WO2015029900A1 - 内燃機関の排気圧力低減機構及び排気圧力低減方法 - Google Patents

内燃機関の排気圧力低減機構及び排気圧力低減方法 Download PDF

Info

Publication number
WO2015029900A1
WO2015029900A1 PCT/JP2014/072003 JP2014072003W WO2015029900A1 WO 2015029900 A1 WO2015029900 A1 WO 2015029900A1 JP 2014072003 W JP2014072003 W JP 2014072003W WO 2015029900 A1 WO2015029900 A1 WO 2015029900A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
egr
passage
pump
pressure
Prior art date
Application number
PCT/JP2014/072003
Other languages
English (en)
French (fr)
Inventor
崇 原
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015029900A1 publication Critical patent/WO2015029900A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention prevents an increase in pumping loss by suppressing an increase in the pressure of exhaust gas in the exhaust passage, and further improves the fuel efficiency of the internal combustion engine.
  • the present invention relates to an internal combustion engine capable of performing the same and an exhaust pressure reduction method thereof.
  • an exhaust purification treatment device (NOx selective reduction type) is provided in the exhaust passage.
  • a catalyst, a DPF, etc.) are provided, and before exhaust gas is released to the atmosphere, this exhaust purification processing device purifies NOx, PM, etc. in the exhaust gas to less than the legal regulation value.
  • an EGR system that recirculates part of the exhaust gas from the exhaust passage to the intake passage through the EGR passage is used in diesel vehicles. Is generally provided. By mounting this EGR system on a vehicle, the oxygen concentration in the intake air to the internal combustion engine can be reduced, so that the combustion temperature of the internal combustion engine can be lowered and the temperature of the exhaust gas can be lowered.
  • a turbocharging system that achieves high output and low fuel consumption of an internal combustion engine by increasing the intake pressure and intake air amount to the internal combustion engine using the energy of exhaust gas discharged from the internal combustion engine is also a diesel vehicle. Is generally provided.
  • the EGR system is classified into two types, a high pressure EGR system and a low pressure EGR system, depending on the positional relationship between the turbine and compressor constituting the supercharging system and the EGR passage.
  • the low pressure EGR passage 14 is provided by connecting an intake passage 12 upstream of the compressor 15b and an exhaust passage 13 downstream of the turbine 15a.
  • the low pressure EGR passage 14 is provided with an EGR cooler 17 and an EGR valve 18 in order from the upstream side.
  • an object of the present invention is to suppress an increase in the pressure of exhaust gas at the outlet of an internal combustion engine for an internal combustion engine equipped with a turbocharging system and a low pressure EGR system.
  • an object of the present invention is to provide an internal combustion engine and an exhaust pressure reduction method for the internal combustion engine that can prevent an increase in pumping loss and further improve the fuel consumption of the internal combustion engine.
  • an internal combustion engine of the present invention comprises a turbocharging system, an exhaust passage downstream of a turbine of the turbocharging system, and an intake air upstream of a compressor of the turbocharging system.
  • an exhaust pump is provided in the exhaust passage downstream of the turbine and downstream of the branch point of the low pressure EGR passage, and the low pressure EGR passage is provided in the internal combustion engine.
  • An EGR pump is provided.
  • the pressure of the exhaust gas in the exhaust passage not only downstream of the turbine but also upstream of the turbine is reduced. Therefore, the increase in pressure can be suppressed, so that the exhaust pumping loss can be reduced and the fuel consumption of the engine can be improved. Further, since the differential pressure across the turbine can be increased, the driving force of the turbine and the compressor can be increased to assist supercharging, and the increase in the indicated mean effective pressure (IMEP) can be achieved by this high supercharging. Therefore, the fuel consumption of the internal combustion engine can be further improved.
  • IMEP mean effective pressure
  • the EGR gas flow rate can be adjusted by the EGR pump provided in the low pressure EGR passage, and the exhaust gas can be assisted by driving the EGR pump, not only downstream of the turbine but also upstream of the turbine. It is possible to suppress the pressure increase by lowering the pressure of the exhaust gas in the exhaust passage.
  • an exhaust heat recovery device is provided in the exhaust passage between the branch point of the low pressure EGR passage and the exhaust pump, or in the low pressure EGR passage, and the exhaust heat recovery device is provided with exhaust gas.
  • the thermal energy of the exhaust gas before flowing into the exhaust pump can be recovered, and the exhaust gas temperature can be lowered to reduce the volumetric flow rate of the exhaust gas.
  • the exhaust pump can be downsized. Further, since the exhaust gas pressure can be further reduced by cooling the exhaust gas, an increase in exhaust pumping loss can be further prevented.
  • the temperature of the EGR gas can be reduced by recovering the thermal energy of the EGR gas, so the load on the EGR cooler and the EGR pump can be reduced.
  • the EGR cooler and EGR pump can be downsized.
  • the EGR rate can be further increased, and NOx generation can be suppressed.
  • an exhaust pressure control means for controlling driving of the exhaust pump and the EGR pump based on a flow rate of EGR gas passing through the low pressure EGR passage and a pressure of exhaust gas in the exhaust passage.
  • the exhaust pressure reduction method for an internal combustion engine of the present invention for achieving the above object includes a turbocharging system, an exhaust passage downstream of a turbine of the turbocharging system, and the turbocharging system.
  • the exhaust passage is downstream of the turbine and downstream of the branch point of the low-pressure EGR passage. In this method, the exhaust pump provided is driven and the EGR pump provided in the low-pressure EGR passage is driven.
  • the exhaust heat recovery device provided in the exhaust passage between the turbine and the exhaust pump or the low pressure EGR passage may generate power using exhaust heat of the exhaust gas. At least one of the exhaust pump and the EGR pump is driven with the generated electric power.
  • the driving of the exhaust pump and the EGR pump is controlled based on the flow rate of the EGR gas passing through the low pressure EGR passage and the pressure of the exhaust gas in the exhaust passage.
  • the exhaust pump since the exhaust pump is provided in the exhaust passage, the exhaust gas is assisted by driving the exhaust pump, so that not only the downstream of the turbine but also the turbine Since the pressure of the exhaust gas in the upstream exhaust passage can be reduced to suppress the increase in the exhaust pressure, the exhaust pumping loss can be reduced and the fuel consumption of the engine can be improved. Further, since the differential pressure across the turbine can be increased, the driving force of the turbine and the compressor can be increased to assist supercharging, and the increase in the indicated mean effective pressure (IMEP) can be achieved by this high supercharging. Therefore, the fuel consumption of the internal combustion engine can be further improved.
  • IMEP mean effective pressure
  • the EGR pump is provided in the low pressure EGR passage, during EGR, the EGR gas flow rate can be adjusted by the EGR pump, and exhaust gas can be assisted by driving the EGR pump, and only downstream of the turbine. Instead, the pressure increase can be suppressed by reducing the pressure of the exhaust gas in the exhaust passage upstream of the turbine.
  • FIG. 1 is a diagram showing a configuration of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a control flow of the exhaust pressure reduction method for an internal combustion engine according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of an internal combustion engine according to the prior art.
  • an engine (internal combustion engine) 1 includes an engine body 10, an intake passage 12, an exhaust passage 13, and a low pressure ECR passage 14.
  • the intake passage 12 is connected to an intake manifold 11a, and is provided with a compressor 15b and an intercooler 16 of a turbocharger (turbo supercharger) 15 in order from the upstream side.
  • the exhaust passage 13 is connected to the exhaust manifold 11b, and a turbine 15a of the turbocharger 15 is provided.
  • the low pressure EGR passage 14 is provided by connecting an intake passage 12 upstream of the compressor 15b and an exhaust passage 13 downstream of the turbine 15a, and an EGR cooler 17 and an EGR valve 18 are provided in this order from the upstream side.
  • Fresh air A introduced from the atmosphere is sent to the intake manifold 11a via the compressor 15b and the intercooler 16 together with the exhaust gas Ge flowing into the intake passage 12 from the low pressure EGR passage 14 as necessary.
  • the engine 1 generates power by being mixed and compressed with the fuel injected into the cylinder (cylinder) and burning the fuel. Then, the exhaust gas G generated by the combustion in the engine 1 flows out to the exhaust passage 13 and partly flows as the EGR gas Ge to the low-pressure EGR passage 14 via the turbine 15a, and the remaining exhaust gas (G -Ge) is purified by an exhaust gas purification apparatus (not shown) and then released to the atmosphere via a muffler.
  • the turbocharger 15 when the turbine 15a is rotationally driven using the energy of the exhaust gas G, the compressor 15b directly connected to the turbine 15a is driven to compress the intake air A + Ge. Therefore, by using the turbocharger 15, the intake pressure can be increased and the intake amount can be increased, so that the power generated in the engine 1 can be increased.
  • the exhaust pressure of the exhaust gas G discharged from the engine 1 increases.
  • the expansion ratio of the turbine 15a and the pressure ratio of the compressor 15b are expressed by the following equations.
  • L work [kw], ⁇ : efficiency [ ⁇ ], cp: constant pressure specific heat [kJ / kgK], T1: inlet temperature [K], m: gas mass flow rate [kg / s], PR: pressure ratio [ ⁇ ], ER: expansion ratio [ ⁇ ], ⁇ : specific heat ratio [ ⁇ ], subscript c: compressor, subscript t: turbine.
  • an exhaust pump 20 is provided in the exhaust passage 13 downstream from the turbine 15 a and downstream from the branch point with the low-pressure EGR passage 14, and the EGR pump 21 is provided in the low-pressure EGR passage 14.
  • the exhaust pump 20 in the exhaust passage 13 and assisting the discharge of the exhaust gas G by driving the exhaust pump 20, not only the downstream of the turbine 15a but also the exhaust passage 13 upstream of the turbine 15a. Since the increase in the pressure of the exhaust gas G can be suppressed by reducing the pressure of the exhaust gas G, the exhaust pumping loss can be reduced and the fuel consumption of the engine 1 can be improved. Further, since the differential pressure across the turbine 15a can be increased, the driving force of the turbine 15a and the compressor 15b can be increased to assist supercharging, and the increase in the indicated mean effective pressure (IMEP) can be achieved by this high supercharging. Therefore, the fuel consumption of the engine 1 can be further improved.
  • IMEP indicated mean effective pressure
  • the flow rate of the EGR gas Ge can be adjusted by the EGR pump 21 provided in the low pressure EGR passage 14, and the exhaust gas G can be assisted by driving the EGR pump 21, and only downstream of the turbine 15a. Instead, the pressure increase can be suppressed by lowering the pressure of the exhaust gas G in the exhaust passage 13 upstream of the turbine 15a.
  • an exhaust heat recovery device 30 a that generates power using the heat of exhaust gas is provided in the exhaust passage 13 between the branch point of the low-pressure EGR passage 14 and the exhaust pump 20,
  • Another exhaust heat recovery device 30 b is provided in the low pressure EGR passage 14, and electric power recovered from the exhaust heat of the exhaust gas G by the exhaust heat recovery devices 30 a and 30 b is generated at least by the exhaust pump 20 or the EGR pump 21.
  • One drive source is configured. That is, at least one of the exhaust pump 20 or the EGR pump 21 is driven by the power generated by the exhaust heat recovery devices 30a and 30b using the exhaust heat of the exhaust gas G. Although either one of the exhaust heat recovery devices 30a and 30b is effective, it is more preferable to provide both.
  • thermoacoustic engine uses a thermoacoustic phenomenon in which the oscillating fluid in a narrow channel with a temperature gradient performs a thermodynamic process of compression, expansion, heating, and cooling. Energy conversion can be performed, and this sound wave can be converted into electric power by using a linear generator.
  • Rankine cycle is an ideal thermodynamic cycle consisting of four processes: constant pressure specific heat, isentropic expansion (adiabatic expansion), constant pressure exhaust heat, isentropic compression (adiabatic compression), and can be condensed like a steam engine. It is used as an ideal standard for heat engines using various working fluids.
  • the exhaust heat of the exhaust gas G can be recovered and used as a drive source of the exhaust pump 20, and it is not particularly limited to a system using a thermoacoustic engine or a Rankine cycle.
  • the exhaust heat recovery device 30a When the exhaust heat recovery device 30a is provided in the exhaust passage 13, the thermal energy of the exhaust gas G before flowing into the exhaust pump 20 is recovered, the temperature of the exhaust gas G is lowered, and the volume flow rate of the exhaust gas G is increased. Since it can reduce, the exhaust pump 20 can be reduced in size. Moreover, since the pressure of the exhaust gas G can be further reduced by cooling the exhaust gas G, an increase in exhaust pumping loss can be further prevented.
  • the temperature of the EGR gas Ge can be lowered by recovering the thermal energy of the EGR gas Ge, so that the EGR cooler 17 and the EGR pump 21 The EGR cooler 17 and the EGR pump 21 can be reduced in size. Moreover, by lowering the temperature of the EGR gas Ge, the EGR rate can be further increased and NOx generation can be suppressed.
  • exhaust pump 20 and the EGR pump 21 are driven in the engine 1 based on the flow rate of the EGR gas Ge passing through the low pressure EGR passage 14 and the pressure of the exhaust gas G in the exhaust passage 13.
  • Exhaust pressure control means 41 is provided for controlling the above.
  • the exhaust pressure control means 41 is usually configured to be incorporated in a control device 40 of the overall system that performs overall control of the engine 1 and overall control of a vehicle on which the engine 1 is mounted.
  • the increase in the exhaust gas pumping loss can be suppressed by suppressing the increase in the pressure of the exhaust gas G in the exhaust passage 13 while ensuring the exhaust gas purification performance with reduced NOx. Can be prevented.
  • FIG. 2 An exhaust pressure reduction method for an internal combustion engine using the engine 1 described above will be described with reference to an example of a control flow shown in FIG.
  • the control flow of FIG. 2 is started from the advanced control flow when the engine 1 is started.
  • the control flow returns to the advanced control flow. Called from the advanced control flow, it is shown as being repeatedly performed during operation of the engine 1. Then, as the engine 1 is stopped, the control flow is returned by an interrupt to return to the advanced control flow, and is shown as a control flow that ends when the advanced control flow ends.
  • step S12 the target value of the flow rate of the EGR gas Ge passing through the low pressure EGR passage 14 while referring to the preset target value calculation map data M1 based on the input engine speed Ne and the fuel flow rate q.
  • the target value of the pressure of the exhaust gas G passing through the exhaust passage 13 (hereinafter referred to as “target exhaust pressure Pegrm”) is calculated (hereinafter referred to as “target EGR gas flow rate Qegrm”).
  • target value calculation map data M1 is set in advance by experiments or the like. It is incorporated in the control device 40.
  • the target EGR gas flow rate Qegrm and the target exhaust pressure Pegrm are calculated using the target value calculation map data M1 created based on the experimental values, but the engine rotation is calculated based on a control model constructed by a theoretical formula.
  • the target NeGR gas flow rate Qegrm and the target exhaust pressure Pegrm may be calculated by inputting the number Ne and the fuel flow rate q.
  • step S13 the actual value of the flow rate of the EGR gas Ge passing through the low pressure EGR passage 14 (hereinafter referred to as “actual EGR gas flow rate Qegra”) and the actual value of the pressure of the exhaust gas G passing through the exhaust passage 13 (hereinafter referred to as “real EGR gas flow rate Qegra”).
  • actual EGR gas flow rate Qegra the actual value of the flow rate of the EGR gas Ge passing through the low pressure EGR passage 14
  • real EGR gas flow rate Qegra real EGR gas flow rate
  • Actual exhaust pressure Pegra is detected by a sensor or the like, and these detected values are input.
  • a preset control amount value is calculated based on the target EGR gas flow rate Qegrm and target exhaust pressure Pegrm calculated in step S12 and the actual EGR gas flow rate Qegra and actual exhaust pressure Pegra detected in step S13.
  • the exhaust pump 20 and the EGR pump 21 that are necessary to set the actual EGR gas flow rate Qegra and the actual exhaust pressure Pegra, which are actual values, to the target EGR gas flow rate Qegrm and the target exhaust pressure Pegrm that are target values.
  • the control amount is calculated.
  • control amount ⁇ of the exhaust pump 20 necessary for setting the actual EGR gas flow rate Qegra to the target EGR gas flow rate Qegrm and the control amount ⁇ of the EGR pump 21 required for setting the actual exhaust pressure Pegra to the target exhaust pressure Pegrm. Is calculated.
  • the control amount value calculation map data M2 is set in advance by experiments or the like and incorporated in the control device 40.
  • the control amounts ⁇ and ⁇ for the actual EGR gas flow rate Qegra and the actual exhaust pressure Pegra are calculated using the control amount value calculation map data M2 created based on the experimental values.
  • the control amounts ⁇ and ⁇ may be calculated based on the constructed control model.
  • step S15 the exhaust pump 20 is driven and controlled by the amount corresponding to the control amount ⁇ calculated in step S14 (corresponding to “EGR control” in FIG. 2), and the amount corresponding to the control amount ⁇ calculated in step S14.
  • the EGR pump 21 is driven and controlled (corresponding to “exhaust pressure control” in FIG. 2).
  • the driving of the exhaust pump 20 and the driving of the EGR pump 21 are controlled based on the actual EGR gas flow rate Qegra of the EGR gas Ge passing through the low pressure EGR passage 11 and the actual exhaust pressure Pegra of the exhaust gas in the exhaust passage 13. Then, the exhaust pump 30 provided in the exhaust passage 13 downstream of the turbine 15a and downstream of the branch point of the low-pressure EGR passage 17 is driven, and the exhaust passage 13 downstream of the confluence of the low-pressure EGR passage 14 is driven.
  • the valve opening degree of the provided EGR pump 21 can be controlled.
  • step S15 the EGR control and the exhaust pressure control in step S15 are performed independently and in parallel, and when the control converges, it is simpler to adopt this independent control. However, if the control does not converge in the independent control, the cooperative control of the EGR control and the exhaust pressure control is performed.
  • the exhaust passage 13 is provided with the exhaust pump 20, and the low pressure EGR passage 14 is provided with the EHR pump 21, and the exhaust pump 20 is driven to assist the exhaust gas G discharge.
  • the exhaust pump 20 is driven to assist the exhaust gas G discharge.
  • the differential pressure across the turbine 15a can be increased, the driving force of the turbine 15a and the compressor 15b can be increased to assist supercharging, and the increase in the indicated mean effective pressure can be achieved by this increase in supercharging. Therefore, the fuel consumption of the engine 1 can be further improved.
  • the EGR pump 21 is provided in the low-pressure EGR passage 14, during EGR, the flow rate of the EGR gas Ge can be adjusted by the EGR pump 21, and the exhaust gas G can be assisted by driving the EGR pump 21.
  • the downstream of the turbine 15a not only the downstream of the turbine 15a but also the pressure of the exhaust gas G in the exhaust passage 12 upstream of the turbine 15a can be reduced to suppress an increase in pressure.
  • Exhaust pressure adjusting means A Fresh air G Exhaust gas Ge EGR gas Ne Engine speed Pegrm Target exhaust pressure Pegra Actual exhaust pressure q Fuel flow rate Qegrm Target EGR gas flow rate Qegra Actual EGR gas flow rate ⁇ Exhaust pump control amount ⁇ EGR pump control amount

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 ターボ式過給システムと、該ターボ式過給システムのタービン15aの下流側の排気通路13と該ターボ式過給システムのコンプレッサ15bの上流側の吸気通路12とを接続する低圧EGR通路14を備えた内燃機関1において、前記タービン15aより下流で、かつ、前記低圧EGR通路14の分岐点よりも下流の前記排気通路13に、排気ポンプ20を設けると共に、前記低圧EGR通路14にEGRポンプ21を設けて構成する。これにより、過給システムと低圧EGRシステムを備えた内燃機関1について、内燃機関1の出口の排気ガスの圧力の上昇を抑制することで、ポンピングロスの増加を防止し、内燃機関1の燃費をより改善する。

Description

内燃機関の排気圧力低減機構及び排気圧力低減方法
 本発明は、低圧EGRシステムと過給システムを備えた内燃機関において、排気通路の排気ガスの圧力の上昇を抑制することで、ポンピングロスの増加を防止し、内燃機関の燃費をより改善することができる内燃機関及びその排気圧力低減方法に関する。
 一般に、ディーゼルエンジンを搭載するディーゼル車においては、内燃機関より排出される排気ガスにNOx、PM等が含有されるため、大気汚染防止の観点から、排気通路に排気浄化処理装置(NOx選択還元型触媒やDPF等)を設け、排気ガスを大気へ放出する前に、この排気浄化処理装置にて、排気ガス中のNOx、PM等を法規制値未満まで浄化処理している。
 特に、内燃機関におけるNOxの発生量は、シリンダ内の燃焼温度が低いほど減少するため、排気ガスの一部を排気通路からEGR通路を介して吸気通路に再循環させるEGRシステムが、ディーゼル車には一般に設けられている。このEGRシステムを車両に搭載することで、内燃機関への吸気内の酸素濃度を低減させることができるため、内燃機関の燃焼温度を低下させ、排気ガスの温度を低下させることができる。
 一方、内燃機関から排出される排気ガスのエネルギーを利用して、内燃機関への吸気圧及び吸気量を増加させることで、内燃機関の高出力及び低燃費を図った過給システムも、ディーゼル車には一般に設けられている。
 そして、EGRシステムは、過給システムを構成するタービン及びコンプレッサとEGR通路との位置関係により、高圧EGRシステムと低圧EGRシステムの2種類に分けられる。図3に示すように、この低圧EGRシステムと過給システムを備えたエンジン1Xでは、低圧EGR通路14は、コンプレッサ15bより上流の吸気通路12とタービン15aより下流の排気通路13を接続して設けられ、この低圧EGR通路14には上流側より順に、EGRクーラー17、EGRバルブ18が設けられている。
 この低圧EGRシステムでは、タービン15aより下流から排気ガスを低圧EGR通路14に導入するために、排気エネルギーがタービン15aによって消費されて、排気ガスの圧力は低くなっているため、排気ガスの一部であるEGRガスを低圧EGR通路に送ることが困難になる場合が生じるので、これに関連して、例えば、日本出願の特開2010-236381号公報に記載されているように、低圧EGR通路に設けたEGRポンプにより、EGRガスを吸気通路に圧送する内燃機関のEGR装置が提案されている。
 一方、内燃機関の高負荷運転時には、高い出力を出すために、多くの燃料を燃焼させるために多くの吸気量が必要とされ、排気ガスの排出量も多く、排気ガス温度が高温となるので、内燃機関の出口の排気ガスの圧力の上昇により、排気ポンピングロスが増加する。そのため、内燃機関の燃費改善が制限されてしまうという問題がある。
日本出願の特開2010-236381号公報
 本発明は、上記のことを鑑みてなされたものであり、その目的は、ターボ式過給システムと低圧EGRシステムを備えた内燃機関について、内燃機関の出口の排気ガスの圧力の上昇を抑制することで、ポンピングロスの増加を防止し、内燃機関の燃費をより改善することができる内燃機関及びその排気圧力低減方法を提供することにある。
 上記の目的を達成するための本発明の内燃機関は、ターボ式過給システムと、該ターボ式過給システムのタービンの下流側の排気通路と該ターボ式過給システムのコンプレッサの上流側の吸気通路とを接続する低圧EGR通路を備えた内燃機関において、前記タービンより下流で、かつ、前記低圧EGR通路の分岐点よりも下流の前記排気通路に、排気ポンプを設けると共に、前記低圧EGR通路にEGRポンプを設けて構成される。
 この構成によれば、排気通路に排気ポンプを設け、排気ポンプの駆動により排気ガスの排出を補助することで、タービンの下流のみならず、タービンの上流の排気通路の排気ガスの圧力を低下させて圧力の上昇を抑制することができるので、排気ポンピングロスを減少でき、エンジンの燃費を改善できる。またタービンの前後差圧を大きくできるので、タービン及びコンプレッサの駆動力を高めて、過給も補助することができ、この高過給化により、図示平均有効圧力(IMEP)の増加が可能となるので、内燃機関の燃費をより改善することができる。
 さらに、EGR時には、低圧EGR通路に設けたEGRポンプでEGRガスの流量を調整できるとともに、EGRポンプの駆動によっても排気ガスの排出を補助することができ、タービンの下流のみならず、タービンの上流の排気通路の排気ガスの圧力を低下させて圧力の上昇を抑制することができる。
 上記の内燃機関においては、前記低圧EGR通路の分岐点と前記排気ポンプの間の前記排気通路、または、前記低圧EGR通路に、排熱回収装置を設けると共に、該排熱回収装置が排気ガスの排熱を利用して発電した電力で、前記排気ポンプまたは前記EGRポンプの少なくとも一方を駆動するように構成すると、次のような効果を奏することができる。
 排熱回収装置を排気通路に設けた場合は、排気ポンプに流入する前の排気ガスの熱エネルギーを回収して、排気ガスの温度を低下させて排気ガスの容積流量を減少することができるので、排気ポンプの小型化を図ることができる。また、排気ガスの冷却により、排気ガスの圧力を更に低下することができるため、排気ポンピングロスの増加をより防止することができる。
 また、排熱回収装置を低圧EGR通路に設けた場合は、EGRガスの熱エネルギーを回収することで、EGRガスの温度を低下することができるため、EGRクーラー及びEGRポンプの負荷を軽減でき、EGRクーラー及びEGRポンプを小型化できる。また、EGRガスの温度を低下させることで、EGR率をさらに高めることができ、NOx発生を抑制できる。
 また、上記の内燃機関において、前記低圧EGR通路を通過するEGRガスの流量と、前記排気通路の排気ガスの圧力とに基づいて、前記排気ポンプ及び前記EGRポンプの駆動を制御する排気圧力制御手段を備えて構成すると、EGRガスの流量を確保することで、NOx低減の排ガス浄化性能を確保しつつ、排気通路の排気ガスの圧力の上昇を抑制して、排気ポンピングロスの増加を防止することができる。
 また、上記の目的を達成するための本発明の内燃機関の排気圧力低減方法は、ターボ式過給システムと、該ターボ式過給システムのタービンの下流側の排気通路と該ターボ式過給システムのコンプレッサの上流側の吸気通路とを接続する低圧EGR通路を備えた内燃機関の排気圧力低減方法において、前記タービンより下流で、かつ、前記低圧EGR通路の分岐点よりも下流の前記排気通路に設けた排気ポンプを駆動させると共に、前記低圧EGR通路に設けたEGRポンプを駆動させることを特徴とする方法である。
 また、上記の内燃機関の排気圧力低減方法において、前記タービンと前記排気ポンプの間の前記排気通路、または、前記低圧EGR通路に設けた排熱回収装置が排気ガスの排熱を利用して発電した電力で、前記排気ポンプまたは前記EGRポンプの少なくとも一方を駆動する。
 また、上記の内燃機関の排気圧力低減方法において、前記低圧EGR通路を通過するEGRガスの流量、及び、前記排気通路の排気ガスの圧力に基づいて、前記排気ポンプ及び前記EGRポンプの駆動を制御する。
 これらの方法によれば、上記の内燃機関と同様な効果を奏することができる。
 本発明の内燃機関及びその排気圧力低減方法によれば、排気通路に排気ポンプを設けているので、排気ポンプの駆動により排気ガスの排出を補助することで、タービンの下流のみならず、タービンの上流の排気通路の排気ガスの圧力を低下させて排気圧力の上昇を抑制することができるので、排気ポンピングロスを減少でき、エンジンの燃費を改善できる。またタービンの前後差圧を大きくできるので、タービン及びコンプレッサの駆動力を高めて、過給も補助することができ、この高過給化により、図示平均有効圧力(IMEP)の増加が可能となるので、内燃機関の燃費をより改善することができる。
 さらに、低圧EGR通路にEGRポンプを設けているので、EGR時には、EGRポンプでEGRガスの流量を調整できるとともに、EGRポンプの駆動によっても排気ガスの排出を補助することができ、タービンの下流のみならず、タービンの上流の排気通路の排気ガスの圧力を低下させて圧力の上昇を抑制することができる。
図1は、本発明に係る実施の形態の内燃機関の構成を示す図である。 図2は、本発明に係る実施の形態の内燃機関の排気圧力低減方法の制御のフローを示す図である。 図3は、従来技術に係る内燃機関の構成を示す図である。
 以下、本発明に係る実施の形態の内燃機関及びその排気圧力低減方法について、図面を参照しながら説明する。図1に示すように、本発明に係る実施の形態のエンジン(内燃機関)1は、エンジン本体10と吸気通路12と排気通路13と低圧ECR通路14を備えている。
 吸気通路12は、吸気マニホールド11aに接続し、上流側より順に、ターボチャージャ(ターボ式過給器)15のコンプレッサ15b、インタークーラー16が設けられている。また、排気通路13は、排気マニホールド11bに接続し、ターボチャージャ15のタービン15aが設けられている。そして、低圧EGR通路14は、コンプレッサ15bより上流の吸気通路12とタービン15aより下流の排気通路13を接続して設けられ、上流側より順に、EGRクーラー17、EGRバルブ18が設けられている。
 大気から導入される新気Aが、必要に応じて、低圧EGR通路14から吸気通路12に流入する排気ガスGeを伴って、コンプレッサ15b、インタークーラー16を経由して、吸気マニホールド11aに送られて、気筒(シリンダ)内に噴射された燃料と混合圧縮されて、燃料が燃焼することで、エンジン1に動力を発生させる。そして、エンジン1での燃焼により発生した排気ガスGが、排気通路13に流出し、タービン15aを経由して、その一部は低圧EGR通路14にEGRガスGeとして流れ、残りの排気ガス(G-Ge)は、排気ガス浄化処理装置(図示しない)により浄化された後、マフラーを経由して大気へ放出される。
 一方、ターボチャージャ15では、タービン15aが排気ガスGのエネルギーを利用して回転駆動することで、このタービン15aに直結しているコンプレッサ15bが駆動し、吸気A+Geを圧縮する。従って、ターボチャージャ15を用いることで、吸気圧力を高めると共に吸気量を多くすることができるので、エンジン1で発生する動力を大きくすることができる。しかし、その一方で、エンジン1から排出される排気ガスGの排気圧力は大きくなる。
 また、タービン15aの膨張比とコンプレッサ15bの圧力比は以下に示す式で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 SHAPE  \* MERGEFORMAT
 ここで、L:仕事[kw]、η:効率[-]、cp:定圧比熱[kJ/kgK]、T1:入口温度[K]、m:ガス質量流量[kg/s]、PR:圧力比[-]、ER:膨張比[-]、κ:比熱比[-]、添字のc:コンプレッサ、添字のt:タービンである。
 上記式は、コンプレッサ15bの圧力比PRの増加に伴って、タービン15aの膨張比ERは大きくなることを示している。
 本発明においては、このエンジン1において、タービン15aより下流で、かつ、低圧EGR通路14との分岐点より下流の排気通路13に、排気ポンプ20を設けると共に、低圧EGR通路14にEGRポンプ21を設ける。
 この構成によれば、排気通路13に排気ポンプ20を設け、排気ポンプ20の駆動により排気ガスGの排出を補助することで、タービン15aの下流のみならず、タービン15aの上流の排気通路13の排気ガスGの圧力を低下させて排気ガスGの圧力の上昇を抑制することができるので、排気ポンピングロスを減少でき、エンジン1の燃費を改善できる。またタービン15aの前後差圧を大きくできるので、タービン15a及びコンプレッサ15bの駆動力を高めて、過給も補助することができ、この高過給化により、図示平均有効圧力(IMEP)の増加が可能となるので、エンジン1の燃費をより改善することができる。
 さらに、EGR時には、低圧EGR通路14に設けたEGRポンプ21でEGRガスGeの流量を調整できるとともに、EGRポンプ21の駆動によっても排気ガスGの排出を補助することができ、タービン15aの下流のみならず、タービン15aの上流の排気通路13の排気ガスGの圧力を低下させて圧力の上昇を抑制することができる。
 また、図1に示すように、エンジン1において、排気ガスの熱を利用して発電する排熱回収装置30aを低圧EGR通路14の分岐点と排気ポンプ20の間の排気通路13に設けたり、別の排熱回収装置30bを低圧EGR通路14に設けたりすると共に、この排熱回収装置30a、30bで排気ガスGの排熱から回収して発電した電力を排気ポンプ20またはEGRポンプ21の少なくとも一方の駆動源とするように構成する。つまり、排熱回収装置30a、30bが排気ガスGの排熱を利用して発電した電力で、排気ポンプ20またはEGRポンプ21の少なくとも一方を駆動する。この排熱回収装置30a、30bはどちらか一方を設けても効果があるが、両方設けることがより好ましい。
 これらの排熱回収装置30a、30bは、例えば、熱音響機関やランキンサイクルを用いたシステム等により構成することができる。熱音響機関は、温度勾配のある細管流路内の振動流体が圧縮、膨張、加熱、冷却という熱力学的プロセスを実行する熱音響現象を利用するものであり、著しく簡単な構造で熱と音波との間のエネルギー変換を行うことができ、この音波をリニア発電機を用いることで電力に変換できる。
 また、ランキンサイクルは、定圧比熱、等エントロピー膨張(断熱膨張)、定圧排熱、等エントロピー圧縮(断熱圧縮)の4過程からなる理想的な熱力学的サイクルであり、蒸気機関のように凝縮可能な作用流体を用いる熱機関の理想的な標準として用いられるものである。
 ただし、本発明では、排気ガスGの排熱を回収し、排気ポンプ20の駆動源となり得るものであればよく、特に、熱音響機関やランキンサイクルを用いたシステムに限定する必要はない。
 排熱回収装置30aを排気通路13に設けた場合は、排気ポンプ20に流入する前の排気ガスGの熱エネルギーを回収して、排気ガスGの温度を低下させて排気ガスGの容積流量を減少することができるので、排気ポンプ20の小型化を図ることができる。また、排気ガスGの冷却により、排気ガスGの圧力を更に低下することができるため、排気ポンピングロスの増加をより防止することができる。
 また、排熱回収装置30bを低圧EGR通路14に設けた場合は、EGRガスGeの熱エネルギーを回収することで、EGRガスGeの温度を低下することができるため、EGRクーラー17及びEGRポンプ21の負荷を軽減でき、EGRクーラー17及びEGRポンプ21を小型化できる。また、EGRガスGeの温度を低下させることで、EGR率をさらに高めることができ、NOx発生を抑制できる。
 そして、図1に示すように、エンジン1に、低圧EGR通路14を通過するEGRガスGeの流量と、排気通路13の排気ガスGの圧力とに基づいて、排気ポンプ20及びEGRポンプ21の駆動を制御する排気圧力制御手段41が設けられる。この排気圧力制御手段41は、通常は、エンジン1の全般の制御やエンジン1を搭載した車両の全般の制御を行う全体システムの制御装置40に組み込まれて構成される。
 この構成によれば、EGRガスGeの流量を確保することで、NOx低減の排ガス浄化性能を確保しつつ、排気通路13の排気ガスGの圧力の上昇を抑制して、排気ポンピングロスの増加を防止することができる。
 また、上述したエンジン1を用いた内燃機関の排気圧力低減方法について、図2に示す制御のフローの一例を参照しながら、説明する。図2の制御のフローは、エンジン1の始動開始と共に、上級の制御フローから呼ばれてスタートし、排気ポンプ20及びEGRポンプ弁21の制御をしては、上級の制御フローに戻り、また、上級の制御フローから呼ばれて、エンジン1の運転中は繰り返し実施されるものとして示してある。そして、エンジン1の停止と共に、割り込みによりリターンして上級の制御フローに戻り、この上級の制御フローの終了と共に終了する制御フローとして示している。
 この図2の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS11にて、エンジン回転数Neと燃料流量qを入力する。その後、ステップS12に進む。ステップS12では、入力されたエンジン回転数Neと燃料流量qを基に、予め設定された目標値算出用マップデータM1を参照しながら、低圧EGR通路14を通過するEGRガスGeの流量の目標値(以後、「目標EGRガス流量Qegrm」という)、排気通路13を通過する排気ガスGの圧力の目標値(以後、「目標排気圧力Pegrm」という)を算出する。なお、目標値算出用マップデータM1は、実験等により予め設定しておき。制御装置40に組み込んでおく。
 なお、ここでは、実験値を基に作成した目標値算出用マップデータM1を用いて目標EGRガス流量Qegrmと目標排気圧力Pegrmを算出しているが、理論式で構築された制御モデルにエンジン回転数Neと燃料流量qを入力して、目標EGRガス流量Qegrmと目標排気圧力Pegrmを算出するようにしてもよい。
 このステップS12における算出の後で、ステップS13に進む。ステップS13では、低圧EGR通路14を通過するEGRガスGeの流量の実際値(以後、「実EGRガス流量Qegra」と称す)と、排気通路13を通過する排気ガスGの圧力の実際値(以後、「実排気圧力Pegra」と称す)をセンサ等により検出し、これらの検出値を入力する。
 次のステップS14では、ステップS12で算出した目標EGRガス流量Qegrmと目標排気圧力Pegrm、ステップS13で検出した実EGRガス流量Qegraと実排気圧力Pegraを基に、予め設定された制御量値算出用マップデータM2を参照しながら、実際値である実EGRガス流量Qegraと実排気圧力Pegraを目標値である目標EGRガス流量Qegrmと目標排気圧力Pegrmにするために必要な排気ポンプ20及びEGRポンプ21の制御量の演算を行う。
 例えば、実EGRガス流量Qegraを目標EGRガス流量Qegrmにするために必要な排気ポンプ20の制御量αと、実排気圧力Pegraを目標排気圧力Pegrmにするために必要なEGRポンプ21の制御量βを算出する。この制御量値算出用マップデータM2は、実験等により予め設定して、制御装置40に組み込んでおく。なお、ここでは、実験値を基に作成した制御量値算出用マップデータM2を用いて、実EGRガス流量Qegraと実排気圧力Pegraに対する制御量α、βを算出しているが、理論式で構築された制御モデルに基づいて、制御量α、βを算出するようにしてもよい。
 次のステップS15では、ステップS14で算出した制御量αに相当する分、排気ポンプ20を駆動制御し(図2の「EGR制御」に相当)、ステップS14で算出した制御量βに相当する分、EGRポンプ21を駆動制御する(図2の「排気圧力制御」に相当)。完了後、ステップS11にリターンし、エンジン1の停止に伴う上級の制御フローの終了まで、上述のステップS11~S15を繰り返す。
 これにより、低圧EGR通路11を通過するEGRガスGeの実EGRガス流量Qegra、及び、排気通路13の排気ガスの実排気圧力Pegraに基づいて、排気ポンプ20の駆動及びEGRポンプ21の駆動を制御して、タービン15aより下流で、かつ、低圧EGR通路17の分岐点よりも下流の排気通路13に設けた排気ポンプ30を駆動させると共に、低圧EGR通路14の合流点より下流の排気通路13に設けたEGRポンプ21の弁開度を制御することができる。
 なお、ステップS15のEGR制御と排気圧力制御については、EGR制御と排気圧力制御を独立して並行して実施しており、制御が収束する場合はこの独立制御を採用する方が、制御が単純化して好ましいが、独立制御では制御が収束しない場合は、EGR制御と排気圧力制御の協調制御を実施することになる。
 上記の内燃機関1及びその排気圧力低減方法によれば、排気通路13に排気ポンプ20を、低圧EGR通路14にEHRポンプ21をそれぞれを設け、排気ポンプ20の駆動により排気ガスGの排出を補助することで、タービン15aの下流のみならず、タービン15aの上流の排気通路13の排気ガスGの圧力を低下させて排気圧力の上昇を抑制することができるので、排気ポンピングロスを減少でき、エンジン1の燃費を改善できる。またタービン15aの前後差圧を大きくできるので、タービン15a及びコンプレッサ15bの駆動力を高めて、過給も補助することができ、この高過給化により、図示平均有効圧力の増加が可能となるので、エンジン1の燃費をより改善することができる。
 さらに、低圧EGR通路14にEGRポンプ21を設けているので、EGR時には、EGRポンプ21でEGRガスGeの流量を調整できるとともに、EGRポンプ21の駆動によっても排気ガスGの排出を補助することができ、タービン15aの下流のみならず、タービン15aの上流の排気通路12の排気ガスGの圧力を低下させて圧力の上昇を抑制することができる。
1、1X エンジン(内燃機関)
10、10X エンジン本体
11a 吸気マニホールド
11b 排気マニホールド
12 吸気通路
13 排気通路
14 低圧EGR通路
15 ターボチャージャ(ターボ式過給器)
15a タービン
15b コンプレッサ
16 インタークーラー
17 EGRクーラー
18 EGRバルブ
20 排気ポンプ
21 EGRポンプ
30a、30b 排熱回収装置
40 制御装置
41 排気圧力調整手段
A 新気
G 排気ガス
Ge EGRガス
Ne エンジン回転数
Pegrm 目標排気圧力
Pegra 実排気圧力
q 燃料流量
Qegrm 目標EGRガス流量
Qegra 実EGRガス流量
α 排気ポンプの制御量
β EGRポンプの制御量

Claims (6)

  1.  ターボ式過給システムと、該ターボ式過給システムのタービンの下流側の排気通路と該ターボ式過給システムのコンプレッサの上流側の吸気通路とを接続する低圧EGR通路を備えた内燃機関において、
     前記タービンより下流で、かつ、前記低圧EGR通路の分岐点よりも下流の前記排気通路に、排気ポンプを設けると共に、
     前記低圧EGR通路にEGRポンプを設けたことを特徴とする内燃機関。
  2.  前記低圧EGR通路の分岐点と前記排気ポンプの間の前記排気通路、または、前記低圧EGR通路に、排熱回収装置を設けると共に、該排熱回収装置が排気ガスの排熱を利用して発電した電力で、前記排気ポンプまたは前記EGRポンプの少なくとも一方を駆動することを特徴とする請求項1に記載の内燃機関。
  3.  前記低圧EGR通路を通過するEGRガスの流量と、前記排気通路の排気ガスの圧力とに基づいて、前記排気ポンプ及び前記EGRポンプの駆動を制御する排気圧力制御手段を備えたことを特徴とする請求項1または2に記載の内燃機関。
  4.  ターボ式過給システムと、該ターボ式過給システムのタービンの下流側の排気通路と該ターボ式過給システムのコンプレッサの上流側の吸気通路とを接続する低圧EGR通路を備えた内燃機関の排気圧力低減方法において、
     前記タービンより下流で、かつ、前記低圧EGR通路の分岐点よりも下流の前記排気通路に設けた排気ポンプを駆動させると共に、
     前記低圧EGR通路に設けたEGRポンプを駆動させることを特徴とする内燃機関の排気圧力低減方法。
  5.  前記タービンと前記排気ポンプの間の前記排気通路、または、前記低圧EGR通路に設けた排熱回収装置が排気ガスの排熱を利用して発電した電力で、前記排気ポンプまたは前記EGRポンプの少なくとも一方を駆動することを特徴とする請求項4に記載の内燃機関の排気圧力低減方法。
  6.  前記低圧EGR通路を通過するEGRガスの流量、及び、前記排気通路の排気ガスの圧力に基づいて、前記排気ポンプ及び前記EGRポンプの駆動を制御することを特徴とする請求項4又は5に記載の内燃機関の排気圧力低減方法。
PCT/JP2014/072003 2013-08-30 2014-08-22 内燃機関の排気圧力低減機構及び排気圧力低減方法 WO2015029900A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180147A JP2015048758A (ja) 2013-08-30 2013-08-30 内燃機関の排気圧力低減機構及び排気圧力低減方法
JP2013-180147 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029900A1 true WO2015029900A1 (ja) 2015-03-05

Family

ID=52586459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072003 WO2015029900A1 (ja) 2013-08-30 2014-08-22 内燃機関の排気圧力低減機構及び排気圧力低減方法

Country Status (2)

Country Link
JP (1) JP2015048758A (ja)
WO (1) WO2015029900A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401449A (zh) * 2017-09-06 2017-11-28 哈尔滨工程大学 柴油机废气余热冷却egr风扇增压系统
CN107435574A (zh) * 2017-09-06 2017-12-05 哈尔滨工程大学 柴油机废气余热egr风扇增压系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712011A (ja) * 1993-01-30 1995-01-17 Suzuki Motor Corp 排気ガスの再循環装置
JP2008284971A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 車両用走行制御装置
JP2008294129A (ja) * 2007-05-23 2008-12-04 Daikin Ind Ltd 熱電子発電素子、及び当該熱電子発電素子を備えた熱電子発電装置
JP2009097378A (ja) * 2007-10-15 2009-05-07 Toyota Motor Corp 内燃機関
JP2010236381A (ja) * 2009-03-30 2010-10-21 Toyota Motor Corp 内燃機関のegr装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712011A (ja) * 1993-01-30 1995-01-17 Suzuki Motor Corp 排気ガスの再循環装置
JP2008284971A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 車両用走行制御装置
JP2008294129A (ja) * 2007-05-23 2008-12-04 Daikin Ind Ltd 熱電子発電素子、及び当該熱電子発電素子を備えた熱電子発電装置
JP2009097378A (ja) * 2007-10-15 2009-05-07 Toyota Motor Corp 内燃機関
JP2010236381A (ja) * 2009-03-30 2010-10-21 Toyota Motor Corp 内燃機関のegr装置

Also Published As

Publication number Publication date
JP2015048758A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
KR101826571B1 (ko) 엔진 시스템
JP6738232B2 (ja) エンジンシステム
US7434389B2 (en) Engine system and method of providing power therein
CN108612583B (zh) 发动机系统
JP2015108330A (ja) ターボコンパウンドシステムの制御装置
EP3064734A1 (en) Engine cooling system
KR101449141B1 (ko) 차량의 폐열 회수 시스템을 이용한 터보장치
CN105464769A (zh) 一种双流道动力涡轮系统及其控制方法
WO2015029900A1 (ja) 内燃機関の排気圧力低減機構及び排気圧力低減方法
WO2015029899A1 (ja) 内燃機関及びその排気圧力低減方法
WO2014183636A1 (zh) 一种超临界内燃直流蒸汽发动机组
JP2009191667A (ja) 過給装置及び過給エンジンシステム
JP2018059495A (ja) エンジンシステム
JP2009221848A (ja) エンジンの過給装置
JP6375680B2 (ja) ハイブリッドシステム、ハイブリッドシステム車両、及び、ハイブリッドシステムのegr方法
JP2022522050A (ja) 内燃機関における処理済み排気ガス再循環のためのシステムおよび方法
KR102633858B1 (ko) 엔진 시스템 및 이의 제어 방법
KR102159282B1 (ko) 저온연소를 위한 엔진 시스템
US20180238274A1 (en) Device for controlling the amount of fluid fed to the intake of a supercharged internal-combustion engine equipped with an exhaust gas recirculation circuit and method using same
JP6013863B2 (ja) 内燃機関
JP6062277B2 (ja) エンジンの排ガスエネルギー回収システム
JP5791960B2 (ja) 過給機付き内燃機関
JP5684041B2 (ja) 過給機付き内燃機関
WO2020253286A1 (zh) 增压型发动机
JP2011149402A (ja) 車両の発進補助システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840550

Country of ref document: EP

Kind code of ref document: A1