WO2015033742A1 - 航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラム - Google Patents
航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラム Download PDFInfo
- Publication number
- WO2015033742A1 WO2015033742A1 PCT/JP2014/071148 JP2014071148W WO2015033742A1 WO 2015033742 A1 WO2015033742 A1 WO 2015033742A1 JP 2014071148 W JP2014071148 W JP 2014071148W WO 2015033742 A1 WO2015033742 A1 WO 2015033742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aircraft
- data
- wind
- component
- landing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000008859 change Effects 0.000 claims description 34
- 230000004044 response Effects 0.000 claims description 19
- 238000011156 evaluation Methods 0.000 claims description 14
- 238000000491 multivariate analysis Methods 0.000 claims description 14
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 description 9
- 230000002596 correlated effect Effects 0.000 description 5
- 238000012795 verification Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010000369 Accident Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/04—Landing aids; Safety measures to prevent collision with earth's surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/36—Other airport installations
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0021—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0073—Surveillance aids
- G08G5/0091—Surveillance aids for monitoring atmospheric conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/02—Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
- G08G5/025—Navigation or guidance aids
Definitions
- the present invention relates to an aircraft operation information generation device, an aircraft operation information generation method, and an aircraft operation information generation program that generate aircraft operation information used for aircraft operation.
- Wind turbulence on the landing path for aircraft changes the flight path, flight attitude, etc. of the aircraft regardless of the pilot's intentions, and is a cause of operational troubles such as landing return, alternative land landing, and accidents such as hard landings.
- Large-scale wind turbulence (wind shear) with a change scale of the order of 1 to 10 km mainly changes the flight path
- small-scale wind turbulence (turbulence) with a change scale of the order of 10 to 100 m mainly changes the flight attitude.
- the International Civil Aviation Organization (ICAO) is requesting to provide information on wind turbulence to aircraft on landing routes at an altitude of 500 m or less from the runway surface (see Non-Patent Document 1).
- the wind direction and wind speed on the landing path can be observed with a spatial resolution of the order of 100 m using a wind observation sensor such as a ground-mounted type or an aircraft-mounted radar or lidar (laser radar).
- a wind observation sensor such as a ground-mounted type or an aircraft-mounted radar or lidar (laser radar).
- Devices have been developed that use this wind observation information to detect wind turbulence that can be a cause of operational problems and accidents, and provide warning information to pilots (see Patent Documents 1 to 4 and Non-Patent Document 2).
- the above-mentioned conventional technology generates alarm information by threshold judgment of the intensity of wind turbulence (wind velocity change rate and change amount) on the observed landing route.
- the problem is that the correlation with the occurrence of obstacles and accidents is low.
- a main object of the present invention is to solve the conventional problems, and an information generating device for aircraft operation and an information generating method for aircraft operation that generate information highly correlated with the occurrence of actual operation failures and accidents. And providing an aircraft operation information generation program.
- the invention according to claim 1 is an aircraft operation information generating device for generating aircraft operation information used for aircraft operation, and wind direction data and wind speeds at a plurality of predetermined altitudes on a landing route acquired by a weather sensor.
- the problem is solved by estimating the landing difficulty of the aircraft on the runway using the data, runway direction data, and aircraft model information as input information.
- the invention according to claim 2 includes, in addition to the configuration of the invention according to claim 1, wind direction data and wind speed data at a plurality of predetermined altitudes on the landing path obtained by the weather sensor, and direction data of the runway.
- a data processing unit that performs pre-processing on the aircraft, and the aircraft model information and the fluctuation range of the flight state of the aircraft at a plurality of predetermined altitudes output by the data processing unit as input information,
- a landing difficulty level estimation unit that estimates a difficulty level, and the first estimation model is characterized in that a pilot subjectively determines flight data of an aircraft that has landed by flying on a landing path to be estimated, and a landing difficulty level.
- the first estimation model is constructed by using flight data of an aircraft of an estimation target model as learning data. It solves the problem.
- the data processing unit includes a wind disturbance estimation unit, and the wind disturbance estimation unit is acquired by the weather sensor.
- the second estimation model is calculated based on flight data of the aircraft, and a direct wind component of wind speed received by the aircraft
- the above problem is solved by using the moving average value of the time calendar information of the cross wind component and the vertical wind component as the input value of the learning data.
- the second estimation model is calculated based on flight data of the aircraft. The problem is solved by using the standard deviation around the moving average value of the time and date information of the wind component, the cross wind component, and the vertical wind component as the output value of the learning data.
- the wind turbulence estimation unit is provided at a plurality of predetermined altitudes on the landing route acquired by the weather sensor.
- the wind speed front wind component and the wind speed cross wind component at a plurality of predetermined altitudes are calculated, and
- numerical change in the altitude direction is performed to calculate the altitude change rate of the directly facing wind component and the altitude change rate of the cross wind component at a plurality of predetermined altitudes.
- the data processing unit includes an aircraft response estimation unit, and the aircraft response estimation unit includes a plurality of aircraft response estimation units.
- the estimation model estimates the fluctuation range of the flight state of the aircraft at a plurality of predetermined altitudes.
- the third estimation model is obtained by learning flight data of an aircraft that has landed by flying on the estimation target landing path. As described above, the problem is solved by being constructed by a nonlinear multivariate analysis method.
- the third estimation model calculates a standard deviation around a moving average value of aircraft variation data included in flight data of the aircraft.
- the problem is solved by being constructed using the output value of learning data.
- the third estimation model is constructed by using flight data of an aircraft to be estimated as learning data. This solves the problem.
- the invention according to claim 11 is an aircraft operation information generation method for generating aircraft operation information used for aircraft operation, wherein wind direction data and wind speed at a plurality of predetermined altitudes on a landing route acquired by a weather sensor. The problem is solved by estimating the landing difficulty of the aircraft on the runway using the data, runway direction data, and aircraft model information as input information.
- the invention according to claim 12 is an aircraft operation information generation program for generating aircraft operation information used for aircraft operation, and wind direction data and wind speeds at a plurality of predetermined altitudes on a landing route acquired by a weather sensor.
- the above-described problem is solved by causing a computer to execute a procedure for estimating the landing difficulty level of an aircraft on a runway using data, runway direction data, and aircraft model information as input information.
- wind direction data and wind speed data at a plurality of predetermined altitudes on a landing path acquired by a weather sensor, runway direction data, and aircraft model information As the input information, it is possible to estimate the landing difficulty that reflects the information of a specific runway by estimating the landing difficulty of the aircraft on the runway. High and useful landing difficulty can be provided.
- a data processing unit that pre-processes wind direction data and wind speed data at a plurality of predetermined altitudes on a landing path acquired by a weather sensor, and runway direction data;
- a landing difficulty estimation unit for estimating a landing difficulty by a first estimation model using the output data of the processing unit and aircraft model information as input information, and the first estimation model is a landing object to be estimated It is constructed by a nonlinear multivariate analysis method using the flight data of an aircraft that has landed by flying on the route and the evaluation data that the pilot has evaluated subjectively the landing difficulty as a learning data. It is possible to estimate a landing difficulty level that is highly useful and reflects the landing route and evaluation data subjectively evaluated by the pilot.
- the first estimation model is constructed using the flight data of the aircraft of the estimation target model as learning data, so that a specific landing route and pilot are evaluated subjectively.
- the data processing unit includes the wind turbulence estimation unit, and the wind turbulence estimation unit includes wind direction data and wind speed data at a plurality of predetermined altitudes on the landing path acquired by the weather sensor.
- the second estimation model is constructed by the nonlinear multivariate analysis method using the flight data of the aircraft that flew on the landing path to be estimated as the learning data.
- the moving average value of the time and calendar information of the wind speed, cross wind component, and vertical wind component of the wind speed received by the aircraft calculated based on the flight data of the aircraft,
- it is possible to construct a highly accurate second estimation model that approximates the actual situation. Can be estimated.
- the standard deviation around the moving average value of the time calendar information of the wind speed, cross wind component, and vertical wind component of the wind speed received by the aircraft calculated based on the flight data of the aircraft.
- the fluctuation range of the component can be estimated.
- the wind turbulence estimation unit uses, as input information, wind direction data and wind speed data at a plurality of predetermined altitudes on a landing path acquired by a weather sensor, and runway direction data. By performing the coordinate transformation, the wind speed and cross wind components of the wind speed at a plurality of predetermined altitudes are calculated. The altitude change rate of the wind component and the altitude change rate of the cross wind component are calculated, and the second information is input using the head wind component, the cross wind component, the altitude change rate of the head wind component, the altitude change rate and the altitude of the cross wind component as input information.
- the estimation model of the wind speed is used to estimate the fluctuation range of the direct wind component, the variation range of the cross wind component, and the variation range of the vertical wind component. And a wind speed data and runway orientation data, it is possible to estimate the variation width of the respective components in the high-precision wind.
- the data processing unit includes the aircraft response estimation unit, and the aircraft response estimation unit includes a plurality of direct wind components and cross wind components on the landing path at a plurality of predetermined altitudes, Using the third estimation model, the fluctuation range of the flight state of the aircraft is estimated by using, as input information, the fluctuation range of the direct wind component and the fluctuation range of the cross wind component and the fluctuation range of the vertical wind component at a predetermined altitude.
- the third estimation model is constructed by the nonlinear multivariate analysis method using the flight data of the aircraft that flew and landed on the estimated landing path as learning data, and is therefore important for estimating the landing difficulty. Because it is possible to estimate the fluctuation range of the flight state of the aircraft, which is a major factor, with high accuracy by reflecting the information of the specific landing route, it is possible to estimate the landing difficulty level that is highly useful. . According to the ninth aspect of the present invention, the standard deviation around the moving average value of the variation data of the aircraft included in the flight data of the aircraft is used as the output value of the learning data when the third estimation model is constructed.
- the third estimation model is constructed by using flight data of the aircraft of the estimation target model as learning data, so that in addition to the specific landing route, the specific aircraft It is possible to estimate the fluctuation range of the flight state of the highly useful aircraft reflecting the information of the model.
- the present invention is an aircraft operation information generation device that generates information for aircraft operation used for aircraft operation, and includes wind direction data and wind speed data at a plurality of predetermined altitudes on a landing path acquired by a weather sensor, and a runway If the direction information of the aircraft and the aircraft model information are used as input information, the aircraft landing difficulty on the runway is estimated, and information that is highly correlated with actual operational failures and accidents is generated.
- the general configuration may be any.
- a specific aspect of the weather sensor in the present invention may be any one such as a weather radar or a weather rider as long as it can acquire wind information.
- the aircraft operation information generation device 10 processes the observation information acquired by the weather sensor S and generates support information related to various decisions in aircraft operation.
- the aircraft operation information generation device 10 includes a control unit 20, a transmission / reception unit 70 that transmits and receives information to and from the weather sensor S, a storage unit, an input unit, an output unit, an auxiliary storage device, and the like. Each unit described later is realized by operating according to the software developed in the above.
- the control unit 20 is configured by a CPU or the like, and the storage unit is configured by a ROM, a RAM, or the like.
- control unit 20 includes a data processing unit 30 including a wind turbulence estimation unit 40 and an aircraft response estimation unit 50, and a landing difficulty level estimation unit 60 that calculates the landing difficulty level of the aircraft. Yes.
- the wind turbulence estimation unit 40 included in the data processing unit 30 will be described.
- the wind turbulence estimation unit 40 includes a wind component calculation unit 41, a change rate calculation unit 42, and a fluctuation range estimation unit 43.
- the processing content of each part of the wind turbulence estimation unit 40 is as follows.
- the wind component calculation unit 41 performs coordinate conversion by using, as input information, wind direction data and wind speed data at a plurality of predetermined altitudes on the landing path acquired by the weather sensor S, and runway direction data.
- a direct wind component of the wind speed along the runway direction at a plurality of predetermined altitudes and a cross wind component of the wind speed along the lateral direction orthogonal to the runway direction are calculated.
- the rate-of-change calculating unit 42 performs numerical differentiation in the altitude direction for each of the directly facing wind component and the cross wind component acquired by the wind component calculating unit 41, thereby obtaining the altitude change rate and the cross wind component of the directly facing wind component. Calculate the altitude change rate.
- the fluctuation range estimator 43 uses the second estimation model as an input and receives the headwind component, the crosswind component, the altitude change rate of the counterwind component, the altitude change rate of the crosswind component, and the altitude as input information. Estimate the fluctuation width of the head wind component, the fluctuation width of the cross wind component, and the fluctuation width of the vertical wind component on the landing path at the same altitude.
- the fluctuation range estimation unit 43 one of the main generation factors of a relatively small wind speed fluctuation with a change scale on the order of 10 to 100 m is an altitude change (shear) of the wind speed.
- the altitude change rate of the crosswind component is used.
- the second estimation model described above is generated by a nonlinear multivariate analysis method such as a neural network, a Bayesian network, a support vector machine, etc., based on flight data of an aircraft that has landed on the landing path to be estimated. It is. Specific contents of the second estimation model are as follows.
- the fluctuation range of the wind speed component which is the output of the second estimation model
- the aircraft response estimation unit 50 it is necessary to include information on wind turbulence with a change scale that varies the flight attitude on the order of 10 to 100 m.
- this information cannot be directly observed with a general wind observation sensor having a spatial resolution of the order of 100 m.
- the learning data used for construction of the second estimation model is generated by the following method.
- the learning data is generated based on the flight data of the aircraft that flew and landed on the landing path to be estimated. It is desirable to prepare as many flight data as possible, such as 100 or more.
- As the flight data for example, data of a flight data recorder (FDR) mounted on a general passenger aircraft can be used. General airline operators have stored FDR data for the past year, and it is easy to secure the number of data.
- FDR flight data recorder
- the time history information hereinafter referred to as “flight data calculation wind” of the three components of the head wind, the cross wind, and the vertical wind received by the aircraft can be calculated from the flight data (see Non-Patent Document 3).
- Aircraft flight data is usually recorded at a rate of about 1 to 10 Hz, and considering that the ground flight speed during normal landing is about 60 m / s, for example, flight data recorded at a rate of 2 Hz
- the spatial resolution of the wind information is about 30m
- the three-component wind data calculated from the flight data contains enough information on small-scale wind turbulence (change scale is on the order of 10 to 100m) that changes the flight attitude.
- the input of an estimation model corresponding to the output of an existing wind observation sensor such as a radar or a lidar is a section width (eg, 100) that matches the flight data calculation wind to the spatial resolution (100 m order) of the wind observation sensor.
- the moving average When adjusting to a spatial resolution of ⁇ 200 m, the moving average is generated in about 2 to 3 seconds).
- the fluctuation range of the three component winds of the direct wind, the cross wind, and the up and down wind, which is the output of the estimation model is calculated as a standard deviation around the moving average value of the flight data calculation wind.
- the moving average for calculating the standard deviation is the section width that mainly represents the wind speed fluctuation due to the wind turbulence (change scale is on the order of 10 to 100 m) that changes the flight attitude (eg, about 2 to 5 seconds for a normal large passenger aircraft) ).
- each wind component (direct wind, crosswind, wind altitude change rate, rising wind) is higher than that of the landing case shown in the upper part of FIG. It can be seen that the fluctuation range becomes larger in the case.
- the output from the wind disturbance estimation unit 40 is indicated by a dotted line
- the flight data (FDR) is indicated by a solid line.
- the aircraft response estimation unit 50 includes a direct wind component and a cross wind component on the landing path at a plurality of altitudes acquired by the wind component calculation unit 41, and a direct wind component on the landing path at a plurality of altitudes acquired by the fluctuation range estimation unit 43.
- the third estimation model set for each landing route and aircraft model is used as the input information, and the same altitude as the input. Estimate the fluctuation range of the flight status (flight specifications) of the aircraft at.
- the third estimation model described above is based on nonlinear multivariate analysis methods such as neural network, Bayesian network, support vector machine, etc. based on flight data of the aircraft of the estimation target model that flew and landed on the estimation target landing route. Has been generated. Specific contents of the third estimation model are as follows.
- the flight specifications to be estimated by the third estimation model are appropriate for air speed, attitude (roll, pitch), vertical / horizontal acceleration, lift rate, steering amount, etc., which are highly correlated with the difficulty of maneuvering. Although there is, it is not limited to this.
- an estimation model is constructed for each model.
- the fluctuation range of the flight specifications which is the output of the third estimation model, is used as the input of the landing difficulty estimation unit, so that it includes the fluctuation information of the flight specifications in the frequency band having a high correlation with the difficulty of maneuvering. presume.
- the learning data used for construction of the third estimation model is generated by the following method.
- the learning data is generated based on the flight data of the aircraft of the estimation target aircraft that flew and landed on the landing path to be estimated.
- wind data as an input of the estimation model is generated from the flight data by the same method as the output generation of the wind turbulence estimation unit 40.
- the fluctuation range of the flight model which is the output of the estimation model, is calculated as the standard deviation around the moving average value of the flight data corresponding to the flight model of the estimation target (usually, for the flight data, the estimation target Records of the flight specifications of the).
- the moving average for calculating the standard deviation is calculated with a section width that mainly represents fluctuations in flight specifications that are highly correlated with the difficulty of maneuvering (eg, about 2 to 4 seconds for a normal large passenger aircraft).
- each flight specification (vertical acceleration, lateral acceleration, roll angle, pitch angle) is more in the case of the landing return case shown in the lower part of FIG. 3 than in the case of landing shown in the upper part of FIG. It can be seen that the fluctuation range becomes larger.
- the output from the aircraft response estimation unit 50 is indicated by a dotted line, and the flight data (FDR) is indicated by a solid line.
- the landing difficulty estimation unit 60 is set for each landing route and each aircraft model using the aircraft model information and the fluctuation range of the flight state of the aircraft at a plurality of predetermined altitudes acquired by the aircraft response estimation unit 50 as input information.
- the landing difficulty level divided into a plurality of sections e.g., three levels of difficulty, low, medium, and high is calculated by the first estimation model.
- the first estimation model is based on the neural network, Bayesian based on the flight data of the estimated model aircraft that flew and landed on the estimated landing path and the evaluation data that the pilot evaluated the difficulty of landing. It is generated by a nonlinear multivariate analysis method such as a network or a support vector machine. Specific contents of the first estimation model are as follows.
- the learning data of the first estimation model includes flight data of an aircraft of an estimation target model that has landed by flying on an estimation target landing path, and evaluation data in which a pilot subjectively evaluates the difficulty of landing.
- flight data such as 100 or more cases
- evaluation data such as 100 or more. It is assumed that the subjective evaluation of the pilot is performed with the same classification as the output of the estimation model.
- the fluctuation range of the flight specification of the aircraft which is the input of the estimation model, is generated from the flight data by the same method as the output generation of the aircraft response estimation unit 50.
- the pilot's subjective evaluation data is used as the landing difficulty that is the output of the estimation model. This subjective evaluation data can be collected, for example, by conducting a questionnaire survey with a pilot for a certain period.
- wind direction data and wind speed data at a plurality of predetermined altitudes on the landing route acquired by the weather sensor S, and runway direction data 4 and the aircraft model information as input information it is possible to estimate the landing difficulty reflecting information on a specific runway by estimating the landing difficulty of the aircraft with respect to the runway.
- FIG. 5 it is possible to provide a landing difficulty level that is highly correlated with the occurrence of operational troubles and accidents and that is highly useful.
- a data processing unit 30 that performs preprocessing on wind direction data and wind speed data at a plurality of predetermined altitudes on the landing path acquired by the weather sensor S, and runway direction data, and output data of the data processing unit 30
- a landing difficulty estimation unit 60 that estimates the landing difficulty by the first estimation model using the aircraft model information as input information, and the first estimation model flies over the landing path to be estimated.
- the flight data of the aircraft that landed and the evaluation data that the pilot evaluated the difficulty of landing were used as learning data. It is possible to estimate a landing difficulty level that is highly useful and that reflects subjectively evaluated evaluation data.
- the first estimation model is constructed by using the flight data of the aircraft of the estimation target model as learning data, so that in addition to the evaluation data evaluated subjectively by the specific landing route and the pilot, It is possible to estimate a landing difficulty level that is highly useful and reflects aircraft model information (flight characteristics).
- the data processing unit 30 includes a wind turbulence estimation unit 40
- the wind turbulence estimation unit 40 includes wind direction data and wind speed data at a plurality of predetermined altitudes on the landing route acquired by the weather sensor S and the direction of the runway.
- the data obtained by performing preprocessing on the data is used as input information, and the fluctuation width of the wind component of the wind speed at the predetermined altitude, the fluctuation width of the cross wind component, and the fluctuation of the up and down wind component at a plurality of predetermined altitudes are input information.
- the second estimation model is constructed by the nonlinear multivariate analysis method using the flight data of the aircraft that flew on the landing path to be estimated as the learning data.
- the fluctuation width of the wind component of the wind speed, the fluctuation width of the cross wind component, and the fluctuation width of the vertical wind component which are factors that fluctuate the flight state of the aircraft, are reflected. Since it is possible to estimate the accuracy can be estimated highly useful landing difficulty.
- learning when building the second estimation model is calculated based on the moving average values of the time calendar information of the wind speed, cross wind component, and vertical wind component of the wind speed received by the aircraft, calculated based on the flight data of the aircraft
- learning when building the second estimation model is calculated based on the moving average values of the time calendar information of the wind speed, cross wind component, and vertical wind component of the wind speed received by the aircraft, calculated based on the flight data of the aircraft
- a second estimation model is constructed based on the standard deviation around the moving average value of the time calendar information of the wind speed, crosswind component, and vertical component of the wind speed received by the aircraft, calculated based on the flight data of the aircraft It is possible to construct a highly accurate second estimation model that approximates the actual situation by using it as the output value of the learning data when performing, so that it is possible to estimate the fluctuation range of each component of the wind speed with high accuracy. it can.
- the wind turbulence estimation unit 40 performs coordinate conversion by using, as input information, wind direction data and wind speed data at a plurality of predetermined altitudes on the landing route acquired by the weather sensor S, and runway direction data.
- the direct wind component and the cross wind component of the wind speed are calculated, and by numerically differentiating each of the direct wind component and the cross wind component in the altitude direction.
- the rate of change in the altitude of the crosswind component is calculated, and the second estimation model is used to input the wind speed, the crosswind component, the altitude change rate of the crosswind component, and the altitude change rate and altitude of the crosswind component as input information.
- the wind direction data and the wind speed data and the slip at a plurality of predetermined altitudes on the landing path are estimated. From the azimuth data of the road, it is possible to estimate the variation width of the respective components in the high-precision wind.
- the data processing unit 30 includes an aircraft response estimation unit 50
- the aircraft response estimation unit 50 includes a direct wind component and a cross wind component on a landing path at a plurality of predetermined altitudes, and a direct wind at a plurality of predetermined altitudes.
- the fluctuation range of the flight state of the aircraft is estimated by the third estimation model using the fluctuation range of the component, the fluctuation range of the crosswind component, and the fluctuation range of the vertical wind component as input information.
- the flight data of the aircraft that landed on the estimated landing path was used as learning data, and was constructed by nonlinear multivariate analysis techniques.
- the fluctuation range of the flight state of the aircraft which is an important factor in estimating the landing difficulty, is reflected with high accuracy by reflecting the information on the specific landing path. Since it is possible to, it is possible to estimate the highly useful landing difficulty.
- the third estimation model is constructed using the flight data of the aircraft of the estimation target model as learning data, so that in addition to the specific landing route, information (flight characteristics) of the specific aircraft model is obtained. It is possible to estimate the fluctuation range of the flight state of the reflected highly useful aircraft.
- each aircraft operating company imposes various wind restrictions (limits on the maximum value of crosswind components, etc.) when landing an aircraft in order to ensure safety.
- the validity of the conventional wind restrictions and the relaxation of the restrictions Can be considered. If the wind restrictions can be relaxed, landings will be possible with more opportunities than before, and the efficiency of aircraft operations will increase.
- the present invention can be used for an air traffic control system, an aircraft operation management system, an on-board electronic device of an aircraft, and has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Traffic Control Systems (AREA)
Abstract
実際の運航障害や事故の発生と相関が高い情報を生成する航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラムを提供すること。 航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成装置10であって、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定する航空機運航用情報生成装置10。
Description
本発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラムに関する。
航空機にとって着陸経路上の風擾乱は、航空機の飛行経路、飛行姿勢等をパイロットの意図と無関係に変動させるため、着陸復行、代替地着陸等の運航障害やハードランディング等の事故の要因となっている。変化スケールが1~10kmオーダの大規模な風擾乱(ウィンドシア)が主に飛行経路を変動させ、変化スケールが10~100mオーダの小規模な風擾乱(乱気流)が主に飛行姿勢を変動させる。国際民間航空機関(ICAO)は、滑走路面から高度500m以下の着陸経路について、風擾乱の情報を航空機に提供するよう求めている(非特許文献1を参照)。
着陸経路上の風向・風速は、地上設置型、あるいは航空機搭載型のレーダやライダ(レーザレーダ)等の風観測センサにより、100mオーダの空間分解能で観測が可能である。この風観測情報を用いて運航障害や事故の要因となり得る風擾乱を検出し、パイロットに警報情報を提供する装置(特許文献1~4、非特許文献2を参照)が開発されている。
国際民間航空機関(ICAO)、Annex 3 "Meteorological Service for International Air Navigation"
米連邦航空局(FAA)、Technical Standard Order TSO-C117a'Airborne Windshear Warning and Escape Guidance Systems for Transport Airplanes'
木滝、又吉、鈴木、上村、「飛行中の航空機に作用する風の推定」、日本航空宇宙学会誌 No.524、平成9年9月
上述した従来技術は、観測された着陸経路上の風擾乱の強さ(風速の変化率や変化量)の閾値判定により、警報情報を生成しているが、生成された警報情報が実際の運航障害や事故の発生と相関が低いことが問題となっている。
そこで、本発明の主要な目的は、従来の問題点を解決するものであり、実際の運航障害や事故の発生と相関が高い情報を生成する航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラムを提供することである。
本請求項1に係る発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成装置であって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することにより、前記課題を解決するものである。
本請求項2に係る発明は、請求項1に係る発明の構成に加え、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、前記滑走路の方位データとに前処理を施すデータ処理部と、前記航空機の機種情報と前記データ処理部によって出力された複数の所定高度における航空機の飛行状態の変動幅とを入力情報として、第1の推定モデルによって、着陸難易度を推定する着陸難易度推定部とを有し、前記第1の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データと、着陸難易度をパイロットが主観的に評価した評価データとを学習データとして、非線形多変量解析手法によって構築されたものであることにより、前記課題を解決するものである。
本請求項3に係る発明は、請求項2に係る発明の構成に加え、前記第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、前記課題を解決するものである。
本請求項4に係る発明は、請求項1または請求項2に係る発明の構成に加え、前記データ処理部は、風擾乱推定部を有し、前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと前記滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、前記第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、前記課題を解決するものである。
本請求項5に係る発明は、請求項4に係る発明の構成に加え、前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、学習データの入力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項6に係る発明は、請求項4または請求項5に係る発明の構成に加え、前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項7に係る発明は、請求項4乃至請求項6のいずれかに係る発明の構成に加え、前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、前記滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、前記正対風成分および前記横風成分のそれぞれについて、高度方向に数値微分することにより、複数の所定高度における正対風成分の高度変化率および横風成分の高度変化率を算出し、前記正対風成分と前記横風成分と前記正対風成分の高度変化率と前記横風成分の高度変化率と高度とを入力情報として、前記第2の推定モデルによって、前記風速の正対風成分の変動幅と前記横風成分の変動幅と前記上下風成分の変動幅とを推定するものであることにより、前記課題を解決するものである。
本請求項8に係る発明は、請求項2乃至請求項7のいずれかに係る発明の構成に加え、前記データ処理部は、航空機応答推定部を有し、前記航空機応答推定部は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、複数の所定高度における航空機の飛行状態の変動幅を推定するものであり、前記第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、前記課題を解決するものである。
本請求項9に係る発明は、請求項8に係る発明の構成に加え、前記第3の推定モデルは、前記航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項10に係る発明は、請求項8または請求項9に係る発明の構成に加え、前記第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、前記課題を解決するものである。
本請求項11に係る発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成方法であって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することにより、前記課題を解決するものである。
本請求項12に係る発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成プログラムであって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定する手順をコンピュータに実行させることにより、前記課題を解決するものである。
本請求項3に係る発明は、請求項2に係る発明の構成に加え、前記第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、前記課題を解決するものである。
本請求項4に係る発明は、請求項1または請求項2に係る発明の構成に加え、前記データ処理部は、風擾乱推定部を有し、前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと前記滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、前記第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、前記課題を解決するものである。
本請求項5に係る発明は、請求項4に係る発明の構成に加え、前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、学習データの入力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項6に係る発明は、請求項4または請求項5に係る発明の構成に加え、前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項7に係る発明は、請求項4乃至請求項6のいずれかに係る発明の構成に加え、前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、前記滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、前記正対風成分および前記横風成分のそれぞれについて、高度方向に数値微分することにより、複数の所定高度における正対風成分の高度変化率および横風成分の高度変化率を算出し、前記正対風成分と前記横風成分と前記正対風成分の高度変化率と前記横風成分の高度変化率と高度とを入力情報として、前記第2の推定モデルによって、前記風速の正対風成分の変動幅と前記横風成分の変動幅と前記上下風成分の変動幅とを推定するものであることにより、前記課題を解決するものである。
本請求項8に係る発明は、請求項2乃至請求項7のいずれかに係る発明の構成に加え、前記データ処理部は、航空機応答推定部を有し、前記航空機応答推定部は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、複数の所定高度における航空機の飛行状態の変動幅を推定するものであり、前記第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、前記課題を解決するものである。
本請求項9に係る発明は、請求項8に係る発明の構成に加え、前記第3の推定モデルは、前記航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることにより、前記課題を解決するものである。
本請求項10に係る発明は、請求項8または請求項9に係る発明の構成に加え、前記第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、前記課題を解決するものである。
本請求項11に係る発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成方法であって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することにより、前記課題を解決するものである。
本請求項12に係る発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成プログラムであって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定する手順をコンピュータに実行させることにより、前記課題を解決するものである。
本請求項1、11、12に係る発明によれば、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することにより、特定の滑走路の情報を反映した着陸難易度を推定することが可能であるため、運航障害や事故の発生と相関性が高く、有用性の高い着陸難易度を提供することができる。
本請求項2に係る発明によれば、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとに前処理を施すデータ処理部と、データ処理部の出力データと航空機の機種情報とを入力情報として、第1の推定モデルによって、着陸難易度を推定する着陸難易度推定部とを有し、第1の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データと、着陸難易度をパイロットが主観的に評価した評価データとを学習データとして、非線形多変量解析手法によって構築されたものであることにより、特定の着陸経路およびパイロットが主観的に評価した評価データを反映した有用性の高い着陸難易度を推定することができる。
本請求項3に係る発明によれば、第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路およびパイロットが主観的に評価した評価データに加えて、特定の航空機の機種情報を反映した有用性の高い着陸難易度を推定することができる。
本請求項4に係る発明によれば、データ処理部は、風擾乱推定部を有し、風擾乱推定部は、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、航空機の飛行状態を変動させる要因となる、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
本請求項5に係る発明によれば、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、第2の推定モデルを構築する際の学習データの入力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
本請求項6に係る発明によれば、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、第2の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
本請求項7に係る発明によれば、風擾乱推定部は、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、正対風成分および横風成分のそれぞれについて、高度方向に数値微分することにより、正対風成分の高度変化率および横風成分の高度変化率を算出し、正対風成分と横風成分と正対風成分の高度変化率と横風成分の高度変化率と高度とを入力情報として、第2の推定モデルによって、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであることにより、着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとから、高精度な風速の各成分の変動幅を推定することができる。
本請求項8に係る発明によれば、データ処理部は、航空機応答推定部を有し、航空機応答推定部は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、航空機の飛行状態の変動幅を推定するものであり、第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、着陸難易度の推定にあたり重要な要素となる航空機の飛行状態の変動幅を、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
本請求項9に係る発明によれば、航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、第3の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第3の推定モデルを構築することが可能であるため、精度の高い航空機の飛行状態の変動幅を推定することができる。
本請求項10に係る発明によれば、第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路に加えて、特定の航空機の機種の情報を反映した有用性の高い航空機の飛行状態の変動幅を推定することができる。
本請求項3に係る発明によれば、第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路およびパイロットが主観的に評価した評価データに加えて、特定の航空機の機種情報を反映した有用性の高い着陸難易度を推定することができる。
本請求項4に係る発明によれば、データ処理部は、風擾乱推定部を有し、風擾乱推定部は、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、航空機の飛行状態を変動させる要因となる、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
本請求項5に係る発明によれば、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、第2の推定モデルを構築する際の学習データの入力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
本請求項6に係る発明によれば、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、第2の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
本請求項7に係る発明によれば、風擾乱推定部は、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、正対風成分および横風成分のそれぞれについて、高度方向に数値微分することにより、正対風成分の高度変化率および横風成分の高度変化率を算出し、正対風成分と横風成分と正対風成分の高度変化率と横風成分の高度変化率と高度とを入力情報として、第2の推定モデルによって、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであることにより、着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとから、高精度な風速の各成分の変動幅を推定することができる。
本請求項8に係る発明によれば、データ処理部は、航空機応答推定部を有し、航空機応答推定部は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、航空機の飛行状態の変動幅を推定するものであり、第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、着陸難易度の推定にあたり重要な要素となる航空機の飛行状態の変動幅を、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
本請求項9に係る発明によれば、航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、第3の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第3の推定モデルを構築することが可能であるため、精度の高い航空機の飛行状態の変動幅を推定することができる。
本請求項10に係る発明によれば、第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路に加えて、特定の航空機の機種の情報を反映した有用性の高い航空機の飛行状態の変動幅を推定することができる。
10 ・・・ 航空機運航用情報生成装置
20 ・・・ 制御部
30 ・・・ データ処理部
40 ・・・ 風擾乱推定部
41 ・・・ 風成分算出部
42 ・・・ 変化率算出部
43 ・・・ 変動幅推定部
50 ・・・ 航空機応答推定部
60 ・・・ 着陸難易度推定部
70 ・・・ 送受信部
S ・・・ 気象センサ
20 ・・・ 制御部
30 ・・・ データ処理部
40 ・・・ 風擾乱推定部
41 ・・・ 風成分算出部
42 ・・・ 変化率算出部
43 ・・・ 変動幅推定部
50 ・・・ 航空機応答推定部
60 ・・・ 着陸難易度推定部
70 ・・・ 送受信部
S ・・・ 気象センサ
本発明は、航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成装置であって、気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定し、実際の運航障害や事故の発生と相関が高い情報を生成するものであれば、その具体的な構成は如何なるものでもよい。
例えば、本発明における気象センサの具体的態様は、風情報を取得することができるものであれば、気象レーダや気象ライダ等、如何なるものでもよい。
以下に、本発明の一実施形態である航空機運航用情報生成装置10について、図1~4に基づいて説明する。
航空機運航用情報生成装置10は、気象センサSによって取得した観測情報をデータ処理し、航空機運航における各種判断に関する支援情報を生成するものである。航空機運航用情報生成装置10は、制御部20、気象センサSとの間で情報を送受信する送受信部70、記憶部、入力部、出力部、補助記憶装置等を備え、制御部20を記憶部に展開されたソフトウェアに従って動作させることにより、後述する各部を実現する。制御部20は、CPU等で構成され、記憶部は、ROM、RAM等で構成されている。
制御部20は、図1に示すように、風擾乱推定部40および航空機応答推定部50を含むデータ処理部30と、航空機の着陸難易度を算出する着陸難易度推定部60とを有している。
まず、データ処理部30に含まれる風擾乱推定部40について説明する。風擾乱推定部40は、図1に示すように、風成分算出部41と、変化率算出部42と、変動幅推定部43とを有している。風擾乱推定部40の各部による処理内容については、以下の通りである。
まず、風成分算出部41は、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における滑走路方向に沿った風速の正対風成分と滑走路方向に直交する横方向に沿った風速の横風成分とを算出する。
次に、変化率算出部42は、風成分算出部41によって取得した正対風成分および横風成分のそれぞれについて、高度方向に数値微分することにより、正対風成分の高度変化率および横風成分の高度変化率を算出する。
次に、変動幅推定部43は、正対風成分と横風成分と正対風成分の高度変化率と横風成分の高度変化率と高度とを入力情報として、第2の推定モデルによって、入力と同高度における着陸経路上の、正対風成分の変動幅と、横風成分の変動幅と、上下風成分の変動幅とを推定する。変動幅推定部43では、変化スケールが10~100mオーダの比較的小規模な風速変動の主要な生成要因の一つが、風速の高度変化(シア)であるため、入力情報として正対風成分、横風成分の高度変化率を利用している。
上述した第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを基に、ニューラルネットワーク、ベイジアンネットワーク、サポートベクターマシーン等の非線形多変量解析手法によって生成されたものである。第2の推定モデルの具体的内容は、以下の通りである。
まず、第2の推定モデルの出力である風速成分の変動幅は、航空機応答推定部50の入力として使用するため、飛行姿勢を変動させる変化スケールが10~100mオーダの風擾乱の情報を含む必要がある。しかし、一般的な100mオーダの空間分解能の風観測センサでは、この情報を直接観測できない。このため、第2の推定モデルの構築に用いる学習データは、以下の方法で生成する。
学習データは、推定対象となる着陸経路上を飛行して着陸した航空機の飛行データを基に生成する。飛行データは、100例以上等、できるだけ多数を用意することが望ましい。飛行データとしては、例えば、一般的な旅客機が搭載しているフライトデータレコーダ(FDR)のデータが使用できる。一般的な航空機運航会社は、FDRのデータを過去1年分程度保管しており、データ数の確保は容易である。航空機が受けた正対風・横風・上下風の3成分の風の時歴情報(以下、飛行データ算出風)は、飛行データから算出が可能である(非特許文献3を参照)。航空機の飛行データは通常1~10Hz程度のレートで記録されており、通常の着陸時の対地飛行速度は60m/s程度であることを考慮すれば、例えば2Hzのレートで記録された飛行データに基づく風情報の空間分解能は30m程度となり、飛行データから算出した3成分の風データには、飛行姿勢を変動させる小規模な風擾乱(変化スケールが10~100mオーダ)の情報が十分含まれている。学習データにおいて、レーダ、ライダ等の既存の風観測センサの出力に相当する推定モデルの入力は、飛行データ算出風を風観測センサの空間分解能(100mオーダ)に合うような区間幅(例:100~200mの空間分解能に合わせる場合、2~3秒程度)で移動平均して生成する。学習データにおいて、推定モデルの出力となる正対風・横風・上下風の3成分の風の変動幅は、飛行データ算出風の移動平均値周りの標準偏差として算出する。標準偏差算出のための移動平均は、飛行姿勢を変動させる風擾乱(変化スケールが10~100mオーダ)による風速変動を主に表す区間幅(例:通常の大型旅客機の場合、2~5秒程度)で行う。
ここで、風擾乱推定部40による出力の検証結果を図2を用いて説明する。この図2から、各風成分(正対風、横風、風の高度変化率、上昇風)は、図2の上段に示す着陸事例の場合よりも、図2の下段に示す着陸復行事例の場合の方が、変動幅が大きくなることが分かる。なお、図2では、風擾乱推定部40による出力を点線で示し、飛行データ(FDR)を実線で示している。
次に、航空機応答推定部50の処理内容について以下に説明する。
航空機応答推定部50は、風成分算出部41によって取得した複数高度における着陸経路上の正対風成分および横風成分と、変動幅推定部43によって取得した複数高度における着陸経路上の正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅と、航空機の機種情報とを入力情報として、着陸経路および航空機の機種ごとに設定された第3の推定モデルによって、入力と同高度における航空機の飛行状態(飛行諸元)の変動幅を推定する。
上述した第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した推定対象機種の航空機の飛行データを基に、ニューラルネットワーク、ベイジアンネットワーク、サポートベクターマシーン等の非線形多変量解析手法によって生成されたものである。第3の推定モデルの具体的内容は、以下の通りである。
まず、第3の推定モデルの推定対象とする飛行諸元は、操縦の難易度と相関の高い対気速度、姿勢(ロール、ピッチ)、上下・左右加速度、昇降率、操舵量等が適当であるが、これに限定されるものではない。機種毎に異なる飛行特性を考慮するため、推定モデルは機種毎に構築する。第3の推定モデルの出力である飛行諸元の変動幅は、着陸難易度推定部の入力として使用するため、操縦の難易度と相関が高い周波数帯の飛行諸元の変動情報を含むように推定する。このため、第3の推定モデルの構築に用いる学習データは、以下の方法で生成する。
学習データは、推定対象となる着陸経路上を飛行して着陸した推定対象の機種の航空機の飛行データを基に生成する。ここで、飛行データは、100例以上等、できるだけ多数を用意することが望ましく、特に、パイロットの操縦特性を平均的に反映するために、多数のパイロットが操縦した飛行データを用意することが望ましい。学習データにおいて、推定モデルの入力となる風データは、風擾乱推定部40の出力生成と同様の手法で飛行データから生成する。学習データにおいて、推定モデルの出力となる飛行諸元の変動幅は、推定対象の飛行諸元に対応する飛行データの移動平均値周りの標準偏差として算出する(通常、飛行データには、推定対象の飛行諸元の記録が含まれている)。標準偏差算出のための移動平均は、操縦の難易度と相関が高い飛行諸元の変動を主に表す区間幅(例:通常の大型旅客機の場合、2~4秒程度)で行う。
ここで、航空機応答推定部50による出力の検証結果を図3を用いて説明する。この図3から、各飛行諸元(上下加速度、左右加速度、ロール角、ピッチ角)は、図3の上段に示す着陸事例の場合よりも、図3の下段に示す着陸復行事例の場合の方が、変動幅が大きくなることが分かる。図3では、航空機応答推定部50による出力を点線で示し、飛行データ(FDR)を実線で示している。
次に、着陸難易度推定部60の処理内容について以下に説明する。
着陸難易度推定部60は、航空機の機種情報と航空機応答推定部50によって取得した複数の所定高度における航空機の飛行状態の変動幅とを入力情報として、着陸経路および航空機の機種ごとに設定された第1の推定モデルによって、複数の区分(例:難易度が低、中、高の3段階)に分けられた着陸難易度を算出する。
第1の推定モデルは、推定対象の着陸経路上を飛行して着陸した推定対象機種の航空機の飛行データと着陸難易度をパイロットが主観的に評価した評価データとを基に、ニューラルネットワーク、ベイジアンネットワーク、サポートベクターマシーン等の非線形多変量解析手法によって生成されたものである。第1の推定モデルの具体的内容は、以下の通りである。
まず、第1の推定モデルの学習データは、推定対象となる着陸経路上を飛行して着陸した推定対象の機種の航空機の飛行データ、および着陸の難易度をパイロットが主観的に評価した評価データを基に生成する。ここで、飛行データは、100例以上等、できるだけ多数を用意することが望ましく、特に、パイロットの操縦特性を平均的に反映するために、多数のパイロットが操縦した飛行データを用意することが望ましい。また、評価データについても、100例以上等、できるだけ多数を用意することが望ましい。なお、パイロットの主観評価は、推定モデルの出力と同じ区分分けで行うものとする。学習データにおいて、推定モデルの入力となる航空機の飛行諸元の変動幅は、航空機応答推定部50の出力生成と同様の手法で飛行データから生成する。学習データにおいて、推定モデルの出力となる着陸の難易度は、パイロットの主観評価データを用いる。この主観評価データは、例えば、パイロットへのアンケート調査を一定期間行うことで収集可能である。
このようにして得られた本実施形態の航空機運航用情報生成装置10によれば、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することにより、特定の滑走路の情報を反映した着陸難易度を推定することが可能であるため、図4に示すように、運航障害や事故の発生と相関性が高く、有用性の高い着陸難易度を提供することができる。
また、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとに前処理を施すデータ処理部30と、データ処理部30の出力データと航空機の機種情報とを入力情報として、第1の推定モデルによって、着陸難易度を推定する着陸難易度推定部60とを有し、第1の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データと、着陸難易度をパイロットが主観的に評価した評価データとを学習データとして、非線形多変量解析手法によって構築されたものであることにより、特定の着陸経路およびパイロットが主観的に評価した評価データを反映した有用性の高い着陸難易度を推定することができる。
また、第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路およびパイロットが主観的に評価した評価データに加えて、特定の航空機の機種情報(飛行特性)を反映した有用性の高い着陸難易度を推定することができる。
また、データ処理部30は、風擾乱推定部40を有し、風擾乱推定部40は、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、航空機の飛行状態を変動させる要因となる、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
また、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、第2の推定モデルを構築する際の学習データの入力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
また、航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、第2の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第2の推定モデルを構築することが可能であるため、精度の高い風速の各成分の変動幅を推定することができる。
また、風擾乱推定部40は、気象センサSによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、正対風成分および横風成分のそれぞれについて、高度方向に数値微分することにより、正対風成分の高度変化率および横風成分の高度変化率を算出し、正対風成分と横風成分と正対風成分の高度変化率と横風成分の高度変化率と高度とを入力情報として、第2の推定モデルによって、風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであることにより、着陸経路上の複数の所定高度における風向データおよび風速データと滑走路の方位データとから、高精度な風速の各成分の変動幅を推定することができる。
また、データ処理部30は、航空機応答推定部50を有し、航空機応答推定部50は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、航空機の飛行状態の変動幅を推定するものであり、第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることにより、通常は航空機製造メーカの非公開情報である航空機の飛行特性情報を使用することなく、着陸難易度の推定にあたり重要な要素となる航空機の飛行状態の変動幅を、特定の着陸経路の情報を反映させて高精度に推定することが可能であるため、有用性の高い着陸難易度を推定することができる。
また、航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、第3の推定モデルを構築する際の学習データの出力値として用いることにより、実態に近似した高精度な第3の推定モデルを構築することが可能であるため、精度の高い航空機の飛行状態の変動幅を推定することができる。
また、第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることにより、特定の着陸経路に加えて、特定の航空機の機種の情報(飛行特性)を反映した有用性の高い航空機の飛行状態の変動幅を推定することができる。
また、各航空機運航会社は、安全性を確保するために、航空機の着陸に際して様々な風の制限(横風成分の最大値の制限等)を課している。本実施形態では、様々な風のパターンの模擬入力に対して、航空機の飛行諸元の変動幅や着陸の難易度が推定可能である。推定された飛行諸元の変動幅を各航空機会社が設定している変動幅の許容値と照合したり、推定された難易度を評価することにより、従来の風の制限の妥当性や制限緩和の検討が可能となる。風の制限が緩和できれば、従来より多くの機会で着陸が可能となり、航空機運航の効率性が高まる。
また、本実施形態では、事例発生時の飛行データから算出した風データを入力することにより、事例発生時の飛行に対する風の影響が、飛行諸元の変動幅や着陸の難易度の形で定量化されるため、着陸時の航空機の事故やインシデントの事例解析に利用することができる。
本発明は、航空交通管制システム、航空機の運航管理システム、航空機の機上電子機器等に利用することができ、産業上の利用可能性を有する。
Claims (12)
- 航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成装置であって、
気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することを特徴とする航空機運航用情報生成装置。 - 前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、前記滑走路の方位データとに前処理を施すデータ処理部と、
前記航空機の機種情報と前記データ処理部によって出力された複数の所定高度における航空機の飛行状態の変動幅とを入力情報として、第1の推定モデルによって、着陸難易度を推定する着陸難易度推定部とを有し、
前記第1の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データと、着陸難易度をパイロットが主観的に評価した評価データとを学習データとして、非線形多変量解析手法によって構築されたものであることを特徴とする請求項1に記載の航空機運航用情報生成装置。 - 前記第1の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることを特徴とする請求項2に記載の航空機運航用情報生成装置。
- 前記データ処理部は、風擾乱推定部を有し、
前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと前記滑走路の方位データとに前処理を施すことで取得したデータを入力情報として、第2の推定モデルによって、複数の所定高度における風速の正対風成分の変動幅と横風成分の変動幅と上下風成分の変動幅とを推定するものであり、
前記第2の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることを特徴とする請求項2または請求項3に記載の航空機運航用情報生成装置。 - 前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値を、学習データの入力値として用いて構築されたものであることを特徴とする請求項4に記載の航空機運航用情報生成装置。
- 前記第2の推定モデルは、前記航空機の飛行データを基に算出した、航空機が受けた風速の正対風成分と横風成分と上下風成分の時暦情報の移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることを特徴とする請求項4または請求項5に記載の航空機運航用情報生成装置。
- 前記風擾乱推定部は、前記気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、前記滑走路の方位データとを入力情報として、座標変換を施すことにより、複数の所定高度における風速の正対風成分と風速の横風成分とを算出し、前記正対風成分および前記横風成分のそれぞれについて、高度方向に数値微分することにより、複数の所定高度における正対風成分の高度変化率および横風成分の高度変化率を算出し、前記正対風成分と前記横風成分と前記正対風成分の高度変化率と前記横風成分の高度変化率と高度とを入力情報として、前記第2の推定モデルによって、前記風速の正対風成分の変動幅と前記横風成分の変動幅と前記上下風成分の変動幅とを推定するものであることを特徴とする請求項4乃至請求項6のいずれかに記載の航空機運航用情報生成装置。
- 前記データ処理部は、航空機応答推定部を有し、
前記航空機応答推定部は、複数の所定高度における着陸経路上の正対風成分および横風成分と、複数の所定高度における正対風成分の変動幅および横風成分の変動幅および上下風成分の変動幅とを入力情報として、第3の推定モデルによって、複数の所定高度における航空機の飛行状態の変動幅を推定するものであり、
前記第3の推定モデルは、推定対象の着陸経路上を飛行して着陸した航空機の飛行データを学習データとして、非線形多変量解析手法によって構築されたものであることを特徴とする請求項2乃至請求項7のいずれかに記載の航空機運航用情報生成装置。 - 前記第3の推定モデルは、前記航空機の飛行データに含まれる、航空機の変動データの移動平均値周りの標準偏差を、学習データの出力値として用いて構築されたものであることを特徴とする請求項8に記載の航空機運航用情報生成装置。
- 前記第3の推定モデルは、推定対象機種の航空機の飛行データを学習データとして構築されたものであることを特徴とする請求項8または請求項9に記載の航空機運航用情報生成装置。
- 航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成方法であって、
気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定することを特徴とする航空機運航用情報生成方法。 - 航空機運航に用いられる航空機運航用情報を生成する航空機運航用情報生成プログラムであって、
気象センサによって取得された着陸経路上の複数の所定高度における風向データおよび風速データと、滑走路の方位データと、航空機の機種情報とを入力情報として、滑走路に対する航空機の着陸難易度を推定する手順を
コンピュータに実行させることを特徴とする航空機運航用情報生成プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14843132.3A EP3043332B1 (en) | 2013-09-06 | 2014-08-11 | Aircraft flight information generation device, aircraft flight information generation method, and aircraft flight information generation program |
CN201480048664.3A CN105518763B (zh) | 2013-09-06 | 2014-08-11 | 飞机航行用信息生成装置以及飞机航行用信息生成方法 |
HK16111012.3A HK1222939A1 (zh) | 2013-09-06 | 2016-09-20 | 飛機航行用信息生成裝置、飛機航行用信息生成方法以及飛機航行用信息生成程序 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013184674A JP6176717B2 (ja) | 2013-09-06 | 2013-09-06 | 航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラム |
JP2013-184674 | 2013-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015033742A1 true WO2015033742A1 (ja) | 2015-03-12 |
Family
ID=52628224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071148 WO2015033742A1 (ja) | 2013-09-06 | 2014-08-11 | 航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラム |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3043332B1 (ja) |
JP (1) | JP6176717B2 (ja) |
CN (1) | CN105518763B (ja) |
HK (1) | HK1222939A1 (ja) |
WO (1) | WO2015033742A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420568A (zh) * | 2023-12-18 | 2024-01-19 | 南京牧镭激光科技股份有限公司 | 一种基于激光雷达的风切变识别方法、装置、存储介质 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6672996B2 (ja) * | 2016-04-28 | 2020-03-25 | 富士電機株式会社 | 発生源分析装置および発生源分析方法 |
JP2018034691A (ja) * | 2016-08-31 | 2018-03-08 | シャープ株式会社 | 基地局装置、通知システム及び通知方法 |
CN106200654A (zh) * | 2016-09-28 | 2016-12-07 | 北京小米移动软件有限公司 | 无人机飞行速度的控制方法和装置 |
CN108609202B (zh) * | 2018-06-15 | 2021-08-31 | 广州博进信息技术有限公司 | 飞行颠簸预测方法及系统 |
JP6667590B1 (ja) | 2018-09-21 | 2020-03-18 | 株式会社Subaru | 航空機の着陸支援装置、航空機の着陸支援方法及び航空機の着陸支援プログラム |
WO2021157034A1 (ja) * | 2020-02-06 | 2021-08-12 | Anaホールディングス株式会社 | 航空機危険予測装置および航空機危険予測システム |
CN111596680A (zh) * | 2020-06-03 | 2020-08-28 | 中国商用飞机有限责任公司 | 飞行器自动飞行控制方法和系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08509061A (ja) | 1993-04-22 | 1996-09-24 | ハネウエル・インコーポレーテッド | 飛行中ドップラー気象レーダーウィンドシャー検出システム |
JPH11231067A (ja) * | 1998-02-16 | 1999-08-27 | Nec Corp | 空港気象状態の表示方式 |
JPH11258358A (ja) * | 1998-03-16 | 1999-09-24 | Mitsubishi Electric Corp | 空港気象危険度判定処理装置 |
JP2002267753A (ja) | 2001-03-14 | 2002-09-18 | Mitsubishi Electric Corp | ウインドシア検出装置 |
JP2012103050A (ja) | 2010-11-08 | 2012-05-31 | Japan Aerospace Exploration Agency | 遠隔乱気流検知方法及びそれを実施する装置 |
JP2012218731A (ja) | 2011-04-07 | 2012-11-12 | Honeywell Internatl Inc | 乱気流領域を特徴付けるためのシステムおよび方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4043194A (en) * | 1976-08-20 | 1977-08-23 | Tanner Jesse H | Wind shear warning system |
DE3578659D1 (de) * | 1985-12-18 | 1990-08-16 | Boeing Co | Flugregel- und anzeigesystem fuer windscherung. |
US6381538B1 (en) * | 2000-05-26 | 2002-04-30 | Aerotech Research (U.S.A.), Inc. | Vehicle specific hazard estimation, presentation, and route planning based on meteorological and other environmental data |
US7742847B2 (en) * | 2006-10-26 | 2010-06-22 | Honeywell International Inc. | Method and system for context sensitive aircraft navigation |
US8055395B1 (en) * | 2007-06-21 | 2011-11-08 | Rockwell Collins, Inc. | Methods and devices of an aircraft crosswind component indicating system |
US20120173191A1 (en) * | 2011-01-03 | 2012-07-05 | Moeller Lothar B | Airspeed And Velocity Of Air Measurement |
CN102231654A (zh) * | 2011-06-08 | 2011-11-02 | 北京航空航天大学 | 基于数据链的航路气象信息通播服务装置及方法 |
US8433506B2 (en) * | 2011-06-30 | 2013-04-30 | General Electric Company | Weather data selection relative to an aircraft trajectory |
CN102262686A (zh) * | 2011-07-27 | 2011-11-30 | 中国国际航空股份有限公司 | 飞机着陆性能数据采集方法 |
-
2013
- 2013-09-06 JP JP2013184674A patent/JP6176717B2/ja active Active
-
2014
- 2014-08-11 WO PCT/JP2014/071148 patent/WO2015033742A1/ja active Application Filing
- 2014-08-11 CN CN201480048664.3A patent/CN105518763B/zh not_active Expired - Fee Related
- 2014-08-11 EP EP14843132.3A patent/EP3043332B1/en active Active
-
2016
- 2016-09-20 HK HK16111012.3A patent/HK1222939A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08509061A (ja) | 1993-04-22 | 1996-09-24 | ハネウエル・インコーポレーテッド | 飛行中ドップラー気象レーダーウィンドシャー検出システム |
JPH11231067A (ja) * | 1998-02-16 | 1999-08-27 | Nec Corp | 空港気象状態の表示方式 |
JPH11258358A (ja) * | 1998-03-16 | 1999-09-24 | Mitsubishi Electric Corp | 空港気象危険度判定処理装置 |
JP2002267753A (ja) | 2001-03-14 | 2002-09-18 | Mitsubishi Electric Corp | ウインドシア検出装置 |
JP2012103050A (ja) | 2010-11-08 | 2012-05-31 | Japan Aerospace Exploration Agency | 遠隔乱気流検知方法及びそれを実施する装置 |
JP2012218731A (ja) | 2011-04-07 | 2012-11-12 | Honeywell Internatl Inc | 乱気流領域を特徴付けるためのシステムおよび方法 |
Non-Patent Citations (4)
Title |
---|
KITAKI, MATAYOSHI; SUZUKI, UEMURA: "Wind Vector Estimation of a Flying Airplane", JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES NO. 524, September 1997 (1997-09-01) |
METEOROLOGICAL SERVICE FOR INTERNATIONAL AIR NAVIGATION |
See also references of EP3043332A4 |
TECHNICAL STANDARD ORDER TSO-CLL7A' AIRBORNE WINDSHEAR WARNING AND ESCAPE GUIDANCE SYSTEMS FOR TRANSPORT AIRPLANES |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420568A (zh) * | 2023-12-18 | 2024-01-19 | 南京牧镭激光科技股份有限公司 | 一种基于激光雷达的风切变识别方法、装置、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105518763B (zh) | 2017-06-20 |
EP3043332A4 (en) | 2017-04-12 |
JP2015051678A (ja) | 2015-03-19 |
JP6176717B2 (ja) | 2017-08-09 |
EP3043332B1 (en) | 2023-05-03 |
CN105518763A (zh) | 2016-04-20 |
EP3043332A1 (en) | 2016-07-13 |
HK1222939A1 (zh) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6176717B2 (ja) | 航空機運航用情報生成装置、航空機運航用情報生成方法、及び航空機運航用情報生成プログラム | |
US11960303B2 (en) | Situational awareness, vehicle control, and/or contingency planning for aircraft actuator failure | |
Hallock et al. | A review of recent wake vortex research for increasing airport capacity | |
US10202204B1 (en) | Aircraft-runway total energy measurement, monitoring, managing, safety, and control system and method | |
JP6288665B2 (ja) | 着陸判断支援システム、着陸判断支援方法、及び着陸判断支援プログラム | |
CA2550950C (en) | Method and system for preventing an aircraft from penetration into a dangerous trailing vortex area of a vortex generator | |
US10325504B2 (en) | System and method for optimization of aircraft fuel economy in real-time | |
JP6473979B2 (ja) | 着陸判断支援システム、着陸判断支援方法、及び着陸判断支援プログラム | |
EA008093B1 (ru) | Интегрированная система вихревой безопасности летательного аппарата | |
Deiler et al. | Performance-based ice detection methodology | |
Lombaerts et al. | Piloted simulator evaluation of safe flight envelope display indicators for loss of control avoidance | |
Armanini et al. | Decision-making for unmanned aerial vehicle operation in icing conditions | |
Gultepe et al. | Aviation meteorology: Observations and models. Introduction | |
Lombaerts et al. | Piloted simulator evaluation of maneuvering envelope information for flight crew awareness | |
WO2009029005A2 (fr) | Procédé et système pour assurer la sécurité d'un aéronef | |
WO2007115359A1 (en) | Display system for controlling aircraft traffic and method | |
Elston et al. | Evaluation of unmanned aircraft systems for severe storm sampling using hardware-in-the-loop simulations | |
US20180079495A1 (en) | Systems and methods for forecasting and reducing the occurrence of tire overspeed events during aircraft takeoff and landing | |
RU2324953C2 (ru) | Интегрированная система вихревой безопасности летательного аппарата | |
Roychoudhury et al. | Initial demonstration of the real-time safety monitoring framework for the national airspace system using flight data | |
Menon et al. | Metrics for Air Transportation System Safety Analysis | |
Ramamurthy et al. | Aircraft Landing Performance Assessment through Post‐Flight Data Analytics | |
Leong et al. | Predictive Flight Trajectory for Low Thrust-to-Weight Ratio Airplanes Approaching Microburst | |
Matayoshi et al. | Development of airport low-level wind information (ALWIN) | |
Menon et al. | An In-Time Aviation Safety Prognostics System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14843132 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014843132 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014843132 Country of ref document: EP |