WO2015033563A1 - 保護回路 - Google Patents

保護回路 Download PDF

Info

Publication number
WO2015033563A1
WO2015033563A1 PCT/JP2014/004536 JP2014004536W WO2015033563A1 WO 2015033563 A1 WO2015033563 A1 WO 2015033563A1 JP 2014004536 W JP2014004536 W JP 2014004536W WO 2015033563 A1 WO2015033563 A1 WO 2015033563A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
voltage
circuit
protection circuit
protection
Prior art date
Application number
PCT/JP2014/004536
Other languages
English (en)
French (fr)
Inventor
千智 小森
幸市 向
古田 和隆
利顕 荒木
亨 柿沼
康二 江島
貴史 藤畑
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480048999.5A priority Critical patent/CN105556776A/zh
Priority to KR1020167005814A priority patent/KR102307565B1/ko
Publication of WO2015033563A1 publication Critical patent/WO2015033563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse

Definitions

  • the present invention relates to a protection circuit that cuts off a current path, and more particularly, to a protection circuit that is suitable for use in a battery circuit that needs to cut off a current path quickly in an emergency, such as a lithium ion secondary battery.
  • a protection circuit for overcharge protection, overdischarge protection, etc. is built in the battery pack, It has a function of shutting off the output of the battery pack in a predetermined case.
  • the overcharge protection or overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack.
  • the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage
  • a protective element made of a fuse element having a function of cutting off a current path by a signal from the outside is used in order to safely cut off the output of the battery cell in any possible abnormal state.
  • a protection element for such a battery circuit for a lithium ion secondary battery or the like a structure in which a heating element is provided inside the protection element and a fusible conductor (fuse) on a current path is blown by the heating element is generally used. It is used.
  • FIG. 6 shows a protection circuit 50 as a related technique of the present invention.
  • the protection circuit 50 is, for example, a battery circuit used for a battery pack of a lithium ion secondary battery.
  • the protection circuit 50 includes a battery stack 51 including a battery cell of the lithium ion secondary battery, and protection for cutting off charging when the battery stack 51 is abnormal.
  • An element 52, a voltage detection element 53 that detects the voltage of the battery stack 51, and a switch element 54 that controls the operation of the protection element 52 according to the detection result of the voltage detection element 53 are provided.
  • the protection element 52 is connected in series on the charge / discharge path of the battery stack 51 and is connected to the fusible conductor 55 constituting a part of the charge / discharge path and the switch element 54, and power is supplied from the battery stack 51. And a heating element 56 that generates heat and melts the soluble conductor 55.
  • the soluble conductor 55 is formed using, for example, a low melting point metal such as Pb-free solder whose main component is Sn.
  • the heating element 56 is a member having a relatively high resistance value and heat generation when energized.
  • the heating element 56 is made of, for example, W, Mo, Ru or the like.
  • a paste-like material is mixed with and formed into a pattern using a screen printing technique on an insulating substrate on which the protective element 52 is formed, and is fired.
  • the power supply to the heating element 56 of the protection element 52 is controlled by the switch element 54.
  • the voltage detection element 53 monitors the voltage of the battery stack 51 and outputs a control signal for controlling the switch element 54 when an overcharge voltage or an overdischarge voltage is reached.
  • the switch 54 is constituted by, for example, a field effect transistor (hereinafter referred to as FET), and is output from the voltage detection element 53 when the voltage value of the battery stack 51 exceeds a predetermined overdischarge or overcharge state.
  • FET field effect transistor
  • the heating element 56 operates to be energized.
  • the switch element 54 performs control so that the fusible conductor 55 is melted by the heat generated by the heating element 56 and the charge / discharge path of the battery stack 51 is blocked.
  • the protection circuit 50 having such a circuit configuration outputs a detection signal to the switch element 54 when the detection element 53 detects an abnormal voltage of the battery stack 51.
  • the switch element 54 controls the current so that the heating element 56 of the protection element 52 is fed from the battery stack 51.
  • the protection circuit 50 can interrupt
  • the heating element 56 melts and burns out due to self-heating (Joule heat) before the fusible conductor 55 is blown, and the fusible conductor 55 is blown. Can not do it.
  • the fusible conductor 55 is mounted between a pair of electrodes that are provided apart from each other on the insulating substrate that constitutes the protection element 52, and moves on the pair of electrodes when melted by the heat generated by the heating element 56. It is divided by doing. Thereby, the protection element 52 interrupts the charge / discharge path of the protection circuit 50. Therefore, the heating element 56 needs to continue to generate heat at least until the soluble conductor 55 melts and moves onto the pair of electrodes.
  • the operating voltage range in which the heating element 56 can continue to generate heat without burning is that the upper limit voltage is about 1.5 to 2 times the lower limit voltage, and it depends on the number of battery cells in the protection circuit 50. It was not possible to respond widely. Therefore, when a high voltage exceeding the operating voltage range of the heating element 56 is applied, the heating element 56 may be burned out before the soluble conductor 55 is blown.
  • the present invention has a wide operating voltage range, and when an excessive voltage that can be assumed is applied, the time required for the heating element 56 to blow the fusible conductor 55 burns out. It is an object of the present invention to provide a protection circuit that can continuously generate heat and can reliably cut off a charge / discharge path.
  • a protection circuit includes a battery cell, a voltage detection element that detects a voltage of the battery cell, and a soluble conductor provided on a charge / discharge path of the battery cell.
  • a protective element having a heating element that is connected to the battery cell and generates heat by being energized and melts the soluble conductor; and the heating element is connected to the heating element and generates heat according to the output of the voltage detection element.
  • a switching element that controls energization of the body, and a delay circuit that delays application of a voltage to the heating element.
  • the heating element can continue to generate heat without being burned out before the fusible conductor is melted. Can be enlarged.
  • FIG. 1 is a circuit diagram showing a protection circuit to which the present invention is applied.
  • 2A and 2B are plan views showing a configuration example of the protection element, in which FIG. 2A shows a state before the fusible conductor is blown, and FIG. 2B shows a state after the fusible conductor is blown.
  • FIG. 3 is a graph showing the relationship between elapsed time and applied voltage (high voltage) in a conventional protection circuit and a protection circuit to which the present invention is applied.
  • FIG. 4 is a graph showing the relationship between elapsed time and applied voltage (low voltage) in a conventional protection circuit and a protection circuit to which the present invention is applied.
  • FIG. 1 is a circuit diagram showing a protection circuit to which the present invention is applied.
  • 2A and 2B are plan views showing a configuration example of the protection element, in which FIG. 2A shows a state before the fusible conductor is blown, and FIG. 2B shows a state after the fusible conductor is blown.
  • FIG. 5 is a diagram showing a configuration example of another delay circuit, where (A) shows an LC circuit, (B) shows an L circuit, and (C) shows a configuration example using a PWM generating element.
  • FIG. 6 is a circuit diagram showing a conventional protection circuit.
  • the protection circuit 1 to which the present invention is applied is used, for example, as a circuit of a battery pack 2 of a lithium ion secondary battery as shown in FIG.
  • the battery pack 2 includes a battery cell 3 of a lithium ion secondary battery, a voltage detection element 4 that detects the voltage of the battery cell 3, a protection element 5 that cuts off a charge / discharge path when the battery cell 3 has an abnormal voltage, and voltage detection A switch element 6 that controls the current flowing through the protection element 5 in accordance with the output of the element 4 and a delay circuit 7 provided between the voltage detection element 4 and the switch element 6 are included.
  • a plurality of battery cells 3 are provided and connected in series-parallel to form a battery stack 8.
  • the protection circuit 1 may be configured with only one battery cell 3.
  • the voltage value of the battery cell 3 is constantly monitored by the voltage detection element 4.
  • the voltage detection element 4 is connected to each battery cell 3 and is connected to the switch element 6 via the delay circuit 7.
  • the voltage detection element 4 detects the voltage value of each battery cell 3 and outputs a control signal to the switch element 6 when any one of the battery cells 3 becomes an overcharge voltage or an overdischarge voltage.
  • FIG. 2 shows a configuration example of the protection element 5.
  • the protection element 5 is formed on the insulating substrate 10, the heating element 12 laminated on the insulating substrate 10 and covered with an insulating member 11 such as glass, and both ends of the insulating substrate 10.
  • a soluble conductor 16 having a central portion connected to the heating element extraction electrode 15.
  • the insulating substrate 10 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fusible conductor 16 is melted.
  • the heating element 12 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like.
  • the heating element 12 is obtained by mixing a powdered material of these alloys, compositions, or compounds with a resin binder or the like to form a paste on the insulating substrate 10 using a screen printing technique, followed by firing. Or the like.
  • the heating element 12 is provided with a heating element electrode 17 at one end, and is connected to the switch element 6 through the heating element electrode 17. Further, the other end of the heating element 12 is connected to the heating element extraction electrode 15, and is connected to the soluble conductor 16 via the heating element extraction electrode 15.
  • the heating element 12 is covered with the insulating member 11 on the surface of the insulating substrate 10.
  • the insulating member 11 is provided to protect and insulate the heating element 12 and to efficiently transmit the heat of the heating element 12 to the soluble conductor 16 and the heating element extraction electrode 15, and is made of, for example, a glass layer.
  • the protection element 5 may be configured such that the insulating member 11 is also formed between the surface of the insulating substrate 10 and the heating element 12, and the heating element 12 is disposed inside the insulating member 11. Further, the protection element 5 may form the heating element 12 on the back surface of the insulating substrate 10 opposite to the surface on which the first and second electrodes 13 and 14 are formed. Furthermore, the protection element 5 may form the heating element 12 inside the insulating substrate 11. The protective element 5 may be formed adjacent to the first and second electrodes 13 and 14 while the heating element 12 is formed on the surface of the insulating substrate 11.
  • a heating element extraction electrode 15 connected to the heating element 12 is laminated on the upper surface of the insulating member 11.
  • the heating element extraction electrode 15 can be made to easily aggregate the molten conductor 16 of the soluble conductor 16 by being heated by the heating element 12.
  • a first electrode 13 and a second electrode 14 are formed on a pair of left and right side edges of the insulating substrate 10.
  • the fusible conductor 16 is mounted on the first and second electrodes 13 and 14 via mounting solder.
  • the first and second electrodes 13 and 14 face the side surface of the insulating substrate 11 and are connected to external connection electrodes (not shown) provided on the back surface of the insulating substrate 11 through through holes.
  • the 1st, 2nd electrodes 13 and 14 are connected with the charging / discharging path
  • the first and second electrodes 13 and 14 can be formed using a general electrode material such as Cu or Ag.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed on the surfaces of the first and second electrodes 13 and 14 by a known plating process. preferable. Thereby, the oxidation of the 1st, 2nd electrodes 13 and 14 can be prevented, and a molten conductor can be hold
  • the first and second electrodes 13 and 14 are formed by melting the solder for mounting connecting the soluble conductor 16 or the low melting point metal forming the outer layer of the soluble conductor 16. Can be prevented from being eroded.
  • the fusible conductor 16 is mounted between the first and second electrodes 13 and 14 to short-circuit the charge / discharge path of the protection circuit 1.
  • any metal that can be melted quickly by the heat generated by the heating element 12 can be used.
  • a low-melting-point metal such as Pb-free solder whose main component is Sn can be suitably used.
  • the soluble conductor 16 can be formed using materials such as Pb, Ag, Au, Cu, Ge, Ni, and In.
  • the soluble conductor 16 may be formed by laminating a low melting point metal and a high melting point metal.
  • a laminated structure of a low-melting-point metal and a high-melting-point metal for example, a structure in which a low-melting-point metal foil is coated with a high-melting-point metal plating can be exemplified.
  • solder such as Pb-free solder containing Sn as a main component
  • the high melting point metal it is preferable to use Ag, Cu or an alloy containing these as main components.
  • the high melting point metal and the low melting point metal By including the high melting point metal and the low melting point metal, even when the reflow temperature exceeds the melting temperature of the low melting point metal and the low melting point metal melts when the protective element 5 is reflow mounted, Outflow to the outside can be suppressed and the shape of the soluble conductor 16 can be maintained. In addition, even when fusing, the low melting point metal melts, and the high melting point metal is eroded (soldered), so that the fusing can be quickly performed at a temperature lower than the melting point of the high melting point metal.
  • the fusible conductor 16 is formed by being separated from each other and soldered between the first and second electrodes 13 and 14 connected to the charging / discharging path of the battery cell 3. It is connected in series above, thereby constituting part of the charge / discharge path.
  • the protection element 5 can interrupt
  • the switch element 6 connected to the heating element 12 via the heating element electrode 17 is composed of, for example, an FET.
  • the switch element 6 is connected to the voltage detection element 4 via a delay circuit 7 to be described later.
  • Power is supplied to the heating element 12 in accordance with the output detection signal, and control is performed so as to block the charge / discharge path of the battery cell 3.
  • the heating element 12 is connected in series with the switch element 6, and the heating element 12 and the switch element 6 are connected in parallel with the battery cell 3.
  • the protection circuit 1 forms a power supply path 19 that supplies power to the heating element 12.
  • energization of the heating element 12 is restricted by the switch element 6 when the battery cell 3 is at the rated voltage.
  • the protection circuit 1 causes the heating element 12 to be Heat generation is started and the soluble conductor 16 is melted.
  • a delay circuit 7 is provided between the voltage detection element 4 and the switch element 6.
  • the delay circuit 7 delays the application of the voltage output from the voltage detection element 4 to the switch element 6 and the heating element 12 according to the time constant, and instantaneously applies a high voltage exceeding the rating to the heating element 12. It is possible to prevent burnout due to being done.
  • the protection circuit 1 By interposing the delay circuit 7, the protection circuit 1 generates heat without causing the heating element 12 to burn out before the fusible conductor 16 is blown even when the battery cell 3 is overcharged and a high voltage is applied. It is possible to continue, and the working voltage range of the heating element 12 can be expanded.
  • the protection circuit 1 is delayed even when the battery cell 3 is overcharged or when a high voltage exceeding the rating of the heating element 12 is applied due to an abnormality on the charger side charging the battery cell 3.
  • the time until the heat energy for burning the heating element 12 is accumulated is delayed, and the fusible conductor 16 is blown during that time, thereby charging and discharging the battery cell 3. Can be cut off.
  • the fusible conductor 16 when the fusible conductor 16 is mounted on the protection element 5 over the first and second electrodes 13 and 14, and the fusible conductor 16 is melted by the heat generated by the heating element 12, Is attracted onto the first and second electrodes 13 and 14 having a high wettability and a large area, thereby separating the first and second electrodes. Therefore, the heating element 12 needs to continue to generate heat until the fusible conductor 5 is melted and moves onto the first and second electrodes 13 and 14.
  • the protective circuit 1 is provided with the delay circuit 7 to delay the time until the heat energy for burning the heating element 12 is accumulated, to increase the time required for fusing the fusible conductor 16, so that the heating element 12 has a working voltage. Even when a high voltage exceeding the range is applied, the fusible conductor 16 is melted and moved over the first and second electrodes 13 and 14 to continue to generate heat during the time required for division. it can.
  • the protection circuit 1 extends the operating voltage range of the heating element 12 and can cut off the charging / discharging path when any possible excessive voltage is applied.
  • FIG. 3 shows the relationship between the elapsed time and the applied voltage (high voltage) in the conventional protection circuit 50 (see FIG. 6) and the protection circuit 1 to which the present invention is applied (see FIG. 1).
  • the conventional protection circuit 50 having no delay circuit, since a high voltage is instantaneously applied to the heating element 56, the heating element 56 is burned out before the fusing time of the fusible conductor 55, which is acceptable. The molten conductor 55 cannot be blown.
  • the protection circuit 1 to which the present invention is applied it is possible to delay the application of a high voltage by interposing the delay circuit 7 and to extend the time until the heat energy for burning the heating element 12 is accumulated.
  • route of the battery cell 3 can be interrupted
  • the time for obtaining the amount of heat for melting the fusible conductor 16 is extended.
  • the time to reach the maximum current flowing through the heating element 6 is only delayed.
  • heat generation continues during that time, it can be said that the fusing time of the fusible conductor 16 is within an error range in actual use.
  • FIG. 4 shows the relationship between the elapsed time and the applied voltage (low voltage) in the conventional protection circuit 50 (see FIG. 6) and the protection circuit 1 to which the present invention is applied (see FIG. 1).
  • the rising curve of the applied voltage with respect to the elapsed time is gentle, and the accumulated heat when the maximum voltage is reached.
  • the amount of energy is about 50% of that of the conventional protection circuit 50.
  • the time constant of the delay circuit 7 is such that the time required for the heating element 12 to be divided by at least the fusible conductor 16 melting and moving to the first and second electrodes 13 and 14 continues to generate heat. For example, 100 msec or more is preferable.
  • the delay time of voltage application to the heating element 12 is insufficient, the heating element 12 is burned out before the soluble conductor 16 is blown, and the charging / discharging path of the battery cell 3 is interrupted. There is a fear that you can not.
  • the time constant of the delay circuit 7 may be 100 msec or more, for example, 1000 msec.
  • the time constant is extended, the heat generation time of the heating element 6 is extended even when a high voltage is applied, so that the soluble conductor 16 can be blown more reliably.
  • the delay circuit 7 can be configured by an RC circuit as shown in FIG. Further, the delay circuit may be constituted by an LC circuit as shown in FIG. 5A, or may be constituted by an L circuit as shown in FIG. 5B. Further, as shown in FIG. 5C, the delay circuit 7 is provided with a PWM (Pulse Width Modulation) generating element 20, and the effective power applied to the heating element 12 is adjusted to adjust the applied voltage with respect to the elapsed time. May be.
  • PWM Pulse Width Modulation
  • the delay circuit 7 is provided between the voltage detection element 4 and the switch element 6.
  • the delay circuit 7 may be provided on the power supply path 19.
  • the switch element 6 is configured by a relay element provided on the FET and the power feeding path 19.
  • the delay circuit 7 is advantageously provided between the voltage detection element 4 and the switch element 6 in that the rating can be reduced.
  • the fusible conductor is blown when each voltage of 4, 7, 10, 20, 50 [V] is applied to a heating element having a usable voltage range of 4 to 7 [V]. Confirmed whether or not
  • Example 1 a protection circuit having a delay circuit with a delay time of 100 msec was used in the configuration shown in FIG. In Example 2, a protection circuit having a delay circuit with a delay time of 500 msec in the configuration shown in FIG. 1 was used. In Example 3, a protection circuit having a delay circuit with a delay time of 1000 msec in the configuration shown in FIG. 1 was used. In Comparative Example 1, the configuration shown in FIG. 6, that is, a protection circuit without a delay circuit was used.
  • Examples 1 to 3 provided with a delay circuit, the fusible conductor could be blown even when a voltage exceeding the usable voltage range was applied to the heating element. This is because in Examples 1 to 3, by interposing a delay circuit, it was possible to delay the time until the heat energy for burning the heating element was applied, and to melt the soluble conductor during that time. is there.
  • Example 1 in Example 1 with a delay time of 100 msec, the soluble conductor could be blown when the applied voltage was 10 [V], but when the applied voltage was 20 [V] or more, the heating element was I burned out first.
  • Example 2 with a delay time of 500 msec, the soluble conductor could be blown up to an applied voltage of 20 [V], but at 50 [V], the heating element was burned out first.
  • Example 3 with a delay time of 1000 msec, the soluble conductor could be blown even when the applied voltage was 50 [V].
  • the fusible conductor can be blown even when the applied voltage increases as the delay time increases, that is, the range of operable voltage of the heating element is widened. You can see that it can be set.

Abstract

 過剰な電圧が印加された場合にも、発熱体が可溶導体を溶断させるために必要な時間は焼損することなく発熱し続け、確実に充放電経路を遮断する。 バッテリセル(3)と、バッテリセル(3)の電圧を検知する電圧検知素子(4)と、バッテリセル(3)の充放電経路上に設けられた可溶導体(16)と、バッテリセル(3)と接続され、通電されることにより発熱して可溶導体(16)を溶断する発熱体(12)とを有する保護素子(5)と、発熱体(12)と接続され、電圧検知素子(4)の出力に応じて発熱体(12)への通電を制御するスイッチ素子(6)と、発熱体(12)への電圧の印加を遅延させる遅延回路(7)とを備える。

Description

保護回路 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2013-184663号(2013年9月6日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、電流経路を遮断する保護回路に関し、特にリチウムイオン二次電池等の緊急時に速やかに電流経路を遮断する必要のあるバッテリ回路に用いて好適な保護回路に関する。
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のための保障回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 この種の回路では、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。
 このようなリチウムイオン二次電池等向けのバッテリ回路の保護素子として、保護素子内部に発熱体を有し、この発熱体によって電流経路上の可溶導体(ヒューズ)を溶断する構造が一般的に用いられている。
 本発明の関連技術として、図6に保護回路50を示す。保護回路50は、例えば、リチウムイオン二次電池のバッテリパックに用いられるバッテリ回路であり、リチウムイオン二次電池のバッテリセルを備えたバッテリスタック51と、バッテリスタック51の異常時に充電を遮断する保護素子52と、バッテリスタック51の電圧を検出する電圧検知素子53と、電圧検知素子53の検出結果に応じて保護素子52の動作を制御するスイッチ素子54を備える。
 保護素子52は、バッテリスタック51の充放電経路上に直列に接続され、該充放電経路の一部を構成する可溶導体55と、スイッチ素子54と接続されバッテリスタック51から電力が供給されることにより発熱し、可溶導体55を溶断させる発熱体56とを有する。
 可溶導体55は、例えば、Snを主成分とするPbフリーハンダ等の低融点金属を用いて形成される。発熱体56は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなり、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを、保護素子52が形成される絶縁基板上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成される。
 この保護素子52は、スイッチ素子54によって発熱体56への給電が制御されている。
 電圧検知素子53は、バッテリスタック51の電圧をモニタし、過充電電圧又は過放電電圧になったときにスイッチ素子54を制御する制御信号を出力する。
 スイッチ54は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、バッテリスタック51の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、電圧検知素子53から出力される検出信号を受けると、発熱体56が通電するように動作する。これにより、スイッチ素子54は、発熱体56の発熱により可溶導体55を溶断させ、バッテリスタック51の充放電経路を遮断するように制御する。
 このような回路構成からなる保護回路50は、検出素子53がバッテリスタック51の異常電圧を検出すると、スイッチ素子54に検出信号を出力する。検出信号を受けたスイッチ素子54は、保護素子52の発熱体56にバッテリスタック51から給電されるように電流を制御する。これにより、保護回路50は、発熱体56が発熱して、ヒューズ55が溶断することにより、充放電経路を遮断することができる。
特開2005-243652号公報 特開2006-221919号公報 特開2009-267293号公報
 ここで、保護素子52の発熱体56の発熱により可溶導体55を溶断させるためには、発熱体56の定格に応じた電圧が印加される必要がある。すなわち、発熱体56は、定格電圧よりも高い電圧が印加されると、可溶導体55が溶断する前に自身が自己発熱(ジュール熱)によって溶融、焼損してしまい、可溶導体55を溶断することができない。
 具体的に、可溶導体55は、保護素子52を構成する絶縁基板上に離間して設けられた一対の電極間にわたって搭載され、発熱体56の発熱により溶融すると、当該一対の電極上に移動することにより分断される。これにより、保護素子52は、保護回路50の充放電経路を遮断する。したがって、発熱体56は、少なくとも、この可溶導体55が溶融し、一対の電極上に移動するまでの時間は発熱し続ける必要がある。
 しかし、一般に発熱体56が焼損せずに発熱し続けることができる使用電圧範囲としては、上限電圧が下限電圧の1.5~2倍程度であり、保護回路50のバッテリセルの個数に応じて幅広く対応することができなかった。そのため、発熱体56の使用電圧範囲を超えた高電圧が印加された場合、可溶導体55を溶断させる前に、発熱体56が焼損してしまう恐れがあった。
 そこで、本発明は、広範な使用電圧範囲を有し、想定し得るいかなる過剰な電圧が印加された場合にも、発熱体56が可溶導体55を溶断させるために必要な時間は焼損することなく発熱し続け、確実に充放電経路を遮断することができる保護回路を提供することを目的とする。
 上述した課題を解決するために、本発明に係る保護回路は、バッテリセルと、上記バッテリセルの電圧を検知する電圧検知素子と、上記バッテリセルの充放電経路上に設けられた可溶導体と、上記バッテリセルと接続され、通電されることにより発熱して上記可溶導体を溶断する発熱体とを有する保護素子と、上記発熱体と接続され、上記電圧検知素子の出力に応じて上記発熱体への通電を制御するスイッチ素子と、上記発熱体への電圧の印加を遅延させる遅延回路とを備えるものである。
 本発明によれば、バッテリが過充電状態となり高電圧が印加された場合にも、発熱体が可溶導体の溶断前に焼損することなく発熱し続けることができ、発熱体の使用電圧範囲を拡大することができる。
図1は、本発明が適用された保護回路を示す回路図である。 図2は、保護素子の一構成例を示す平面図であり、(A)は可溶導体の溶断前、(B)は可溶導体の溶断後の状態を示す。 図3は、従来の保護回路と本発明が適用された保護回路における、経過時間と印加電圧(高電圧)との関係を示すグラフである。 図4は、従来の保護回路と本発明が適用された保護回路における、経過時間と印加電圧(低電圧)との関係を示すグラフである。 図5は、他の遅延回路の構成例を示す図であり、(A)はLC回路、(B)はL回路、(C)はPWM発生素子を用いた構成例を示す。 図6は、従来の保護回路を示す回路図である。
 以下、本発明が適用された保護回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 本発明が適用された保護回路1は、図1に示すように、例えばリチウムイオン二次電池のバッテリパック2の回路として用いられる。バッテリパック2は、リチウムイオン二次電池のバッテリセル3と、バッテリセル3の電圧を検知する電圧検知素子4と、バッテリセル3の異常電圧時に充放電経路を遮断する保護素子5と、電圧検知素子4の出力に応じて保護素子5に流れる電流を制御するスイッチ素子6と、電圧検知素子4とスイッチ素子6との間に設けられた遅延回路7とを有する。
 [バッテリセル/電圧検知素子]
 バッテリセル3は、複数設けられ、直並列に接続されることによりバッテリスタック8を構成する。あるいは、保護回路1は、一つのバッテリセル3のみで構成してもよい。
 バッテリセル3は、電圧検知素子4によって常時電圧値がモニタされる。電圧検知素子4は、各バッテリセル3と接続されるとともに遅延回路7を介してスイッチ素子6と接続されている。そして、電圧検知素子4は、各バッテリセル3の電圧値を検出して、いずれか1つのバッテリセル3が過充電電圧又は過放電電圧になったときには、スイッチ素子6へ制御信号を出力する。
 [保護素子]
 図2に保護素子5の一構成例を示す。図2(A)に示すように、保護素子5は、絶縁基板10と、絶縁基板10に積層され、ガラス等の絶縁部材11に覆われた発熱体12と、絶縁基板10の両端に形成された第1、第2の電極13,14と、絶縁部材11上に発熱体12と重畳するように積層された発熱体引出電極15と、両端が第1、第2の電極13,14にそれぞれ接続され、中央部が発熱体引出電極15に接続された可溶導体16とを備える。
 絶縁基板10は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板10は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、可溶導体16の溶断時の温度に留意する必要がある。
 発熱体12は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。発熱体12は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを、絶縁基板10上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
 発熱体12は、一端に発熱体電極17が設けられ、この発熱体電極17を介してスイッチ素子6と接続されている。また、発熱体12は、他端が発熱体引出電極15と接続され、この発熱体引出電極15を介して可溶導体16と接続されている。発熱体12は、絶縁基板10の表面上において絶縁部材11に被覆されている。絶縁部材11は、発熱体12の保護及び絶縁を図るとともに、発熱体12の熱を効率よく可溶導体16及び発熱体引出電極15へ伝えるために設けられ、例えばガラス層からなる。
 なお、保護素子5は、絶縁基板10の表面と発熱体12との間にも絶縁部材11を形成し、発熱体12を絶縁部材11の内部に配置するようにしてもよい。また、保護素子5は、発熱体12を、絶縁基板10の第1、第2の電極13,14が形成されている表面と反対側の裏面に形成してもよい。さらに、保護素子5は、発熱体12を、絶縁基板11の内部に形成してもよい。また、保護素子5は、発熱体12を絶縁基板11の表面に形成するとともに、第1、第2の電極13,14と隣接して形成してもよい。
 絶縁部材11の上面には、発熱体12と接続された発熱体引出電極15が積層されている。発熱体引出電極15は、発熱体12によって加熱されることにより、可溶導体16の溶融導体を凝集しやすくすることができる。
 絶縁基板10の左右一対の側縁部には、第1の電極13及び第2の電極14が形成されている。第1、第2の電極13,14は、実装用ハンダを介して、可溶導体16が搭載されている。また、第1、第2の電極13,14は、絶縁基板11の側面に臨み、スルーホールを介して絶縁基板11の裏面に設けられた外部接続電極(図示せず)と接続されている。そして、第1、第2の電極13,14は、外部接続電極を介して、保護素子5が実装される保護回路1の充放電経路と接続される。
 これら第1、第2の電極13,14は、CuやAg等の一般的な電極材料を用いて形成することができる。また、第1、第2の電極13,14の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極13,14の酸化を防止し、溶融導体を確実に保持させることができる。また、保護素子5をリフロー実装する場合に、可溶導体16を接続する実装用ハンダあるいは可溶導体16の外層を形成する低融点金属が溶融することにより第1、第2の電極13,14を溶食(ハンダ食われ)するのを防ぐことができる。
 可溶導体16は、第1、第2の電極13,14間に亘って搭載されることにより、保護回路1の充放電経路を短絡させるものである。可溶導体16は、発熱体12の発熱により速やかに溶断されるいずれの金属を用いることができ、例えば、Snを主成分とするPbフリーハンダ等の低融点金属を好適に用いることができる。その他、可溶導体16は、Pb・Ag・Au・Cu・Ge・Ni・In等の材料を用いて形成することができる。
 また、可溶導体16は、低融点金属と高融点金属とを積層して形成してもよい。低融点金属と高融点金属との積層構造としては、例えば、低融点金属箔を高融点金属メッキによって被覆する構造を挙げることができる。低融点金属としては、Snを主成分とするPbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、保護素子5をリフロー実装する場合に、リフロー温度が低融点金属の溶融温度を超えて、低融点金属が溶融しても、低融点金属の外部への流出を抑制し、可溶導体16の形状を維持することができる。また、溶断時も、低融点金属が溶融することにより、高融点金属を溶食(ハンダ食われ)することで、高融点金属の融点以下の温度で速やかに溶断することができる。
 可溶導体16は、互いに分離されて形成されバッテリセル3の充放電経路と接続された第1、第2の電極13,14間にハンダ付けされること等により、バッテリセル3の充放電経路上に直列に接続され、これにより充放電経路の一部を構成する。
 保護素子5は、発熱体12が発熱されると可溶導体16が溶融し、図2(B)に示すように、当該溶融導体が、濡れ性が高く広面積である第1、第2の電極13,14上、及び発熱体引出電極15上に引き寄せられることにより溶断される。これにより、保護素子5は、バッテリセル3の充放電経路を遮断することができる。
 発熱体電極17を介して発熱体12と接続されるスイッチ素子6は、たとえばFETにより構成される。スイッチ素子6は、後述する遅延回路7を介して電圧検知素子4と接続され、バッテリセル3の電圧値が所定の電圧値を外れる過放電又は過充電状態になったとき、電圧検知素子4から出力される検出信号に応じて発熱体12に給電し、バッテリセル3の充放電経路を遮断するように制御する。
 [スイッチ素子]
 保護回路1は、発熱体12がスイッチ素子6と直列に接続されるとともに、これら発熱体12及びスイッチ素子6がバッテリセル3と並列に接続される。これにより、保護回路1は、発熱体12に電力を供給する給電経路19が形成される。給電経路19は、バッテリセル3が定格電圧の状態においては、スイッチ素子6によって発熱体12への通電が規制されている。そして、保護回路1は、何らかの原因によりバッテリセル3が過充電の状態となり定格を超えた高電圧となった場合には、スイッチ素子6によって給電経路19が通電されることにより、発熱体12が発熱を開始し、可溶導体16を溶断する。
 [遅延回路]
 電圧検知素子4とスイッチ素子6との間には、遅延回路7が設けられている。遅延回路7は、電圧検知素子4からスイッチ素子6及び発熱体12に出力される電圧の印加を、時定数に応じて遅らせるものであり、発熱体12に定格を大きく超える高電圧が瞬時に印加されることによる焼損を防止することができる。遅延回路7を介在させることにより、保護回路1は、バッテリセル3が過充電状態となり高電圧が印加された場合にも、発熱体12が可溶導体16の溶断前に焼損することなく発熱し続けることができ、発熱体12の使用電圧範囲を拡大することができる。
 したがって、保護回路1は、バッテリセル3が過充電状態となった場合や、バッテリセル3に充電するチャージャー側の異常により発熱体12の定格を超える高電圧が印加された場合などにおいても、遅延回路7により高電圧の印加を遅延させることで、発熱体12が焼損する熱エネルギーが累積されるまでの時間を遅延させ、その間に可溶導体16を溶断させることによりバッテリセル3の充放電経路を遮断することができる。
 上述したように、保護素子5は、第1、第2の電極13,14上に亘って可溶導体16が搭載され、可溶導体16が発熱体12の発熱により溶融されると、溶融導体が濡れ性が高く広面積の第1、第2の電極13,14上に引き寄せられることにより、第1、第2の電極間が分断される。したがって、発熱体12は、可溶導体5が溶融し、第1、第2の電極13,14上に移動するまでの間、発熱し続ける必要がある。
 しかし、バッテリセル3が発熱体12の使用電圧範囲を超えた高電圧状態となった場合や、バッテリパック2が接続されるチャージャー側の故障等により、高電圧が発熱体12に印加されると、瞬時に発熱体12を焼損する熱エネルギーが印加され、可溶導体16を溶断させる前に発熱体12が焼損し、バッテリセル3の充放電経路を遮断することができない。
 そこで、保護回路1は、遅延回路7を設けることにより、発熱体12が焼損する熱エネルギーが累積するまでの時間を遅らせ、可溶導体16の溶断に要する時間を稼ぎ、発熱体12に使用電圧範囲を超えた高電圧が印加された場合にも、可溶導体16を溶融させるとともに第1、第2の電極13,14上に移動することにより分断するのに要する時間は発熱を続けることができる。
 これにより、保護回路1は、発熱体12の使用電圧範囲が広がり、想定し得るいかなる過剰な電圧が印加された場合にも、充放電経路を遮断することができる。
 図3に、従来の保護回路50(図6参照)と本発明が適用された保護回路1(図1参照)における、経過時間と印加電圧(高電圧)との関係を示す。遅延回路を有していない従来の保護回路50においては、高電圧が瞬時に発熱体56に印加されるため、可溶導体55の溶断時間よりも先に発熱体56が焼損してしまい、可溶導体55を溶断させることができない。
 一方、本発明が適用された保護回路1によれば、遅延回路7を介在させることにより高電圧の印加を遅延させ、発熱体12が焼損する熱エネルギーが累積されるまでの時間を延ばすことができ、その間に可溶導体16が溶断することによりバッテリセル3の充放電経路を遮断することができる。すなわち、本発明によれば、発熱体12が焼損されるほどの高電圧が印加された場合にも、焼損にかかる時間を遅延させることができ、可溶導体16を溶融させ、第1、第2の電極13,14上に移動させて溶断させるのに必要な時間を稼ぐことができる。これにより、保護回路1は、発熱体12の使用電圧範囲が広がり、想定し得るいかなる過剰な電圧が印加された場合にも、充放電経路を遮断することができる。
 低電圧が印加された場合、可溶導体16を溶融させる熱量を得る時間が延びるが、遅延回路7を介在させない場合に比して、発熱体6に流れる最大電流への到達時間が遅れるだけであり、また、その間にも発熱は続いているため、可溶導体16の溶断時間としては、実使用上は誤差範囲といえる。
 図4に従来の保護回路50(図6参照)と本発明が適用された保護回路1(図1参照)における、経過時間と印加電圧(低電圧)との関係を示す。遅延回路を有していない従来の保護回路50に比して、遅延回路7を介在させる保護回路1では、経過時間に対する印加電圧の上昇曲線がなだらかであり、最大電圧に到達した時点における累積熱エネルギー量は、従来の保護回路50の約50%程度となる。これは可溶導体16の溶断時間としては遅延時間の50%の延長に相当し、例えば遅延時間が1000msecの場合、0.5sec伸びるだけであり、実使用上は誤差範囲といえる。したがって、遅延回路7を介在させることによる、低電圧印加時における溶断時間の延長は問題とならない。
 [時定数]
 ここで、遅延回路7の時定数は、発熱体12が、少なくとも可溶導体16が溶融し、第1、第2の電極13,14に移動することにより分断するのに要する時間は発熱し続けるように設定され、例えば100msec以上が好ましい。
 時定数が100msecよりも短いと、発熱体12への電圧印加の遅延時間が不足し、可溶導体16が溶断するよりも先に発熱体12が焼損し、バッテリセル3の充放電経路を遮断することができない恐れがある。
 一方、遅延回路7の時定数は100msec以上であればよく、例えば1000msecであってもよい。時定数が伸びると、高電圧が印加された場合にも発熱体6の発熱時間が延びるため、より確実に可溶導体16を溶断させることができる。
 [遅延回路の構成]
 遅延回路7は、図1に示すように、RC回路によって構成することができる。また、遅延回路は、図5(A)に示すように、LC回路によって構成してもよく、図5(B)に示すように、L回路によって構成してもよい。さらに、遅延回路7は、図5(C)に示すように、PWM(Pulse Width Modulation)発生素子20を設け、発熱体12に印加する実効電力を調整することにより、経過時間に対する印加電圧を調整してもよい。
 また、上記では、遅延回路7を電圧検知素子4とスイッチ素子6との間に設けたが、遅延回路7は、給電経路19上に設けてもよい。この場合、例えばスイッチ素子6を、FET及び給電経路19上に設けたリレー素子によって構成する。ただし、遅延回路7は、図1に示すように、電圧検知素子4とスイッチ素子6との間に設ける構成のほうが、定格を小さくすることができる点で有利である。
 次いで、本発明の実施例について説明する。本実施例では、使用可能電圧範囲が4~7[V]の発熱体に対して4、7、10、20、50[V]の各電圧を印加したときに、可溶導体を溶断させることができたか否かを確認した。
 実施例1では、図1に示す構成において、遅延時間100msecの遅延回路を有する保護回路を用いた。実施例2では、図1に示す構成において、遅延時間500msecの遅延回路を有する保護回路を用いた。実施例3では、図1に示す構成において、遅延時間1000msecの遅延回路を有する保護回路を用いた。比較例1では、図6に示す構成、すなわち遅延回路を設けない保護回路を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、遅延回路を設けた実施例1~3においては、発熱体に使用可能電圧範囲を超える電圧を印加した場合にも、可溶導体を溶断させることができた。これは、実施例1~3においては、遅延回路を介在させることにより、発熱体が焼損する熱エネルギーが印加されるまでの時間を遅延させ、その間に可溶導体を溶断させることができたためである。
 一方、遅延回路を設けていない比較例1においては、発熱体に使用可能電圧範囲を超える電圧を印加した場合には、可溶導体を溶断させる前に、発熱体自身が自己発熱によって焼損してしまい、可溶導体を溶断させることができなかった。
 また、実施例1~3を比較すると、遅延時間が100msecの実施例1では、印加電圧が10[V]では可溶導体を溶断させることができたが、20[V]以上では発熱体が先に焼損してしまった。また、遅延時間が500msecの実施例2では、印加電圧が20[V]までは可溶導体を溶断させることができたが、50[V]では発熱体が先に焼損してしまった。一方、遅延時間が1000msecの実施例3では、印加電圧が50[V]においても可溶導体を溶断させることができた。
 すなわち、遅延回路を設けた保護回路においては、遅延時間が延びるにつれて、印加電圧が大きくなったときにも可溶導体を溶断させることができる、すなわち、発熱体の動作可能電圧の範囲を広範に設定できることが分かる。
1 保護回路、2 バッテリパック、3 バッテリセル、4 電圧検知素子、5 保護素子、6 スイッチ素子、7 遅延回路、8 バッテリスタック、10 絶縁基板、11 絶縁部材、12 発熱体、13 第1の電極、14 第2の電極、15 発熱体引出電極、16 可溶導体、17 発熱体電極、19 給電経路、20 PWM発生素子

Claims (4)

  1.  バッテリセルと、
     上記バッテリセルの電圧を検知する電圧検知素子と、
     上記バッテリセルの充放電経路上に設けられた可溶導体と、上記バッテリセルと接続され、通電されることにより発熱して上記可溶導体を溶断する発熱体とを有する保護素子と、
     上記発熱体と接続され、上記電圧検知素子の出力に応じて上記発熱体への通電を制御するスイッチ素子と、
     上記発熱体への電圧の印加を遅延させる遅延回路とを備える保護回路。
  2.  上記保護素子は、上記可溶導体が、それぞれ上記充放電経路に接続された一対の電極間にわたって設けられ、
     上記遅延回路は、上記発熱体が、少なくとも上記可溶導体が上記発熱体の発熱により溶融し、上記一対の電極に移動することにより分断するのに要する時間は発熱し続けるように、時定数が設定されている請求項1記載の保護回路。
  3.  上記遅延回路は、時定数が100msec以上である請求項1記載の保護回路。
  4.  上記遅延回路は、RC回路、LC回路、L回路、又はPWM発生素子のいずれかにより構成される請求項1~3のいずれか1項に記載の保護回路。
PCT/JP2014/004536 2013-09-06 2014-09-03 保護回路 WO2015033563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480048999.5A CN105556776A (zh) 2013-09-06 2014-09-03 保护电路
KR1020167005814A KR102307565B1 (ko) 2013-09-06 2014-09-03 보호 회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184663A JP6329741B2 (ja) 2013-09-06 2013-09-06 保護回路
JP2013-184663 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033563A1 true WO2015033563A1 (ja) 2015-03-12

Family

ID=52628059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004536 WO2015033563A1 (ja) 2013-09-06 2014-09-03 保護回路

Country Status (5)

Country Link
JP (1) JP6329741B2 (ja)
KR (1) KR102307565B1 (ja)
CN (2) CN105556776A (ja)
TW (1) TWI688181B (ja)
WO (1) WO2015033563A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090368A1 (ja) * 2015-11-25 2017-06-01 ヤマハ発動機株式会社 リチウムイオン二次電池の保護回路及び電池パック
JP2017225328A (ja) * 2016-06-17 2017-12-21 サングロー パワー サプライ カンパニー リミテッド 直流源を保護するための装置及び方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638498B (zh) * 2015-05-26 2018-10-11 陳葆萱 Secondary battery pack and its protective component
JP7049847B2 (ja) * 2018-02-07 2022-04-07 日立Astemo株式会社 電圧検出装置
JP7101851B1 (ja) 2021-06-30 2022-07-15 エイブリック株式会社 充電制御回路、充電制御装置、及びバッテリ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051962A (ja) * 1996-08-02 1998-02-20 Sony Corp 過充電保護回路及び方法並びに電池パック
JP2006238599A (ja) * 2005-02-24 2006-09-07 Mitsumi Electric Co Ltd 保護回路及び保護方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE814768A (fr) * 1973-05-14 1974-11-12 Systeme de surveillance de parties notamment sur un vehicule
JPH08116627A (ja) * 1994-10-14 1996-05-07 Sony Corp バッテリパックの保護回路
US5583415A (en) * 1994-12-27 1996-12-10 Motorola, Inc. Apparatus for simulating high battery temperature for rechargeble battery systems
US6331763B1 (en) * 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
JP2005243652A (ja) 1999-04-23 2005-09-08 Sony Chem Corp 過電流保護装置
JP2001006518A (ja) * 1999-04-23 2001-01-12 Sony Chem Corp 過電流保護装置
JP4221572B2 (ja) * 2003-01-22 2009-02-12 ミツミ電機株式会社 過電流検出回路及び電池ユニット
JP2006221919A (ja) 2005-02-09 2006-08-24 Uchihashi Estec Co Ltd 基板型抵抗体付きヒューズ及び電池パック
JP4241715B2 (ja) * 2005-11-17 2009-03-18 パナソニック電工株式会社 電動工具用の電池パック
CN101277009A (zh) * 2007-03-30 2008-10-01 卢浩义 汽车电源电路及电器电子设备的半导体保护控制系统
CA2648972A1 (en) * 2007-12-24 2009-06-24 Yaron Mayer System and method for improved electric cars and/or electric car batteries and/or improved infrastructures for recharging electric cars
JP5454839B2 (ja) 2008-04-30 2014-03-26 株式会社村田製作所 アンチヒューズ素子
JP5072796B2 (ja) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 保護素子及び二次電池装置
TWM385858U (en) * 2010-02-12 2010-08-01 Fu Da Tong Technology Co Ltd Frequency conversion type wireless power supply and charging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051962A (ja) * 1996-08-02 1998-02-20 Sony Corp 過充電保護回路及び方法並びに電池パック
JP2006238599A (ja) * 2005-02-24 2006-09-07 Mitsumi Electric Co Ltd 保護回路及び保護方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090368A1 (ja) * 2015-11-25 2017-06-01 ヤマハ発動機株式会社 リチウムイオン二次電池の保護回路及び電池パック
US10637261B2 (en) 2015-11-25 2020-04-28 Yamaha Hatsudoki Kabushiki Kaisha Protection circuit and battery pack of lithium-ion secondary battery
JP2017225328A (ja) * 2016-06-17 2017-12-21 サングロー パワー サプライ カンパニー リミテッド 直流源を保護するための装置及び方法
US10581239B2 (en) 2016-06-17 2020-03-03 Sungrow Power Supply Co., Ltd. Device and method for protecting direct current source

Also Published As

Publication number Publication date
KR102307565B1 (ko) 2021-10-01
TW201517433A (zh) 2015-05-01
JP2015053780A (ja) 2015-03-19
TWI688181B (zh) 2020-03-11
JP6329741B2 (ja) 2018-05-23
CN105556776A (zh) 2016-05-04
CN111725789A (zh) 2020-09-29
KR20160050025A (ko) 2016-05-10

Similar Documents

Publication Publication Date Title
JP6427331B2 (ja) 保護素子、保護回路及びバッテリ回路
JP7281274B2 (ja) 保護素子及びバッテリパック
JP6329741B2 (ja) 保護回路
JP6227276B2 (ja) 保護素子
JP2024009983A (ja) 保護素子及びバッテリパック
WO2015033560A1 (ja) バッテリ回路、保護回路
TWI715574B (zh) 保護元件、熔絲元件
KR102218124B1 (ko) 보호 소자
JP6078332B2 (ja) 保護素子、バッテリモジュール
WO2021210634A1 (ja) 保護素子及びバッテリパック
JP6202992B2 (ja) 保護回路、バッテリ回路、保護素子、保護素子の駆動方法
WO2024018863A1 (ja) 保護素子
WO2022181652A1 (ja) 保護素子及びバッテリパック
WO2024070418A1 (ja) 保護素子及び保護素子の製造方法
WO2023248787A1 (ja) 保護素子、及び保護素子の製造方法
JP2023106259A (ja) 保護素子、及びバッテリパック
WO2015107633A1 (ja) 保護素子、バッテリモジュール
WO2015107632A1 (ja) 保護素子
JP2014127270A (ja) 保護素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048999.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841925

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167005814

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841925

Country of ref document: EP

Kind code of ref document: A1