part.
  • the data center 110 on the cloud side first selects a subject in step S1101, and receives subject information in step S1102. In step S1103, registration processing for a new subject is performed, and in step S1104, measurement processing on the portable information terminal 210 side is activated and monitored.
  • the electrocardiogram / pulse wave measuring device 220 measures biometric information (electrocardiogram / pulse wave data) in step S2201, and transmits the electrocardiogram / pulse wave data to the portable information terminal 210.
  • the portable information terminal 210 displays a guidance (input screen) in step S2101 according to the start of the measurement process from the data center 110.
  • the subject on the portable information terminal 210 side inputs desired information according to the guidance.
  • the biometric information is received and processed.
  • a file for each subject may be created, and information may be sent and received for each subject.
  • step S2103 the measurement result (electrocardiogram / pulse wave data) F1 is transmitted to the cloud side fatigue analysis server 1101.
  • the fatigue analysis server 1101 receives the measurement result in step S1105 and analyzes it. This analysis processing is performed with reference to the information of each DB in the storage unit 1102. Next, the analysis result is stored in the history care DB in step S1106, and a report R1 (including autonomic nerve function strength / sympathetic / parasympathetic balance, heart rate variability, evaluation, advice, etc.) R1 as described above is created in step S1107. .
  • a fatigue measurement result report / determination result display data is created from the electrocardiogram / pulse wave data analysis result. Then, the report R1 is transmitted to the portable information terminal 210.
  • the portable information terminal 210 receives the report R1 in step S2104 and displays it on the display unit 2104 of the terminal. In step S2105, the report R1 is printed by the printer 230.
  • electrocardiogram and pulse wave data measured by an electrocardiogram and pulse wave measuring device are analyzed using an analysis server on the cloud side, and the state of stress is grasped numerically from the balance and strength of the autonomic nerve
  • the analysis data can be sent to the client terminal side and visually displayed on the client terminal side, so anyone can easily and objectively measure and carry it easily.
  • a convenient system can be constructed.
  • the ECG / pulse wave data measured by the ECG / pulse wave measuring device is analyzed using the cloud-side analysis server, and the stress state is numerically determined from the balance and strength of the autonomic nerve. It can be grasped, and the analysis data can be transmitted to the client terminal side and visually displayed on the client terminal side, so that anyone can easily and objectively measure it in a short time and carry it. Possible and convenient system can be constructed.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Abstract

 複数の自律神経機能年齢ランクと複数の自律神経機能年齢ランクから、記憶手段に保存の複数分類(3×4=12)の判定基準にそれぞれ対応するアドバイスの提供により、特に医療関係者の指示を直接得ることなく、被験者自身で、対処を正確に判断することが可能とする。 疲労・ストレスを診断するに際して、年齢毎の基準値をマスタデータとして保有する記憶手段、被験者の心電・脈波を測定して得た測定データと前記基準値を比較して判定し、複数の分類に分けられた判定結果を出力する判定手段、前記判定結果を受け、自律神経機能年齢を算出する算出手段、を有し、前記判定手段は、自律神経の強さを判定する自律神経判定部と自律神経のバランスを判定する自律神経バランス判定手段、を有する疲労・ストレス検診システム。

Description

疲労・ストレス検診システム
 本発明は疲労・ストレス検診システムに関する。
 更に詳しくは、被験者の生体データ(心電・脈波)を自動的に計測、解析し、当該解析結果をもって被験者自身が疲労・ストレスを容易に把握することができ、疲労・ストレスに適した評価を受けることが可能な疲労・検診システムに関する。
 本技術分野の背景技術として、特開2010-234000号公報(引用文献1)、特開2001-204714号公報(引用文献2)などがある。
 引用文献1には、「被測定者の心拍周期と呼吸周期を計測する生体情報計測部5と、この生体情報計測部5から計測した心拍周期と呼吸周期から、平均心拍周期と平均呼吸周期を求める平均周期解析部9と、心拍周期の任意の変数n(nは整数)及び任意の定数k(k≧1)に対してn拍目及び(n+k)拍目における心拍周期間隔RR(n)及びRR(n+k)を演算し、これらを2次元座標軸に対して座標点として入力する心拍ゆらぎ解析部10と、平均呼吸周期の平均心拍周期に対する比rを演算して、k=rとする補正を行う呼吸周期ゆらぎ補正部12を有し、補正を行った後の座標点の集合に対して、定量処理を施すことで被測定者の生体情報に関する定量値を得てストレスとして評価する精神ストレス評価部11とを有する」精神ストレス評価ユニットをもって、「心拍のゆらぎと呼吸情報を組み合わせて解析する」ことが記載されている(要約参照)。
 また、引用文献2には、「被験者の心拍相当信号および呼吸性振動相当信号を取得する取得手段と、前記心拍相当信号の時間軸上の拍動間隔データに対し時間・周波数変換を行う第1の変換手段と、この第1の変換手段により変換されたデータのうち、所定周波数以下の周波数帯域のデータのみを特定するデータ特定手段と、このデータ特定手段により特定されたデータに対し周波数・時間変換を行う第2の変換手段と、この第2の変換手段により変換された時間軸上の拍動間隔データを、前記呼吸性振動相当信号に基づいて、移動平均処理を行う移動平均手段と、この移動平均手段により移動平均された拍動間隔データに基づいて、ストレス解析を行うストレス解析手段とを設けた」メンタルストレス判定装置をもって「心拍数の急変に基づく誤差を低くすることのできるメンタルストレス判定装置を提供する」ことが記載されている(要約参照)。
特開2010-234000号公報 特開2001-204714号公報
 前記特許文献1には、心拍のゆらぎと呼吸情報を組み合わせて解析する精神ストレス評価ユニットの仕組みが記載されている。
 また、前記特許文献2には、心拍数の急変に基づく誤差を低くすることのできるメンタルストレス判定装置の仕組みが記載されている。
 しかし、特許文献1の精神ストレス評価ユニットや特許文献2のメンタルストレス判定装置は、特殊の装置であって、一般被験者が何時でも何処でも短時間で客観的に測定することができ、持ち運び可能な汎用な携帯情報機器においてストレスが見える形で把握することを考慮し、被験者自身による疲労度測定結果を視覚的に把握することまでは考慮されていない。
 うつ病などの精神疾患は、一般的に、医者や産業医、保健師などの問診や面談によって、主観的な判断で行われているのが現状である。したがって、精神疾者にとっては、敷居が高く、また人目を気にして利用しづらく、また、診断に診察待ちを含め、時間がかかる嫌いがあった。
 そこで、本発明は、特別な装置を用意することなく、現状における疲労・ストレスを、何時でも何処でも誰にでも容易に把握することができ、またその対処方法の参考となる情報を得ることが可能な疲労・ストレス検診システムを提供する。
 例えば、心電と脈波を同時に計測し、当該心電・脈波のデータから自律神経の状態を測定し、疲労の度合い、ストレス傾向を数値化して見えるように疲労・解析結果データとして一元管理を可能とする疲労・ストレス検診システムを提供する。
 更に詳しくは、疲労・解析結果データに応じた自律神経評価情報を含む疲労度測定結果レポートを作成、出力することが可能な疲労・ストレス検診クラウドを実現する疲労・ストレス検診システムを提供する。
 また、本発明は、自律神経の強さとバランスから総合的に疲労・ストレスを診断することにより、被験者の疲労・ストレス状態に応じた評価の提供を受けることができ、かつ医療関係者でなく、素人であっても木目細かなコメントを元に対処方法を容易に把握することが可能な疲労・ストレス検診システムを提供する。
 上記課題を解決するために、本発明は、自律神経の強さ及びバランスを測定し、当該測定結果について自律神経機能を判定する手段を有する。
 例えば、本発明の疲労・ストレス検診システムは、
 疲労・ストレスを診断するに際して、年齢毎の基準値をマスタデータとして保有する記憶手段、被験者の心電・脈波を測定して得た測定データと前記基準値を比較して判定し、複数の分類に分けられた判定結果を出力する判定手段、前記判定結果を受け、自律神経機能年齢を算出する算出手段、を有し、
 前記判定手段は、
 自律神経の強さを判定する自律神経判定部と自律神経のバランスを判定する自律神経バランス判定手段、を有し、
 前記自律神経バランス判定手段は、
 前記測定データと前記記憶手段に保存する自律神経の強さを示す基準値、また交感神経/副交感神経(LF/HF)のバランス基準値、を比較し、複数の自律神経機能年齢ランクN(例えば、3分類:低値未満、高値以上、それ以外の標準値)、また複数の交感神経/副交感神経(LF/HF)ランクM(例えば、4分類:低値、基準、高値、極高)を判定し、当該判定バランスの状態をコメントで提供する自律神経機能判定部、前記複数の自律神経機能年齢ランクと前記複数の交感神経/副交感神経ランクから、前記記憶手段に保存の複数分類(N×M=12)の判定基準値にそれぞれ対応するアドバイスを提供する自律神経機能総合判定部、を有し、
 前記自律神経機能総合判定部の判定結果を前記判定基準値と比較することにより、「要注意」、「注意」、「正常」とは別に前記複数の判定基準値に対するアドバイスを提供することを特徴とする。
 本発明によれば、クライアント側の携帯情報機器、生体計測器、及びクラウド側の疲労解析サーバをもって疲労ストレス検診システムを構築しているので、クライアント側の被験者は、携帯可能な既存の心電・脈波計測器と携帯情報機器を用意するだけで、何時でも何処でも誰にでも簡単に短時間で、ストレス度合いなどの疲労度測定結果を数値で把握することが可能である。その結果、被験者自身、例えばうつ病などの精神疾患の程度や対処方法について、病院の医療関係者などの問診を受けることなく、また周囲の人目を気にせず気楽に知り得るので、使い勝手がよく、例えば、企業における従業員の健康管理(長期休業者数の低減)や自治体における住民の健康増進(疲労、ストレスが原因による疾患予防)のための施策として活用可能である。
 また、疲労・ストレス診断するに際して、自律神経の強さとバランスを考慮し、これらから判定結果に応じたアドバイスを提供することにより、特に知識のない者でも容易に現状、対応策を適確に把握することが可能である。
 更に、複数の自律神経機能年齢ランクと複数の交感神経/副交感神経ランクから、記憶手段に保存の複数分類(3×4=12)の判定基準にそれぞれ対応するアドバイスの提供により、特に医療関係者の指示を直接得ることなく、被験者自身で、対処を正確に判断することが可能である。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の疲労・ストレスシステムの概要を説明する構成図である。 本発明の疲労・ストレスシステムの構成図である。 心電・脈波計測器、携帯情報端末、疲労解析サーバの各構成を示すブロック図である。 正常心電図及びその正常値を示す図である。 脈波及びAIの計算式(P2/P1)を示す図である。 携帯情報端末の表示部の表示画面例を説明する図である。 携帯情報端末の表示部の表示画面例を説明する図である。 携帯情報端末の表示部の表示画面例を説明する図である。 クラウド側の処理例を示す説明する図である。 自律神経評価(交感神経/副交感神経評価)値DB(マスタ)の情報内容を示す図である。 自律神経年齢基準値DB(マスタ)の情報内容を示す図である。 総合評価DB(マスタ)の情報内容を示す図である。 履歴ケアDBの情報内容を示す図である。 疲労度測定結果のレポート例を示す図である。 本発明の疲労・ストレスシステムのクライアント側とクラウド側間のシーケンス及び心電・脈波計測器、携帯情報端末、データセンタ(含疲労解析サーバ)の各処理手順を示すフロー図である。
 以下、実施例の実施例を図面について説明する。最初に、本発明のシステムに関する技術的背景について説明する。
 まず、自律神経とは、自分の意思とは無関係に体の機能を調整している神経であり、交感神経(活動しているとき、ストレスがあるときや緊張しているとき)と副交感神経(休憩しているとき、睡眠しているとき、リラックスしているとき)のことである。
 疲労とは、一般的に以下の5つのストレスが疲労のきっかけとなっている。
(1)人間関係や仕事上の精神的なストレス
(2)加重労働などの身体的ストレス
(3)紫外線や騒音などの物理的ストレス
(4)化学物質や残留農薬などの化学的ストレス
(5)ウィルスや細菌感染などの生物学的ストレス
 この5つが複合的に絡み合い、体の神経系、免疫系、内分泌系のバランスが乱れて、疲れが発生する。
 そして、「疲労をためないためのセルフケア」として以下のことも知られている。
(A)寝る前にストレッチすること・・・リラックスして副交感神経を優位にしたい夜はストレッチ、アロマオイルを焚いたり、心身共に解放されるムード作りも大切である。
(B)寝室をリビングにしないこと・・・寝室でテレビを見たり、ゲームをしたり、読書をするのはやめ、「寝室に入ったら眠る」という意識付けで安眠を得る。
(C)生きがいをもつこと・・・仕事や義務だけの毎日を送っていれば、気持ちの張りが失われ、また、ガーデニングや散歩など小さなことでも週末の楽しみを持つ。
(D)大いに笑うこと・・・笑うとウィルスを撃退するNK細胞が活性化すると、ストレスに強くなれる。お笑い番組や落語などで、なるべく笑う生活を心がける。
(E)規則正しい生活をすること・・・脳は、免疫系、神経系、内分泌系が密接に連動することで機能する。脳の働きを整えるために重要なのが規則正しい生活を送る。
(F)朝は熱いシャワーか運動から始めること・・・慢性的な疲労を訴える人は自律神経の働きが乱れがちとなる。起床後の熱いシャワーか強めの運動で瞬時に交感神経が活発になる。
(G)午前中は嫌な事を、15時以降は楽しいことをすること・・・夕方以降に気が滅入ることをすると、寝つきが悪くなる場合もあるので、嫌な事は早め早めに処理する。
(H)夜はぬるめのお風呂でリラックスすること・・・よい眠りは疲労回復の要である。夜は38~40℃のぬるめのお風呂や足浴で副交感神経の働きを良くし緊張をほぐす。
 また、疲労とストレスは互いに作用し合いながら影響することは知られている。疲労・ストレスの影響を持続的に受けることにより、モチベーションの低下など活量の低下や、深刻な状況になると食欲不振などの身体愁訴、抑うつなどの精神疾患となってしまう。
 そこで、疲労・ストレスを診断する方法として、問診票による自己評価や面談による問診・観察などが一般的であり、本人もしくは面談者の主観による診断がほとんどであった。
 しかし、係る面談による診断や評価を行う方法にあっては、本人による評価、つまり、問診票の質問解釈のばらつきや作為的な回答、本人の自覚がないことによる実態との相違などにより結果にバイアスが出てしまうケースがあることである。
 また、面談による評価の問題点は、面談者のスキル不足や面談者との信頼関係、面談者への期待感により結果にバイアスが出てしまうケースが生じることである。
 係る現状の疲労・ストレス診断方法による課題を是正するために、本出願人は、問診に頼ることなく、疲労・ストレス検診が行えるシステムを開発した。
 以下、係る疲労ストレス検診システムの概要について簡単に説明する。
 疲労ストレス検診システムとは、生体センサで心電・脈波データを採取し、当該データから心拍変動を解析して自律神経状態を測定し、当該測定したデータから自律神経の強さ、バランスを基準と比較することにより疲労の度合い、ストレス傾向を数値化するシステムである。
 更に詳しくは、まず、測定会場などにて専用端末からクラウド環境にログインし、測定制御プログラムを起動し、使用する生体センサで心電・脈波を測定する。つまり、自律神経バランスの崩れを測定する。
 生体センサには、例えば、株式会社疲労科学研究所が開発した「高精度自律神経測定器」を生体センサとして使用する。
 生体センサは、心電と脈波を同時測定するため、脈波がとりづらいなどの被験者特性に左右されにくく測定することが可能である。
 例えば、冷え性などで血流が悪い方や指の皮が厚い方などは、測定器のセンサが脈波を拾えないことがあるが、心電から加速度脈波を算出し補正する。
 また、両手の人差し指をセンサに当てるだけで短時間に測定、例えば150秒程度で測定可能である。
 生体センサから送信された心電・脈波のデータは専用端末で受信する。
 専用端末は受信した心電・脈波データは、例えば、暗号化してクラウド側のデータセンタへ送信する。
 データセンタ内ではサーバでは、暗号化された心電・脈波データを復号化し、判定の基準となるデータを参照して、心電・脈波データを解析し、解析結果をデータベースに登録する。
 ここで、判定の基準となるデータは、例えば、健診センタなどにて測定された多数の被験者データを元に年齢別の基準を設定し、研究機関による他の疲労・ストレスバイオマーカーとの検証を行った信頼性の高い基準を用いる。
 データセンタ内のサーバで解析した解析結果を基に、レポートを生成する。
 専用端末はクラウドサーバにログインしているので、クラウド上の解析結果レポートを出力(表示や印刷)する。
 専用端末とデータセンタ間の通信は、例えば暗号化通信で行い、堅牢で環境に優しいクラウド側のデータセンタで健康情報の保存・管理を行うことにより、第三者の侵入などによる情報漏えい防止を行う。
 測定会場などで使用する専用端末には、被験者データ、測定結果などのデータが一切保存されないようにすることにより、専用端末の盗難・紛失があっても健康情報(個人情報)が漏えいすることはない。
 係る構成とすることにより、測定者の機微な健康情報をクラウド側で安心・安全に保全することが可能である。
 また、クラウド側のデータセンタにて蓄積した健康情報は一元的に保管・管理し、蓄積データを利用した個人別や団体ごとのデータ分析など、さまざまな用途へ蓄積データの活用ができるようにする。
 また、測定結果は、分かり易く伝えることができるように結果レポートで出力する。
 レポートには、その上部から下部方向に亘って基本情報・測定情報エリア、自律神経機能年齢エリア、心拍変動エリア、交感・副交感神経エリア、自律神経評価エリア、を有する。
 基本情報・測定情報エリアには、測定者に関する基本情報(氏名、性別、年齢など)・測定情報(測定年月日、測定時間など)に関する情報を表示する。
 自律神経機能年齢エリアには、測定時の自律神経機能年齢と測定者の年齢との比較結果が疲労の度合いをグラフで表示する。
 グラフは、縦軸が自律神経機能(CCVTP)を表し、横軸が年齢を表している。
 自律神経機能は自律神経(交感神経・副交感神経)の強さを表しており、緑のラインbが年齢平均で加齢と共に低下していることを示している。フェイスマークが今回の測定値で、自律神経の強さがどの年齢平均相当かを機能年齢として表している。マークが上にいくほど自律神経機能が高く、また疲労などの傾向により下に移動する。赤のラインcはその年齢における基準値の低値である。これ以下になると機能が低下している指標になる。青のラインaがその年齢における基準値の高値である。これ以上であれば、測定ノイズの疑いがあるので、再測定を行う必要がある。再測定後も同様であれば、正しい値と考えられ非常に自律神経機能が高いと判断できる。
 心拍変動エリアには、測定時の平均心拍数と、拍変動(心拍間隔の伸び縮み)状況(心拍変動のゆらぎ)を化して表示する。※波形が下底にドロップしている部分は測定落ち(データ欠落)を表す。
 交感・副交感神経エリアには、交感神経と副交感神経のバランスをグラフと数値で表示する。
 自律神経は、交感神経と副交感神経で構成されており、このエリアは、これらのバランスを表す。フェイスマークが右に表示されるほど交感神経優位(緊張やストレス時)、左に表示されるほど副交感神経優位(リラックス時)となる。
 なお、交感神経と副交感神経は、活動期には交感神経、休息期には副交感神経がバランスよく働くのが理想的な状態である。
 自律神経評価エリアには、自律神経状態を総合的に3段階評価し、現在の状態とより良い状態にするためのアドバイスを表示する。
 測定時の自律神経状態を機能(強さ)・バランスからトータルで判定した結果を表し、測定時の自律神経状態の説明と自律神経機能(強さ)・バランスを改善するためのアドバイスを表示する。
 係る疲労・ストレス検診システムによれば、
 健診時のサンプリングによる定期的な個人データを分析することにより、ハイリスク者の早期発見・対応が可能である。また、健診時のサンプリングによる定期的な個人データを分析することにより、ハイリスク者の早期発見・対応が可能である。
 データベースに登録される自律神経関連の数値データ、疲労の度合い、ストレス傾向の数値データを用いて、製品・サービスの効果、効能を数値として評価することができる。
 データベースに登録される自律神経関連の数値データ、疲労の度合い、ストレス傾向の数値データを用いて、製品・サービスの効果、効能を数値として評価することができる。
 疲労度合いやストレス傾向の数値化と基準値と比較することによりバイアスの排除が可能となり、数値データの履歴を管理することにより疲労・ストレス状態の傾向を把握する事が可能になる。問診と併用することでより精度の高いスクリーニングが可能である。
 また、自律神経より疲労の度合い、ストレス傾向を数値化することにより、医療従事者でなくても容易に理解可能である。
 しかし、測定は瞬間的な測定、つまり一日の中で、僅か、例えば150秒程度における心電・脈波のみの測定のみをもって、解析するものであり、測定条件、例えば測定タイミングによっては、誤った検診結果を導き出す虞がある。つまり、適切な検診方法とは言い難く、正確な検診を提供すると言う点では、新たな課題があった。時には、被験者に不要な心配や不安を煽ることになり兼ねない。
 換言すれば、日常の生活状態に合わせた判定やケアまでを提供する点については考慮されていない。
 本発明は、係る点に鑑み、例えば、1日の活動量(朝、昼、夜、食事前、食事後、運度前、運動後、など1日の時系列情報)を測定するライフログ(活動量解析)システムで取得した被験者測定データを元とする基準値をマスタとして保存し、当該基準値を被験者測定データから疲労・ストレスの検診判定を行うときに参照し、総合的に判定することで、被験者にとって、生活状態に合わせたケアが可能なレポート情報を提供することができ、本システムをより有効に活かし得るシステムを提供することにある。
 以下、本実施例では、生体測定機器、を自由に持ち運びができ、その場で疲労状態を客観的に判定し、その結果をレポートとして携帯情報端末(クライアント端末とも言う)を介して出力するシステムの例を説明する。
 図1は疲労・ストレス検診システムの概略を説明する図である。
 同図において、疲労・ストレス検診システムは、クラウド側装置10、クライアント側装置20、ネットワーク(有線/無線)30、を有する。
 クラウド側装置10は、データベース(DB)を含むデータセンタ110、を有する。クラウド側装置10のデータセンタ110は、生体データ測定制御や解析機能、また測定データの検索処理も行う制御・解析プログラム(図示せず)を有する。そして、クライアント側装置20から送信された計測データを受信し、当該データを解析し、当該解析結果から解析結果レポートを作成し、そしてクライアント側装置20側の携帯情報端末210に送信する機能を有する。
 ここで、データセンタ110を用いることで堅牢で情報セキュリティに配慮すると共に、利用者が計測データを解析するためのサーバの保守・運用を気にしなくて良いものとする。サーバには、制御・解析プログラムなどのプログラム群やデータベース(DB)を配置する。そして、クライアントから仮想環境にログインし、サーバ上のプログラム群を利用できるようにする。
 制御・解析プログラムは、測定処理を制御するプログラムや生体計測器の情報を解析し、また、測定履歴の検索処理するプログラム、疲労度測定結果レポートを生成するプログラムなどであり、これらのプログラムはデータベースに格納する。
 クライアント側装置20は、携帯情報端末210、生体計測器(生体センサ)220、プリンタ装置(出力装置)230、などを有する。そして、クライアント側装置20の携帯情報端末210は、生体計測器220、クラウド側装置10間でデータ授受を行う。
 すなわち、生体計測器220にて計測した被験者の計測データを受信し、所望の処理を行い、被験者の基本情報とともにデータセンタ110側に送信する。
 また、クラウド側装置10から送信される解析結果レポート(後述する)R1を受信し、出力装置のプリンタ230にて印刷し、出力する機能を有する。
 クラウド側とクライアント間は、携帯性を考慮し、無線通信(4G回線:LTEを標準)とするとよい。但し、企業で社内ネットワークを利用する場合には、有線でも対応可能とする。
 解析結果レポートは、「基本情報」、「自律神経機能年齢」、「心拍変動」、「交感・副交感神経」、「自律神経評価」を含んでいる。その詳細内容については後述する。
 生体計測器220は、心電・脈波の両方が同時に測定し、携帯情報端末210へ送信する機能を有する。
 プリンタ230は、レポートを印刷するものであるが、印刷に際しては「要注意」、「注意」、「正常」を色別、例えば「赤」、「黄」、「青」のフェイスマークで表現するため、カラープリンタとする。
 疲労・ストレス検診システムは、生体測定器との間で通信を行い、生体データをクラウド側のサーバに送信する機能以外は、極力サーバ側に持たせるように構成し、各種データもサーバ側で一律管理するとよい。これにより、拡張性やセキュリティに配慮した構成とすることができる。以下、その一構成例について説明する。
 図2は本発明の疲労・ストレス検診システムの構成図である。
 同図において、データセンタ110は、解析システムを有する。解析システムは、疲労解析サーバ1101、データベース(記憶部)1102、データファイル送受信IF部1103、などを有する。
 疲労解析サーバ1101は、図示していない制御・解析プログラムに基づき動作する解析エンジン11010、を有する。
 解析エンジン11010は、生体データ解析部11011、DB検索・解析結果書込部11012、コメント付与部11013、解析レポート(疲労度測定結果レポート)作成部11014、解析結果判定部11015、などを有する。
 生体データ解析部11011は、クライアント側装置の携帯情報端末210から送信される心電・脈波データを受信、解析し、疲労度の判定値となるCCVTP、LH、HFなどを出力する機能を有する。その詳細構成や機能については図3により説明する。
 DB検索・解析結果書込部11012は、データベース1102を検索し、必要な情報を抽出し、また解析結果をデータベース1102に格納する機能を有する。
 解析結果判定部11015は、生体データ解析部11011による解析結果を判定する機能を有する。詳細は後述する。
 解析レポート(疲労度測定結果レポート)作成部11014は、解析結果や評価・コメントなどを含むレポートを作成し、当該レポートを疲労度測定結果レポートR1とする。
 コメント付与部11013は、生体データ解析部11011による解析結果を判定する解析結果判定部11015の判定結果に応じた評価・コメント(データベース1102に格納された)を解析レポートR1に付与する機能を有する。
 データベース(記憶部)1102は、履歴ケアDB11021を有する。また、測定結果の判定に用いられるマスタDB、つまり自律神経年齢基準値DB11022、自律神経(交感神経/副交感神経)評価値DB11023、総合評価DB11024、などを有する。
 履歴ケアDB11021は、被験者情報(基本情報)を含み、生体データを解析した解析結果やその判定結果、などを履歴ケア情報とて格納する。
 自律神経年齢基準値(マスタ)DB11022は、測定結果の判定に用いられる「自律神経機能解析年齢基準値」(年代別平均値:各年齢の低値、基準値、高値など)を格納する。
 自律神経(交感神経/副交感神経)評価値DB11023は、測定結果の判定に用いられる「交感・副交感神経基準値」(評価:4分類ごとの状態のコメントや4分類ごとの標準(低値、基準値、高値)などを格納する。
 総合評価DB11024は、測定結果の判定に用いられる「総合評価基準値」を格納する。
 各DBの詳細情報の詳細は後述する。
 データ送受信IF部(疲労度測定結果レポート・被験者情報送受信部)1103は、クライアントからの生体情報を監視する。そして、クラウド側装置10の携帯情報端末210の被験者情報F1を受信し、また疲労度測定結果レポートをクライアント側装置20の携帯情報端末210に送信する機能を有する。これらの被験者情報F1及び疲労度測定結果レポートR1は、ファイル形式で送受信するとよい。
 携帯情報端末210は、例えばノートパソコンなどからなる。本例では、被験者(ユーザ/クライアント)毎のファイル作成機能を有する専用端末として説明する。
 携帯情報端末210は、キーボード(入力部)2101、制御部(演算処理部)2102、データ送受信IF部2103(被験者情報・疲労度測定結果レポート送受信部)、表示部(出力部)2104、被験者用ファイル作成部2105、生体データ受信IF部(BlueTooth(登録商標)通信部)2106、などを有する。生体データ受信IF部2106による通信は、周知のBlueToothを利用する。
 キーボード(入力部)2101は、制御部2102の表示制御の被験者情報入力項目設に基づく被験者情報入力画面(図6参照)の各項目に沿って、被験者(測定者/クライアント)の基本情報や測定情報などを入力するものである。
 制御部(演算処理部)2102は、各部を制御する機能を有する。例えば、クライアント側からクラウド側の仮想環境にあるサーバにログインし、クラウド側の測定処理プログラムを起動する。そして、当該プログラムに基づき、表示部2104に対する生体計測器220での測定のガイダンスや生体計測器220での測定データの処理の制御を行う。つまり、表示部2104によるガイダンス表示に従って被験者の新規登録や、測定場所、測定時間の受け付けを行い、生体計測器220の測定データを処理するなどの制御を行う。また、過去の測定結果の検索を行う制御を行う。
 データ送受信IF部(被験者情報・疲労度測定結果レポート送受信部)2103は、被験者情報F1を疲労解析サーバ1101側に送信し、また疲労解析サーバ1101から送信される疲労度測定結果レポートR1を受信する機能を有する。
 表示部(出力部)2104は、被験者情報の入力を促すガイダンス表示を行い、また入力された被験者の基本情報や生体計測器220の測定データ(心電・脈波)、また疲労度測定結果レポートR1などを表示する機能を有する。
 被験者用ファイル作成部2105は、キーボード2101から入力された基本情報などを受け、ファイル作成用アプリケーション(図示せず)に基づき、被験者情報となる所望の被験者用ファイル(CSVファイル)F1を作成する機能を有する。
 生体計測器220は、心電・脈波計測器からなり、心電・脈波データを同時に測定し、クラウド側とデータ授受を行う送信IF部(BlueTooth通信部)2201を有する。
 心電・脈波データ送信IF部2201による通信は、BlueToothを利用する。
 プリンタ(出力部)230は、疲労度測定結果レポートR1を印刷するものである。このプリンタ230による印刷、又は表示部(出力部)2104の表示をもって被験者は、疲労度測定結果を視覚的に把握することができる。レポート印刷は「要注意」「注意」「正常」を色別、例えば「赤」「黄色」「青」のフェイスマークで表現するため、カラー表示とするとよい。
 ネットワーク300は、データセンタ110と携帯情報端末210間の情報の送受を行うものであり、無線でも有線でもよいが、本例では、無線の4G(LTE)を使用する。
 図3は心電・脈波計測器、解析サーバ、プリンタ、クライアント端末の一例を示す構成図である。
 同図において、生体計測器220は、既存の心電・脈波計測器からなり、心電・脈波計測器本体(生体センサ)2201、を有する。心電・脈波計測器本体(生体センサ)2201の両端には、指先が接触される心電・脈波計測用電極2202、2203、が設けられている。
 心電・脈波計測器本体(生体センサ)2201の内部には、電極2202,2203に接触した指から指に流れる電流をもって心電を測定する心電計測部2204、また脈波を測定する脈波計測部2205、を有する。
 心電波、脈波は、心電・脈波計測器本体(生体センサ)2201により、同時に計測する。計測時間は、例えば最短で1分で可能であり、測定値はリアルタイムに携帯情報端末210へ送信する。
 疲労解析サーバ1101は、解析エンジン11010、DB検索・解析結果書込部11012、を有する。
 解析エンジン11010は、心電解析部110101、心拍解析部110102、脈波解析部110103、自律神経機能解析部110104、などを有する。
 心電解析部110101は、被験者の心電(図4参照)を解析し、脈波解析部110103は、脈波(図5参照)を解析し、心拍解析部110102は、心電・脈波から心拍変動(心拍の周期の長短)を解析する。
 すなわち、心電解析部110101は、計測した心電データであるP波、R波、T波、QRS波などを含む波形を解析する。
 係る解析によって、例えば、心電図の波形のP波がない、R波は等間隔でない、などの場合、不整脈R波が高い場合、左心室肥大の疑いがあること、ST部分が水平に下がっている場合、心筋虚血、狭心症発作時の疑いがあること、T波が尖っている場合、高カリウム結晶、心筋梗塞発症直後などの疑いがあることを把握することが可能である。
 また、脈波解析部110103は、例えば、心臓が血液を全身に送り込むために収縮することによって発生する「駆出波P1」と、その駆出波が全身に行きわたる際に抹消動脈や動脈分岐部などで反射することによって発生する「反射波P2」の比率(「P2/P1」)で求めた「AI値」を解析する。
 自律神経機能解析部110104は、心電・脈波から自律神経の状態を測定し、被労・ストレスなどを解析する。つまり、自律神経機能解析部110104は、心電・脈波を元に自分の意思ではコントロールが不可能である自律神経のバランスや強さを解析し、当該自律神経から、心拍変動を解析し、これらの解析結果を元にストレスの状態を数値で把握可能とする解析を行う。
 自律神経には、例えば、運動などをして体を興奮状態に強く働き、アドレナリン、ノンアドレナリンが作用する交感神経、例えば、食事中や睡眠時など体を落ち着かせているときに強く働き、アセチルコリンが作用する副交感神経、がある。
 したがって、これらの交感神経と副交感神経の機能強度やバランスを解析することができる。
 自律神経の状態は、心拍変動(短い、長い)から求める。被労の度合いは、自律神経の強さを解析し、当該自律神経の強さを基準(評価基準DBの基準値)と比較して解析する。ストレスの傾向は、自律神経(交感神経と副交感神経)のバランスの状態を解析し、当該バランスを自律神経のバランスを基準(交感神経/副交感神経評価値DB、自律神経年齢基準値DB、総合評価DBの各情報)と比較し、解析や判定する。
 心拍解析部110102は、心拍変動を解析する。心拍変動は、心拍一泊ごとの変動を測定することにより心臓の自律神経緊張の指標となる。心拍変動は、加齢によって減少し、特に高齢者では心血管系の変形が促進される。そして、心拍変動は、全心拍変動評価と、心拍の周期変動の周波数成分をパワースペクトル解析する。
 自律神経機能が精神的ストレスによっても変化することは周知であるが、心拍変動を用いると、例えば、精神的ストレスを負荷すると、高周波数成分(HF成分:0.20-0.35Hz/呼吸変動の反映)の抑制と中間周波数成分(LF成分:0.05-0.20Hz)/圧受容体系の反映)の増加が起こることも知られている。
 したがって、この心拍変動を使って、自律神経機能の現在の状態、変化、評価、治療などのアドバイスなどを客観的に見える形で示すことが可能である。
 DB検索・解析結果書込部11012は、各解析部の解析結果を受け、データベース1102のマスタDB11022、11023、11024、などを検索し、必要な情報を抽出する機能を有する。また、解析結果や判定結果をデータベース1102の履歴ケアDB11021に書き込む機能を有する。
 解析レポート作成部11014は、解析結果に基づき自律神経機能強度、交感/副交感神経のバランス、心拍変動、評価、アドバイスなどの情報を含む解析レポート(図12参照)を作成する機能を有する。
 データ送受信IF部1103は、被験者情報・生体データ(被験者ファイル)受信部11031を有する。
 被験者情報・生体データ(被験者ファイル)受信部11031は、携帯情報端末210からの被験者情報・生体データを受信する。
 携帯情報端末ではログインしているクラウド環境で疲労度測定結果レポートを出力する。
 生体データ(測定データ)、レポートなどを含むCSVファイルの送受信は、盗難・紛失を考慮し、セキュアな通信(暗号化通信)が望ましい。
 図4は正常心電図及びその正常値を示す図である。
 同図において、心電波形は、P波、R波、T波、U波、を有し、これらの波の高さや波幅を有する。
 図5は脈波及びAIの計算式(P2/P1)を示す図である。
 同図において、脈波は駆出波(P1)、反射波(P2)、の比(P1/P2)をもってAI値(心臓にかかる負荷や脈波の硬さを表す指標)を求めることができる。
 図6(図6A~図6C)は携帯情報端末の表示部の表示画面における被験者情報入力画面例を示す図である。
 図6Aは、本システムを利用して、初めて測定する場合における被験者情報を登録する例を示す図である。
 同図において、携帯情報端末210の表示部2104には、基本情報、測定情報を入力するための表示画面2301が表示される。当該表示画面において、メッセージに従って、基本情報を携帯情報端末の入力部(キーボード)2101より、入力し、しかるのち登録して「登録して測定開始」(測定開始ボタン)をクリック(押下げ)操作する。
 基本情報としては、例えば、ID、名前、性別、生年月日などである。これらの基本情報は表示エリア21001に表示される。また、測定日、測定場所、測定時間(秒)、更に入力操作に際してのメッセージ(ガイダンス)などが表示される。
 図6Bは、過去に測定履歴が履歴ケアDB11021に存在する被験者(2回目以降の測定)の場合における画面例であって、この場合には、被験者情報を検索した上で、表示タグの「測定開始」(測定開始ボタン)をクリック(押下げ)操作する。これらの操作により、生体センサ220による心電・脈波の測定を開始する。
 図6Cは、図6A、図6Bの「測定開始」(測定開始ボタン)を操作し、測定が開始されたとき、測定データが表示される画面例、及び当該データを元に被験者用ファイルの作成、疲労度測定結果のレポート出力を模式的に示した図である。
 同図において、測定開始ボタンを操作し、測定が開始されると、生体センサ220の心電・脈波のデータを受信し、当該心電、脈波、及び加速度脈波の波形を携帯情報端末210の表示部2104の測定画面表示エリア21002にリアルタイムで表示する。
 被験者情報(含基本情報・測定情報)、測定データ(含心電・脈拍データ)は、被験者用ファイル作成部2105にてファイル化され、データファイル送受信IF部(被験者ファイル&疲労度測定結果レポート送受信部)1103にて、クラウド側のデータセンタ110へ被験者ファイル(含心電・脈波データ)F1として送信する。
 すなわち、クライアント側は、以下のような処理を行う。
 測定は初めての被験者でも操作できるように、生体計測器220の使い方・計測の仕方を表示画面2100にガイダンス表示する(図示せず)。また、測定中には心電や脈波をその場で表示し(図6C参照)、測定が正しくできていることを確認できる動作をする。詳細は下記の通りである。
 <測定場所、測定時間受付(画面)>
 測定開始に当たり、履歴ケアDB11021に登録されている「測定場所」などを示す測定情報を選択する。「測定場所」が新規の場合には、キーボードから入力される「測定場所」に関する情報を受付け、履歴ケアDB11021に追加登録する。「測定時間」はデフォルトで表示画面に表示されるので、必要な場合だけ変更する。
 <被験者選択(画面)>
 被験者が登録されている場合は、過去の測定履歴を検索して、被験者を特定し、測定を開始する。
 <新規被験者時の登録処理(画面)>
 新規の被験者の場合は、指名・性別・誕生日を受付け、履歴ケアDB11021に登録した上で測定を開始する。
 <携帯情報機器側の測定処理起動、監視(内部処理)>
 携帯情報機器側の測定処理を起動し、生体計測器220による測定処理を監視し、当該生体計測器による測定結果の受信を待つ。
 <ガイダンス表示(画面)>
 生体計測器220の電源の入れ方などの操作手順を表示画面に表示し、測定開始を受け付ける。
 <生体計測器での測定処理(画面)>
 生体計測器220の心電・脈波データ(測定状況の波形)は、リアルタイムで表示エリア21002に表示する。脈がとりにくい被験者の場合は心電から加速度脈波を算出し、この波形も同様に表示する。測定時間は測定情報で受け付けた時間だけ実行する。
 <生体情報測定、送信(内部処理)>
 生体計測器220で測定した心電・脈波データはクライアント側の携帯情報端末210に送信する。
 <測定結果送信(内部処理)>
 携帯情報端末210は、指定の測定時間が終了したら表示画面に測定終了のガイダンスを表示する。また、測定データからファイルを生成し、クラウド側の疲労解析サーバ1101側に送信する。なお、ファイルを送信した後は、セキュリティを考慮し、携帯情報端末210から、このファイルを削除する。
 図7はクラウド側装置の処理フローを模式的に示す図である。
 同図において、データセンタ110は、被験者ファイル(被験者情報&生体データ)受信部1103にて、クライアント側装置の携帯情報端末から被験者ファイル(含心電・脈波データ)受信する。そして、データベース1102に登録する。
 データセンタ110は、疲労解析システム(解析エンジン)1101にて被験者ファイルの心電・脈波データを解析する。そのデータ解析に際しては、まず心電・脈波から自律神経の状態測定し、しかるのち、自律神経の強さを基準情報DB11022の基準と比較し、疲労の度合いを解析する。
 また、自律神経のバランスを基準情報DB11022の基準と比較解析結果をもってストレスの傾向を解析する。そして、解析レポート作成部11014にて、解析結果より解析レポートを作成する。解析レポートには、被験者情報、自律神経機能年齢、心拍変動、交感・副交感神経(LF/HF)、自律神経評価、などの情報を含む。
 解析レポート作成に際しては、解析結果・自律神経評価関連付部1013にて自律神経評価情報DB11023の自律神経評価情報(自律神経評価コメント)を解析結果に関連付けし、疲労度測定結果レポートとする。
 すなわち、クラウド側は、以下のような処理を行う。
 <解析処理(内部処理)>
 監視していた測定ファイルが受信されたことを確認し、疲労解析サーバ1101の解析エンジンに投入し、疲労度判定に必要な指標(CCVTP、LH,HFなど)を算出する。
 <解析結果をDBに格納(内部処理)>
 上記で得た解析結果をデータベース1102の自律神経年齢基準値DB、自律神経評価値DB、総合評価DB、の基準値マスタと比較し、疲労の度合いを判定する。これらの値はすべてDBに格納する。
 <レポート生成、送信(内部処理)>
 判定された疲労の度合いを基に疲労度測定結果レポートを生成し、クライアント側の携帯情報端末210に送信する。
 <レポート受信、表示(内部処理)>
 携帯情報端末210は、疲労解析サーバ1101より、疲労度測定結果レポートを受信し表示する。
 <レポート印刷実行(画面)>
 また、レポート印刷実行を受け付ける。
 <レポート印刷(印刷物)>
 そして、プリンタ230により、疲労度測定結果を印刷する。
 図8~図11は、疲労・ストレス検診システムに使用される代表的なマスタとして、交感神経/副交感神経評価値、自律神経年齢基準値、総合評価、履歴DBのテーブル内容を示す図である。
 図8は自律神経評価値、つまり交感神経/副交感神経評価値(マスタ)の情報を示す図である。
 同図において、交感神経/副交感神経評価値(マスタ)は、属性名欄及び備考欄を有する。属性名の欄110231には、例えば、「有効期限 開始日、終了日」(マスタの有効期限)、「LF/HFランク」(4分類:極高値、高値、基準値、低値)、「ランク範囲 開始、終了」(4分類ごとのLF/HFの範囲。「標準:低値:0.0~0.8」、「基準:0.8~2.0」、「高値:2.0~5.0、極高値:5.0~)」、「評価」(4分類ごとの状態のコメント)、「備考」、「アイコンカラー」(4分類ごとのフェースマーカの色。低値:黄色、基準:青、高値:黄色、極高値:赤)、「登録日時」、「登録ID」、「更新日時」、「更新ID」、などの情報を格納する。
 コメントとしては、例えば「交感神経高・副交感神経系のバランスはうまく保たれていますが、自律神経機能活動が低下しています。起床時には体操や熱めのシャワーを浴びるなど交感神経系の活動を高めるようにしましょう。また、夕方以降はヨガ、呼吸法、音楽、アロマなどの副交感神経活動を高める取り組みを取り入れ、一日の規則正しいリズムを作られることをお勧めします。」などである。
 図9は自律神経年齢基準値(マスタ)の情報を示す図である。
 同図において、自律神経年齢基準値(マスタ)は属性名欄及び備考欄を有する。属性名の欄110211には、例えば、「有効期限 開始日、終了日」(マスタの有効期限)、「年齢」(各年齢)、「低値」(各年齢の低値)、「基準値」(各年齢の基準値)、「高値」(各年齢の高値)、「登録日時」、「登録ID」、「更新日時」、「更新ID」、などの情報を格納する。
 基準値は、例えば、検診センタの治験データより、年齢別の基準を策定し、また研究機関により、他のバイオマーカとの相関性検証を行って信頼性の高い疲労・ストレス判定の基準とする。
 図10は総合評価(マスタ)の情報を示す図である。
 同図において、自律神経年齢基準値(マスタ)は属性名欄及び備考欄を有する。属性名の欄110241には、例えば、「有効期限_開始日」、「有効期限_終了日」(備考欄に示すマスタの有効期限)、「LF/HFランク」(4分類)、「自律神経機能年齢ランク(3分類。年齢に対して低値未満、高値以上、それ以外の標準値の3分類)、「総合評価ランク」(12分類に応じたアドバイス)、「総合評価」、「セルフケアアドバイス」(12分類に応じたアドバイス)、アイコンカラー(12分類に応じて、青黄赤から1つを設定)、「登録日時」、「登録ID」、「更新日時」、「更新ID」などの情報が含まれる。
 図11は履歴ケアDBの情報を示す図である。
 同図において、履歴ケアDBは、属性名欄及び備考欄を有する。属性名の欄110231には、例えば、「ユーザID」(測定する側のユーザID)、「被試者ID」(被験者情報)、「被験者名」(被験者情報)、「測定開始日時」(測定情報)、「測定場所コード」(測定情報)、「測定場所名」(測定情報)、「センサ測定日時」(測定情報)、「測定時間(秒)」(測定情報)、「センサ名」(測定情報)、「性別」(測定情報)、「年齢」(測定情報)、「平均RR(AA)」(測定情報)、「平均心拍数(脈拍数)」(解析結果)、「平均心拍数」(解析結果)、「平均HF」(解析結果)、「平均LF」(解析結果)、「平均HF+LF」(解析結果)、「平均LF/HF」(解析結果)、「平均SD」(解析結果)、「平均CVRR(CVAA)」((解析結果)、「ccvTP」(解析結果)、「In(ccvTP)」(解析結果)、「自律神経機能年齢」(解析結果)、「自律神経機能年齢ランク」(判定結果)、「LF/HFランク」(判定結果)、「LF/HFアイコンカラー」(判定結果)、「LF/HF評価」(判定結果)、「総合判定ランク」(判定結果)、「総合判定アイコンカラー」(判定結果)、「セルフケアアドバイス」(判定結果)、「登録日時」(処理日時)、などの各情報を格納する。
 図12は疲労度測定結果のレポート例を示す図である。
 同図において、疲労度測定結果レポート2300は、基本情報・測定情報エリア2301、自律神経機能年齢エリア2302、心拍変動エリア2303、交感・副交感神経エリア2304、評価エリア2305、を有する。
 基本情報・測定情報エリア2301は、測定者(被験者)の測定環境・測定者に関する情報を表示する表示エリアであって、当該エリアには、測定当時の情報と、測定年月日、測定時間などが表示される。
 <基本情報>
 すなわち、基本情報・測定情報エリア2301には、被験者の基本情報として、氏名・性別・年齢と、測定情報として測定場所と測定時間を表示する。
 自律神経機能年齢エリア2302は、自律神経強度、加齢に伴って低下する強度を各年代の平均値と比較し、機能年齢を表示する表示エリアであって、当該エリアには、測定時の自律神経機能年齢が表示される。
 ここで、グラフは、縦軸が自律神経機能(CCVTP)を表し、横軸が年齢を表している。
 自律神経機能は自律神経(交感神経・副交感神経)の強さを表しており、緑のラインbが年齢平均で加齢と共に低下していることが分かる。フェイスマークH1は今回の測定値で、自律神経の強さがどの年齢平均相当かを機能年齢として表している。マークが上にいくほど自律神経機能が高く、また疲労などの傾向により下に移動する。赤のラインcはその年齢における基準値の低値である。これ以下になると機能が低下している指標になる。青のラインaがその年齢における基準値の高値である。これ以上であれば、測定ノイズの疑いがあるので、再測定を行う必要ある。再測定後も同様であれば、正しい値と考えられ非常に自律神経機能が高いと判断できる。
 <自律神経機能年齢(自律神経機能の強さ)>
 すなわち、自律神経機能年齢エリア2302には、標準表示として、20歳から70歳までの各年齢のCCVTPの高値・中央値・低値をグラフで表示する。
 図上の(a)が高値、(b)が中央値、(C)が低値となる。
 その上に、被験者の測定結果のCCVTPの値を縦軸に、被験者の年齢を横軸にプロットする。
 プロットにはフェイスマークを表示するが、被験者の年齢の低値より測定値が低い場合は、黄のフェイスマークを、以外は青のフェイスマークをプロットする。図上の(d)がプロットされたフェイスマークである。
 黄=注意、青=正常とし、基準値に対する優劣を視覚的にわかりやすく表示する。
 グラフの下部に、測定結果のCCVTPと、相対的な機能年齢を表示する。
 心拍変動エリア2303は、平均心拍数を表示するエリアであって、当該エリアには、平均心拍数と測定時の揺らぎが表示される。
 つまり、測定した平均心拍数と心拍変動(心拍間隔の伸び縮み)状況をグラフ化して表示している。波形が下底にドロップしている部分は測定落ち(データ欠落)を表す。
 <心拍変動>
 すなわち、心拍変動エリア2303には、被験者の測定結果から平均心拍数と基準値を表示する。合わせて心拍の変動を折れ線グラフで表示する。
 交感・副交感神経エリア2304は、自律神経は、交感神経と副交感神経で構成されており、このエリアは、これらのバランスを表します。フェイスマークH2が右に表示されるほど交感神経優位(緊張やストレス時)、左に表示されるほど副交感神経優位(リラックス時)となる。
 交感神経と副交感神経は、活動期には交感神経、休息期には副交感神経がバランスよく働くのが理想的な状態である。
 <交感・副交感(自律神経のバランス)>
 すなわち、交感・副交感神経エリア2304には、被験者の測定結果からLH/HFと基準値を表示する。
 LH/HFの測定結果がどの様な状態であるか補足のコメントで表示する。
 LH/HFの基準値(0.8~2.0)を青、0.8未満を黄、2.0以上を赤とした帯グラフを表示する。
 その上に測定結果のLH/HFをプロットするが、基準値に対応した色のフェイスマークを用いる。
 評価エリア2305は、自律神経の機能年齢とバランスを基に評価とコメントを表示する表示エリアであって、当該エリアには、測定時の自律神経状態を機能(強さ)・バランスからトータルで判定した結果を表す。測定時の自律神経状態の説明と自律神経機能(強さ)・バランスを改善するためのアドバイスが表示される。
 <自律神経評価(総合評価)>
 すなわち、評価エリア2305には、自律神経機能年齢(自律神経機能の強さ)と交感・副交感神経のバランスから判定された総合評価とアドバイスを表示する。
 図13は心電・脈波計測器、携帯情報端末、疲労解析サーバ(含解析エンジン)間のシーケンス、及び各部の処理フローを示す図である。
 同図において、クラウド側のデータセンタ110は、まず、ステップS1101にて被験者選択し、ステップS1102にて被験者情報を受け付ける。そして、ステップS1103にて新規被験者時の登録処理を行い、ステップS1104にて携帯情報端末210側の測定処理を起動・監視を行う。
 また、心電・脈波計測器220は、ステップS2201にて生体測定情報(心電・脈波データ)を測定し、当該心電・脈波のデータを携帯情報端末210に送信する。
 携帯情報端末210は、データセンタ110からの測定処理起動に従って、ステップS2101にてガイダンス(入力画面)表示する。携帯情報端末210側の被験者は、当該ガイダンスに従って所望の情報を入力する。また、ステップS2102にて生体測定情報を受信・処理する。このとき、被験者ごとのファイルを作成し、被験者ごとに情報の送受を行うとよい。
 そして、ステップS2103にて測定結果(心電・脈波データ)F1をクラウド側の疲労解析サーバ1101に送信する。
 疲労解析サーバ1101は、ステップS1105にて測定結果を受信し、解析処理する。この解析処理に際しては、記憶部1102の各DBの情報を参照して行う。次いで、ステップS1106にて解析結果を履歴ケアDBに格納し、ステップS1107にて上述したようなレポート(含自律神経機能強度・交感/副交感神経バランス、心拍変動、評価、アドバイスなど)R1を作成する。レポート作成に際しては、心電・脈波データ解析結果から疲労測定結果レポート/判定結果表示用データ作成する。そして、当該レポートR1を携帯情報端末210に送信する。
 携帯情報端末210は、ステップS2104にてレポートR1を受信し、端末の表示部2104に表示する。また、ステップS2105にてレポートR1をプリンタ230にてプリントする。
 本システムによれば、心電・脈波計測器で計測した心電・脈波データをクラウド側の解析サーバを利用して解析し、自律神経のバランスや強さからストレスの状態を数値で把握することができ、また当該解析データをクライアント端末側に送信し、当該クライアント端末側にて視覚的に表示することができるので、誰にでも簡単に短時間で客観的に測定でき、また持ち運び可能で便利なシステムを構築することができる。
 本実施例によれば、心電・脈波計測器で計測した心電・脈波データをクラウド側の解析サーバを利用して解析し、自律神経のバランスや強さからストレスの状態を数値で把握することができ、また当該解析データをクライアント端末側に送信し、当該クライアント端末側にて視覚的に表示することができるので、誰にでも簡単に短時間で客観的に測定でき、また持ち運び可能で便利なシステムを構築することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。
 また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、等の記録装置に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 10  クラウド側装置
 110 データセンタ
 1101 解析システム(疲労度解析サーバ)
 11010 解析エンジン
 110101 心電解析部
 110102 心拍解析部
 110103 脈波解析部
 110104 自律神経機能解析
 11011 生体データ解析部
 11012 DB検索・解析結果書込部
 11013 コメント付与部
 11014 解析レポート(疲労度測定結果レポート)作成部
 11015 解析結果判定部
 1102 データベース(記憶部)
 11021 履歴ケアDB
 11022 自律神経年齢基準DB
 11023 自律神経評価値DB
 11024 総合評価値DB
 1103 データ送受信IF部
 20 クライアント側装置
 210 携帯情報端末
 2101 キーボード(入力部)
 2102 制御部(演算処理部)
 2103 データ送受信IF部
 2104 表示部(出力部)
 2105 被験者用ファイル作成部
 2106 生体データ受信IF部
 220 生体計測器
 2201 心電・脈波データ送信IF部
 2202、2203 心電・脈波計測用電極
 230 出力装置(プリンタ)

 

Claims (2)

  1.  クラウド側装置を含むクラウド側、クライアント側装置を含むクライアント側、を備えた疲労ストレス検診システムであって、
     前記クラウド側装置は、疲労解析サーバを有し、前記クライアント側装置は、携帯情報機器、生体計測器を有し、
     前記疲労解析サーバは、
     心電・脈波のデータを記憶する履歴ケアデータベースを含む記憶手段、当該記憶手段の履歴ケアデータベースを検索し、解析対象者の心電・脈波のデータを検索する検索手段、当該検索手段にて検索した心電・脈波のデータを解析し、自律神経機能強度、交感/副交感神経のバランス、心拍変動、を含む解析結果を、前記記憶手段の履歴ケアデータベースの評価基準値を参照して、評価する生体データ解析手段、前記解析結果を元にストレス状態数値で把握可能な疲労度測定結果レポートとして生成するレポート生成手段、前記心電・脈波のデータを受信し、また解析レポートを前記携帯情報機器に送信するデータ送受信手段、を有し、
     前記携帯情報機器は、
     前記クライアント側の被験者の生体の心電・脈波計測器にて計測した心電・脈波に関するデータを受信し、当該心電・脈波のデータを前記疲労解析サーバ側に送信し、また前記疲労解析サーバからの疲労度測定結果レポートを受信するデータ送受信手段、当該疲労度測定結果レポートを、プリンタを含む出力手段に出力する制御手段、当該疲労度測定結果レポートの情報を履歴ケア情報として記憶する記憶手段、を有し、
     前記疲労度測定結果レポートは、前記解析結果の自律神経機能強度、交感/副交感神経バランス、心拍変動、及び当該解析結果に対する自律神経評価、アドバイスを示す情報を含み、
     前記携帯情報機器、前記生体計測器、前記疲労解析サーバ、をもって携帯可能な疲労ストレス検診システムを構築し、前記疲労度測定結果レポートをもってクライアント側被験者のストレスを数値で視覚的に確認できるように構成し、
     更に、疲労・ストレスを診断するに際して、年齢毎の基準値をマスタデータとして保有する記憶手段、被験者の心電・脈波を測定して得た測定データと前記基準値を比較して判定し、複数の分類に分けられた判定結果を出力する判定手段、前記判定結果を受け、自律神経機能年齢を算出する算出手段、を有し、
     前記判定手段は、
     自律神経の強さを判定する自律神経判定部と自律神経のバランスを判定する自律神経バランス判定手段、を有し、
     前記自律神経バランス判定手段は、
     前記測定データと記憶手段に保存する自律神経の強さを示す基準値、また交感神経/副交感神経(LF/HF)のバランス基準値、を比較し、複数の自律神経機能年齢ランクN、また複数の交感神経/副交感神経(LF/HF)ランクMを判定し、当該判定バランスの状態をコメントで提供する自律神経機能判定部、前記複数の自律神経機能年齢ランクNと前記複数の交感神経/副交感神経ランクMから、前記記憶手段に保存の複数分類(N×M)の判定基準値にそれぞれ対応するアドバイスを提供する自律神経機能総合判定部、を有し、
     前記自律神経機能総合判定部の判定結果を前記判定基準値と比較することにより、「要注意」、「注意」、「正常」とは別に前記複数の判定基準値に対するアドバイスを提供する、
     ことを特徴とする疲労・ストレス検診システム。
  2.  前記生体データ解析手段は、
     前記心電・脈波を計測する心電・脈波計測器の計測データを元に心電・脈波、心拍、自律神経機能を解析する心電解析部、脈波解析部、心拍解析部、自律神経機能解析部、を有し、
     前記記憶手段は、
     前記履歴ケアデータベースの他、更に前記判定基準値を格納する評価基準データベース、前記疲労度測定結果レポートの自律神経評価結果に基づくアドバイス情報を含むアドバイスデータベース、を有し、
     前記クラウド側装置と前記クライアント側装置間のデータ送受信手段は、無電にて心電・脈波のデータ及び前記疲労度測定結果レポートの送受信を行う通信手段である
     ことを特徴とする請求項1に記載された疲労・ストレス検診システム。

     
PCT/JP2014/064088 2013-09-11 2014-05-28 疲労・ストレス検診システム WO2015037281A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480050426.6A CN105578961A (zh) 2013-09-11 2014-05-28 疲劳压力检诊系统
US14/917,516 US20160213296A1 (en) 2013-09-11 2014-05-28 Screening system for fatigue and stress

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187913A JP2015054002A (ja) 2013-09-11 2013-09-11 疲労・ストレス検診システム
JP2013-187913 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037281A1 true WO2015037281A1 (ja) 2015-03-19

Family

ID=52665405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064088 WO2015037281A1 (ja) 2013-09-11 2014-05-28 疲労・ストレス検診システム

Country Status (4)

Country Link
US (1) US20160213296A1 (ja)
JP (1) JP2015054002A (ja)
CN (1) CN105578961A (ja)
WO (1) WO2015037281A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174839A1 (ja) * 2015-04-28 2016-11-03 京セラ株式会社 電子機器及びシステム
CN106691402A (zh) * 2016-12-19 2017-05-24 深圳欧德蒙科技有限公司 一种基于脉搏特征的疲劳程度分析方法和装置
JP2018027282A (ja) * 2016-08-19 2018-02-22 ヒュンダイ・アイティー カンパニー リミテッドHYUNDAI IT Co., LTD. 生体情報に連動するスマートボードシステム及びその方法
JP6298919B1 (ja) * 2017-06-07 2018-03-20 スマート ビート プロフィッツ リミテッド データベースの構築方法及びデータベース
JP2018149262A (ja) * 2017-03-13 2018-09-27 株式会社疲労科学研究所 自律神経評価装置、自律神経評価方法、プログラム及び記録媒体
JP2020516999A (ja) * 2017-04-06 2020-06-11 ルシラ ヘルス インコーポレイテッド モバイルデバイスを用いた画像ベースの疾患診断
USD953561S1 (en) 2020-05-05 2022-05-31 Lucira Health, Inc. Diagnostic device with LED display
USD955598S1 (en) 2018-12-21 2022-06-21 Lucira Health, Inc. Medical testing device
USD962470S1 (en) 2020-06-03 2022-08-30 Lucira Health, Inc. Assay device with LCD display
US11465142B2 (en) 2017-09-14 2022-10-11 Lucira Health, Inc. Multiplexed biological assay device with electronic readout
US11584957B2 (en) 2014-04-24 2023-02-21 Lucira Health, Inc. Colorimetric detection of nucleic acid amplification
US11954851B2 (en) 2017-04-06 2024-04-09 Pfizer Inc. Image-based disease diagnostics using a mobile device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835134B2 (en) 2014-06-13 2020-11-17 Palo Alto Investors Methods and compositions for restoring homeostatic capacity of a subject
US11045140B2 (en) 2015-03-05 2021-06-29 Palo Alto Investors Homeostatic capacity evaluation
WO2016141330A1 (en) * 2015-03-05 2016-09-09 Palo Alto Investors Homeostatic capacity evaluation
JP6650212B2 (ja) * 2015-05-15 2020-02-19 エコナビスタ株式会社 情報処理装置、プログラム、情報処理方法および情報処理システム
JP6535865B2 (ja) * 2015-07-23 2019-07-03 公立大学法人大阪 疲労度評価システム
US11020051B2 (en) 2015-11-30 2021-06-01 Palo Alto Investors Methods of enhancing homeostatic capacity in a subject by modulating homeostatic system synchrony, and devices for use in practicing the same
US20170150922A1 (en) 2015-11-30 2017-06-01 Palo Alto Investors Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same
JP2017167802A (ja) * 2016-03-16 2017-09-21 大日本印刷株式会社 健康管理システム、健康管理サーバ、ウェアラブルデバイス、健康管理方法、プログラム、記録媒体
JP7004964B2 (ja) * 2016-03-31 2022-01-21 株式会社タニタ 画像形成装置、プログラム及び活動量計システム
US10635370B2 (en) 2016-03-31 2020-04-28 Tanita Corporation Image forming apparatus that acquires data from an activity amount meter
US11382513B2 (en) 2016-11-08 2022-07-12 Palo Alto Investors Methods and compositions for treating a condition in a subject
JP6920434B2 (ja) * 2017-07-13 2021-08-18 株式会社村田製作所 疲労回復支援装置
CN111527516A (zh) * 2017-12-27 2020-08-11 尤妮佳股份有限公司 用于支持监护人的程序、监护人支持方法和监护人支持系统
CN109984761A (zh) * 2017-12-29 2019-07-09 新华网股份有限公司 疲劳信息的显示方法及装置
JP7112851B2 (ja) * 2018-02-05 2022-08-04 株式会社疲労科学研究所 情報処理装置、疲労評価方法及びプログラム
JP6501941B1 (ja) * 2018-03-28 2019-04-17 株式会社疲労科学研究所 疲労判定装置、疲労判定方法及びプログラム
JP2019195427A (ja) * 2018-05-09 2019-11-14 富士ゼロックス株式会社 ストレス状態評価装置、ストレス状態評価システム及びプログラム
JP2020074864A (ja) * 2018-11-06 2020-05-21 エヌ・ティ・ティ・コミュニケーションズ株式会社 判定装置、判定方法及びコンピュータープログラム
JP7141960B2 (ja) * 2019-02-22 2022-09-26 株式会社豊田中央研究所 心身管理システム
JP7125908B2 (ja) * 2019-03-19 2022-08-25 ユニ・チャーム株式会社 プログラム、コンテンツ表示方法、及びコンピュータ
CN110327024B (zh) * 2019-06-21 2022-05-17 奥佳华智能健康科技集团股份有限公司 一种基于按摩椅的健康参数检测方法、装置和系统
JP2021132758A (ja) * 2020-02-25 2021-09-13 日本光電工業株式会社 生体情報処理装置、生体情報処理方法、プログラム及び記憶媒体
CN112890818A (zh) * 2021-01-21 2021-06-04 西安中盛凯新技术发展有限责任公司 一种心理和自主神经双向评估系统
CN113017633B (zh) * 2021-03-18 2023-06-16 北京正气和健康科技有限公司 一种基于人体特征数据的智能精神分析和评价方法及系统
CN113057594A (zh) * 2021-03-19 2021-07-02 疲劳科学研究(广州)有限公司 一种疲劳程度评价的判断处理系统及其疲劳判断方法
CN113827250A (zh) * 2021-08-27 2021-12-24 疲劳科学研究(广州)有限公司 一种自主神经疲劳评价装置、评价方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289540A (ja) * 2006-04-27 2007-11-08 Olympus Corp ストレスセンサシステム
JP2012147879A (ja) * 2011-01-18 2012-08-09 Hiro Kagaku Kenkyusho:Kk 自律神経機能年齢の判定システム及び判定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238321B2 (ja) * 2004-02-05 2009-03-18 独立行政法人産業技術総合研究所 精神ストレス評価装置
KR100493714B1 (ko) * 2004-11-26 2005-06-02 주식회사 메디코아 자율신경 검사장치
JP2012203590A (ja) * 2011-03-24 2012-10-22 Nsd Co Ltd トータルヘルスサポートシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289540A (ja) * 2006-04-27 2007-11-08 Olympus Corp ストレスセンサシステム
JP2012147879A (ja) * 2011-01-18 2012-08-09 Hiro Kagaku Kenkyusho:Kk 自律神経機能年齢の判定システム及び判定方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584957B2 (en) 2014-04-24 2023-02-21 Lucira Health, Inc. Colorimetric detection of nucleic acid amplification
JP2020062486A (ja) * 2015-04-28 2020-04-23 京セラ株式会社 電子機器及びシステム
JPWO2016174839A1 (ja) * 2015-04-28 2017-12-07 京セラ株式会社 電子機器及びシステム
CN107530007A (zh) * 2015-04-28 2018-01-02 京瓷株式会社 电子设备及系统
WO2016174839A1 (ja) * 2015-04-28 2016-11-03 京セラ株式会社 電子機器及びシステム
JP2019063584A (ja) * 2015-04-28 2019-04-25 京セラ株式会社 電子機器及びシステム
US10856783B2 (en) 2015-04-28 2020-12-08 Kyocera Corporation Electronic device and system
JP7054710B2 (ja) 2015-04-28 2022-04-14 京セラ株式会社 電子機器及びシステム
US11864889B2 (en) 2015-04-28 2024-01-09 Kyocera Corporation Electronic device and system
JP2018027282A (ja) * 2016-08-19 2018-02-22 ヒュンダイ・アイティー カンパニー リミテッドHYUNDAI IT Co., LTD. 生体情報に連動するスマートボードシステム及びその方法
CN106691402A (zh) * 2016-12-19 2017-05-24 深圳欧德蒙科技有限公司 一种基于脉搏特征的疲劳程度分析方法和装置
JP2018149262A (ja) * 2017-03-13 2018-09-27 株式会社疲労科学研究所 自律神経評価装置、自律神経評価方法、プログラム及び記録媒体
US11954851B2 (en) 2017-04-06 2024-04-09 Pfizer Inc. Image-based disease diagnostics using a mobile device
JP2020516999A (ja) * 2017-04-06 2020-06-11 ルシラ ヘルス インコーポレイテッド モバイルデバイスを用いた画像ベースの疾患診断
JP6298919B1 (ja) * 2017-06-07 2018-03-20 スマート ビート プロフィッツ リミテッド データベースの構築方法及びデータベース
JP2018206213A (ja) * 2017-06-07 2018-12-27 スマート ビート プロフィッツ リミテッド データベースの構築方法及びデータベース
US11465142B2 (en) 2017-09-14 2022-10-11 Lucira Health, Inc. Multiplexed biological assay device with electronic readout
USD955598S1 (en) 2018-12-21 2022-06-21 Lucira Health, Inc. Medical testing device
USD953561S1 (en) 2020-05-05 2022-05-31 Lucira Health, Inc. Diagnostic device with LED display
USD962470S1 (en) 2020-06-03 2022-08-30 Lucira Health, Inc. Assay device with LCD display

Also Published As

Publication number Publication date
CN105578961A (zh) 2016-05-11
JP2015054002A (ja) 2015-03-23
US20160213296A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2015037281A1 (ja) 疲労・ストレス検診システム
Stone et al. Evaluations of commercial sleep technologies for objective monitoring during routine sleeping conditions
Wijsman et al. Wearable physiological sensors reflect mental stress state in office-like situations
Greenspan et al. Pain sensitivity and autonomic factors associated with development of TMD: the OPPERA prospective cohort study
Ugajin et al. White-coat hypertension as a risk factor for the development of home hypertension: the Ohasama study
Alam et al. Automated functional and behavioral health assessment of older adults with dementia
Rubio et al. Home monitoring of breathing rate in people with chronic obstructive pulmonary disease: observational study of feasibility, acceptability, and change after exacerbation
KR20190008991A (ko) 내장된 알람 피로도 감소 특성을 이용한 지속적인 스트레스 측정
US20170146386A1 (en) Scale-based user-physiological social grouping system
JP2005500869A (ja) 広域ネットワークによる生理学的データの実時間モニタリング、判断、解析、検索および記憶を行うためのシステムおよび方法
Mitchell et al. Reliability and validity of a smartphone pulse rate application for the assessment of resting and elevated pulse rate
Graham et al. Associations between heart rate variability measured with a wrist-worn sensor and older adults’ physical function: observational study
KR101633344B1 (ko) 생체 정보 측정 장치, 서버 및 프로그램
US20170146387A1 (en) Social groupings using a user-specific scale-based enterprise system
Jortberg et al. A novel adhesive biosensor system for detecting respiration, cardiac, and limb movement signals during sleep: Validation with polysomnography
Palmius et al. A multi-sensor monitoring system for objective mental health management in resource constrained environments
US20170149773A1 (en) Secure data communication and storage using scale-based systems
JP2018175840A (ja) ソフトウェア、健康状態判定装置及び健康状態判定方法
Debard et al. Making wearable technology available for mental healthcare through an online platform with stress detection algorithms: the Carewear project
EP3844778A1 (en) Digital companion for healthcare
Ahmadi et al. Quantifying occupational stress in intensive care unit nurses: An applied naturalistic study of correlations among stress, heart rate, electrodermal activity, and skin temperature
Kim et al. Advanced prediction model for individual thermal comfort considering blood glucose and salivary cortisol
WO2017091440A1 (en) Remote physiologic parameter assessment methods and platform apparatuses
Li et al. Heart Rate Variability Measurement through a Smart Wearable Device: Another Breakthrough for Personal Health Monitoring?
US10436630B2 (en) Scale-based user-physiological data hierarchy service apparatuses and methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050426.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844864

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14917516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844864

Country of ref document: EP

Kind code of ref document: A1