WO2015033382A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015033382A1
WO2015033382A1 PCT/JP2013/073629 JP2013073629W WO2015033382A1 WO 2015033382 A1 WO2015033382 A1 WO 2015033382A1 JP 2013073629 W JP2013073629 W JP 2013073629W WO 2015033382 A1 WO2015033382 A1 WO 2015033382A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel mos
mos transistors
transistors
semiconductor device
gate
Prior art date
Application number
PCT/JP2013/073629
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
正通 浅野
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2013/073629 priority Critical patent/WO2015033382A1/ja
Priority to JP2014536043A priority patent/JP5688191B1/ja
Publication of WO2015033382A1 publication Critical patent/WO2015033382A1/ja
Priority to US14/932,185 priority patent/US9646991B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11809Microarchitecture
    • H01L2027/11859Connectibility characteristics, i.e. diffusion and polysilicon geometries
    • H01L2027/11866Gate electrode terminals or contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11881Power supply lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around

Definitions

  • the present invention relates to a semiconductor device.
  • Non-Patent Document 1 it is necessary to completely separate the N-well region for forming the PMOS and the P-type silicon substrate (or P-well region) for forming the NMOS, In addition, the N-well region and the P-type silicon substrate each need a body terminal for applying a potential, which is a factor of increasing the area.
  • SGT Surrounding Gate Transistor
  • FIG. 19 is a circuit diagram of an inverter
  • Qp is a P-channel MOS transistor (hereinafter referred to as a PMOS transistor)
  • Qn is an N-channel MOS transistor (hereinafter referred to as an NMOS transistor)
  • IN is an input signal
  • OUT is an output signal
  • Vcc Is a power source
  • Vss is a reference power source.
  • FIG. 20a shows a plan view of a layout in which the inverter of FIG. FIG. 20b shows a sectional view in the direction of the cut line AA ′ in the plan view of FIG. 20a.
  • planar silicon layers 2p and 2n are formed on an insulating film such as a buried oxide film layer (BOX) 1 formed on the substrate.
  • BOX buried oxide film layer
  • Reference numeral 3 denotes a silicide layer formed on the surface of the planar silicon layer (2p, 2n), which connects the planar silicon layers 2p, 2n.
  • 4n is an n-type silicon pillar
  • 4p is a p-type silicon pillar
  • 5 is a gate insulating film surrounding the silicon pillars 4n and 4p
  • 6 is a gate electrode
  • 6a is a gate wiring.
  • a p + diffusion layer 7p and an n + diffusion layer 7n are respectively formed on the uppermost portions of the silicon pillars 4n and 4p by impurity implantation or the like.
  • 8 is a silicon nitride film for protecting the gate insulating film 5 and the like
  • 9p and 9n are p + diffusion layers 7p
  • 10p and 10n are silicide layers 9p and 9n and a metal 13a
  • Reference numerals 11b and 13b respectively denote contacts for connecting the gate wiring 6a and the metal wiring 13c.
  • the silicon pillar 4n, the lower diffusion layer 2p, the upper diffusion layer 7p, the gate insulating film 5, and the gate electrode 6 constitute a PMOS transistor Qp.
  • the gate electrode 6 constitutes an NMOS transistor Qn.
  • the upper diffusion layers 7p and 7n serve as sources, and the lower diffusion layers 2p and 2n serve as drains.
  • a power supply Vcc is supplied to the metal 13a, a reference power supply Vss is supplied to the metal 13b, and an input signal IN is connected to the metal 13c.
  • the silicide layer 3 connecting the drain diffusion layer 2p of the PMOS transistor Qp and the drain diffusion layer 2n of the NMOS transistor Qn becomes the output OUT.
  • the PMOS transistor and the NMOS transistor are completely separated from each other in structure, so that well isolation is not required unlike the planar transistor, and the silicon pillar is Since it becomes a floating body, there is no need for a body terminal for supplying a potential to the well unlike a planar transistor, and the layout (arrangement) can be very compact.
  • the greatest feature of the SGT is that, in terms of structural principle, the lower layer wiring by the silicide layer existing on the substrate side under the silicon pillar and the upper wiring by contact connection at the upper part of the silicon pillar can be used.
  • the present invention uses this SGT feature to arrange NOR circuits having g inputs, which are often used in logic circuits, by arranging them in m rows and n columns in a compact manner and minimizing the area.
  • the object is to provide an inexpensive logic semiconductor device.
  • a plurality of transistors whose sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate are arranged in 2 rows and n columns (n ⁇ 2) on the substrate.
  • a semiconductor device constituting a NOR circuit Each of the transistors is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the drain regions of the n N-channel MOS transistors and the first column of P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of P-channel MOS transistors are disposed on the substrate side.
  • the drain regions of the MOS transistors are connected to each other via a silicide region,
  • the sources of the n N-channel MOS transistors are each connected to a reference power supply line extending along a row, and the n-th column P-channel The source of the MOS transistor is connected to a power supply line extending along the row.
  • the source region of the P-channel MOS transistor in the even-numbered column is arranged on the substrate side from the silicon pillar.
  • n input signals are connected corresponding to the respective sets of gates.
  • the power supply line and the reference power supply line are configured by a first metal wiring, and the input signal is perpendicular to the power supply line and the reference power supply line.
  • the second metal wiring extends.
  • a plurality of transistors in which sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate are arranged in 2 rows and n columns (n ⁇ 4) on the substrate.
  • a semiconductor device constituting a NOR circuit having g input signals (n h ⁇ g, g and h are integers),
  • Each of the transistors is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the drain regions of the n N-channel MOS transistors and the h P-channel MOS transistors from the first column to the h-th column are arranged on the substrate side with respect to the silicon pillar, and are connected to each other via the silicide region.
  • a semiconductor device wherein the n columns are grouped into h groups, and the source of the g-th group of P-channel MOS transistors and the drain of the g + 1-th group of P-channel MOS transistors are connected to each other. Is provided.
  • the sources of the n N-channel MOS transistors are each connected to a reference power supply line extending along a row and grouped into the g sets The sources of the last set of h P-channel MOS transistors are connected to a power supply line extending along the row.
  • the h P-channel MOS transistors grouped in the g-th set have a source region of the even-numbered P-channel MOS transistor closer to the substrate side than the silicon pillar. Has been placed.
  • the g input signals are respectively connected to arbitrary h of the n transistor pairs.
  • the power supply line and the reference power supply line are configured by a first metal wiring, and the input signal is perpendicular to the power supply line and the reference power supply line.
  • the second metal wiring extends.
  • a plurality of transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate are arranged in m rows and n columns (m ⁇ 3, n ⁇ 2) on the substrate.
  • a semiconductor device constituting a NOR circuit by arranging in a Each of the transistors is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the drain regions of the i ⁇ n N-channel MOS transistors and the j P-channel MOS transistors in the first column are disposed on the substrate side from the silicon pillar, and the i ⁇ n N-channel MOS transistors The drain regions of the j P-channel MOS transistors in the first column are connected to each other via a silicide region,
  • sources of the i ⁇ n N-channel MOS transistors are each connected to a reference power supply line extending along a row, and the n-th column The sources of j P-channel MOS transistors are connected to a power supply line extending along the row.
  • the source regions of the j P-channel MOS transistors in the even-numbered columns are arranged on the substrate side from the silicon pillar. Has been.
  • n input signals are connected corresponding to the respective sets of gates.
  • the power supply line and the reference power supply line are configured by a first metal wiring, and the input signal is perpendicular to the power supply line and the reference power supply line.
  • the second metal wiring extends.
  • a plurality of transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate are arranged in m rows and n columns (m ⁇ 2, n ⁇ 2) on the substrate.
  • Each of the transistors is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the drain regions of the i ⁇ n N-channel MOS transistors and the j ⁇ h P-channel MOS transistors from the first column to the h-th column are arranged on the substrate side from the silicon pillar,
  • the drain regions of the i ⁇ n N-channel MOS transistors and the j ⁇ h P-channel MOS transistors from the first column to the h-th column are connected to each other via a silicide region,
  • the sources of the i ⁇ n N-channel MOS transistors are connected to reference power supply lines extending along rows, respectively, and grouped into the g pieces.
  • the source of the last set of h P-channel MOS transistors is connected to a power supply line extending along the row.
  • the j ⁇ h P-channel MOS transistors grouped in the g-th set are such that the source region of the even-numbered P-channel MOS transistors is a substrate from a silicon pillar. Arranged on the side.
  • the g inputs Signals are respectively connected to arbitrary h gates of the n sets of transistors.
  • the power supply line and the reference power supply line are configured by a first metal wiring, and the input signal is perpendicular to the power supply line and the reference power supply line.
  • the second metal wiring extends.
  • a plurality of transistors whose sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate are arranged in m rows and n columns (m ⁇ 2, n ⁇ 2) on the substrate.
  • Each of the transistors is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the source regions of the i ⁇ n N-channel MOS transistors and the j ⁇ h P-channel MOS transistors from the first column to the h-th column are arranged on the substrate side from the silicon pillar,
  • the i ⁇ n N-channel MOS transistors and the drain regions of the j ⁇ h P-channel MOS transistors from the first column to the h-th column are connected to each other through a contact,
  • the sources of the i ⁇ n N-channel MOS transistors are connected to reference power supply lines extending along rows, respectively, and grouped into the g pieces.
  • the source of the last set of h P-channel MOS transistors is connected to a power supply line extending along the row.
  • the j ⁇ h P-channel MOS transistors grouped in the g-th group have a drain region of the even-numbered P-channel MOS transistor formed on a substrate from a silicon pillar. Arranged on the side.
  • the g inputs Signals are respectively connected to arbitrary h gates of the n sets of transistors.
  • the power supply line and the reference power supply line are configured by a first metal wiring, and the input signal is perpendicular to the power supply line and the reference power supply line.
  • the second metal wiring extends.
  • FIG. 1 is a plan view of a NOR circuit according to a first embodiment of the present invention. It is sectional drawing of the NOR circuit of 1st Example of this invention. It is sectional drawing of the NOR circuit of 1st Example of this invention. It is sectional drawing of the NOR circuit of 1st Example of this invention. It is sectional drawing of the NOR circuit of 1st Example of this invention. It is sectional drawing of the NOR circuit of 1st Example of this invention. It is an equivalent circuit diagram which shows the NOR circuit of the Example of this invention. It is a top view of the NOR circuit of the 2nd example of the present invention. It is sectional drawing of the NOR circuit of the 2nd Example of this invention.
  • FIG. 1 shows an equivalent circuit diagram of a three-input NOR circuit applied to the present invention.
  • Qn1, Qn2, and Qn3 are NMOS transistors configured by SGT, and Qp1, Qp2, and Qp3 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Qn1, Qn2, Qn3 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output OUT31.
  • the drain of the PMOS transistor Qp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Qp2 via the node N2, and the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 via the node N3.
  • the source of Qp3 is connected to the power supply Vcc.
  • An input signal IN1 is connected to the gates of the NMOS transistor Qn1 and the PMOS transistor Qp1
  • an input signal IN2 is connected to the gates of the NMOS transistor Qn2 and the PMOS transistor Qp2 and an input is input to the gates of the NMOS transistor Qn3 and the PMOS transistor Qp3.
  • Signal IN3 is connected.
  • FIGS. 2a, 2b, 2c, 2d and 2e A first embodiment is shown in FIGS. 2a, 2b, 2c, 2d and 2e.
  • 2a is a plan view of the three-input NOR layout (arrangement) of the present invention
  • FIG. 2b is a cross-sectional view along the cut line AA ′
  • FIG. 2c is a cross-sectional view along the cut line BB ′
  • 2d is a cross-sectional view along the cut line CC ′
  • FIG. 2e is a cross-sectional view along the cut line DD ′.
  • FIGS. 2a, 2b, 2c, 2d and 2e portions having the same structure as in FIGS. 20a and 20b are indicated by equivalent symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104n1, 104n2, 104n3 are n-type silicon pillars, 104p1, 104p2, 104p3 are p-type silicon pillars, 105 are silicon pillars 104n1, 104n2, 104n3, 104p1, 104p2, 104p3, 106 is a gate electrode, 106a, 106b, 106c, 106d, 106e, and 106f are gate wirings, respectively.
  • P + diffusion layers 107p1, 107p2, and 107p3 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3 by impurity implantation, respectively.
  • the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 are n + diffusion layers 107n1 and 107n2, respectively. 107n3 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p1, 109p2, 109p3, 109n1, 109n2, 109n3 are silicides connected to the p + diffusion layers 107p1, 107p2, 107p3, n + diffusion layers 107n1, 107n2, 107n3, respectively.
  • 110p1, 110p2, 110p3, 110n1, 110n2, and 110n3 are contacts that connect the silicide layers 109p1, 109p2, 109p3, 109n1, 109n2, and 109n3 and the first metal wires 113g, 113g, 113a, 113c, 113c, and 113c, respectively.
  • 111a are contacts for connecting the gate wiring 106b and the first metal wiring 113d
  • 111b is a contact for connecting the gate wiring 106d and the first metal wiring 113e.
  • 111c denotes a contact for connecting the gate line 106f and the first metal wiring 113f.
  • Reference numeral 112a denotes a contact connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the first metal wiring 113b.
  • the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp1, and the silicon pillar 104n2, the lower diffusion layer 102pb, the upper diffusion layer 107p2, the gate insulating film 105,
  • the gate electrode 106 constitutes the PMOS transistor Qp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp3, and the silicon pillar 104p1 and the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105,
  • the over gate electrode 106 constitute an NMOS transistor Qn2, silicon pillar 104
  • gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp1
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp2
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp3.
  • Gate wirings 106a and 106b are connected to the gate electrode 106 of the NMOS transistor Qn1
  • gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn2
  • gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn3. Connected.
  • the lower diffusion layers 102n and 102pa serve as common drains of the NMOS transistors Qn1, Qn2, Qn3 and the PMOS transistor Qp1 through the silicide 103, and are connected to the first metal wiring 113b through the contact 112a to serve as the output OUT31.
  • the upper diffusion layer 107n1 that is the source of the NMOS transistor Qn1 is connected to the first metal wiring 113c via the silicide 109n1 and the contact 110n1, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n2 that is the source of the NMOS transistor Qn2 is connected to the first metal wiring 113c via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 which is the source of the NMOS transistor Qn3 is connected to the first metal wiring 113c through the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1 that is the source of the PMOS transistor Qp1 is connected to the first metal wiring 113g via the silicide 109p1 and the contact 110p1.
  • the upper diffusion layer 107p2 which is the drain of the PMOS transistor Qp2 is connected to the first metal wiring 113g via the silicide 109p2 and the contact 110p2.
  • the source of the PMOS transistor Qp1 and the drain of the PMOS transistor Qp2 are connected via the first metal wiring 113g.
  • the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Qp3 is connected to the first metal wiring 113a through the contact 110p3.
  • the power supply Vcc is supplied to the one metal wiring 113a.
  • An input signal IN1 is supplied to the first metal wiring 113d, connected to the gate wiring 106b through the contact 111a, supplied to the gate electrode of the NMOS transistor Qn1, and the gate of the PMOS transistor Qp1 through the gate wiring 106a. Supplied to the electrode.
  • An input signal IN2 is supplied to the first metal wiring 113e, connected to the gate wiring 106d through the contact 111b, supplied to the gate electrode of the NMOS transistor Qn2, and the gate of the PMOS transistor Qp2 through the gate wiring 106c. Supplied to the electrode.
  • An input signal IN3 is supplied to the first metal wiring 113f, connected to the gate wiring 106f through the contact 111c, supplied to the gate electrode of the NMOS transistor Qn3, and the gate of the PMOS transistor Qp3 through the gate wiring 106e. Supplied to the electrode.
  • the transistor arrangement method in this embodiment is as follows. From the bottom, the power supply line Vss (113c), NMOS transistors Qn1, Qn2, Qn3 arranged in the first row, PMOS transistors Qp1, arranged in the second row, Qp2, Qp3 and power supply line Vcc (113a) are arranged in this order. These three-input NOR circuits are defined as a block BL31 including a power supply line Vcc (113a) and a reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line), and in the following embodiments, Ly is standardized to be constant.
  • the power supply line and the reference power supply line can be easily connected only by arranging the block BL31 of this embodiment and other blocks horizontally.
  • six SGTs constituting a three-input NOR circuit can be arranged in two rows and three columns without providing useless wiring and contact regions, and a semiconductor device with a reduced area can be provided.
  • FIG. 3 shows an equivalent circuit diagram of a 4-input NOR circuit applied to the present invention.
  • Qn1, Qn2, Qn3, and Qn4 are NMOS transistors configured by SGT
  • Qp1, Qp2, Qp3, and Qp4 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Qn1, Qn2, Qn3, and Qn4 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output OUT41.
  • the drain of the PMOS transistor Qp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Qp2 through the node N2, and the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the node N3.
  • the source of Qp3 is connected to the drain of the PMOS transistor Qp4 via the node N4, and the source of the PMOS transistor Qp4 is connected to the power supply Vcc.
  • An input signal IN1 is connected to the gates of the NMOS transistor Qn1 and the PMOS transistor Qp1
  • an input signal IN2 is connected to the gates of the NMOS transistor Qn2 and the PMOS transistor Qp2
  • an input is input to the gates of the NMOS transistor Qn3 and the PMOS transistor Qp3.
  • the signal IN3 is connected, and the input signal IN4 is connected to the gates of the NMOS transistor Qn4 and the PMOS transistor Qp4.
  • 4a, 4b, 4c, 4d and 4e show a second embodiment.
  • 4a is a plan view of the 4-input NOR layout (arrangement) of the present invention
  • FIG. 4b is a cross-sectional view along the cut line AA ′
  • FIG. 4c is a cross-sectional view along the cut line BB ′
  • 4d is a cross-sectional view along the cut line CC ′
  • FIG. 4e is a cross-sectional view along the cut line DD ′.
  • FIG. 3 are in the first row (lower row in the figure), and the PMOS transistors Qp1, Qp2, Qp3, and Qp4 are in the second row (upper row in the figure). ) Are arranged in order from the right side of the figure.
  • the difference from FIG. 2 is that the NMOS transistor Qn4 and the PMOS transistor Qp4 are arranged on the left side of the figure. 4a, FIG. 4b, FIG. 4c, FIG. 4d, and FIG. 4e, portions having the same structure as those in FIG. 2a, FIG. 2b, FIG. 2c, FIG.
  • Planar silicon layers 102n, 102pa, 102pb, and 102pc are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate.
  • the planar silicon layers 102n, 102pa, 102pb, and 102pc are impurity-implanted.
  • the n + diffusion layer, the p + diffusion layer, the p + diffusion layer, and the p + diffusion layer are respectively formed.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb, 102pc), and connects the planar silicon layers 102n, 102pa.
  • 104n1, 104n2, 104n3, 104n4 are n-type silicon pillars
  • 104p1, 104p2, 104p3, 104p4 are p-type silicon pillars
  • 105 is a silicon pillar 104n1, 104n2, 104n3, 104n4, 104p1, 104p2, 104p3, 104p4.
  • 106 are gate electrodes
  • 106a, 106b, 106c, 106d, 106e, 106f, 106g, and 106h are gate wirings, respectively.
  • P + diffusion layers 107p1, 107p2, 107p3, and 107p4 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, 104n3, and 104n4 by impurity implantation, respectively, and the uppermost portions of the silicon pillars 104p1, 104p2, 104p3, and 104p4 are respectively formed N + diffusion layers 107n1, 107n2, 107n3, and 107n4 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p1, 109p2, 109p3, 109p4, 109n1, 109n2, 109n3, 109n4 are p + diffusion layers 107p1, 107p2, 107p3, 107p4, n + diffusion layers 107n1, 107n2,
  • the silicide layers 110p1, 110p2, 110p3, 110p4, 110n1, 110n2, 110n3, and 110n4 connected to 107n3 and 107n4 are formed of the silicide layers 109p1, 109p2, 109p3, 109p4, 109n1, 109n2, 109n3, and 109n4 and the first metal wiring 113g.
  • 111b is a contact connecting the gate wiring 106d and the first metal wiring 113e
  • 111c is a contact connecting the gate wiring 106f and the first metal wiring 113f
  • 111d is a contact connecting the gate wiring 106h and the first metal wiring 113f. This is a contact for connecting one metal wiring 113h.
  • 112a is a contact connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the first metal wiring 113b.
  • Reference numeral 112b denotes a contact for connecting the silicide 103 covering the lower diffusion layer 102pc and the first metal wiring 113a.
  • the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp1, and the silicon pillar 104n2, the lower diffusion layer 102pb, the upper diffusion layer 107p2, the gate insulating film 105, The gate electrode 106 constitutes the PMOS transistor Qp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp3, and the silicon pillar 104n4, the lower diffusion layer.
  • 102 pc, upper diffusion layer 107 p 4, gate insulating film 105, and gate electrode 106 constitute a PMOS transistor Qp 4, and silicon pillar 104 p 1, lower diffusion layer 102 n, upper diffusion layer 107 n 1, gate insulating film 105
  • the gate electrode 106 constitutes the NMOS transistor Qn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn2, and the silicon pillar 104p3, the lower diffusion layer.
  • 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn3.
  • the silicon pillar 104p4, the lower diffusion layer 102n, the upper diffusion layer 107n4, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor.
  • Qn4 is configured.
  • the gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp1
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp2
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp3.
  • a gate wiring 106g is connected to the gate electrode 106 of the PMOS transistor Qp4
  • gate wirings 106a and 106b are connected to the gate electrode 106 of the NMOS transistor Qn1
  • gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn2.
  • the gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn3, and the gate wirings 106g and 106h are connected to the gate electrode of the NMOS transistor Qn4.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn1, Qn2, Qn3, Qn4 and the PMOS transistor Qp1, and are connected to the output OUT41.
  • the upper diffusion layer 107n1 that is the source of the NMOS transistor Qn1 is connected to the first metal wiring 113c via the silicide 109n1 and the contact 110n1, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n2 that is the source of the NMOS transistor Qn2 is connected to the first metal wiring 113c via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 that is the source of the NMOS transistor Qn3 is connected to the first metal wiring 113c via the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107n4 that is the source of the NMOS transistor Qn4 is connected to the first metal wiring 113c via the silicide 109n4 and the contact 110n4.
  • the upper diffusion layer 107p1 that is the source of the PMOS transistor Qp1 is connected to the first metal wiring 113g via the silicide 109p1 and the contact 110p1.
  • the upper diffusion layer 107p2 which is the drain of the PMOS transistor Qp2 is connected to the first metal wiring 113g via the silicide 109p2 and the contact 110p2.
  • the source of the PMOS transistor Qp1 and the drain of the PMOS transistor Qp2 are connected via the first metal wiring 113g.
  • the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Qp3 is connected to the first metal wiring 113i through the contact 110p3.
  • the drain of the PMOS transistor Qp4 is connected to the first metal wiring 113i through the contact 110p4.
  • the source of the PMOS transistor Qp3 and the drain of the PMOS transistor Qp4 are connected via the first metal wiring 113i.
  • the source of the PMOS transistor Qp4 is connected to the lower diffusion layer 102pc via the silicide 103, and the lower diffusion layer 102pc is connected to the first metal wiring 113a via the contact 112b.
  • the first metal 113a is supplied with power Vcc.
  • An input signal IN1 is supplied to the first metal wiring 113d, connected to the gate wiring 106b through the contact 111a, supplied to the gate electrode of the NMOS transistor Qn1, and the gate of the PMOS transistor Qp1 through the gate wiring 106a. Supplied to the electrode.
  • An input signal IN2 is supplied to the first metal wiring 113e, connected to the gate wiring 106d through the contact 111b, supplied to the gate electrode of the NMOS transistor Qn2, and the gate of the PMOS transistor Qp2 through the gate wiring 106c. Supplied to the electrode.
  • An input signal IN3 is supplied to the first metal wiring 113f, connected to the gate wiring 106f through the contact 111c, supplied to the gate electrode of the NMOS transistor Qn3, and the gate of the PMOS transistor Qp3 through the gate wiring 106e. Supplied to the electrode.
  • An input signal IN4 is supplied to the first metal wiring 113h, connected to the gate wiring 106h through the contact 111d, supplied to the gate electrode of the NMOS transistor Qn4, and the gate of the PMOS transistor Qp4 through the gate wiring 106g. Supplied to the electrode.
  • These four-input NOR circuits are defined as a block BL41 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a). According to this embodiment, eight SGTs constituting a four-input NOR circuit can be arranged in two rows and four columns without providing useless wiring and contact regions, and a semiconductor device with a reduced area can be provided.
  • FIG. 5 shows an equivalent circuit diagram of a 5-input NOR circuit applied to the present invention.
  • Qn1, Qn2, Qn3, Qn4, and Qn5 are NMOS transistors configured by SGT, and Qp1, Qp2, Qp3, Qp4, and Qp5 are PMOS transistors also configured by SGT.
  • the sources of the NMOS transistors Qn1, Qn2, Qn3, Qn4, and Qn5 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output OUT51.
  • the drain of the PMOS transistor Qp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Qp2 through the node N2, and the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the node N3.
  • the source of Qp3 is connected to the drain of the PMOS transistor Qp4 via the node N4, the source of the PMOS transistor Qp4 is connected to the drain of the PMOS transistor Qp5 via the node N5, and the source of the PMOS transistor Qp5 is connected to the power supply Vcc. .
  • the input signal IN1 is connected to the gates of the PMOS transistor Qp1 and the NMOS transistor Qn1
  • the input signal IN2 is connected to the gates of the PMOS transistor Qp2 and the NMOS transistor Qn2
  • the gates of the PMOS transistor Qp3 and the NMOS transistor Qn3 are input.
  • the signal IN3 is connected
  • the input signal IN4 is connected to the gates of the PMOS transistor Qp4 and NMOS transistor Qn4
  • the input signal IN5 is connected to the gates of the PMOS transistor Qp5 and NMOS transistor Qn5.
  • FIGS. 6a, 6b and 6c A third embodiment is shown in FIGS. 6a, 6b and 6c.
  • 6a is a plan view of the 5-input NOR layout (arrangement) of the present invention
  • FIG. 6b is a cross-sectional view along the cut line AA ′
  • FIG. 6c is a cross-sectional view along the cut line BB ′.
  • the cross-sectional view cut vertically is the same as FIGS. 4d and 4e, and is omitted.
  • the NMOS transistors Qn1, Qn2, Qn3, Qn4, and Qn5 of the NOR circuit of FIG. Are arranged in order from the right side of the figure. The difference from FIG.
  • FIGS. 6a, 6b, and 6c portions having the same structure as in FIGS. 4a, 4b, and 4c are indicated by the same symbols in the 100s.
  • Planar silicon layers 102n, 102pa, 102pb, and 102pc are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate.
  • the planar silicon layers 102n, 102pa, 102pb, and 102pc are impurity-implanted.
  • the n + diffusion layer, the p + diffusion layer, the p + diffusion layer, and the p + diffusion layer are respectively formed.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb, 102pc), and connects the planar silicon layers 102n, 102pa.
  • 104n1, 104n2, 104n3, 104n4, 104n5 are n-type silicon pillars, 104p1, 104p2, 104p3, 104p4, 104p5 are p-type silicon pillars, 105 are silicon pillars 104n1, 104n2, 104n3, 104n4, 104n5, 104p1, 104p2, 104p3, 104p4 and 104p5 are gate insulating films, 106 is a gate electrode, 106a, 106b, 106c, 106d, 106e, 106f, 106g, 106h, 106i and 106j are gate wirings, respectively.
  • P + diffusion layers 107p1, 107p2, 107p3, 107p4, and 107p5 are formed on the tops of the silicon pillars 104n1, 104n2, 104n3, 104n4, and 104n5, respectively, by impurity implantation or the like, and the silicon pillars 104p1, 104p2, 104p3, 104p4, and 104p5 are formed.
  • n + diffusion layers 107n1, 107n2, 107n3, 107n4, and 107n5 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p1, 109p2, 109p3, 109p4, 109p5, 109n1, 109n2, 109n3, 109n4, 104n5 are p + diffusion layers 107p1, 107p2, 107p3, 107p4, 107p5, n +, respectively.
  • Silicide layers 110p1, 110p2, 110p3, 110p4, 110p5, 110n1, 110n2, 110n3, 110n4, 110n5 are connected to the diffusion layers 107n1, 107n2, 107n3, 107n4, 107n5, and the silicide layers 109p1, 109p2, 109p3, 109p4, 109p5 , 109n1, 109n2, 109n3, 109n4, 109n5 and the first metal wiring 113g, 113g, 113i, 113i, 113a 113c, 113c, 113c, and 113c, respectively, contacts 111a for connecting the gate wiring 106b and the first metal wiring 113d, 111b for connecting the gate wiring 106d and the first metal wiring 113e, 111c is a contact connecting the gate wiring 106f and the first metal wiring 113f, 111d is a contact connecting the gate wiring 106h and the first metal wiring 113h, and 111e is a contact connecting the gate wiring 106
  • the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp1, and the silicon pillar 104n2, the lower diffusion layer 102pb, the upper diffusion layer 107p2, the gate insulating film 105, The gate electrode 106 constitutes the PMOS transistor Qp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp3, and the silicon pillar 104n4, the lower diffusion layer.
  • the gate electrode 106 constitutes the PMOS transistor Qp5, and the silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn1, and the silicon pillar 104p2, the lower diffusion.
  • the layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 form an NMOS.
  • the transistor Qn3 is configured, and the silicon pillar 104p4, the lower diffusion layer 102n, the upper diffusion layer 107n4, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn4.
  • the gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp1
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp2
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp3.
  • a gate wiring 106g is connected to the gate electrode 106 of the PMOS transistor Qp4
  • a gate wiring 106i is connected to the gate electrode 106 of the PMOS transistor Qp5
  • gate wirings 106a and 106b are connected to the gate electrode 106 of the NMOS transistor Qn1.
  • Gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn2, and gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn3.
  • the gate electrode of the S transistor Qn4 is connected to the gate lines 106g and 106 h, the gate electrode of the NMOS transistor Qn5 is connected to the gate lines 106i and 106 j.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn1, Qn2, Qn3, Qn4, Qn5 and the PMOS transistor Qp1, and are connected to the output OUT51.
  • the upper diffusion layer 107n1 that is the source of the NMOS transistor Qn1 is connected to the first metal wiring 113c via the silicide 109n1 and the contact 110n1, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n2 that is the source of the NMOS transistor Qn2 is connected to the first metal wiring 113c via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 that is the source of the NMOS transistor Qn3 is connected to the first metal wiring 113c via the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107n4 that is the source of the NMOS transistor Qn4 is connected to the first metal wiring 113c via the silicide 109n4 and the contact 110n4.
  • the upper diffusion layer 107n5 which is the source of the NMOS transistor Qn5 is connected to the first metal wiring 113c via the silicide 109n5 and the contact 110n5.
  • the upper diffusion layer 107p1 that is the source of the PMOS transistor Qp1 is connected to the first metal wiring 113g via the silicide 109p1 and the contact 110p1.
  • the upper diffusion layer 107p2 which is the drain of the PMOS transistor Qp2 is connected to the first metal wiring 113g via the silicide 109p2 and the contact 110p2.
  • the source of the NMOS transistor Qp1 and the drain of the PMOS transistor Qp2 are connected via the first metal wiring 113g.
  • the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Qp3 is connected to the first metal wiring 113i through the contact 110p3.
  • the drain of the PMOS transistor Qp4 is connected to the first metal wiring 113i through the contact 110p4.
  • the source of the PMOS transistor Qp3 and the drain of the PMOS transistor Qp4 are connected via the first metal wiring 113i.
  • the source of the PMOS transistor Qp4 is connected to the drain of the PMOS transistor Qp5 through the lower diffusion layer 102pc and the silicide region 103, and the source of the PMOS transistor Qp5 is connected to the first metal wiring 113a through the contact 110p5.
  • the first metal 113a is supplied with power Vcc.
  • An input signal IN1 is supplied to the first metal wiring 113d, connected to the gate wiring 106b through the contact 111a, supplied to the gate electrode of the NMOS transistor Qn1, and the gate of the PMOS transistor Qp1 through the gate wiring 106a. Supplied to the electrode.
  • An input signal IN2 is supplied to the first metal wiring 113e, connected to the gate wiring 106d through the contact 111b, supplied to the gate electrode of the NMOS transistor Qn2, and the gate of the PMOS transistor Qp2 through the gate wiring 106c. Supplied to the electrode.
  • An input signal IN3 is supplied to the first metal wiring 113f, connected to the gate wiring 106f through the contact 111c, supplied to the gate electrode of the NMOS transistor Qn3, and the gate of the PMOS transistor Qp3 through the gate wiring 106e. Supplied to the electrode.
  • An input signal IN4 is supplied to the first metal wiring 113h, connected to the gate wiring 106h through the contact 111d, supplied to the gate electrode of the NMOS transistor Qn4, and the gate of the PMOS transistor Qp4 through the gate wiring 106g. Supplied to the electrode.
  • An input signal IN5 is supplied to the first metal wiring 113j, connected to the gate wiring 106j through the contact 111e, supplied to the gate electrode of the NMOS transistor Qn5, and at the same time, the gate of the PMOS transistor Qp5 through the gate wiring 106i. Supplied to the electrode.
  • These 5-input NOR circuits including the power supply line Vcc (113a) and the reference power supply line Vss (113c) are defined as a block BL51. Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • 10 SGTs constituting a 5-input NOR circuit can be arranged in 2 rows and 5 columns without providing useless wiring and contact regions, and a semiconductor device with a reduced area can be provided.
  • a semiconductor device with a reduced area can be provided by a similar method even with a NOR circuit having multiple inputs of 6 inputs or more.
  • FIG. 7 shows an equivalent circuit diagram of a three-input NOR circuit applied to the present invention.
  • the difference from FIG. 1 is the same three-input NOR circuit, but in FIG. 7, two transistors of each input are connected in parallel, and the drive current is set to double.
  • Qn11, Qn12, Qn21, Qn22, Qn31, and Qn32 are NMOS transistors configured by SGT
  • Qp11, Qp12, Qp21, Qp22, Qp31, and Qp32 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, and Qn32 are connected to the power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output OUT32.
  • the drains of the PMOS transistors Qp11 and Qp12 are each connected to the node N1, the source is connected to the drains of the PMOS transistors Qp21 and Qp22 via the node N2, and the sources of the PMOS transistors Qp21 and Qp22 are each connected to the PMOS transistor via the node N3.
  • the drains of Qp31 and Qp32 are connected, and the sources of the PMOS transistors Qp31 and Qp32 are each connected to the power supply Vcc.
  • the input signal IN1 is commonly connected to the gates of the PMOS transistors Qp11 and Qp12 and the NMOS transistors Qn11 and Qn12
  • the input signal IN2 is commonly connected to the gates of the PMOS transistors Qp21 and Qp22 and the NMOS transistors Qn21 and Qn22
  • the input signal IN3 is commonly connected to the gates of the PMOS transistors Qp31 and Qp32 and the NMOS transistors Qn31 and Qn32.
  • FIGS. 8a, 8b and 8c A fourth embodiment is shown in FIGS. 8a, 8b and 8c.
  • 8a is a plan view of a three-input NOR layout (arrangement) according to the present invention
  • FIG. 8b is a cross-sectional view taken along the cut line AA ′
  • FIG. 8c is a cross-sectional view taken along the cut line BB ′.
  • the cross-sectional view cut vertically is the same as FIGS. 2d and 2e, and is omitted.
  • Qn11, Qn12, Qn21, Qn22, Qn31, and Qn32 of the NOR circuit in FIG. In the upper row of the figure) are arranged in order from the right side of the figure. The difference from FIG.
  • FIGS. 8a, 8b, and 8c portions having the same structure as in FIGS. 2a, 2b, and 2c are indicated by the same symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104n11, 104n12, 104n21, 104n22, 104n31, 104n32 are n-type silicon pillars
  • 104p11, 104p12, 104p21, 104p22, 104p31, 104p32 are p-type silicon pillars
  • 106 is a gate electrode
  • 106a, 106b, 106c, 106d, 106e, 106f, 106g, 106h, 106i, 106j, 106k, and 106l are gate wirings, respectively.
  • n + diffusion layers 107p11, 107p12, 107p21, 107p22, 107p31, 107p32 are formed by impurity implantation or the like, and the silicon pillars 104p11, 104p12, 104p21, At the top of 104p22, 104p31, and 104p32, n + diffusion layers 107n11, 107n12, 107n21, 107n22, 107n31, and 107n32 are formed by impurity implantation or the like, respectively.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p11, 109p12, 109p21, 109p22, 109p31, 109p32, 109n11, 109n12, 109n21, 109n22, 109n31, 109n32 are p + diffusion layers 107p11, 107p12, 107p21, 107p22, respectively.
  • 111a is a contact connecting the gate wiring 106b and the first metal wiring 113d
  • 111b is a contact connecting the gate wiring 106d and the first metal metal wiring 113c
  • 111d is a contact for connecting the gate wiring 106h and the first metal wiring 113e
  • 111e is a contact for connecting the gate wiring 106j and the first metal wiring 113f
  • 111f denotes a contact for connecting the gate line 106l and first metal wiring 113f
  • 112a is a contact connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the first metal wiring 113b.
  • two contacts 112a are provided in order to reduce the influence of silicide resistance.
  • the silicon pillar 104n11, the lower diffusion layer 102pa, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp11.
  • the gate electrode 106 constitutes the PMOS transistor Qp12, and the silicon pillar 104n21, the lower diffusion layer 102pb, the upper diffusion layer 107p21, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp21, and the silicon pillar 104n22, the lower diffusion layer.
  • the silicon pillar 104n31, the lower diffusion layer 102pb, the upper diffusion layer 1 7p31, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp31
  • the silicon pillar 104n32, the lower diffusion layer 102pb, the upper diffusion layer 107p32, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp32.
  • the silicon pillar 104p11, the lower diffusion layer 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn11.
  • the silicon pillar 104p12, the lower diffusion layer 102n, the upper diffusion layer 107n12, the gate insulating film 105, The gate electrode 106 constitutes an NMOS transistor Qn12, and the silicon pillar 104p21, the lower diffusion layer 102n, the upper diffusion layer 107n21, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor.
  • the transistor Qn21 is constituted, and the silicon pillar 104p22, the lower diffusion layer 102n, the upper diffusion layer 107n22, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn22, and the silicon pillar 104p31, the lower diffusion layer 102n, the upper diffusion layer 107n31.
  • the gate insulating film 105 and the gate electrode 106 constitute an NMOS transistor Qn31, and the silicon pillar 104p32, the lower diffusion layer 102n, the upper diffusion layer 107n32, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qp32.
  • the gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp11
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp12
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp21.
  • a gate wiring 106g is connected to the gate electrode 106 of the PMOS transistor Qp22
  • a gate wiring 106i is connected to the gate electrode 106 of the PMOS transistor Qp31
  • a gate wiring 106k is connected to the gate electrode 106 of the PMOS transistor Qp32
  • an NMOS transistor is connected to the gate electrode 106 of the PMOS transistor Qp11
  • Gate wirings 106a and 106b are connected to the gate electrode 106 of Qn11, and gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn12.
  • Gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn21, gate wirings 106g and 106h are connected to the gate electrode of the NMOS transistor Qn22, and gate wirings 106i and 106j are connected to the gate electrode of the NMOS transistor Qn31.
  • the gate wirings 106k and 106l are connected to the gate electrode of the NMOS transistor Qn32.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, Qn32 and the PMOS transistors Qp11, Qp12, and are connected to the output OUT32.
  • the upper diffusion layer 107n11 which is the source of the NMOS transistor Qn11 is connected to the first metal wiring 113c via the silicide 109n11 and the contact 110n11, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n12 that is the source of the NMOS transistor Qn12 is connected to the first metal wiring 113c through the silicide 109n12 and the contact 110n12.
  • the upper diffusion layer 107n21 which is the source of the NMOS transistor Qn21 is connected to the first metal wiring 113c through the silicide 109n21 and the contact 110n21.
  • the upper diffusion layer 107n22 that is the source of the NMOS transistor Qn22 is connected to the first metal wiring 113c through the silicide 109n22 and the contact 110n22.
  • the upper diffusion layer 107n31 which is the source of the NMOS transistor Qn31 is connected to the first metal wiring 113c via the silicide 109n31 and the contact 110n31.
  • the upper diffusion layer 107n32 that is the source of the NMOS transistor Qn32 is connected to the first metal wiring 113c through the silicide 109n32 and the contact 110n32.
  • the upper diffusion layer 107p11 that is the source of the PMOS transistor Qp11 is connected to the first metal wiring 113g through the silicide 109p11 and the contact 110p11.
  • the upper diffusion layer 107p12 which is the source of the PMOS transistor Qp12 is connected to the first metal wiring 113g via the silicide 109p12 and the contact 110p12.
  • the upper diffusion layer 107p21 which is the drain of the PMOS transistor Qp21 is connected to the first metal wiring 113g via the silicide 109p21 and the contact 110p21.
  • the upper diffusion layer 107p22 which is the drain of the PMOS transistor Qp22 is connected to the first metal wiring 113g through the silicide 109p22 and the contact 110p22.
  • the sources of the PMOS transistors Qp11 and Qp12 and the drains of the PMOS transistors Qp21 and Qp22 are connected via the first metal wiring 113g.
  • the sources of the PMOS transistors Qp21 and Qp22 are connected to the drains of the PMOS transistors Qp31 and Qp32 through the lower diffusion layer 102pb and the silicide region 103, and the sources of the PMOS transistors Qp31 and Qp32 are connected to the first through the contacts 110p31 and 110p32, respectively.
  • the first metal 113a is supplied with power Vcc.
  • An input signal IN1 is supplied to the first metal wiring 113d and is connected to the gate wirings 106b and 106d through the contacts 111a and 111b.
  • the first metal wiring 113d is supplied to the gate electrode of the NMOS transistor Qn11 and the gate electrode of Qn12, respectively. They are supplied to the gate electrodes of the PMOS transistors Qp11 and Qp12 through the wiring 106a and the gate wiring 106c, respectively.
  • An input signal IN2 is supplied to the first metal wiring 113e, and is connected to the gate wirings 106f and 106h through the contacts 111c and 111d.
  • the first metal wiring 113e is supplied to the gate electrode of the NMOS transistor Qn21 and the gate electrode of Qn22, respectively.
  • An input signal IN3 is supplied to the first metal wiring 113f and connected to the gate wirings 106j and 106l through the contacts 111e and 111f, which are supplied to the gate electrode of the NMOS transistor Qn31 and the gate electrode of Qn32, respectively. They are supplied to the gate electrodes of the PMOS transistors Qp31 and Qp32 via the wiring 106i and the gate wiring 106k, respectively.
  • These three-input NOR circuits are defined as a block BL32 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • twelve SGTs having a configuration in which two input transistors are arranged in parallel in a three-input NOR circuit can be arranged in two rows and six columns without providing useless wiring and contact regions, and the area is reduced.
  • a reduced semiconductor device can be provided.
  • two transistors are connected in parallel, but two or more transistors are also the same. For example, when three transistors are connected in parallel, the transistors are arranged in the horizontal direction and arranged in two rows and nine columns. Just do it.
  • FIG. 9 shows an equivalent circuit diagram of a circuit in which two transistors of each input are connected in parallel and the drive current is set to double in the three-input NOR circuit applied to the present invention. The difference from FIG. 7 is that the combination is changed for the input signals of the two transistors provided in parallel.
  • FIG. 8A In the fourth embodiment (FIG. 8A) arranged according to the circuit diagram of FIG.
  • the input IN1 is connected to the NMOS transistors Qn11 and Qn12, and the current flow includes the power supply line 113c (Vss), the contacts 110n11, 110n12, The current flows to the output OUT32 via the NMOS transistors Qn11 and Qn12, the silicide 103, the contact 112a, and the first metal wiring 113b.
  • the parasitic wiring resistance is the first metal 113c, the contacts 110n11 and 110n12, the silicide 103, the contact 112a, and the first metal 113b, but the resistance of the first metal wiring is very small, Since the resistance is relatively small, there is no problem.
  • an input signal IN1 is connected to a pair of NMOS transistor Qn11 and PMOS transistor Qp11 (first column in FIG.
  • the input signal IN2 is connected to the pair of NMOS transistor Qn21 and PMOS transistor Qp21 and the pair of NMOS transistor Qn22 and PMOS transistor Qp22.
  • the input signal IN3 is connected to the pair of NMOS transistor Qn12 and PMOS transistor Qp12 and the pair of NMOS transistor Qn31 and PMOS transistor Qp31.
  • FIG. 10 shows a fifth embodiment.
  • input signals IN1, IN2, and IN3 are supplied to first metals 113d, 113e, and 113f, respectively.
  • the input IN1 is connected to each gate electrode through the first metal wiring 113d, the contact 111a, and the gate wirings 106b and 106a to the pair of the NMOS transistor Qn11 and the PMOS transistor Qp11 in the first column.
  • the input IN3 is connected to each gate electrode through the first metal wiring 113f, the contact 111b, and the gate wirings 106d and 106c to the pair of the NMOS transistor Qn12 and the PMOS transistor Qp12 in the second column.
  • the input IN2 is connected to each gate electrode through the first metal wiring 113e, the contact 111c, and the gate wirings 106f and 106e to the pair of the NMOS transistor Qn21 and the PMOS transistor Qp21 in the third column.
  • the input IN2 is connected to each gate electrode through the first metal wiring 113e, the contact 111d, and the gate wirings 106h and 106g to the pair of the NMOS transistor Qn22 and the PMOS transistor Qp22 in the fourth column.
  • the input IN3 is connected to each gate electrode through the first metal wiring 113f, the contact 111e, and the gate wirings 106j and 106i to the pair of the NMOS transistor Qn31 and the PMOS transistor Qp31 in the fifth column.
  • the input IN1 is connected to each gate electrode through the first metal wiring 113d, the contact 111f, and the gate wirings 106l and 106k to the pair of the NMOS transistor Qn32 and the PMOS transistor Qp32 in the sixth column.
  • the input signal IN1 is connected to the first column pair (silicide region distance is shortest and parasitic resistance is small) and the sixth column pair (silicide region distance is farthest end and parasitic resistance is large).
  • the input signal IN2 is connected to the third column pair and the fourth column pair (silicide region distance is intermediate and parasitic resistance is intermediate), and the input signal IN3 is input to the second column pair (silicide region). And the parasitic resistance is small) and the fifth column pair (the distance of the silicide region is far and the parasitic resistance is large).
  • These three-input NOR circuits including the power supply line Vcc (113a) and the reference power supply line Vss (113c) are defined as a block BL32a. Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • 12 SGTs having a configuration in which two input transistors are arranged in parallel in a 3-input NOR circuit can be arranged in 2 rows and 6 columns without providing useless wiring and contact regions, which is favorable.
  • a semiconductor device having characteristics and a reduced area can be provided.
  • FIGS. 11a, 11b, 11c, 11d, and 11e A sixth embodiment is shown in FIGS. 11a, 11b, 11c, 11d, and 11e.
  • the equivalent circuit diagram follows FIG. 11a is a plan view of the three-input NOR layout (arrangement) of the present invention, FIG. 11b is a cross-sectional view taken along the cut line AA ′, and FIG. 11c is a cross-sectional view taken along the cut line BB ′.
  • 11d is a cross-sectional view along the cut line CC ′, and FIG. 11e is a cross-sectional view along the cut line DD ′.
  • FIG. 8a Embodiment 5
  • FIG. 8a Embodiment 5
  • FIG. 8a is arranged in 2 rows and 6 columns, but in this embodiment, it is arranged in 4 rows and 3 columns.
  • the eyes, Qp12, Qp22, and Qp32 are arranged in order from the right side of the figure in the fourth row.
  • FIGS. 11a, 11b, and 11c portions having the same structure as in FIGS. 8a, 8b, and 8c are indicated by the same symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104n11, 104n12, 104n21, 104n22, 104n31, 104n32 are n-type silicon pillars
  • 104p11, 104p12, 104p21, 104p22, 104p31, 104p32 are p-type silicon pillars
  • 106 is a gate electrode
  • 106a, 106b, 106c, 106d, 106e, 106f, 106g, 106h, 106i, 106j, 106k, and 106l are gate wirings, respectively.
  • n + diffusion layers 107p11, 107p12, 107p21, 107p22, 107p31, 107p32 are formed by impurity implantation or the like, and the silicon pillars 104p11, 104p12, 104p21, At the top of 104p22, 104p31, and 104p32, n + diffusion layers 107n11, 107n12, 107n21, 107n22, 107n31, and 107n32 are formed by impurity implantation or the like, respectively.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p11, 109p12, 109p21, 109p22, 109p31, 109p32, 109n11, 109n12, 109n21, 109n22, 109n31, 109n32 are p + diffusion layers 107p11, 107p12, 107p21, 107p22, respectively.
  • 111a is a contact for connecting the gate wiring 106d and the first metal wiring 113d
  • 111b is a contact for connecting the gate wiring 106h
  • the silicon pillar 104n11, the lower diffusion layer 102pa, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp11.
  • the gate electrode 106 constitutes the PMOS transistor Qp12, and the silicon pillar 104n21, the lower diffusion layer 102pb, the upper diffusion layer 107p21, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp21, and the silicon pillar 104n22, the lower diffusion layer.
  • the silicon pillar 104n31, the lower diffusion layer 102pb, the upper diffusion layer 1 7P31, the gate insulating film 105, the gate electrode 106 constitute a PMOS transistor Qp31, a silicon pillar 104N32, lower diffusion layer 102Pb, the upper diffusion layer 107P32, a gate insulating film 105, the gate electrode 106 constitute a PMOS transistor Qp32,
  • the silicon pillar 104p11, the lower diffusion layer 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn11.
  • the silicon pillar 104p12, the lower diffusion layer 102n, the upper diffusion layer 107n12, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Qn12, and the silicon pillar 104p21, the lower diffusion layer 102n, the upper diffusion layer 107n21, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn21, and the silicon pillar 104p22, the lower diffusion layer. 102n, the upper diffusion layer 107n22, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn22.
  • the silicon pillar 104p31, the lower diffusion layer 102n, and the upper diffusion layer 107n31 The gate insulating film 105, the gate electrode 106 constitute an NMOS transistor Qn31, the silicon pillar 104P32, lower diffusion layer 102n, an upper diffusion layer 107N32, a gate insulating film 105, the gate electrode 106, constituting the NMOS transistor Qn32.
  • Gate wirings 106a and 106b are connected to the gate electrode 106 of the PMOS transistor Qp11, gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp12, and gate wirings 106e and 106f are connected to the gate electrode 106 of the PMOS transistor Qp21. Is connected to the gate electrode 106 of the PMOS transistor Qp22, the gate electrodes 106i and 106j are connected to the gate electrode 106 of the PMOS transistor Qp31, and the gate electrode 106i is connected to the gate electrode 106 of the PMOS transistor Qp32.
  • gate wirings 106b and 106c are connected to the gate electrode 106 of the NMOS transistor Qn11.
  • Gate wirings 106c and 106d are connected, gate wirings 106f and 106g are connected to the gate electrode of the NMOS transistor Qn21, gate wirings 106g and 106h are connected to the gate electrode of the NMOS transistor Qn22, and the gate electrode of the NMOS transistor Qn31 is connected.
  • Are connected to gate wirings 106j and 106k, and the gate electrodes 106k and 106l are connected to the gate electrode of the NMOS transistor Qn32.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, Qn32 and the PMOS transistors Qp11, Qp12, and are connected to the output OUT32.
  • the upper diffusion layer 107n11 which is the source of the NMOS transistor Qn11 is connected to the first metal wiring 113c via the silicide 109n11 and the contact 110n11, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n12 that is the source of the NMOS transistor Qn12 is connected to the first metal wiring 113c through the silicide 109n12 and the contact 110n12.
  • the upper diffusion layer 107n21 which is the source of the NMOS transistor Qn21 is connected to the first metal wiring 113c through the silicide 109n21 and the contact 110n21.
  • the upper diffusion layer 107n22 that is the source of the NMOS transistor Qn22 is connected to the first metal wiring 113c through the silicide 109n22 and the contact 110n22.
  • the upper diffusion layer 107n31 which is the source of the NMOS transistor Qn31 is connected to the first metal wiring 113c via the silicide 109n31 and the contact 110n31.
  • the upper diffusion layer 107n32 that is the source of the NMOS transistor Qn32 is connected to the first metal wiring 113c through the silicide 109n32 and the contact 110n32.
  • the upper diffusion layer 107p11 that is the source of the PMOS transistor Qp11 is connected to the first metal wiring 113g through the silicide 109p11 and the contact 110p11.
  • the upper diffusion layer 107p12 which is the drain of the PMOS transistor Qp12 is connected to the first metal wiring 113g via the silicide 109p12 and the contact 110p12.
  • the upper diffusion layer 107p21 which is the drain of the PMOS transistor Qp21 is connected to the first metal wiring 113g via the silicide 109p21 and the contact 110p21.
  • the upper diffusion layer 107p22 which is the drain of the PMOS transistor Qp22 is connected to the first metal wiring 113g through the silicide 109p22 and the contact 110p22.
  • the sources of the PMOS transistors Qp11 and Qp12 and the drains of the PMOS transistors Qp21 and Qp22 are connected via the first metal wiring 113g.
  • the sources of the PMOS transistors Qp21 and Qp22 are connected to the drains of the PMOS transistors Qp31 and Qp32 through the lower diffusion layer 102pb and the silicide region 103, and the sources of the PMOS transistors Qp31 and Qp32 are connected to the first through the contacts 110p31 and 110p32, respectively.
  • the first metal 113a is supplied with power Vcc.
  • An input signal IN1 is supplied to the first metal wiring 113d, and the input signal IN1 is connected to the gate wiring 106d through the contact 111a and is supplied to the gate electrode of the NMOS transistor Qn12, and at the same time, the gate wirings 106c, 106b, The voltage is supplied to the gate electrodes of the NMOS transistor Qn11 and the PMOS transistors Qp11 and Qp12 via 106a.
  • An input signal IN2 is supplied to the first metal wiring 113e, and the input signal IN2 is connected to the gate wiring 106h via the contact 111b and is supplied to the gate electrode of the NMOS transistor Qn22, and at the same time, the gate wirings 106g, 106f, It is supplied to the gate electrodes of the NMOS transistor Qn21 and the PMOS transistors Qp21 and Qp22 via 106e.
  • An input signal IN3 is supplied to the first metal wiring 113f, and the input signal IN3 is connected to the gate wiring 106l through the contact 111c and is supplied to the gate electrode of the NMOS transistor Qn32, and at the same time, the gate wirings 106k, 106j, The voltage is supplied to the gate electrodes of the NMOS transistor Qn31 and the PMOS transistors Qp31 and Qp32 through 106i.
  • the merit of the present embodiment is that the parasitic resistance of the silicide layer, which has been a problem in FIG. 8a, can be reduced by arranging in 4 rows and 3 columns.
  • the parasitic resistance of the silicide becomes the largest as a current path because the reference power source Vss is supplied to the first metal wiring, passes through the NMOS 103 via the NMOS transistors Qn31 and Qn32, passes through the silicide 103, and passes through the contact 112a to the first metal wiring 113b. It is a place that flows into.
  • the distance (length) of the silicide region is halved, the width is approximately doubled, and the resistance value is 1 ⁇ 4, which is highly effective.
  • These three-input NOR circuits are defined as a block BL321 including the power supply line Vcc (113a) and the reference power supply line Vss (113c).
  • the interval between the power supply line 113a and the reference power supply line 113c is Ly2 (interval including the power supply line and the reference power supply line).
  • the present embodiment by disposing 12 SGTs each having a configuration in which two input transistors are arranged in parallel in a 3-input NOR circuit without providing useless wiring and contact regions, by arranging 4 rows and 3 columns, A semiconductor device with favorable characteristics and a reduced area can be provided.
  • two are connected in parallel.
  • two or more can be connected in parallel.
  • FIG. 8a In the case where it is desired to further increase the number in parallel, it is possible to combine the present embodiment and the fourth embodiment (FIG. 8a).
  • a semiconductor device with good characteristics and a reduced area can be supplied if it is arranged in four rows and six columns.
  • FIG. 12 shows an equivalent circuit diagram of a three-input NOR circuit applied to the present invention.
  • the difference from FIG. 9 is the same three-input NOR circuit, but in FIG. 12, only two PMOS transistors are connected in parallel to each input, so that the driving current on the PMOS side is doubled. It has been set.
  • PMOS transistors are connected in series and the current is reduced, but in general, this is not a particularly serious problem.
  • the number of NOR stages is large, the current flowing through the NMOS transistor and the current flowing through the PMOS transistor connected in series may become unbalanced.
  • the charging current (current flowing through the PMOS transistor) and the discharging current (NMOS) There are cases where only a plurality of PMOS transistors are arranged in parallel when it is desired to equalize (currents flowing) as much as possible, or when charging at high speed is desired. In this embodiment, a case where only two PMOS transistors are arranged in parallel is shown.
  • Qn11, Qn21, and Qn31 are NMOS transistors configured by SGT
  • Qp11, Qp12, Qp21, Qp22, Qp31, and Qp32 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Qn11, Qn21, and Qn31 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output OUT32b.
  • the drains of the PMOS transistors Qp11 and Qp12 are each connected to the node N1, the source is connected to the drains of the PMOS transistors Qp21 and Qp22 via the node N2, and the sources of the PMOS transistors Qp21 and Qp22 are each connected to the PMOS transistor via the node N3.
  • the drains of Qp31 and Qp32 are connected, and the sources of the PMOS transistors Qp31 and Qp32 are each connected to the power supply Vcc.
  • the input signal IN1 is commonly connected to the gates of the NMOS transistor Qn11 and the PMOS transistors Qp11 and Qp12
  • the input signal IN2 is commonly connected to the gates of the NMOS transistor Qn21 and the PMOS transistors Qp21 and Qp22.
  • the input signal IN3 is commonly connected to the gates of the PMOS transistors Qp31 and Qp32.
  • FIGS. 13a, 13b, 13c, 13d, and 13e A seventh embodiment is shown in FIGS. 13a, 13b, 13c, 13d, and 13e.
  • 13a is a plan view of the three-input NOR layout (arrangement) of the present invention
  • FIG. 13b is a cross-sectional view along the cut line AA ′
  • FIG. 13c is a cross-sectional view along the cut line BB ′
  • 13d is a cross-sectional view along the cut line CC ′
  • FIG. 13e is a cross-sectional view along the cut line DD ′.
  • the difference from FIG. 11a (Example 6) is that FIG. 11a is arranged in 4 rows and 3 columns, but in this example, it is arranged in 3 rows and 3 columns.
  • FIG. 11a is arranged in 4 rows and 3 columns, but in this example, it is arranged in 3 rows and 3 columns.
  • FIG. 11a is arranged in 4 rows and 3 columns, but in
  • FIGS. 13a, 13b, 13c, 13d, and 13e portions having the same structures as those in FIGS. 11a, 11b, 11c, 11d, and 11e are denoted by the same symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104p11, 104p21, 104p31 are p-type silicon pillars
  • 104n11, 104n12, 104n21, 104n22, 104n31, 104n32 are n-type silicon pillars
  • 105 are silicon pillars 104p11, 104p21, 104p31, 104n11, 104n12, 104n21, 104n22, 104n31, 104n32
  • the surrounding gate insulating film 106 is a gate electrode
  • 106b, 106c, 106d, 106f, 106g, 106h, 106j, 106k, and 106l are gate wirings, respectively.
  • N + diffusion layers 107n11, 107n21, and 107n31 are formed by impurity implantation or the like on the tops of the silicon pillars 104p11, 104p21, and 104p31, respectively.
  • the p + diffusion layers 107p11, 107p12, 107p21, 107p22, 107p31, 107p32 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109n11, 109n21, 109n31, 109p11, 109p12, 109p21, 109p22, 109p31, 109p32 are n + diffusion layers 107n11, 107n21, 107n31, p + diffusion layers 107p11, 107p12, Silicide layers connected to 107p21, 107p22, 107p31, 107p32, 110n11, 110n21, 110n31, 110p11, 110p12, 110p21, 110p22, 110p31, 110p32 are silicide layers 109n11, 109n21, 109n31, 109p11, 109p12, 109p21, 109p22, 109p31 109p32 and the first metal wires 113c, 113c, 11 c, 113g, 113g, 113g, 113a, and 113a, respectively
  • 111a is a contact that connects the gate wiring 106d and the first metal wiring 113d.
  • 111b is a gate wiring 106h and the first metal wiring 113e.
  • a contact 111c is a contact for connecting the gate wiring 106l and the first metal wiring 113f.
  • 112a (five arrangements in the figure) is a contact connecting the silicide 103 and the first metal wiring 113b that connect the lower diffusion layer 102n and the lower diffusion layer 102pa.
  • the silicon pillar 104p11, the lower diffusion layer 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn11.
  • the gate electrode 106 constitutes the NMOS transistor Qn21, and the silicon pillar 104p31, the lower diffusion layer 102n, the upper diffusion layer 107n31, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qp31, and the silicon pillar 104n11, the lower diffusion layer.
  • the PMOS transistor Qp12 is configured by the gate insulating film 105 and the gate electrode 106
  • the PMOS transistor Qp21 is configured by the silicon pillar 104n21, the lower diffusion layer 102pb, the upper diffusion layer 107p21, the gate insulating film 105, and the gate electrode 106.
  • the silicon pillar 104n22, the lower diffusion layer 102pb, the upper diffusion layer 107p22, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp22.
  • the silicon pillar 104n31, the lower diffusion layer 102pb, the upper diffusion layer 107p31, the gate insulating film 105, The gate electrode 106 constitutes a PMOS transistor Qp31, and the silicon pillar 104n32, the lower diffusion layer 102pb, the upper diffusion layer 107p32, the gate insulating film 105, and the gate electrode 106 constitute a PMOS. Constitute the transistor Qp32.
  • a gate wiring 106b is connected to the gate electrode 106 of the PMOS transistor Qp12, gate wirings 106b and 106c are connected to the gate electrode 106 of the PMOS transistor Qp11, and gate wirings 106c and 106d are connected to the gate electrode of the NMOS transistor Qn11.
  • the gate wiring 106f is connected to the gate electrode 106 of the PMOS transistor Qp22, the gate wirings 106f and 106g are connected to the gate electrode 106 of the PMOS transistor Qp21, and the gate wirings 106g and 106h are connected to the gate electrode of the NMOS transistor Qn21.
  • a gate wiring 106j is connected to the gate electrode 106 of the PMOS transistor Qp32, and a gate wiring 10 is connected to the gate electrode 106 of the PMOS transistor Qp31.
  • j and 106k are connected to the gate electrode of the NMOS transistor Qn31 is connected to the gate line 106k and 106l.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn11, Qn21, Qn31 and the PMOS transistors Qp11, Qp12, and are connected to the output OUT32b.
  • the upper diffusion layer 107n11 which is the source of the NMOS transistor Qn11 is connected to the first metal wiring 113c via the silicide 109n11 and the contact 110n11, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n21 which is the source of the NMOS transistor Qn21 is connected to the first metal wiring 113c through the silicide 109n21 and the contact 110n21.
  • the upper diffusion layer 107n31 which is the source of the NMOS transistor Qn31 is connected to the first metal wiring 113c via the silicide 109n31 and the contact 110n31.
  • the upper diffusion layer 107p11 that is the source of the PMOS transistor Qp11 is connected to the first metal wiring 113g through the silicide 109p11 and the contact 110p11.
  • the upper diffusion layer 107p12 which is the source of the PMOS transistor Qp12 is connected to the first metal wiring 113g via the silicide 109p12 and the contact 110p12.
  • the upper diffusion layer 107p21 which is the drain of the PMOS transistor Qp21 is connected to the first metal wiring 113g via the silicide 109p21 and the contact 110p21.
  • the upper diffusion layer 107p22 which is the drain of the PMOS transistor Qp22 is connected to the first metal wiring 113g through the silicide 109p22 and the contact 110p22.
  • the sources of the PMOS transistors Qp11 and Qp12 and the drains of the PMOS transistors Qp21 and Qp22 are connected via the first metal wiring 113g.
  • the sources of the PMOS transistors Qp21 and Qp22 are connected to the drains of the PMOS transistors Qp31 and Qp32 through the lower diffusion layer 102pb and the silicide region 103, and the sources of the PMOS transistors Qp31 and Qp32 are connected to the first through the contacts 110p31 and 110p32, respectively.
  • the first metal 113a is supplied with power Vcc.
  • An input signal IN1 is supplied to the first metal wiring 113d.
  • the input signal IN1 is connected to the gate wiring 106d through the contact 111a, and is supplied to the gate electrode of the NMOS transistor Qn11.
  • the gate wirings 106c and 106b are connected to the first metal wiring 113d.
  • An input signal IN2 is supplied to the first metal wiring 113e, and the input signal IN2 is connected to the gate wiring 106h through the contact 111b and is supplied to the gate electrode of the NMOS transistor Qn21, and at the same time, the gate wirings 106g and 106f are connected to the first metal wiring 113e.
  • An input signal IN3 is supplied to the first metal wiring 113f, and the input signal IN3 is connected to the gate wiring 106l through the contact 111c, and is supplied to the gate electrode of the NMOS transistor Qn31.
  • the gate wirings 106k and 106j are connected to the first metal wiring 113f.
  • the merit of the present embodiment is that the parasitic resistance of the silicide layer, which is a problem in FIG. 8a, can be reduced by arranging in 3 rows and 3 columns as in the sixth embodiment (FIG. 11a). Furthermore, by connecting a plurality of (two in this embodiment) parallel PMOS transistors in series with a NOR circuit configuration, it is possible to balance the current on the PMOS circuit side and the current on the NMOS circuit side. Characteristics can be obtained. Further, the increase in area can be minimized.
  • These three-input NOR circuits including the power supply line Vcc (113a) and the reference power supply line Vss (113c) are defined as a block BL32b.
  • the interval between the power supply line 113a and the reference power supply line 113c is Ly3 (interval including the power supply line and the reference power supply line).
  • Ly3 interval including the power supply line and the reference power supply line.
  • FIGS. 14a, 14b, 14c, 14d, 14e, and 14f show an eighth embodiment.
  • the equivalent circuit follows that of FIG. 14a is a plan view of the three-input NOR layout (arrangement) of the present invention, FIG. 14b is a cross-sectional view along the cut line AA ′, and FIG. 14c is a cross-sectional view along the cut line BB ′.
  • 14d is a cross-sectional view along the cut line CC ′,
  • FIG. 14e is a cross-sectional view along the cut line DD ′, and
  • FIG. 14f is a cross-sectional view along the cut line EE ′.
  • the second metal wiring is used for the wiring of the input signal and the output signal in the embodiment of the present invention (FIG. 14a).
  • the second metal wiring extends in the direction perpendicular to the power supply line Vcc and the reference power supply line Vss which are the first metal wiring.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104n1, 104n2, 104n3 are n-type silicon pillars, 104p1, 104p2, 104p3 are p-type silicon pillars, 105 are silicon pillars 104n1, 104n2, 104n3, 104p1, 104p2, 104p3, 106 is a gate electrode, 106a, 106b and 106c are gate wirings, respectively.
  • P + diffusion layers 107p1, 107p2, and 107p3 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3 by impurity implantation, respectively.
  • the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 are n + diffusion layers 107n1 and 107n2, respectively. 107n3 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p1, 109p2, 109p3, 109n1, 109n2, 109n3 are silicides connected to the p + diffusion layers 107p1, 107p2, 107p3, n + diffusion layers 107n1, 107n2, 107n3, respectively.
  • 110p1, 110p2, 110p3, 110n1, 110n2, and 110n3 are contacts that connect the silicide layers 109p1, 109p2, 109p3, 109n1, 109n2, and 109n3 and the first metal wires 113g, 113g, 113a, 113c, 113c, and 113c, respectively.
  • 111a are contacts for connecting the gate wiring 106a and the first metal wiring 113d
  • 111b is a contact for connecting the gate wiring 106b and the first metal wiring 113e.
  • 111c denotes a contact for connecting the gate wiring 106c and the first metal wiring 113f.
  • 112a (three) is a contact connecting the silicide 103 and the first metal wiring 113b that connect the lower diffusion layer 102n and the lower diffusion layer 102pa.
  • 114a is a contact connecting the first metal wiring 113d and the second metal wiring 115b
  • 114b is a contact connecting the first metal wiring 113e and the second metal wiring 115d
  • 114c is the first metal wiring 113f and the second metal.
  • a contact 114d connecting the wiring 115f is a contact connecting the first metal wiring 113b and the second metal wiring 115a.
  • 115c and 115e are second metal wirings that are not connected anywhere in the drawing.
  • the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp1, and the silicon pillar 104n2, the lower diffusion layer 102pb, the upper diffusion layer 107p2, the gate insulating film 105,
  • the gate electrode 106 constitutes the PMOS transistor Qp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp3, and the silicon pillar 104p1 and the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105,
  • the over gate electrode 106 constitute an NMOS transistor Qn2, silicon pillar 104
  • a gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp1 and the gate electrode 106 of the NMOS transistor Qn1
  • a gate wiring 106b is connected to the gate electrode 106 of the PMOS transistor Qp2 and the gate electrode 106 of the NMOS transistor Qn2.
  • a gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp3 and the gate electrode 106 of the NMOS transistor Qn3.
  • the lower diffusion layers 102n and 102pa serve as a common drain for the NMOS transistors Qn1, Qn2, Qn3 and the PMOS transistor Qp1 through the silicide 103, and are connected to the first metal wiring 113b through the contact 112a.
  • the output OUT31 is connected to the second metal wiring 115a via 114d.
  • the upper diffusion layer 107n1 that is the source of the NMOS transistor Qn1 is connected to the first metal wiring 113c via the silicide 109n1 and the contact 110n1, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n2 that is the source of the NMOS transistor Qn2 is connected to the first metal wiring 113c via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 which is the source of the NMOS transistor Qn3 is connected to the first metal wiring 113c through the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1 that is the source of the PMOS transistor Qp1 is connected to the first metal wiring 113g via the silicide 109p1 and the contact 110p1.
  • the upper diffusion layer 107p2 which is the drain of the PMOS transistor Qp2 is connected to the first metal wiring 113g via the silicide 109p2 and the contact 110p2.
  • the source of the PMOS transistor Qp1 and the drain of the PMOS transistor Qp2 are connected via the first metal wiring 113g.
  • the source of the PMOS transistor Qp2 is connected to the drain of the PMOS transistor Qp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Qp3 is connected to the first metal wiring 113a through the contact 110p3.
  • the power supply Vcc is supplied to the one metal wiring 113a.
  • An input signal IN1 is supplied to the second metal wiring 115b, connected to the first metal wiring 113d through the contact 114a, and further connected to the gate wiring 106a through the contact 111a.
  • the PMOS transistor Qp1 and the NMOS transistor Qn1 Is supplied to the gate electrode.
  • An input signal IN2 is supplied to the second metal wiring 115d, connected to the first metal wiring 113e via the contact 114b, and further connected to the gate wiring 106b via the contact 111b.
  • the PMOS transistor Qp2 and the NMOS transistor Qn2 Is supplied to the gate electrode.
  • An input signal IN3 is supplied to the second metal wiring 115f, connected to the first metal wiring 113f via the contact 114c, and further connected to the gate wiring 106c via the contact 111c.
  • the PMOS transistor Qp3 and the NMOS transistor Qn3 Is supplied to the gate electrode.
  • the second metal wires 115c and 115e are supplied with signals DUM1 and DUM2, respectively, but pass through this block as dummy wires that are not connected anywhere in this block because they are used in other blocks.
  • the second metal wiring is used in the vertical direction so as to be orthogonal to the power supply line 113a (Vcc) and the reference power supply line 113c (Vss) by the first metal wiring extending in the row direction.
  • the output signal line 115a (OUT31), the input signal line 115b (IN1), 115d (IN2), and 115f (IN3) are arranged, so that a wasteful wiring area can be eliminated and a layout with a very small area can be provided.
  • signal lines used in other blocks can be passed through the vacant area, and wiring can be efficiently passed when a plurality of blocks are arranged.
  • the block of this embodiment is defined as a block BL312 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • Ly interval including the power supply line and the reference power supply line
  • six SGTs constituting a three-input NOR circuit can be arranged in two rows and three columns without providing useless wiring and contact regions, and a semiconductor device with a reduced area can be provided.
  • Example 9 A ninth embodiment is shown in FIGS. 15a, 15b, 15c, and 15d.
  • the equivalent circuit follows FIG. 15a is a plan view of the three-input NOR layout (arrangement) of the present invention, FIG. 15b is a cross-sectional view along the cut line AA ′, and FIG. 15c is a cross-sectional view along the cut line BB ′.
  • FIG. 15d shows a cross-sectional view along the cut line CC ′.
  • Example 2 (FIG. 15a) of the present invention uses the second metal wiring for input signal and output signal wiring as in Example 8 (FIG. 14a). By the way.
  • the second metal wiring extends in the direction perpendicular to the power supply line Vcc and the reference power supply line Vss, which are the first metal wiring.
  • the longitudinal sectional views are the same as FIGS. 14e and 14f, and are omitted. 15a, FIG. 15b, FIG. 15c, and FIG. 15d, FIG. 8a, FIG. 8b, FIG. 8c, or the same structure as FIG. It is indicated by a symbol.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104n11, 104n12, 104n21, 104n22, 104n31, 104n32 are n-type silicon pillars
  • 104p11, 104p12, 104p21, 104p22, 104p31, 104p32 are p-type silicon pillars
  • 105 are silicon pillars 104n11, 104n12, 104n21, 104n22, 104n31, 104n32, 104p11, 104p12, 104p21, 104p22, 104p31, 104p32 are surrounded by a gate insulating film
  • 106 is a gate electrode
  • 106a, 106b, 106c, 106d are gate wirings.
  • p + diffusion layers 107p11, 107p12, 107p21, 107p22, 107p31, 107p32 are formed by impurity implantation or the like, and the silicon pillars 104p11, 104p12, 104p21, At the top of 104p22, 104p31, and 104p32, n + diffusion layers 107n11, 107n12, 107n21, 107n22, 107n31, and 107n32 are formed by impurity implantation or the like, respectively.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p11, 109p12, 109p21, 109p22, 109p31, 109p32, 109n11, 109n12, 109n21, 109n22, 109n31, 109n32 are p + diffusion layers 107p11, 107p12, 107p21, 107p22, respectively.
  • 111a is a contact for connecting the gate wiring 106a and the first metal wiring 113d
  • 111b is a contact for connecting the gate wiring 106b
  • a contact 111d is a contact for connecting the gate wiring 106d and the first metal wiring 113f.
  • 112a (three) is a contact connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the first metal wiring 113b.
  • 114a is a contact connecting the first metal wiring 113d and the second metal wiring 115c
  • 114b is a contact connecting the first metal wiring 113e and the second metal wiring 115f
  • 114c is the first metal wiring 113f and the second metal.
  • a contact 114d connecting the wiring 115k is a contact connecting the first metal wiring 113b and the second metal wiring 115a.
  • 115b, 115d, 115e, 115g, 115h, 115i, 115j, and 115l are second metal wirings that are not connected anywhere in the drawing.
  • the silicon pillar 104n11, the lower diffusion layer 102pa, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp11.
  • the gate electrode 106 constitutes the PMOS transistor Qp12, and the silicon pillar 104n21, the lower diffusion layer 102pb, the upper diffusion layer 107p21, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp21, and the silicon pillar 104n22, the lower diffusion layer.
  • the silicon pillar 104n31, the lower diffusion layer 102pb, the upper diffusion layer 1 7p31, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp31
  • the silicon pillar 104n32, the lower diffusion layer 102pb, the upper diffusion layer 107p32, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp32.
  • the silicon pillar 104p11, the lower diffusion layer 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn11.
  • the silicon pillar 104p12, the lower diffusion layer 102n, the upper diffusion layer 107n12, the gate insulating film 105, The gate electrode 106 constitutes an NMOS transistor Qn12, and the silicon pillar 104p21, the lower diffusion layer 102n, the upper diffusion layer 107n21, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor.
  • the transistor Qn21 is constituted, and the silicon pillar 104p22, the lower diffusion layer 102n, the upper diffusion layer 107n22, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn22, and the silicon pillar 104p31, the lower diffusion layer 102n, the upper diffusion layer 107n31.
  • the gate insulating film 105 and the gate electrode 106 constitute an NMOS transistor Qn31, and the silicon pillar 104p32, the lower diffusion layer 102n, the upper diffusion layer 107n32, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qp32.
  • a gate wiring 106a is connected to the gate electrodes 106 of the PMOS transistors Qp11 and Qp12 and the gate electrodes 106 of the NMOS transistors Qn11 and Qn12.
  • the gate electrodes 106 of the PMOS transistors Qp21 and Qp22 and the gate electrodes 106 of the NMOS transistors Qn12 and Qn22 are connected.
  • Is connected to the gate wiring 106b, the gate electrode 106 of the PMOS transistor Qp31 and the gate electrode 106 of the NMOS transistor Qn31 are connected to the gate wiring 106c, and the gate electrode 106 of the PMOS transistor Qp32 and the gate electrode 106 of the NMOS transistor Qn32 are gated.
  • the wiring 106d is connected.
  • the lower diffusion layers 102n and 102pa serve as a common drain of the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, Qn32 and the PMOS transistors Qp11, Qp12 through the silicide 103, and are connected to the first metal wiring 113b through the contact 112a.
  • the first metal wiring 113b is connected to the second metal wiring 115a via the contact 114d and becomes the output OUT32.
  • the upper diffusion layer 107n11 which is the source of the NMOS transistor Qn11 is connected to the first metal wiring 113c via the silicide 109n11 and the contact 110n11, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n12 that is the source of the NMOS transistor Qn12 is connected to the first metal wiring 113c through the silicide 109n12 and the contact 110n12.
  • the upper diffusion layer 107n21 which is the source of the NMOS transistor Qn21 is connected to the first metal wiring 113c through the silicide 109n21 and the contact 110n21.
  • the upper diffusion layer 107n22 that is the source of the NMOS transistor Qn22 is connected to the first metal wiring 113c through the silicide 109n22 and the contact 110n22.
  • the upper diffusion layer 107n31 which is the source of the NMOS transistor Qn31 is connected to the first metal wiring 113c via the silicide 109n31 and the contact 110n31.
  • the upper diffusion layer 107n32 that is the source of the NMOS transistor Qn32 is connected to the first metal wiring 113c through the silicide 109n32 and the contact 110n32.
  • the upper diffusion layer 107p11 that is the source of the PMOS transistor Qp11 is connected to the first metal wiring 113g through the silicide 109p11 and the contact 110p11.
  • the upper diffusion layer 107p12 which is the source of the PMOS transistor Qp12 is connected to the first metal wiring 113g via the silicide 109p12 and the contact 110p12.
  • the upper diffusion layer 107p21 which is the drain of the PMOS transistor Qp21 is connected to the first metal wiring 113g via the silicide 109p21 and the contact 110p21.
  • the upper diffusion layer 107p22 which is the drain of the PMOS transistor Qp22 is connected to the first metal wiring 113g through the silicide 109p22 and the contact 110p22.
  • the sources of the PMOS transistors Qp11 and Qp12 and the drains of the PMOS transistors Qp21 and Qp22 are connected via the first metal wiring 113g.
  • the sources of the PMOS transistors Qp21 and Qp22 are connected to the drains of the PMOS transistors Qp31 and Qp32 through the lower diffusion layer 102pb and the silicide region 103, and the sources of the PMOS transistors Qp31 and Qp32 are connected to the first through the contacts 110p31 and 110p32, respectively.
  • the base Vcc is supplied to the first metal 113a.
  • An input signal IN1 is supplied to the second metal wiring 115c, connected to the first metal wiring 113d through the contact 114a, and further connected to the gate wiring 106a through the contact 111a.
  • the PMOS transistors Qp11, Qp12, NMOS It is supplied to the gate electrodes of the transistors Qn11 and Qn12.
  • An input signal IN2 is supplied to the second metal wiring 115f, connected to the first metal wiring 113e via the contact 114b, and further connected to the gate wiring 106b via the contact 111b.
  • the PMOS transistors Qp21, Qp22, NMOS This is supplied to the gate electrodes of the transistors Qn21 and Qn22.
  • An input signal IN3 is supplied to the second metal wiring 115k, connected to the first metal wiring 113f through the contact 114c, and further connected to the gate wiring 106c through the contact 111c, and the PMOS transistor Qp31 and NMOS transistor Qn31. Is supplied to the gate electrode. Further, the first metal wiring 113f is connected to the gate wiring 106d through the contact 111d and is supplied to the gate electrodes of the PMOS transistor Qp32 and the NMOS transistor Qn32.
  • the second metal wires 115d, 105e, 105g, 105h, 105i, 105j, and 105l are supplied with signals DUM1, DUM2, DUM3, DUM4, DUM5, DUM6, DUM7, and DUM8, respectively, but are used in other blocks. Therefore, this block passes through this block as a dummy wiring that is not connected anywhere.
  • the second metal wiring is used in the vertical direction so as to be orthogonal to the power supply line 113a (Vcc) and the reference power supply line 113c (Vss) by the first metal wiring extending in the row direction.
  • the output signal line 115a (OUT32), the input signal line 115c (IN1), 115f (IN2), and 115k (IN3) are arranged, so that a wasteful wiring area is eliminated and a layout with a very small area can be provided.
  • signal lines used in other blocks can be passed through the vacant area, and wiring can be efficiently passed when a plurality of blocks are arranged.
  • the block of this embodiment is defined as a block BL322 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • 12 SGTs constituting a 3-input NOR circuit in which two input transistors are connected in parallel can be arranged in 2 rows and 6 columns without providing unnecessary wiring and contact regions. By using metal wiring, a semiconductor device with a reduced area can be provided. In this embodiment, two transistors are connected in parallel, but two or more transistors are also the same.
  • the transistors are arranged in the horizontal direction and arranged in two rows and nine columns. Just do it.
  • the method using the second metal wiring shown in the present embodiment can also be applied to the sixth embodiment (FIG. 11a) or the seventh embodiment (FIG. 13a).
  • FIGS. 16a, 16b, 16c, 16d, and 16e A tenth embodiment is shown in FIGS. 16a, 16b, 16c, 16d, and 16e.
  • the equivalent circuit follows that of FIG. 16a is a plan view of the three-input NOR layout (arrangement) of the present invention, FIG. 16b is a cross-sectional view along the cut line AA ′, and FIG. 16c is a cross-sectional view along the cut line BB ′.
  • 16d is a cross-sectional view taken along the cut line CC ′, and FIG. 16e is a cross-sectional view taken along the cut line DD ′.
  • FIG. 2a (embodiment 1) is that the NMOS transistors Qn1, Qn2, Qn3, the PMOS transistors Qp1, Qp2, and Qp3 have their sources and drains arranged upside down, and the NMOS transistors Qn1, Qn2 , Qn3, and the drains of the PMOS transistor Qp1 are commonly connected through contacts.
  • FIG. 16b, FIG. 16c, FIG. 16d, and FIG. 16e parts having the same structure as FIG. 2a, FIG. 2b, FIG. 2c, FIG. .
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb).
  • 104n1, 104n2, 104n3 are n-type silicon pillars, 104p1, 104p2, 104p3 are p-type silicon pillars, 105 are silicon pillars 104n1, 104n2, 104n3, 104p1, 104p2, 104p3, 106 is a gate electrode, 106a, 106b, 106c, 106d, 106e, and 106f are gate wirings, respectively.
  • P + diffusion layers 107p1, 107p2, and 107p3 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3 by impurity implantation, respectively.
  • the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 are n + diffusion layers 107n1 and 107n2, respectively. 107n3 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p1, 109p2, 109p3, 109n1, 109n2, 109n3 are silicides connected to the p + diffusion layers 107p1, 107p2, 107p3, n + diffusion layers 107n1, 107n2, 107n3, respectively.
  • 110p1, 110p2, 110p3, 110n1, 110n2, and 110n3 are contacts that connect the silicide layers 109p1, 109p2, 109p3, 109n1, 109n2, and 109n3 and the first metal wires 113b, 113g, 113g, 113b, 113b, and 113b, respectively.
  • 111a are contacts for connecting the gate wiring 106b and the first metal wiring 113d
  • 111b is a contact for connecting the gate wiring 106d and the first metal wiring 113e.
  • 111c denotes a contact for connecting the gate line 106f and the first metal wiring 113f.
  • 112a is a contact connecting the silicide layer 103 covering the lower diffusion layer 102pb and the first metal wiring 113a
  • 112b (four in the figure) is the silicide layer 103 covering the lower diffusion layer 102n and the first metal wiring 113c. Is a contact that connects the two.
  • the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp1, and the silicon pillar 104n2, the lower diffusion layer 102pa, the upper diffusion layer 107p2, the gate insulating film 105,
  • the gate electrode 106 constitutes the PMOS transistor Qp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp3, and the silicon pillar 104p1 and the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105,
  • the over gate electrode 106 constitute an NMOS transistor Qn2, silicon pillar 104
  • gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp1
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp2
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp3.
  • Gate wirings 106a and 106b are connected to the gate electrode 106 of the NMOS transistor Qn1
  • gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn2
  • gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn3. Connected.
  • the sources of the NMOS transistors Qn1, Qn2, and Qn3 serve as the lower diffusion layer 102n and are connected to the first metal wiring 113c via the silicide 103 and the contact 112b, and the reference power supply Vss is supplied to the first metal wiring 113c.
  • the upper diffusion layer 107n1 which is the drain of the NMOS transistor Qn1 is connected to the first metal wiring 113b via the silicide 109n1 and the contact 110n1, and the first metal wiring 113b becomes the output OUT31.
  • the upper diffusion layer 107n2 which is the drain of the NMOS transistor Qn2 is connected to the first metal wiring 113b via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3, which is the drain of the NMOS transistor Qn3, is connected to the first metal wiring 113b through the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1 which is the drain of the PMOS transistor Qp1 is connected to the first metal wiring 113b via the silicide 109p1 and the contact 110p1.
  • the drains of the NMOS transistors Qn1, Qn2, Qn3, and the PMOS transistor Qp1 are commonly connected to the first metal wiring 113b through the contacts.
  • the lower diffusion layer 102pa serving as the source of the PMOS transistor Qp1 is connected to the drain of the PMOS transistor Qp2 through the silicide layer 103.
  • the upper diffusion layer 107p2 that is the source of the PMOS transistor Qp2 is connected to the first metal wiring 113g via the silicide 109p2 and the contact 110p2.
  • the upper diffusion layer 107p3, which is the drain of the PMOS transistor Qp3, is connected to the first metal wiring 113g via the silicide 109p3 and the contact 110p3.
  • the source of the PMOS transistor Qp2 and the drain of the PMOS transistor Qp3 are connected via the first metal wiring 113g.
  • the source of the PMOS transistor Qp3 is connected to the first metal wiring 113a through the lower diffusion layer 102pb, the silicide region 103, and the contact 112a, and the power supply Vcc is supplied to the first metal wiring 113a.
  • An input signal IN1 is supplied to the first metal wiring 113d, connected to the gate wiring 106b through the contact 111a, supplied to the gate electrode of the NMOS transistor Qn1, and the gate of the PMOS transistor Qp1 through the gate wiring 106a. Supplied to the electrode.
  • An input signal IN2 is supplied to the first metal wiring 113e, connected to the gate wiring 106d through the contact 111b, supplied to the gate electrode of the NMOS transistor Qn2, and the gate of the PMOS transistor Qp2 through the gate wiring 106c. Supplied to the electrode.
  • An input signal IN3 is supplied to the first metal wiring 113f, connected to the gate wiring 106f through the contact 111c, supplied to the gate electrode of the NMOS transistor Qn3, and the gate of the PMOS transistor Qp3 through the gate wiring 106e. Supplied to the electrode.
  • the transistor arrangement method in this embodiment is as follows. From the top, the power supply line Vcc (113a), the PMOS transistors Qp1, Qp2, Qp3 arranged in the second row, the NMOS transistors Qn1, arranged in the first row, Qn2, Qn3 and reference power supply line Vss (113c) are arranged in this order. These three-input NOR circuits are defined as a block BL313 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is standardized as Ly (interval including the power supply line and the reference power supply line).
  • the power supply line and the reference power supply line can be easily connected only by arranging the block BL313 of this embodiment and other blocks horizontally.
  • six SGTs constituting a three-input NOR circuit can be arranged in two rows and three columns without providing useless wiring and contact regions, and a semiconductor device with a reduced area can be provided.
  • FIGS. 17a, 17b and 17c An eleventh embodiment is shown in FIGS. 17a, 17b and 17c.
  • the equivalent circuit diagram follows FIG. 17a is a plan view of the three-input NOR layout (arrangement) of the present invention, FIG. 17b is a cross-sectional view along the cut line AA ′, and FIG. 17c is a cross-sectional view along the cut line BB ′. .
  • the cross-sectional view cut vertically is equivalent to FIGS. 16d and 16e and is omitted.
  • FIGS. 17a, 17b, and 17c portions having the same structure as in FIGS. 16a, 16b, and 16c are indicated by the same symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb).
  • 104n11, 104n12, 104n21, 104n22, 104n31, 104n32 are n-type silicon pillars
  • 104p11, 104p12, 104p21, 104p22, 104p31, 104p32 are p-type silicon pillars
  • 106 is a gate electrode
  • 106a, 106b, 106c, 106d, 106e, 106f, 106g, 106h, 106i, 106j, 106k, and 106l are gate wirings, respectively.
  • n + diffusion layers 107p11, 107p12, 107p21, 107p22, 107p31, 107p32 are formed by impurity implantation or the like, and the silicon pillars 104p11, 104p12, 104p21, At the top of 104p22, 104p31, and 104p32, n + diffusion layers 107n11, 107n12, 107n21, 107n22, 107n31, and 107n32 are formed by impurity implantation or the like, respectively.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109p11, 109p12, 109p21, 109p22, 109p31, 109p32, 109n11, 109n12, 109n21, 109n22, 109n31, 109n32 are p + diffusion layers 107p11, 107p12, 107p21, 107p22, respectively.
  • 111a is a contact connecting the gate wiring 106b and the first metal wiring 113d
  • 111b is a contact connecting the gate wiring 106d and the first metal wiring 113d
  • 111c is a gate wiring 106f and the first metal wiring 113e.
  • 111d is a contact for connecting the gate wiring 106h and the first metal wiring 113e
  • 111e is a contact for connecting the gate wiring 106j and the first metal wiring 113f.
  • 111f denotes a contact for connecting the gate line 106l and first metal wiring 113f.
  • 112a (three in the figure) is a contact connecting the silicide layer 103 covering the lower diffusion layer 102pb and the first metal wiring 113a
  • 112b (seven in the figure) is the first silicide layer 103 covering the lower diffusion layer 102n and the first This is a contact for connecting the metal wiring 113c.
  • the silicon pillar 104n11, the lower diffusion layer 102pa, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp11.
  • the gate electrode 106 constitutes the PMOS transistor Qp12, and the silicon pillar 104n21, the lower diffusion layer 102pa, the upper diffusion layer 107p21, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Qp21, and the silicon pillar 104n22, the lower diffusion layer.
  • the silicon pillar 104n31, the lower diffusion layer 102pb, the upper diffusion layer 1 7p31, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp31
  • the silicon pillar 104n32, the lower diffusion layer 102pb, the upper diffusion layer 107p32, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Qp32
  • the silicon pillar 104p11, the lower diffusion layer 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qn11.
  • the gate electrode 106 constitutes an NMOS transistor Qn12
  • the silicon pillar 104p21, the lower diffusion layer 102n, the upper diffusion layer 107n21, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor.
  • the transistor Qn21 is constituted, and the silicon pillar 104p22, the lower diffusion layer 102n, the upper diffusion layer 107n22, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Qn22, and the silicon pillar 104p31, the lower diffusion layer 102n, the upper diffusion layer 107n31.
  • the gate insulating film 105 and the gate electrode 106 constitute an NMOS transistor Qn31, and the silicon pillar 104p32, the lower diffusion layer 102n, the upper diffusion layer 107n32, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Qp32.
  • the gate wiring 106a is connected to the gate electrode 106 of the PMOS transistor Qp11
  • the gate wiring 106c is connected to the gate electrode 106 of the PMOS transistor Qp12
  • the gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Qp21.
  • a gate wiring 106g is connected to the gate electrode 106 of the PMOS transistor Qp22
  • a gate wiring 106i is connected to the gate electrode 106 of the PMOS transistor Qp31
  • a gate wiring 106k is connected to the gate electrode 106 of the PMOS transistor Qp32
  • an NMOS transistor is connected to the gate electrode 106 of the PMOS transistor Qp11
  • Gate wirings 106a and 106b are connected to the gate electrode 106 of Qn11, and gate wirings 106c and 106d are connected to the gate electrode 106 of the NMOS transistor Qn12.
  • Gate wirings 106e and 106f are connected to the gate electrode of the NMOS transistor Qn21, gate wirings 106g and 106h are connected to the gate electrode of the NMOS transistor Qn22, and gate wirings 106i and 106j are connected to the gate electrode of the NMOS transistor Qn31.
  • the gate wirings 106k and 106l are connected to the gate electrode of the NMOS transistor Qn32.
  • the sources of the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, and Qn32 serve as the lower diffusion layer 102n, and are connected to the first metal wiring 113c through the silicide 103 and the contact.
  • the reference power supply Vss is supplied to the first metal wiring 113c. Supplied.
  • the upper diffusion layer 107n11 which is the drain of the NMOS transistor Qn11 is connected to the first metal wiring 113b via the silicide 109n11 and the contact 110n11, and the first metal wiring 113b becomes the output OUT32.
  • the upper diffusion layer 107n12 which is the drain of the NMOS transistor Qn12 is connected to the first metal wiring 113b via the silicide 109n12 and the contact 110n12.
  • the upper diffusion layer 107n21 that is the drain of the NMOS transistor Qn21 is connected to the first metal wiring 113b through the silicide 109n21 and the contact 110n21.
  • the upper diffusion layer 107n22 which is the drain of the NMOS transistor Qn22 is connected to the first metal wiring 113b through the silicide 109n22 and the contact 110n22.
  • the upper diffusion layer 107n31 that is the drain of the NMOS transistor Qn31 is connected to the first metal wiring 113b via the silicide 109n31 and the contact 110n31.
  • the upper diffusion layer 107n32 that is the drain of the NMOS transistor Qn32 is connected to the first metal wiring 113b through the silicide 109n32 and the contact 110n32.
  • the upper diffusion layer 107p11 which is the drain of the PMOS transistor Qp11 is connected to the first metal wiring 113b through the silicide 109p11 and the contact 110p11.
  • the upper diffusion layer 107p12 which is the drain of the PMOS transistor Qp12 is connected to the first metal wiring 113b through the silicide 109p12 and the contact 110p12.
  • the drains of the NMOS transistors Qn11, Qn12, Qn21, Qn22, Qn31, Qn32, the PMOS transistor Qp11 and the PMOS transistor Qp12 are connected in common to the first metal wiring 113b through the contacts, and the first metal wiring 113b. Becomes the output OUT32.
  • the lower diffusion layer 102pa serving as the sources of the PMOS transistors Qp11 and Qp12 is connected to the drains of the PMOS transistors Qp21 and Qp22 via the silicide layer 103.
  • the upper diffusion layer 107p21 which is the source of the PMOS transistor Qp21 is connected to the first metal wiring 113g via the silicide 109p21 and the contact 110p21.
  • the upper diffusion layer 107p22 which is the source of the PMOS transistor Qp22 is connected to the silicide 109p22 and the contact 110p22. Connected to the first metal wiring 113g.
  • the upper diffusion layer 107p31 which is the drain of the PMOS transistor Qp31 is connected to the first metal wiring 113g via the silicide 109p31 and the contact 110p31, and the upper diffusion layer 107p32 which is also the drain of the PMOS transistor Qp32 is connected via the silicide 109p32 and the contact 110p32. Connected to the first metal wiring 113g.
  • the sources of the PMOS transistors Qp21 and Qp22 and the drains of the PMOS transistors Qp31 and Qp32 are connected via the first metal wiring 113g.
  • the sources of the PMOS transistors Qp31 and Qp32 are connected to the first metal wiring 113a through the lower diffusion layer 102pb, the silicide region 103, and the contact 112b, respectively, and the power supply Vcc is supplied to the first metal wiring 113a.
  • An input signal IN1 is supplied to the first metal wiring 113d, connected to the gate wiring 106b through the contact 111a, supplied to the gate electrode of the NMOS transistor Qn11, and at the same time, the gate of the PMOS transistor Qp11 through the gate wiring 106a. Supplied to the electrode.
  • the metal wiring 113d is connected to the gate wiring 106d through the contact 111b, and is supplied to the gate electrode of the NMOS transistor Qn12 and is also supplied to the gate electrode of the PMOS transistor Qp12 through the gate wiring 106c.
  • An input signal IN2 is supplied to the first metal wiring 113e, connected to the gate wiring 106f through the contact 111c, supplied to the gate electrode of the NMOS transistor Qn21, and at the same time, the gate of the PMOS transistor Qp21 through the gate wiring 106e. Supplied to the electrode.
  • the metal wiring 113e is connected to the gate wiring 106h through the contact 111d, and is supplied to the gate electrode of the NMOS transistor Qn22, and is also supplied to the gate electrode of the PMOS transistor Qp22 through the gate wiring 106g.
  • An input signal IN3 is supplied to the first metal wiring 113f, connected to the gate wiring 106j through the contact 111e, supplied to the gate electrode of the NMOS transistor Qn31, and at the same time, the gate of the PMOS transistor Qp31 through the gate wiring 106i. Supplied to the electrode. Further, the metal wiring 113f is connected to the gate wiring 106l through the contact 111f, supplied to the gate electrode of the NMOS transistor Qn32, and supplied to the gate electrode of the PMOS transistor Qp32 through the gate wiring 106k.
  • These three-input NOR circuits are defined as a block BL323 including the power supply line Vcc (113a) and the reference power supply line Vss (113c). Further, the interval between the power supply line 113a and the reference power supply line 113c is set to Ly (interval including the power supply line and the reference power supply line) as in the first embodiment (FIG. 2a).
  • twelve SGTs having a configuration in which two input transistors are arranged in parallel in a three-input NOR circuit can be arranged in two rows and six columns without providing useless wiring and contact regions, and the area is reduced.
  • a reduced semiconductor device can be provided.
  • two transistors are connected in parallel, but two or more transistors are also the same. For example, when three transistors are connected in parallel, the transistors are arranged in the horizontal direction and arranged in two rows and nine columns. Just do it.
  • Example 12 In the above embodiments, the arrangement has been described using an example of a process in which planar silicon is arranged on an insulating film such as a buried oxide film layer (BOX) formed on a substrate.
  • a bulk CMOS process is used. Is the same.
  • FIG. 18 shows a twelfth embodiment in which the embodiment of FIG. 2 is arranged by a bulk CMOS process.
  • 18a is a plan view of the three-input NOR layout (arrangement) of the present invention
  • FIG. 18b is a cross-sectional view along the cut line AA ′
  • FIG. 18c is a cross-sectional view along the cut line BB ′.
  • FIG. 18d is a cross-sectional view along the cut line CC ′
  • FIG. 18e is a cross-sectional view along the cut line DD ′.
  • portions having the same structure as those in FIGS. 2a, 2b, 2c, 2d, and 2e are denoted by the same reference numerals in the 100s.
  • Japanese Patent No. 4756221 of Patent Document 3 there is no difference between the BOX process of FIG. 2 and the bulk CMOS process of FIG. 18 in the plan view of FIG. There are differences in the cross-sectional views of FIGS. 18b, 18c, 18d, and 18e.
  • FIG. 18b, 18c, 18d, and 18e there is no difference between the BOX process of FIG. 2 and the bulk CMOS process of FIG. 18 in the plan view of FIG.
  • reference numeral 150 denotes a p-type silicon substrate.
  • Reference numeral 160 denotes an insulator for element isolation (isolation).
  • Reference numeral 170 denotes an n ⁇ region which serves as a leakage preventing separation layer. Except for this p-type silicon substrate 150, the element isolation insulator 160, and the leak prevention isolation layer 170, the process and structure above the lower diffusion layer are the same. Can be realized by a process.
  • the area reduction method using the second metal wiring of the eighth embodiment is applied to the tenth embodiment (FIG. 16a). It is also possible. Further, the arrangement method of m rows and n columns of Example 6 (FIG. 11a) or Example 7 (FIG. 13a) may be applied to the second metal wiring example of Example 11 (FIG. 17a).
  • the silicon column of the PMOS transistor is defined as n-type silicon and the NMOS silicon column is defined as a p-type silicon layer.
  • both the PMOS transistor and the NMOS transistor use a so-called neutral semiconductor that does not inject impurities into the silicon pillar, and the channel control, that is, the threshold values of the PMOS and NMOS are specific to the metal gate material.
  • the difference in work function (Work Function) is used.
  • the lower diffusion layer or the upper diffusion layer is covered with the silicide layer.
  • silicide is used to reduce the resistance, and other low-resistance materials can be used even if not silicide.
  • metal may be used.
  • the essence of the present invention is to reduce the area by commonly connecting the drains of the transistors connected to the output terminal via the lower diffusion layer, or to connect the drains of the transistors connected to the output terminal to the upper diffusion layer and the contact.
  • the wiring method of the gate wiring, the wiring position, the wiring method of the metal wiring, the wiring position, etc. are shown in the drawing of this embodiment. Those other than those shown in the above belong to the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 縦型トランジスタであるSurrounding Gate Transistor(SGT)を用いて、CMOS NOR回路を構成する半導体装置を小さい面積で提供することが課題である。 m行n列に配置された複数のMOSトランジスタを用いて構成されたNOR回路において、前記NOR回路を構成するMOSトランジスタは、基板上に形成された平面状シリコン層上に形成され、ドレイン、ゲート、ソースが垂直方向に配置され、ゲートがシリコン柱を取り囲む構造を有し、前記平面状シリコン層は第1の導電型を持つ第1の活性化領域と第2の導電型を持つ第2の活性化領域からなり、それらが平面状シリコン層表面に形成されたシリコン層を通して互いに接続されることにより小さい面積のNOR回路を構成する半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
昨今、半導体集積回路は大規模化されており、最先端のMPU(Micro-processing Unit)では、トランジスタの数が1G(ギガ)個にも達する半導体チップが開発されており、従来の平面形成トランジスタ、いわゆるプレーナー型トランジスタは、非特許文献1に示されるように、PMOSを形成するN-well領域とNMOSを形成するP型シリコン基板(あるいはP-well領域)を完全に分離する必要があり、また、N-well領域およびP型シリコン基板には、それぞれ電位を与えるボディ端子が必要であり、さらに面積が大きくなる要因となっている。
この課題を解決する手段として、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲートが島状半導体層を取り囲む構造のSurrounding Gate Transistor(SGT)が提案され、SGTの製造方法、SGTを用いたCMOSインバータ、NAND回路あるいはSRAMセルが開示されている。例えば、特許文献1、特許文献2、特許文献3、特許文献4を参照。
特許第5130596号公報 特許第5031809号公報 特許第4756221号公報 国際公開WO2009/096465号公報
CMOS OPアンプ回路実務設計の基礎(吉澤浩和 著)CQ出版社 page23
図19、図20a、図20bに、SGTを用いたインバータの回路図とレイアウト図を示す。
図19は、インバータの回路図であり、QpはPチャネルMOSトランジスタ(以下PMOSトランジスタと称す)、QnはNチャネルMOSトランジスタ(以下NMOSトランジスタと称す)、INは入力信号、OUTは出力信号、Vccは電源、Vssは基準電源である。
図20aには、一例として、図19のインバータをSGTで構成したレイアウトの平面図を示す。また、図20bには、図20aの平面図においてカットラインA-A’方向の断面図を示す。
図20a、図20bにおいて、基板上に形成された埋め込み酸化膜層(BOX)1などの絶縁膜上に平面状シリコン層2p、2nが形成され、上記平面状シリコン層2p、2nは不純物注入等により、それぞれp+拡散層、n+拡散層から構成される。3は、平面状シリコン層(2p、2n)の表面に形成されるシリサイド層であり、前記平面状シリコン層2p、2nを接続する。4nはn型シリコン柱、4pはp型シリコン柱、5は、シリコン柱4n、4pを取り巻くゲート絶縁膜、6はゲート電極、6aはゲート配線である。シリコン柱4n、4pの最上部には、それぞれp+拡散層7p、n+拡散層7nが不純物注入等により形成される。8はゲート絶縁膜5等を保護するためのシリコン窒化膜、9p、9nはp+拡散層7p、n+拡散層7nに接続されるシリサイド層、10p、10nは、シリサイド層9p、9nとメタル13a、13bとをそれぞれ接続するコンタクト、11は、ゲート配線6aとメタル配線13cを接続するコンタクトである。
シリコン柱4n、下部拡散層2p、上部拡散層7p、ゲート絶縁膜5、ゲート電極6により、PMOSトランジスタQpを構成し、シリコン柱4p、下部拡散層2n、上部拡散層7n、ゲート絶縁膜5、ゲート電極6により、NMOSトランジスタQnを構成する。上部拡散層7p、7nはソース、下部拡散層2p、2nはドレインとなる。メタル13aには電源Vccが供給され、メタル13bには基準電源Vssが供給され、メタル13cには、入力信号INが接続される。また、PMOSトランジスタQpのドレイン拡散層2pとNMOSトランジスタQnのドレイン拡散層2nを接続するシリサイド層3が出力OUTとなる。
図19、図20a、図20bで示したSGTを用いたインバータは、PMOSトランジスタ、NMOSトランジスタが構造上完全に分離されており、プレーナトランジスタのように、well分離が必要なく、さらに、シリコン柱はフローティングボディとなるため、プレーナトランジスタのように、wellへ電位を供給するボディ端子も必要なく、非常にコンパクトにレイアウト(配置)ができることが特徴である。
上述したように、SGTの最大の特徴は、構造原理的に、シリコン柱下部の基板側に存在するシリサイド層による下層配線と、シリコン柱上部のコンタクト接続による上部配線が利用できる点にある。本発明は、このSGTの特徴を利用して、論理回路で良く用いられるg個の入力を有するNOR回路をm行n列に並べることによりコンパクトに配置し、面積を最小にすることにより、低価格なロジック半導体装置を提供することが目的である。
(1)本発明によれば、ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上に2行n列(n≧2)に配列することによりNOR回路を構成する半導体装置であって、
前記各トランジスタは、
シリコン柱と、
前記シリコン柱の側面を取り囲む絶縁体と、
前記絶縁体を囲むゲートと、
前記シリコン柱の上部又は下部に配置されるソース領域と、
前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
前記複数のトランジスタは、
1行n列に並んだn個のNチャネルMOSトランジスタと
1行n列に並んだn個のPチャネルMOSトランジスタと
で構成され、
前記n個のNチャネルMOSトランジスタ及び前記n個のPチャネルMOSトランジスタの各々は、
第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは対を成し、各々のゲートは互いに接続されており、
前記n個のNチャネルMOSトランジスタと第1列目のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記n個のNチャネルMOSトランジスタと前記第1列目のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
第s列目(s=1~n-1)のPチャネルMOSトランジスタのソースと第s+1列目のPチャネルMOSトランジスタのドレインは互いに接続されていることを特徴とする半導体装置が提供される。
(2)本発明の好ましい態様では、前記半導体装置において、前記n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記n列目のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続される。
(3)また、別の態様では、前記半導体装置において、前記第n個のPチャネルMOSトランジスタは、偶数列目のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されている。
(4)また、別の態様では、前記半導体装置において、前記各々のゲートが互いに接続されるn個のトランジスタ対において、各々の組のゲートに対応してn個の入力信号が接続される。
(5)また、別の態様では、前記半導体装置において、前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成される。
(6)本発明の別の好ましい態様では、ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上に2行n列(n≧4)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
前記各トランジスタは、
シリコン柱と、
前記シリコン柱の側面を取り囲む絶縁体と、
前記絶縁体を囲むゲートと、
前記シリコン柱の上部又は下部に配置されるソース領域と、
前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
前記複数のトランジスタは、
1行n列に並んだn個のNチャネルMOSトランジスタと
1行n列に並んだn個のPチャネルMOSトランジスタと
で構成され、
前記n個のNチャネルMOSトランジスタ及び前記n個のPチャネルMOSトランジスタの各々は、
第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは対を成し、各々のゲートは互いに接続されており、
前記n個のNチャネルMOSトランジスタと前記第1列から第h列までのh個のPチャネルMOSトランジスタのドレイン領域は、シリコン柱より基板側に配置されており、且つ、互いにシリサイド領域を介して接続されており、
前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置が提供される。
(7)また、別の態様では、前記半導体装置において、前記n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g組にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続される。
(8)また、別の態様では、前記半導体装置において、前記第g組にグルーピングされたh個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されている。
(9)また、別の態様では、前記半導体装置において、前記各々のゲートが互いに接続されるn組のトランジスタ対において、前記g個の入力信号が、各々前記n対のトランジスタ対の任意のh個の対のゲートに接続される。
(10)また、別の態様では、前記半導体装置において、前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成される。
(11)本発明の好ましい態様では、ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧3、n≧2)に配列することによりNOR回路を構成する半導体装置であって、
前記各トランジスタは、
シリコン柱と、
前記シリコン柱の側面を取り囲む絶縁体と、
前記絶縁体を囲むゲートと、
前記シリコン柱の上部又は下部に配置されるソース領域と、
前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
前記複数のトランジスタは、
i行n列に並んだi×n個のNチャネルMOSトランジスタと
j行n列に並んだj×n個のPチャネルMOSトランジスタと
で構成され、
i+j=mであり、
前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
前記i×n個のNチャネルMOSトランジスタと第1列目のj個のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記i×n個のNチャネルMOSトランジスタと前記第1列目のj個のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
第s列目(s=1~n-1)のPチャネルMOSトランジスタのソースと第s+1列目のPチャネルMOSトランジスタのドレインは互いに接続されていることを特徴とする半導体装置が提供される。
(12)また、別の態様では、前記半導体装置において、前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記n列目のj個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続される。
(13)また、別の態様では、前記半導体装置において、前記第j×n個のPチャネルMOSトランジスタは、偶数列目のj個のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されている。
(14)また、別の態様では、前記半導体装置において、前記各々のゲートが互いに接続されるn対のトランジスタ対において、各々の組のゲートに対応してn個の入力信号が接続される。
(15)また、別の態様では、前記半導体装置において、前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成される。
(16)本発明の別の好ましい態様では、ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧2、n≧2)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
前記各トランジスタは、
シリコン柱と、
前記シリコン柱の側面を取り囲む絶縁体と、
前記絶縁体を囲むゲートと、
前記シリコン柱の上部又は下部に配置されるソース領域と、
前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
前記複数のトランジスタは、
i行n列に並んだi×n個のNチャネルMOSトランジスタと
j行n列に並んだj×n個のPチャネルMOSトランジスタと
で構成され、
i+j=mであり、
前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、
前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置が提供される。
(17)また、別の態様では、前記半導体装置において、前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g個にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続される。
(18)また、別の態様では、前記半導体装置において、前記第g組にグルーピングされたj×h個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されている。
(19)また、別の態様では、前記半導体装置において、前記各々のゲートが互いに接続されるn組のトランジスタ群(Nチャネルトランジスタi個、PチャネルMOSトランジスタj個)において、前記g個の入力信号が、各々前記n組のトランジスタ群の任意のh個のゲートに接続される。
(20)また、別の態様では、前記半導体装置において、前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成される。
(21)本発明によれば、ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧2、n≧2)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
前記各トランジスタは、
シリコン柱と、
前記シリコン柱の側面を取り囲む絶縁体と、
前記絶縁体を囲むゲートと、
前記シリコン柱の上部又は下部に配置されるソース領域と、
前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
前記複数のトランジスタは、
i行n列に並んだi×n個のNチャネルMOSトランジスタと
j行n列に並んだj×n個のPチャネルMOSトランジスタと
で構成され、
i+j=mであり、
前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、
前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域が、互いにコンタクトを介して接続されており、
前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置が提供される。
(22)また、別の態様では、前記半導体装置において、前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g個にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続される。
(23)また、別の態様では、前記半導体装置において、前記第g組にグルーピングされたj×h個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのドレイン領域がシリコン柱より基板側に配置されている。
(24)また、別の態様では、前記半導体装置において、前記各々のゲートが互いに接続されるn組のトランジスタ群(Nチャネルトランジスタi個、PチャネルMOSトランジスタj個)において、前記g個の入力信号が、各々前記n組のトランジスタ群の任意のh個のゲートに接続される。
(25)また、別の態様では、前記半導体装置において、前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成される。
本発明の実施例のNOR回路を示す等価回路図である。 本発明の第1の実施例のNOR回路の平面図である。 本発明の第1の実施例のNOR回路の断面図である。 本発明の第1の実施例のNOR回路の断面図である。 本発明の第1の実施例のNOR回路の断面図である。 本発明の第1の実施例のNOR回路の断面図である。 本発明の実施例のNOR回路を示す等価回路図である。 本発明の第2の実施例のNOR回路の平面図である。 本発明の第2の実施例のNOR回路の断面図である。 本発明の第2の実施例のNOR回路の断面図である。 本発明の第2の実施例のNOR回路の断面図である。 本発明の第2の実施例のNOR回路の断面図である。 本発明の実施例のNOR回路を示す等価回路図である。 本発明の第3の実施例のNOR回路の平面図である。 本発明の第3の実施例のNOR回路の断面図である。 本発明の第3の実施例のNOR回路の断面図である。 本発明の実施例のNOR回路を示す等価回路図である。 本発明の第4の実施例のNOR回路の平面図である。 本発明の第4の実施例のNOR回路の断面図である。 本発明の第4の実施例のNOR回路の断面図である。 本発明の実施例のNOR回路を示す等価回路図である。 本発明の第5の実施例のNOR回路の平面図である。 本発明の第6の実施例のNOR回路の平面図である。 本発明の第6の実施例のNOR回路の断面図である。 本発明の第6の実施例のNOR回路の断面図である。 本発明の第6の実施例のNOR回路の断面図である。 本発明の第6の実施例のNOR回路の断面図である。 本発明の実施例のNOR回路を示す等価回路図である。 本発明の第7の実施例のNOR回路の平面図である。 本発明の第7の実施例のNOR回路の断面図である。 本発明の第7の実施例のNOR回路の断面図である。 本発明の第7の実施例のNOR回路の断面図である。 本発明の第7の実施例のNOR回路の断面図である。 本発明の第8の実施例のNOR回路の平面図である。 本発明の第8の実施例のNOR回路の断面図である。 本発明の第8の実施例のNOR回路の断面図である。 本発明の第8の実施例のNOR回路の断面図である。 本発明の第8の実施例のNOR回路の断面図である。 本発明の第8の実施例のNOR回路の断面図である。 本発明の第9の実施例のNOR回路の平面図である。 本発明の第9の実施例のNOR回路の断面図である。 本発明の第9の実施例のNOR回路の断面図である。 本発明の第9の実施例のNOR回路の断面図である。 本発明の第10の実施例のNOR回路の平面図である。 本発明の第10の実施例のNOR回路の断面図である。 本発明の第10の実施例のNOR回路の断面図である。 本発明の第10の実施例のNOR回路の断面図である。 本発明の第10の実施例のNOR回路の断面図である。 本発明の第11の実施例のNOR回路の平面図である。 本発明の第11の実施例のNOR回路の断面図である。 本発明の第11の実施例のNOR回路の断面図である。 本発明の第12の実施例のNOR回路の平面図である。 本発明の第12の実施例のNOR回路の断面図である。 本発明の第12の実施例のNOR回路の断面図である。 本発明の第12の実施例のNOR回路の断面図である。 本発明の第12の実施例のNOR回路の断面図である。 従来例を示すインバータ回路の等価回路である。 従来のインバータの平面図である。 従来のインバータの断面図である。
(実施例1)
図1に本発明に適用する3入力NOR回路の等価回路図を示す。Qn1、Qn2、Qn3は、SGTで構成されたNMOSトランジスタ、Qp1、Qp2、Qp3は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタQn1、Qn2、Qn3のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力OUT31となる。PMOSトランジスタQp1のドレインはノードN1に接続され、ソースはノードN2を介してPMOSトランジスタQp2のドレインに接続され、PMOSトランジスタQp2のソースはノードN3を介してPMOSトランジスタQp3のドレインに接続され、PMOSトランジスタQp3のソースは電源Vccに接続される。また、NMOSトランジスタQn1、PMOSトランジスタQp1のゲートには入力信号IN1が接続され、NMOSトランジスタQn2、PMOSトランジスタQp2のゲートには入力信号IN2が接続され、NMOSトランジスタQn3、PMOSトランジスタQp3のゲートには入力信号IN3が接続される。
図2a、図2b、図2c、図2dおよび図2eに、第1の実施例を示す。図2aは、本発明の3入力NORレイアウト(配置)の平面図、図2bは、カットラインA-A’に沿った断面図、図2cは、カットラインB-B’に沿った断面図、図2dは、カットラインC-C’に沿った断面図、図2eは、カットラインD-D’に沿った断面図を示す。
図2aにおいて、図1のNOR回路のNMOSトランジスタQn1、Qn2及びQn3が1行目(図の下の行)、PMOSトランジスタQp1、Qp2及びQp3が2行目(図の上の行)に、それぞれ図の右側より順番に配置されている。
なお、図2a、図2b、図2c、図2d及び図2eにおいて、図20a、図20bと同じ構造の箇所については、100番台の同等の記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n1、104n2、104n3はn型シリコン柱、104p1、104p2、104p3はp型シリコン柱、105はシリコン柱104n1、104n2、104n3、104p1、104p2、104p3を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e及び106fは、それぞれゲート配線である。シリコン柱104n1、104n2、104n3の最上部には、それぞれp+拡散層107p1、107p2、107p3が不純物注入等により形成され、シリコン柱104p1、104p2、104p3の最上部には、それぞれn+拡散層107n1、107n2、107n3が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p1、109p2、109p3、109n1、109n2、109n3はそれぞれp+拡散層107p1、107p2、107p3、n+拡散層107n1、107n2、107n3に接続されるシリサイド層、110p1、110p2、110p3、110n1、110n2、110n3は、シリサイド層109p1、109p2、109p3、109n1、109n2、109n3と第1メタル配線113g、113g、113a、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113fとを接続するコンタクトである。
また、112aは、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp1を構成し、シリコン柱104n2、下部拡散層102pb、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp3を構成し、シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn3を構成する。
また、PMOSトランジスタQp1のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp2のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp3のゲート電極106にはゲート配線106eが接続され、NMOSトランジスタQn1のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn2のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn3のゲート電極にはゲート配線106e及び106fが接続される。
下部拡散層102n及び102paはシリサイド103を介してNMOSトランジスタQn1、Qn2、Qn3及びPMOSトランジスタQp1の共通ドレインとなり、コンタクト112aを介して第1メタル配線113bに接続され、出力OUT31となる。NMOSトランジスタQn1のソースである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn2のソースである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1メタル配線113cに接続される。また、NMOSトランジスタQn3のソースである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1メタル配線113cに接続される。PMOSトランジスタQp1のソースである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1メタル配線113gに接続される。PMOSトランジスタQp2のドレインである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp1のソースとPMOSトランジスタQp2のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp2のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp3のドレインと接続され、PMOSトランジスタQp3のソースは、コンタクト110p3を介して第1メタル配線113aに接続され、第1メタル配線113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111aを介してゲート配線106bに接続され、NMOSトランジスタQn1のゲート電極に供給されるとともに、ゲート配線106aを介してPMOSトランジスタQp1のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111bを介してゲート配線106dに接続され、NMOSトランジスタQn2のゲート電極に供給されるとともに、ゲート配線106cを介してPMOSトランジスタQp2のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111cを介してゲート配線106fに接続され、NMOSトランジスタQn3のゲート電極に供給されるとともに、ゲート配線106eを介してPMOSトランジスタQp3のゲート電極に供給される。
本実施例におけるトランジスタの配置方法は、図2aにおいて、下から、電源線Vss(113c)、1行目に配置されたNMOSトランジスタQn1、Qn2、Qn3、2行目に配置されたPMOSトランジスタQp1、Qp2、Qp3、電源線Vcc(113a)の順番で配置されるものである。これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL31と定義する。
また、電源線113aと基準電源線113cとの間隔をLy(電源線、基準電源線を含めた間隔)として、以下の実施例でも、Lyを一定として規格化する。このように規格化すれば、本実施例のブロックBL31と他のブロックが、横に配置しただけで、電源線、基準電源線が容易に接続できる利点がある。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路を構成する6個のSGTを2行3列に配置でき、面積が縮小された半導体装置が提供できる。
(実施例2)
図3に本発明に適用する4入力NOR回路の等価回路図を示す。Qn1、Qn2、Qn3、Qn4は、SGTで構成されたNMOSトランジスタ、Qp1、Qp2、Qp3、Qp4は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタQn1、Qn2、Qn3、Qn4のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力OUT41となる。PMOSトランジスタQp1のドレインはノードN1に接続され、ソースはノードN2を介してPMOSトランジスタQp2のドレインに接続され、PMOSトランジスタQp2のソースはノードN3を介してPMOSトランジスタQp3のドレインに接続され、PMOSトランジスタQp3のソースはノードN4を介してPMOSトランジスタQp4のドレインに接続され、PMOSトランジスタQp4のソースは電源Vccに接続される。また、NMOSトランジスタQn1、PMOSトランジスタQp1のゲートには入力信号IN1が接続され、NMOSトランジスタQn2、PMOSトランジスタQp2のゲートには入力信号IN2が接続され、NMOSトランジスタQn3、PMOSトランジスタQp3のゲートには入力信号IN3が接続され、NMOSトランジスタQn4、PMOSトランジスタQp4のゲートには入力信号IN4が接続される。
図4a、図4b、図4c、図4d及び図4eに、第2の実施例を示す。図4aは、本発明の4入力NORレイアウト(配置)の平面図、図4bは、カットラインA-A’に沿った断面図、図4cはカットラインB-B’に沿った断面図、図4dは、カットラインC-C’に沿った断面図、図4eは、カットラインD-D’に沿った断面図を示す。
図4aにおいて、図3のNOR回路のNMOSトランジスタQn1、Qn2、Qn3及びQn4が1行目(図の下の行)、PMOSトランジスタQp1、Qp2、Qp3及びQp4が2行目(図の上の行)に、それぞれ図の右側より順番に配置されている。
図2と異なるところは、NMOSトランジスタQn4とPMOSトランジスタQp4が、図の左側に配置されたことである。
なお、図4a、図4b、図4c、図4d及び図4eにおいて、図2a、図2b、図2c、図2d、図2eと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pb、102pcが形成され、この平面状シリコン層102n、102pa、102pb、102pcは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb、102pc)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n1、104n2、104n3、104n4はn型シリコン柱、104p1、104p2、104p3、104p4はp型シリコン柱、105はシリコン柱104n1、104n2、104n3、104n4、104p1、104p2、104p3、104p4を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106f、106g及び106hは、それぞれゲート配線である。シリコン柱104n1、104n2、104n3、104n4の最上部には、それぞれp+拡散層107p1、107p2、107p3、107p4が不純物注入等により形成され、シリコン柱104p1、104p2、104p3、104p4の最上部には、それぞれn+拡散層107n1、107n2、107n3、107n4が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p1、109p2、109p3、109p4、109n1、109n2、109n3、109n4はそれぞれp+拡散層107p1、107p2、107p3、107p4、n+拡散層107n1、107n2、107n3、107n4に接続されるシリサイド層、110p1、110p2、110p3、110p4、110n1、110n2、110n3、110n4は、シリサイド層109p1、109p2、109p3、109p4、109n1、109n2、109n3、109n4と第1メタル配線113g、113g、113i、113i、113c、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113fとを接続するコンタクト、111dはゲート配線106hと第1メタル配線113hを接続するコンタクトである。
112aは、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。また、112bは、下部拡散層102pcを覆うシリサイド103と第1メタル配線113aとを接続するコンタクトである。
シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp1を構成し、シリコン柱104n2、下部拡散層102pb、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp3を構成し、シリコン柱104n4、下部拡散層102pc、上部拡散層107p4、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp4を構成し、シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn3を構成し、シリコン柱104p4、下部拡散層102n、上部拡散層107n4、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn4を構成する。
また、PMOSトランジスタQp1のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp2のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp3のゲート電極106にはゲート配線106eが接続され、PMOSトランジスタQp4のゲート電極106にはゲート配線106gが接続され、NMOSトランジスタQn1のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn2のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn3のゲート電極にはゲート配線106e及び106fが接続され、NMOSトランジスタQn4のゲート電極にはゲート配線106g及び106hが接続される。
下部拡散層102n及び102paはNMOSトランジスタQn1、Qn2、Qn3、Qn4及びPMOSトランジスタQp1の共通ドレインとなり、出力OUT41に接続される。
NMOSトランジスタQn1のソースである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn2のソースである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1メタル配線113cに接続される。NMOSトランジスタQn3のソースである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1メタル配線113cに接続される。NMOSトランジスタQn4のソースである上部拡散層107n4はシリサイド109n4、コンタクト110n4を介して第1メタル配線113cに接続される。PMOSトランジスタQp1のソースである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1メタル配線113gに接続される。PMOSトランジスタQp2のドレインである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp1のソースとPMOSトランジスタQp2のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp2のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp3のドレインと接続され、PMOSトランジスタQp3のソースは、コンタクト110p3を介して第1メタル配線113iに接続される。PMOSトランジスタQp4のドレインは、コンタクト110p4を介して第1メタル配線113iに接続される。ここで、PMOSトランジスタQp3のソースとPMOSトランジスタQp4のドレインは、第1メタル配線113iを介して接続される。PMOSトランジスタQp4のソースは、シリサイド103を介して下部拡散層102pcに接続され、下部拡散層102pcはコンタクト112bを介して第1メタル配線113aに接続される。また、第1メタル113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111aを介してゲート配線106bに接続され、NMOSトランジスタQn1のゲート電極に供給されるとともに、ゲート配線106aを介してPMOSトランジスタQp1のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111bを介してゲート配線106dに接続され、NMOSトランジスタQn2のゲート電極に供給されるとともに、ゲート配線106cを介してPMOSトランジスタQp2のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111cを介してゲート配線106fに接続され、NMOSトランジスタQn3のゲート電極に供給されるとともに、ゲート配線106eを介してPMOSトランジスタQp3のゲート電極に供給される。
第1メタル配線113hには、入力信号IN4が供給され、コンタクト111dを介してゲート配線106hに接続され、NMOSトランジスタQn4のゲート電極に供給されるとともに、ゲート配線106gを介してPMOSトランジスタQp4のゲート電極に供給される。
これらの4入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL41と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、4入力NOR回路を構成する8個のSGTを2行4列に配置でき、面積が縮小された半導体装置が提供できる。
(実施例3)
図5に本発明に適用する5入力NOR回路の等価回路図を示す。Qn1、Qn2、Qn3、Qn4、Qn5は、SGTで構成されたNMOSトランジスタ、Qp1、Qp2、Qp3、Qp4、Qp5は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタQn1、Qn2、Qn3、Qn4、Qn5のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力OUT51となる。PMOSトランジスタQp1のドレインはノードN1に接続され、ソースはノードN2を介してPMOSトランジスタQp2のドレインに接続され、PMOSトランジスタQp2のソースはノードN3を介してPMOSトランジスタQp3のドレインに接続され、PMOSトランジスタQp3のソースはノードN4を介してPMOSトランジスタQp4のドレインに接続され、PMOSトランジスタQp4のソースはノードN5を介してPMOSトランジスタQp5のドレインに接続され、PMOSトランジスタQp5のソースは電源Vccに接続される。また、PMOSトランジスタQp1、NMOSトランジスタQn1のゲートには入力信号IN1が接続され、PMOSトランジスタQp2、NMOSトランジスタQn2のゲートには入力信号IN2が接続され、PMOSトランジスタQp3、NMOSトランジスタQn3のゲートには入力信号IN3が接続され、PMOSトランジスタQp4、NMOSトランジスタQn4のゲートには入力信号IN4が接続され、PMOSトランジスタQp5、NMOSトランジスタQn5のゲートには入力信号IN5が接続される。
図6a、図6b及び図6cに、第3の実施例を示す。図6aは、本発明の5入力NORレイアウト(配置)の平面図、図6bは、カットラインA-A’に沿った断面図、図6cはカットラインB-B’に沿った断面図を示す。なお、縦にカットした断面図は図4d、図4eと同じであり、省略してある。
図6aにおいて、図5のNOR回路のNMOSトランジスタQn1、Qn2、Qn3、Qn4及びQn5が1行目(図の下の行)、PMOSトランジスタQp1、Qp2、Qp3、Qp4及びQp5が2行目(図の上の行)に、それぞれ図の右側より順番に配置されている。
図4と異なるところは、NMOSトランジスタQn5とPMOSトランジスタQp5が、図の左側に配置されたことである。
なお、図6a、図6b、図6cにおいて、図4a、図4b、図4cと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pb、102pcが形成され、この平面状シリコン層102n、102pa、102pb、102pcは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb、102pc)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n1、104n2、104n3、104n4、104n5はn型シリコン柱、104p1、104p2、104p3、104p4、104p5はp型シリコン柱、105はシリコン柱104n1、104n2、104n3、104n4、104n5、104p1、104p2、104p3、104p4、104p5を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106f、106g、106h、106i及び106jは、それぞれゲート配線である。シリコン柱104n1、104n2、104n3、104n4、104n5の最上部には、それぞれp+拡散層107p1、107p2、107p3、107p4、107p5が不純物注入等により形成され、シリコン柱104p1、104p2、104p3、104p4、104p5の最上部には、それぞれn+拡散層107n1、107n2、107n3、107n4、107n5が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p1、109p2、109p3、109p4、109p5、109n1、109n2、109n3、109n4、104n5はそれぞれp+拡散層107p1、107p2、107p3、107p4、107p5、n+拡散層107n1、107n2、107n3、107n4、107n5に接続されるシリサイド層、110p1、110p2、110p3、110p4、110p5、110n1、110n2、110n3、110n4、110n5は、シリサイド層109p1、109p2、109p3、109p4、109p5、109n1、109n2、109n3、109n4、109n5と第1メタル配線113g、113g、113i、113i、113a、113c、113c、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113fとを接続するコンタクト、111dはゲート配線106hと第1メタル配線113hを接続するコンタクト、111eはゲート配線106jと第1メタル配線113jを接続するコンタクトである。
112aは、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp1を構成し、シリコン柱104n2、下部拡散層102pb、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp3を構成し、シリコン柱104n4、下部拡散層102pc、上部拡散層107p4、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp4を構成し、シリコン柱104n5、下部拡散層102pc、上部拡散層107p5、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp5を構成し、シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn3を構成し、シリコン柱104p4、下部拡散層102n、上部拡散層107n4、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn4を構成し、シリコン柱104p5、下部拡散層102n、上部拡散層107n5、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn5を構成する。
また、PMOSトランジスタQp1のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp2のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp3のゲート電極106にはゲート配線106eが接続され、PMOSトランジスタQp4のゲート電極106にはゲート配線106gが接続され、PMOSトランジスタQp5のゲート電極106にはゲート配線106iが接続され、、NMOSトランジスタQn1のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn2のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn3のゲート電極にはゲート配線106e及び106fが接続され、NMOSトランジスタQn4のゲート電極にはゲート配線106g及び106hが接続され、NMOSトランジスタQn5のゲート電極にはゲート配線106i及び106jが接続される。
下部拡散層102n及び102paはNMOSトランジスタQn1、Qn2、Qn3、Qn4、Qn5及びPMOSトランジスタQp1の共通ドレインとなり、出力OUT51に接続される。
NMOSトランジスタQn1のソースである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn2のソースである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1メタル配線113cに接続される。NMOSトランジスタQn3のソースである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1メタル配線113cに接続される。NMOSトランジスタQn4のソースである上部拡散層107n4はシリサイド109n4、コンタクト110n4を介して第1メタル配線113cに接続される。NMOSトランジスタQn5のソースである上部拡散層107n5はシリサイド109n5、コンタクト110n5を介して第1メタル配線113cに接続される。PMOSトランジスタQp1のソースである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1メタル配線113gに接続される。PMOSトランジスタQp2のドレインである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1メタル配線113gに接続される。ここで、NMOSトランジスタQp1のソースとPMOSトランジスタQp2のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp2のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp3のドレインと接続され、PMOSトランジスタQp3のソースは、コンタクト110p3を介して第1メタル配線113iに接続される。PMOSトランジスタQp4のドレインは、コンタクト110p4を介して第1メタル配線113iに接続される。ここで、PMOSトランジスタQp3のソースとPMOSトランジスタQp4のドレインは、第1メタル配線113iを介して接続される。PMOSトランジスタQp4のソースは下部拡散層102pcとシリサイド領域103を介してPMOSトランジスタQp5のドレインと接続され、PMOSトランジスタQp5のソースは、コンタクト110p5を介して第1メタル配線113aに接続される。また、第1メタル113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111aを介してゲート配線106bに接続され、NMOSトランジスタQn1のゲート電極に供給されるとともに、ゲート配線106aを介してPMOSトランジスタQp1のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111bを介してゲート配線106dに接続され、NMOSトランジスタQn2のゲート電極に供給されるとともに、ゲート配線106cを介してPMOSトランジスタQp2のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111cを介してゲート配線106fに接続され、NMOSトランジスタQn3のゲート電極に供給されるとともに、ゲート配線106eを介してPMOSトランジスタQp3のゲート電極に供給される。
第1メタル配線113hには、入力信号IN4が供給され、コンタクト111dを介してゲート配線106hに接続され、NMOSトランジスタQn4のゲート電極に供給されるとともに、ゲート配線106gを介してPMOSトランジスタQp4のゲート電極に供給される。
第1メタル配線113jには、入力信号IN5が供給され、コンタクト111eを介してゲート配線106jに接続され、NMOSトランジスタQn5のゲート電極に供給されるとともに、ゲート配線106iを介してPMOSトランジスタQp5のゲート電極に供給される。
これらの5入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL51と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、5入力NOR回路を構成する10個のSGTを2行5列に配置でき、面積が縮小された半導体装置が提供できる。
なお、本実施例にとどまらず、6入力以上の複数入力のNOR回路でも同様の方法により、面積の縮小された半導体装置が提供できる。
(実施例4)
図7に本発明に適用する3入力NOR回路の等価回路図を示す。図1と異なるところは、同じ3入力NOR回路であるが、図7は、各入力のトランジスタが2個並列に接続されており、駆動電流が2倍になるように設定されているところである。
Qn11、Qn12、Qn21、Qn22、Qn31、Qn32は、SGTで構成されたNMOSトランジスタ、Qp11、Qp12、Qp21、Qp22、Qp31、Qp32は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32のソースは電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力OUT32となる。PMOSトランジスタQp11、Qp12のドレインは各々ノードN1に接続され、ソースはノードN2を介して各々PMOSトランジスタQp21、Qp22のドレインに接続され、PMOSトランジスタQp21、Qp22のソースはノードN3を介して各々PMOSトランジスタQp31、Qp32のドレインに接続され、PMOSトランジスタQp31、Qp32のソースは各々電源Vccに接続される。また、PMOSトランジスタQp11、Qp12、NMOSトランジスタQn11、Qn12のゲートには共通に入力信号IN1が接続され、PMOSトランジスタQp21、Qp22、NMOSトランジスタQn21、Qn22のゲートには共通に入力信号IN2が接続され、PMOSトランジスタQp31、Qp32、NMOSトランジスタQn31、Qn32のゲートには共通に入力信号IN3が接続される。
図8a、図8b及び図8cに、第4の実施例を示す。図8aは、本発明の3入力NORレイアウト(配置)の平面図、図8bは、カットラインA-A’に沿った断面図、図8cはカットラインB-B’に沿った断面図を示す。なお、縦にカットした断面図は図2d、図2eと同等であり、省略してある。
図8aにおいて、図7のNOR回路のQn11、Qn12、Qn21、Qn22、Qn31、Qn32が1行目(図の下の行)、PMOSトランジスタQp11、Qp12、Qp21、Qp22、Qp31、Qp32が2行目(図の上の行)に、それぞれ図の右側より順番に配置されている。
図2と異なるところは、並列接続されたPMOSトランジスタQp11、Qp12と、同じく並列接続されたNMOSトランジスタQn11、Qn12が各々隣に配置されていることである。他の並列接続されたトランジスタについても同様に、各々隣に配置されている。
なお、図8a、図8b、図8cにおいて、図2a、図2b、図2cと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n11、104n12、104n21、104n22、104n31、104n32はn型シリコン柱、104p11、104p12、104p21、104p22、104p31、104p32はp型シリコン柱、105はシリコン柱104n11、104n12、104n21、104n22、104n31、104n32、104p11、104p12、104p21、104p22、104p31、104p32を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106f、106g、106h、106i、106j、106k及び106lは、それぞれゲート配線である。シリコン柱104n11、104n12、104n21、104n22、104n31、104n32の最上部には、それぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32が不純物注入等により形成され、シリコン柱104p11、104p12、104p21、104p22、104p31、104p32の最上部には、それぞれn+拡散層107n11、107n12、107n21、107n22、107n31、107n32が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32はそれぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32、n+拡散層107n11、107n12、107n21、107n22、107n31、107n32に接続されるシリサイド層、110p11、110p12、110p21、110p22、110p31、110p32、110n11、110n12、110n21、110n22、110n31、110n32は、シリサイド層109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32と第1メタル配線113g、113g、113g、113g、113a、113a、113c、113c、113c、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113dとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113eとを接続するコンタクト、111dはゲート配線106hと第1メタル配線113eを接続するコンタクト、111eはゲート配線106jと第1メタル配線113fを接続するコンタクト、111fはゲート配線106lと第1メタル配線113fとを接続するコンタクトである。
112aは、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。なお、図ではシリサイド抵抗の影響を削減するために、コンタクト112aを2個設けている。
シリコン柱104n11、下部拡散層102pa、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp11を構成し、シリコン柱104n12、下部拡散層102pa、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp12を構成し、シリコン柱104n21、下部拡散層102pb、上部拡散層107p21、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp21を構成し、シリコン柱104n22、下部拡散層102pb、上部拡散層107p22、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp22を構成し、シリコン柱104n31、下部拡散層102pb、上部拡散層107p31、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp31を構成し、シリコン柱104n32、下部拡散層102pb、上部拡散層107p32、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp32を構成し、シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn11を構成し、シリコン柱104p12、下部拡散層102n、上部拡散層107n12、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn12を構成し、シリコン柱104p21、下部拡散層102n、上部拡散層107n21、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn21を構成し、シリコン柱104p22、下部拡散層102n、上部拡散層107n22、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn22を構成し、シリコン柱104p31、下部拡散層102n、上部拡散層107n31、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn31を構成し、シリコン柱104p32、下部拡散層102n、上部拡散層107n32、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQp32を構成する。
また、PMOSトランジスタQp11のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp12のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp21のゲート電極106にはゲート配線106eが接続され、PMOSトランジスタQp22のゲート電極106にはゲート配線106gが接続され、PMOSトランジスタQp31のゲート電極106にはゲート配線106iが接続され、PMOSトランジスタQp32のゲート電極106にはゲート配線106kが接続され、NMOSトランジスタQn11のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn12のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn21のゲート電極にはゲート配線106e及び106fが接続され、NMOSトランジスタQn22のゲート電極にはゲート配線106g及び106hが接続され、NMOSトランジスタQn31のゲート電極にはゲート配線106i及び106jが接続され、NMOSトランジスタQn32のゲート電極にはゲート配線106k及び106lが接続される。
下部拡散層102n及び102paはNMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32及びPMOSトランジスタQp11、Qp12の共通ドレインとなり、出力OUT32に接続される。
NMOSトランジスタQn11のソースである上部拡散層107n11はシリサイド109n11、コンタクト110n11を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn12のソースである上部拡散層107n12はシリサイド109n12、コンタクト110n12を介して第1メタル配線113cに接続される。NMOSトランジスタQn21のソースである上部拡散層107n21はシリサイド109n21、コンタクト110n21を介して第1メタル配線113cに接続される。NMOSトランジスタQn22のソースである上部拡散層107n22はシリサイド109n22、コンタクト110n22を介して第1メタル配線113cに接続される。NMOSトランジスタQn31のソースである上部拡散層107n31はシリサイド109n31、コンタクト110n31を介して第1メタル配線113cに接続される。NMOSトランジスタQn32のソースである上部拡散層107n32はシリサイド109n32、コンタクト110n32を介して第1メタル配線113cに接続される。PMOSトランジスタQp11のソースである上部拡散層107p11はシリサイド109p11、コンタクト110p11を介して第1メタル配線113gに接続される。PMOSトランジスタQp12のソースである上部拡散層107p12はシリサイド109p12、コンタクト110p12を介して第1メタル配線113gに接続される。PMOSトランジスタQp21のドレインである上部拡散層107p21はシリサイド109p21、コンタクト110p21を介して第1メタル配線113gに接続される。PMOSトランジスタQp22のドレインである上部拡散層107p22はシリサイド109p22、コンタクト110p22を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp11、Qp12のソースとPMOSトランジスタQp21、Qp22のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp21、Qp22のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp31、Qp32のドレインと接続され、PMOSトランジスタQp31、Qp32のソースは、それぞれコンタクト110p31、110p32を介して第1メタル配線113aに接続される。また、第1メタル113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111a、111bを介してゲート配線106b、106dに接続され、それぞれNMOSトランジスタQn11のゲート電極、Qn12のゲート電極に供給されるとともに、ゲート配線106a、ゲート配線106cを介してそれぞれPMOSトランジスタQp11、Qp12のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111c、111dを介してゲート配線106f、106hに接続され、それぞれNMOSトランジスタQn21のゲート電極、Qn22のゲート電極に供給されるとともに、ゲート配線106e、ゲート配線106gを介してそれぞれPMOSトランジスタQp21、Qp22のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111e、111fを介してゲート配線106j、106lに接続され、それぞれNMOSトランジスタQn31のゲート電極、Qn32のゲート電極に供給されるとともに、ゲート配線106i、ゲート配線106kを介してそれぞれPMOSトランジスタQp31、Qp32のゲート電極に供給される。
これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL32と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路で入力トランジスタが各々2個並列となった構成の12個のSGTを2行6列に配置でき、面積が縮小された半導体装置が提供できる。
なお、本実施例では、並列接続するトランジスタは、それぞれ2個としたが、2個以上でも同様であり、例えば3個並列の場合は、さらに横に配置して、2行9列の配置にすれば良い。
(実施例5)
図9に本発明に適用する3入力NOR回路で、各入力のトランジスタが2個並列に接続されており、駆動電流が2倍になるように設定されている回路の等価回路図を示す。図7と異なるところは、2個並列に設けられたそれぞれのトランジスタの入力信号に対して、組み合わせを変更している点である。
図7の回路図に従って配置された実施例4(図8a)では、入力IN1はNMOSトランジスタQn11、Qn12に接続されており、電流の流れとしては、電源線113c(Vss)、コンタクト110n11、110n12、NMOSトランジスタQn11、Qn12、シリサイド103、コンタクト112a、第1メタル配線113bを経由して出力OUT32に流れる。このケースでは、寄生の配線抵抗となるのは、第1メタル113c、コンタクト110n11、110n12、シリサイド103、コンタクト112a、第1メタル113bであるが、第1メタル配線の抵抗は非常に小さく、コンタクトの抵抗も比較的小さいので、問題にならない。寄生抵抗として考慮が必要なのはシリサイドであるが、この配置では、シリサイド領域は非常に小さく、寄生抵抗としては問題ない。
一方、入力IN3の場合は、電流経路は、NMOSトランジスタQn31、Qn32のドレインから第1メタル配線113bへつなぐコンタクト112aまでのシリサイド領域が長く、シリサイドの材質によっては、寄生抵抗が無視できない場合がある。
本実施例では、この点を鑑みて改善を図っている。
図9において、入力信号IN1は、NMOSトランジスタQn11とPMOSトランジスタQp11の対に接続する(後述する図10の1列目)と同時に、NMOSトランジスタQn32、PMOSトランジスタQp32の対(図10の6列目)に接続する。入力信号IN2は、NMOSトランジスタQn21、PMOSトランジスタQp21の対と、NMOSトランジスタQn22、PMOSトランジスタQp22の対に接続される。(図10の3列目と4列目。)入力信号IN3は、NMOSトランジスタQn12、PMOSトランジスタQp12の対と、NMOSトランジスタQn31、PMOSトランジスタQp31の対に接続される。(図10の2列目と5列目。)
図10に、第5の実施例を示す。図10は、本発明の、入力トランジスタが各々2個並列に接続された3入力NORレイアウト(配置)の平面図である。各トランジスタの配置は図8aと同じであり、同じ箇所の符号は一部省略してある。図8aと異なるところは、図の右からみて、第1列目から6列目に配置されているNMOSトランジスタQnk、Qpkの対(k=1~6)の入力信号の接続が異なる点である。
図10において、入力信号IN1、IN2、IN3はそれぞれ第1メタル113d、113e、113fに供給される。
第1列目のNMOSトランジスタQn11,PMOSトランジスタQp11の対には、入力IN1が第1メタル配線113d、コンタクト111a、ゲート配線106b、106aを介して、各ゲート電極に接続される。
第2列目のNMOSトランジスタQn12,PMOSトランジスタQp12の対には、入力IN3が第1メタル配線113f、コンタクト111b、ゲート配線106d、106cを介して、各ゲート電極に接続される。
第3列目のNMOSトランジスタQn21,PMOSトランジスタQp21の対には、入力IN2が第1メタル配線113e、コンタクト111c、ゲート配線106f、106eを介して、各ゲート電極に接続される。
第4列目のNMOSトランジスタQn22,PMOSトランジスタQp22の対には、入力IN2が第1メタル配線113e、コンタクト111d、ゲート配線106h、106gを介して、各ゲート電極に接続される。
第5列目のNMOSトランジスタQn31,PMOSトランジスタQp31の対には、入力IN3が第1メタル配線113f、コンタクト111e、ゲート配線106j、106iを介して、各ゲート電極に接続される。
第6列目のNMOSトランジスタQn32,PMOSトランジスタQp32の対には、入力IN1が第1メタル配線113d、コンタクト111f、ゲート配線106l、106kを介して、各ゲート電極に接続される。
入力信号IN1は、第1列目の対(シリサイド領域の距離が最短で寄生抵抗が小さい)と、第6列目の対(シリサイド領域の距離が最遠端で寄生抵抗が大きい)に接続され、入力信号IN2は、第3列目の対と第4列目の対(シリサイド領域の距離が中間で寄生抵抗が中間)に接続され、入力信号IN3は、第2列目の対(シリサイド領域の距離が短くて寄生抵抗が小さい)と第5列目の対(シリサイド領域の距離が遠端で寄生抵抗が大きい)に接続される。このような接続にすることにより、各入力が接続される対のシリサイドの寄生抵抗の平均が同等の値になり、列の位置による特性の差がなくなる。
これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL32aと定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路で入力トランジスタが各々2個並列となった構成の12個のSGTを2行6列に配置でき、良好な特性が得られて、且つ、面積が縮小された半導体装置が提供できる。
(実施例6)
図11a、図11b、図11c、図11d、図11eに、第6の実施例を示す。等価回路図は図7に従う。図11aは、本発明の3入力NORレイアウト(配置)の平面図、図11bは、カットラインA-A’に沿った断面図、図11cはカットラインB-B’に沿った断面図、図11dはカットラインC-C’に沿った断面図、図11eはカットラインD-D’に沿った断面図を示す。
図8a(実施例5)と異なるところは、図8aは、2行6列に配置されているが、本実施例では、4行3列に配置しているところである。
図11aにおいて、図7のNOR回路のNMOSトランジスタQn12、Qn22、Qn32が1行目(図の最下位の行)、Qn11、Qn21、Qn31が2行目、PMOSトランジスタQp11、Qp21、Qp31が3行目、Qp12、Qp22、Qp32が4行目に、それぞれ図の右側より順番に配置されている。
なお、図11a、図11b、図11cにおいて、図8a、図8b、図8cと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n11、104n12、104n21、104n22、104n31、104n32はn型シリコン柱、104p11、104p12、104p21、104p22、104p31、104p32はp型シリコン柱、105はシリコン柱104n11、104n12、104n21、104n22、104n31、104n32、104p11、104p12、104p21、104p22、104p31、104p32を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106f、106g、106h、106i、106j、106k及び106lは、それぞれゲート配線である。シリコン柱104n11、104n12、104n21、104n22、104n31、104n32の最上部には、それぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32が不純物注入等により形成され、シリコン柱104p11、104p12、104p21、104p22、104p31、104p32の最上部には、それぞれn+拡散層107n11、107n12、107n21、107n22、107n31、107n32が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32はそれぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32、n+拡散層107n11、107n12、107n21、107n22、107n31、107n32に接続されるシリサイド層、110p11、110p12、110p21、110p22、110p31、110p32、110n11、110n12、110n21、110n22、110n31、110n32は、シリサイド層109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32と第1メタル配線113g、113g、113g、113g、113a、113a、113c、113c、113c、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106dと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106hと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106lと第1メタル配線113fとを接続するコンタクトである。
112a(図では7個設けている)は、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
シリコン柱104n11、下部拡散層102pa、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp11を構成し、シリコン柱104n12、下部拡散層102pa、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp12を構成し、シリコン柱104n21、下部拡散層102pb、上部拡散層107p21、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp21を構成し、シリコン柱104n22、下部拡散層102pb、上部拡散層107p22、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp22を構成し、シリコン柱104n31、下部拡散層102pb、上部拡散層107p31、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp31を構成し、シリコン柱104n32、下部拡散層102pb、上部拡散層107p32、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp32を構成し、
シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn11を構成し、シリコン柱104p12、下部拡散層102n、上部拡散層107n12、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn12を構成し、シリコン柱104p21、下部拡散層102n、上部拡散層107n21、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn21を構成し、シリコン柱104p22、下部拡散層102n、上部拡散層107n22、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn22を構成し、シリコン柱104p31、下部拡散層102n、上部拡散層107n31、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn31を構成し、シリコン柱104p32、下部拡散層102n、上部拡散層107n32、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn32を構成する。
また、PMOSトランジスタQp11のゲート電極106にはゲート配線106a及び106bが接続され、PMOSトランジスタQp12のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp21のゲート電極106にはゲート配線106e及び106fが接続され、PMOSトランジスタQp22のゲート電極106にはゲート配線106eが接続され、PMOSトランジスタQp31のゲート電極106にはゲート配線106i及び106jが接続され、PMOSトランジスタQp32のゲート電極106にはゲート配線106iが接続され、NMOSトランジスタQn11のゲート電極106にはゲート配線106b及び106cが接続され、NMOSトランジスタQn12のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn21のゲート電極にはゲート配線106f及び106gが接続され、NMOSトランジスタQn22のゲート電極にはゲート配線106g及び106hが接続され、NMOSトランジスタQn31のゲート電極にはゲート配線106j及び106kが接続され、NMOSトランジスタQn32のゲート電極にはゲート配線106k及び106lが接続される。
下部拡散層102n及び102paはNMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32及びPMOSトランジスタQp11、Qp12の共通ドレインとなり、出力OUT32に接続される。
NMOSトランジスタQn11のソースである上部拡散層107n11はシリサイド109n11、コンタクト110n11を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn12のソースである上部拡散層107n12はシリサイド109n12、コンタクト110n12を介して第1メタル配線113cに接続される。NMOSトランジスタQn21のソースである上部拡散層107n21はシリサイド109n21、コンタクト110n21を介して第1メタル配線113cに接続される。NMOSトランジスタQn22のソースである上部拡散層107n22はシリサイド109n22、コンタクト110n22を介して第1メタル配線113cに接続される。NMOSトランジスタQn31のソースである上部拡散層107n31はシリサイド109n31、コンタクト110n31を介して第1メタル配線113cに接続される。NMOSトランジスタQn32のソースである上部拡散層107n32はシリサイド109n32、コンタクト110n32を介して第1メタル配線113cに接続される。PMOSトランジスタQp11のソースである上部拡散層107p11はシリサイド109p11、コンタクト110p11を介して第1メタル配線113gに接続される。PMOSトランジスタQp12のドレインである上部拡散層107p12はシリサイド109p12、コンタクト110p12を介して第1メタル配線113gに接続される。PMOSトランジスタQp21のドレインである上部拡散層107p21はシリサイド109p21、コンタクト110p21を介して第1メタル配線113gに接続される。PMOSトランジスタQp22のドレインである上部拡散層107p22はシリサイド109p22、コンタクト110p22を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp11、Qp12のソースとPMOSトランジスタQp21、Qp22のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp21、Qp22のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp31、Qp32のドレインと接続され、PMOSトランジスタQp31、Qp32のソースは、それぞれコンタクト110p31、110p32を介して第1メタル配線113aに接続される。また、第1メタル113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、入力信号IN1はコンタクト111aを介してゲート配線106dに接続され、NMOSトランジスタQn12のゲート電極に供給されると同時に、ゲート配線106c、106b、106aを介して、NMOSトランジスタQn11、PMOSトランジスタQp11、Qp12のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、入力信号IN2はコンタクト111bを介してゲート配線106hに接続され、NMOSトランジスタQn22のゲート電極に供給されると同時に、ゲート配線106g、106f、106eを介して、NMOSトランジスタQn21、PMOSトランジスタQp21、Qp22のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、入力信号IN3はコンタクト111cを介してゲート配線106lに接続され、NMOSトランジスタQn32のゲート電極に供給されると同時に、ゲート配線106k、106j、106iを介して、NMOSトランジスタQn31、PMOSトランジスタQp31、Qp32のゲート電極に供給される。
本実施例のメリットは、4行3列に配置することにより、図8aで課題となっていたシリサイド層の寄生抵抗を少なくできることである。電流経路としてシリサイドの寄生抵抗がもっとも大きくなるのは、基準電源Vssが第1メタル配線に供給され、NMOSトランジスタQn31,Qn32を経由してシリサイド103を通ってコンタクト112aを介して第1メタル配線113bに流れる箇所である。図8aと比較して、シリサイド領域の距離(長さ)は半減しており、また、幅はおおよそ2倍となっており、抵抗値としては1/4となり、効果は大きい。
これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL321と定義する。
また、電源線113aと基準電源線113cとの間隔を、Ly2(電源線、基準電源線を含めた間隔)とする。図2の実施例のLyとは異なるが、本実施例のような4行配置の実施は多くあるので、4行n列の規格として、Ly2とすれば良い。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路で入力トランジスタが各々2個並列となった構成の12個のSGTを4行3列に配置することにより、良好な特性が得られて、且つ、面積が縮小された半導体装置が提供できる。
なお、本実施例では2個並列としたが、さらに大きな電流が必要な場合は、2個以上の複数個を並列にすることも可能である。例えば、3個並列の場合は、6行3列とすることも容易である。
さらに並列の個数を増やしたい場合には、本実施例と、実施例4(図8a)を組み合わせることが可能である。例えば、4個並列の3入力NANDを構成する場合には、4行6列に配置すれば、良好な特性で、且つ、面積が縮小された半導体装置が供給される。
(実施例7)
図12に本発明に適用する3入力NOR回路の等価回路図を示す。図9と異なるところは、同じ3入力NOR回路であるが、図12は、各入力に対して、PMOSトランジスタのみ2個並列に接続されており、PMOS側の駆動電流が2倍になるように設定されているところである。
NOR回路ではPMOSトランジスタが直列接続となり電流が減少するが、一般的には特に大きな問題とはならない。しかしながらNOR段数が大きい場合にNMOSトランジスタを流れる電流と、直列接続されたPMOSトランジスタを流れる電流の大きさがアンバランスになる場合があり、充電電流(PMOSトランジスタを流れる電流)と放電電流(NMOSを流れる電流)をできるだけ等しくしたい場合や、高速に充電したい場合に、PMOSトランジスタのみ複数個並列にする場合がある。
本実施例では、PMOSトランジスタのみ2個並列にした場合を示す。
Qn11、Qn21、Qn31は、SGTで構成されたNMOSトランジスタ、Qp11、Qp12、Qp21、Qp22、Qp31、Qp32は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタQn11、Qn21、Qn31のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力OUT32bとなる。PMOSトランジスタQp11、Qp12のドレインは各々ノードN1に接続され、ソースはノードN2を介して各々PMOSトランジスタQp21、Qp22のドレインに接続され、PMOSトランジスタQp21、Qp22のソースはノードN3を介して各々PMOSトランジスタQp31、Qp32のドレインに接続され、PMOSトランジスタQp31、Qp32のソースは各々電源Vccに接続される。また、NMOSトランジスタQn11、PMOSトランジスタQp11、Qp12のゲートには共通に入力信号IN1が接続され、NMOSトランジスタQn21、PMOSトランジスタQp21、Qp22のゲートには共通に入力信号IN2が接続され、NMOSトランジスタQn31、PMOSトランジスタQp31、Qp32のゲートには共通に入力信号IN3が接続される。
図13a、図13b、図13c、図13d、図13eに、第7の実施例を示す。図13aは、本発明の3入力NORレイアウト(配置)の平面図、図13bは、カットラインA-A’に沿った断面図、図13cはカットラインB-B’に沿った断面図、図13dはカットラインC-C’に沿った断面図、図13eはカットラインD-D’に沿った断面図を示す。
図11a(実施例6)と異なるところは、図11aは、4行3列に配置されているが、本実施例では、3行3列に配置しているところである。
図13aにおいて、図12のNOR回路のNMOSトランジスタQn11、Qn21、Qn31が1行目(図の最下位の行)、PMOSトランジスタQp11、Qp21、Qp31が2行目、Qp12、Qp22、Qp32が3行目に、それぞれ図の右側より順番に配置されている。
なお、図13a、図13b、図13c、図13d、図13eにおいて、図11a、図11b、図11c、図11d、図11eと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104p11、104p21、104p31はp型シリコン柱、104n11、104n12、104n21、104n22、104n31、104n32はn型シリコン柱、105はシリコン柱104p11、104p21、104p31、104n11、104n12、104n21、104n22、104n31、104n32を取り巻くゲート絶縁膜、106はゲート電極、106b、106c、106d、106f、106g、106h、106j、106k及び106lは、それぞれゲート配線である。シリコン柱104p11、104p21、104p31の最上部には、それぞれn+拡散層107n11、107n21、107n31が不純物注入等により形成され、シリコン柱104n11、104n12、104n21、104n22、104n31、104n32の最上部には、それぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109n11、109n21、109n31、109p11、109p12、109p21、109p22、109p31、109p32はそれぞれn+拡散層107n11、107n21、107n31、p+拡散層107p11、107p12、107p21、107p22、107p31、107p32に接続されるシリサイド層、110n11、110n21、110n31、110p11、110p12、110p21、110p22、110p31、110p32は、シリサイド層109n11、109n21、109n31、109p11、109p12、109p21、109p22、109p31、109p32と第1メタル配線113c、113c、113c、113g、113g、113g、113g、113a、113aとをそれぞれ接続するコンタクト、111aはゲート配線106dと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106hと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106lと第1メタル配線113fとを接続するコンタクトである。
112a(図では5個配置)は、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn11を構成し、シリコン柱104p21、下部拡散層102n、上部拡散層107n21、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn21を構成し、シリコン柱104p31、下部拡散層102n、上部拡散層107n31、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQp31を構成し、シリコン柱104n11、下部拡散層102pa、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp11を構成し、シリコン柱104n12、下部拡散層102pa、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp12を構成し、シリコン柱104n21、下部拡散層102pb、上部拡散層107p21、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp21を構成し、シリコン柱104n22、下部拡散層102pb、上部拡散層107p22、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp22を構成し、シリコン柱104n31、下部拡散層102pb、上部拡散層107p31、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp31を構成し、シリコン柱104n32、下部拡散層102pb、上部拡散層107p32、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp32を構成する。
また、PMOSトランジスタQp12のゲート電極106にはゲート配線106bが接続され、PMOSトランジスタQp11のゲート電極106にはゲート配線106b及び106cが接続され、NMOSトランジスタQn11のゲート電極にはゲート配線106c及び106dが接続され、PMOSトランジスタQp22のゲート電極106にはゲート配線106fが接続され、PMOSトランジスタQp21のゲート電極106にはゲート配線106f及び106gが接続され、NMOSトランジスタQn21のゲート電極にはゲート配線106g及び106hが接続され、PMOSトランジスタQp32のゲート電極106にはゲート配線106jが接続され、PMOSトランジスタQp31のゲート電極106にはゲート配線106j及び106kが接続され、NMOSトランジスタQn31のゲート電極にはゲート配線106k及び106lが接続される。
下部拡散層102n及び102paはNMOSトランジスタQn11、Qn21、Qn31、PMOSトランジスタQp11、Qp12の共通ドレインとなり、出力OUT32bに接続される。
NMOSトランジスタQn11のソースである上部拡散層107n11はシリサイド109n11、コンタクト110n11を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn21のソースである上部拡散層107n21はシリサイド109n21、コンタクト110n21を介して第1メタル配線113cに接続される。NMOSトランジスタQn31のソースである上部拡散層107n31はシリサイド109n31、コンタクト110n31を介して第1メタル配線113cに接続される。PMOSトランジスタQp11のソースである上部拡散層107p11はシリサイド109p11、コンタクト110p11を介して第1メタル配線113gに接続される。PMOSトランジスタQp12のソースである上部拡散層107p12はシリサイド109p12、コンタクト110p12を介して第1メタル配線113gに接続される。PMOSトランジスタQp21のドレインである上部拡散層107p21はシリサイド109p21、コンタクト110p21を介して第1メタル配線113gに接続される。PMOSトランジスタQp22のドレインである上部拡散層107p22はシリサイド109p22、コンタクト110p22を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp11、Qp12のソースとPMOSトランジスタQp21、Qp22のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp21、Qp22のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp31、Qp32のドレインと接続され、PMOSトランジスタQp31、Qp32のソースは、それぞれコンタクト110p31、110p32を介して第1メタル配線113aに接続される。また、第1メタル113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、入力信号IN1はコンタクト111aを介してゲート配線106dに接続され、NMOSトランジスタQn11のゲート電極に供給されると同時に、ゲート配線106c、106bを介して、PMOSトランジスタQp11、PMOSトランジスタQp12のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、入力信号IN2はコンタクト111bを介してゲート配線106hに接続され、NMOSトランジスタQn21のゲート電極に供給されると同時に、ゲート配線106g、106fを介して、PMOSトランジスタQp21、PMOSトランジスタQp22のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、入力信号IN3はコンタクト111cを介してゲート配線106lに接続され、NMOSトランジスタQn31のゲート電極に供給されると同時に、ゲート配線106k、106jを介して、PMOSトランジスタQn31、PMOSトランジスタQp32のゲート電極に供給される。
本実施例のメリットは、3行3列に配置することにより、実施例6(図11a)と同様に、図8aで課題となっていたシリサイド層の寄生抵抗を少なくできることである。さらに、NOR回路構成で直列となるPMOSトランジスタのみ複数個(本実施例では2個)の並列接続にすることにより、PMOS回路側の電流とNMOS回路側の電流のバランスをとることができ、最適な特性が得られる。また、面積の増加を最小にすることができる。
これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL32bと定義する。
また、電源線113aと基準電源線113cとの間隔を、Ly3(電源線、基準電源線を含めた間隔)とする。図2の実施例のLyとは異なるが、本実施例のような3行配置の実施は多くあるので、3行n列の規格として、Ly3とすれば良い。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路で入力PMOSトランジスタのみが各々2個並列となった構成の9個のSGTを3行3列に配置することにより、良好な特性が得られて、且つ、面積が縮小された半導体装置が提供できる。
なお、本実施例では2個並列としたが、さらに大きな電流が必要な場合は、2個以上の複数個を並列にすることも可能である。例えば、PMOSトランジスタが3個並列の場合は、4行3列となり、PMOSトランジスタが3個並列、NMOSトランジスタが2個並列の場合は、5行3列の構成となる。
(実施例8)
図14a、図14b、図14c、図14d、図14e、図14fに、第8の実施例を示す。等価回路は図1に従う。図14aは、本発明の3入力NORレイアウト(配置)の平面図、図14bは、カットラインA-A’に沿った断面図、図14cは、カットラインB-B’に沿った断面図、図14dは、カットラインC-C’に沿った断面図、図14eは、カットラインD-D’に沿った断面図、図14fは、カットラインE-E’に沿った断面図を示す。
図2a(実施例1)と異なるところは、本発明の実施例(図14a)では、入力信号及び出力信号の配線に、第2メタル配線を用いているところである。実施例では、第2メタル配線は第1メタル配線である電源線Vccと基準電源線Vssと垂直方向に延在させている。
なお、図14a、図14b、図14c、図14d、図14e、図14fにおいて、図2a、図2b、図2c、図2d、図2eと同じ構造の箇所については、100番台の同等の記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n1、104n2、104n3はn型シリコン柱、104p1、104p2、104p3はp型シリコン柱、105はシリコン柱104n1、104n2、104n3、104p1、104p2、104p3を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106cは、それぞれゲート配線である。シリコン柱104n1、104n2、104n3の最上部には、それぞれp+拡散層107p1、107p2、107p3が不純物注入等により形成され、シリコン柱104p1、104p2、104p3の最上部には、それぞれn+拡散層107n1、107n2、107n3が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p1、109p2、109p3、109n1、109n2、109n3はそれぞれp+拡散層107p1、107p2、107p3、n+拡散層107n1、107n2、107n3に接続されるシリサイド層、110p1、110p2、110p3、110n1、110n2、110n3は、シリサイド層109p1、109p2、109p3、109n1、109n2、109n3と第1メタル配線113g、113g、113a、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106aと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106bと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106cと第1メタル配線113fとを接続するコンタクトである。
また、112a(3個)は、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
114aは、第1メタル配線113dと第2メタル配線115bを接続するコンタクト、114bは、第1メタル配線113eと第2メタル配線115dを接続するコンタクト、114cは、第1メタル配線113fと第2メタル配線115fを接続するコンタクト、114dは、第1メタル配線113bと第2メタル配線115aを接続するコンタクトである。また、115c、115eは、図面上ではどこにも接続されない第2メタル配線である。
シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp1を構成し、シリコン柱104n2、下部拡散層102pb、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp3を構成し、シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn3を構成する。
また、PMOSトランジスタQp1のゲート電極106とNMOSトランジスタQn1のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp2のゲート電極106とNMOSトランジスタQn2のゲート電極106にはゲート配線106bが接続され、PMOSトランジスタQp3のゲート電極106とNMOSトランジスタQn3のゲート電極106にはゲート配線106cが接続される。
下部拡散層102n及び102paはシリサイド103を介してNMOSトランジスタQn1、Qn2、Qn3及びPMOSトランジスタQp1の共通ドレインとなり、コンタクト112aを介して第1メタル配線113bに接続され、第1メタル配線113bは、コンタクト114dを介して第2メタル配線115aに接続され、出力OUT31となる。NMOSトランジスタQn1のソースである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn2のソースである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1メタル配線113cに接続される。また、NMOSトランジスタQn3のソースである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1メタル配線113cに接続される。PMOSトランジスタQp1のソースである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1メタル配線113gに接続される。PMOSトランジスタQp2のドレインである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp1のソースとPMOSトランジスタQp2のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp2のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp3のドレインと接続され、PMOSトランジスタQp3のソースは、コンタクト110p3を介して第1メタル配線113aに接続され、第1メタル配線113aには電源Vccが供給される。
第2メタル配線115bには、入力信号IN1が供給され、コンタクト114aを介して第1メタル配線113dに接続され、さらに、コンタクト111aを介してゲート配線106aに接続され、PMOSトランジスタQp1とNMOSトランジスタQn1のゲート電極に供給される。
第2メタル配線115dには、入力信号IN2が供給され、コンタクト114bを介して第1メタル配線113eに接続され、さらに、コンタクト111bを介してゲート配線106bに接続され、PMOSトランジスタQp2とNMOSトランジスタQn2のゲート電極に供給される。
第2メタル配線115fには、入力信号IN3が供給され、コンタクト114cを介して第1メタル配線113fに接続され、さらに、コンタクト111cを介してゲート配線106cに接続され、PMOSトランジスタQp3とNMOSトランジスタQn3のゲート電極に供給される。
また、第2メタル配線115cと115eは、それぞれ信号DUM1、DUM2が供給されるが、他のブロックで使用されるため本ブロックではどこにも接続されないダミーの配線としてこのブロックを通過する。
本実施例は、行方向に沿って延在している第1メタル配線による電源線113a(Vcc)、基準電源線113c(Vss)と直行する形で垂直方向に、第2メタル配線を用いて、出力信号線115a(OUT31),入力信号線115b(IN1)、115d(IN2)、115f(IN3)を配置しており、無駄な配線領域をなくし、非常に面積の縮小されたレイアウトが提供できる。さらに、空いた領域に、他のブロックで使用する信号線を通すことができ、本ブロックを複数個配置する場合に効率よく配線を通すことができる。
本実施例のブロックを、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL312と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路を構成する6個のSGTを2行3列に配置でき、面積が縮小された半導体装置が提供できる。
(実施例9)
図15a、図15b、図15c、図15dに、第9の実施例を示す。等価回路は図7に従う。図15aは、本発明の3入力NORレイアウト(配置)の平面図、図15bは、カットラインA-A’に沿った断面図、図15cは、カットラインB-B’に沿った断面図、図15dは、カットラインC-C’に沿った断面図を示す。
実施例4(図8a)と異なるところは、本発明の実施例(図15a)では、入力信号及び出力信号の配線に、実施例8(図14a)と同じく、第2メタル配線を用いているところである。本実施例では、第2メタル配線は第1メタル配線である電源線Vccと基準電源線Vssと垂直方向に延在させている。
縦方向の断面図(図14aのカットラインD-D’及びE-E’)は、図14e、図14fと同等であり、省略してある。なお、図15a、図15b、図15c、図15dにおいて、図8a、図8b、図8c、あるいは、図14a、図14b、図14c、図14dと同じ構造の箇所については、100番台の同等の符号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104n11、104n12、104n21、104n22、104n31、104n32はn型シリコン柱、104p11、104p12、104p21、104p22、104p31、104p32はp型シリコン柱、105はシリコン柱104n11、104n12、104n21、104n22、104n31、104n32、104p11、104p12、104p21、104p22、104p31、104p32を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106dは、それぞれゲート配線である。シリコン柱104n11、104n12、104n21、104n22、104n31、104n32の最上部には、それぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32が不純物注入等により形成され、シリコン柱104p11、104p12、104p21、104p22、104p31、104p32の最上部には、それぞれn+拡散層107n11、107n12、107n21、107n22、107n31、107n32が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32はそれぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32、n+拡散層107n11、107n12、107n21、107n22、107n31、107n32に接続されるシリサイド層、110p11、110p12、110p21、110p22、110p31、110p32、110n11、110n12、110n21、110n22、110n31、110n32は、シリサイド層109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32と第1メタル配線113g、113g、113g、113g、113a、113a、113c、113c、113c、113c、113c、113cとをそれぞれ接続するコンタクト、111aはゲート配線106aと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106bと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106cと第1メタル配線113fとを接続するコンタクト、111dはゲート配線106dと第1メタル配線113fを接続するコンタクトである。
112a(3個)は、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1メタル配線113bを接続するコンタクトである。
114aは、第1メタル配線113dと第2メタル配線115cを接続するコンタクト、114bは、第1メタル配線113eと第2メタル配線115fを接続するコンタクト、114cは、第1メタル配線113fと第2メタル配線115kを接続するコンタクト、114dは、第1メタル配線113bと第2メタル配線115aを接続するコンタクトである。また、115b、115d、115e、115g、115h、115i、115j、115lは、図面上ではどこにも接続されない第2メタル配線である。
シリコン柱104n11、下部拡散層102pa、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp11を構成し、シリコン柱104n12、下部拡散層102pa、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp12を構成し、シリコン柱104n21、下部拡散層102pb、上部拡散層107p21、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp21を構成し、シリコン柱104n22、下部拡散層102pb、上部拡散層107p22、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp22を構成し、シリコン柱104n31、下部拡散層102pb、上部拡散層107p31、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp31を構成し、シリコン柱104n32、下部拡散層102pb、上部拡散層107p32、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp32を構成し、シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn11を構成し、シリコン柱104p12、下部拡散層102n、上部拡散層107n12、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn12を構成し、シリコン柱104p21、下部拡散層102n、上部拡散層107n21、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn21を構成し、シリコン柱104p22、下部拡散層102n、上部拡散層107n22、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn22を構成し、シリコン柱104p31、下部拡散層102n、上部拡散層107n31、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn31を構成し、シリコン柱104p32、下部拡散層102n、上部拡散層107n32、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQp32を構成する。
また、PMOSトランジスタQp11とQp12のゲート電極106、NMOSトランジスタQn11とQn12のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp21とQp22のゲート電極106、NMOSトランジスタQn12とQn22のゲート電極106にはゲート配線106bが接続され、PMOSトランジスタQp31のゲート電極106とNMOSトランジスタQn31のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp32のゲート電極106とNMOSトランジスタQn32のゲート電極106にはゲート配線106dが接続される。
下部拡散層102n及び102paはシリサイド103を介してNMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32及びPMOSトランジスタQp11、Qp12の共通ドレインとなり、コンタクト112aを介して第1メタル配線113bに接続され、第1メタル配線113bは、コンタクト114dを介して第2メタル配線115aに接続され、出力OUT32となる。
NMOSトランジスタQn11のソースである上部拡散層107n11はシリサイド109n11、コンタクト110n11を介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn12のソースである上部拡散層107n12はシリサイド109n12、コンタクト110n12を介して第1メタル配線113cに接続される。NMOSトランジスタQn21のソースである上部拡散層107n21はシリサイド109n21、コンタクト110n21を介して第1メタル配線113cに接続される。NMOSトランジスタQn22のソースである上部拡散層107n22はシリサイド109n22、コンタクト110n22を介して第1メタル配線113cに接続される。NMOSトランジスタQn31のソースである上部拡散層107n31はシリサイド109n31、コンタクト110n31を介して第1メタル配線113cに接続される。NMOSトランジスタQn32のソースである上部拡散層107n32はシリサイド109n32、コンタクト110n32を介して第1メタル配線113cに接続される。PMOSトランジスタQp11のソースである上部拡散層107p11はシリサイド109p11、コンタクト110p11を介して第1メタル配線113gに接続される。PMOSトランジスタQp12のソースである上部拡散層107p12はシリサイド109p12、コンタクト110p12を介して第1メタル配線113gに接続される。PMOSトランジスタQp21のドレインである上部拡散層107p21はシリサイド109p21、コンタクト110p21を介して第1メタル配線113gに接続される。PMOSトランジスタQp22のドレインである上部拡散層107p22はシリサイド109p22、コンタクト110p22を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp11、Qp12のソースとPMOSトランジスタQp21、Qp22のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp21、Qp22のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタQp31、Qp32のドレインと接続され、PMOSトランジスタQp31、Qp32のソースは、それぞれコンタクト110p31、110p32を介して第1メタル配線113aに接続される。また、第1メタル113aには基源Vccが供給される。
第2メタル配線115cには、入力信号IN1が供給され、コンタクト114aを介して第1メタル配線113dに接続され、さらに、コンタクト111aを介してゲート配線106aに接続され、PMOSトランジスタQp11、Qp12,NMOSトランジスタQn11、Qn12のゲート電極に供給される。
第2メタル配線115fには、入力信号IN2が供給され、コンタクト114bを介して第1メタル配線113eに接続され、さらに、コンタクト111bを介してゲート配線106bに接続され、PMOSトランジスタQp21、Qp22、NMOSトランジスタQn21、Qn22のゲート電極に供給される。
第2メタル配線115kには、入力信号IN3が供給され、コンタクト114cを介して第1メタル配線113fに接続され、さらに、コンタクト111cを介してゲート配線106cに接続され、PMOSトランジスタQp31とNMOSトランジスタQn31のゲート電極に供給される。さらに、第1メタル配線113fは、コンタクト111dを介してゲート配線106dに接続され、PMOSトランジスタQp32とNMOSトランジスタQn32のゲート電極に供給される。
また、第2メタル配線115d、105e、105g、105h、105i、105j、105lは、それぞれ信号DUM1、DUM2、DUM3、DUM4、DUM5、DUM6、DUM7、DUM8が供給されるが、他のブロックで使用されるため本ブロックではどこにも接続されないダミーの配線としてこのブロックを通過する。
本実施例は、行方向に沿って延在している第1メタル配線による電源線113a(Vcc)、基準電源線113c(Vss)と直行する形で垂直方向に、第2メタル配線を用いて、出力信号線115a(OUT32),入力信号線115c(IN1)、115f(IN2)、115k(IN3)を配置しており、無駄な配線領域をなくし、非常に面積の縮小されたレイアウトが提供できる。さらに、空いた領域に、他のブロックで使用する信号線を通すことができ、本ブロックを複数個配置する場合に効率よく配線を通すことができる。
本実施例のブロックを、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL322と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、入力トランジスタが2個並列接続される3入力NOR回路を構成する12個のSGTを2行6列に配置でき、さらに第2メタル配線を用いることにより、面積が縮小された半導体装置が提供できる。
なお、本実施例では、並列接続するトランジスタは、それぞれ2個としたが、2個以上でも同様であり、例えば3個並列の場合は、さらに横に配置して、2行9列の配置にすれば良い。また、図示しないが、本実施例に示した第2メタル配線による方式は、実施例6(図11a)あるいは実施例7(図13a)にも適用できる。
(実施例10)
図16a、図16b、図16c、図16d、図16eに第10の実施例を示す。等価回路は図1に従う。図16aは、本発明の3入力NORレイアウト(配置)の平面図、図16bは、カットラインA-A’に沿った断面図、図16cは、カットラインB-B’に沿った断面図、図16dは、カットラインC-C’に沿った断面図、図16eは、カットラインD-D’に沿った断面図を示す。
本実施例において、図2a(実施例1)と異なるところはNMOSトランジスタQn1、Qn2、Qn3、PMOSトランジスタQp1、Qp2及びQp3のソースとドレインの向きを上下逆に配置して、NMOSトランジスタQn1、Qn2、Qn3、PMOSトランジスタQp1の各ドレインが、コンタクトを介して共通に接続されていることである。
なお、図16a、図16b、図16c、図16d、図16eにおいて、図2a、図2b、図2c、図2d、図2eと同じ構造の箇所については、100番台の同等の記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層である。104n1、104n2、104n3はn型シリコン柱、104p1、104p2、104p3はp型シリコン柱、105はシリコン柱104n1、104n2、104n3、104p1、104p2、104p3を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106fは、それぞれゲート配線である。シリコン柱104n1、104n2、104n3の最上部には、それぞれp+拡散層107p1、107p2、107p3が不純物注入等により形成され、シリコン柱104p1、104p2、104p3の最上部には、それぞれn+拡散層107n1、107n2、107n3が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p1、109p2、109p3、109n1、109n2、109n3はそれぞれp+拡散層107p1、107p2、107p3、n+拡散層107n1、107n2、107n3に接続されるシリサイド層、110p1、110p2、110p3、110n1、110n2、110n3は、シリサイド層109p1、109p2、109p3、109n1、109n2、109n3と第1メタル配線113b、113g、113g、113b、113b、113bとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113eとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113fとを接続するコンタクトである。
また、112aは、下部拡散層102pbを覆うシリサイド層103と第1メタル配線113aを接続するコンタクト、112b(図では4個)は、下部拡散層102nを覆うシリサイド層103と第1メタル配線113cとを接続するコンタクトである。
シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp1を構成し、シリコン柱104n2、下部拡散層102pa、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp3を構成し、シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn3を構成する。
また、PMOSトランジスタQp1のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp2のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp3のゲート電極106にはゲート配線106eが接続され、NMOSトランジスタQn1のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn2のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn3のゲート電極にはゲート配線106e及び106fが接続される。
NMOSトランジスタQn1、Qn2、Qn3のソースは、下部拡散層102nとなり、シリサイド103及びコンタクト112bを介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn1のドレインである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1メタル配線113bに接続され、第1メタル配線113bは出力OUT31となる。NMOSトランジスタQn2のドレインである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1メタル配線113bに接続される。また、NMOSトランジスタQn3のドレインである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1メタル配線113bに接続される。PMOSトランジスタQp1のドレインである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1メタル配線113bに接続される。ここで、上述したように、NMOSトランジスタQn1、Qn2、Qn3、及びPMOSトランジスタQp1のドレインがコンタクトを介して第1メタル配線113bに共通接続される。PMOSトランジスタQp1のソースとなる下部拡散層102paはシリサイド層103を介してPMOSトランジスタQp2のドレインと接続される。PMOSトランジスタQp2のソースである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1メタル配線113gに接続される。また、PMOSトランジスタQp3のドレインである上部拡散層107p3はシリサイド109p3、コンタクト110p3を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp2のソースとPMOSトランジスタQp3のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp3のソースは下部拡散層102pbとシリサイド領域103とコンタクト112aを介して第1メタル配線113aに接続され、第1メタル配線113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111aを介してゲート配線106bに接続され、NMOSトランジスタQn1のゲート電極に供給されるとともに、ゲート配線106aを介してPMOSトランジスタQp1のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111bを介してゲート配線106dに接続され、NMOSトランジスタQn2のゲート電極に供給されるとともに、ゲート配線106cを介してPMOSトランジスタQp2のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111cを介してゲート配線106fに接続され、NMOSトランジスタQn3のゲート電極に供給されるとともに、ゲート配線106eを介してPMOSトランジスタQp3のゲート電極に供給される。
本実施例におけるトランジスタの配置方法は、図16aにおいて、上から、電源線Vcc(113a)、2行目に配置されたPMOSトランジスタQp1、Qp2、Qp3、1行目に配置されたNMOSトランジスタQn1、Qn2、Qn3、基準電源線Vss(113c)の順番で配置されるものである。これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL313と定義する。
また、電源線113aと基準電源線113cとの間隔をLy(電源線、基準電源線を含めた間隔)として規格化する。このように規格化すれば、本実施例のブロックBL313と他のブロックが、横に配置しただけで、電源線、基準電源線が容易に接続できる利点がある。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路を構成する6個のSGTを2行3列に配置でき、面積が縮小された半導体装置が提供できる。
(実施例11)
図17a、図17b及び図17cに、第11の実施例を示す。等価回路図は図7に従う。図17aは、本発明の3入力NORレイアウト(配置)の平面図、図17bは、カットラインA-A’に沿った断面図、図17cはカットラインB-B’に沿った断面図を示す。なお、縦にカットした断面図は図16d、図16eと同等であり、省略してある。
図17aにおいて、図7のNOR回路のNMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32が1行目(図の下の行)、PMOSトランジスタQp11、Qp12、Qp21、Qp22、Qp31、Qp32が2行目(図の上の行)に、それぞれ図の右側より順番に配置されている。
図16aと異なるところは、並列接続されたPMOSトランジスタQp11、Qp12と、同じく並列接続されたNMOSトランジスタQn11、Qn12が各々隣に配置されていることである。他のトランジスタについても同様である。
なお、図17a、図17b、図17cにおいて、図16a、図16b、図16cと同じ構造の箇所については、100番台の同じ記号で示してある。
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層である。104n11、104n12、104n21、104n22、104n31、104n32はn型シリコン柱、104p11、104p12、104p21、104p22、104p31、104p32はp型シリコン柱、105はシリコン柱104n11、104n12、104n21、104n22、104n31、104n32、104p11、104p12、104p21、104p22、104p31、104p32を取り巻くゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106f、106g、106h、106i、106j、106k及び106lは、それぞれゲート配線である。シリコン柱104n11、104n12、104n21、104n22、104n31、104n32の最上部には、それぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32が不純物注入等により形成され、シリコン柱104p11、104p12、104p21、104p22、104p31、104p32の最上部には、それぞれn+拡散層107n11、107n12、107n21、107n22、107n31、107n32が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32はそれぞれp+拡散層107p11、107p12、107p21、107p22、107p31、107p32、n+拡散層107n11、107n12、107n21、107n22、107n31、107n32に接続されるシリサイド層、110p11、110p12、110p21、110p22、110p31、110p32、110n11、110n12、110n21、110n22、110n31、110n32は、シリサイド層109p11、109p12、109p21、109p22、109p31、109p32、109n11、109n12、109n21、109n22、109n31、109n32と第1メタル配線113b、113b、113g、113g、113g、113g、113b、113b、113b、113b、113b、113bとをそれぞれ接続するコンタクト、111aはゲート配線106bと第1メタル配線113dとを接続するコンタクト、111bはゲート配線106dと第1メタル配線113dとを接続するコンタクト、111cはゲート配線106fと第1メタル配線113eとを接続するコンタクト、111dはゲート配線106hと第1メタル配線113eを接続するコンタクト、111eはゲート配線106jと第1メタル配線113fを接続するコンタクト、111fはゲート配線106lと第1メタル配線113fとを接続するコンタクトである。
112a(図では3個)は、下部拡散層102pbを覆うシリサイド層103と第1メタル配線113aを接続するコンタクト、112b(図では7個)は、下部拡散層102nを覆うシリサイド層103と第1メタル配線113cを接続するコンタクトである。
シリコン柱104n11、下部拡散層102pa、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp11を構成し、シリコン柱104n12、下部拡散層102pa、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp12を構成し、シリコン柱104n21、下部拡散層102pa、上部拡散層107p21、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp21を構成し、シリコン柱104n22、下部拡散層102pa、上部拡散層107p22、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp22を構成し、シリコン柱104n31、下部拡散層102pb、上部拡散層107p31、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp31を構成し、シリコン柱104n32、下部拡散層102pb、上部拡散層107p32、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタQp32を構成し、シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn11を構成し、シリコン柱104p12、下部拡散層102n、上部拡散層107n12、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn12を構成し、シリコン柱104p21、下部拡散層102n、上部拡散層107n21、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn21を構成し、シリコン柱104p22、下部拡散層102n、上部拡散層107n22、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn22を構成し、シリコン柱104p31、下部拡散層102n、上部拡散層107n31、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQn31を構成し、シリコン柱104p32、下部拡散層102n、上部拡散層107n32、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタQp32を構成する。
また、PMOSトランジスタQp11のゲート電極106にはゲート配線106aが接続され、PMOSトランジスタQp12のゲート電極106にはゲート配線106cが接続され、PMOSトランジスタQp21のゲート電極106にはゲート配線106eが接続され、PMOSトランジスタQp22のゲート電極106にはゲート配線106gが接続され、PMOSトランジスタQp31のゲート電極106にはゲート配線106iが接続され、PMOSトランジスタQp32のゲート電極106にはゲート配線106kが接続され、NMOSトランジスタQn11のゲート電極106にはゲート配線106a及び106bが接続され、NMOSトランジスタQn12のゲート電極106にはゲート配線106c及び106dが接続され、NMOSトランジスタQn21のゲート電極にはゲート配線106e及び106fが接続され、NMOSトランジスタQn22のゲート電極にはゲート配線106g及び106hが接続され、NMOSトランジスタQn31のゲート電極にはゲート配線106i及び106jが接続され、NMOSトランジスタQn32のゲート電極にはゲート配線106k及び106lが接続される。
NMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32のソースは、下部拡散層102nとなり、シリサイド103及びコンタクトを介して第1メタル配線113cに接続され、第1メタル配線113cには基準電源Vssが供給される。NMOSトランジスタQn11のドレインである上部拡散層107n11はシリサイド109n11、コンタクト110n11を介して第1メタル配線113bに接続され、第1メタル配線113bは出力OUT32となる。NMOSトランジスタQn12のドレインである上部拡散層107n12はシリサイド109n12、コンタクト110n12を介して第1メタル配線113bに接続される。また、NMOSトランジスタQn21のドレインである上部拡散層107n21はシリサイド109n21、コンタクト110n21を介して第1メタル配線113bに接続される。NMOSトランジスタQn22のドレインである上部拡散層107n22はシリサイド109n22、コンタクト110n22を介して第1メタル配線113bに接続される。NMOSトランジスタQn31のドレインである上部拡散層107n31はシリサイド109n31、コンタクト110n31を介して第1メタル配線113bに接続される。また、NMOSトランジスタQn32のドレインである上部拡散層107n32はシリサイド109n32、コンタクト110n32を介して第1メタル配線113bに接続される。PMOSトランジスタQp11のドレインである上部拡散層107p11はシリサイド109p11、コンタクト110p11を介して第1メタル配線113bに接続される。PMOSトランジスタQp12のドレインである上部拡散層107p12はシリサイド109p12、コンタクト110p12を介して第1メタル配線113bに接続される。
ここで、上述したように、NMOSトランジスタQn11、Qn12、Qn21、Qn22、Qn31、Qn32、PMOSトランジスタQp11及びPMOSトランジスタQp12のドレインがコンタクトを介して第1メタル配線113bに共通接続され第1メタル配線113bは、出力OUT32となる。PMOSトランジスタQp11およびQp12のソースとなる下部拡散層102paはシリサイド層103を介してPMOSトランジスタQp21およびQp22のドレインと接続される。PMOSトランジスタQp21のソースである上部拡散層107p21はシリサイド109p21、コンタクト110p21を介して第1メタル配線113gに接続され、同じく、PMOSトランジスタQp22のソースである上部拡散層107p22はシリサイド109p22、コンタクト110p22を介して第1メタル配線113gに接続される。PMOSトランジスタQp31のドレインである上部拡散層107p31はシリサイド109p31、コンタクト110p31を介して第1メタル配線113gに接続され、同じくPMOSトランジスタQp32のドレインである上部拡散層107p32はシリサイド109p32、コンタクト110p32を介して第1メタル配線113gに接続される。ここで、PMOSトランジスタQp21、Qp22のソースとPMOSトランジスタQp31、Qp32のドレインは、第1メタル配線113gを介して接続される。また、PMOSトランジスタQp31、Qp32のソースは各々下部拡散層102pbとシリサイド領域103とコンタクト112bを介して第1メタル配線113aに接続され、第1メタル配線113aには電源Vccが供給される。
第1メタル配線113dには、入力信号IN1が供給され、コンタクト111aを介してゲート配線106bに接続され、NMOSトランジスタQn11のゲート電極に供給されるとともに、ゲート配線106aを介してPMOSトランジスタQp11のゲート電極に供給される。また、メタル配線113dは、コンタクト111bを介してゲート配線106dに接続され、NMOSトランジスタQn12のゲート電極に供給されるとともに、ゲート配線106cを介してPMOSトランジスタQp12のゲート電極に供給される。
第1メタル配線113eには、入力信号IN2が供給され、コンタクト111cを介してゲート配線106fに接続され、NMOSトランジスタQn21のゲート電極に供給されるとともに、ゲート配線106eを介してPMOSトランジスタQp21のゲート電極に供給される。また、メタル配線113eは、コンタクト111dを介してゲート配線106hに接続され、NMOSトランジスタQn22のゲート電極に供給されるとともに、ゲート配線106gを介してPMOSトランジスタQp22のゲート電極に供給される。
第1メタル配線113fには、入力信号IN3が供給され、コンタクト111eを介してゲート配線106jに接続され、NMOSトランジスタQn31のゲート電極に供給されるとともに、ゲート配線106iを介してPMOSトランジスタQp31のゲート電極に供給される。また、メタル配線113fは、コンタクト111fを介してゲート配線106lに接続され、NMOSトランジスタQn32のゲート電極に供給されるとともに、ゲート配線106kを介してPMOSトランジスタQp32のゲート電極に供給される。
これらの3入力NOR回路を、電源線Vcc(113a)、基準電源線Vss(113c)を含めて、ブロックBL323と定義する。
また、電源線113aと基準電源線113cとの間隔を、実施例1(図2a)と同じくLy(電源線、基準電源線を含めた間隔)とする。
本実施例によれば、無駄な配線やコンタクト領域を設けずに、3入力NOR回路で入力トランジスタが各々2個並列となった構成の12個のSGTを2行6列に配置でき、面積が縮小された半導体装置が提供できる。
なお、本実施例では、並列接続するトランジスタは、それぞれ2個としたが、2個以上でも同様であり、例えば3個並列の場合は、さらに横に配置して、2行9列の配置にすれば良い。
(実施例12)
以上の実施例では、基板上に形成された埋め込み酸化膜層(BOX)などの絶縁膜上に平面状シリコンを配置したプロセスの例を用いて配置を説明したが、バルクのCMOSプロセスを用いても同様である。一例として、図18に、図2の実施例を、バルクCMOSプロセスにて配置した第12の実施例を示す。
図18aは、本発明の3入力NORレイアウト(配置)の平面図、図18bは、カットラインA-A’に沿った断面図、図18cは、カットラインB-B’に沿った断面図、図18dは、カットラインC-C’に沿った断面図、図18eは、カットラインD-D’に沿った断面図を示す。
図18a、図18b、図18c、図18d、図18eにおいて、図2a、図2b、図2c、図2d、図2eと同じ構造の箇所については、同じ100番台の同等の記号で示してある。
特許文献3の特許第4756221号公報を参照して、図2のBOXプロセスと図18のバルクCMOSプロセスでは、図18aの平面図では違いがない。図18b、図18c、図18d、図18eの断面図において、異なる点がある。図18bにおいて、150は、p型シリコン基板である。160は、素子分離(アイソレーション)用の絶縁体である。また、170は、リーク防止の分離層となるn-領域である。このp型シリコン基板150、素子分離用の絶縁体160、リーク防止分離層170以外の、下層拡散層より上側の工程、構造はまったく同じであり、本発明の実施例1~11までをバルクCMOSプロセスで実現できる。
以上、実施例1から実施例12まで説明したが、実施例の図面以外にも、実施例8(図14a)の第2メタル配線による面積縮小方法を、実施例10(図16a)に適用することも可能である。また、実施例6(図11a)あるいは実施例7(図13a)のm行n列の配置方法を、実施例11(図17a)の第2メタル配線の例に適用しても良い。
なお、本実施例の説明では、便宜上、PMOSトランジスタのシリコン柱はn型シリコン、NMOSシリコン柱はp型シリコン層と定義したが、微細化されたプロセスでは、不純物注入による濃度の制御が困難となるため、PMOSトランジスタもNMOSトランジスタも、シリコン柱は不純物注入を行わない、いわゆる中性(イントリンジック:Intrinsic)な半導体を用い、チャネルの制御、すなわちPMOS、NMOSの閾値は、金属ゲート材固有のワークファンクション(Work Functin)の差を利用する場合もある。
また、本実施例では、下部拡散層あるいは上部拡散層をシリサイド層で覆うようにしたが、低抵抗にするためにシリサイドを採用したものであり、特にシリサイドでなくとも、他の低抵抗な材料あるいは金属でもかまわない。
本発明の本質は、出力端子に接続されるトランジスタのドレインを下部拡散層を介して共通に接続することにより面積を縮小する、あるいは、出力端子に接続されるトランジスタのドレインを上部拡散層及びコンタクトを介して共通に接続することにより面積を縮小することであり、この配置方法に従った場合において、ゲート配線の配線方法、配線位置、メタル配線の配線方法及び配線位置等は本実施例の図面に示したもの以外のものも、本発明の技術的範囲に属するものである。
Qp1、Qp2、Qp3、Qp4、Qp5、Qp11、Qp12、Qp21、Qp22、Qp31、Qp32:PチャネルMOSトランジスタ
Qn1、Qn2、Qn3、Qn4、Qn5、Qn11、Qn12、Qn21、Qn22、Qn31、Qn32:NチャネルMOSトランジスタ
101:埋め込み酸化膜層
102p、102na、102nb、102nc:平面状シリコン層
103:シリサイド層
104p1、104p2、104p3、104p4、104p5、104p11、104p12、104p21、104p22、104p31、104p32:p型シリコン柱
104n1、104n2、104n3、104n4、104n5、104n11、104n12、104n21、104n22、104n31、104n32:n型シリコン柱
105:ゲート絶縁膜
106:ゲート電極
106a、106b、106c、106d、106e、106f、106g、106h、106i、106j、106k、106l:ゲート配線
107p1、107p2、107p3、107p4、107p5、107p11、107p12、107p21、107p22、107p31、107p32:p+拡散層
107n1、107n2、107n3、107n4、107n5、107n11、107n12、107n21、107n22、107n31、107n32:n+拡散層
108:シリコン窒化膜
109p1、109p2、109p3、109p4、109p5、109p11、109p12、109p21、109p22、109p31、109p32、109n1、109n2、109n3、109n4、109n5、109n11、109n12、109n21、109n22、109n31、109n32:シリサイド層
110p1、110p2、110p3、110p4、110p5、110p11、110p12、110p21、110p22、110p31、110p32、110n1、110n2、110n3、110n4、110n5、110n11、110n12、110n21、110n22、110n31、110n32:コンタクト
111a、111b、111c、111d、111e、111f:コンタクト
112a、112b:コンタクト
113a、113b、113c、113d、113e、113f:第1メタル配線
114a、114b、114c、114d:コンタクト
115a、115b、115c、115d、115e、115f、115g、115h、115i、115j、115k、115l:第2メタル配線
150:p型シリコン基板
160:素子分離用絶縁体
170a、170b:リーク防止分離層

Claims (25)

  1.  ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上に2行n列(n≧2)に配列することによりNOR回路を構成する半導体装置であって、
    前記各トランジスタは、
    シリコン柱と、
    前記シリコン柱の側面を取り囲む絶縁体と、
    前記絶縁体を囲むゲートと、
    前記シリコン柱の上部又は下部に配置されるソース領域と、
    前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
    前記複数のトランジスタは、
    1行n列に並んだn個のNチャネルMOSトランジスタと
    1行n列に並んだn個のPチャネルMOSトランジスタと
    で構成され、
    前記n個のNチャネルMOSトランジスタ及び前記n個のPチャネルMOSトランジスタの各々は、
    第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは対を成し、各々のゲートは互いに接続されており、
    前記n個のNチャネルMOSトランジスタと第1列目のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記n個のNチャネルMOSトランジスタと前記第1列目のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
    第s列目(s=1~n-1)のPチャネルMOSトランジスタのソースと第s+1列目のPチャネルMOSトランジスタのドレインは互いに接続されていることを特徴とする半導体装置。
  2.  前記n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記n列目のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続されることを特徴とする、請求項1に記載の半導体装置。
  3.  前記第n個のPチャネルMOSトランジスタは、偶数列目のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されていることを特徴とする請求項1あるいは請求項2に記載の半導体装置。
  4.  前記各々のゲートが互いに接続されるn個のトランジスタ対において、各々の組のゲートに対応してn個の入力信号が接続されることを特徴とする請求項1~請求項3のいずれか一項に記載の半導体装置。
  5.  前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成されることを特徴とする請求項1~請求項4のいずれか一項に記載の半導体装置。
  6.  ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上に2行n列(n≧4)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
    前記各トランジスタは、
    シリコン柱と、
    前記シリコン柱の側面を取り囲む絶縁体と、
    前記絶縁体を囲むゲートと、
    前記シリコン柱の上部又は下部に配置されるソース領域と、
    前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
    前記複数のトランジスタは、
    1行n列に並んだn個のNチャネルMOSトランジスタと
    1行n列に並んだn個のPチャネルMOSトランジスタと
    で構成され、
    前記n個のNチャネルMOSトランジスタ及び前記n個のPチャネルMOSトランジスタの各々は、
    第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは対を成し、各々のゲートは互いに接続されており、
    前記n個のNチャネルMOSトランジスタと前記第1列から第h列までのh個のPチャネルMOSトランジスタのドレイン領域は、シリコン柱より基板側に配置されており、且つ、互いにシリサイド領域を介して接続されており、
    前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置。
  7.  前記n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g組にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続されることを特徴とする、請求項6に記載の半導体装置。
  8.  前記第g組にグルーピングされたh個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されていることを特徴とする請求項6あるいは請求項7に記載の半導体装置。
  9.  前記各々のゲートが互いに接続されるn組のトランジスタ対において、前記g個の入力信号が、各々前記n対のトランジスタ対の任意のh個の対のゲートに接続されることを特徴とする請求項6~請求項8のいずれか一項に記載の半導体装置。
  10.  前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成されることを特徴とする請求項6~請求項9のいずれか一項に記載の半導体装置。
  11.  ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧3、n≧2)に配列することによりNOR回路を構成する半導体装置であって、
    前記各トランジスタは、
    シリコン柱と、
    前記シリコン柱の側面を取り囲む絶縁体と、
    前記絶縁体を囲むゲートと、
    前記シリコン柱の上部又は下部に配置されるソース領域と、
    前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
    前記複数のトランジスタは、
    i行n列に並んだi×n個のNチャネルMOSトランジスタと
    j行n列に並んだj×n個のPチャネルMOSトランジスタと
    で構成され、
    i+j=mであり、
    前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
    第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
    前記i×n個のNチャネルMOSトランジスタと第1列目のj個のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記i×n個のNチャネルMOSトランジスタと前記第1列目のj個のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
    第s列目(s=1~n-1)のPチャネルMOSトランジスタのソースと第s+1列目のPチャネルMOSトランジスタのドレインは互いに接続されていることを特徴とする半導体装置。
  12.  前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記n列目のj個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続されることを特徴とする、請求項11に記載の半導体装置。
  13.  前記第j×n個のPチャネルMOSトランジスタは、偶数列目のj個のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されていることを特徴とする請求項11あるいは請求項12に記載の半導体装置。
  14.  前記各々のゲートが互いに接続されるn対のトランジスタ対において、各々の組のゲートに対応してn個の入力信号が接続されることを特徴とする請求項11~請求項13のいずれか一項に記載の半導体装置。
  15.  前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成されることを特徴とする請求項11~請求項14のいずれか一項に記載の半導体装置。
  16.  ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧2、n≧2)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
    前記各トランジスタは、
    シリコン柱と、
    前記シリコン柱の側面を取り囲む絶縁体と、
    前記絶縁体を囲むゲートと、
    前記シリコン柱の上部又は下部に配置されるソース領域と、
    前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
    前記複数のトランジスタは、
    i行n列に並んだi×n個のNチャネルMOSトランジスタと
    j行n列に並んだj×n個のPチャネルMOSトランジスタと
    で構成され、
    i+j=mであり、
    前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
    第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
    前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、
    前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
    前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置。
  17.  前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g個にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続されることを特徴とする、請求項16に記載の半導体装置。
  18.  前記第g組にグルーピングされたj×h個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのソース領域がシリコン柱より基板側に配置されていることを特徴とする請求項16あるいは請求項17に記載の半導体装置。
  19.  前記各々のゲートが互いに接続されるn組のトランジスタ群(Nチャネルトランジスタi個、PチャネルMOSトランジスタj個)において、前記g個の入力信号が、各々前記n組のトランジスタ群の任意のh個のゲートに接続されることを特徴とする請求項16~請求項18のいずれか一項に記載の半導体装置。
  20.  前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成されることを特徴とする請求項16~請求項19のいずれか一項に記載の半導体装置。
  21.  ソース、ドレイン及びゲートが、基板と垂直な方向に階層的に配置される複数のトランジスタを、基板上にm行n列(m≧2、n≧2)に配列し、g個の入力信号(n=h×g、g及びhは整数)を有するNOR回路を構成する半導体装置であって、
    前記各トランジスタは、
    シリコン柱と、
    前記シリコン柱の側面を取り囲む絶縁体と、
    前記絶縁体を囲むゲートと、
    前記シリコン柱の上部又は下部に配置されるソース領域と、
    前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
    前記複数のトランジスタは、
    i行n列に並んだi×n個のNチャネルMOSトランジスタと
    j行n列に並んだj×n個のPチャネルMOSトランジスタと
    で構成され、
    i+j=mであり、
    前記i×n個のNチャネルMOSトランジスタ及び前記j×n個のPチャネルMOSトランジスタの各々は、
    第k列目(k=1~n)のNチャネルMOSトランジスタと第k列目(k=1~n)のPチャネルMOSトランジスタは組を成し、各々のゲートは互いに接続されており、
    前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、
    前記i×n個のNチャネルMOSトランジスタと前記第1列目から第h列目までのj×h個のPチャネルMOSトランジスタのドレイン領域が、互いにコンタクトを介して接続されており、
    前記n列をh個g組にグルーピングし、前記g番目の組のPチャネルMOSトランジスタのソースと前記g+1番目の組のPチャネルMOSトランジスタのドレインが互いに接続されていることを特徴とする半導体装置。
  22.  前記i×n個のNチャネルMOSトランジスタのソースは、各々、行に沿って延在した基準電源線に接続され、前記g個にグルーピングされた最後の組のh個のPチャネルMOSトランジスタのソースは、行に沿って延在した電源線に接続されることを特徴とする、請求項21に記載の半導体装置。
  23.  前記第g組にグルーピングされたj×h個のPチャネルMOSトランジスタは、前記偶数組のPチャネルMOSトランジスタのドレイン領域がシリコン柱より基板側に配置されていることを特徴とする請求項21あるいは請求項22に記載の半導体装置。
  24.  前記各々のゲートが互いに接続されるn組のトランジスタ群(Nチャネルトランジスタi個、PチャネルMOSトランジスタj個)において、前記g個の入力信号が、各々前記n組のトランジスタ群の任意のh個のゲートに接続されることを特徴とする請求項21~請求項23のいずれか一項に記載の半導体装置。
  25.  前記電源線及び基準電源線は第1のメタル配線により構成され、前記入力信号は、前記電源線及び基準電源線に対して直角方向に延在する第2のメタル配線により構成されることを特徴とする請求項21~請求項24のいずれか一項に記載の半導体装置。
PCT/JP2013/073629 2013-09-03 2013-09-03 半導体装置 WO2015033382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/073629 WO2015033382A1 (ja) 2013-09-03 2013-09-03 半導体装置
JP2014536043A JP5688191B1 (ja) 2013-09-03 2013-09-03 半導体装置
US14/932,185 US9646991B2 (en) 2013-09-03 2015-11-04 Semiconductor device with surrounding gate transistors in a NOR circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073629 WO2015033382A1 (ja) 2013-09-03 2013-09-03 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/932,185 Continuation US9646991B2 (en) 2013-09-03 2015-11-04 Semiconductor device with surrounding gate transistors in a NOR circuit

Publications (1)

Publication Number Publication Date
WO2015033382A1 true WO2015033382A1 (ja) 2015-03-12

Family

ID=52627892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073629 WO2015033382A1 (ja) 2013-09-03 2013-09-03 半導体装置

Country Status (3)

Country Link
US (1) US9646991B2 (ja)
JP (1) JP5688191B1 (ja)
WO (1) WO2015033382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947664B1 (en) 2016-10-14 2018-04-17 International Business Machines Corporation Semiconductor device and method of forming the semiconductor device
WO2021176693A1 (ja) * 2020-03-06 2021-09-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置とその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132912A1 (ja) * 2014-03-05 2015-09-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法、及び、半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251586A (ja) * 2009-04-17 2010-11-04 Unisantis Electronics Japan Ltd 半導体装置
WO2011043402A1 (ja) * 2009-10-06 2011-04-14 国立大学法人東北大学 半導体装置
JP2011108702A (ja) * 2009-11-13 2011-06-02 Unisantis Electronics Japan Ltd 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593428A1 (fr) 1986-01-29 1987-07-31 Stihl Andreas Chaine a scier
JPH02241346A (ja) 1989-03-13 1990-09-26 Hitachi Ltd 整流子付回転電機の電機子とその製造方法及び電機子コイル用導体
US5031809A (en) 1990-04-25 1991-07-16 Roberts Wendell J Fish stringer apparatus
US20070052012A1 (en) * 2005-08-24 2007-03-08 Micron Technology, Inc. Vertical tunneling nano-wire transistor
JP5130596B2 (ja) 2007-05-30 2013-01-30 国立大学法人東北大学 半導体装置
WO2009095998A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置
US8378425B2 (en) 2008-01-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
US8212298B2 (en) * 2008-01-29 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device and methods of producing it
JP2011066303A (ja) * 2009-09-18 2011-03-31 Elpida Memory Inc 半導体装置の製造方法
JP4756221B2 (ja) 2010-06-29 2011-08-24 日本ユニサンティスエレクトロニクス株式会社 半導体記憶装置
US8975705B2 (en) * 2012-05-21 2015-03-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251586A (ja) * 2009-04-17 2010-11-04 Unisantis Electronics Japan Ltd 半導体装置
WO2011043402A1 (ja) * 2009-10-06 2011-04-14 国立大学法人東北大学 半導体装置
JP2011108702A (ja) * 2009-11-13 2011-06-02 Unisantis Electronics Japan Ltd 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947664B1 (en) 2016-10-14 2018-04-17 International Business Machines Corporation Semiconductor device and method of forming the semiconductor device
US10607992B2 (en) 2016-10-14 2020-03-31 International Business Machines Corporation Semiconductor device and method of forming the semiconductor device
US10978454B2 (en) 2016-10-14 2021-04-13 Elpis Technologies Inc. Semiconductor device and method of forming the semiconductor device
WO2021176693A1 (ja) * 2020-03-06 2021-09-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置とその製造方法

Also Published As

Publication number Publication date
JP5688191B1 (ja) 2015-03-25
JPWO2015033382A1 (ja) 2017-03-02
US20160056174A1 (en) 2016-02-25
US9646991B2 (en) 2017-05-09

Similar Documents

Publication Publication Date Title
JP5688190B1 (ja) 半導体装置
JP5688189B1 (ja) 半導体装置
US9484424B2 (en) Semiconductor device with a NAND circuit having four transistors
US9601510B2 (en) Semiconductor device with six transistors forming a NAND circuit
JP5688191B1 (ja) 半導体装置
US9876504B2 (en) Semiconductor device
US9627496B2 (en) Semiconductor with a two-input NOR circuit
JP5677643B1 (ja) 半導体装置
US9627407B2 (en) Semiconductor device comprising a NOR decoder with an inverter
US9590631B2 (en) Semiconductor device
US9641179B2 (en) Semiconductor device
WO2015037086A1 (ja) 半導体装置
WO2015071998A1 (ja) 半導体装置
JP2010087341A (ja) 半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014536043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893069

Country of ref document: EP

Kind code of ref document: A1