WO2015029673A1 - Collection device and detection device - Google Patents

Collection device and detection device Download PDF

Info

Publication number
WO2015029673A1
WO2015029673A1 PCT/JP2014/069888 JP2014069888W WO2015029673A1 WO 2015029673 A1 WO2015029673 A1 WO 2015029673A1 JP 2014069888 W JP2014069888 W JP 2014069888W WO 2015029673 A1 WO2015029673 A1 WO 2015029673A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
housing
substrate
opening
nozzle
Prior art date
Application number
PCT/JP2014/069888
Other languages
French (fr)
Japanese (ja)
Inventor
克佳 高橋
藤岡 一志
伸佳 石野
恵美 肱黒
大樹 奥野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015029673A1 publication Critical patent/WO2015029673A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • G01N2001/245Fans

Definitions

  • the present invention relates to a collection device and a detection device, and more particularly to a collection device and a detection device for collecting and detecting particles in a fluid.
  • Patent Document 1 As an apparatus for collecting particles in the atmosphere, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-300466 (hereinafter referred to as Patent Document 1), an apparatus for collecting particles in the atmosphere on a medium in a petri dish, A so-called air sampler is usually used.
  • Patent document 1 is disclosing the airborne microbe sampler which collects the airborne microbe on the petri dish which accommodates a culture medium through the nozzle plate which has a some hole. The air sampler separates particles from air flowing into the aircraft using an inertial collision method and collects the particles on a petri dish.
  • the air sampler as disclosed in Patent Document 1 has the following problems. (1) At the time of collection, airtightness of parts other than the nozzle substrate is required. Therefore, it has a complicated structure for ensuring hermeticity, such as a lock by rotation, and it is difficult to easily replace or remove the petri dish easily or automatically.
  • the present invention has been made in view of such problems, and has utilized a collection device that facilitates handling of a collection substrate while ensuring the ability to collect particles in a fluid, and the collection device.
  • the object is to provide a detection device.
  • the collection device is a device for collecting particles in the fluid introduced into the enclosure on the surface of the collection substrate set in the enclosure.
  • a nozzle substrate that is installed on at least one surface of the housing and has a nozzle drilled therein, an introduction means for introducing a fluid outside the housing into the housing through the nozzle at a predetermined flow rate, and a collection substrate,
  • Driving means for moving between a first position outside the housing and a second position inside the housing, the surface of which is the front in the direction of nozzle drilling, through an opening provided in the housing
  • a resistance means for making the resistance to the fluid passing through the opening of the housing larger than the resistance to the fluid passing through the nozzle when the collection substrate is in the second position.
  • the resistance means is a fixing portion that covers a portion other than the drive means of the opening in a state where the drive means exists in the opening of the housing when the collection substrate is in the second position.
  • a member for increasing the resistance to the fluid is installed at a position where the fixed portion and the opening are in contact with each other.
  • the driving means is located outside the housing, and the resistance means is a lid that covers the opening of the housing.
  • a detection device includes the above-described collection device and a detector for detecting particles collected on the surface of the collection substrate, and the driving means includes the collection substrate. Move to the detector.
  • the detector includes a light source for irradiating excitation light and a light receiving element for receiving fluorescence
  • the driving means sets the surface of the collection substrate after the collection substrate is set to the second position. It moves to the 3rd position where excitation light is irradiated from a light source.
  • the detection device further includes a heater, and the driving means moves the collection substrate to the third position after a predetermined time.
  • the collection substrate can be easily handled while securing the ability to collect particles in the fluid in the collection device. Further, by using the collection device, it is possible to detect particles in the fluid with high accuracy by the detection device and easy handling of the collection substrate.
  • the collection device collects particles in a fluid such as air introduced into the enclosure on the surface of a collection substrate set in the enclosure.
  • FIG. 1 and FIG. 2 are schematic views showing a specific example of the configuration of the collection device 100 according to the first embodiment.
  • the collection device 100 includes a nozzle substrate 2 installed on one surface (upper surface in FIGS. 1 and 2) of the housing 1 and a nozzle 2 ⁇ / b> A drilled in the nozzle substrate 2.
  • the fan 3 which is an example of an introduction mechanism for introducing air, which is a fluid outside the casing 1, into the casing 1 at a predetermined flow rate via the first position and the casing 1 outside the casing 1.
  • the collection substrate 200 is moved via the opening 1A provided in the housing 1 between the second position where the surface of the collection substrate 200 is in front of the nozzle 2A in the drilling direction.
  • a fixture 61 as an example of a resistance mechanism for increasing the resistance to air passing through 2A.
  • the collection device 100 further includes a control device 10 having a CPU (Central Processing Unit) 10A.
  • the control device 10 is electrically connected to the drive unit 5 and the fan 3 to control their drive.
  • the fan 3 is provided on the surface opposite to the surface on which the nozzle substrate 2 of the housing 1 is provided (the lower surface in FIGS. 1 and 2).
  • the fan 3 rotates under the control of the control device 10 to generate a negative pressure in the housing 1, thereby introducing outside air into the housing 1 through the nozzle 2 ⁇ / b> A.
  • the control device 10 rotates the fan 3 by a specified rotation amount by driving the fan 3 by a predetermined control amount. Thereby, outside air is introduced into the housing 1 at a predetermined flow rate.
  • the introduction mechanism is not limited to a fan, and may be a pump or the like.
  • the collection device 100 further includes a holding unit 4 for holding the collection substrate 200.
  • the collection substrate 200 may be held by being mounted on the holding unit 4 or may be fixed with screws or the like.
  • FIG. 1 shows a state in which the collection substrate 200 is in the first position
  • FIG. 2 shows a state in which the collection substrate 200 is in the second position.
  • 1 and 2 show the drive unit 5.
  • the drive unit 5 supports the holding unit 4 with an arm, and moves the collection substrate 200 held by the holding unit 4 between the first position and the second position via the opening 1A. .
  • the fixture 61 which is a fixing portion covers a portion other than the arm of the opening 1A in a state where the arm of the driving unit 5 exists in the opening 1A when the collection substrate 200 is in the second position. That is, the fixture 61 has a surface wider than the opening 1A.
  • the fixture 61 is provided at an end portion of the holding portion 4 far from the opening 1A, and is fixed when inserted into the housing 1 so that the collection substrate 200 held by the holding portion 4 is set to the second position.
  • a tool 61 covers the opening 1A.
  • the drive unit 5 maintains the pressure in a direction for pressing the fixture 61 against the opening 1A for a specified time.
  • the collection substrate 200 may be a resin, glass, metal, silicon substrate, or a thin plate such as polydimethylsiloxane (PDMS) formed on a substrate such as silicon or resin.
  • PDMS polydimethylsiloxane
  • carriers, such as a petri dish, may be sufficient. Even if it is any form, the holding
  • FIG. 3 is a diagram illustrating a specific example of the external appearance of the drive unit 5 and the holding unit 4.
  • the drive unit 5 has an arm extending in the horizontal or substantially horizontal direction, and the holding unit 4 is supported by the arm.
  • the drive unit 5 is configured to be movable in the support direction of the holding unit 4.
  • FIG. 4 is a diagram showing a specific example of the appearance of the holding unit 4.
  • the holding unit 4 has a surface for holding the collection substrate 200, and the collection substrate 200 is mounted on the surface or fixed with screws or the like.
  • a fixture 61 is provided at an end portion of the holding portion 4 far from the opening portion 1A in parallel or substantially in parallel with the opening portion 1A of the housing 1.
  • An O-ring 62 is installed as an example of a member for increasing the resistance to air at a position where the fixture 61 is in contact with the opening.
  • the O-ring 62 may be provided on the opening 1A side.
  • FIG. 5 is a diagram showing another example of the drive unit 5.
  • the drive unit 5 is not limited to one that is movable only in the one-axis direction shown in FIG. 3, and may be movable in three-axis directions as shown in FIG.
  • FIG. 6 is a diagram illustrating a specific example of the appearance of the housing 1 and the fan 3.
  • FIG. 6 shows an example, and the housing 1 has a box shape.
  • the nozzle substrate 2 is fitted on the upper surface of the housing 1, and has an opening on the side surface (opening 1A).
  • a fan 3 is installed on the bottom surface.
  • FIG. 7 is a diagram showing a specific example of the nozzle substrate 2.
  • the nozzle substrate 2 is obtained by forming one or more nozzles 2A on a metal substrate such as stainless steel or aluminum.
  • the material of the nozzle substrate 2 is not limited to a specific material.
  • stainless steel, resin, glass, and other metals are preferably used.
  • the diameter of the nozzle (hole) 2A is about 0.01 mm to 10 mm, and the nozzle length (that is, the thickness of the nozzle substrate 2) is about 0.1 mm to 50 mm.
  • the distance from the nozzle substrate 2 to the collection substrate 200 is preferably about 0.01 mm to 10 mm.
  • the shape of the nozzle 2A is not limited.
  • the shape of the nozzle 2A may be, for example, a circle as shown in FIG. 7 or a slit shape. In addition, a taper shape etc. may be sufficient. Also, the number is not limited and may be about 1 to 1000. As shown in FIG. 7, the one or more nozzles 2A are preferably drilled in a predetermined range. Thereby, particles can be collected in a predetermined range on the collection substrate 200, and the efficiency is high in the detection described later.
  • FIG. 8A is a diagram showing a state of setting the collection substrate 200 to the housing 1.
  • the collection substrate 200 is supported by the arm of the drive unit 5 while being held horizontally or substantially horizontally by the holding unit 4, and is horizontally or substantially horizontal to the opening 1 A of the housing 1.
  • the opening 1A is perpendicular or substantially perpendicular to the insertion direction, and the fixture 61 formed in parallel with the opening 1A covers the opening 1A.
  • the drive unit 5 is a drive type as shown in FIG. 3 or FIG. 5, the collection substrate 200 can be accurately positioned with respect to the nozzle substrate 2.
  • FIG. 8B is a diagram schematically showing the state of the opening 1A when the collection substrate 200 is in the second position.
  • the fixture 61 covers the opening 1 ⁇ / b> A of the housing 1, and the fixture 61 is pressed against the opening 1 ⁇ / b> A by the pressing force of the drive unit 5.
  • An O-ring 62 is sandwiched between the fixture 61 and the opening 1A. Thereby, the opening 1A is sealed.
  • FIG. 9 is a schematic diagram for explaining the collection principle of the collection device 100.
  • the collection device 100 collects particles in the air on the surface of the collection substrate 200 using an inertial collision method.
  • the collection substrate 200 is set so as to be parallel or substantially parallel to the nozzle substrate 2.
  • the fan 3 may be one that takes outside air into the housing 1 by exhausting the air inside the housing 1, or directly introduces outside air into the housing 1.
  • the collection substrate 200 is disposed between the fan 3 and the nozzle substrate 2 on the suction side of the fan 3.
  • the nozzle substrate 2 is disposed between the fan 3 and the collection substrate 200 on the exhaust side of the fan 3.
  • the fan 3 is the former one.
  • FIG. 10 is a diagram schematically showing the air flow in the housing.
  • the fan 3 is driven with the collection substrate 200 set at the second position and the opening 1A covered with the fixture 61
  • the outside air at the flow rate Q N is introduced into the housing 1 via the nozzle 2A.
  • the outside air of the flow rate Q A is introduced into the housing 1 through the opening 1A covered with the fixture 61.
  • the flow rate Q N passing through the nozzle 2A in the flow rate Q s on the surface of the collection substrate 200 needs to be dominant. is there.
  • the ratio T is preferably greater than 0.9, more preferably greater than 0.99.
  • the laminar flow has arisen in the housing 1.
  • the Reynolds number Re defined by the ratio between the inertial force and the viscous force satisfies Re ⁇ 2300.
  • the fluid resistance R is calculated using the Hagen-Poiseuille equation. That is, when the nozzle 2A is a circular tube with a radius r, the flow rate Q is given by assuming that the nozzle length (same as the thickness of the nozzle substrate 2) is L, the pressure difference between both ends of the nozzle is ⁇ P, and the air viscosity is ⁇ .
  • Q ⁇ ⁇ r 4 ⁇ ⁇ P / (8 ⁇ ⁇ L).
  • the fluid resistance R of the nozzle substrate 2 is proportional to the nozzle length L and inversely proportional to the nozzle diameter r (the fourth power).
  • the resistance mechanism for making the fluid resistance of the opening 1A larger than the fluid resistance of the nozzle 2A in the state covered with the fixture 61 in the collection device 100 is the fluid resistance R N of the nozzle substrate 2 described above.
  • the following four methods can be adopted as the resistance mechanism.
  • Method 1 The flow passage cross-sectional area (or flow passage diameter) in the opening 1 ⁇ / b> A covered with the fixture 61 is made smaller (thinner) than the cross-sectional area of the nozzle 2 ⁇ / b> A of the nozzle substrate 2.
  • Method 2) Lengthening the flow path in the opening 1 ⁇ / b> A covered with the fixture 61.
  • Method 3) Increasing the contact area between the air and the wall surface in the flow path in the opening 1A covered with the fixture 61 (folding, providing unevenness, etc.)
  • Method 4) Sites that are rapidly expanded and contracted are provided in the flow path in the opening 1A covered with the fixture 61.
  • the fluid cross-sectional area (or the channel diameter) of the air introduced into the opening 1A via the gap between the fixture 61 and the housing 1 is reduced (thinned).
  • the control device 10 performs a predetermined period after the collection substrate 200 is set to the second position during the collection period, with respect to the fixture 61 provided at the end of the holding unit 4 by the drive unit 5.
  • the drive unit 5 is controlled so as to continuously apply a pressing force in the direction from the outside to the inside of the housing 1 and press it against the housing 1.
  • a rubber-like member is provided at the contact portion between the opening 1A and the fixture 61, and the control device 10 is held by the drive unit 5 during the collection period.
  • the drive unit 5 is controlled so as to press the fixture 61 provided at the end of the unit 4 against the housing 1 until the rubber member is deformed.
  • FIG. 11 is a diagram for explaining a resistance mechanism employing the method 2 described above.
  • FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1.
  • the fixture 61 is configured to have a large surface area facing the housing 1.
  • FIG. 11B is given as a second example of the resistance mechanism employing the method 2.
  • Thick line arrows in the figure are air flow paths that pass through the opening 1A and are introduced into the housing 1.
  • the housing 1 is configured such that at least the wall thickness of the opening 1A is thick.
  • FIGS. 12 to 14 are diagrams for explaining a resistance mechanism adopting the method 3 described above.
  • FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1.
  • each of the portions where the fixture 61 and the housing 1 face each other has an uneven structure.
  • the flow path in which the fixture 61 and the housing 1 are engaged and bent is formed by the above-described uneven structure.
  • a comb-shaped mechanism may be used.
  • the size and direction of the concavo-convex structure may vary.
  • the flow path may be lengthened and the contact area may be increased.
  • fine irregularities may be formed in each of the portions where the fixture 61 and the housing 1 face each other.
  • FIG. 15 is a view for explaining a resistance mechanism adopting the method 4 described above.
  • FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1.
  • a protrusion is provided on each of the portions where the fixture 61 and the housing 1 face each other.
  • the flow path cross-sectional area rapidly decreases at the protruding portion and rapidly increases at the portion other than the protrusion.
  • the positions of the protrusions may be such that the housing 1 side is on the outside and the fixture 61 side is on the inside.
  • the fixture 61 as an example of the resistance mechanism is provided at the end of the holding unit 4, and the collection substrate 200 is set to the second position in the housing 1 to automatically In particular, the opening 1A is covered.
  • a fixture may be provided on the housing 1 side.
  • FIG. 16 is a diagram for explaining another example of the fixture.
  • FIG. 16A shows the case where the collection substrate 200 is in the first position
  • FIG. 16B shows the case where the collection substrate 200 is in the second position.
  • a fixture 63 that is a lid that covers the opening 1 ⁇ / b> A is provided in the vicinity of the opening 1 ⁇ / b> A of the housing 1.
  • the fixture 63 is a movable type capable of opening and closing the opening 1A, and a mechanical shutter such as an electronic shutter is preferably used.
  • the driving mechanism of the fixture 63 is electrically connected to the control device 10, and its opening / closing is controlled by the control device 10.
  • FIG. 16A shows the case where the collection substrate 200 is in the first position
  • FIG. 16B shows the case where the collection substrate 200 is in the second position.
  • the control device 10 controls the drive unit 5 to set the collection substrate 200 at the second position. At this time, the arm of the drive unit 5 comes into contact with the lower end of the opening 1 ⁇ / b> A and inserts the collection substrate 200 into the housing 1.
  • the control device 10 slides the fixture 63 downward from above the opening 1A when the collection substrate 200 is in the second position, and covers the opening 1A with the arm of the drive unit 5 interposed therebetween. Furthermore, the control device 10 can increase the fluid resistance of the opening 1A due to the negative pressure generated in the housing 1 by driving the fan 3 in this state.
  • rubber-like members are provided at the end of the opening 1 ⁇ / b> A in contact with the arm of the drive unit 5 and the end of the fixture 63. Thereby, the fluid resistance of the opening 1A can be further increased.
  • the fixing tool 61 or the fixing tool 63 covers the opening 1 ⁇ / b> A in a state where the arm of the driving unit 5 supports the holding unit 4 and the holding unit 4 holds the collection substrate 200.
  • the arm of the drive unit 5 may return to the outside of the housing 1.
  • FIG. 17 is a diagram for explaining another example of the drive unit 5.
  • FIG. 17A shows a state in which the collection substrate 200 is in the first position
  • FIG. 17B shows a state in which the collection substrate 200 is in the second position
  • FIG. 17C shows the drive unit.
  • 5 represents a state in which only the holding portion 4A is moved out of the housing 1 with the collection substrate 200 in the second position.
  • the collection substrate 200 is detachable from the holding unit 4A
  • the holding unit 4A is also detachable from the drive unit 5.
  • a mounting table 4B for setting the collection substrate 200 is provided in the housing 1.
  • a sandwiching mechanism, a vacuum suction mechanism, an electromagnet mechanism, or the like is preferably used as a configuration for making the collection substrate 200 detachable from the holding portion 4A.
  • the holding unit 4 ⁇ / b> A is electrically connected to the control device 10, and attachment / detachment of the collection substrate 200 is controlled by a control signal from the control device 10.
  • the collection substrate 200 Since the collection device 100 according to the first embodiment has the above-described configuration, the collection substrate 200 is placed while securing a mechanism for collecting particles in the air using the inertial collision method. It can be easily carried in and out of the body 1.
  • the detection device includes the collection device 100 according to the first embodiment, and detects particles in the air collected on the surface of the collection substrate 200.
  • FIG. 18 is a schematic diagram illustrating a specific example of the configuration of the detection apparatus 500 according to the second embodiment.
  • the detection device 500 includes the collection device 100 according to the first embodiment and a detector 300 for detecting particles collected on the surface of the collection substrate 200.
  • the collection device 100, the drive unit 5, and the detector 300 are all electrically connected to the control device 10 and controlled by the control device 10.
  • the drive unit 5 controls the control device 10 so that the collection substrate 200 is set to the second position in the housing 1 of the collection device 100 and then the third position which is a predetermined position in the detector 300. Move to position.
  • the direction of the arm supporting the collection substrate 200 is defined as a first axis direction
  • the direction in which the arm is moved up and down is defined as a second axis direction
  • the direction in which the arm is moved back and forth is defined as a third axis direction.
  • the collection device 100 and the detector 300 are arranged side by side in the third axis direction.
  • the housing 1 and the detector 300 of the collection device 100 each have an opening in the first axial direction.
  • the second axial direction is used for positioning the collection substrate 200 in the housing 1 and the detector 300 of the collection device 100.
  • the detection method of the detector 300 is not limited to a specific method, and a method of detecting scattered light derived from particles, a method of detecting fluorescence derived from particles, or acquiring a particle image and performing the image recognition processing. Detection by the above can be suitably employed.
  • FIG. 19 is a schematic diagram showing a specific example of the configuration of the detector 300.
  • the detector 300 includes a light source 31 for irradiating the surface of the collection substrate 200 and a light receiving element 32 for receiving light from the surface of the collection substrate 200.
  • the light receiving element 32 is electrically connected to the control device 10 and inputs a detection signal indicating the amount of received light to the control device 10.
  • the control device 10 calculates the particle amount based on the received light amount.
  • the light receiving element 32 corresponds to a photodiode or a photomultiplier tube for measuring scattered light from particles on the surface of the collection substrate 200.
  • the light receiving element 32 may be arranged at any angle with respect to the irradiation direction of the light source 31.
  • the light receiving element 32 detects forward scatter, side scatter, back scatter, and the like according to the arranged position.
  • the control device 10 that has received the detection signal from the light receiving element 32 calculates the particle diameter, the complexity of the configuration within the particle, and the like, and compares it with a reference value that is stored in advance, so that the target particle (for example, biological origin) Particles). Or the control apparatus 10 should just count the signal pulse of scattered light, when confirming the presence or absence and number of particle
  • the light source 31 corresponds to one that can irradiate light as excitation light
  • the light receiving element 32 is a photodiode, a photomultiplier tube, a CCD (Charge Coupled Device) for measuring fluorescence from particles.
  • Image sensors such as image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors are applicable.
  • the detector 300 may be provided with a fluorescence detection lens 34 and a fluorescence detection filter 35 such as a band pass filter and a long pass filter as necessary.
  • a light source lens 33 for adjusting the irradiation direction may be disposed in front of the irradiation direction of the light source 31.
  • a mirror 36 for adjusting an optical path such as a dichroic mirror may be arranged depending on the angle at which the light receiving element 32 is arranged.
  • the light receiving element 32 corresponds to an image sensor such as a CCD image sensor or a CMOS image sensor for measuring (photographing) a particle image on the surface of the collection substrate 200.
  • the control device 10 that has received the particle image from the light receiving element 32 detects the target particle (for example, biological particles) and the presence / absence of the particle by comparing with a previously stored particle image.
  • the control device 10 controls the drive unit 5 to drive the fan 3 for a predetermined time as the second position in the housing 1 of the collection device 100 to perform the collection operation, and then performs the collection operation. Then, the drive unit 5 is controlled to move the collection substrate 200 to the detector 300.
  • the control device 10 controls the drive unit 5 so that the irradiation range of the light source 31 in the detector 300 and the light receiving element 32
  • the collection substrate 200 is moved to the third position that is the light receiving range. In this state, the control device 10 emits light from the light source 31 and detects particles on the collection substrate 200 based on a detection signal from the light receiving element 32.
  • the detection device 500 according to the second embodiment has the above-described configuration, the collection operation and the detection operation can be performed as a series of operations by one device. Moreover, since the drive part 5 which is a drive means is controlled by the control apparatus 10, as a result, the movement of the collection board
  • FIG. 20 is a particle image photographed by the detection apparatus 500 when air mixed with polystyrene particles is used as a specimen
  • FIG. 21 is photographed by the detection apparatus 500 when air mixed with fungi is used as a specimen.
  • Particle image In any operation for detecting any specimen, first, the collection substrate 200 is set in the housing 1 of the collection apparatus 100 to collect particles in the specimen on the surface, and then the drive unit 5 The collection substrate 200 is conveyed to the detector 300, and a particle image is taken by the detector 300. The number of particles can be calculated by performing image analysis or the like in the control device 10 on the particle image obtained by the detector 300. As shown in these drawings, the detection apparatus 500 according to the present embodiment can detect particles in a fluid with high accuracy.
  • FIG. 22 is a schematic diagram illustrating a specific example of the configuration of the detection apparatus 500 according to the third embodiment.
  • a detection device 500 according to the third embodiment includes the collection device 100 according to the first embodiment, the detector 300 described in the second embodiment, and a heater 400. .
  • the collection device 100, the drive unit 5, the detector 300, and the heater 400 are all electrically connected to the control device 10 and controlled by the control device 10.
  • the drive unit 5 moves the collection substrate 200 to the second position in the housing 1 of the collection device 100 by the control of the control device 10, passes through the heater 400, and at a predetermined position in the detector 300. Move to a third position.
  • Some non-living particles such as chemical fiber dust floating in the air, emit fluorescent light when irradiated with ultraviolet light or blue light, similar to biological particles.
  • the fluorescence intensity of biological particles increases by heating, whereas the fluorescence intensity of non-biological particles such as chemical fiber dust does not change by heating.
  • the detection apparatus 500 concerning 3rd Embodiment detects the particle
  • FIG. 23 shows the measurement results of the fluorescence spectrum of E. coli, which is a biological particle.
  • a curve 71 represents a spectrum before the heat treatment
  • a curve 72 is a spectrum after the heat treatment at 200 ° C. for 5 minutes.
  • FIG. 24A is a fluorescence micrograph before the heat treatment
  • FIG. 24B is a fluorescence micrograph after the heat treatment. From the measurement results shown in FIG. 23 and the comparison between (A) and (B) in FIG. 24, it can be seen that the fluorescence intensity from E. coli is greatly increased by the heat treatment.
  • FIG. 25 shows the measurement results of the fluorescence spectrum of Bacillus bacteria, which are biologically derived particles.
  • a curve 73 represents a spectrum before the heat treatment
  • a curve 73 is a spectrum after the heat treatment at 200 ° C. for 5 minutes.
  • FIG. 26A is a fluorescence micrograph before heat treatment
  • FIG. 26B is a fluorescence micrograph after heat treatment. From the measurement results shown in FIG. 25 and the comparison between (A) and (B) in FIG. 26, it can be seen that the fluorescence intensity from Bacillus bacteria is greatly increased by the heat treatment.
  • FIG. 27 shows the measurement results of the fluorescence spectrum of mold fungi, which are biologically derived particles.
  • a curve 75 represents a spectrum before the heat treatment
  • a curve 76 is a spectrum after the heat treatment at 200 ° C. for 5 minutes.
  • FIG. 28A is a fluorescence micrograph before heat treatment
  • FIG. 28B is a fluorescence micrograph after heat treatment. From the measurement results shown in FIG. 27 and a comparison between (A) and (B) in FIG. 28, it can be seen that the fluorescence intensity from the mold is significantly increased by the heat treatment.
  • FIG. 29 shows the measurement result of the fluorescence spectrum of the dust that emits fluorescence.
  • a curve 77 represents a spectrum before the heat treatment
  • a curve 78 is a spectrum after the heat treatment at 200 ° C. for 5 minutes.
  • FIG. 30A is a fluorescence micrograph before heat treatment
  • FIG. 30B is a fluorescence micrograph after heat treatment.
  • the curve 77 and the curve 78 substantially overlap. That is, the comparison in FIG. 29 and the comparison between FIGS. 30A and 30B show that the fluorescence intensity from dust does not change before and after the heat treatment.
  • control device 10 collects particles with the collection device 100, heats the collection substrate 200 with the heater 400 for a predetermined time, and heats the surface of the collection substrate 200 after being heated with the detector 300. Measure particles (take a particle image). Therefore, the control apparatus 10 can detect the particle
  • the control device 10 collects particles with the collection device 100, moves the collection substrate 200 to the detector 300, and measures particles (takes a particle image) on the surface of the collection substrate 200 before heating. Thereafter, the collection substrate 200 is moved to the heater 400, and the collection substrate 200 is heated by the heater 400 for a predetermined time. Then, the collection board
  • the detection apparatus 500 according to the third embodiment has the above-described configuration, it does not require treatment with a fluorescent staining reagent or the like depending on the fluorescence intensity after heating or the difference in fluorescence intensity before and after heating. Particles can be separated from non-living particles and detected with high accuracy.
  • the control unit 10 controls the driving unit 5 which is driving means, and as a result, the movement of the collection substrate 200 can be controlled, a series of operations of collection, heating, and detection can be easily automated. be able to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A collection device (100) collects particles in a fluid introduced into a housing (1) on the surface of a collection plate (200) set inside the housing. A nozzle plate (2) is placed on the upper surface of the housing, and the driving of a fan (3) causes outside air to be introduced into the housing at a prescribed flow rate through nozzles (2A) formed by cutting holes in the nozzle plate. A driving unit (5) causes the collection plate to move, through an opening (1A), between a first position that is outside the housing and a second position that is inside the housing and directly in front of the direction in which the nozzles have been formed through the cutting of holes. The collection device is provided with a fixing tool (61) for causing the resistance to the fluid passing through the opening to be greater than the resistance to the fluid passing through the nozzle when the collection plate is in the second position.

Description

捕集装置および検出装置Collection device and detection device
 この発明は捕集装置および検出装置に関し、特に、流体中の粒子を捕集および検出するための捕集装置および検出装置に関する。 The present invention relates to a collection device and a detection device, and more particularly to a collection device and a detection device for collecting and detecting particles in a fluid.
 大気中の粒子を捕集する装置として、たとえば特開2000-300246号公報(以下、特許文献1)に開示されているように、大気中の粒子をシャーレ内の培地上に捕集する装置、いわゆるエアサンプラが通常用いられる。特許文献1は、複数の孔を有するノズル板を通して、空気中の浮遊菌を、培地を収納するシャーレ上に捕集する空中浮遊菌サンプラを開示している。エアサンプラは、慣性衝突法を利用して機内に流入する空気から粒子を分離してシャーレ上に捕集する。 As an apparatus for collecting particles in the atmosphere, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-300466 (hereinafter referred to as Patent Document 1), an apparatus for collecting particles in the atmosphere on a medium in a petri dish, A so-called air sampler is usually used. Patent document 1 is disclosing the airborne microbe sampler which collects the airborne microbe on the petri dish which accommodates a culture medium through the nozzle plate which has a some hole. The air sampler separates particles from air flowing into the aircraft using an inertial collision method and collects the particles on a petri dish.
特開2000-300246号公報Japanese Patent Application Laid-Open No. 2000-3000246
 特許文献1に開示されているようなエアサンプラには、次のような問題点がある。
 (1)捕集時に、ノズル基板以外の部分の密閉性が要求される。そのため、密閉性を確保するための複雑な構造、たとえば回転によるロック等を有し、シャーレを簡易にもしくは自動で取替、着脱することが困難である。
The air sampler as disclosed in Patent Document 1 has the following problems.
(1) At the time of collection, airtightness of parts other than the nozzle substrate is required. Therefore, it has a complicated structure for ensuring hermeticity, such as a lock by rotation, and it is difficult to easily replace or remove the petri dish easily or automatically.
 (2)培地上に捕集した粒子、たとえば微生物は計数前に恒温槽等で培養する必要がある。そのため、培養時もしくは培養前に、エアサンプラによる捕集以外の微生物の付着する、いわゆるコンタミと呼ばれる現象が起こる可能性がある。また、培養にはたとえば1週間程度などの長期間が必要となり、リアルタイムまたは短期に結果が得られない。 (2) Particles collected on the medium, such as microorganisms, need to be cultured in a thermostatic chamber or the like before counting. Therefore, there is a possibility that a phenomenon called so-called contamination, in which microorganisms other than those collected by the air sampler adhere, may occur during or before the culture. In addition, culture requires a long period of time, for example, about a week, and results cannot be obtained in real time or in a short period.
 (3)培養に替えて、培地上に捕集した粒子からの蛍光、すなわち自家蛍光に基づいて微生物を計数する手法もあるが、測定精度が低い。さらに、この手法では光電子増倍管などの高価な検出器が必要となる。 (3) In place of culturing, there is a method of counting microorganisms based on fluorescence from particles collected on the medium, that is, autofluorescence, but the measurement accuracy is low. Furthermore, this method requires an expensive detector such as a photomultiplier tube.
 (4)蛍光試薬を用いて微生物を染色した後に検出する手法もあるが、染色処理を自動化することが困難であり、染色処理に手間がかかる。また、染色処理はランニングコストが高い。 (4) Although there is a method of detecting after staining a microorganism with a fluorescent reagent, it is difficult to automate the staining process, and the staining process is troublesome. Also, the dyeing process has a high running cost.
 本発明はこのような問題に鑑みてなされたものであって、流体中の粒子を捕集する能力を確保しつつ捕集基板の取り扱いを容易とした捕集装置および該捕集装置を利用した検出装置を提供することを目的としている。 The present invention has been made in view of such problems, and has utilized a collection device that facilitates handling of a collection substrate while ensuring the ability to collect particles in a fluid, and the collection device. The object is to provide a detection device.
 上記目的を達成するために、本発明のある局面に従うと、捕集装置は、匡体内にセットされた捕集基板の表面で匡体内に導入された流体中の粒子を捕集する装置であって、匡体の少なくとも一面に設置されて、ノズルが削孔されたノズル基板と、匡体外の流体を、ノズルを通して匡体内に所定の流速で導入するための導入手段と、捕集基板を、匡体外である第1の位置と、匡体内であって表面がノズルの削孔方向に正面となる第2の位置との間で、匡体に設けられた開口部を通して移動させるための駆動手段と、捕集基板が第2の位置となったときに、匡体の開口部を通過する流体への抵抗をノズルを通過する流体への抵抗よりも大きくするための抵抗手段とを備える。 In order to achieve the above object, according to one aspect of the present invention, the collection device is a device for collecting particles in the fluid introduced into the enclosure on the surface of the collection substrate set in the enclosure. A nozzle substrate that is installed on at least one surface of the housing and has a nozzle drilled therein, an introduction means for introducing a fluid outside the housing into the housing through the nozzle at a predetermined flow rate, and a collection substrate, Driving means for moving between a first position outside the housing and a second position inside the housing, the surface of which is the front in the direction of nozzle drilling, through an opening provided in the housing And a resistance means for making the resistance to the fluid passing through the opening of the housing larger than the resistance to the fluid passing through the nozzle when the collection substrate is in the second position.
 好ましくは、抵抗手段は、捕集基板が第2の位置となったときに、匡体の開口部に駆動手段が存在する状態で、開口部の駆動手段以外の部分を覆う固定部である。 Preferably, the resistance means is a fixing portion that covers a portion other than the drive means of the opening in a state where the drive means exists in the opening of the housing when the collection substrate is in the second position.
 より好ましくは、固定部と開口部とが接する位置に、流体への抵抗を増加させるための部材が設置されている。 More preferably, a member for increasing the resistance to the fluid is installed at a position where the fixed portion and the opening are in contact with each other.
 好ましくは、捕集基板が第2の位置となったときに、駆動手段は匡体外に位置し、抵抗手段は、匡体の開口部を覆う蓋である。 Preferably, when the collection substrate is in the second position, the driving means is located outside the housing, and the resistance means is a lid that covers the opening of the housing.
 本発明の他の局面に従うと、検出装置は、上記の捕集装置と、捕集基板の表面に捕集された粒子を検出するための検出器とを備え、駆動手段は、捕集基板を検出器まで移動させる。 According to another aspect of the present invention, a detection device includes the above-described collection device and a detector for detecting particles collected on the surface of the collection substrate, and the driving means includes the collection substrate. Move to the detector.
 好ましくは、検出器は、励起光を照射するための光源と蛍光を受光するための受光素子とを含み、駆動手段は、捕集基板を、第2の位置とした後に捕集基板の表面が光源から励起光の照射される第3の位置に移動させる。 Preferably, the detector includes a light source for irradiating excitation light and a light receiving element for receiving fluorescence, and the driving means sets the surface of the collection substrate after the collection substrate is set to the second position. It moves to the 3rd position where excitation light is irradiated from a light source.
 より好ましくは、検出装置は加熱器をさらに備え、駆動手段は、捕集基板を、加熱器を所定時間経て、第3の位置に移動させる。 More preferably, the detection device further includes a heater, and the driving means moves the collection substrate to the third position after a predetermined time.
 この発明によると、捕集装置において流体中の粒子を捕集する能力を確保しつつ、捕集基板の取り扱いを容易とすることができる。また、その捕集装置を用いることで、検出装置で精度よく、また捕集基板の取り扱いを容易として流体中の粒子を検出することができる。 According to the present invention, the collection substrate can be easily handled while securing the ability to collect particles in the fluid in the collection device. Further, by using the collection device, it is possible to detect particles in the fluid with high accuracy by the detection device and easy handling of the collection substrate.
第1の実施の形態にかかる捕集装置の構成の具体例を示す概略図である。It is the schematic which shows the specific example of a structure of the collection apparatus concerning 1st Embodiment. 第1の実施の形態にかかる捕集装置の構成の具体例を示す概略図である。It is the schematic which shows the specific example of a structure of the collection apparatus concerning 1st Embodiment. 捕集装置の駆動部および保持部の外観の具体例を表わした図である。It is a figure showing the specific example of the external appearance of the drive part and holding | maintenance part of a collection apparatus. 捕集装置の保持部の外観の具体例を表わした図である。It is a figure showing the specific example of the external appearance of the holding | maintenance part of a collection apparatus. 捕集装置の駆動部の他の例を表わした図である。It is the figure showing the other example of the drive part of a collection apparatus. 捕集装置の匡体およびファンの外観の具体例を表わした図である。It is a figure showing the specific example of the external appearance of the housing and fan of a collection device. 捕集装置のノズル基板の具体例を示す図である。It is a figure which shows the specific example of the nozzle substrate of a collection apparatus. 匡体への捕集基板のセットの様子を表わした図(A)、および捕集基板が第2の位置となったときの開口部の状態を模式的に表わした図(B)である。It is the figure (A) showing the mode of setting of the collection board | substrate to a housing, and the figure (B) showing typically the state of the opening part when a collection board | substrate becomes a 2nd position. 捕集装置での捕集原理を説明するための概略図である。It is the schematic for demonstrating the collection principle in a collection apparatus. 捕集装置の匡体内での気流を模式的に表わした図である。It is the figure which represented typically the air flow in the housing of a collection device. 抵抗機構を説明するための図である。It is a figure for demonstrating a resistance mechanism. 抵抗機構を説明するための図である。It is a figure for demonstrating a resistance mechanism. 抵抗機構を説明するための図である。It is a figure for demonstrating a resistance mechanism. 抵抗機構を説明するための図である。It is a figure for demonstrating a resistance mechanism. 抵抗機構を説明するための図である。It is a figure for demonstrating a resistance mechanism. 固定具の他の例を説明するための図である。It is a figure for demonstrating the other example of a fixing tool. 駆動部の他の例を説明するための図である。It is a figure for demonstrating the other example of a drive part. 第2の実施の形態にかかる検出装置の構成の具体例を示す概略図である。It is the schematic which shows the specific example of a structure of the detection apparatus concerning 2nd Embodiment. 検出装置の検出器の構成の具体例を示す概略図である。It is the schematic which shows the specific example of a structure of the detector of a detection apparatus. ポリスチレン粒子を混入した空気を検体としたときの検出装置で撮影された粒子画像である。It is the particle | grain image image | photographed with the detection apparatus when the air which mixed the polystyrene particle was made into the test substance. カビ菌を混入した空気を検体としたときの検出装置で撮影された粒子画像である。It is the particle | grain image image | photographed with the detection apparatus when the air which mixed mold | fungi microbe was made into the test substance. 第3の実施の形態にかかる検出装置の構成の具体例を示す概略図である。It is the schematic which shows the specific example of a structure of the detection apparatus concerning 3rd Embodiment. 大腸菌を200℃にて5分間加熱処理したときの、加熱処理前後の蛍光スペクトルの測定結果である。It is a measurement result of the fluorescence spectrum before and behind heat processing when Escherichia coli is heat-processed for 5 minutes at 200 degreeC. 大腸菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph before and behind heat processing when colon_bacillus | E._coli is heat-processed at 200 degreeC for 5 minute (s). バチルス菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光スペクトルの測定結果である。It is a measurement result of the fluorescence spectrum before and behind heat processing when Bacillus bacteria are heat-processed at 200 degreeC for 5 minute (s). バチルス菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph before and behind heat processing when Bacillus bacteria are heat-processed for 5 minutes at 200 degreeC. カビ菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光スペクトルの測定結果である。It is a measurement result of the fluorescence spectrum before and behind heat processing when mold bacteria are heat-processed at 200 degreeC for 5 minute (s). カビ菌を200℃にて5分間加熱処理したときの加熱処理前後の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph before and behind heat processing when mold bacteria are heat-processed at 200 degreeC for 5 minute (s). 蛍光を発する埃を200℃にて5分間加熱処理したときの加熱処理前後の蛍光スペクトルの測定結果である。It is a measurement result of the fluorescence spectrum before and behind heat processing when the dust which emits fluorescence is heat-processed for 5 minutes at 200 degreeC. 蛍光を発する埃を200℃にて5分間加熱処理したときの蛍光顕微鏡写真である。It is a fluorescence microscope photograph when the dust which emits fluorescence is heat-processed at 200 degreeC for 5 minute (s).
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.
 [第1の実施の形態]
 <装置の全体構成>
 第1の実施の形態にかかる捕集装置は、匡体内にセットされた捕集基板の表面で匡体内に導入された空気などの流体中の粒子を捕集するものである。
[First Embodiment]
<Overall configuration of device>
The collection device according to the first embodiment collects particles in a fluid such as air introduced into the enclosure on the surface of a collection substrate set in the enclosure.
 図1および図2は、第1の実施の形態にかかる捕集装置100の構成の具体例を示す概略図である。図1および図2を参照して、捕集装置100は、匡体1の一面(図1および図2では上面)に設置されたノズル基板2と、ノズル基板2に削孔されたノズル2Aを経由して匡体1外の流体である空気を匡体1内に所定の流速で導入するための導入機構の一例であるファン3と、匡体1外である第1の位置と匡体1内であって捕集基板200の表面がノズル2Aの削孔方向に正面となる第2の位置との間で、匡体1に設けられた開口部1Aを経由して捕集基板200を移動させるための駆動手段である駆動部5と、捕集基板200が上記の第2の位置となったときに匡体1の開口部1Aを通過する空気への抵抗(後述する流体抵抗)をノズル2Aを通過する空気への抵抗よりも大きくするための抵抗機構の一例としての固定具61とを含む。 FIG. 1 and FIG. 2 are schematic views showing a specific example of the configuration of the collection device 100 according to the first embodiment. With reference to FIGS. 1 and 2, the collection device 100 includes a nozzle substrate 2 installed on one surface (upper surface in FIGS. 1 and 2) of the housing 1 and a nozzle 2 </ b> A drilled in the nozzle substrate 2. The fan 3 which is an example of an introduction mechanism for introducing air, which is a fluid outside the casing 1, into the casing 1 at a predetermined flow rate via the first position and the casing 1 outside the casing 1. The collection substrate 200 is moved via the opening 1A provided in the housing 1 between the second position where the surface of the collection substrate 200 is in front of the nozzle 2A in the drilling direction. The nozzle 5 and the resistance to the air that passes through the opening 1A of the housing 1 when the collection substrate 200 is in the second position. And a fixture 61 as an example of a resistance mechanism for increasing the resistance to air passing through 2A.
 捕集装置100はさらに、CPU(Central Processing Unit)10Aを有する制御装置10を含む。制御装置10は駆動部5およびファン3と電気的に接続されて、それらの駆動を制御する。 The collection device 100 further includes a control device 10 having a CPU (Central Processing Unit) 10A. The control device 10 is electrically connected to the drive unit 5 and the fan 3 to control their drive.
 ファン3は、匡体1のノズル基板2が設けられた面とは逆側の面(図1および図2では下面)に設けられる。ファン3が制御装置10の制御によって回転することで匡体1内に負圧が生じ、それによってノズル2Aを介して外気が匡体1内に導入される。制御装置10は予め規定された制御量でファン3を駆動させることで、規定された回転量でファン3を回転させる。それにより、所定の流速で外気が匡体1内に導入される。なお、導入機構はファンに限定されず、その他ポンプなどであってもよい。 The fan 3 is provided on the surface opposite to the surface on which the nozzle substrate 2 of the housing 1 is provided (the lower surface in FIGS. 1 and 2). The fan 3 rotates under the control of the control device 10 to generate a negative pressure in the housing 1, thereby introducing outside air into the housing 1 through the nozzle 2 </ b> A. The control device 10 rotates the fan 3 by a specified rotation amount by driving the fan 3 by a predetermined control amount. Thereby, outside air is introduced into the housing 1 at a predetermined flow rate. The introduction mechanism is not limited to a fan, and may be a pump or the like.
 好ましくは、捕集装置100は、捕集基板200を保持するための保持部4をさらに含む。捕集基板200は保持部4に搭載されることで保持されてもよいし、ビスなどで固定されてもよい。図1は捕集基板200が第1の位置にある状態を表わしており、図2は捕集基板200が第2の位置にある状態を表わしている。図1および図2には、駆動部5が表わされている。駆動部5は、アームで保持部4を支持し、保持部4で保持された捕集基板200を開口部1Aを経由して上記の第1の位置と第2の位置との間で移動させる。 Preferably, the collection device 100 further includes a holding unit 4 for holding the collection substrate 200. The collection substrate 200 may be held by being mounted on the holding unit 4 or may be fixed with screws or the like. FIG. 1 shows a state in which the collection substrate 200 is in the first position, and FIG. 2 shows a state in which the collection substrate 200 is in the second position. 1 and 2 show the drive unit 5. The drive unit 5 supports the holding unit 4 with an arm, and moves the collection substrate 200 held by the holding unit 4 between the first position and the second position via the opening 1A. .
 固定部である固定具61は、捕集基板200が第2の位置となったときに、開口部1Aに駆動部5のアームが存在する状態で、開口部1Aのアーム以外の部分を覆う。すなわち、固定具61は、開口部1Aよりも広い面を有する。一例を図1に即して説明する。固定具61は保持部4の開口部1Aから遠い端部に設けられ、保持部4で保持された捕集基板200を第2の位置とするために匡体1内に挿入されると、固定具61が開口部1Aを覆う。駆動部5は制御装置10からの制御信号に従って、規定時間、固定具61を開口部1Aに対して押し付ける方向に押圧を維持する。 The fixture 61 which is a fixing portion covers a portion other than the arm of the opening 1A in a state where the arm of the driving unit 5 exists in the opening 1A when the collection substrate 200 is in the second position. That is, the fixture 61 has a surface wider than the opening 1A. An example will be described with reference to FIG. The fixture 61 is provided at an end portion of the holding portion 4 far from the opening 1A, and is fixed when inserted into the housing 1 so that the collection substrate 200 held by the holding portion 4 is set to the second position. A tool 61 covers the opening 1A. In accordance with a control signal from the control device 10, the drive unit 5 maintains the pressure in a direction for pressing the fixture 61 against the opening 1A for a specified time.
 捕集基板200は、樹脂、ガラス、金属、シリコン基板であってもよいし、シリコンや樹脂等の基板上に形成されたポリジメチルシロキサン(PDMS)などの薄板であってもよい。また、シャーレ等の担体に保持された培地であってもよい。いずれの形態であっても、保持部4は捕集基板200を保持可能に構成されている。 The collection substrate 200 may be a resin, glass, metal, silicon substrate, or a thin plate such as polydimethylsiloxane (PDMS) formed on a substrate such as silicon or resin. Moreover, the culture medium hold | maintained at support | carriers, such as a petri dish, may be sufficient. Even if it is any form, the holding | maintenance part 4 is comprised so that the collection board | substrate 200 can be hold | maintained.
 <駆動部および保持部の構成>
 図3は、駆動部5および保持部4の外観の具体例を表わした図である。駆動部5は水平または略水平方向に伸びるアームを有し、該アームで保持部4を支持する。駆動部5は、保持部4の支持方向に可動に構成されている。
<Configuration of drive unit and holding unit>
FIG. 3 is a diagram illustrating a specific example of the external appearance of the drive unit 5 and the holding unit 4. The drive unit 5 has an arm extending in the horizontal or substantially horizontal direction, and the holding unit 4 is supported by the arm. The drive unit 5 is configured to be movable in the support direction of the holding unit 4.
 図4は、保持部4の外観の具体例を表わした図である。保持部4は、捕集基板200を保持する面を有し、捕集基板200が、その面上に搭載される、またはビスなどで固定される。 FIG. 4 is a diagram showing a specific example of the appearance of the holding unit 4. The holding unit 4 has a surface for holding the collection substrate 200, and the collection substrate 200 is mounted on the surface or fixed with screws or the like.
 保持部4の開口部1Aから遠い端部に、匡体1の開口部1Aと平行または略平行に固定具61が設けられる。固定具61が開口部と接する位置に、空気への抵抗を増加させるための部材の一例としてOリング62が設置されている。なお、空気への抵抗を増加させるための部材の一例としてOリング62は、開口部1A側に設けられていてもよい。 A fixture 61 is provided at an end portion of the holding portion 4 far from the opening portion 1A in parallel or substantially in parallel with the opening portion 1A of the housing 1. An O-ring 62 is installed as an example of a member for increasing the resistance to air at a position where the fixture 61 is in contact with the opening. As an example of a member for increasing the resistance to air, the O-ring 62 may be provided on the opening 1A side.
 図5は、駆動部5の他の例を表わした図である。駆動部5は、図3に表わされた1軸方向のみに可動なものに限定されず、図5に表わされたような3軸方向に可動であってもよい。 FIG. 5 is a diagram showing another example of the drive unit 5. The drive unit 5 is not limited to one that is movable only in the one-axis direction shown in FIG. 3, and may be movable in three-axis directions as shown in FIG.
 <匡体およびファンの構成>
 図6は、匡体1およびファン3の外観の具体例を表わした図である。図6に示すのは一例であって、匡体1を箱型としている。匡体1の上面にノズル基板2がはめ込まれ、側面には開口部を有している(開口部1A)。また、底面にはファン3が設置されている。
<Structure of chassis and fan>
FIG. 6 is a diagram illustrating a specific example of the appearance of the housing 1 and the fan 3. FIG. 6 shows an example, and the housing 1 has a box shape. The nozzle substrate 2 is fitted on the upper surface of the housing 1, and has an opening on the side surface (opening 1A). A fan 3 is installed on the bottom surface.
 図7は、ノズル基板2の具体例を示す図である。ノズル基板2は、たとえば、ステンレスやアルミなどの金属製の基板に1つ以上のノズル2Aを形成したものである。ノズル基板2の材質は特定の材質に限定されない。たとえば、ステンレス、樹脂、ガラス、その他金属が好適に用いられる。好ましくは、ノズル(孔)2Aの直径は0.01mm~10mm程度であり、ノズル長さ(すなわち、ノズル基板2の厚み)は0.1mm~50mm程度である。ノズル基板2から捕集基板200までの距離は、好ましくは、0.01mm~10mm程度である。ノズル2Aの形状は限定されない。ノズル2Aの形状は、たとえば、図7に表わされたように円形であってもよいし、スリット状であってもよい。その他、テーパー形状などであってもよい。また、その数も限定されず、1~1000個程度であってよい。図7に示すように、1つ以上のノズル2Aは、所定範囲にかたまって削孔されるのが好ましい。これにより、捕集基板200上の所定範囲で粒子を捕集することができ、後述する検出の際に効率が良い。 FIG. 7 is a diagram showing a specific example of the nozzle substrate 2. The nozzle substrate 2 is obtained by forming one or more nozzles 2A on a metal substrate such as stainless steel or aluminum. The material of the nozzle substrate 2 is not limited to a specific material. For example, stainless steel, resin, glass, and other metals are preferably used. Preferably, the diameter of the nozzle (hole) 2A is about 0.01 mm to 10 mm, and the nozzle length (that is, the thickness of the nozzle substrate 2) is about 0.1 mm to 50 mm. The distance from the nozzle substrate 2 to the collection substrate 200 is preferably about 0.01 mm to 10 mm. The shape of the nozzle 2A is not limited. The shape of the nozzle 2A may be, for example, a circle as shown in FIG. 7 or a slit shape. In addition, a taper shape etc. may be sufficient. Also, the number is not limited and may be about 1 to 1000. As shown in FIG. 7, the one or more nozzles 2A are preferably drilled in a predetermined range. Thereby, particles can be collected in a predetermined range on the collection substrate 200, and the efficiency is high in the detection described later.
 図8(A)は、匡体1への捕集基板200のセットの様子を表わした図である。図8(A)を参照して、捕集基板200は保持部4に水平または略水平に保持された状態で駆動部5のアームに支持され、匡体1の開口部1Aに水平または略水平に挿入されることで、第1の状態である匡体1外である第1の位置から、匡体1内の、表面がノズル2Aの削孔方向に正面となる第2の位置へと移行する。このとき、開口部1Aは挿入方向に対して直角または略直角であり、開口部1Aと平行に形成された固定具61は開口部1Aを覆う。駆動部5が図3または図5に示されたような駆動式であることから、ノズル基板2に対する捕集基板200の正確な位置決めが可能となる。 FIG. 8A is a diagram showing a state of setting the collection substrate 200 to the housing 1. Referring to FIG. 8A, the collection substrate 200 is supported by the arm of the drive unit 5 while being held horizontally or substantially horizontally by the holding unit 4, and is horizontally or substantially horizontal to the opening 1 A of the housing 1. Is inserted into the first position, which is outside the casing 1 in the first state, and moves from the first position in the casing 1 to the second position where the surface is the front in the direction of drilling the nozzle 2A. To do. At this time, the opening 1A is perpendicular or substantially perpendicular to the insertion direction, and the fixture 61 formed in parallel with the opening 1A covers the opening 1A. Since the drive unit 5 is a drive type as shown in FIG. 3 or FIG. 5, the collection substrate 200 can be accurately positioned with respect to the nozzle substrate 2.
 図8(B)は、捕集基板200が第2の位置となったときの開口部1Aの状態を模式的に表わした図である。このとき、固定具61は匡体1の開口部1Aを覆い、さらに、駆動部5の押力によって固定具61が開口部1Aに押し付けられる。固定具61と開口部1Aとの間にはOリング62が挟まれている。これによって開口部1Aは密閉される。 FIG. 8B is a diagram schematically showing the state of the opening 1A when the collection substrate 200 is in the second position. At this time, the fixture 61 covers the opening 1 </ b> A of the housing 1, and the fixture 61 is pressed against the opening 1 </ b> A by the pressing force of the drive unit 5. An O-ring 62 is sandwiched between the fixture 61 and the opening 1A. Thereby, the opening 1A is sealed.
 <捕集原理>
 図9は、捕集装置100での捕集原理を説明するための概略図である。捕集装置100は、慣性衝突法を利用して空気中の粒子を捕集基板200の表面で捕集する。捕集基板200はノズル基板2と平行または略平行となるようセットされる。ファン3を制御装置10によって駆動することにより、匡体1内の圧力が制御される。ファン3は、図9に示すように、匡体1内の空気を排気することで外気を匡体1内に取り入れるものであってもよいし、匡体1内に外気を直接導入するものであってもよい。前者の場合、図9に示すように、ファン3の吸引側であって、ファン3とノズル基板2との間に捕集基板200が配置される。図示はしないが後者の場合、ファン3の排気側であって、ファン3と捕集基板200との間にノズル基板2が配置される。以降の説明では、ファン3が前者のものであるとする。
<Collection principle>
FIG. 9 is a schematic diagram for explaining the collection principle of the collection device 100. The collection device 100 collects particles in the air on the surface of the collection substrate 200 using an inertial collision method. The collection substrate 200 is set so as to be parallel or substantially parallel to the nozzle substrate 2. By driving the fan 3 by the control device 10, the pressure in the housing 1 is controlled. As shown in FIG. 9, the fan 3 may be one that takes outside air into the housing 1 by exhausting the air inside the housing 1, or directly introduces outside air into the housing 1. There may be. In the former case, as shown in FIG. 9, the collection substrate 200 is disposed between the fan 3 and the nozzle substrate 2 on the suction side of the fan 3. Although not shown, in the latter case, the nozzle substrate 2 is disposed between the fan 3 and the collection substrate 200 on the exhaust side of the fan 3. In the following description, it is assumed that the fan 3 is the former one.
 圧力制御装置であるファン3が稼働すると、匡体1内には図9の点線矢印で表わされたような気流が発生する。すなわち、外気がノズル基板2のノズル2Aを経由して捕集基板200まで導入され、捕集基板200を回って匡体1外に排気される。外気中の粒子は、気流による慣性力のために捕集基板200を回らずにその表面に衝突し、捕集される。 When the fan 3, which is a pressure control device, is operated, an air flow as shown by a dotted arrow in FIG. That is, outside air is introduced to the collection substrate 200 via the nozzle 2 </ b> A of the nozzle substrate 2, and is exhausted out of the housing 1 around the collection substrate 200. The particles in the outside air collide with the surface of the collection substrate 200 due to the inertial force caused by the air current and are collected.
 ファン3によって匡体1内の圧力を制御することで、自然落下させて捕集する場合より多くの検体(空気)を捕集基板200上に誘導することができる。たとえば、100L/minの吸引ファンを用いた場合、10分間の吸引で1000L(1m3)の検体(空気)を導入することができる。 By controlling the pressure in the housing 1 by the fan 3, more specimen (air) can be guided onto the collection substrate 200 than when it is naturally dropped and collected. For example, when a suction fan of 100 L / min is used, 1000 L (1 m 3 ) specimen (air) can be introduced by suction for 10 minutes.
 <流体抵抗の関係>
 ノズル2Aを経由し、慣性衝突法を利用して捕集基板200の表面に粒子を捕集するためには、固定具61で覆われた状態で、ノズル基板2から捕集基板200に向かう気流が、開口部1Aから捕集基板200に向かう気流に対して支配的であることが好ましい。すなわち、圧力差△Pと流量Qとの間で関係式△P=Q・Rを満たす係数Rを流体抵抗と定義すると、ノズル基板2の流体抵抗RNと、固定具61で覆われた状態の開口部1Aの流体抵抗RAとが、RN≪RAを満たすことが好ましい。
<Relationship of fluid resistance>
In order to collect particles on the surface of the collection substrate 200 using the inertial collision method via the nozzle 2A, the air flow from the nozzle substrate 2 toward the collection substrate 200 while being covered with the fixture 61 However, it is preferable that it is dominant with respect to the airflow which goes to the collection board | substrate 200 from the opening part 1A. That is, if the coefficient R satisfying the relational expression ΔP = Q · R between the pressure difference ΔP and the flow rate Q is defined as the fluid resistance, the fluid resistance R N of the nozzle substrate 2 and the state covered with the fixture 61 a fluid resistance R a of the opening 1A of preferably satisfies the R N «R a.
 図10は、匡体内での気流を模式的に表わした図である。捕集基板200を第2の位置にセットし、開口部1Aを固定具61で覆った状態でファン3を駆動したとき、ノズル2Aを経由して流量QNの外気が匡体1内に導入され、固定具61で覆われた開口部1Aを経由して流量QAの外気が匡体1内に導入される。ノズル2Aを経由した空気に含まれる粒子を捕集基板200表面で捕集するためには、捕集基板200表面の流量Qsに占めるノズル2Aを経由した流量QNが支配的である必要がある。すなわち、捕集基板200表面の流量Qsに対するノズル2Aを経由した流量QNの比率T(=QN/Qs)は、少なくとも0.5より大きい。比率Tは0.9より大きいのが好ましく、0.99より大きければより好ましい。 FIG. 10 is a diagram schematically showing the air flow in the housing. When the fan 3 is driven with the collection substrate 200 set at the second position and the opening 1A covered with the fixture 61, the outside air at the flow rate Q N is introduced into the housing 1 via the nozzle 2A. Then, the outside air of the flow rate Q A is introduced into the housing 1 through the opening 1A covered with the fixture 61. In order to collect particles contained in the air passing through the nozzle 2A on the surface of the collection substrate 200, the flow rate Q N passing through the nozzle 2A in the flow rate Q s on the surface of the collection substrate 200 needs to be dominant. is there. That is, the ratio T (= Q N / Q s ) of the flow rate Q N passing through the nozzle 2A to the flow rate Q s on the surface of the collection substrate 200 is at least larger than 0.5. The ratio T is preferably greater than 0.9, more preferably greater than 0.99.
 ここで、捕集基板200表面の流量Qsはノズル2Aを経由した流量QNと固定具61で覆われた開口部1Aを経由した流量QAとの総和である(Qs=QN+QA)。従って、比率Tは、T=QN/(QN+QA)と表わされる。この式を変形させるとQN/QA=T/(1-T)という関係式(1)が得られる。 Here, the flow rate Q s on the surface of the collection substrate 200 is the sum of the flow rate Q N passing through the nozzle 2A and the flow rate Q A passing through the opening 1A covered with the fixture 61 (Q s = Q N + Q A ). Therefore, the ratio T is expressed as T = Q N / (Q N + Q A ). When this equation is transformed, the relational expression (1) of Q N / Q A = T / (1-T) is obtained.
 上記のように、圧力差△Pと流量Qとの間で流体抵抗Rを係数とした関係式△P=Q・Rが成立し、匡体1の開口部1Aおよびノズル2Aそれぞれに生じる圧力差△Pはいずれもファン3の駆動によって生じる圧力差△PFであるから、△PF=QN・RN=QA・RAと表わされる。この式を変形させると流量Qと流体抵抗Rとの間にQN/QA=RA/RNという関係式(2)が得られる。 As described above, the relational expression ΔP = Q · R is established between the pressure difference ΔP and the flow rate Q with the fluid resistance R as a coefficient, and the pressure difference generated in each of the opening 1A of the housing 1 and the nozzle 2A. △ since P is the pressure difference △ P F resulting from the driving of the fan 3 either, denoted △ P F = Q N · R N = Q a · R a. By transforming this equation, the relational expression (2) between the flow rate Q and the fluid resistance R is obtained as Q N / Q A = R A / R N.
 したがって、関係式(1)、(2)より、ノズル基板2の流体抵抗RNに対する固定具61で覆われた状態の開口部1Aの流体抵抗RAの比率(=RA/RN)は、少なくとも0.5より大きい比率TでT/(1-T)となる(RA/RN=T/(1-T),T>0.5)ことが条件となる。 Therefore, from the relational expressions (1) and (2), the ratio (= R A / R N ) of the fluid resistance R A of the opening 1A in the state covered with the fixture 61 to the fluid resistance R N of the nozzle substrate 2 is The condition is that T / (1-T) at a ratio T greater than 0.5 (R A / R N = T / (1-T), T> 0.5).
 なお、捕集装置100は慣性衝突法を利用して捕集するため、匡体1内には層流が生じている。層流である場合は、慣性力と粘性力との比率で定義されるレイノルズ数ReがRe<2300を満たす。そして、流体抵抗Rはハーゲン・ポアズイユの式を用いて算出される。すなわち、ノズル2Aが半径rの円管であるとき、ノズル長さ(ノズル基板2の厚みと同じ)をL、ノズル両端の圧力差を△P、および空気の粘度をμとすると流量Qは、Q=π・r4・△P/(8μ・L)という関係式(3)で表わされる。このため、関係式(3)に関係式△P=Q・Rを代入することで、流体抵抗Rは、R=8μ・L/(π・r4)という関係式(4)から導かれることが分かる。これより、ノズル基板2の流体抵抗Rはノズル長さLに比例し、ノズル径r(の4乗)に反比例することがわかる。なお、ノズル基板2に複数(個数n)のノズル2Aが削孔されている場合、ノズル2A1個あたりの流体抵抗R’は総抵抗Rとの間で1/R=n/R’の関係があるため、全体の流体抵抗RはR=R'/nとなる。 In addition, since the collection apparatus 100 collects using the inertial collision method, the laminar flow has arisen in the housing 1. In the case of laminar flow, the Reynolds number Re defined by the ratio between the inertial force and the viscous force satisfies Re <2300. The fluid resistance R is calculated using the Hagen-Poiseuille equation. That is, when the nozzle 2A is a circular tube with a radius r, the flow rate Q is given by assuming that the nozzle length (same as the thickness of the nozzle substrate 2) is L, the pressure difference between both ends of the nozzle is ΔP, and the air viscosity is μ. Q = π · r 4 · ΔP / (8 μ · L). Therefore, by substituting the relational expression ΔP = Q · R into the relational expression (3), the fluid resistance R is derived from the relational expression (4) of R = 8 μ · L / (π · r 4 ). I understand. This shows that the fluid resistance R of the nozzle substrate 2 is proportional to the nozzle length L and inversely proportional to the nozzle diameter r (the fourth power). When a plurality (number n) of nozzles 2A are drilled in the nozzle substrate 2, the fluid resistance R ′ per nozzle 2A has a relationship of 1 / R = n / R ′ with the total resistance R. Therefore, the overall fluid resistance R is R = R ′ / n.
 以上より、捕集装置100において固定具61で覆われた状態で、開口部1Aの流体抵抗をノズル2Aの流体抵抗よりも大きくするための抵抗機構は、上記のノズル基板2の流体抵抗RNと開口部1Aの流体抵抗RAとの関係が、(RA/RN=T/(1-T),T>0.5)を満たす機構である。抵抗機構は、たとえば次の4つの方法を採用し得る。 From the above, the resistance mechanism for making the fluid resistance of the opening 1A larger than the fluid resistance of the nozzle 2A in the state covered with the fixture 61 in the collection device 100 is the fluid resistance R N of the nozzle substrate 2 described above. And the fluid resistance R A of the opening 1A is a mechanism that satisfies (R A / R N = T / (1-T), T> 0.5). For example, the following four methods can be adopted as the resistance mechanism.
  方法1)固定具61で覆われた状態の開口部1Aにおける流路断面積(または流路径)を、ノズル基板2のノズル2Aの断面積より小さく(細く)する、
  方法2)固定具61で覆われた状態の開口部1Aにおける流路を長くする、
  方法3)固定具61で覆われた状態の開口部1Aにおける流路での、空気と壁面との接触面積を大きくする(折り曲げる、凹凸を設ける、等)、
  方法4)固定具61で覆われた状態の開口部1Aにおける流路に、急拡大および急縮小となる部位を設ける。
Method 1) The flow passage cross-sectional area (or flow passage diameter) in the opening 1 </ b> A covered with the fixture 61 is made smaller (thinner) than the cross-sectional area of the nozzle 2 </ b> A of the nozzle substrate 2.
Method 2) Lengthening the flow path in the opening 1 </ b> A covered with the fixture 61.
Method 3) Increasing the contact area between the air and the wall surface in the flow path in the opening 1A covered with the fixture 61 (folding, providing unevenness, etc.)
Method 4) Sites that are rapidly expanded and contracted are provided in the flow path in the opening 1A covered with the fixture 61.
 方法1を採用した抵抗機構の第1の例として、固定具61と匡体1との隙間を経由して開口部1Aに導入される空気の流体断面積(または流路径)を小さく(細く)するため、制御装置10は、捕集期間中、すなわち、捕集基板200を第2の位置とした後から所定期間、駆動部5で保持部4の端部に設けられた固定具61に対して匡体1の外側から内側に向かう方向に押力をかけ続けて匡体1に押し付けるよう駆動部5を制御する。また、方法1を採用した抵抗機構の第2の例として、開口部1Aと固定具61との接触部分にゴム状部材が設けられ、制御装置10は、捕集期間中、駆動部5で保持部4の端部に設けられた固定具61を上記ゴム状部材が変形する位置まで匡体1に押し付けるよう駆動部5を制御する。 As a first example of the resistance mechanism employing the method 1, the fluid cross-sectional area (or the channel diameter) of the air introduced into the opening 1A via the gap between the fixture 61 and the housing 1 is reduced (thinned). For this reason, the control device 10 performs a predetermined period after the collection substrate 200 is set to the second position during the collection period, with respect to the fixture 61 provided at the end of the holding unit 4 by the drive unit 5. Then, the drive unit 5 is controlled so as to continuously apply a pressing force in the direction from the outside to the inside of the housing 1 and press it against the housing 1. Further, as a second example of the resistance mechanism employing the method 1, a rubber-like member is provided at the contact portion between the opening 1A and the fixture 61, and the control device 10 is held by the drive unit 5 during the collection period. The drive unit 5 is controlled so as to press the fixture 61 provided at the end of the unit 4 against the housing 1 until the rubber member is deformed.
 図11は、上記方法2を採用した抵抗機構を説明するための図である。上記方法2を採用した抵抗機構の第1の例として、図11(A)が挙げられる。図中の太線矢印は、固定具61と匡体1との隙間を経由して開口部1Aに導入される空気の流路である。この流路を長くするため、固定具61は、匡体1と対向する面の面積を大きく構成される。また、方法2を採用した抵抗機構の第2の例として、図11(B)が挙げられる。図中の太線矢印は、開口部1Aを通過して匡体1内部に導入される空気の流路である。この流路を長くするため、匡体1は、少なくとも開口部1A部分の壁厚が厚く構成される。 FIG. 11 is a diagram for explaining a resistance mechanism employing the method 2 described above. As a first example of the resistance mechanism employing the method 2, FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1. In order to lengthen this flow path, the fixture 61 is configured to have a large surface area facing the housing 1. Further, FIG. 11B is given as a second example of the resistance mechanism employing the method 2. Thick line arrows in the figure are air flow paths that pass through the opening 1A and are introduced into the housing 1. In order to lengthen this flow path, the housing 1 is configured such that at least the wall thickness of the opening 1A is thick.
 図12~図14は、上記方法3を採用した抵抗機構を説明するための図である。上記方法3を採用した抵抗機構の第1の例として、図12(A)が挙げられる。図中の太線矢印は、固定具61と匡体1との隙間を経由して開口部1Aに導入される空気の流路である。この流路内の空気と壁面との接触面積を大きくして壁面摩擦を大きくするため、固定具61と匡体1が対向する部分のそれぞれを凹凸構造とする。駆動部5によって捕集基板200が匡体1内にセットされる際に、上記の凹凸構造により、固定具61と匡体1とが噛み合い折り曲げられた流路が形成される。なお、図12(B)に表わしたように、櫛型の機構としてもよい。また、図13(A)および図13(B)に表わしたように、凹凸構造の大きさや方向は様々であってよい。さらに、図13(C)に表わしたように、方法2と組み合わせて、流路を長くし、かつ、接触面積を大きくするようにしてもよい。また、方法3を採用した抵抗機構の第2の例として、図14に示すように、固定具61と匡体1が対向する部分のそれぞれに微細な凹凸を形成してもよい。 FIGS. 12 to 14 are diagrams for explaining a resistance mechanism adopting the method 3 described above. As a first example of the resistance mechanism employing the method 3, FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1. In order to increase the wall surface friction by increasing the contact area between the air and the wall surface in the flow path, each of the portions where the fixture 61 and the housing 1 face each other has an uneven structure. When the collection substrate 200 is set in the housing 1 by the drive unit 5, the flow path in which the fixture 61 and the housing 1 are engaged and bent is formed by the above-described uneven structure. Note that, as shown in FIG. 12B, a comb-shaped mechanism may be used. Further, as shown in FIGS. 13A and 13B, the size and direction of the concavo-convex structure may vary. Furthermore, as shown in FIG. 13C, in combination with the method 2, the flow path may be lengthened and the contact area may be increased. As a second example of the resistance mechanism employing the method 3, as shown in FIG. 14, fine irregularities may be formed in each of the portions where the fixture 61 and the housing 1 face each other.
 図15は、上記方法4を採用した抵抗機構を説明するための図である。第1の例として、図15(A)が挙げられる。図中の太線矢印は、固定具61と匡体1との隙間を経由して開口部1Aに導入される空気の流路である。この流路断面積を急激に拡大したり縮小したりする部分を設けるため、固定具61と匡体1が対向する部分のそれぞれに突起を設ける。これにより流路断面積は、突起部分で急激に小さくなり、突起以外の部分で急激に大きくなる。なお、突起の位置は、図15(B)に表わしたように、匡体1側を外側に、固定具61側を内側にしてもよい。 FIG. 15 is a view for explaining a resistance mechanism adopting the method 4 described above. As a first example, FIG. A thick line arrow in the figure is a flow path of air introduced into the opening 1A through a gap between the fixture 61 and the housing 1. In order to provide a portion where the flow path cross-sectional area is rapidly increased or decreased, a protrusion is provided on each of the portions where the fixture 61 and the housing 1 face each other. As a result, the flow path cross-sectional area rapidly decreases at the protruding portion and rapidly increases at the portion other than the protrusion. In addition, as shown in FIG. 15B, the positions of the protrusions may be such that the housing 1 side is on the outside and the fixture 61 side is on the inside.
 <固定具の他の例>
 以上の説明では、抵抗機構の一例としての固定具61が保持部4の端部に設けられていて、捕集基板200が第2の位置となって匡体1内にセットされることで自動的に開口部1Aを覆う構成である。他の例として、匡体1側に固定具が設けられてもよい。
<Other examples of fixtures>
In the above description, the fixture 61 as an example of the resistance mechanism is provided at the end of the holding unit 4, and the collection substrate 200 is set to the second position in the housing 1 to automatically In particular, the opening 1A is covered. As another example, a fixture may be provided on the housing 1 side.
 図16は、固定具の他の例を説明するための図である。図16(A)は捕集基板200が第1の位置にあるときを表わし、図16(B)は捕集基板200が第2の位置にあるときを表わしている。図16に表すように、匡体1の開口部1A近傍には、開口部1Aを覆う蓋である固定具63が設けられる。固定具63は、開口部1Aを開閉可能な可動式であって、たとえば電子式シャッターなどの機械式のシャッターが好適に用いられる。図示していないが、固定具63の駆動機構は制御装置10と電気的に接続され、その開閉が制御装置10によって制御される。固定具63が開口部1Aの上方にセットされている例を図16(A)に示す。制御装置10は、駆動部5を制御して捕集基板200を第2の位置にセットする。このとき、駆動部5のアームは開口部1Aの下側の端部に接して捕集基板200を匡体1内に差し入れる。制御装置10は、捕集基板200が第2の位置にあるときに固定具63を開口部1Aの上方から下方にスライドさせて、駆動部5のアームを挟んで開口部1Aを覆う。さらに、制御装置10はこの状態でファン3を駆動することで、匡体1内に生じた負圧によって、開口部1Aの流体抵抗をより増加させることができる。好ましくは、駆動部5のアームと接する開口部1Aの端部および固定具63の端部にはゴム状部材が設けられる。これにより、開口部1Aの流体抵抗をより増加させることができる。 FIG. 16 is a diagram for explaining another example of the fixture. FIG. 16A shows the case where the collection substrate 200 is in the first position, and FIG. 16B shows the case where the collection substrate 200 is in the second position. As shown in FIG. 16, in the vicinity of the opening 1 </ b> A of the housing 1, a fixture 63 that is a lid that covers the opening 1 </ b> A is provided. The fixture 63 is a movable type capable of opening and closing the opening 1A, and a mechanical shutter such as an electronic shutter is preferably used. Although not shown, the driving mechanism of the fixture 63 is electrically connected to the control device 10, and its opening / closing is controlled by the control device 10. An example in which the fixture 63 is set above the opening 1A is shown in FIG. The control device 10 controls the drive unit 5 to set the collection substrate 200 at the second position. At this time, the arm of the drive unit 5 comes into contact with the lower end of the opening 1 </ b> A and inserts the collection substrate 200 into the housing 1. The control device 10 slides the fixture 63 downward from above the opening 1A when the collection substrate 200 is in the second position, and covers the opening 1A with the arm of the drive unit 5 interposed therebetween. Furthermore, the control device 10 can increase the fluid resistance of the opening 1A due to the negative pressure generated in the housing 1 by driving the fan 3 in this state. Preferably, rubber-like members are provided at the end of the opening 1 </ b> A in contact with the arm of the drive unit 5 and the end of the fixture 63. Thereby, the fluid resistance of the opening 1A can be further increased.
 <駆動部の他の例>
 以上の説明では、駆動部5のアームが保持部4を支持し、保持部4が捕集基板200を保持した状態で、固定具61または固定具63が開口部1Aを覆う構成である。他の例として、駆動部5が捕集基板200を第2の位置にセットした後、駆動部5のアームが匡体1外に戻るようにしてもよい。
<Other examples of drive unit>
In the above description, the fixing tool 61 or the fixing tool 63 covers the opening 1 </ b> A in a state where the arm of the driving unit 5 supports the holding unit 4 and the holding unit 4 holds the collection substrate 200. As another example, after the drive unit 5 sets the collection substrate 200 to the second position, the arm of the drive unit 5 may return to the outside of the housing 1.
 図17は、駆動部5の他の例を説明するための図である。図17(A)は捕集基板200が第1の位置にある状態を表わし、図17(B)は捕集基板200が第2の位置にある状態を表わし、図17(C)は駆動部5が捕集基板200を第2の位置としたまま保持部4Aのみを匡体1外へ移動させた状態を表わしている。この場合、捕集基板200は保持部4Aへ着脱可能であり、さらに、保持部4Aも駆動部5へ着脱可能に構成されている。また、匡体1内には捕集基板200をセットするための載置台4Bが設けられる。 FIG. 17 is a diagram for explaining another example of the drive unit 5. FIG. 17A shows a state in which the collection substrate 200 is in the first position, FIG. 17B shows a state in which the collection substrate 200 is in the second position, and FIG. 17C shows the drive unit. 5 represents a state in which only the holding portion 4A is moved out of the housing 1 with the collection substrate 200 in the second position. In this case, the collection substrate 200 is detachable from the holding unit 4A, and the holding unit 4A is also detachable from the drive unit 5. In addition, a mounting table 4B for setting the collection substrate 200 is provided in the housing 1.
 保持部4Aに捕集基板200を着脱可能とするための構成としては、挟み込み機構、真空吸着機構、電磁石機構などが好適に用いられる。保持部4Aは制御装置10と電気的に接続され、制御装置10からの制御信号によって捕集基板200の着脱が制御される。 As a configuration for making the collection substrate 200 detachable from the holding portion 4A, a sandwiching mechanism, a vacuum suction mechanism, an electromagnet mechanism, or the like is preferably used. The holding unit 4 </ b> A is electrically connected to the control device 10, and attachment / detachment of the collection substrate 200 is controlled by a control signal from the control device 10.
 <第1の実施の形態の効果>
 第1の実施の形態にかかる捕集装置100が以上の構成であることによって、慣性衝突法を利用して空気中の粒子を捕集するための機構を確保しつつ、捕集基板200を匡体1に容易に搬出入することができる。
<Effect of the first embodiment>
Since the collection device 100 according to the first embodiment has the above-described configuration, the collection substrate 200 is placed while securing a mechanism for collecting particles in the air using the inertial collision method. It can be easily carried in and out of the body 1.
 [第2の実施の形態]
 <装置の全体構成>
 第2の実施の形態にかかる検出装置は、第1の実施の形態にかかる捕集装置100を含み、捕集基板200の表面に捕集された空気中の粒子を検出する。
[Second Embodiment]
<Overall configuration of device>
The detection device according to the second embodiment includes the collection device 100 according to the first embodiment, and detects particles in the air collected on the surface of the collection substrate 200.
 図18は、第2の実施の形態にかかる検出装置500の構成の具体例を示す概略図である。検出装置500は、第1の実施の形態にかかる捕集装置100と、捕集基板200の表面に捕集された粒子を検出するための検出器300とを含む。捕集装置100、駆動部5、および検出器300はいずれも制御装置10と電気的に接続されて、制御装置10によって制御される。制御装置10での制御によって駆動部5は、捕集基板200を捕集装置100の匡体1内である第2の位置とした後に、さらに、検出器300内の所定位置である第3の位置まで移動させる。 FIG. 18 is a schematic diagram illustrating a specific example of the configuration of the detection apparatus 500 according to the second embodiment. The detection device 500 includes the collection device 100 according to the first embodiment and a detector 300 for detecting particles collected on the surface of the collection substrate 200. The collection device 100, the drive unit 5, and the detector 300 are all electrically connected to the control device 10 and controlled by the control device 10. The drive unit 5 controls the control device 10 so that the collection substrate 200 is set to the second position in the housing 1 of the collection device 100 and then the third position which is a predetermined position in the detector 300. Move to position.
 駆動部5が図5に表わされた3軸方向に可動であるものとして、一例を示す。捕集基板200を支持するアームの方向を第1軸方向、アームを上下させる方向を第2軸方向、およびアームごと前後に移動させる方向を第3軸方向とする。捕集装置100および検出器300が第3軸方向に並べて配置されている。捕集装置100の匡体1および検出器300は、第1軸方向にそれぞれ開口部を有している。第2軸方向は、捕集装置100の匡体1および検出器300での捕集基板200の位置決めに用いられる。 An example will be shown assuming that the drive unit 5 is movable in the three-axis directions shown in FIG. The direction of the arm supporting the collection substrate 200 is defined as a first axis direction, the direction in which the arm is moved up and down is defined as a second axis direction, and the direction in which the arm is moved back and forth is defined as a third axis direction. The collection device 100 and the detector 300 are arranged side by side in the third axis direction. The housing 1 and the detector 300 of the collection device 100 each have an opening in the first axial direction. The second axial direction is used for positioning the collection substrate 200 in the housing 1 and the detector 300 of the collection device 100.
 <検出器の構成>
 検出器300での検出方法は特定の方法に限定されず、粒子由来の散乱光を検出する方法や、粒子由来の蛍光を検出する方法や、粒子画像を取得し、該画像認識処理を行なうことによる検出などが好適に採用され得る。
<Configuration of detector>
The detection method of the detector 300 is not limited to a specific method, and a method of detecting scattered light derived from particles, a method of detecting fluorescence derived from particles, or acquiring a particle image and performing the image recognition processing. Detection by the above can be suitably employed.
 図19は、検出器300の構成の具体例を示す概略図である。いずれの検出方法であっても、検出器300は、捕集基板200表面を照射するための光源31と、捕集基板200表面からの光を受光するための受光素子32とを含む。受光素子32は制御装置10に電気的に接続されて、受光量を表わす検出信号を制御装置10に対して入力する。制御装置10は受光量に基づいて粒子量を算出する。 FIG. 19 is a schematic diagram showing a specific example of the configuration of the detector 300. Regardless of the detection method, the detector 300 includes a light source 31 for irradiating the surface of the collection substrate 200 and a light receiving element 32 for receiving light from the surface of the collection substrate 200. The light receiving element 32 is electrically connected to the control device 10 and inputs a detection signal indicating the amount of received light to the control device 10. The control device 10 calculates the particle amount based on the received light amount.
 散乱光を検出する方法の場合、受光素子32は、捕集基板200表面の粒子からの散乱光を測定するためのフォトダイオードや光電子増倍管などが該当する。受光素子32は、光源31の照射方向に対していずれの角度に配置されてもよい。受光素子32は、配置された位置に応じて、前方散乱、側方散乱、後方散乱などを検出する。受光素子32から検出信号を受け付けた制御装置10は、粒子径や粒子内の構成の複雑度などを算出し、予め記憶している基準値と比較することで、目的とする粒子(たとえば生物由来の粒子等)を検出する。または、制御装置10は、粒子の有無や数を確認する場合には、散乱光の信号パルスを計数すればよい。 In the case of a method of detecting scattered light, the light receiving element 32 corresponds to a photodiode or a photomultiplier tube for measuring scattered light from particles on the surface of the collection substrate 200. The light receiving element 32 may be arranged at any angle with respect to the irradiation direction of the light source 31. The light receiving element 32 detects forward scatter, side scatter, back scatter, and the like according to the arranged position. The control device 10 that has received the detection signal from the light receiving element 32 calculates the particle diameter, the complexity of the configuration within the particle, and the like, and compares it with a reference value that is stored in advance, so that the target particle (for example, biological origin) Particles). Or the control apparatus 10 should just count the signal pulse of scattered light, when confirming the presence or absence and number of particle | grains.
 蛍光を検出する方法の場合、光源31は励起光となる光を照射できるものが該当し、受光素子32は粒子からの蛍光を測定するためのフォトダイオードや光電子増倍管やCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどのイメージセンサなどが該当する。図19(A)に表わされたように、検出器300は、必要に応じて蛍光検出用のレンズ34およびバンドパスフィルタ、ロングパスフィルタなどの蛍光検出用のフィルタ35が配されてもよい。また、光源31の照射方向前方には照射方向を整えるための光源用レンズ33が配されてもよい。また、図19(B)に表わされたように、受光素子32の配置される角度によっては、ダイクロイックミラーなどの光路を調整するためのミラー36が配されてもよい。 In the case of a method for detecting fluorescence, the light source 31 corresponds to one that can irradiate light as excitation light, and the light receiving element 32 is a photodiode, a photomultiplier tube, a CCD (Charge Coupled Device) for measuring fluorescence from particles. ) Image sensors such as image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors are applicable. As shown in FIG. 19A, the detector 300 may be provided with a fluorescence detection lens 34 and a fluorescence detection filter 35 such as a band pass filter and a long pass filter as necessary. In addition, a light source lens 33 for adjusting the irradiation direction may be disposed in front of the irradiation direction of the light source 31. As shown in FIG. 19B, a mirror 36 for adjusting an optical path such as a dichroic mirror may be arranged depending on the angle at which the light receiving element 32 is arranged.
 画像認識処理を行なう場合、受光素子32は、捕集基板200表面の粒子画像を測定(撮影)するためのCCDイメージセンサやCMOSイメージセンサなどのイメージセンサなどが該当する。受光素子32から粒子画像を受け付けた制御装置10は、予め記憶している粒子画像と比較することで、目的とする粒子(たとえば生物由来の粒子等)や粒子の有無などを検出する。 When performing image recognition processing, the light receiving element 32 corresponds to an image sensor such as a CCD image sensor or a CMOS image sensor for measuring (photographing) a particle image on the surface of the collection substrate 200. The control device 10 that has received the particle image from the light receiving element 32 detects the target particle (for example, biological particles) and the presence / absence of the particle by comparing with a previously stored particle image.
 制御装置10は、駆動部5を制御することで捕集基板200を捕集装置100の匡体1内である第2の位置として所定時間、ファン3を駆動させて捕集動作を行ない、その後に、駆動部5を制御して捕集基板200を検出器300まで移動させる。検出器300が図19に表わされたような構成である場合、制御装置10は駆動部5を制御することで、検出器300の匡体内の光源31の照射範囲でありかつ受光素子32の受光範囲である第3の位置に捕集基板200を移動させる。その状態で制御装置10は光源31から光を照射させ、受光素子32からの検出信号に基づいて、捕集基板200上の粒子を検出する。 The control device 10 controls the drive unit 5 to drive the fan 3 for a predetermined time as the second position in the housing 1 of the collection device 100 to perform the collection operation, and then performs the collection operation. Then, the drive unit 5 is controlled to move the collection substrate 200 to the detector 300. When the detector 300 has a configuration as shown in FIG. 19, the control device 10 controls the drive unit 5 so that the irradiation range of the light source 31 in the detector 300 and the light receiving element 32 The collection substrate 200 is moved to the third position that is the light receiving range. In this state, the control device 10 emits light from the light source 31 and detects particles on the collection substrate 200 based on a detection signal from the light receiving element 32.
 <第2の実施の形態の効果>
 第2の実施の形態にかかる検出装置500が以上の構成であることによって、捕集動作と検出動作とを一連の動作として1つの装置で行なうことができる。また、制御装置10で駆動手段である駆動部5を制御し、その結果、捕集基板200の移動を制御することができるため、一連の動作を容易に自動化することができる。また、捕集装置100と検出器300とが一体化されることによって、捕集後の捕集基板200の表面への異物の付着、いわゆるコンタミを防ぐことができ、高精度での検出が可能となる。
<Effects of Second Embodiment>
Since the detection device 500 according to the second embodiment has the above-described configuration, the collection operation and the detection operation can be performed as a series of operations by one device. Moreover, since the drive part 5 which is a drive means is controlled by the control apparatus 10, as a result, the movement of the collection board | substrate 200 can be controlled, a series of operation | movement can be automated easily. Further, by integrating the collection device 100 and the detector 300, it is possible to prevent foreign matter from adhering to the surface of the collection substrate 200 after collection, so-called contamination, and detection with high accuracy is possible. It becomes.
 図20はポリスチレン粒子を混入させた空気を検体としたときの検出装置500で撮影された粒子画像であり、図21はカビ菌を混入させた空気を検体としたときの検出装置500で撮影された粒子画像である。いずれの検体を検出する動作であっても、まず、捕集基板200を捕集装置100の匡体1内にセットして検体中の粒子をその表面に捕集し、その後、駆動部5で捕集基板200を検出器300へ搬送し、検出器300で粒子画像を撮影している。検出器300によって得られた粒子画像を制御装置10において画像解析等行なうことで、粒子数を算出することができる。これらの図に示されるように、本実施の形態にかかる検出装置500は、高精度で流体中の粒子を検出することができる。 FIG. 20 is a particle image photographed by the detection apparatus 500 when air mixed with polystyrene particles is used as a specimen, and FIG. 21 is photographed by the detection apparatus 500 when air mixed with fungi is used as a specimen. Particle image. In any operation for detecting any specimen, first, the collection substrate 200 is set in the housing 1 of the collection apparatus 100 to collect particles in the specimen on the surface, and then the drive unit 5 The collection substrate 200 is conveyed to the detector 300, and a particle image is taken by the detector 300. The number of particles can be calculated by performing image analysis or the like in the control device 10 on the particle image obtained by the detector 300. As shown in these drawings, the detection apparatus 500 according to the present embodiment can detect particles in a fluid with high accuracy.
 [第3の実施の形態]
 <装置の全体構成>
 図22は、第3の実施の形態にかかる検出装置500の構成の具体例を示す概略図である。第3の実施の形態にかかる検出装置500は、第1の実施の形態にかかる捕集装置100と、第2の実施の形態にて説明した検出器300と、さらに、加熱器400とを含む。捕集装置100、駆動部5、検出器300、および加熱器400はいずれも制御装置10と電気的に接続されて、制御装置10によって制御される。制御装置10での制御によって駆動部5は、捕集基板200を捕集装置100の匡体1内である第2の位置に移動させ、加熱器400を経て、検出器300内の所定位置である第3の位置まで移動させる。
[Third Embodiment]
<Overall configuration of device>
FIG. 22 is a schematic diagram illustrating a specific example of the configuration of the detection apparatus 500 according to the third embodiment. A detection device 500 according to the third embodiment includes the collection device 100 according to the first embodiment, the detector 300 described in the second embodiment, and a heater 400. . The collection device 100, the drive unit 5, the detector 300, and the heater 400 are all electrically connected to the control device 10 and controlled by the control device 10. The drive unit 5 moves the collection substrate 200 to the second position in the housing 1 of the collection device 100 by the control of the control device 10, passes through the heater 400, and at a predetermined position in the detector 300. Move to a third position.
 <検出原理>
 空気中に浮遊する化学繊維の埃などの非生物由来である粒子も、生物由来の粒子と同様に、紫外光または青色光を照射すると蛍光を発するものがある。しかしながら、生物由来の粒子は加熱によって蛍光強度が増加するのに対して、化学繊維の埃などの非生物由来の粒子は加熱によって蛍光強度が変化しない。第3の実施の形態にかかる検出装置500は、この性質を利用して、空気中の生物由来の粒子を検出する。以下、この原理を詳しく説明する。
<Detection principle>
Some non-living particles, such as chemical fiber dust floating in the air, emit fluorescent light when irradiated with ultraviolet light or blue light, similar to biological particles. However, the fluorescence intensity of biological particles increases by heating, whereas the fluorescence intensity of non-biological particles such as chemical fiber dust does not change by heating. The detection apparatus 500 concerning 3rd Embodiment detects the particle | grains derived from the organism in the air using this property. Hereinafter, this principle will be described in detail.
 図23は、生物由来の粒子である大腸菌の蛍光スペクトルの測定結果である。曲線71は加熱処理前のスペクトルを表し、曲線72は200℃にて5分間加熱処理した後のスペクトルである。また、図24(A)は加熱処理前の、図24(B)は加熱処理後の蛍光顕微鏡写真である。図23に表わされた測定結果、および、図24の(A)と(B)との比較より、加熱処理を施すことによって大腸菌からの蛍光強度が大幅に増加していることがわかる。 FIG. 23 shows the measurement results of the fluorescence spectrum of E. coli, which is a biological particle. A curve 71 represents a spectrum before the heat treatment, and a curve 72 is a spectrum after the heat treatment at 200 ° C. for 5 minutes. FIG. 24A is a fluorescence micrograph before the heat treatment, and FIG. 24B is a fluorescence micrograph after the heat treatment. From the measurement results shown in FIG. 23 and the comparison between (A) and (B) in FIG. 24, it can be seen that the fluorescence intensity from E. coli is greatly increased by the heat treatment.
 同様に、図25は、生物由来の粒子であるバチルス菌の蛍光スペクトルの測定結果である。曲線73は加熱処理前のスペクトルを表し、曲線73は200℃にて5分間加熱処理した後のスペクトルである。また、図26(A)は加熱処理前、図26(B)は加熱処理後の蛍光顕微鏡写真である。図25に表わされた測定結果、および、図26の(A)と(B)との比較より、加熱処理を施すことによってバチルス菌からの蛍光強度が大幅に増加していることがわかる。 Similarly, FIG. 25 shows the measurement results of the fluorescence spectrum of Bacillus bacteria, which are biologically derived particles. A curve 73 represents a spectrum before the heat treatment, and a curve 73 is a spectrum after the heat treatment at 200 ° C. for 5 minutes. FIG. 26A is a fluorescence micrograph before heat treatment, and FIG. 26B is a fluorescence micrograph after heat treatment. From the measurement results shown in FIG. 25 and the comparison between (A) and (B) in FIG. 26, it can be seen that the fluorescence intensity from Bacillus bacteria is greatly increased by the heat treatment.
 同様に、図27は、生物由来の粒子であるカビ菌の蛍光スペクトルの測定結果である。曲線75は加熱処理前のスペクトルを表し、曲線76は200℃にて5分間加熱処理した後のスペクトルである。また、図28(A)は加熱処理前、図28(B)は加熱処理後の蛍光顕微鏡写真である。図27に表わされた測定結果、および、図28の(A)と(B)との比較より、加熱処理を施すことによってカビ菌からの蛍光強度が大幅に増加していることがわかる。 Similarly, FIG. 27 shows the measurement results of the fluorescence spectrum of mold fungi, which are biologically derived particles. A curve 75 represents a spectrum before the heat treatment, and a curve 76 is a spectrum after the heat treatment at 200 ° C. for 5 minutes. FIG. 28A is a fluorescence micrograph before heat treatment, and FIG. 28B is a fluorescence micrograph after heat treatment. From the measurement results shown in FIG. 27 and a comparison between (A) and (B) in FIG. 28, it can be seen that the fluorescence intensity from the mold is significantly increased by the heat treatment.
 これに対して、図29は蛍光を発する埃の蛍光スペクトルの測定結果である。曲線77は加熱処理前のスペクトルを表し、曲線78は200℃にて5分間加熱処理した後のスペクトルである。また、図30(A)は加熱処理前、図30(B)は加熱処理後の蛍光顕微鏡写真である。図29において、曲線77と曲線78はほぼ重なる。すなわち、図29における比較、および、図30の(A)と(B)との比較より、埃からの蛍光強度は加熱処理の前後において変化がないことがわかる。 On the other hand, FIG. 29 shows the measurement result of the fluorescence spectrum of the dust that emits fluorescence. A curve 77 represents a spectrum before the heat treatment, and a curve 78 is a spectrum after the heat treatment at 200 ° C. for 5 minutes. FIG. 30A is a fluorescence micrograph before heat treatment, and FIG. 30B is a fluorescence micrograph after heat treatment. In FIG. 29, the curve 77 and the curve 78 substantially overlap. That is, the comparison in FIG. 29 and the comparison between FIGS. 30A and 30B show that the fluorescence intensity from dust does not change before and after the heat treatment.
 このように、制御装置10は、捕集装置100にて粒子を捕集し、加熱器400にて捕集基板200を所定時間加熱し、検出器300にて加熱後の捕集基板200表面の粒子を測定(粒子画像を撮影)する。したがって、制御装置10は、加熱後の捕集基板200からの蛍光強度が予め記憶しているしきい値以上である粒子を生物由来の粒子として検出することができる。 In this way, the control device 10 collects particles with the collection device 100, heats the collection substrate 200 with the heater 400 for a predetermined time, and heats the surface of the collection substrate 200 after being heated with the detector 300. Measure particles (take a particle image). Therefore, the control apparatus 10 can detect the particle | grains whose fluorescence intensity from the collection board | substrate 200 after a heating is more than the threshold value memorize | stored beforehand as a biological particle.
 また他の例として以下の方法としてもよい。制御装置10は、捕集装置100にて粒子を捕集し、捕集基板200を検出器300まで移動させて、加熱前の捕集基板200表面の粒子を測定(粒子画像を撮影)する。その後、捕集基板200を加熱器400へ移動させて、加熱器400にて捕集基板200を所定時間加熱する。その後、捕集基板200を検出器300まで移動させて、加熱後の捕集基板200表面の粒子を測定(粒子画像を撮影)する。これにより、制御装置10は、加熱前後の捕集基板200からの蛍光強度の差分を予め記憶しているしきい値以上である粒子を生物由来の粒子として検出することができる。 As another example, the following method may be used. The control device 10 collects particles with the collection device 100, moves the collection substrate 200 to the detector 300, and measures particles (takes a particle image) on the surface of the collection substrate 200 before heating. Thereafter, the collection substrate 200 is moved to the heater 400, and the collection substrate 200 is heated by the heater 400 for a predetermined time. Then, the collection board | substrate 200 is moved to the detector 300, and the particle | grains on the collection board | substrate 200 surface after a heating are measured (a particle image is image | photographed). Thereby, the control apparatus 10 can detect the particle | grains more than the threshold value which memorize | stored the difference of the fluorescence intensity from the collection board | substrate 200 before and behind a heating beforehand as a biological particle.
 <第3の実施の形態の効果>
 第3の実施の形態にかかる検出装置500が以上の構成であることによって、加熱後の蛍光強度、または加熱前後の蛍光強度の差分によって、蛍光染色試薬による処理などを必要とせずに、生物由来粒子を非生物由来の粒子から分離して高精度で検出することができる。また、制御装置10で駆動手段である駆動部5を制御し、その結果、捕集基板200の移動を制御することができるため、捕集、加熱、および検出の一連の動作を容易に自動化することができる。
<Effect of the third embodiment>
Since the detection apparatus 500 according to the third embodiment has the above-described configuration, it does not require treatment with a fluorescent staining reagent or the like depending on the fluorescence intensity after heating or the difference in fluorescence intensity before and after heating. Particles can be separated from non-living particles and detected with high accuracy. In addition, since the control unit 10 controls the driving unit 5 which is driving means, and as a result, the movement of the collection substrate 200 can be controlled, a series of operations of collection, heating, and detection can be easily automated. be able to.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 匡体、1A 開口部、2 ノズル基板、2A ノズル、3 ファン、4 保持部、4B 載置台、5 駆動部、10 制御装置、31 光源、32 受光素子、33 光源用レンズ、34 レンズ、35 フィルタ、36 ミラー、61,63 固定具、62 Oリング、100 捕集装置、200 捕集基板、300 検出器、400 加熱器、500 検出装置。 1 housing, 1A opening, 2 nozzle substrate, 2A nozzle, 3 fan, 4 holding unit, 4B mounting table, 5 drive unit, 10 control device, 31 light source, 32 light receiving element, 33 light source lens, 34 lens, 35 Filter, 36 mirror, 61, 63 fixture, 62 O-ring, 100 collection device, 200 collection substrate, 300 detector, 400 heater, 500 detection device.

Claims (7)

  1.  匡体内にセットされた捕集基板の表面で前記匡体内に導入された流体中の粒子を捕集する装置であって、
     前記匡体の少なくとも一面に設置されて、ノズルが削孔されたノズル基板と、
     前記匡体外の前記流体を、前記ノズルを通して前記匡体内に所定の流速で導入するための導入手段と、
     前記捕集基板を、前記匡体外である第1の位置と、前記匡体内であって前記表面が前記ノズルの削孔方向に正面となる第2の位置との間で、前記匡体に設けられた開口部を通して移動させるための駆動手段と、
     前記捕集基板が前記第2の位置となったときに、前記匡体の前記開口部を通過する前記流体への抵抗を前記ノズルを通過する前記流体への抵抗よりも大きくするための抵抗手段とを備える、捕集装置。
    A device for collecting particles in a fluid introduced into the enclosure at the surface of a collection substrate set in the enclosure,
    A nozzle substrate that is installed on at least one surface of the housing and has a nozzle drilled;
    Introducing means for introducing the fluid outside the housing into the housing through the nozzle at a predetermined flow rate;
    The collection substrate is provided in the housing between a first position outside the housing and a second position in the housing where the surface is a front surface in the direction of drilling the nozzle. Drive means for moving through the formed opening;
    Resistance means for making the resistance to the fluid passing through the opening of the housing larger than the resistance to the fluid passing through the nozzle when the collection substrate is in the second position. And a collection device.
  2.  前記抵抗手段は、前記捕集基板が前記第2の位置となったときに、前記匡体の前記開口部に前記駆動手段が存在する状態で、前記開口部の前記駆動手段以外の部分を覆う固定部である、請求項1に記載の捕集装置。 The resistance means covers a portion of the opening other than the driving means in a state where the driving means exists in the opening of the housing when the collection substrate is in the second position. The collection device according to claim 1, wherein the collection device is a fixed portion.
  3.  前記固定部と前記開口部とが接する位置に、前記流体への抵抗を増加させるための部材が設置されている、請求項2に記載の捕集装置。 The collection device according to claim 2, wherein a member for increasing resistance to the fluid is installed at a position where the fixed portion and the opening are in contact with each other.
  4.  前記捕集基板が前記第2の位置となったときに、前記駆動手段は前記匡体外に位置し、前記抵抗手段は、前記匡体の前記開口部を覆う蓋である、請求項1に記載の捕集装置。 The said drive means is located outside the said housing when the said collection board | substrate becomes the said 2nd position, The said resistance means is a lid | cover which covers the said opening part of the said housing. Collection device.
  5.  請求項1~4のいずれかに記載の捕集装置と、
     前記捕集基板の表面に捕集された前記粒子を検出するための検出器とを備え、
     前記駆動手段は、前記捕集基板を前記検出器まで移動させる、検出装置。
    The collecting device according to any one of claims 1 to 4,
    A detector for detecting the particles collected on the surface of the collection substrate;
    The said drive means is a detection apparatus which moves the said collection board | substrate to the said detector.
  6.  前記検出器は、励起光を照射するための光源と蛍光を受光するための受光素子とを含み、
     前記駆動手段は、前記捕集基板を、前記第2の位置とした後に前記捕集基板の前記表面が前記光源から前記励起光の照射される第3の位置に移動させる、請求項5に記載の検出装置。
    The detector includes a light source for irradiating excitation light and a light receiving element for receiving fluorescence,
    The said drive means moves the said collection board | substrate to the 3rd position where the said surface of the said collection board | substrate is irradiated with the said excitation light from the said light source, after setting it as the said 2nd position. Detection device.
  7.  加熱器をさらに備え、
     前記駆動手段は、前記捕集基板を、前記加熱器を所定時間経て前記第3の位置に移動させる、請求項6に記載の検出装置。
    Further comprising a heater,
    The detection device according to claim 6, wherein the driving unit moves the collection substrate to the third position after a predetermined time.
PCT/JP2014/069888 2013-08-30 2014-07-29 Collection device and detection device WO2015029673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179579 2013-08-30
JP2013179579 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029673A1 true WO2015029673A1 (en) 2015-03-05

Family

ID=52586247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069888 WO2015029673A1 (en) 2013-08-30 2014-07-29 Collection device and detection device

Country Status (1)

Country Link
WO (1) WO2015029673A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869178A1 (en) * 2020-01-21 2021-08-25 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
JP2022505288A (en) * 2018-11-16 2022-01-14 パーティクル・メージャーリング・システムズ・インコーポレーテッド Particle sampling systems and methods for robot-controlled manufacturing barrier systems
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination
US12111257B2 (en) 2020-08-26 2024-10-08 Honeywell International Inc. Fluid composition sensor device and method of using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151036A (en) * 1983-02-18 1984-08-29 Agency Of Ind Science & Technol Sampling device for measuring grain size distribution in dust
JPS6015542A (en) * 1983-07-07 1985-01-26 Agency Of Ind Science & Technol Sampling apparatus for measuring dust particle size distribution
JPH078749U (en) * 1993-07-15 1995-02-07 三井造船株式会社 Sampling bar for sludge dewatering cake
JPH07202397A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Flux mist collector
JP3047543U (en) * 1997-09-26 1998-04-14 有限会社ラックオフィス Suspended particulate matter analyzer
JP2004170287A (en) * 2002-11-21 2004-06-17 Shimadzu Corp Collecting device for suspended particulate matter in atmosphere
JP2006329852A (en) * 2005-05-27 2006-12-07 Japan Atom Power Co Ltd:The Dust monitor
JP2010145310A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Particulate matter capturing device and particulate matter measuring device
JP2012127726A (en) * 2010-12-14 2012-07-05 Sharp Corp Detector and detection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151036A (en) * 1983-02-18 1984-08-29 Agency Of Ind Science & Technol Sampling device for measuring grain size distribution in dust
JPS6015542A (en) * 1983-07-07 1985-01-26 Agency Of Ind Science & Technol Sampling apparatus for measuring dust particle size distribution
JPH078749U (en) * 1993-07-15 1995-02-07 三井造船株式会社 Sampling bar for sludge dewatering cake
JPH07202397A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Flux mist collector
JP3047543U (en) * 1997-09-26 1998-04-14 有限会社ラックオフィス Suspended particulate matter analyzer
JP2004170287A (en) * 2002-11-21 2004-06-17 Shimadzu Corp Collecting device for suspended particulate matter in atmosphere
JP2006329852A (en) * 2005-05-27 2006-12-07 Japan Atom Power Co Ltd:The Dust monitor
JP2010145310A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Particulate matter capturing device and particulate matter measuring device
JP2012127726A (en) * 2010-12-14 2012-07-05 Sharp Corp Detector and detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination
JP2022505288A (en) * 2018-11-16 2022-01-14 パーティクル・メージャーリング・システムズ・インコーポレーテッド Particle sampling systems and methods for robot-controlled manufacturing barrier systems
JP7436473B2 (en) 2018-11-16 2024-02-21 パーティクル・メージャーリング・システムズ・インコーポレーテッド Particle sampling system and method for robot-controlled manufacturing barrier systems
US11927509B2 (en) 2018-11-16 2024-03-12 Particle Measuring Systems, Inc. Particle sampling systems and methods for robotic controlled manufacturing barrier systems
EP3869178A1 (en) * 2020-01-21 2021-08-25 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11221288B2 (en) 2020-01-21 2022-01-11 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US12111257B2 (en) 2020-08-26 2024-10-08 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same

Similar Documents

Publication Publication Date Title
WO2015029673A1 (en) Collection device and detection device
CN114270165B (en) Triggered sampling system and method
JP5275522B2 (en) Detection apparatus and detection method for detecting biological particles in air
TWI752180B (en) Vacuum valve with optical sensor
WO2014034355A1 (en) Particle detection device
TW202028715A (en) Detecting nanoparticles on production equipment and surfaces
JP2011083214A (en) Microorganism detection apparatus and detection method
WO2012081285A1 (en) Detection device and detection method
JP2011097861A (en) Apparatus and method for detecting microorganism
Schröder et al. Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples
JP5844071B2 (en) Detection apparatus and detection method
JP2005345464A5 (en)
US9057703B2 (en) Particle detection device
JP2011203166A (en) Collection unit
KR20040107900A (en) System and method for interpreting microorganisms in air
JP2015077102A (en) Heating-cooling device and detection device
JP2012127727A (en) Detector and detection method
JP2013130362A (en) Air cleaner
WO2014192787A1 (en) Detection device
KR100988471B1 (en) Apparatus for analyzing cell in real-time and method for measuring cellular metabolism using the same
JP7533612B2 (en) Analysis Equipment
CN215757354U (en) Gene detection equipment
CN110894462B (en) PCR fluorescence detection device for eliminating aerosol interference
JP2013250135A (en) Detection device and detection method
JP2013247900A (en) Detecting apparatus and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP