WO2015033631A1 - Transistor circuit - Google Patents

Transistor circuit Download PDF

Info

Publication number
WO2015033631A1
WO2015033631A1 PCT/JP2014/064775 JP2014064775W WO2015033631A1 WO 2015033631 A1 WO2015033631 A1 WO 2015033631A1 JP 2014064775 W JP2014064775 W JP 2014064775W WO 2015033631 A1 WO2015033631 A1 WO 2015033631A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
normally
circuit
voltage
cascode
Prior art date
Application number
PCT/JP2014/064775
Other languages
French (fr)
Japanese (ja)
Inventor
栄治 荻野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015033631A1 publication Critical patent/WO2015033631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/226Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with junction-FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/301Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil

Definitions

  • the present invention relates to a transistor circuit having a normally-on transistor and a normally-off transistor that are cascode-connected to each other.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2013-42270 (published on February 28, 2013)”
  • FIG. 1 is a circuit diagram illustrating a configuration of a cascode circuit according to Embodiment 1.
  • FIG. It is a circuit diagram which shows the structure of one transistor of the switching circuit of the cascode circuit shown by FIG. It is a circuit diagram which shows the structure of the other transistor of the switching circuit of the cascode circuit shown by FIG. It is a top view which shows the structure of the switching circuit with which the cascode circuit shown by FIG. 1 is provided. It is a graph which shows the voltage waveform of the intermediate voltage of the cascode circuit shown by FIG.
  • FIG. 6 is a circuit diagram illustrating a configuration of a cascode circuit according to a second embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration of a cascode circuit according to a third embodiment.
  • 6 is a graph showing a voltage waveform of an intermediate voltage of the cascode circuit according to the second embodiment. 6 is a graph showing a voltage waveform of an intermediate voltage of a cascode circuit according to a third embodiment. It is a circuit diagram which shows the structure of the cascode circuit of a reference example. It is a circuit diagram which shows the structure in the case of operating the cascode circuit of a reference example. 12 is a graph showing voltage / current waveforms when the cascode circuit of the reference example shown in FIG. 11 is operated, (a) shows a voltage waveform applied to the gate electrode of a normally-off transistor, and (b) shows a voltage waveform.
  • the voltage waveform applied to one terminal is shown, (c) shows the current waveform flowing from the terminal to the other terminal, and (d) shows the voltage waveform applied to the cascode connection node. It is the graph which expanded the voltage waveform shown in a part of (d) of Drawing 12 in the time direction. It is a circuit diagram which shows the structure in the case of operating the cascode circuit of this invention.
  • Embodiment 1 Embodiment 1 will be described below with reference to FIGS. 1 to 6 and the like.
  • the resistance value of the internal resistor 14 may be variable.
  • the resistance value may be adjusted by a combination of a plurality of types of resistance elements (switching between connections of a plurality of types of resistance elements).
  • the normally-on transistor 11 is in an on state when the gate voltage is 0, and is turned off when the gate voltage exceeds the threshold voltage (the potential of the gate electrode is negative).
  • the normally-off transistors 121 and 122 are in an off state when the gate voltage is 0, and are turned on when the gate voltage exceeds a threshold voltage (positive as the potential of the gate electrode).
  • FIG. 2 shows the configuration of the transistor 121 of the switching circuit 12.
  • the transistor 121 includes a plurality of normally-off transistors 12a (subtransistors) connected in parallel to each other. Consists of.
  • the electrode 21 x corresponds to the gate electrode of the transistor 121
  • the electrode 24 x corresponds to the drain electrode of the transistor 121
  • the electrode 23 x corresponds to the source electrode of the transistor 121.
  • FIG. 4 is a plan view of the switching circuit 12.
  • the switching circuit 12 includes a plurality of transistors 12a arranged in a matrix on one semiconductor chip SC.
  • the transistor 121 is formed in the first region 121R of the semiconductor chip SC, and 32 transistors (columns) ⁇ 6 (stages) of transistors 12a are connected in parallel.
  • the transistor 122 is formed in the second region 122R of the semiconductor chip SC, and the transistors 12a are connected in parallel by 8 (columns) ⁇ 6 (stages).
  • the gate widths of the transistors 121 and 122 correspond to the number of transistors 12a connected in parallel.
  • the ratio of the gate widths of the transistors 121 and 122 is 4: 1.
  • the transistors 121 and 122 are not limited to this configuration.
  • FIG. 10 is a circuit diagram showing a configuration of the cascode circuit 201 of the reference example.
  • the cascode circuit 201 includes a normally-on transistor 211 and a normally-off transistor 212.
  • an internal resistor 214 is connected between the gate electrode of the transistor 211 and the source electrode of the transistor 212.
  • the gate electrode of the transistor 212 is connected to the terminal 21 via the internal resistor 215.
  • the drain electrode of the transistor 211 is connected to the terminal 22.
  • the source electrode of the transistor 212 is connected to the terminal 23.
  • the source electrode of the transistor 211 and the drain electrode of the transistor 212 are connected to each other at the node 24.
  • FIG. 11 is a circuit diagram showing a configuration when the cascode circuit 201 is operated.
  • the cascode circuit 201 operates by being incorporated into a part of an inductive load circuit (hereinafter referred to as L load circuit) 301.
  • the L load circuit 301 includes an inductive load 311 constituted by an inductance, a freewheeling diode 312, and a DC power supply 313.
  • the inductive load 311 and the freewheeling diode 312 are connected in parallel, one end of the circuit connected in parallel is connected to the terminal 22, and the other end is connected to the plus electrode of the DC power supply 313. Further, the negative electrode of the DC power supply 313 is connected to the ground GND.
  • the cascode circuit 201 is switched when the terminal 23 is connected to the ground GND and a rectangular pulse signal (input signal) P is input to the terminal 21.
  • FIG. 12 is a graph showing voltage / current waveforms when the cascode circuit 201 is operated.
  • FIG. 12A shows a voltage (gate voltage) waveform 300 applied to the gate electrode of the normally-off transistor 212.
  • b) shows a voltage (drain voltage) waveform 310 applied to the terminal 22,
  • c) shows a current (drain current) waveform 320 flowing from the terminal 22 to the terminal 23, and (d) is applied to the node 24.
  • a voltage (intermediate voltage) waveform 330 is shown.
  • the threshold voltage Vth is a gate voltage (potential difference between the gate and the source) when the drain current of the normally-off transistor 212 rises.
  • the reference voltage Vref is a reference voltage value in the cascode circuit 201, for example, a voltage value (ground potential) applied to the terminal 23 connected to the ground GND.
  • the time Toff is the time when the period 400 ends and the time when the period 410 starts.
  • the time Ton is the time when the period 410 ends and the time when the period 420 starts.
  • the gate voltage of the normally-off transistor 212 is higher than the threshold voltage Vth, and the normally-off transistor 212 is turned on.
  • the gate voltage is substantially lower than the threshold voltage Vth and becomes the reference voltage Vref, and the normally-off transistor 212 is turned off.
  • the value of the gate voltage is generally higher than the threshold voltage Vth again, and the normally-off transistor 212 is turned on. That is, the normally-off transistor 212 is generally periodically turned on / off by periodically supplying a rectangular pulse signal P to the gate electrode via the terminal 21.
  • the value of the current flowing from the terminal 22 to the terminal 23 is larger than 0 in the period 400, becomes 0 in the period 410, and becomes larger than 0 again in the period 420. .
  • the supply voltage to the node 24 is the reference voltage Vref.
  • the supply voltage to the node 24 is higher than the reference voltage Vref.
  • the supply voltage to the node 24 is approximately the reference voltage Vref again.
  • FIG. 13 is a graph in which the voltage waveform 330 shown in the range A in FIG.
  • the value of the voltage applied to the node 24 which is the cascode connection point is the time Toff (the gate voltage of the normally-off transistor 212 is generally lower than the threshold voltage Vth and becomes the reference voltage Vref.
  • Toff the gate voltage of the normally-off transistor 212
  • Vref the threshold voltage
  • an excessive increase in the intermediate potential can be suppressed, and deterioration due to high voltage stress can be effectively prevented.
  • Embodiment 1 has been described with respect to an application to an N-channel transistor, but the present invention is not limited to this, and can also be applied to a P-channel transistor.
  • the configuration of each semiconductor layer of the P-channel transistor is not particularly limited, and a conventionally known P-channel transistor can be used.
  • FIG. 6 is a circuit diagram of a cascode circuit (transistor circuit) 1a according to the second embodiment. As shown in FIG. 6, by providing a resistor Ca between the gate electrode of the transistor 121 and the gate electrode of the transistor 122 and further delaying the turn-off timing of the transistor 122, the voltage waveform 30 is further lowered as shown in FIG. A voltage waveform 30a is obtained.
  • the resistance value of the resistor Ca in FIG. 6 may be variable.
  • the resistance value may be adjusted by a combination of a plurality of types of resistance elements (switching between connections of a plurality of types of resistance elements).
  • the threshold voltage Vth of the transistor 121 may be different from the threshold voltage Vth of the transistor 122 (see FIGS. 7A and 7B). Specifically, the threshold voltage Vth of the transistor 122 is set higher than that of the transistor 121. Thereby, for example, in the configuration of FIG. 7A, as shown in FIG. 9, a voltage waveform 30b in which the overshoot voltage is reduced is obtained from the voltage waveform 30a when the threshold voltage is the same.
  • FIG. 14 is a circuit diagram showing a configuration when the cascode circuit 1 is operated. As shown in FIG. 14, the cascode circuit 1 operates by being incorporated in a part of the L load circuit 101. In the cascode circuit 1, the terminal 23 is connected to the ground GND, and the rectangular pulse signal P is supplied to the terminal 21. As a result, the input signal is supplied to the gate electrode of the transistor 121 and switched.
  • the transistor circuit (cascode circuit 1 ⁇ 1a) includes a normally-on type first transistor (transistor 11) and normally-off type second and third transistors (transistors 121 and 121).
  • the first transistor and the second transistor are cascode-connected, and one of the two conductive electrodes (source electrode) of the second transistor and one of the two conductive electrodes of the third transistor (source electrode) And the other of the two conductive electrodes of the second transistor (drain electrode) and the other of the two conductive electrodes of the third transistor (drain electrode) are connected.
  • control electrode (gate electrode) of the second transistor and the control electrode (gate electrode) of the third transistor are connected directly or via a resistor. It may be.
  • the second and third transistors may be formed on one semiconductor chip SC.
  • the threshold voltage Vth of the third transistor may be higher than the threshold voltage Vth of the second transistor.
  • the gate width of the control electrode of the second transistor may be larger than the gate width of the control electrode of the third transistor. Good.
  • the turn-off timing of the second transistor and the turn-off timing of the third transistor may be different.
  • each of the second and third transistors includes a plurality of normally-off subtransistors (normally off) connected in parallel.
  • Type transistor 12a In the transistor circuit according to Aspect 7 of the present invention, in any one of Aspects 1 to 6, each of the second and third transistors includes a plurality of normally-off subtransistors (normally off) connected in parallel. Type transistor 12a).
  • the number of sub-transistors constituting the second transistor may be larger than the number of sub-transistors constituting the third transistor.
  • an input signal (pulse signal P) may be supplied to the control electrode of the second transistor.
  • the first transistor in any one of the aspects 1 to 9, may be connected to a load.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge or combinations thereof are also included in the embodiments of the present invention.
  • the present invention can be used for semiconductor devices.

Abstract

In order to suppress an excessive increase of a potential at a cascode connection point, this cascode circuit is provided with a normally-on type transistor (11) and normally-off type transistors (121, 122), the first transistor (11) and the second transistor (121) are cascode-connected to each other, a source electrode of the transistor (121) and a source electrode of the transistor (122) are connected to each other, and a drain electrode of the transistor (121) and a drain electrode of the transistor (122) are connected to each other.

Description

トランジスタ回路Transistor circuit
 本発明は、互いにカスコード接続されたノーマリーオン型トランジスタおよびノーマリーオフ型トランジスタを有するトランジスタ回路に関する。 The present invention relates to a transistor circuit having a normally-on transistor and a normally-off transistor that are cascode-connected to each other.
 例えば、特許文献1には、ノーマリーオン型トランジスタと、ノーマリーオフ型トランジスタをカスコード接続した従来のカスコード回路が開示されている。 For example, Patent Document 1 discloses a conventional cascode circuit in which a normally-on transistor and a normally-off transistor are cascode-connected.
日本国公開特許公報「特開2013-42270号公報(2013年2月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2013-42270 (published on February 28, 2013)”
 しかしながら、従来のカスコード回路では、過渡スイッチング動作の際、ノーマリーオン型トランジスタのソース電極とノーマリーオフ型トランジスタのドレイン電極の接続部分の電位がオーバーシュート状態となり、特に、ターンオフ時(ノーマリーオン型トランジスタおよび、ノーマリーオフ型トランジスタがともにオフ状態の時)は、ノーマリーオフ型トランジスタのドレイン電極に、ノーマリーオフ型トランジスタのドレイン-ソース間ブレークダウン電圧を超える高電圧ストレスがかかる場合があり、結果、ノーマリーオフ型トランジスタの信頼性に影響が出るという問題がある。 However, in the conventional cascode circuit, during the transient switching operation, the potential of the connection part between the source electrode of the normally-on type transistor and the drain electrode of the normally-off type transistor is overshooted. High-voltage stress exceeding the breakdown voltage between the drain-source of the normally-off transistor may be applied to the drain electrode of the normally-off transistor. As a result, there is a problem that the reliability of the normally-off transistor is affected.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、ノーマリーオン型トランジスタと、ノーマリーオフ型トランジスタを有するカスコード回路において、この両トランジスタの接続点の電位の上昇を低減することにある。 The present invention has been made in view of the above problems, and its purpose is to increase the potential at the connection point of both transistors in a cascode circuit having a normally-on transistor and a normally-off transistor. It is to reduce.
 上記の課題を解決するために、本発明の一態様に係るトランジスタ回路は、ノーマリーオン型の第1トランジスタと、ノーマリーオフ型の第2および第3トランジスタとを備え、上記第1トランジスタと上記第2トランジスタとがカスコード接続され、上記第2トランジスタの2つの導通電極の一方と、上記第3トランジスタの2つの導通電極の一方とが接続され、上記第2トランジスタの上記2つの導通電極の他方と、上記第3トランジスタの上記2つの導通電極の他方とが接続されている。 In order to solve the above problems, a transistor circuit according to one embodiment of the present invention includes a normally-on first transistor, and normally-off second and third transistors, The second transistor is cascode-connected, one of the two conductive electrodes of the second transistor is connected to one of the two conductive electrodes of the third transistor, and the two conductive electrodes of the second transistor are connected to each other. The other and the other of the two conduction electrodes of the third transistor are connected.
 本発明の一態様によれば、カスコード接続点の電位の過上昇を抑制することができる効果を奏する。 According to one aspect of the present invention, there is an effect that it is possible to suppress an excessive increase in the potential of the cascode connection point.
実施形態1に係るカスコード回路の構成を示す回路図である。1 is a circuit diagram illustrating a configuration of a cascode circuit according to Embodiment 1. FIG. 図1に示されるカスコード回路のスイッチング回路の一方のトランジスタの構成を示す回路図である。It is a circuit diagram which shows the structure of one transistor of the switching circuit of the cascode circuit shown by FIG. 図1に示されるカスコード回路のスイッチング回路の他方のトランジスタの構成を示す回路図である。It is a circuit diagram which shows the structure of the other transistor of the switching circuit of the cascode circuit shown by FIG. 図1に示されるカスコード回路が備えるスイッチング回路の構成を示す平面図である。It is a top view which shows the structure of the switching circuit with which the cascode circuit shown by FIG. 1 is provided. 図1に示されるカスコード回路の中間電圧の電圧波形を示すグラフである。It is a graph which shows the voltage waveform of the intermediate voltage of the cascode circuit shown by FIG. 実施形態2に係るカスコード回路の構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a cascode circuit according to a second embodiment. 実施形態3に係るカスコード回路の構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a cascode circuit according to a third embodiment. 実施形態2に係るカスコード回路の中間電圧の電圧波形を示すグラフである。6 is a graph showing a voltage waveform of an intermediate voltage of the cascode circuit according to the second embodiment. 実施形態3に係るカスコード回路の中間電圧の電圧波形を示すグラフである。6 is a graph showing a voltage waveform of an intermediate voltage of a cascode circuit according to a third embodiment. 参考例のカスコード回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the cascode circuit of a reference example. 参考例のカスコード回路を動作させる場合の構成を示す回路図である。It is a circuit diagram which shows the structure in the case of operating the cascode circuit of a reference example. 図11に示される参考例のカスコード回路が動作したときの電圧・電流波形を示すグラフであり、(a)はノーマリーオフ型トランジスタのゲート電極に印加される電圧波形を示し、(b)は一端子に印加される電圧波形を示し、(c)は当該端子から他の端子へ流れる電流波形を示し、(d)はカスコード接続ノードに印加される電圧波形を示す。12 is a graph showing voltage / current waveforms when the cascode circuit of the reference example shown in FIG. 11 is operated, (a) shows a voltage waveform applied to the gate electrode of a normally-off transistor, and (b) shows a voltage waveform. The voltage waveform applied to one terminal is shown, (c) shows the current waveform flowing from the terminal to the other terminal, and (d) shows the voltage waveform applied to the cascode connection node. 図12の(d)の一部に示される電圧波形を時間方向に拡大したグラフである。It is the graph which expanded the voltage waveform shown in a part of (d) of Drawing 12 in the time direction. 本発明のカスコード回路を動作させる場合の構成を示す回路図である。It is a circuit diagram which shows the structure in the case of operating the cascode circuit of this invention.
 〔実施形態1〕
 実施形態1について、図1~図6等に基づいて説明すれば、以下のとおりである。
Embodiment 1
Embodiment 1 will be described below with reference to FIGS. 1 to 6 and the like.
 <本カスコード回路の構成>
 図1は、本実施形態に係るカスコード回路(トランジスタ回路)1の構成を示す回路図である。図1に示されるように、カスコード回路1は、ノーマリーオン型のトランジスタ11(第1トランジスタ)と、スイッチング回路12とを備える。
<Configuration of the cascode circuit>
FIG. 1 is a circuit diagram showing a configuration of a cascode circuit (transistor circuit) 1 according to the present embodiment. As shown in FIG. 1, the cascode circuit 1 includes a normally-on type transistor 11 (first transistor) and a switching circuit 12.
 スイッチング回路12は、ノーマリーオフ型のトランジスタ121(第2トランジスタ)と、ノーマリーオフ型のトランジスタ122(第3トランジスタ)とを備える。トランジスタ121のソース電極(導通電極)とトランジスタ122のソース電極(導通電極)とが接続され、トランジスタ121のドレイン電極(導通電極)とトランジスタ122のドレイン電極(導通電極)とが接続され、トランジスタ121のゲート電極(制御電極)とトランジスタ122のゲート電極(制御電極)とが直接接続されている。トランジスタ121のゲート電極は、その内部抵抗15を介して入力端子である端子21に接続されている。 The switching circuit 12 includes a normally-off transistor 121 (second transistor) and a normally-off transistor 122 (third transistor). The source electrode (conductive electrode) of the transistor 121 and the source electrode (conductive electrode) of the transistor 122 are connected, the drain electrode (conductive electrode) of the transistor 121 and the drain electrode (conductive electrode) of the transistor 122 are connected, and the transistor 121 The gate electrode (control electrode) of the transistor and the gate electrode (control electrode) of the transistor 122 are directly connected. The gate electrode of the transistor 121 is connected to the terminal 21 which is an input terminal through the internal resistance 15.
 トランジスタ11とトランジスタ121とはカスコード接続される。すなわち、トランジスタ11のソース電極とトランジスタ121のドレイン電極とがノード24にて接続されている。また、トランジスタ11のドレイン電極は負荷に接続され、トランジスタ11のゲート電極は、その内部抵抗14を介して、トランジスタ121のソース電極に接続されている。なお、トランジスタ121のソース電極は端子23に接続され、端子23には、例えば接地電位が供給される。 Transistor 11 and transistor 121 are cascode connected. That is, the source electrode of the transistor 11 and the drain electrode of the transistor 121 are connected at the node 24. The drain electrode of the transistor 11 is connected to a load, and the gate electrode of the transistor 11 is connected to the source electrode of the transistor 121 through the internal resistance 14. Note that the source electrode of the transistor 121 is connected to the terminal 23, and a ground potential is supplied to the terminal 23, for example.
 内部抵抗14の抵抗値を可変としてもよい。この場合、例えば、複数種類の抵抗素子の組み合わせ(複数種類の抵抗素子の接続の切り換え)によって抵抗値を調整してもよい。 The resistance value of the internal resistor 14 may be variable. In this case, for example, the resistance value may be adjusted by a combination of a plurality of types of resistance elements (switching between connections of a plurality of types of resistance elements).
 なお、ノーマリーオン型のトランジスタ11は、ゲート電圧が0であるときにオン状態であり、ゲート電圧が閾値電圧を超えると(ゲート電極の電位としては負)とオフする。ノーマリーオフ型のトランジスタ121・122は、ゲート電圧が0であるときにオフ状態であり、ゲート電圧が閾値電圧を超えると(ゲート電極の電位としては正)とオンする。 Note that the normally-on transistor 11 is in an on state when the gate voltage is 0, and is turned off when the gate voltage exceeds the threshold voltage (the potential of the gate electrode is negative). The normally-off transistors 121 and 122 are in an off state when the gate voltage is 0, and are turned on when the gate voltage exceeds a threshold voltage (positive as the potential of the gate electrode).
 (スイッチング回路の詳細な構成)
 図2は、スイッチング回路12のトランジスタ121の構成であり、同図に示されるように、トランジスタ121は、互いに並列に接続された複数のノーマリーオフ型トランジスタ12a(サブトランジスタ)からなるトランジスタ群12Xで構成される。ここで、電極21xは、トランジスタ121のゲート電極に相当し、電極24xは、トランジスタ121のドレイン電極に相当し、電極23xは、トランジスタ121のソース電極に相当する。
(Detailed configuration of switching circuit)
FIG. 2 shows the configuration of the transistor 121 of the switching circuit 12. As shown in FIG. 2, the transistor 121 includes a plurality of normally-off transistors 12a (subtransistors) connected in parallel to each other. Consists of. Here, the electrode 21 x corresponds to the gate electrode of the transistor 121, the electrode 24 x corresponds to the drain electrode of the transistor 121, and the electrode 23 x corresponds to the source electrode of the transistor 121.
 図3は、スイッチング回路12のトランジスタ122の構成であり、同図に示されるように、トランジスタ122は、互いに並列に接続された複数のノーマリーオフ型トランジスタ12a(サブトランジスタ)からなるトランジスタ群12Yで構成される。ここで、電極21yは、トランジスタ122のゲート電極に相当し、電極24yは、トランジスタ122のドレイン電極に相当し、電極23yは、トランジスタ122のソース電極に相当する。 FIG. 3 shows a configuration of the transistor 122 of the switching circuit 12. As shown in FIG. 3, the transistor 122 is a transistor group 12Y composed of a plurality of normally-off transistors 12a (subtransistors) connected in parallel to each other. Consists of. Here, the electrode 21 y corresponds to the gate electrode of the transistor 122, the electrode 24 y corresponds to the drain electrode of the transistor 122, and the electrode 23 y corresponds to the source electrode of the transistor 122.
 図4は、スイッチング回路12の平面図である。スイッチング回路12は、1つの半導体チップSC上にマトリクス配置された複数のトランジスタ12aで構成される。トランジスタ121は、半導体チップSCの第1領域121Rに形成され、トランジスタ12aが32(列)×6(段)個分並列接続されてなる。トランジスタ122は、半導体チップSCの第2領域122Rに形成され、トランジスタ12aが8(列)×6(段)個分並列接続されてなる。なお、トランジスタ121・122のゲート幅は、並列接続されたトランジスタ12aの個数に対応し、図4では、トランジスタ121・122のゲート幅の比は、4:1となる。もっとも、トランジスタ121・122はこの構成に限定されない。 FIG. 4 is a plan view of the switching circuit 12. The switching circuit 12 includes a plurality of transistors 12a arranged in a matrix on one semiconductor chip SC. The transistor 121 is formed in the first region 121R of the semiconductor chip SC, and 32 transistors (columns) × 6 (stages) of transistors 12a are connected in parallel. The transistor 122 is formed in the second region 122R of the semiconductor chip SC, and the transistors 12a are connected in parallel by 8 (columns) × 6 (stages). Note that the gate widths of the transistors 121 and 122 correspond to the number of transistors 12a connected in parallel. In FIG. 4, the ratio of the gate widths of the transistors 121 and 122 is 4: 1. However, the transistors 121 and 122 are not limited to this configuration.
 なお。トランジスタ121およびトランジスタ122の製造工程は同じであり、ゲート長のサイズは同一で、ゲート幅のサイズが異なるパターン設計となっている。 Note. The manufacturing processes of the transistor 121 and the transistor 122 are the same, and the gate length size is the same, and the gate width size is different.
 <参考例のカスコード回路の説明>
 図10は、参考例のカスコード回路201の構成を示す回路図である。図10に示されるように、カスコード回路201は、ノーマリーオン型トランジスタ211と、ノーマリーオフ型トランジスタ212とを備える。ここで、トランジスタ211のゲート電極と、トランジスタ212のソース電極との間には、内部抵抗214が接続されている。また、トランジスタ212のゲート電極は、内部抵抗215を介して端子21に接続されている。また、トランジスタ211のドレイン電極は端子22に接続されている。また、トランジスタ212のソース電極は端子23に接続されている。そして、トランジスタ211のソース電極とトランジスタ212のドレイン電極とがノード24において互いに接続されている。
<Description of Cascode Circuit of Reference Example>
FIG. 10 is a circuit diagram showing a configuration of the cascode circuit 201 of the reference example. As shown in FIG. 10, the cascode circuit 201 includes a normally-on transistor 211 and a normally-off transistor 212. Here, an internal resistor 214 is connected between the gate electrode of the transistor 211 and the source electrode of the transistor 212. Further, the gate electrode of the transistor 212 is connected to the terminal 21 via the internal resistor 215. The drain electrode of the transistor 211 is connected to the terminal 22. The source electrode of the transistor 212 is connected to the terminal 23. The source electrode of the transistor 211 and the drain electrode of the transistor 212 are connected to each other at the node 24.
 図11は、カスコード回路201を動作させる場合の構成を示す回路図である。図11に示されるように、カスコード回路201は、誘導負荷回路(以下、L負荷回路)301の一部に組み込まれて動作する。ここで、L負荷回路301は、インダクタンスで構成される誘導負荷311と、還流ダイオード312と、直流電源313とを備える。また、誘導負荷311と、還流ダイオード312とは、並列に接続され、この並列に接続された回路の一端は端子22と接続され、他端は直流電源313のプラス電極と接続されている。また、直流電源313のマイナス電極は、接地GNDに接続されている。 FIG. 11 is a circuit diagram showing a configuration when the cascode circuit 201 is operated. As shown in FIG. 11, the cascode circuit 201 operates by being incorporated into a part of an inductive load circuit (hereinafter referred to as L load circuit) 301. Here, the L load circuit 301 includes an inductive load 311 constituted by an inductance, a freewheeling diode 312, and a DC power supply 313. The inductive load 311 and the freewheeling diode 312 are connected in parallel, one end of the circuit connected in parallel is connected to the terminal 22, and the other end is connected to the plus electrode of the DC power supply 313. Further, the negative electrode of the DC power supply 313 is connected to the ground GND.
 そして、カスコード回路201は、端子23が接地GNDに接続され、矩形のパルス信号(入力信号)Pが端子21に入力されることにより、スイッチングする。 The cascode circuit 201 is switched when the terminal 23 is connected to the ground GND and a rectangular pulse signal (input signal) P is input to the terminal 21.
 図12は、カスコード回路201が動作したときの電圧・電流波形を示すグラフであり、(a)はノーマリーオフ型トランジスタ212のゲート電極に印加される電圧(ゲート電圧)波形300を示し、(b)は端子22に印加される電圧(ドレイン電圧)波形310を示し、(c)は端子22から端子23へ流れる電流(ドレイン電流)波形320を示し、(d)はノード24に印加される電圧(中間電圧)波形330を示す。 FIG. 12 is a graph showing voltage / current waveforms when the cascode circuit 201 is operated. FIG. 12A shows a voltage (gate voltage) waveform 300 applied to the gate electrode of the normally-off transistor 212. b) shows a voltage (drain voltage) waveform 310 applied to the terminal 22, (c) shows a current (drain current) waveform 320 flowing from the terminal 22 to the terminal 23, and (d) is applied to the node 24. A voltage (intermediate voltage) waveform 330 is shown.
 なお、閾値電圧Vthは、ノーマリーオフ型トランジスタ212のドレイン電流が立ち上がるときのゲート電圧(ゲート・ソース間の電位差)である。また、基準電圧Vrefは、カスコード回路201において基準となる電圧の値であって、例えば、接地GNDに接続された端子23に印加されている電圧の値(接地電位)である。 The threshold voltage Vth is a gate voltage (potential difference between the gate and the source) when the drain current of the normally-off transistor 212 rises. The reference voltage Vref is a reference voltage value in the cascode circuit 201, for example, a voltage value (ground potential) applied to the terminal 23 connected to the ground GND.
 また、時刻Toffは、期間400が終了する時刻であり、期間410が開始する時刻である。また、時刻Tonは、期間410が終了する時刻であり、期間420が開始する時刻である。 Also, the time Toff is the time when the period 400 ends and the time when the period 410 starts. The time Ton is the time when the period 410 ends and the time when the period 420 starts.
 図12の(a)に示されるように、期間400において、ノーマリーオフ型トランジスタ212のゲート電圧が、閾値電圧Vthより大きくなっており、ノーマリーオフ型トランジスタ212は、オンされている。また、期間410において、ゲート電圧が、概ね、閾値電圧Vthより小さくなって基準電圧Vrefになっており、ノーマリーオフ型トランジスタ212はオフされている。また、期間420において、ゲート電圧の値が、概ね、再び閾値電圧Vthより大きくなっており、ノーマリーオフ型トランジスタ212はオンされている。つまり、ノーマリーオフ型トランジスタ212は、そのゲート電極に、矩形状のパルス信号Pが端子21を介して周期的に供給されることで、概ね、周期的にオン/オフされている。 As shown in FIG. 12A, in the period 400, the gate voltage of the normally-off transistor 212 is higher than the threshold voltage Vth, and the normally-off transistor 212 is turned on. In the period 410, the gate voltage is substantially lower than the threshold voltage Vth and becomes the reference voltage Vref, and the normally-off transistor 212 is turned off. In the period 420, the value of the gate voltage is generally higher than the threshold voltage Vth again, and the normally-off transistor 212 is turned on. That is, the normally-off transistor 212 is generally periodically turned on / off by periodically supplying a rectangular pulse signal P to the gate electrode via the terminal 21.
 図12の(b)に示されるように、期間400において、端子22への供給電圧は基準電圧Vrefになっている。また、期間410において、端子22への供給電圧は基準電圧Vrefより大きくなっている。また、期間420において、端子22への供給電圧は、再び基準電圧Vrefになっている。 As shown in FIG. 12B, in the period 400, the supply voltage to the terminal 22 is the reference voltage Vref. In the period 410, the supply voltage to the terminal 22 is higher than the reference voltage Vref. In the period 420, the supply voltage to the terminal 22 becomes the reference voltage Vref again.
 図12の(c)に示されるように、端子22から端子23へ流れる電流の値は、期間400において0より大きく、期間410において0になり、期間420において、再び概ね0より大きくなっている。 As shown in FIG. 12C, the value of the current flowing from the terminal 22 to the terminal 23 is larger than 0 in the period 400, becomes 0 in the period 410, and becomes larger than 0 again in the period 420. .
 図12の(d)に示されるように、期間400において、ノード24への供給電圧は、基準電圧Vrefになっている。また、期間410において、ノード24への供給電圧は、基準電圧Vrefより大きくなっている。また、期間420において、ノード24への供給電圧は、再び概ね基準電圧Vrefになっている。 As shown in FIG. 12D, in the period 400, the supply voltage to the node 24 is the reference voltage Vref. In the period 410, the supply voltage to the node 24 is higher than the reference voltage Vref. In addition, in the period 420, the supply voltage to the node 24 is approximately the reference voltage Vref again.
 しかしながら、参考例のカスコード回路には、カスコード接続点の電位が過上昇するという問題がある。図13は、図12の(d)において範囲Aに示される電圧波形330を時間方向に拡大したグラフである。図13に示されるように、カスコード接続点であるノード24に印加される電圧の値は、時刻Toff(ノーマリーオフ型トランジスタ212のゲート電圧が、概ね、閾値電圧Vthより小さくなって基準電圧Vrefになった時刻)から大きくなり始めているが、定常値に収束する前、つまり、ノーマリーオフ型トランジスタ212のターンオフ動作の過渡期に、範囲Bで示される波形のように過上昇(オーバーシュート)している。そして、カスコード接続点の電位が過上昇することで、ノーマリーオフ型トランジスタ212のドレイン電極とソース電極との間にブレークダウン電圧を越える電圧(高電圧ストレス)が加えられ、トランジスタとしての信頼性が低下するおそれがある。 However, the cascode circuit of the reference example has a problem that the potential of the cascode connection point excessively rises. FIG. 13 is a graph in which the voltage waveform 330 shown in the range A in FIG. As shown in FIG. 13, the value of the voltage applied to the node 24 which is the cascode connection point is the time Toff (the gate voltage of the normally-off transistor 212 is generally lower than the threshold voltage Vth and becomes the reference voltage Vref. However, before it converges to a steady value, that is, in the transition period of the turn-off operation of the normally-off transistor 212, it overshoots (overshoot) as shown by the waveform shown in the range B. is doing. Further, when the potential of the cascode connection point is excessively increased, a voltage exceeding the breakdown voltage (high voltage stress) is applied between the drain electrode and the source electrode of the normally-off transistor 212, and the reliability as the transistor is increased. May decrease.
 <本カスコード回路の効果>
 図5は、図1に示されるカスコード回路1の中間電圧の電圧波形30を示すグラフである。なお、ノーマリーオフ型トランジスタ121のゲート幅と、ノーマリーオフ型トランジスタ122のゲート幅との比は、9:1である。図5に示されるように、電圧波形30は、図13に示された電圧波形330と比較して遅延しており、オーバーシュートが低減している。これは、トランジスタ121・122それぞれのゲート抵抗(ゲート電極の内部抵抗)によって、トランジスタ122のターンオフのタイミングがトランジスタ121のそれよりも遅れることが一因と考えられる。
<Effect of this cascode circuit>
FIG. 5 is a graph showing a voltage waveform 30 of the intermediate voltage of the cascode circuit 1 shown in FIG. Note that the ratio between the gate width of the normally-off transistor 121 and the gate width of the normally-off transistor 122 is 9: 1. As shown in FIG. 5, the voltage waveform 30 is delayed as compared with the voltage waveform 330 shown in FIG. 13, and the overshoot is reduced. This is considered to be because the turn-off timing of the transistor 122 is delayed from that of the transistor 121 due to the gate resistance of each of the transistors 121 and 122 (internal resistance of the gate electrode).
 このように、実施形態1によれば、中間電位の過上昇を抑制することができ、高電圧ストレスによって劣化することを効果的に防止することができる。 As described above, according to the first embodiment, an excessive increase in the intermediate potential can be suppressed, and deterioration due to high voltage stress can be effectively prevented.
 実施形態1は、Nチャネル型トランジスタに適用する場合について説明したが、これに限るものではなく、Pチャネル型トランジスタにも適用できる。この場合、Pチャネル型トランジスタの各半導体層の構成は特に限定されるものではなく、従来から公知のPチャネル型トランジスタを用いることができる。 Embodiment 1 has been described with respect to an application to an N-channel transistor, but the present invention is not limited to this, and can also be applied to a P-channel transistor. In this case, the configuration of each semiconductor layer of the P-channel transistor is not particularly limited, and a conventionally known P-channel transistor can be used.
 〔実施形態2〕
 本発明の他の実施形態について説明する。なお、説明の便宜上、実施形態1と同様の機能を有する部材については実施形態1と同じ符号を付し、その説明を省略する。図6は実施形態2にかかるカスコード回路(トランジスタ回路)1aの回路図である。図6に示されるように、トランジスタ121のゲート電極とトランジスタ122のゲート電極間に抵抗Caを設け、トランジスタ122のターンオフのタイミングをさらに遅らせることで、図8に示すとおり、電圧波形30をより低下させた電圧波形30aが得られる。
[Embodiment 2]
Another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted. FIG. 6 is a circuit diagram of a cascode circuit (transistor circuit) 1a according to the second embodiment. As shown in FIG. 6, by providing a resistor Ca between the gate electrode of the transistor 121 and the gate electrode of the transistor 122 and further delaying the turn-off timing of the transistor 122, the voltage waveform 30 is further lowered as shown in FIG. A voltage waveform 30a is obtained.
 なお、図6の抵抗Caの抵抗値を可変としてもよい。この場合、例えば、複数種類の抵抗素子の組み合わせ(複数種類の抵抗素子の接続の切り換え)によって抵抗値を調整してもよい。 Note that the resistance value of the resistor Ca in FIG. 6 may be variable. In this case, for example, the resistance value may be adjusted by a combination of a plurality of types of resistance elements (switching between connections of a plurality of types of resistance elements).
 〔実施形態3〕
 本発明の他の実施形態について説明する。なお、説明の便宜上、実施形態1と同様の機能を有する部材については実施形態1と同じ符号を付し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 図1のカスコード回路1や図6のカスコード回路1aにおいて、トランジスタ121の閾値電圧Vthとトランジスタ122の閾値電圧Vthとを異ならせてもよい(図7(a)(b)参照)。具体的には、トランジスタ121と比較して、トランジスタ122の閾値電圧Vthを高く設定する。これにより、例えば、図7(a)の構成では、図9に示すとおり、閾値電圧が同じときの電圧波形30aからオーバーシュート電圧が低減された電圧波形30bが得られる。 In the cascode circuit 1 of FIG. 1 and the cascode circuit 1a of FIG. 6, the threshold voltage Vth of the transistor 121 may be different from the threshold voltage Vth of the transistor 122 (see FIGS. 7A and 7B). Specifically, the threshold voltage Vth of the transistor 122 is set higher than that of the transistor 121. Thereby, for example, in the configuration of FIG. 7A, as shown in FIG. 9, a voltage waveform 30b in which the overshoot voltage is reduced is obtained from the voltage waveform 30a when the threshold voltage is the same.
 〔その他の構成〕
 本発明のその他の構成について説明する。なお、説明の便宜上、実施形態1と同様の機能を有する部材については実施形態1と同じ符号を付し、その説明を省略する。
[Other configurations]
The other structure of this invention is demonstrated. For convenience of explanation, members having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 図14は、カスコード回路1を動作させる場合の構成を示す回路図である。図14に示されるように、カスコード回路1は、L負荷回路101の一部に組み込まれて動作するそして、カスコード回路1は、端子23が接地GNDに接続され、矩形のパルス信号Pが端子21に入力されることにより、トランジスタ121のゲート電極に入力信号が供給され、スイッチングする。 FIG. 14 is a circuit diagram showing a configuration when the cascode circuit 1 is operated. As shown in FIG. 14, the cascode circuit 1 operates by being incorporated in a part of the L load circuit 101. In the cascode circuit 1, the terminal 23 is connected to the ground GND, and the rectangular pulse signal P is supplied to the terminal 21. As a result, the input signal is supplied to the gate electrode of the transistor 121 and switched.
 〔まとめ〕
 本発明の態様1に係るトランジスタ回路(カスコード回路1・1a)は、ノーマリーオン型の第1トランジスタ(トランジスタ11)と、ノーマリーオフ型の第2および第3トランジスタ(トランジスタ121・121)とを備え、上記第1トランジスタと上記第2トランジスタとがカスコード接続され、上記第2トランジスタの2つの導通電極の一方(ソース電極)と、上記第3トランジスタの2つの導通電極の一方(ソース電極)とが接続され、上記第2トランジスタの上記2つの導通電極の他方(ドレイン電極)と、上記第3トランジスタの上記2つの導通電極の他方(ドレイン電極)とが接続されている。
[Summary]
The transistor circuit (cascode circuit 1 · 1a) according to the first aspect of the present invention includes a normally-on type first transistor (transistor 11) and normally-off type second and third transistors (transistors 121 and 121). The first transistor and the second transistor are cascode-connected, and one of the two conductive electrodes (source electrode) of the second transistor and one of the two conductive electrodes of the third transistor (source electrode) And the other of the two conductive electrodes of the second transistor (drain electrode) and the other of the two conductive electrodes of the third transistor (drain electrode) are connected.
 本発明の態様2に係るトランジスタ回路では、上記態様1において、上記第2トランジスタの制御電極(ゲート電極)と上記第3トランジスタの制御電極(ゲート電極)とが、直接あるいは抵抗を介して接続されていてもよい。 In the transistor circuit according to aspect 2 of the present invention, in the aspect 1, the control electrode (gate electrode) of the second transistor and the control electrode (gate electrode) of the third transistor are connected directly or via a resistor. It may be.
 本発明の態様3に係るトランジスタ回路では、上記態様1または2において、上記第2および第3トランジスタは1つの半導体チップSC上に形成されていてもよい。 In the transistor circuit according to aspect 3 of the present invention, in the above aspect 1 or 2, the second and third transistors may be formed on one semiconductor chip SC.
 本発明の態様4に係るトランジスタ回路では、上記態様1~3のいずれか1態様において、上記第3トランジスタの閾値電圧Vthは、上記第2トランジスタの閾値電圧Vthよりも高くてもよい。 In the transistor circuit according to aspect 4 of the present invention, in any one of the aspects 1 to 3, the threshold voltage Vth of the third transistor may be higher than the threshold voltage Vth of the second transistor.
 本発明の態様5に係るトランジスタ回路では、上記態様1~4のいずれか1態様において、上記第2トランジスタの制御電極のゲート幅は、上記第3トランジスタの制御電極のゲート幅よりも大きくてもよい。 In the transistor circuit according to aspect 5 of the present invention, in any one of the aspects 1 to 4, the gate width of the control electrode of the second transistor may be larger than the gate width of the control electrode of the third transistor. Good.
 本発明の態様6に係るトランジスタ回路では、上記態様1~5のいずれか1態様において、上記第2トランジスタのターンオフのタイミングと、上記第3トランジスタのターンオフのタイミングとが異なってもよい。 In the transistor circuit according to aspect 6 of the present invention, in any one of the aspects 1 to 5, the turn-off timing of the second transistor and the turn-off timing of the third transistor may be different.
 本発明の態様7に係るトランジスタ回路では、上記態様1~6のいずれか1態様において、上記第2および第3トランジスタそれぞれが、並列接続された複数のノーマリーオフ型のサブトランジスタ(ノーマリーオフ型トランジスタ12a)で構成されていてもよい。 In the transistor circuit according to Aspect 7 of the present invention, in any one of Aspects 1 to 6, each of the second and third transistors includes a plurality of normally-off subtransistors (normally off) connected in parallel. Type transistor 12a).
 本発明の態様8に係るトランジスタ回路では、上記態様7において、上記第2トランジスタを構成するサブトランジスタの数は、上記第3トランジスタを構成するサブトランジスタの数よりも多くてもよい。 In the transistor circuit according to aspect 8 of the present invention, in the aspect 7, the number of sub-transistors constituting the second transistor may be larger than the number of sub-transistors constituting the third transistor.
 本発明の態様9に係るトランジスタ回路では、上記態様1~8のいずれか1態様において、上記第2トランジスタの制御電極に入力信号(パルス信号P)が供給されてもよい。 In the transistor circuit according to Aspect 9 of the present invention, in any one of Aspects 1 to 8, an input signal (pulse signal P) may be supplied to the control electrode of the second transistor.
 本発明の態様10に係るトランジスタ回路では、上記態様1~9のいずれか1態様において、上記第1トランジスタが負荷に接続されていてもよい。 In the transistor circuit according to aspect 10 of the present invention, in any one of the aspects 1 to 9, the first transistor may be connected to a load.
 本発明は上記実施形態に限定されるものではなく、上記実施形態を技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施形態に含まれる。 The present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge or combinations thereof are also included in the embodiments of the present invention.
 本発明は、半導体装置に利用可能である。 The present invention can be used for semiconductor devices.
1 カスコード回路(トランジスタ回路)
1a カスコード回路(トランジスタ回路)
11 ノーマリーオン型トランジスタ(第1トランジスタ)
121 ノーマリーオフ型トランジスタ(第2トランジスタ)
122 ノーマリーオフ型トランジスタ(第3トランジスタ)
12a ノーマリーオフ型トランジスタ(サブトランジスタ)
Ca 抵抗
P パルス信号(入力信号)
SC 半導体チップ
Toff 時刻(ターンオフのタイミング)
Vth 閾値電圧
1 Cascode circuit (transistor circuit)
1a Cascode circuit (transistor circuit)
11 Normally-on transistor (first transistor)
121 Normally-off transistor (second transistor)
122 Normally-off transistor (third transistor)
12a Normally-off transistor (subtransistor)
Ca resistance P Pulse signal (input signal)
SC semiconductor chip Toff time (turn-off timing)
Vth threshold voltage

Claims (5)

  1.  ノーマリーオン型の第1トランジスタと、ノーマリーオフ型の第2および第3トランジスタとを備え、
     上記第1トランジスタと上記第2トランジスタとがカスコード接続され、
     上記第2トランジスタの2つの導通電極の一方と、上記第3トランジスタの2つの導通電極の一方とが接続され、上記第2トランジスタの2つの導通電極の他方と、上記第3トランジスタの2つの導通電極の他方とが接続されているトランジスタ回路。
    A normally-on type first transistor; and normally-off type second and third transistors;
    The first transistor and the second transistor are cascode-connected,
    One of the two conducting electrodes of the second transistor is connected to one of the two conducting electrodes of the third transistor, the other of the two conducting electrodes of the second transistor and the two conducting electrodes of the third transistor. A transistor circuit connected to the other electrode.
  2.  上記第2トランジスタの制御電極と上記第3トランジスタの制御電極とが、直接あるいは抵抗を介して接続されている請求項1に記載のトランジスタ回路。 The transistor circuit according to claim 1, wherein the control electrode of the second transistor and the control electrode of the third transistor are connected directly or via a resistor.
  3.  上記第2および第3トランジスタは1つの半導体チップ上に形成されている請求項1または2に記載のトランジスタ回路。 3. The transistor circuit according to claim 1, wherein the second and third transistors are formed on one semiconductor chip.
  4.  上記第2トランジスタのターンオフのタイミングと、上記第3トランジスタのターンオフのタイミングとが異なる請求項1~3のいずれか1項に記載のトランジスタ回路。 4. The transistor circuit according to claim 1, wherein the turn-off timing of the second transistor is different from the turn-off timing of the third transistor.
  5.  上記第2および第3トランジスタそれぞれが、並列接続された複数のノーマリーオフ型のサブトランジスタで構成されている請求項1~4のいずれか1項に記載のトランジスタ回路。 The transistor circuit according to any one of claims 1 to 4, wherein each of the second and third transistors includes a plurality of normally-off type sub-transistors connected in parallel.
PCT/JP2014/064775 2013-09-06 2014-06-03 Transistor circuit WO2015033631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185397 2013-09-06
JP2013185397 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033631A1 true WO2015033631A1 (en) 2015-03-12

Family

ID=52628121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064775 WO2015033631A1 (en) 2013-09-06 2014-06-03 Transistor circuit

Country Status (1)

Country Link
WO (1) WO2015033631A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167015A1 (en) * 2015-04-15 2016-10-20 シャープ株式会社 Semiconductor device and composite semiconductor device
WO2016185745A1 (en) * 2015-05-15 2016-11-24 シャープ株式会社 Composite semiconductor device
WO2017026139A1 (en) * 2015-08-07 2017-02-16 シャープ株式会社 Composite semiconductor device
JP2019029588A (en) * 2017-08-02 2019-02-21 ローム株式会社 Semiconductor device
CN112530923A (en) * 2019-09-17 2021-03-19 株式会社东芝 Semiconductor device with a plurality of semiconductor chips

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204223A (en) * 1989-12-29 1991-09-05 Nec Corp Semiconductor device
JP2006324839A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Compound type semiconductor device
JP2010522432A (en) * 2007-03-20 2010-07-01 ヴェロックス セミコンダクター コーポレーション Cascode circuit using depletion mode GaN-based FET
US7939857B1 (en) * 2009-08-24 2011-05-10 Itt Manufacturing Enterprises, Inc. Composite device having three output terminals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204223A (en) * 1989-12-29 1991-09-05 Nec Corp Semiconductor device
JP2006324839A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Compound type semiconductor device
JP2010522432A (en) * 2007-03-20 2010-07-01 ヴェロックス セミコンダクター コーポレーション Cascode circuit using depletion mode GaN-based FET
US7939857B1 (en) * 2009-08-24 2011-05-10 Itt Manufacturing Enterprises, Inc. Composite device having three output terminals

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636824A (en) * 2015-04-15 2018-01-26 夏普株式会社 Semiconductor device and composite semiconductor device
WO2016167015A1 (en) * 2015-04-15 2016-10-20 シャープ株式会社 Semiconductor device and composite semiconductor device
JPWO2016167015A1 (en) * 2015-04-15 2017-10-05 シャープ株式会社 Semiconductor device and composite semiconductor device
WO2016185745A1 (en) * 2015-05-15 2016-11-24 シャープ株式会社 Composite semiconductor device
JPWO2016185745A1 (en) * 2015-05-15 2018-01-11 シャープ株式会社 Composite type semiconductor device
JPWO2017026139A1 (en) * 2015-08-07 2018-02-15 シャープ株式会社 Composite type semiconductor device
WO2017026139A1 (en) * 2015-08-07 2017-02-16 シャープ株式会社 Composite semiconductor device
CN107924874A (en) * 2015-08-07 2018-04-17 夏普株式会社 Composite semiconductor device
US10707204B2 (en) 2015-08-07 2020-07-07 Sharp Kabushiki Kaisha Composite semiconductor device
CN107924874B (en) * 2015-08-07 2021-11-26 罗姆股份有限公司 Composite semiconductor device
JP2019029588A (en) * 2017-08-02 2019-02-21 ローム株式会社 Semiconductor device
JP6991776B2 (en) 2017-08-02 2022-01-13 ローム株式会社 Semiconductor device
CN112530923A (en) * 2019-09-17 2021-03-19 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
JP2021048437A (en) * 2019-09-17 2021-03-25 株式会社東芝 Semiconductor device
JP7242487B2 (en) 2019-09-17 2023-03-20 株式会社東芝 semiconductor equipment

Similar Documents

Publication Publication Date Title
US9362903B2 (en) Gate drivers for circuits based on semiconductor devices
US9935551B2 (en) Switching circuit including serially connected transistors for reducing transient current at time of turning off, and power supply circuit provided therewith
JP6819256B2 (en) A drive circuit and a semiconductor module including the circuit
WO2015033631A1 (en) Transistor circuit
US8766711B2 (en) Switching circuit with controlled driver circuit
US20130222045A1 (en) Semiconductor power modules and devices
KR20200138042A (en) INTEGRATED FAILSAFE PULLDOWN CIRCUIT FOR GaN SWITCH
US8710541B2 (en) Bi-directional switch using series connected N-type MOS devices in parallel with series connected P-type MOS devices
JP2017028779A (en) Semiconductor switching device
WO2011118321A1 (en) Semiconductor device
JP6090007B2 (en) Driving circuit
JP2016201693A (en) Semiconductor device
US10200030B2 (en) Paralleling of switching devices for high power circuits
IT202000016072A1 (en) CORRESPONDING DRIVE CIRCUIT, DEVICE AND OPERATING PROCEDURE
JP6065721B2 (en) Drive circuit, semiconductor integrated circuit, and drive circuit control method
JP2013198125A (en) Semiconductor device
US20150035580A1 (en) Power electronic device with improved efficiency and electromagnetic radiation characteristics
JP2010028522A (en) Semiconductor device
JP5646360B2 (en) Semiconductor device
JP2020096444A (en) Switching circuit
JP4830829B2 (en) Insulated gate transistor drive circuit
WO2022070806A1 (en) Driving circuit for switching element and switching circuit
WO2020035712A1 (en) Switching circuit
JP5780489B2 (en) Gate drive circuit
JP6546955B2 (en) Switching power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP