WO2012081285A1 - Detection device and detection method - Google Patents

Detection device and detection method Download PDF

Info

Publication number
WO2012081285A1
WO2012081285A1 PCT/JP2011/070357 JP2011070357W WO2012081285A1 WO 2012081285 A1 WO2012081285 A1 WO 2012081285A1 JP 2011070357 W JP2011070357 W JP 2011070357W WO 2012081285 A1 WO2012081285 A1 WO 2012081285A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
particles
separator
detector
detection
Prior art date
Application number
PCT/JP2011/070357
Other languages
French (fr)
Japanese (ja)
Inventor
倫久 川田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012081285A1 publication Critical patent/WO2012081285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids

Definitions

  • the present invention relates to a detection apparatus and a detection method, and more particularly to a detection apparatus and a detection method for detecting particles derived from living organisms floating in the air.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-357532 collects suspended particulate matter in a sample gas on a filter paper.
  • a measuring device detects the amount of suspended particulate matter based on the amount of transmission of ⁇ rays irradiated to the filter paper, and detects the amount of pollen based on the fluorescence intensity generated by irradiating ultraviolet rays.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-189240 also discloses a measuring apparatus that collects and extracts suspended particulate matter in the air on a filter paper.
  • JP 2002-357532 A Japanese Patent Laid-Open No. 2005-189240
  • the conventional measuring apparatus as disclosed in these documents 1 and 2 includes a unit that separates particulate matter in a sample, a unit that sucks the sample, and a unit that collects the unit. Includes a flow controller and a pump. Therefore, there has been a problem that the apparatus becomes large.
  • the present invention has been made in view of such a problem, and can detect a biological particle floating in the air with high accuracy in real time while reducing the size of the device, and the detection device
  • An object of the present invention is to provide a detection method.
  • the detection device is a detection device for detecting first particles, which are particles derived from living organisms in the introduced air, and the introduced air.
  • a separator for separating and removing the second particles having a larger particle diameter than the first particles from the particles inside, and the separator and the air pipe are connected, and the second particles are separated by the separator.
  • a detector for detecting the first particles from the introduced air after being removed in the step, and air outside the detection device is introduced into the separator at a predetermined flow rate, and the detector is passed through the air tube from the separator.
  • an intake device for introducing air.
  • the air intake device detects air to be discharged outside the detection device from the introduction hole for introducing air outside the detection device to the separator, through the inside of the separator, the air pipe, and the inside of the detector. Deployed at any position in the path to the discharge hole of the vessel.
  • the intake device is provided at a position in contact with a discharge hole for discharging air out of the detection device of the detector.
  • the intake device is provided at a position connected to the air pipe of the detector.
  • the separator is a cyclone.
  • the detector is irradiated with the collection member, the light emitting element, the light receiving element for receiving fluorescence, the heater for heating the collection member, and the light emitting element before and after heating.
  • a calculation unit for calculating the amount of biological particles collected by the collection member as the amount of the first particles based on the amount of change in the fluorescence amount from the collection member.
  • a detection method includes: a separator for separating and removing second particles having a particle size larger than the first particles from particles in the introduced air; A method for detecting first particles, which are biological particles in the air introduced into a detection device, using a detection device including a detector connected by an air tube. From the introduction hole for introducing the air outside the device to the separator, through the inside of the separator, the air pipe, and the inside of the detector, to the discharge hole of the detector for discharging the air outside the detection device An intake device for introducing air outside the detection device into the separator at a predetermined flow rate and introducing air from the separator to the detector through an air pipe is provided at any position in the path between .
  • the intake device for a predetermined time, introducing the air outside the detection device into the detection device from the introduction hole of the separator at a predetermined flow rate for a predetermined time, and after the elapse of the predetermined time, Stopping the operation and executing a detection operation in the detector, and the step of executing the detection operation is a step of measuring a fluorescence amount of the collection member included in the detector under irradiation of the light emitting element before heating.
  • the step of measuring the step of measuring the amount of fluorescence under irradiation of the light emitting element after heating of the collecting member, and the amount of fluorescence measured from the collecting member before heating, for collecting after heating Calculating the amount of biological particles collected by the collecting member as the amount of first particles based on the amount of change in fluorescence measured from the member.
  • the present invention it is possible to detect the biological particles floating in the air with high accuracy in real time while reducing the size of the detection device.
  • allergens substances that can cause allergies
  • the diameter of the microorganism is assumed to be approximately 3 [ ⁇ m]. Allergens include mite carcasses, dung, pollen, and the like, and a diameter of about 25 [ ⁇ m] is assumed.
  • FIG. 1 is a diagram illustrating a specific example of a configuration of a detection apparatus 1A according to the first embodiment for performing the above-described detection.
  • a detection apparatus 1A detects biological particles in the introduced air and detects the amount thereof, and is connected by a detector 100 and an air tube 500.
  • a control unit 200 controls the control unit 200.
  • the detector 100 has an introduction hole 10 for introducing air and a discharge hole 11 for discharging internal air.
  • the separator 700 also has an introduction hole 70 for introducing external air and a discharge hole 71 for discharging internal air.
  • the air tube 500 connects the introduction hole 10 of the detector 100 and the discharge hole 71 of the separator 700. As a result, a continuous path is formed from the introduction hole 70 of the separator 700 to the discharge hole 11 of the detector 100.
  • the fan 400 is provided in the above route.
  • the fan 400 is provided at a position in contact with the discharge hole 11 of the detector 100 as shown in FIG. 1.
  • the fan 400 is a mechanism for introducing external air into the separator 700 and at the same time a mechanism for introducing air into the detector 100. Therefore, considering the detection principle of the detector 100 described later, the flow rate of air introduced by the fan 400 is preferably 1 L (liter) / min to 50 L / min.
  • the control unit 200 is electrically connected to the detector 100, the fan 400, and the separator 700, and controls the driving thereof.
  • the fan 400 provided in the discharge hole 11 of the detector 100 is driven in accordance with the control of the control unit 200, so that the direction indicated by the arrow in the figure, that is, the air outside the detection device 1A is removed from the separator 700.
  • the air is introduced into the apparatus through the introduction hole 70, and the air is moved in the direction of exhausting the air in the apparatus from the discharge hole 11 of the detector 100 to the outside of the apparatus.
  • the separator 700 side of the flow path is also referred to as “upstream” or “upstream side”, and the detector 100 side is also referred to as “downstream” or “downstream side”.
  • any detection device having a function of detecting the amount of biological particles from the introduced air can be employed.
  • FIG. 2 is a diagram illustrating a specific example of the configuration of the detector 100.
  • detector 100 includes a detection mechanism, a collection mechanism, and a heating mechanism.
  • detector 100 includes a collection chamber 5 ⁇ / b> A including at least a part of the collection mechanism, separated by wall 5 ⁇ / b> C, which is a partition wall having a hole 5 ⁇ / b> C ′, and a detection mechanism. And a detection chamber 5B.
  • the collection mechanism includes, as an example, a discharge electrode 17, a collection jig 12, and a high voltage power supply 2.
  • the discharge electrode 17 is electrically connected to the negative electrode of the high voltage power source 2.
  • the positive electrode of the high voltage power supply 2 is grounded. As a result, the introduced airborne particles in the air are negatively charged in the vicinity of the discharge electrode 17.
  • the collecting jig 12 is a support substrate 4 made of a glass plate or the like having a conductive transparent film 3.
  • the film 3 is grounded.
  • a potential difference is generated between the discharge electrode 17 and the collection jig 12, and an electric field in the direction indicated by the arrow E in FIG.
  • the negatively charged airborne particles in the air move toward the collecting jig 12 by electrostatic force, are adsorbed on the conductive film 3, and are collected on the collecting jig 12.
  • the charged particles face the discharge electrode 17 of the collecting jig 12, and are adsorbed in a very narrow range corresponding to the irradiation region 15 of the light emitting element (described later). Can be made. Thereby, in the detection process mentioned later, the adsorbed organism-derived particles can be efficiently detected.
  • the support substrate 4 is not limited to a glass plate, but may be ceramic, metal, or the like. Further, the coating 3 formed on the surface of the support substrate 4 is not limited to being transparent. As another example, the support substrate 4 may be configured by forming a metal film on an insulating material such as ceramic. Moreover, when the support substrate 4 is a metal material, it is not necessary to form a film on the surface. Specifically, a silicon substrate, a SUS (Stainless Used Steel) substrate, a copper substrate, or the like can be used as the support substrate 4.
  • the detection mechanism includes a light-emitting element 6 that is a light source, a lens (or a lens group) 7 that is provided in the irradiation direction of the light-emitting element 6 and makes the light from the light-emitting element 6 parallel light or has a predetermined width.
  • the light receiving element 9 and the fluorescence generated by irradiating the suspended fine particles collected on the collecting jig 12 by the collecting mechanism from the light emitting element 6 are collected in the light receiving element 9.
  • a lens or a lens group
  • an aperture and irradiation light that are provided in the irradiation direction of the light emitting element 6 and make the light from the light emitting element 6 parallel light or have a predetermined width enter the light receiving element 9.
  • a filter or filter group
  • Conventional technology can be applied to these configurations.
  • the condenser lens 8 may be made of plastic resin or glass.
  • the light emitting element 6 includes a semiconductor laser or an LED element.
  • the wavelength may be in the ultraviolet or visible region as long as it excites a microorganism to emit fluorescence.
  • the wavelength is from 300 nm to 450 nm, which is contained in a microorganism and excites fluorescent tryptophan, NaDH, riboflavin, and the like efficiently.
  • the light receiving element 9 a conventionally used photodiode, image sensor, or the like is used.
  • the light receiving element 9 is electrically connected to the control unit 200 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the control unit 200.
  • Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass.
  • the lens 7 (or a combination of the lens 7 and the aperture) emits light emitted from the light emitting element 6 onto the surface of the collecting jig 12, thereby forming an irradiation region 15 on the collecting jig 12.
  • the shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like.
  • the irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
  • the filter may be installed in front of the condenser lens 8 or the light receiving element 9.
  • a filter may be composed of a single or a combination of several types of filters. Thereby, it is possible to suppress the stray light reflected by the collection jig 12 and the case 5 from being incident on the light receiving element 9 together with the fluorescence from the particles collected by the collection jig 12. Can do.
  • the heating mechanism includes a heater 91 that is electrically connected to the control unit 200 and whose heating amount (heating time, heating temperature, etc.) is controlled by the control unit 200.
  • a ceramic heater is preferably used as the heater 91. In the following description, a ceramic heater is assumed as the heater 91. However, a far infrared heater, a far infrared lamp, or the like may be used.
  • the heater 91 is a position where the suspended particles in the air collected on the collecting jig 12 can be heated, and is a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9 at least during heating. Deployed.
  • the light-emitting element 6 and the light-receiving element 9 are disposed on the side far from the sensor device with the collection jig 12 interposed therebetween. In this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. Can do. More preferably, as shown in FIG.
  • the heater 91 is surrounded by a heat insulating material.
  • a heat insulating material a glass epoxy resin is preferably used.
  • the collection chamber 5A is provided with a needle-like discharge electrode 17 and a collection jig 12 as a collection mechanism.
  • the introduction hole 10 and the discharge hole 11 are provided in the collection electrode 5 side of the collection chamber 5A and the collection jig 12, respectively. As shown in FIG. 2, the introduction hole 10 may be provided with a filter (prefilter) 10 ⁇ / b> B. Furthermore, the introduction hole 10 and the discharge hole 11 may be provided with a configuration for blocking the incidence of external light so that air can enter and exit the collection chamber 5A.
  • prefilter prefilter
  • a light emitting element 6, a light receiving element 9, and a condenser lens 8 are provided as a detection mechanism.
  • the detection chamber 5B is preferably at least internally coated with black paint or black anodized. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed.
  • the material of the collection chamber 5A and the detection chamber 5B is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used.
  • the introduction hole 10 and the discharge hole 11 are circular with a diameter of 1 mm to 50 mm.
  • the shapes of the introduction hole 10 and the discharge hole 11 are not limited to a circle, but may be other shapes such as an ellipse or a rectangle.
  • a brush 60 for refreshing the surface of the collecting jig 12 is provided at a position in the detection chamber 5B that touches the surface of the collecting jig 12.
  • the brush 60 is connected to a moving mechanism (not shown) controlled by the detection processing unit 40 and moves so as to reciprocate on the collecting jig 12 as indicated by a double-sided arrow B in the drawing. Thereby, dust and microorganisms adhering to the surface of the collecting jig 12 are removed.
  • the collecting jig 12 and the heater 91 constitute a unit.
  • This unit will be referred to as a collection unit 12A in the following description.
  • the heater 91 is preferably disposed on the surface of the collection jig 12 far from the discharge electrode 17 as shown in FIG.
  • the collection unit 12A is mechanically connected to a moving mechanism (not shown) controlled by the control unit 200, and as indicated by a double-sided arrow A in the drawing, that is, from the collection chamber 5A to the detection chamber 5B, the detection chamber 5B.
  • a moving mechanism not shown
  • the heater 91 is a position where airborne particles collected on the collecting jig 12 can be heated, and at least when heated, sensor devices such as the light emitting element 6 and the light receiving element 9 are used. Therefore, it is not included in the collection unit 12A and may be provided at another position. As will be described later, when the heating operation is performed in the collection chamber 5A, the heater 91 is not included in the collection unit 12A, and is a position of the collection chamber 5A where the collection unit 12A is set, and a collection jig. 12 may be fixed to the side opposite to the sensor device such as the light emitting element 6 and the light receiving element 9.
  • the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. be able to.
  • the collection jig 12 may be included in the collection unit 12A.
  • FIG. 4 is a diagram for explaining the operation of the collection unit 12A.
  • a cover 65 ⁇ / b> A having protrusions on the top and bottom is provided at the end of the collection unit 12 ⁇ / b> A farthest from the wall 5 ⁇ / b> C.
  • An adapter 65B corresponding to the cover 65A is provided around the hole 5C ′ on the surface of the wall 5C on the collection chamber 5A side.
  • the adapter 65B is provided with a recess that fits into the protrusion of the cover 65A, whereby the cover 65A and the adapter 65B are completely joined to cover the hole 5C '.
  • the cover 65A is joined to the adapter 65B so that the hole 5C ′ is completely covered, and the inside of the detection chamber 5B is shielded from light. As a result, the incidence in the detection chamber 5B is blocked while the detection operation is being performed in the detection chamber 5B.
  • the above example is an example which is the structure which isolate
  • the configuration of the detector 100 is not limited to the configuration shown in FIGS. 1 and 2, and as another example, the configuration for collecting and the mechanism for detecting are integrated. Also good.
  • FIG. 5 is a diagram illustrating another example of the configuration of the detector 100.
  • detector 100 includes case 5 provided with introduction hole 10 and discharge hole 11, and a detection mechanism, a collection mechanism, and a heating mechanism are included therein. .
  • the light emitting element 6 and the lens 7, and the light receiving element 9 and the condenser lens 8 are provided at a right angle or a substantially right angle when viewed from the upper surface in FIG.
  • the reflected light from the irradiation region 15 formed on the surface of the collecting jig 12 travels in the direction corresponding to the incident on the irradiation region 15. Therefore, with this configuration, the reflected light does not directly enter the light receiving element 9.
  • the arrangement is not limited to the illustrated arrangement as long as it is an arrangement that can prevent the reflected light and stray light from entering the light receiving element 9.
  • the collection jig 12 has a spherical recess formed in the irradiation region 15 as an example of a configuration for collecting fluorescence from the particles collected on the surface corresponding to the irradiation region 15 in the light receiving element 9. May be. Furthermore, the collection jig 12 may be preferably provided so as to be inclined by a predetermined angle in the direction toward the light receiving element 9 so that the surface of the collection jig 12 faces the light receiving element 9. With this configuration, there is an advantage that the fluorescence emitted isotropically from the particles in the spherical recess is reflected by the spherical surface and collected in the direction of the light receiving element 9, and the light reception signal can be increased.
  • the size of the depression is not limited, but is preferably larger than the irradiation region 15.
  • shutters 16A and 16B are installed in the introduction hole 10 and the discharge hole 11, respectively.
  • the shutters 16A and 16B are electrically connected to the control unit 200, and their opening and closing are controlled. By closing the shutters 16A and 16B, the inflow of air into the case 5 and the incidence of external light are blocked.
  • the controller 200 closes the shutters 16A and 16B to block the inflow of air into the case 5 and the incidence of external light. Thereby, the collection of suspended particles in the collection mechanism is interrupted during the measurement of fluorescence.
  • stray light in the case 5 can be suppressed by blocking external light from entering the case 5 when measuring fluorescence.
  • either one of the shutters 16A and 16B for example, at least the shutter 16B of the discharge hole 11 may be provided.
  • FIG. 6 shows the measurement results of fluorescence spectra before and after heat treatment (curve 79) when Escherichia coli as biological particles was heat treated at 200 ° C. for 5 minutes. is there. From the measurement results shown in FIG. 6, it was found that the fluorescence intensity from E. coli was significantly increased by the heat treatment. In addition, by comparing the fluorescence micrograph before the heat treatment shown in FIG. 7A with the fluorescence micrograph after the heat treatment shown in FIG. 7B, the fluorescence intensity from E. coli is greatly increased by the heat treatment. It is clear that it has increased.
  • FIG. 8 shows measurement results of fluorescence spectra before and after heat treatment (curve 74) when Bacillus bacteria as biological particles were heat treated at 200 ° C. for 5 minutes.
  • 9A is a fluorescence micrograph before heat treatment
  • FIG. 9B is a fluorescence micrograph after heat treatment.
  • FIG. 10 shows measurement results of fluorescence spectra before and after the heat treatment (curve 76) when the green mold as biological particles was heat-treated at 200 ° C. for 5 minutes, and after the heat treatment (curve 76).
  • FIG. 11A is a fluorescence micrograph before heat treatment
  • FIG. 11B is a fluorescence micrograph after heat treatment.
  • FIG. 12A is a fluorescence micrograph before heat treatment and FIG. As shown in these figures, it was found that the fluorescence intensity of particles derived from other organisms was significantly increased by heat treatment as in the case of E. coli.
  • FIG. 13A and FIG. 13B show measurement of fluorescence spectra before and after the heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively.
  • 14A is a fluorescence micrograph after the heat treatment
  • FIG. 14B is a result.
  • the fluorescence spectrum shown in FIG. 13A and the fluorescence spectrum shown in FIG. 13B were overlapped, it was verified that they almost overlap as shown in FIG. That is, as shown in the result of FIG. 15 and the comparison between FIG. 13A and FIG. 13B, it was found that the fluorescence intensity from dust did not change before and after the heat treatment.
  • the above-mentioned phenomenon that has been verified is applied. That is, in the air, dust, dust to which biological particles are attached, and biological particles are mixed. Based on the above-mentioned phenomenon, when dust that emits fluorescence is mixed in the collected particles, the fluorescence spectrum measured before heat treatment includes fluorescence from biological particles and fluorescence from dust that emits fluorescence. In other words, it is impossible to distinguish biological particles from chemical fiber dust.
  • the heat treatment increases the fluorescence intensity of only biological particles, and does not change the fluorescence intensity of the dust that emits fluorescence. Therefore, by measuring the difference between the fluorescence intensity before the heat treatment and the fluorescence intensity after the predetermined heat treatment, the amount of biologically derived particles can be determined.
  • a cyclone using a centrifugal force is preferably used as the separator 700.
  • FIG. 16A and FIG. 16B are schematic views of the configuration of a separator 700 employing a cyclone.
  • 16A is a view of the separator 700 as viewed from the side where the introduction hole 70 is lateral and the discharge hole 71 is up
  • FIG. 16B is a view as seen from the discharge hole 71 side.
  • the surface represented in FIG. 16A is the front surface of the separator 700
  • the surface represented in FIG. 16B is the top surface of the separator 700.
  • Separator 700 employing a cyclone extends to the above-mentioned flow path, and a cylinder (outer cylinder) whose diameter is smaller than that of the cylinder (outer cylinder) whose upper and lower sides in the extension direction are closed is an upper part in the extension direction.
  • the center of the circle has a shape inserted downward from the same position as the outer cylinder.
  • the upper part of the inner cylinder is opened to form a discharge hole 71.
  • the diameter Dc indicates the diameter of the outer cylinder
  • the diameter Dd indicates the diameter of the inner cylinder, that is, the diameter of the discharge hole 71
  • the height h indicates the height of the outer cylinder as a cyclone separation chamber. Point to.
  • the outer shape of the separator 700 employing a cyclone is not limited to the outer cylinder, but may be a conical shape having a circular upper surface with a diameter Dc and a taper on the side surface from the upper surface toward the lower surface.
  • the predetermined thickness from the upper surface may be a cylindrical shape, and the lower portion may be a conical shape.
  • a cylindrical introduction pipe for introducing external air which is also called an inlet, has a shape inserted in a circular tangential direction of the cross section. Both ends of the introduction tube are open, and an introduction hole 70 is formed at the end opposite to the separator 700.
  • the area Ai indicates the cross-sectional area of the introduction hole 70.
  • particles having a particle diameter larger than a predetermined length are placed in the lower part of the separator 700 as indicated by a dotted arrow in FIG.
  • Small particles are separated at the top as shown by the solid arrows in FIG.
  • particles smaller than the separated particle diameter Dpc separated in the upper part are discharged from the discharge hole 71 by the rising air flow generated by the suction force of the fan 400 and reach the detector 100 through the air tube 500.
  • the centrifugal force acting on the particles increases as the velocity of the introduced air (flow velocity vi) increases, and as the diameter Dc of the outer cylinder decreases and the rotation radius decreases.
  • the centrifugal force acting on the particles increases as the particle diameter increases, and the particles are easily dropped, that is, separated from the air.
  • the separated particle diameter Dpc in the cyclone obtained by this principle is defined by the following formula (1).
  • Dpc is the separated particle size (m)
  • ⁇ p is the particle density (kg / m 3 )
  • is the fluid density (kg / m 3 )
  • is the air viscosity (Pa ⁇ s)
  • vi is introduced.
  • Ai is the cross-sectional area (m 2 ) of the introduction hole 70
  • Dd is the cyclone inner cylinder diameter (m)
  • Dc is the cyclone outer cylinder diameter (m)
  • h Indicates the height (m) of the cyclone separation chamber.
  • each part of the separator 700 employing a cyclone is not limited to a specific size.
  • the size of each part, in particular, the cross-sectional area Ai, the outer cylinder diameter Dc, and the inner cylinder diameter Dd affects the separated particle diameter Dpc. Therefore, in order to remove allergens from organism-derived particles floating in the air and accurately detect the amount of microorganisms, it is necessary to set an optimum separation particle diameter Dpc.
  • the outer cylinder diameter Dc and the inner cylinder diameter Dd are required.
  • the inventor conducts experiments with different cross-sectional areas Ai, outer cylinder diameters Dc, inner cylinder diameters Dd, and flow rates Qi, and performs separation based on the results. While determining the specific shape of the vessel 700, the optimum flow rate was also determined.
  • FIG. 17 is a diagram showing the relationship between the separated particle diameter Dpc and the flow rate Qi obtained from the equation (1), and the relationship when the curve A in FIG. 17 sets the shape of the separator 700 to the first shape.
  • the relationship when the curve B is the second shape is shown.
  • the hatched area above the separation particle diameter of 15 ⁇ m represents the particle diameter area to which the allergen belongs
  • the hatched area below the separation particle diameter of 5 ⁇ m represents the particle diameter area to which the microorganism belongs.
  • the inventor actually uses the first shape separator 700 or the second shape separator 700 with respect to the detection apparatus shown in FIG.
  • An experiment was conducted in which dust was collected on the collection jig 12 to evaluate the separation and collection ability.
  • the detection apparatus 1A is set to two states, a state including the separator 700 which is a cyclone and a state not including the separator 700, and the amount of collection in the state including the separator 700 is separated.
  • the ratio with respect to the collection amount in the state where the vessel 700 is not included was calculated as the separation and collection ability.
  • the separation / capacity of 0% represents that particles of the target size were separated and removed from the air introduced by the separator 700, which is a cyclone, and the separation / capacity of 100% represents that the particles were separated.
  • the separator 700 passes through without being separated, and reaches the detector 100 through the air tube 500.
  • the entire detection apparatus 1A is put in a measurement chamber having a volume of 1 m 3 , and after spraying polystyrene particles having a diameter of 3 ⁇ m as particles corresponding to microorganisms or pollen (25 ⁇ m in diameter) as an allergen into the chamber, the detector 100
  • the applied voltage at the high voltage power source 2 was set to ⁇ 5 kV, and the detection apparatus 1A was operated for 5 minutes.
  • the separator 700 of each shape was set so that external air was introduced by a fan 400 driven by a fan motor (not shown). It was confirmed that the fan motor can be operated at a flow rate of 2 to 20 L / min, and it was confirmed that no wind noise was generated during the cyclone operation.
  • the inventor changed the flow rate Qi of the air introduced into the separator 700 according to each experimental condition. Then, the number of particles on the collection jig 12 was counted under each condition, and the amount of collected per 1 L was compared between the state including the separator 700 and the state not including the separator 700, and the separation and collection ability was calculated.
  • Condition 1 a total of four conditions each represented by the following conditions 1 to 4 marked with a circle in FIG. 17 were adopted:
  • Condition 1 The first shape separator 700 is used and the flow rate Qi is set to 1.6 L / min, that is, the separation particle diameter Dpc in this case is 26 ⁇ m from the above formula (1)
  • Condition 2 The first shape separator 700 is used and the flow rate Qi is set to 10 L / min, that is, the separation particle diameter Dpc in this case is 11 ⁇ m from the above formula (1)
  • Condition 3 The first shape separator 700 is used and the flow rate Qi is set to 20 L / min, that is, the separation particle diameter Dpc in this case is 7.5 ⁇ m from the above formula (1).
  • Condition 4 The second shape separator 700 is used, and the flow rate Qi is set to 20 L / min, that is, the separation particle diameter Dpc in this case is 4.5 ⁇ m from the above formula (1).
  • FIGS. 18 to 21 are diagrams showing the separation and collection ability of particles and pollen corresponding to the microorganisms obtained in the first experiment under the above experimental conditions 1 to 4, respectively.
  • FIG. 22 is a diagram showing the separation and collection ability of particles and pollen corresponding to the microorganisms obtained in the second experiment.
  • the control unit 200 controls the detection control unit 201, which is a function for controlling detection by the detector 100, and the operation of a fan motor (not shown) to the detection device 1A by the fan 400. And a fan control unit 202 which is a function for controlling the introduction of air.
  • the control unit 200 is electrically connected to a switch for accepting an operation to start a detection operation (not shown), and starts a detection operation in response to an operation signal from the switch.
  • an applied voltage for operating a fan motor (not shown) according to the set flow rate of the fan 400 is set in advance, and the voltage is applied to the fan motor at the start of the detection operation.
  • FIG. 23 is a diagram illustrating a specific example of the configuration of the detection control unit 201 of the control unit 200.
  • FIG. 23 shows an example in which a part of the function of the detection control unit 201 is realized by a hardware configuration mainly including an electric circuit.
  • all of the functions of the control unit 200 may be a software configuration realized by a CPU (not shown) included in the control unit 200 executing a predetermined program, or all of the functions of the control unit 200 may be performed. You may implement
  • detection control unit 201 is roughly divided into a signal processing unit 30 for processing a signal from light receiving element 9 and a detection processing unit 40 for performing control and calculation processing of detector 100. It consists of.
  • the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
  • the detection processing unit 40 includes a storage unit 42, a clock generation unit 47, and a control unit 49. Further, the detection processing unit 40 drives an input unit 44 for receiving an input signal from a switch for inputting an instruction to start a detection operation (not shown) and a moving mechanism for the heater 91 and the collection unit 12A (not shown). Drive unit 48.
  • the fluorescence from the particles in the irradiation region 15 is collected on the light receiving element 9.
  • a current signal corresponding to the amount of received light is output from the light receiving element 9 to the signal processing unit 30.
  • the current signal is input to the current-voltage conversion circuit 34.
  • the current-voltage conversion circuit 34 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh.
  • the voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 35 and output to the detection processing unit 40.
  • the detection control unit 201 of the detection processing unit 40 receives an input of the voltage value Eh from the signal processing unit 30 and sequentially stores it in the storage unit 42.
  • the clock generation unit 47 generates a clock signal and outputs it to the control unit 49.
  • the control unit 49 outputs a control signal for performing NO / OFF of the heater 91 or moving the collection unit 12 ⁇ / b> A to the drive unit 48 at a timing based on the clock signal. In synchronization with this, the fan control unit 202 is notified of the drive timing of the fan motor.
  • a control signal for opening and closing the shutters 16A and 16B is output to the drive unit 48 to control the opening and closing of the shutters 16A and 16B. Further, the control unit 49 is electrically connected to the light emitting element 6 and the light receiving element 9 and controls ON / OFF thereof.
  • the control unit 49 includes a calculation unit 41.
  • the calculation unit 41 an operation for calculating the amount of microorganisms in the introduced air is performed using the voltage value Eh stored in the storage unit 42.
  • ⁇ Detection operation 1> When the start of detection in the detection apparatus 1A is instructed by a switch or the like (not shown), the detection operation is started by the control unit 200 that receives the input of the signal.
  • FIG. 24 is a flowchart showing the flow of the detection operation.
  • the operation shown in the flowchart of FIG. 24 is realized by a CPU (not shown) of the control unit 200 reading and executing a program stored in a memory (not shown) and controlling each unit of FIG.
  • the allergen such as pollen is separated and removed from the air introduced into the separator 700, and the air after the removal reaches the detector 100 through the air tube 500.
  • Particles in the air introduced into the collection chamber 5A of the detector 100 are charged to a negative charge by the discharge electrode 17, and the air flow by the fan 400 and the coating 3 on the surface of the discharge electrode 17 and the collection jig 12 are detected. Due to the electric field formed therebetween, the light is collected in a narrow range corresponding to the irradiation region 15 on the surface of the collection jig 12.
  • the fan control unit 202 ends the driving of the fan 400, that is, ends the collection operation.
  • the air from which allergen has been removed by the separator 700 is introduced into the collection chamber 5A through the introduction hole 10 for the time ⁇ T1, and particles in the air are collected on the surface of the collection jig 12.
  • the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber 5B.
  • a detection operation is performed in S35.
  • the detection control unit 201 causes the light emitting element 6 to emit light, and causes the light receiving element 9 to receive the fluorescence for a predetermined measurement time ⁇ T2.
  • the light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles.
  • a voltage value corresponding to the fluorescence intensity F ⁇ b> 1 is input to the detection processing unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S31 before heating is measured.
  • the measurement time ⁇ T2 may be set in advance in the detection control unit 201, or may be input or changed by operating a switch (not shown).
  • the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received.
  • Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0.
  • the detection control unit 201 When the measurement operation of S35 is completed, in S37, the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the detection chamber 5B to the collection chamber 5A. When the movement is completed, a heating operation is performed in S39. In S39, the detection control unit 201 causes the heater 91 to perform heating for a time ⁇ T3 which is a predetermined heat treatment time. The heating temperature at this time is defined in advance.
  • a cooling operation is performed in S41.
  • the fan control unit 202 rotates the fan 400 reversely for a predetermined cooling time. It cools by making external air touch the collection unit 12A.
  • the heat treatment time ⁇ T3, the heating temperature, and the cooling time may also be set in advance in the detection control unit 201, or may be input and changed by operating a switch (not shown).
  • the collection unit 12A After the collection unit 12A is moved to the collection chamber 5A in S37, a heating operation and a cooling operation are performed in the collection chamber 5A. After the cooling, the collection unit 12A is moved to the detection chamber 5B, so that the heater is heated. 91 is located at a distance separated from the sensor device such as the light emitting element 6 and the light receiving element 9 and is also separated by the wall 5C and the like, thereby suppressing the influence of heat on the light emitting element 6, the light receiving element 9 and the like. Can do.
  • the heater 91 is in the collection chamber 5A separated from the sensor devices such as the light emitting element 6 and the light receiving element 9 by the wall 5C and the like at the time of heating as described above, the heater 91 is disposed in the collection unit 12A.
  • the surface far from the discharge electrode 17, that is, the surface far from the light emitting element 6, the light receiving element 9, etc. when the collection unit 12 ⁇ / b> A moves to the detection chamber 5 ⁇ / b> B may not be present. It may be on the side.
  • the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber 5B. Let When the movement is completed, the detection operation is performed again in S45.
  • the detection operation in S45 is the same as the detection operation in S35.
  • the voltage value according to the fluorescence intensity F2 here is input to the detection processing unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S2 after heating is measured.
  • the refresh operation of the collection unit 12A is performed in S47.
  • the detection control unit 201 operates a mechanism for moving the brush 60, and reciprocates the brush 60 a predetermined number of times on the surface of the collection unit 12A.
  • the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the detection chamber 5B to the collection chamber 5A. Thereby, the next collection operation (S31) can be started immediately upon receiving the start instruction.
  • the calculation unit 41 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ⁇ F.
  • the increase amount ⁇ F is related to the amount of biological particles (number of particles or concentration, etc.).
  • the calculation unit 41 stores in advance a correspondence relationship between the increase amount ⁇ F and the amount (concentration) of biological particles as shown in FIG. Then, the calculation unit 41 sets the concentration obtained by using the calculated increase amount ⁇ F and the corresponding relationship as the concentration of biological particles in the air introduced into the case 5 during the time ⁇ T1. calculate.
  • the correspondence relationship between the increase amount ⁇ F and the concentration of biological particles is experimentally determined in advance.
  • a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed into a 1 m 3 container using a nebulizer, and the concentration of microorganisms is maintained at N / m 3.
  • the microorganisms collected at a predetermined heating amount (heating time ⁇ T3, predetermined heating temperature) are subjected to heat treatment by the heater 91, and after cooling for a predetermined time ⁇ T4, the amount of increase in fluorescence intensity before and after heating ⁇ Measure F.
  • the same measurement is performed for various microorganism concentrations, whereby the relationship between the increase ⁇ F and the concentration (pieces / m 3 ) shown in FIG. 25 is obtained.
  • the correspondence relationship between the increase amount ⁇ F and the concentration of biological particles may be stored in the calculation unit 41 by being input by operating a switch (not shown). Further, the correspondence relationship once stored in the calculation unit 41 may be updated by the detection control unit 201.
  • the calculation unit 41 specifies the value corresponding to the increase amount ⁇ F1 from the correspondence relationship in FIG. 25 to thereby determine the concentration N1 (particles / m 3 ) of biological particles. ) Is calculated.
  • the calculation unit 41 defines any biological particle as a standard, and stores the correspondence between the increase amount ⁇ F and the concentration of the biological particle.
  • grains in various environments is calculated as a density
  • the increase ⁇ F uses the difference in fluorescence intensity before and after the heat treatment of a predetermined heating amount (predetermined heating temperature, heating time ⁇ T3), but these ratios are used. May be.
  • FIG. 26 is a time chart showing the flow of control in the control unit 200 when the detector 100 has the configuration shown in FIG.
  • the control shown in FIG. 26 is realized by a CPU (not shown) of the control unit 200 reading and executing a program stored in a memory (not shown) to control each unit shown in FIG.
  • fan control unit 202 drives fan 400. Further, the detection control unit 201 outputs a control signal for opening (ON) the drive mechanism of the shutters 16A and 16B at time T1 based on the clock signal from the clock generation unit 47. Thereafter, at time T2 after time ⁇ T1 has elapsed from time T1, the detection control unit 201 outputs a control signal for closing the shutters 16A and 16B.
  • the shutters 16A and 16B are opened, and external air is introduced into the separator 700 by driving the fan 400. Allergens such as pollen are separated and removed from the introduced air, and the air after removal is introduced into the detector 100 through the air tube 500. Particles in the air introduced into the case 5 are negatively charged by the discharge electrode 17, and due to the flow of air and the electric field formed between the discharge electrode 17 and the coating 3 on the surface of the collecting jig 12, It is collected on the surface of the collecting jig 12 for a time ⁇ T1.
  • the shutters 16A and 16B are closed, and the air flow in the case 5 stops. Thereby, collection of the floating particles by the collection jig 12 is completed. This also blocks stray light from the outside.
  • the detection control unit 201 outputs a control signal for starting (ON) light reception to the light receiving element 9 at time T2 when the shutters 16A and 16B are closed. Further, at the same time (time T2) or at time T3 slightly delayed from time T2, a control signal for starting (ON) light emission to the light emitting element 6 is output. After that, at time T4 after the time ⁇ T2 which is a predetermined measurement time for measuring fluorescence intensity from time T3, the detection control unit 201 controls the light receiving element 9 to end (OFF) light reception. And a control signal for causing the light emitting element 6 to end (OFF) light emission.
  • the measurement time may be preset in the detection control unit 201, or may be input or changed by operating a switch (not shown).
  • irradiation from the light emitting element 6 is started from time T3 (or time T2).
  • the light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles.
  • Fluorescence for a prescribed measurement time ⁇ T2 from time T3 is received by the light receiving element 9, and a voltage value corresponding to the fluorescence intensity F1 is input to the detection processing unit 40 and stored in the storage unit 42.
  • the detection control unit 201 generates a control signal for starting (ON) heating of the heater 91 at time T4 (or time slightly delayed from time T4) when the light emission of the light emitting element 6 and the light reception of the light receiving element 9 are terminated. Output. Then, at time T5 after the elapse of time ⁇ T3, which is a predetermined heat treatment time for the heat treatment from the start of heating of the heater 91 (time T4 or a time slightly delayed from time T4), the detection control unit 201 detects the heater 91. Outputs a control signal for finishing (OFF) heating.
  • the heat treatment is performed on the particles collected in the irradiation region 15 on the surface of the collection jig 12 by the heater 91 from the time T4 (or a time slightly delayed from the time T4) to the heat treatment time ⁇ T3.
  • the heating temperature at this time is defined in advance.
  • a predetermined heating amount is applied to the particles collected on the surface of the collection jig 12.
  • the heat treatment time ⁇ T3 (that is, the heating amount) may also be set in advance in the detection control unit 201 as in the case of the above measurement time, and may be input or changed by operating a switch (not shown). It may be done.
  • the fan 400 may be used for the cooling process.
  • external air may be taken in from an inlet (not shown) provided with a separate HEPA (High Efficiency Particulate Air) filter.
  • a cooling mechanism such as a Peltier element may be used separately.
  • the fan control unit 202 outputs a control signal for terminating the operation of the fan 400, and the detection control unit 201 outputs a control signal for starting (ON) light reception by the light receiving element 9 at time T6. Further, at the same time (time T6) or at time T7 slightly delayed from time T6, a control signal for starting (ON) the light emitting element 6 to emit light is output. Thereafter, at time T8 after the measurement time ⁇ T2 has elapsed from time T7, the detection control unit 201 causes the light receiving element 9 to end (OFF) light reception, and causes the light emitting element 6 to end (OFF) light emission. Control signal for output.
  • the light collected by the light receiving element 9 receives the fluorescence for the measurement time ⁇ T2 after the particles collected from the light emitting element 6 to the irradiation region 15 on the surface of the collecting jig 12 are heated for the time ⁇ T3. Is done.
  • the voltage value corresponding to the fluorescence intensity F2 is input to the detection processing unit 40 and stored in the storage unit 42.
  • the calculation unit 41 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ⁇ F. Then, in the same manner as described above, the biologically derived particles obtained using the calculated increase amount ⁇ F and the correspondence (FIG. 25) between the increase amount ⁇ F and the microorganism amount (concentration) stored in advance. Is calculated as the concentration of biological particles in the air introduced into the collection chamber 5A during the time ⁇ T1.
  • the detection apparatus 1 ⁇ / b> A includes the separator 700 and the detector 100, and the separator 700 has the shape described above. Allergen is removed from airborne particles with high accuracy, and then detection by the detector 100 is performed. Thereby, detection accuracy can be improved.
  • the detector 100 uses a difference in properties due to heat treatment between fluorescence from biological particles and fluorescence from dust that emits fluorescence as described above. Even when the fluorescent substance contains dust that emits fluorescence, the microorganisms can be separated and detected from the fluorescent substance dust in real time and with high accuracy.
  • a mechanism for introducing air into the detector 100 and a mechanism for introducing air into the separator 700 are provided as one fan 400 provided on the flow path. It is also used in. Thereby, compared with the case where each is provided separately, the number of members used for 1 A of detection apparatuses can be suppressed. Further, the control can be simplified as compared with the case where the introduction of air is controlled using a pump, a mass flow controller or the like. Therefore, it is possible to reduce the size and cost of the entire detection device.
  • the position where the fan 400 is provided may be any position as long as it is on the flow path of the detection device, and is not limited to the position shown in FIG.
  • the fan 400 is provided at the position of the discharge hole 11 of the detector 100, that is, the most downstream of the flow path of the detection apparatus 1A, and rotates. Therefore, a suction force is generated in the detection apparatus 1A.
  • it may be provided up to the introduction hole 70 of the most upstream separator 700, that is, upstream of the position shown in FIG. Therefore, an example in which the fan 400 is provided at a position different from that of the first embodiment will be described as the second embodiment.
  • FIG. 27 is a diagram illustrating a specific example of the configuration of the detection apparatus 1B according to the second embodiment.
  • the fan 400 is provided in the air tube 500 at the position of the introduction hole 10 of the detector 100.
  • the air tube 500 may be provided at a position in contact with the discharge hole 71 of the separator 700 or may be provided at a position in contact with the introduction hole 70 of the separator 700.

Abstract

A detection device (1A) includes a separator (700) for separating particles larger than micro-organisms under detection, and a detector (100), which is connected by an air tube (500), for detecting biological particles in the air. A fan (400) is disposed on a flow path from the separator to the detector via the air tube. According to the rotation of the fan, outside air is introduced to the separator, and air from which large particles have been isolated is transported to the detector via the air tube.

Description

検出装置および検出方法Detection apparatus and detection method
 この発明は検出装置および検出方法に関し、特に、空気中に浮遊する生物由来の粒子を検出する検出装置および検出方法に関する。 The present invention relates to a detection apparatus and a detection method, and more particularly to a detection apparatus and a detection method for detecting particles derived from living organisms floating in the air.
 空気中に浮遊する生物由来の粒子を検出するための検出装置として、たとえば、特開2002-357532号公報(以下、特許文献1)は、試料ガス中の浮遊粒子状物質をろ紙上に捕集し、該ろ紙に照射したβ線の透過量に基づいて浮遊粒子状物質量を検知し、紫外線を照射して発生する蛍光強度に基づいて花粉量を検知する測定装置を開示している。 As a detection device for detecting biological particles floating in the air, for example, Japanese Patent Laid-Open No. 2002-357532 (hereinafter referred to as Patent Document 1) collects suspended particulate matter in a sample gas on a filter paper. In addition, a measuring device is disclosed that detects the amount of suspended particulate matter based on the amount of transmission of β rays irradiated to the filter paper, and detects the amount of pollen based on the fluorescence intensity generated by irradiating ultraviolet rays.
 また、特開2005-189240号公報(以下、特許文献2)もまた、ろ紙上に空気中の浮遊粒子状物質を捕集して抽出する測定装置を開示している。 Japanese Patent Laid-Open No. 2005-189240 (hereinafter referred to as Patent Document 2) also discloses a measuring apparatus that collects and extracts suspended particulate matter in the air on a filter paper.
特開2002-357532号公報JP 2002-357532 A 特開2005-189240号公報Japanese Patent Laid-Open No. 2005-189240
 しかしながら、これら文献1、2で開示されているような従来の測定装置は、試料中の粒子状物質を分離するユニットと、試料を吸引するユニットと、捕集するユニットとを含み、吸引するユニットはフローコントローラとポンプとを含んでいる。そのため、装置が大型化するという問題があった。 However, the conventional measuring apparatus as disclosed in these documents 1 and 2 includes a unit that separates particulate matter in a sample, a unit that sucks the sample, and a unit that collects the unit. Includes a flow controller and a pump. Therefore, there has been a problem that the apparatus becomes large.
 本発明はそのような問題に鑑みてなされたものであって、装置の小型化を図りつつ空気中に浮遊する生物由来の粒子を高精度でリアルタイムに検出することができる検出装置および該検出装置における検出方法を提供することを目的の一つとする。 The present invention has been made in view of such a problem, and can detect a biological particle floating in the air with high accuracy in real time while reducing the size of the device, and the detection device An object of the present invention is to provide a detection method.
 上記目的を達成するために、本発明のある局面に従うと、検出装置は導入された空気中の生物由来の粒子である第1の粒子を検出するための検出装置であって、導入された空気中の粒子から、第1の粒子よりも粒子径の大きい第2の粒子を分離して除去するための分離器と、分離器とエア管で接続され、分離器で第2の粒子が分離して除去された後の導入された空気から第1の粒子を検出するための検出器と、分離器に所定の流速で当該検出装置外の空気を導入し、分離器からエア管を経て検出器まで空気を導入するための吸気装置とを備える。吸気装置は、検出装置外の空気を分離器へ導入するための導入孔から、分離器の内部、エア管、および検出器の内部を経て、当該検出装置外へ空気を排出するための、検出器の排出孔までの間の経路のいずれかの位置に配備される。 In order to achieve the above object, according to one aspect of the present invention, the detection device is a detection device for detecting first particles, which are particles derived from living organisms in the introduced air, and the introduced air. A separator for separating and removing the second particles having a larger particle diameter than the first particles from the particles inside, and the separator and the air pipe are connected, and the second particles are separated by the separator. A detector for detecting the first particles from the introduced air after being removed in the step, and air outside the detection device is introduced into the separator at a predetermined flow rate, and the detector is passed through the air tube from the separator. And an intake device for introducing air. The air intake device detects air to be discharged outside the detection device from the introduction hole for introducing air outside the detection device to the separator, through the inside of the separator, the air pipe, and the inside of the detector. Deployed at any position in the path to the discharge hole of the vessel.
 好ましくは、吸気装置は、検出器の検出装置外へ空気を排出するための排出孔に接する位置に設けられる。 Preferably, the intake device is provided at a position in contact with a discharge hole for discharging air out of the detection device of the detector.
 好ましくは、吸気装置は、検出器のエア管に接続される位置に設けられる。
 好ましくは、分離器はサイクロンである。
Preferably, the intake device is provided at a position connected to the air pipe of the detector.
Preferably, the separator is a cyclone.
 好ましくは、検出器は、捕集用部材と、発光素子と、蛍光を受光するための受光素子と、捕集用部材を加熱するためのヒータと、加熱の前後での、発光素子で照射された捕集用部材からの蛍光量の変化量に基づいて、捕集用部材で捕集された生物由来の粒子量を第1の粒子の量として算出するための算出部とを含む。 Preferably, the detector is irradiated with the collection member, the light emitting element, the light receiving element for receiving fluorescence, the heater for heating the collection member, and the light emitting element before and after heating. And a calculation unit for calculating the amount of biological particles collected by the collection member as the amount of the first particles based on the amount of change in the fluorescence amount from the collection member.
 本発明の他の局面に従うと、検出方法は、導入された空気中の粒子から第1の粒子よりも粒子径の大きい第2の粒子を分離して除去するための分離器と、分離器とエア管で接続された検出器とを含む検出装置を用いて、検出装置に導入された空気中の生物由来の粒子である第1の粒子を検出する方法であって、検出装置には、検出装置外の空気を分離器へ導入するための導入孔から、分離器の内部、エア管、および検出器の内部を経て、当該検出装置外へ空気を排出するための、検出器の排出孔までの間の経路のいずれかの位置に、分離器に所定の流速で当該検出装置外の空気を導入し、分離器からエア管を経て検出器まで空気を導入するための吸気装置が配備される。そして、吸気装置を所定時間稼動することにより、所定時間、所定の流速で検出装置外の空気を分離器の導入孔から検出装置内に導入するステップと、所定時間の経過の後、吸気装置の稼動を停止し、検出器における検出動作を実行するステップとを備え、検出動作を実行するステップは、検出器に含まれる捕集用部材の、加熱前における発光素子の照射下での蛍光量を測定するステップと、捕集用部材の、加熱後における発光素子の照射下での蛍光量を測定するステップと、加熱前の捕集用部材から測定された蛍光量から、加熱後の捕集用部材から測定された蛍光量への変化量に基づいて、捕集用部材で捕集された生物由来の粒子量を第1の粒子の量として算出するステップとを含む。 According to another aspect of the present invention, a detection method includes: a separator for separating and removing second particles having a particle size larger than the first particles from particles in the introduced air; A method for detecting first particles, which are biological particles in the air introduced into a detection device, using a detection device including a detector connected by an air tube. From the introduction hole for introducing the air outside the device to the separator, through the inside of the separator, the air pipe, and the inside of the detector, to the discharge hole of the detector for discharging the air outside the detection device An intake device for introducing air outside the detection device into the separator at a predetermined flow rate and introducing air from the separator to the detector through an air pipe is provided at any position in the path between . Then, by operating the intake device for a predetermined time, introducing the air outside the detection device into the detection device from the introduction hole of the separator at a predetermined flow rate for a predetermined time, and after the elapse of the predetermined time, Stopping the operation and executing a detection operation in the detector, and the step of executing the detection operation is a step of measuring a fluorescence amount of the collection member included in the detector under irradiation of the light emitting element before heating. The step of measuring, the step of measuring the amount of fluorescence under irradiation of the light emitting element after heating of the collecting member, and the amount of fluorescence measured from the collecting member before heating, for collecting after heating Calculating the amount of biological particles collected by the collecting member as the amount of first particles based on the amount of change in fluorescence measured from the member.
 この発明によると、検出装置の小型化を図りつつ、空気中に浮遊する生物由来の粒子を高精度でリアルタイムに検出することができる。 According to the present invention, it is possible to detect the biological particles floating in the air with high accuracy in real time while reducing the size of the detection device.
第1の実施の形態にかかる検出装置の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the detection apparatus concerning 1st Embodiment. 検出装置に含まれる検出器の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the detector contained in a detection apparatus. 検出器の捕集治具およびヒータ周辺の構成を示す図である。It is a figure which shows the structure of the collection jig | tool of a detector, and heater periphery. 捕集ユニットの動作を説明する図である。It is a figure explaining operation | movement of a collection unit. 検出器の構成の他の具体例を示す図である。It is a figure which shows the other specific example of a structure of a detector. 大腸菌を200℃にて5分間加熱処理したときの、加熱処理前および加熱処理後の蛍光スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the fluorescence spectrum after heat processing when Escherichia coli is heat-processed at 200 degreeC for 5 minute (s). 大腸菌を200℃にて5分間加熱処理したときの、加熱処理前の蛍光顕微鏡写真である。It is the fluorescence micrograph before heat processing when colon_bacillus | E._coli is heat-processed for 5 minutes at 200 degreeC. 大腸菌を200℃にて5分間加熱処理したときの、加熱処理後での蛍光顕微鏡写真である。It is a fluorescence micrograph after heat processing when Escherichia coli is heat-processed at 200 degreeC for 5 minute (s). バチルス菌を200℃にて5分間加熱処理したときの、加熱処理前および加熱処理後の蛍光スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the fluorescence spectrum before heat processing when a Bacillus microbe is heat-processed at 200 degreeC for 5 minute (s), and after heat processing. バチルス菌を200℃にて5分間加熱処理したときの、加熱処理前の蛍光顕微鏡写真である。It is a fluorescence micrograph before heat processing when Bacillus bacteria are heat-processed at 200 degreeC for 5 minute (s). バチルス菌を200℃にて5分間加熱処理したときの、加熱処理後での蛍光顕微鏡写真である。It is the fluorescence micrograph after heat processing when Bacillus bacteria are heat-processed at 200 degreeC for 5 minute (s). アオカビ菌を200℃にて5分間加熱処理したときの、加熱処理前および加熱処理後の蛍光スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the fluorescence spectrum before and after heat processing when a blue mold is heat-processed at 200 degreeC for 5 minute (s). アオカビ菌を200℃にて5分間加熱処理したときの、加熱処理前の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph before heat processing when the blue mold is heat-processed at 200 degreeC for 5 minute (s). アオカビ菌を200℃にて5分間加熱処理したときの、加熱処理後での蛍光顕微鏡写真である。It is a fluorescence-microscope photograph after heat processing when heat-treating a mold fungus at 200 degreeC for 5 minutes. スギ花粉を200℃にて5分間加熱処理したときの、加熱処理前の蛍光顕微鏡写真である。It is a fluorescence micrograph before heat processing when cedar pollen is heat-processed at 200 degreeC for 5 minute (s). スギ花粉を200℃にて5分間加熱処理したときの、加熱処理後での蛍光顕微鏡写真である。It is a fluorescence micrograph after heat processing when cedar pollen is heat-processed at 200 degreeC for 5 minute (s). 蛍光を発する埃を200℃にて5分間加熱処理したときの、加熱処理前の蛍光スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the fluorescence spectrum before heat processing when the dust which emits fluorescence is heat-processed for 5 minutes at 200 degreeC. 蛍光を発する埃を200℃にて5分間加熱処理したときの、加熱処理後での蛍光スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the fluorescence spectrum after heat processing when the dust which emits fluorescence is heat-processed at 200 degreeC for 5 minute (s). 蛍光を発する埃を200℃にて5分間加熱処理したときの、加熱処理前の蛍光顕微鏡写真である。It is the fluorescence microscope photograph before heat processing when the dust which emits fluorescence is heat-processed for 5 minutes at 200 degreeC. 蛍光を発する埃を200℃にて5分間加熱処理したときの、加熱処理後での蛍光顕微鏡写真である。It is the fluorescence microscope photograph after heat processing when the dust which emits fluorescence is heat-processed at 200 degreeC for 5 minute (s). 蛍光を発する埃を200℃にて5分間加熱処理したときの、加熱処理前および加熱処理後の蛍光スペクトルの比較結果を示す図である。It is a figure which shows the comparison result of the fluorescence spectrum before and after heat processing when the dust which emits fluorescence is heat-processed at 200 degreeC for 5 minute (s). サイクロンを採用した分離器の構成の概略図である。It is the schematic of the structure of the separator which employ | adopted the cyclone. サイクロンを採用した分離器の構成の概略図である。It is the schematic of the structure of the separator which employ | adopted the cyclone. サイクロンの形状を第1の形状と第2の形状とにしたときの、分離粒子径と流量との関係を示す図である。It is a figure which shows the relationship between a separated particle diameter and a flow volume when the shape of a cyclone is made into the 1st shape and the 2nd shape. 発明者による第1の実験の結果を示す図である。It is a figure which shows the result of the 1st experiment by the inventor. 発明者による第1の実験の結果を示す図である。It is a figure which shows the result of the 1st experiment by the inventor. 発明者による第1の実験の結果を示す図である。It is a figure which shows the result of the 1st experiment by the inventor. 発明者による第1の実験の結果を示す図である。It is a figure which shows the result of the 1st experiment by the inventor. 発明者による第2の実験の結果を示す図である。It is a figure which shows the result of the 2nd experiment by an inventor. 制御部の検出制御部の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the detection control part of a control part. 検出器での検出動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the detection operation | movement with a detector. 加熱処理前後での蛍光強度の増大量と生物由来の粒子の濃度との対応関係を示す図である。It is a figure which shows the correspondence of the increase amount of the fluorescence intensity before and behind heat processing, and the density | concentration of the particle | grains of biological origin. 検出制御部での制御の流れの他の具体例を示すタイムチャートである。It is a time chart which shows the other specific example of the flow of control in a detection control part. 第2の実施の形態にかかる検出装置の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the detection apparatus concerning 2nd Embodiment.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same.
 <検出装置での検出の概要>
 検出装置を用い、該検出装置に導入された空気に浮遊している生物由来の粒子からアレルギーの原因となり得る物質(以下、アレルゲン)とを分離し、アレルゲンが除去された空気中での微生物の量を検出する。微生物の直径はおおよそ3[μm]が想定される。アレルゲンとしては、ダニの死骸やふん、花粉などが該当し、その直径はおおよそ25[μm]が想定される。
<Overview of detection by the detection device>
Using a detection device, substances that can cause allergies (hereinafter referred to as allergens) are separated from biological particles suspended in the air introduced into the detection device, and the microorganisms in the air from which allergens have been removed are separated. Detect the amount. The diameter of the microorganism is assumed to be approximately 3 [μm]. Allergens include mite carcasses, dung, pollen, and the like, and a diameter of about 25 [μm] is assumed.
 [第1の実施の形態]
 <装置の全体構成>
 図1は、上記検出を行なうための、第1の実施の形態にかかる検出装置1Aの構成の具体例を示す図である。
[First Embodiment]
<Overall configuration of device>
FIG. 1 is a diagram illustrating a specific example of a configuration of a detection apparatus 1A according to the first embodiment for performing the above-described detection.
 図1を参照して、検出装置1Aは、導入された空気中の生物由来の粒子を検出し、その量を測定するための検出器100と、検出器100とエア管500で接続された、導入された空気中の粒子からそのサイズに応じてアレルゲンを分離して除去するための分離器700と、検出装置1Aに外部空気を導入するための吸気装置としてのファン400と、これらを制御するための制御部200とを含む。 Referring to FIG. 1, a detection apparatus 1A detects biological particles in the introduced air and detects the amount thereof, and is connected by a detector 100 and an air tube 500. Separator 700 for separating and removing allergens from the introduced particles in the air according to their size, fan 400 as an intake device for introducing external air into detection device 1A, and these are controlled. And a control unit 200.
 検出器100は、空気を導入するための導入孔10と内部空気を排出するための排出孔11とを有する。また、分離器700も、外部空気を導入するための導入孔70と内部空気を排出するための排出孔71とを有する。エア管500は、検出器100の導入孔10と分離器700の排出孔71とを接続する。これにより、分離器700の導入孔70から検出器100の排出孔11までが、連続した経路を形成する。 The detector 100 has an introduction hole 10 for introducing air and a discharge hole 11 for discharging internal air. The separator 700 also has an introduction hole 70 for introducing external air and a discharge hole 71 for discharging internal air. The air tube 500 connects the introduction hole 10 of the detector 100 and the discharge hole 71 of the separator 700. As a result, a continuous path is formed from the introduction hole 70 of the separator 700 to the discharge hole 11 of the detector 100.
 ファン400は上記経路内に設けられる。検出装置1Aでは、図1に示されるようにファン400は検出器100の排出孔11に接した位置に設けられる。後述するように、ファン400は、分離器700に外部空気を導入するための機構であると同時に、検出器100に空気を導入するための機構でもある。そのため、後述する検出器100での検出原理を考慮すると、ファン400で導入する空気の流速は、好ましくは、1L(リットル)/minから50L/minである。 The fan 400 is provided in the above route. In the detection apparatus 1 </ b> A, the fan 400 is provided at a position in contact with the discharge hole 11 of the detector 100 as shown in FIG. 1. As will be described later, the fan 400 is a mechanism for introducing external air into the separator 700 and at the same time a mechanism for introducing air into the detector 100. Therefore, considering the detection principle of the detector 100 described later, the flow rate of air introduced by the fan 400 is preferably 1 L (liter) / min to 50 L / min.
 制御部200は、検出器100、ファン400、および分離器700と電気的に接続され、これらの駆動を制御する。 The control unit 200 is electrically connected to the detector 100, the fan 400, and the separator 700, and controls the driving thereof.
 検出器100の排出孔11に設けられたファン400は制御部200での制御に従って駆動することで、図中の矢印で表わされた向き、つまり、検出装置1A外の空気を分離器700の導入孔70から装置内に導入し、装置内の空気を検出器100の排出孔11から装置外に排気する方向で空気を移動させる。これにより、上記経路が流路として機能する。なお、以降の説明において、上記流路の分離器700側を「上流」または「上流側」、および検出器100側を「下流」または「下流側」とも称する。 The fan 400 provided in the discharge hole 11 of the detector 100 is driven in accordance with the control of the control unit 200, so that the direction indicated by the arrow in the figure, that is, the air outside the detection device 1A is removed from the separator 700. The air is introduced into the apparatus through the introduction hole 70, and the air is moved in the direction of exhausting the air in the apparatus from the discharge hole 11 of the detector 100 to the outside of the apparatus. Thereby, the said path | route functions as a flow path. In the following description, the separator 700 side of the flow path is also referred to as “upstream” or “upstream side”, and the detector 100 side is also referred to as “downstream” or “downstream side”.
 <検出部の構成>
 検出器100として、導入された空気から生物由来の粒子の量を検出する機能を有するあらゆる検出装置を採用することができる。
<Configuration of detection unit>
As the detector 100, any detection device having a function of detecting the amount of biological particles from the introduced air can be employed.
 図2は、検出器100の構成の具体例を示す図である。
 図2を参照して、検出器100は、検出機構と捕集機構と加熱機構とを含む。詳しくは、図2を参照して、検出器100は孔5C’を有する区切り壁である壁5Cで隔てられた、捕集機構の少なくとも一部を含んだ捕集室5Aと、検出機構を含んだ検出室5Bとを備える。
FIG. 2 is a diagram illustrating a specific example of the configuration of the detector 100.
Referring to FIG. 2, detector 100 includes a detection mechanism, a collection mechanism, and a heating mechanism. Specifically, referring to FIG. 2, detector 100 includes a collection chamber 5 </ b> A including at least a part of the collection mechanism, separated by wall 5 </ b> C, which is a partition wall having a hole 5 </ b> C ′, and a detection mechanism. And a detection chamber 5B.
 捕集機構は、一例として、放電電極17、捕集治具12、および高圧電源2を含む。放電電極17は高圧電源2の負極に電気的に接続される。高圧電源2の正極は接地される。これにより、導入された空気中の浮遊粒子は放電電極17付近にて負に帯電される。 The collection mechanism includes, as an example, a discharge electrode 17, a collection jig 12, and a high voltage power supply 2. The discharge electrode 17 is electrically connected to the negative electrode of the high voltage power source 2. The positive electrode of the high voltage power supply 2 is grounded. As a result, the introduced airborne particles in the air are negatively charged in the vicinity of the discharge electrode 17.
 捕集治具12は、導電性の透明の皮膜3を有する、ガラス板などからなる支持基板4である。皮膜3は、接地される。これにより、放電電極17と捕集治具12と間に電位差が発生し、これらの間に図2の矢印Eに示される向きの電界が構成される。負に帯電された空気中の浮遊粒子は静電気力で捕集治具12の方向に移動して導電性の皮膜3に吸着され、捕集治具12上に捕集される。 The collecting jig 12 is a support substrate 4 made of a glass plate or the like having a conductive transparent film 3. The film 3 is grounded. As a result, a potential difference is generated between the discharge electrode 17 and the collection jig 12, and an electric field in the direction indicated by the arrow E in FIG. The negatively charged airborne particles in the air move toward the collecting jig 12 by electrostatic force, are adsorbed on the conductive film 3, and are collected on the collecting jig 12.
 ここで、放電電極17として針状電極を用いることによって、帯電した粒子を捕集治具12の放電電極17に対面する、(後述する)発光素子の照射領域15に対応したきわめて狭い範囲に吸着させることができる。これにより、後述する検出工程において、吸着された生物由来の粒子を効率的に検出することができる。 Here, by using a needle-like electrode as the discharge electrode 17, the charged particles face the discharge electrode 17 of the collecting jig 12, and are adsorbed in a very narrow range corresponding to the irradiation region 15 of the light emitting element (described later). Can be made. Thereby, in the detection process mentioned later, the adsorbed organism-derived particles can be efficiently detected.
 支持基板4は、ガラス板には限定されず、その他、セラミック、金属等であってもよい。また、支持基板4表面に形成される皮膜3は、透明に限定されない。他の例として、支持基板4は、金属皮膜をセラミック等の絶縁材料の上に形成して構成されてもよい。また、支持基板4が金属材料の場合は、その表面に皮膜を形成する必要もない。具体的には、支持基板4として、シリコン基板、SUS(Stainless Used Steel)基板、銅基板などが利用できる。 The support substrate 4 is not limited to a glass plate, but may be ceramic, metal, or the like. Further, the coating 3 formed on the surface of the support substrate 4 is not limited to being transparent. As another example, the support substrate 4 may be configured by forming a metal film on an insulating material such as ceramic. Moreover, when the support substrate 4 is a metal material, it is not necessary to form a film on the surface. Specifically, a silicon substrate, a SUS (Stainless Used Steel) substrate, a copper substrate, or the like can be used as the support substrate 4.
 検出機構は、光源である発光素子6と、発光素子6の照射方向に備えられ、発光素子6からの光を平行光にする、または所定幅とするためのレンズ(またはレンズ群)7と、受光素子9と、受光素子9の受光方向に備えられ、捕集機構により捕集治具12上に捕集された浮遊微粒子に発光素子6から照射することにより生じる蛍光を受光素子9に集光するための集光レンズ(またはレンズ群)8とを含む。その他、発光素子6の照射方向に備えられ、発光素子6からの光を平行光にする、または所定幅とするためのレンズ(またはレンズ群)、アパーチャ、照射光が受光素子9に入り込むのを防ぐためのフィルタ(またはフィルタ群)などが含まれてもよい。これらの構成は、従来技術を応用できる。集光レンズ8は、プラスチック樹脂製またはガラス製でよい。 The detection mechanism includes a light-emitting element 6 that is a light source, a lens (or a lens group) 7 that is provided in the irradiation direction of the light-emitting element 6 and makes the light from the light-emitting element 6 parallel light or has a predetermined width. The light receiving element 9 and the fluorescence generated by irradiating the suspended fine particles collected on the collecting jig 12 by the collecting mechanism from the light emitting element 6 are collected in the light receiving element 9. And a condensing lens (or a lens group) 8. In addition, a lens (or a lens group), an aperture, and irradiation light that are provided in the irradiation direction of the light emitting element 6 and make the light from the light emitting element 6 parallel light or have a predetermined width enter the light receiving element 9. A filter (or filter group) for prevention may be included. Conventional technology can be applied to these configurations. The condenser lens 8 may be made of plastic resin or glass.
 発光素子6は、半導体レーザまたはLED素子を含む。波長は、微生物を励起して蛍光を発させるものであれば、紫外または可視いずれの領域の波長でもよい。好ましくは、特表2008-508527号公報に開示されているように、微生物中に含まれ、蛍光を発するトリプトファン、NaDH、リボフラビン等が効率よく励起される300nmから450nmである。受光素子9は、従来用いられている、フォトダイオード、イメージセンサなどが用いられる。 The light emitting element 6 includes a semiconductor laser or an LED element. The wavelength may be in the ultraviolet or visible region as long as it excites a microorganism to emit fluorescence. Preferably, as disclosed in JP-A-2008-508527, the wavelength is from 300 nm to 450 nm, which is contained in a microorganism and excites fluorescent tryptophan, NaDH, riboflavin, and the like efficiently. As the light receiving element 9, a conventionally used photodiode, image sensor, or the like is used.
 受光素子9は制御部200に電気的に接続されて、受光量に比例した電流信号を信号処理部30に対して出力する。従って、導入された空気中に浮遊し、捕集治具12表面に捕集された粒子に発光素子6から光が照射されることによって該粒子から発光された蛍光は、受光素子9において受光され、制御部200においてその受光量が検出される。 The light receiving element 9 is electrically connected to the control unit 200 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the control unit 200.
 レンズ7および集光レンズ8は、いずれも、プラスチック樹脂製またはガラス製でよい。レンズ7(またはレンズ7とアパーチャとの組み合わせ)により、発光素子6の発光は捕集治具12の表面に照射され、捕集治具12上に照射領域15を形成する。照射領域15の形状に限定はなく、円形、楕円形、四角形などであってよい。照射領域15は特定のサイズに限定されないが、好ましくは、円の直径または楕円の長軸方向の長さまたは四角形の1辺の長さが約0.05mmから50mmである。 Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass. The lens 7 (or a combination of the lens 7 and the aperture) emits light emitted from the light emitting element 6 onto the surface of the collecting jig 12, thereby forming an irradiation region 15 on the collecting jig 12. The shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like. The irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
 上記フィルタが集光レンズ8または受光素子9の前に設置されてもよい。かかるフィルタは、単一または数種のフィルタの組み合わせで構成されるものでよい。これにより、捕集治具12で捕集された粒子からの蛍光と共に、発光素子6からの照射光が捕集治具12やケース5に反射した迷光が受光素子9に入射することを抑えることができる。 The filter may be installed in front of the condenser lens 8 or the light receiving element 9. Such a filter may be composed of a single or a combination of several types of filters. Thereby, it is possible to suppress the stray light reflected by the collection jig 12 and the case 5 from being incident on the light receiving element 9 together with the fluorescence from the particles collected by the collection jig 12. Can do.
 加熱機構は、制御部200に電気的に接続され、制御部200によって加熱量(加熱時間、加熱温度等)が制御されるヒータ91を含む。ヒータ91としては、好適にはセラミックヒータが用いられる。以降の説明ではヒータ91としてセラミックヒータが想定されているが、その他、遠赤外線ヒータや遠赤外線ランプなどであってもよい。 The heating mechanism includes a heater 91 that is electrically connected to the control unit 200 and whose heating amount (heating time, heating temperature, etc.) is controlled by the control unit 200. A ceramic heater is preferably used as the heater 91. In the following description, a ceramic heater is assumed as the heater 91. However, a far infrared heater, a far infrared lamp, or the like may be used.
 ヒータ91は、捕集治具12上に捕集された空気中の浮遊粒子を加熱し得る位置であって、少なくとも加熱時には発光素子6、受光素子9等のセンサ機器から何かによって隔てられる位置に配備される。好ましくは、図2に表わされたように、捕集治具12を間に挟んで発光素子6、受光素子9等のセンサ機器から遠い側に配備される。このようにすることにより加熱時にヒータ91は捕集治具12によって発光素子6、受光素子9等のセンサ機器から隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。より好ましくは、図3に示されるように、ヒータ91は周囲が断熱材で囲まれる。断熱材としては、好適にはガラスエポキシ樹脂が用いられる。このように構成することによって、セラミックヒータであるヒータ91が約2分で200℃に到達したときに断熱材を介してヒータ91に接続される部分(図示せず)の温度が30℃以下であったことを発明者が確認している。 The heater 91 is a position where the suspended particles in the air collected on the collecting jig 12 can be heated, and is a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9 at least during heating. Deployed. Preferably, as shown in FIG. 2, the light-emitting element 6 and the light-receiving element 9 are disposed on the side far from the sensor device with the collection jig 12 interposed therebetween. In this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. Can do. More preferably, as shown in FIG. 3, the heater 91 is surrounded by a heat insulating material. As the heat insulating material, a glass epoxy resin is preferably used. By configuring in this way, when the heater 91 which is a ceramic heater reaches 200 ° C. in about 2 minutes, the temperature of the portion (not shown) connected to the heater 91 via the heat insulating material is 30 ° C. or less. The inventor confirmed that there was.
 捕集室5Aには、捕集機構として針状の放電電極17および捕集治具12が配備される。 The collection chamber 5A is provided with a needle-like discharge electrode 17 and a collection jig 12 as a collection mechanism.
 導入孔10および排出孔11は、それぞれ、捕集室5Aの放電電極17側および捕集治具12に設けられる。図2に示されるように、導入孔10にはフィルタ(プレフィルタ)10Bが設けられてもよい。さらに、導入孔10および排出孔11には、捕集室5A内への空気の出入りは可能として外部光の入射を遮断するための構成が備えられてもよい。 The introduction hole 10 and the discharge hole 11 are provided in the collection electrode 5 side of the collection chamber 5A and the collection jig 12, respectively. As shown in FIG. 2, the introduction hole 10 may be provided with a filter (prefilter) 10 </ b> B. Furthermore, the introduction hole 10 and the discharge hole 11 may be provided with a configuration for blocking the incidence of external light so that air can enter and exit the collection chamber 5A.
 検出室5Bには、検出機構として発光素子6、受光素子9、および集光レンズ8が配備される。 In the detection chamber 5B, a light emitting element 6, a light receiving element 9, and a condenser lens 8 are provided as a detection mechanism.
 検出室5Bは、好ましくは、少なくとも内部に、黒色塗料の塗布または、黒色アルマイト処理等が施される。これにより、迷光の原因となる内部壁面での光の反射が抑えられる。捕集室5Aおよび検出室5B筐体の材質は特定の材質に限定されないが、好ましくは、プラスチック樹脂、アルミもしくはステンレスなどの金属、またはそれらの組み合わせが用いられる。導入孔10および排出孔11は、直径が1mmから50mmの円形である。導入孔10および排出孔11の形状は円形に限定されず、楕円形、四角形など他の形状であってもよい。 The detection chamber 5B is preferably at least internally coated with black paint or black anodized. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed. The material of the collection chamber 5A and the detection chamber 5B is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used. The introduction hole 10 and the discharge hole 11 are circular with a diameter of 1 mm to 50 mm. The shapes of the introduction hole 10 and the discharge hole 11 are not limited to a circle, but may be other shapes such as an ellipse or a rectangle.
 検出室5B内の、捕集治具12表面に触れる位置には、捕集治具12表面をリフレッシュするためのブラシ60が設けられる。ブラシ60は、検出処理部40によって制御される図示しない移動機構に接続され、図中の両側矢印Bに示されるように、すなわち、捕集治具12上を往復するように移動する。これにより、捕集治具12表面に付着した埃や微生物が取り除かれる。 A brush 60 for refreshing the surface of the collecting jig 12 is provided at a position in the detection chamber 5B that touches the surface of the collecting jig 12. The brush 60 is connected to a moving mechanism (not shown) controlled by the detection processing unit 40 and moves so as to reciprocate on the collecting jig 12 as indicated by a double-sided arrow B in the drawing. Thereby, dust and microorganisms adhering to the surface of the collecting jig 12 are removed.
 捕集治具12とヒータ91とは、ユニットを構成する。このユニットを以降の説明において捕集ユニット12Aと称する。捕集ユニット12Aにおいて、ヒータ91は、好ましくは、図2に表わされたように、捕集治具12の放電電極17から遠い側の面に配備される。捕集ユニット12Aは制御部200によって制御される図示しない移動機構に機械的に接続され、図中の両側矢印Aに示されるように、すなわち、捕集室5Aから検出室5Bへ、検出室5Bから捕集室5Aへ、壁5Cに設けられた孔5C’を通って移動する。 The collecting jig 12 and the heater 91 constitute a unit. This unit will be referred to as a collection unit 12A in the following description. In the collection unit 12A, the heater 91 is preferably disposed on the surface of the collection jig 12 far from the discharge electrode 17 as shown in FIG. The collection unit 12A is mechanically connected to a moving mechanism (not shown) controlled by the control unit 200, and as indicated by a double-sided arrow A in the drawing, that is, from the collection chamber 5A to the detection chamber 5B, the detection chamber 5B. To the collection chamber 5A through the hole 5C 'provided in the wall 5C.
 なお、上述のように、ヒータ91は、捕集治具12上に捕集された空気中の浮遊粒子を加熱し得る位置であって、少なくとも加熱時には発光素子6、受光素子9等のセンサ機器から何かによって隔てられる位置に配備されればよいため、捕集ユニット12Aに含まれず、他の位置に備えられてもよい。後述するように加熱動作が捕集室5Aで行なわれる場合、ヒータ91は捕集ユニット12Aに含まれず、捕集室5Aの、捕集ユニット12Aがセットされる位置であって、捕集治具12の、発光素子6、受光素子9等のセンサ機器と反対側に固定されていてもよい。このようにすることよっても加熱時にはヒータ91は捕集治具12によって発光素子6、受光素子9等のセンサ機器から隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。この場合、捕集ユニット12Aには少なくとも捕集治具12が含まれていればよい。 As described above, the heater 91 is a position where airborne particles collected on the collecting jig 12 can be heated, and at least when heated, sensor devices such as the light emitting element 6 and the light receiving element 9 are used. Therefore, it is not included in the collection unit 12A and may be provided at another position. As will be described later, when the heating operation is performed in the collection chamber 5A, the heater 91 is not included in the collection unit 12A, and is a position of the collection chamber 5A where the collection unit 12A is set, and a collection jig. 12 may be fixed to the side opposite to the sensor device such as the light emitting element 6 and the light receiving element 9. Even in this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. be able to. In this case, at least the collection jig 12 may be included in the collection unit 12A.
 図4は、捕集ユニット12Aの動作を説明する図である。図4に示されるように、捕集ユニット12Aの壁5Cから最も遠い側の端部には、上下に突起を有したカバー65Aが備えられる。壁5Cの捕集室5A側の面であって、孔5C’の周囲には、カバー65Aに対応したアダプタ65Bが備えられる。アダプタ65Bには、カバー65Aの上記突起に嵌合する凹部が設けられ、これによりカバー65Aとアダプタ65Bとが完全に接合され、孔5C’を覆うことになる。すなわち、捕集ユニット12Aが図4中の矢印A’の方向に、孔5C’を通って捕集室5Aから検出室5Bへ移動し、捕集ユニット12Aが完全に検出室5Bに入った時点で、カバー65Aがアダプタ65Bに接合されて孔5C’が完全に覆われ、検出室5B内が遮光される。これにより、検出室5Bで検出動作が行なわれている間には検出室5B内への入射が遮断される。 FIG. 4 is a diagram for explaining the operation of the collection unit 12A. As shown in FIG. 4, a cover 65 </ b> A having protrusions on the top and bottom is provided at the end of the collection unit 12 </ b> A farthest from the wall 5 </ b> C. An adapter 65B corresponding to the cover 65A is provided around the hole 5C ′ on the surface of the wall 5C on the collection chamber 5A side. The adapter 65B is provided with a recess that fits into the protrusion of the cover 65A, whereby the cover 65A and the adapter 65B are completely joined to cover the hole 5C '. That is, when the collection unit 12A moves from the collection chamber 5A to the detection chamber 5B through the hole 5C ′ in the direction of arrow A ′ in FIG. 4 and the collection unit 12A completely enters the detection chamber 5B. Thus, the cover 65A is joined to the adapter 65B so that the hole 5C ′ is completely covered, and the inside of the detection chamber 5B is shielded from light. As a result, the incidence in the detection chamber 5B is blocked while the detection operation is being performed in the detection chamber 5B.
 なお、以上の例は、図1、図2に表わされたように、検出器100が捕集するための機構と検出するための機構とを分離した構成である例である。しかしながら、検出器100の構成は図1、図2に表わされた構成に限定されず、他の例として、捕集するための機構と検出するための機構とを一体とした構成であってもよい。 In addition, the above example is an example which is the structure which isolate | separated the mechanism for the detector 100 to collect, and the mechanism for detection, as represented to FIG. 1, FIG. However, the configuration of the detector 100 is not limited to the configuration shown in FIGS. 1 and 2, and as another example, the configuration for collecting and the mechanism for detecting are integrated. Also good.
 図5は、検出器100の構成の他の例を示す図である。図5を参照して、他の例として検出器100は、導入孔10および排出孔11が設けられたケース5を有し、その内部に、検出機構と捕集機構と加熱機構とが含まれる。 FIG. 5 is a diagram illustrating another example of the configuration of the detector 100. Referring to FIG. 5, as another example, detector 100 includes case 5 provided with introduction hole 10 and discharge hole 11, and a detection mechanism, a collection mechanism, and a heating mechanism are included therein. .
 発光素子6およびレンズ7と、受光素子9および集光レンズ8とは、図5での上面から見て直角または略直角に設けられる。発光素子6から照射された光のうちの捕集治具12表面に形成される照射領域15からの反射光は、照射領域15への入射に対応した方向に向かう。そのため、この構成とすることで、反射光が直接受光素子9に入らない。なお、捕集治具12表面からの蛍光は等方的に発光するので、反射光および迷光の受光素子9への入射を抑えられる配置であれば、図示された配置には限定されない。 The light emitting element 6 and the lens 7, and the light receiving element 9 and the condenser lens 8 are provided at a right angle or a substantially right angle when viewed from the upper surface in FIG. Of the light emitted from the light emitting element 6, the reflected light from the irradiation region 15 formed on the surface of the collecting jig 12 travels in the direction corresponding to the incident on the irradiation region 15. Therefore, with this configuration, the reflected light does not directly enter the light receiving element 9. In addition, since the fluorescence from the surface of the collection jig 12 emits isotropically, the arrangement is not limited to the illustrated arrangement as long as it is an arrangement that can prevent the reflected light and stray light from entering the light receiving element 9.
 より好ましくは、捕集治具12は、照射領域15に対応する表面に捕集した粒子からの蛍光を受光素子9に集めるための構成の一例として、照射領域15に球面状の窪みが形成されてもよい。さらに、捕集治具12は、好ましくは、受光素子9に捕集治具12表面が相対するよう、受光素子9に向かう方向に所定角度だけ傾けて設けられてもよい。この構成により、球面状の窪み内の粒子から等方的に発光した蛍光が球面表面で反射して受光素子9方向に集められる効果があり、受光信号を大きくできるメリットがある。窪みの大きさは限定されないが、好ましくは、照射領域15よりも大きい。 More preferably, the collection jig 12 has a spherical recess formed in the irradiation region 15 as an example of a configuration for collecting fluorescence from the particles collected on the surface corresponding to the irradiation region 15 in the light receiving element 9. May be. Furthermore, the collection jig 12 may be preferably provided so as to be inclined by a predetermined angle in the direction toward the light receiving element 9 so that the surface of the collection jig 12 faces the light receiving element 9. With this configuration, there is an advantage that the fluorescence emitted isotropically from the particles in the spherical recess is reflected by the spherical surface and collected in the direction of the light receiving element 9, and the light reception signal can be increased. The size of the depression is not limited, but is preferably larger than the irradiation region 15.
 この構成の場合、導入孔10および排出孔11には、それぞれ、シャッタ16A,16Bが設置される。シャッタ16A,16Bは、それぞれ制御部200に電気的に接続され、その開閉が制御される。シャッタ16A,16Bが閉塞されることでケース5内への空気の流入および外部光の入射が遮断される。制御部200は、蛍光を測定する際にはシャッタ16A,16Bを閉塞し、ケース5内への空気の流入および外部光の入射を遮断する。これにより、蛍光の測定時には捕集機構での浮遊粒子の捕集が中断される。また、蛍光の測定時に外部光のケース5内への入射が遮断されることで、ケース5内の迷光が抑えられる。なお、シャッタ16A,16Bのうちのいずれか一方、たとえば、少なくとも排出孔11のシャッタ16Bのみが備えられてもよい。 In this configuration, shutters 16A and 16B are installed in the introduction hole 10 and the discharge hole 11, respectively. The shutters 16A and 16B are electrically connected to the control unit 200, and their opening and closing are controlled. By closing the shutters 16A and 16B, the inflow of air into the case 5 and the incidence of external light are blocked. When measuring the fluorescence, the controller 200 closes the shutters 16A and 16B to block the inflow of air into the case 5 and the incidence of external light. Thereby, the collection of suspended particles in the collection mechanism is interrupted during the measurement of fluorescence. In addition, stray light in the case 5 can be suppressed by blocking external light from entering the case 5 when measuring fluorescence. Note that either one of the shutters 16A and 16B, for example, at least the shutter 16B of the discharge hole 11 may be provided.
 <検出器での検出原理>
 ここで、検出器100における検出原理について説明する。
<Principle of detection with detector>
Here, the detection principle in the detector 100 will be described.
 特表2008-508527号公報にも開示されているように、空気中に浮遊する生物由来の粒子は、紫外光または青色光が照射されることで蛍光を発することは従来から知られている。しかし、空気中には化学繊維の埃など同様に蛍光を発するものが浮遊しており、蛍光を検出するのみでは、生物由来の粒子からのものであるか化学繊維の埃などからのものであるかが区別されない。 As disclosed in Japanese Patent Application Publication No. 2008-508527, it is known that biological particles floating in the air emit fluorescence when irradiated with ultraviolet light or blue light. However, fluorescent substances such as chemical fiber dust are floating in the air, and it is only from biological particles or chemical fiber dust that only detects fluorescence. Is not distinguished.
 生物由来の粒子と化学繊維の埃などとのそれぞれに対して加熱処理を施し、加熱の前後における蛍光の変化を測定したところ、図6~図15に示された測定結果が得られた。この測定の結果より、埃は加熱処理によって蛍光強度が変化しないのに対して、生物由来の粒子は加熱処理によって蛍光強度が増加することが見出された。 When each of the biological particles and chemical fiber dust was subjected to heat treatment and the change in fluorescence before and after heating was measured, the measurement results shown in FIGS. 6 to 15 were obtained. From the results of this measurement, it was found that the fluorescence intensity of dust is not changed by heat treatment, whereas the fluorescence intensity of particles derived from living organisms is increased by heat treatment.
 具体的に、図6は、生物由来の粒子としての大腸菌を200℃にて5分間加熱処理したときの、加熱処理前(曲線79)および加熱処理後(曲線72)の蛍光スペクトルの測定結果である。図6に表わされた測定結果より、加熱処理を施すことによって大腸菌からの蛍光強度が大幅に増加していることが分かった。また、図7Aに示された加熱処理前の蛍光顕微鏡写真と、図7Bに示された加熱処理後の蛍光顕微鏡写真との比較によっても、加熱処理を施すことによって大腸菌からの蛍光強度が大幅に増加していることが明らかとなっている。 Specifically, FIG. 6 shows the measurement results of fluorescence spectra before and after heat treatment (curve 79) when Escherichia coli as biological particles was heat treated at 200 ° C. for 5 minutes. is there. From the measurement results shown in FIG. 6, it was found that the fluorescence intensity from E. coli was significantly increased by the heat treatment. In addition, by comparing the fluorescence micrograph before the heat treatment shown in FIG. 7A with the fluorescence micrograph after the heat treatment shown in FIG. 7B, the fluorescence intensity from E. coli is greatly increased by the heat treatment. It is clear that it has increased.
 同様に、図8は、生物由来の粒子としてのバチルス菌を200℃にて5分間加熱処理したときの加熱処理前(曲線73)および加熱処理後(曲線74)の蛍光スペクトルの測定結果であり、図9Aが加熱処理前、図9Bが加熱処理後の蛍光顕微鏡写真である。また、図10は、生物由来の粒子としてのアオカビ菌を200℃にて5分間加熱処理したときの加熱処理前(曲線75)および加熱処理後(曲線76)の蛍光スペクトルの測定結果であり、図11Aが加熱処理前、図11Bが加熱処理後の蛍光顕微鏡写真である。また、生物由来の粒子としてのスギ花粉を200℃にて5分間加熱処理したときの、図12Aが加熱処理前、図12Bが加熱処理後の蛍光顕微鏡写真である。これらに示されるように、他の生物由来の粒子でも大腸菌と同様に加熱処理によって蛍光強度が大幅に増加することが分かった。 Similarly, FIG. 8 shows measurement results of fluorescence spectra before and after heat treatment (curve 74) when Bacillus bacteria as biological particles were heat treated at 200 ° C. for 5 minutes. 9A is a fluorescence micrograph before heat treatment, and FIG. 9B is a fluorescence micrograph after heat treatment. FIG. 10 shows measurement results of fluorescence spectra before and after the heat treatment (curve 76) when the green mold as biological particles was heat-treated at 200 ° C. for 5 minutes, and after the heat treatment (curve 76). FIG. 11A is a fluorescence micrograph before heat treatment, and FIG. 11B is a fluorescence micrograph after heat treatment. Moreover, when cedar pollen as a biological particle is heat-treated at 200 ° C. for 5 minutes, FIG. 12A is a fluorescence micrograph before heat treatment and FIG. As shown in these figures, it was found that the fluorescence intensity of particles derived from other organisms was significantly increased by heat treatment as in the case of E. coli.
 これに対して、図13Aおよび図13Bは、それぞれ、蛍光を発する埃を200℃にて5分間加熱処理したときの加熱処理前(曲線77)および加熱処理後(曲線78)の蛍光スペクトルの測定結果であり、図14Aが加熱処理前、図14Bが加熱処理後の蛍光顕微鏡写真である。図13Aに示された蛍光スペクトルと図13Bに示された蛍光スペクトルとを重ねると図15に示されるように、これらはほぼ重なることが検証された。すなわち、図15の結果や図13Aと図13Bとの比較に示されるように、埃からの蛍光強度は加熱処理の前後において変化がないことが分かった。 On the other hand, FIG. 13A and FIG. 13B show measurement of fluorescence spectra before and after the heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively. 14A is a fluorescence micrograph after the heat treatment, and FIG. 14B is a result. When the fluorescence spectrum shown in FIG. 13A and the fluorescence spectrum shown in FIG. 13B were overlapped, it was verified that they almost overlap as shown in FIG. That is, as shown in the result of FIG. 15 and the comparison between FIG. 13A and FIG. 13B, it was found that the fluorescence intensity from dust did not change before and after the heat treatment.
 検出器100における検出原理として、検証された、上述の現象が応用される。すなわち、空気中では、埃と、生物由来の粒子が付着した埃と、生物由来の粒子とが混合されている。上述の現象を基にすると、捕集した粒子に蛍光を発する埃が混ざっている場合、加熱処理前に測定される蛍光スペクトルには、生物由来の粒子からの蛍光と蛍光を発する埃からの蛍光とが含まれ、生物由来の粒子を化学繊維の埃などから区別して検出することができない。しかしながら、加熱処理を施すことで生物由来の粒子だけが蛍光強度が増加し、蛍光を発する埃の蛍光強度は変化しない。そのため、加熱処理前の蛍光強度と所定の加熱処理後の蛍光強度との差を測定することで、生物由来の粒子の量を求めることができる。 As a detection principle in the detector 100, the above-mentioned phenomenon that has been verified is applied. That is, in the air, dust, dust to which biological particles are attached, and biological particles are mixed. Based on the above-mentioned phenomenon, when dust that emits fluorescence is mixed in the collected particles, the fluorescence spectrum measured before heat treatment includes fluorescence from biological particles and fluorescence from dust that emits fluorescence. In other words, it is impossible to distinguish biological particles from chemical fiber dust. However, the heat treatment increases the fluorescence intensity of only biological particles, and does not change the fluorescence intensity of the dust that emits fluorescence. Therefore, by measuring the difference between the fluorescence intensity before the heat treatment and the fluorescence intensity after the predetermined heat treatment, the amount of biologically derived particles can be determined.
 <分離器の構成>
 分離器700として、好適には、遠心力を利用したサイクロンが用いられる。
<Configuration of separator>
As the separator 700, a cyclone using a centrifugal force is preferably used.
 図16Aおよび図16Bは、サイクロンを採用した分離器700の構成の概略図である。図16Aは、分離器700を、導入孔70を横、排出孔71を上、とした方向で見た図、図16Bは、排出孔71側から見た図である。図16Aで表わされた面を分離器700の正面とし、図16Bで表わされた面を分離器700の上面とする。 FIG. 16A and FIG. 16B are schematic views of the configuration of a separator 700 employing a cyclone. 16A is a view of the separator 700 as viewed from the side where the introduction hole 70 is lateral and the discharge hole 71 is up, and FIG. 16B is a view as seen from the discharge hole 71 side. The surface represented in FIG. 16A is the front surface of the separator 700, and the surface represented in FIG. 16B is the top surface of the separator 700.
 サイクロンを採用した分離器700は、上記流路に対して延伸し、延伸方向の上下が閉じられた円筒(外筒)に、それよりも直径が小さい円筒(内筒)が、延伸方向の上部の円の中心を外筒と同じくする位置から下向きに差し込まれた形状を有する。内筒の上部は開放されて排出孔71を形成している。図16Aおよび図16Bにおいて、直径Dcは外筒の直径を指し、直径Ddは内筒の直径、つまり排出孔71の直径を指し、高さhはサイクロン分離室としての、外筒の高さを指す。 Separator 700 employing a cyclone extends to the above-mentioned flow path, and a cylinder (outer cylinder) whose diameter is smaller than that of the cylinder (outer cylinder) whose upper and lower sides in the extension direction are closed is an upper part in the extension direction. The center of the circle has a shape inserted downward from the same position as the outer cylinder. The upper part of the inner cylinder is opened to form a discharge hole 71. 16A and 16B, the diameter Dc indicates the diameter of the outer cylinder, the diameter Dd indicates the diameter of the inner cylinder, that is, the diameter of the discharge hole 71, and the height h indicates the height of the outer cylinder as a cyclone separation chamber. Point to.
 サイクロンを採用した分離器700の外形は上記外筒に限定されず、上面が直径Dcの円形であって、上面から下面に向けた側面にテーパーを有した円錐形であってもよい。または、上面から所定厚み分が筒状であって、それより下が円錐形であってもよい。 The outer shape of the separator 700 employing a cyclone is not limited to the outer cylinder, but may be a conical shape having a circular upper surface with a diameter Dc and a taper on the side surface from the upper surface toward the lower surface. Alternatively, the predetermined thickness from the upper surface may be a cylindrical shape, and the lower portion may be a conical shape.
 上記外筒または円錐形の外形の上部には、インレットとも呼ばれる、外部空気を導入するための筒状の導入管が、断面の円形の接線方向に挿入された形状を有する。導入管は両端が開放し、分離器700と反対側の端部が導入孔70を形成している。図16Aおよび図16Bにおいて、面積Aiは導入孔70の断面積を指す。 At the upper part of the outer cylinder or the outer shape of the conical shape, a cylindrical introduction pipe for introducing external air, which is also called an inlet, has a shape inserted in a circular tangential direction of the cross section. Both ends of the introduction tube are open, and an introduction hole 70 is formed at the end opposite to the separator 700. In FIGS. 16A and 16B, the area Ai indicates the cross-sectional area of the introduction hole 70.
 <分離器の原理>
 流路に設けられたファン400が回転することによって、分離器700には導入孔70から外部空気が導入される。導入孔70は外筒の断面の接線方向に導入された導入管の開放口であるため、ファン400の吸引力によってその方向に外部空気が一定の流速viで導入されることによって、導入された空気は、外筒の内側に沿って回転し、回転中心に向かう気流が生じる。
<Principle of separator>
As the fan 400 provided in the flow path rotates, external air is introduced into the separator 700 from the introduction hole 70. Since the introduction hole 70 is an opening of the introduction pipe introduced in the tangential direction of the cross section of the outer cylinder, the introduction air 70 is introduced by introducing the external air in the direction at a constant flow rate vi by the suction force of the fan 400. The air rotates along the inner side of the outer cylinder, and an air flow toward the center of rotation is generated.
 導入された空気に粒子が含まれると、該粒子には、回転による遠心力が生じると共に、流体抵抗力(抗力)が作用する。遠心力が勝ると粒子は外筒内壁側に移動し、抗力が勝ると内筒側に移動する。さらに、遠心力で外筒内壁に接触することで外筒内壁との間の摩擦が作用する。摩擦によって該粒子の回転速度が徐々に落ち、該粒子自身の重力がファン400の吸引力に勝ると、該粒子は外筒内壁に沿って落下する。 When particles are contained in the introduced air, centrifugal force due to rotation is generated and fluid resistance force (drag) acts on the particles. When the centrifugal force is won, the particles move to the inner wall side of the outer cylinder, and when the drag is won, the particles move to the inner cylinder side. Furthermore, friction between the inner wall of the outer cylinder acts by contacting the inner wall of the outer cylinder with centrifugal force. When the rotational speed of the particles gradually decreases due to friction and the gravity of the particles themselves exceeds the suction force of the fan 400, the particles fall along the inner wall of the outer cylinder.
 すなわち、導入孔70から導入された空気中の粒子のうち、粒子径が所定の長さ(分離粒子径)よりも大きい粒子が図16で点線の矢印に示されるように分離器700の下部に、小さい粒子が図16で実線の矢印に示されるように上部に分離される。そして、上部に分離された分離粒子径Dpcよりも小さい粒子が、ファン400の吸引力によって生じる上昇気流により排出孔71から排出され、エア管500を経て検出器100へ到達する。 That is, among the particles in the air introduced from the introduction hole 70, particles having a particle diameter larger than a predetermined length (separated particle diameter) are placed in the lower part of the separator 700 as indicated by a dotted arrow in FIG. Small particles are separated at the top as shown by the solid arrows in FIG. Then, particles smaller than the separated particle diameter Dpc separated in the upper part are discharged from the discharge hole 71 by the rising air flow generated by the suction force of the fan 400 and reach the detector 100 through the air tube 500.
 導入される空気の速度(流速vi)が速いほど、また外筒の直径Dcが小さく回転半径が小さいほど、粒子に作用する遠心力は大きくなる。一方、同じ密度の粒子で同じ回転速度で回転する粒子径を比較すると、粒子径が大きいほど該粒子に作用する遠心力が大きくなり、落下、すなわち空気から分離されやすくなる。この原理によって得られる、サイクロンにおける分離粒子径Dpcは、以下の式(1)で規定されている。 The centrifugal force acting on the particles increases as the velocity of the introduced air (flow velocity vi) increases, and as the diameter Dc of the outer cylinder decreases and the rotation radius decreases. On the other hand, when comparing the particle diameters of particles having the same density and rotating at the same rotational speed, the centrifugal force acting on the particles increases as the particle diameter increases, and the particles are easily dropped, that is, separated from the air. The separated particle diameter Dpc in the cyclone obtained by this principle is defined by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、Dpcは分離粒子径(m)、ρpは粒子の密度(kg/m3)、ρは流体の密度(kg/m3)、μは空気粘度(Pa・s)、viは導入される空気の導入孔70での流速(m/s)、Aiは導入孔70の断面積(m2)、Ddはサイクロン内筒径(m)、Dcはサイクロン外筒径(m)、およびhはサイクロン分離室高さ(m)を指す。 Where Dpc is the separated particle size (m), ρ p is the particle density (kg / m 3 ), ρ is the fluid density (kg / m 3 ), μ is the air viscosity (Pa · s), and vi is introduced. The flow velocity (m / s) at the air introduction hole 70, Ai is the cross-sectional area (m 2 ) of the introduction hole 70, Dd is the cyclone inner cylinder diameter (m), Dc is the cyclone outer cylinder diameter (m), and h Indicates the height (m) of the cyclone separation chamber.
 <分離部の具体的な形状>
 サイクロンを採用した分離器700の各箇所のサイズは特定のサイズに限定されるものではない。しかしながら、上記式(1)より、各箇所のサイズ、特に、断面積Ai、外筒径Dc、および内筒径Ddが分離粒子径Dpcに影響することがわかる。そのため、空気に浮遊している生物由来の粒子からアレルゲンを除去して微生物の量を精度よく検出するためには最適な分離粒子径Dpcを設定する必要があり、そのために、最適な断面積Ai、外筒径Dc、および内筒径Ddとする必要がある。
<Specific shape of separation part>
The size of each part of the separator 700 employing a cyclone is not limited to a specific size. However, from the above equation (1), it can be seen that the size of each part, in particular, the cross-sectional area Ai, the outer cylinder diameter Dc, and the inner cylinder diameter Dd affects the separated particle diameter Dpc. Therefore, in order to remove allergens from organism-derived particles floating in the air and accurately detect the amount of microorganisms, it is necessary to set an optimum separation particle diameter Dpc. The outer cylinder diameter Dc and the inner cylinder diameter Dd are required.
 そこで、発明者は、最適な分離粒子径Dpcを得るために、断面積Ai、外筒径Dc、および内筒径Ddと、流量Qiとを異ならせて実験を行ない、その結果に基づいて分離器700の具体的な形状を決定する共に、最適な流量も決定した。 Therefore, in order to obtain the optimum separation particle diameter Dpc, the inventor conducts experiments with different cross-sectional areas Ai, outer cylinder diameters Dc, inner cylinder diameters Dd, and flow rates Qi, and performs separation based on the results. While determining the specific shape of the vessel 700, the optimum flow rate was also determined.
 図17は、式(1)から得られる、分離粒子径Dpcと流量Qiとの関係を示す図であって、図17の曲線Aが分離器700の形状を第1の形状としたときの関係、曲線Bが第2の形状としたときの関係を示している。第1の形状は、外筒径Dc=40mm、内筒径Dd=10mm、および断面積Ai=1.2cm2であり、第2の形状は、外筒径Dc=40mm、内筒径Dd=21mm、および断面積Ai=0.5cm2であり、共に高さhは同じである(h=10mm)。図17においては、曲線A,Bよりも上の粒子径の粒子が、当該分離器700において導入された空気から分離して除去され、曲線A,Bよりも下の粒子径の粒子が、当該分離器700を通過してエア管500を経て検出器100に到達することを表わしている。 FIG. 17 is a diagram showing the relationship between the separated particle diameter Dpc and the flow rate Qi obtained from the equation (1), and the relationship when the curve A in FIG. 17 sets the shape of the separator 700 to the first shape. The relationship when the curve B is the second shape is shown. The first shape is the outer cylinder diameter Dc = 40 mm, the inner cylinder diameter Dd = 10 mm, and the cross-sectional area Ai = 1.2 cm 2. The second shape is the outer cylinder diameter Dc = 40 mm, the inner cylinder diameter Dd = 21 mm and the cross-sectional area Ai = 0.5 cm 2 , both having the same height h (h = 10 mm). In FIG. 17, particles having a particle size above the curves A and B are separated and removed from the air introduced in the separator 700, and particles having a particle size below the curves A and B are removed. It represents passing through the separator 700 and reaching the detector 100 via the air tube 500.
 なお、図17において、分離粒子径15μmより上のハッチングされた領域はアレルゲンの属する粒子径の領域を表わし、分離粒子径5μmより下のハッチングされた領域は微生物の属する粒子径の領域を表わしている。 In FIG. 17, the hatched area above the separation particle diameter of 15 μm represents the particle diameter area to which the allergen belongs, and the hatched area below the separation particle diameter of 5 μm represents the particle diameter area to which the microorganism belongs. Yes.
 発明者は、図1に示された検出装置に対して、実際に第1の形状の分離器700または第2の形状の分離器700を用い、分離器700を通過した粒子を検出器100の捕集治具12上に集塵させて、分離捕集能を評価する実験を行なった。分離捕集能を評価するために、検出装置1Aを、サイクロンである分離器700を含む状態と含まない状態との2種類の状態とし、分離器700を含む状態での捕集量の、分離器700を含まない状態での捕集量に対する比率を、分離捕集能として算出した。分離捕集能の0%は、サイクロンである分離器700にて対象のサイズの粒子が導入された空気中から分離して除去されたことを表わし、分離捕集能の100%は該粒子が分離器700では分離されずに通過し、エア管500を経て検出器100に到達したことを表わす。 The inventor actually uses the first shape separator 700 or the second shape separator 700 with respect to the detection apparatus shown in FIG. An experiment was conducted in which dust was collected on the collection jig 12 to evaluate the separation and collection ability. In order to evaluate the separation and collection ability, the detection apparatus 1A is set to two states, a state including the separator 700 which is a cyclone and a state not including the separator 700, and the amount of collection in the state including the separator 700 is separated. The ratio with respect to the collection amount in the state where the vessel 700 is not included was calculated as the separation and collection ability. The separation / capacity of 0% represents that particles of the target size were separated and removed from the air introduced by the separator 700, which is a cyclone, and the separation / capacity of 100% represents that the particles were separated. The separator 700 passes through without being separated, and reaches the detector 100 through the air tube 500.
 詳しくは、検出装置1A全体を容積1m3の測定チェンバに入れ、微生物に相当する粒子として直径3μmのポリスチレン粒子、またはアレルゲンとしての花粉(直径25μm)をチェンバ内に噴霧した後、検出器100の高圧電源2での印加電圧を-5kVとし、5分間、検出装置1Aを稼動させた。 Specifically, the entire detection apparatus 1A is put in a measurement chamber having a volume of 1 m 3 , and after spraying polystyrene particles having a diameter of 3 μm as particles corresponding to microorganisms or pollen (25 μm in diameter) as an allergen into the chamber, the detector 100 The applied voltage at the high voltage power source 2 was set to −5 kV, and the detection apparatus 1A was operated for 5 minutes.
 各形状の分離器700には、図示しないファンモータによって駆動されるファン400で外部空気が導入されるように設定した。ファンモータは、2~20L/minの流量で運転できることを確認し、サイクロン運転時は風切り音の発生のないことを確認した。 The separator 700 of each shape was set so that external air was introduced by a fan 400 driven by a fan motor (not shown). It was confirmed that the fan motor can be operated at a flow rate of 2 to 20 L / min, and it was confirmed that no wind noise was generated during the cyclone operation.
 さらに、発明者は、分離器700に導入される空気の流量Qiを、各実験条件に応じて変化させた。そして、それぞれの条件下で捕集治具12上の粒子数をカウントし、1Lあたりの捕集量を分離器700を含む状態と含まない状態とで比較して分離捕集能を算出した。 Furthermore, the inventor changed the flow rate Qi of the air introduced into the separator 700 according to each experimental condition. Then, the number of particles on the collection jig 12 was counted under each condition, and the amount of collected per 1 L was compared between the state including the separator 700 and the state not including the separator 700, and the separation and collection ability was calculated.
 実験条件として、図17の丸印が付された、それぞれ次の条件1~条件4で表わされた計4条件を採用した:
  条件1…第1の形状の分離器700を用い、流量Qi=1.6L/minとした条件、すなわち、この場合の分離粒子径Dpcは上記式(1)より26μm、
  条件2…第1の形状の分離器700を用い、流量Qi=10L/minとした条件、すなわち、この場合の分離粒子径Dpcは上記式(1)より11μm、
  条件3…第1の形状の分離器700を用い、流量Qi=20L/minとした条件、すなわち、この場合の分離粒子径Dpcは上記式(1)より7.5μm、
  条件4…第2の形状の分離器700を用い、流量Qi=20L/minとした条件、すなわち、この場合の分離粒子径Dpcは上記式(1)より4.5μm。
As the experimental conditions, a total of four conditions each represented by the following conditions 1 to 4 marked with a circle in FIG. 17 were adopted:
Condition 1 ... The first shape separator 700 is used and the flow rate Qi is set to 1.6 L / min, that is, the separation particle diameter Dpc in this case is 26 μm from the above formula (1),
Condition 2 ... The first shape separator 700 is used and the flow rate Qi is set to 10 L / min, that is, the separation particle diameter Dpc in this case is 11 μm from the above formula (1),
Condition 3... The first shape separator 700 is used and the flow rate Qi is set to 20 L / min, that is, the separation particle diameter Dpc in this case is 7.5 μm from the above formula (1).
Condition 4 ... The second shape separator 700 is used, and the flow rate Qi is set to 20 L / min, that is, the separation particle diameter Dpc in this case is 4.5 μm from the above formula (1).
 発明者は、第1の実験として、微生物に相当する粒子および花粉をそれぞれ別個に、単一のサイズの粒子をチェンバ内に噴霧して、上記実験条件1~4のそれぞれで上述の実験を行なって、分離捕集能を算出した。図18~図21は、それぞれ、第1の実験で得られた微生物に相当する粒子および花粉についてのそれぞれの分離捕集能を、上記実験条件1~4について示す図である。 As a first experiment, the inventor sprays particles corresponding to microorganisms and pollen separately, and sprays single-sized particles into the chamber, and performs the above-described experiment under each of the above experimental conditions 1 to 4. The separation and collection ability was calculated. FIGS. 18 to 21 are diagrams showing the separation and collection ability of particles and pollen corresponding to the microorganisms obtained in the first experiment under the above experimental conditions 1 to 4, respectively.
 図18で表わされた実験結果より、実験条件1である場合には、分離器700を微生物に相当する粒子および花粉のいずれもが通過することがわかった。図19~図21に表わされた実験結果より、実験条件2~4である場合には、実験条件1の場合よりも分離器700で花粉を分離して除去する比率が高くなることがわかった。さらに、この実験条件の中では、実験条件4の場合に、分離器700で花粉を分離して除去する比率が高くなることがわかった。 From the experimental results shown in FIG. 18, it was found that in the case of the experimental condition 1, both the particles corresponding to the microorganisms and the pollen pass through the separator 700. From the experimental results shown in FIGS. 19 to 21, it can be seen that the ratio of separating and removing pollen by the separator 700 is higher in the experimental conditions 2 to 4 than in the experimental condition 1. It was. Furthermore, it was found that among these experimental conditions, in the case of experimental condition 4, the ratio of separating and removing pollen by the separator 700 is high.
 そこで、発明者は、第2の実験として、微生物に相当する粒子と花粉とを混合してチェンバ内に噴霧し、上記実験条件4で上述の実験を行なって、分離捕集能を算出した。図22は、第2の実験で得られた微生物に相当する粒子および花粉についてのそれぞれの分離捕集能を示す図である。 Therefore, as a second experiment, the inventor mixed particles corresponding to microorganisms and pollen and sprayed them in the chamber, and performed the above experiment under the above experimental condition 4 to calculate the separation and collection ability. FIG. 22 is a diagram showing the separation and collection ability of particles and pollen corresponding to the microorganisms obtained in the second experiment.
 図22で表わされた実験結果より、微生物に相当する粒子と花粉とが混合された空気が導入された場合であっても、単一の粒子径である場合と同様に、実験条件4の場合、高い精度で分離器700で花粉が分離して除去されることがわかった。 From the experimental results shown in FIG. 22, even when air in which particles corresponding to microorganisms and pollen are mixed is introduced, as in the case of a single particle diameter, In this case, it was found that pollen was separated and removed by the separator 700 with high accuracy.
 以上の実験結果より、発明者は、サイクロンを採用した分離器700の好適な形状として、上記第2の形状である、外筒径Dc=40mm、内筒径Dd=21mm、および断面積Ai=0.5cm2と決定した。なお、この場合、さらに、ファン400の流量を20L/minと決定した。または、上記第1の形状である、外筒径Dc=40mm、内筒径Dd=10mm、および断面積Ai=1.2cm2とすることも可能であるが、この場合、さらに、ファン400の流量を10L/min、または20L/minと決定した。この形状とすることで、実験結果からも明らかなように、導入された空気からアレルゲンが高精度で除去され、微生物の量を検出器100で検出することが可能となる。 From the above experimental results, the inventors have determined that the preferred shape of the separator 700 employing a cyclone is the second shape, that is, the outer cylinder diameter Dc = 40 mm, the inner cylinder diameter Dd = 21 mm, and the cross-sectional area Ai = It was determined to be 0.5 cm 2 . In this case, the flow rate of the fan 400 was further determined to be 20 L / min. Alternatively, it is possible to set the outer cylinder diameter Dc = 40 mm, the inner cylinder diameter Dd = 10 mm, and the cross-sectional area Ai = 1.2 cm 2 as the first shape. The flow rate was determined to be 10 L / min or 20 L / min. By adopting this shape, as is clear from the experimental results, the allergen is removed from the introduced air with high accuracy, and the amount of microorganisms can be detected by the detector 100.
 <機能構成>
 制御部200は、図1に示されるように、検出器100での検出を制御するための機能である検出制御部201と、図示しないファンモータの動作を制御してファン400による検出装置1Aへの空気の導入を制御するための機能であるファン制御部202とを含む。制御部200は、図示しない検出動作の開始の指示の操作を受け付けるためのスイッチに電気的に接続されて、該スイッチからの操作信号に応じて検出動作を開始する。
<Functional configuration>
As shown in FIG. 1, the control unit 200 controls the detection control unit 201, which is a function for controlling detection by the detector 100, and the operation of a fan motor (not shown) to the detection device 1A by the fan 400. And a fan control unit 202 which is a function for controlling the introduction of air. The control unit 200 is electrically connected to a switch for accepting an operation to start a detection operation (not shown), and starts a detection operation in response to an operation signal from the switch.
 ファン制御部202には、設定されたファン400の流量に応じた、予め図示しないファンモータを動作させるための印加電圧が設定されており、検出動作の開始時に該電圧をファンモータに印加する。 In the fan control unit 202, an applied voltage for operating a fan motor (not shown) according to the set flow rate of the fan 400 is set in advance, and the voltage is applied to the fan motor at the start of the detection operation.
 図23は、制御部200の検出制御部201の構成の具体例を示す図である。図23は、検出制御部201の機能の一部が主に電気回路であるハードウェア構成で実現される例が示されている。しかしながら、制御部200の機能のすべてが、制御部200に含まれる図示しないCPUが所定のプログラムを実行することによって実現される、ソフトウェア構成であってもよいし、制御部200の機能のすべてが主に電気回路であるハードウェア構成で実現されてもよい。 FIG. 23 is a diagram illustrating a specific example of the configuration of the detection control unit 201 of the control unit 200. FIG. 23 shows an example in which a part of the function of the detection control unit 201 is realized by a hardware configuration mainly including an electric circuit. However, all of the functions of the control unit 200 may be a software configuration realized by a CPU (not shown) included in the control unit 200 executing a predetermined program, or all of the functions of the control unit 200 may be performed. You may implement | achieve with the hardware constitutions which are mainly an electric circuit.
 図23を参照して、検出制御部201は、大きくは、受光素子9からの信号を処理するための信号処理部30と、検出器100の制御や算出処理などを行なうための検出処理部40とから構成される。 Referring to FIG. 23, detection control unit 201 is roughly divided into a signal processing unit 30 for processing a signal from light receiving element 9 and a detection processing unit 40 for performing control and calculation processing of detector 100. It consists of.
 信号処理部30は、受光素子9に接続される電流-電圧変換回路34と、電流-電圧変換回路34に接続される増幅回路35とを含む。 The signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
 検出処理部40は、記憶部42、クロック発生部47、および制御部49を含む。さらに、検出処理部40は図示しない検出動作の開始の指示を入力するためのスイッチからの入力信号を受け付けるための入力部44と、ヒータ91や図示しない捕集ユニット12Aの移動機構を駆動させるための駆動部48とを含む。 The detection processing unit 40 includes a storage unit 42, a clock generation unit 47, and a control unit 49. Further, the detection processing unit 40 drives an input unit 44 for receiving an input signal from a switch for inputting an instruction to start a detection operation (not shown) and a moving mechanism for the heater 91 and the collection unit 12A (not shown). Drive unit 48.
 捕集治具12上に捕集された粒子に対して発光素子6から照射されることで、照射領域15にある当該粒子からの蛍光が、受光素子9に集光される。受光素子9から、受光量に応じた電流信号が信号処理部30に対して出力される。電流信号は、電流-電圧変換回路34に入力される。 By irradiating the particles collected on the collection jig 12 from the light emitting element 6, the fluorescence from the particles in the irradiation region 15 is collected on the light receiving element 9. A current signal corresponding to the amount of received light is output from the light receiving element 9 to the signal processing unit 30. The current signal is input to the current-voltage conversion circuit 34.
 電流-電圧変換回路34は、受光素子9から入力された電流信号より蛍光強度を表わすピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、検出処理部40に対して出力される。検出処理部40の検出制御部201は信号処理部30から電圧値Ehの入力を受け付けて、順次、記憶部42に記憶させる。 The current-voltage conversion circuit 34 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh. The voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 35 and output to the detection processing unit 40. The detection control unit 201 of the detection processing unit 40 receives an input of the voltage value Eh from the signal processing unit 30 and sequentially stores it in the storage unit 42.
 クロック発生部47はクロック信号を発生させ、制御部49に対して出力する。制御部49は、クロック信号に基づいたタイミングでヒータ91のNO/OFFを行なったり、捕集ユニット12Aを移動させたりするための制御信号を駆動部48に対して出力する。また、それに同期させてファン制御部202に対してファンモータの駆動タイミングを通知する。 The clock generation unit 47 generates a clock signal and outputs it to the control unit 49. The control unit 49 outputs a control signal for performing NO / OFF of the heater 91 or moving the collection unit 12 </ b> A to the drive unit 48 at a timing based on the clock signal. In synchronization with this, the fan control unit 202 is notified of the drive timing of the fan motor.
 検出器100が図5に示される構成である場合には、シャッタ16A,16Bを開閉させるための制御信号を駆動部48に対して出力して、シャッタ16A,16Bの開閉を制御する。また、制御部49は発光素子6および受光素子9と電気的に接続され、それらのON/OFFを制御する。 When the detector 100 has the configuration shown in FIG. 5, a control signal for opening and closing the shutters 16A and 16B is output to the drive unit 48 to control the opening and closing of the shutters 16A and 16B. Further, the control unit 49 is electrically connected to the light emitting element 6 and the light receiving element 9 and controls ON / OFF thereof.
 制御部49は算出部41を含み、算出部41において、記憶部42に記憶された電圧値Ehを用いて、導入された空気中の微生物量を算出するための動作が行なわれる。 The control unit 49 includes a calculation unit 41. In the calculation unit 41, an operation for calculating the amount of microorganisms in the introduced air is performed using the voltage value Eh stored in the storage unit 42.
 <検出動作1>
 図示しないスイッチなどによって検出装置1Aでの検出開始が指示されると、該信号の入力を受け付けた制御部200によって検出動作が開始される。
<Detection operation 1>
When the start of detection in the detection apparatus 1A is instructed by a switch or the like (not shown), the detection operation is started by the control unit 200 that receives the input of the signal.
 図24は、検出動作の流れを示すフローチャートである。図24のフローチャートに示された動作は、制御部200の図示しないCPUが図示しないメモリに記憶されているプログラムを読み出して実行し、図23の各部を制御することによって実現される。 FIG. 24 is a flowchart showing the flow of the detection operation. The operation shown in the flowchart of FIG. 24 is realized by a CPU (not shown) of the control unit 200 reading and executing a program stored in a memory (not shown) and controlling each unit of FIG.
 図24を参照して、図示しないスイッチから検出動作の開始を指示する操作信号が入力されると、S31で、予め規定されている捕集時間である時間△T1の間、捕集室5Aでの捕集動作が行なわれる。S31での具体的な動作としては、ファン制御部202はファン400を駆動させて、分離器700およびエア管500を経て捕集室5A内に検出装置1A外の空気を取り込む。また、検出制御部201は、検出器100の放電電極17に所定の電圧を印加させる。 Referring to FIG. 24, when an operation signal for instructing the start of a detection operation is input from a switch (not shown), in S31, in collection chamber 5A for a time ΔT1 which is a predefined collection time. The collecting operation is performed. As a specific operation in S31, the fan control unit 202 drives the fan 400 to take in air outside the detection device 1A into the collection chamber 5A via the separator 700 and the air tube 500. The detection control unit 201 applies a predetermined voltage to the discharge electrode 17 of the detector 100.
 分離器700に導入された空気からは花粉などのアレルゲンが分離されて除去され、除去された後の空気がエア管500を経て検出器100に到達する。 The allergen such as pollen is separated and removed from the air introduced into the separator 700, and the air after the removal reaches the detector 100 through the air tube 500.
 検出器100の捕集室5A内に導入された空気中の粒子は、放電電極17により負電荷に帯電され、ファン400による空気の流れと放電電極17および捕集治具12表面の皮膜3の間で形成される電界とにより、捕集治具12表面の照射領域15に対応した狭い範囲に捕集される。 Particles in the air introduced into the collection chamber 5A of the detector 100 are charged to a negative charge by the discharge electrode 17, and the air flow by the fan 400 and the coating 3 on the surface of the discharge electrode 17 and the collection jig 12 are detected. Due to the electric field formed therebetween, the light is collected in a narrow range corresponding to the irradiation region 15 on the surface of the collection jig 12.
 捕集時間△T1が経過するとファン制御部202はファン400の駆動を終了、すなわち、捕集動作を終了させる。 When the collection time ΔT1 has elapsed, the fan control unit 202 ends the driving of the fan 400, that is, ends the collection operation.
 これにより、時間△T1の間、アレルゲンが分離器700によって除去された空気が捕集室5A内に導入孔10を通じて導入され、その空気中の粒子が、捕集治具12表面に捕集される。 As a result, the air from which allergen has been removed by the separator 700 is introduced into the collection chamber 5A through the introduction hole 10 for the time ΔT1, and particles in the air are collected on the surface of the collection jig 12. The
 次に、S33で検出制御部201は捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを捕集室5Aから検出室5Bに移動させる。移動が完了すると、S35で検出動作が行なわれる。S35では、検出制御部201は発光素子6に発光させ、規定の測定時間△T2の間、受光素子9により蛍光を受光させる。発光素子6からの光は、捕集治具12の表面の照射領域15に照射され、捕集された粒子から蛍光が発光される。その蛍光強度F1に応じた電圧値が検出処理部40に入力されて記憶部42に記憶される。これにより、加熱前の蛍光量S31が測定される。 Next, in S33, the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber 5B. When the movement is completed, a detection operation is performed in S35. In S35, the detection control unit 201 causes the light emitting element 6 to emit light, and causes the light receiving element 9 to receive the fluorescence for a predetermined measurement time ΔT2. The light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles. A voltage value corresponding to the fluorescence intensity F <b> 1 is input to the detection processing unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S31 before heating is measured.
 なお、上記測定時間△T2は検出制御部201に予め設定されているものであってもよいし、図示しないスイッチの操作などによって入力、変更されるものであってもよい。 The measurement time ΔT2 may be set in advance in the detection control unit 201, or may be input or changed by operating a switch (not shown).
 このとき、別途設けたLED等の発光素子(図示せず)からの発光の、捕集治具12表面の粒子が捕集されない反射領域(図示せず)からの反射光を、別途設けた受光素子(図示せず)で受光し、その受光量を参照値I0として用いてF1/I0を記憶部42に記憶してもよい。参照値I0に対する比率を算出することで、発光素子や受光素子の温度、湿度等の環境条件や劣化等による特性変動に起因する蛍光強度の変動を補償することができるという利点が生じる。 At this time, the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received. Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0. By calculating the ratio with respect to the reference value I0, there is an advantage that fluctuations in fluorescence intensity caused by characteristic fluctuations due to environmental conditions such as the temperature and humidity of the light emitting element and the light receiving element and deterioration can be compensated.
 S35の測定動作が終了すると、S37で検出制御部201は捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを検出室5Bから捕集室5Aに移動させる。移動が完了すると、S39で加熱動作が行なわれる。S39で検出制御部201は予め規定した加熱処理時間である時間△T3の間、ヒータ91に加熱を行なわせる。このときの加熱温度は予め規定されている。 When the measurement operation of S35 is completed, in S37, the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the detection chamber 5B to the collection chamber 5A. When the movement is completed, a heating operation is performed in S39. In S39, the detection control unit 201 causes the heater 91 to perform heating for a time ΔT3 which is a predetermined heat treatment time. The heating temperature at this time is defined in advance.
 加熱動作後、S41で冷却動作が行なわれる。S41では、ファン制御部202は所定の冷却時間、ファン400を逆回転させる。捕集ユニット12Aに外部の空気を触れさせることで冷却する。加熱処理時間△T3、加熱温度、および冷却時間も、検出制御部201に予め設定されているものであってもよいし、図示しないスイッチの操作によって入力、変更されるものであってもよい。 After the heating operation, a cooling operation is performed in S41. In S41, the fan control unit 202 rotates the fan 400 reversely for a predetermined cooling time. It cools by making external air touch the collection unit 12A. The heat treatment time ΔT3, the heating temperature, and the cooling time may also be set in advance in the detection control unit 201, or may be input and changed by operating a switch (not shown).
 S37で捕集ユニット12Aを捕集室5Aに移動させた後に捕集室5A内で加熱動作および冷却動作が行なわれ、冷却後に捕集ユニット12Aが検出室5Bに移動することで、加熱時にヒータ91は発光素子6、受光素子9等のセンサ機器から隔てられた距離に位置し、また、壁5C等によっても隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。なお、このように加熱時にヒータ91は発光素子6、受光素子9等のセンサ機器とは壁5C等によっても隔てられた捕集室5A内にあることから、ヒータ91は捕集ユニット12A内の必ずしも放電電極17から遠い側の面、すなわち検出室5Bに捕集ユニット12Aが移動したときに発光素子6、受光素子9等から遠い側の面になくてもよく、たとえば放電電極17から近い側の面にあってもよい。 After the collection unit 12A is moved to the collection chamber 5A in S37, a heating operation and a cooling operation are performed in the collection chamber 5A. After the cooling, the collection unit 12A is moved to the detection chamber 5B, so that the heater is heated. 91 is located at a distance separated from the sensor device such as the light emitting element 6 and the light receiving element 9 and is also separated by the wall 5C and the like, thereby suppressing the influence of heat on the light emitting element 6, the light receiving element 9 and the like. Can do. In addition, since the heater 91 is in the collection chamber 5A separated from the sensor devices such as the light emitting element 6 and the light receiving element 9 by the wall 5C and the like at the time of heating as described above, the heater 91 is disposed in the collection unit 12A. The surface far from the discharge electrode 17, that is, the surface far from the light emitting element 6, the light receiving element 9, etc. when the collection unit 12 </ b> A moves to the detection chamber 5 </ b> B may not be present. It may be on the side.
 S39の加熱動作およびS41の冷却動作が終了すると、S43で検出制御部201は捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを捕集室5Aから検出室5Bに移動させる。移動が完了すると、S45で再度検出動作が行なわれる。S45の検出動作はS35での検出動作と同じである。ここでの蛍光強度F2に応じた電圧値が検出処理部40に入力されて記憶部42に記憶される。これにより、加熱後の蛍光量S2が測定される。 When the heating operation in S39 and the cooling operation in S41 are finished, in S43, the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber 5B. Let When the movement is completed, the detection operation is performed again in S45. The detection operation in S45 is the same as the detection operation in S35. The voltage value according to the fluorescence intensity F2 here is input to the detection processing unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S2 after heating is measured.
 S45で加熱後の蛍光量S2が測定されると、S47で捕集ユニット12Aのリフレッシュ動作が行なわれる。S47で検出制御部201はブラシ60を移動させるための機構を稼動させて、捕集ユニット12A表面でブラシ60を所定回数往復移動させる。このリフレッシュ動作が完了すると、S49で検出制御部201は捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを検出室5Bから捕集室5Aに移動させる。これにより、開始の指示を受けると直ちに次の捕集動作(S31)を開始することができる。 When the fluorescence amount S2 after heating is measured in S45, the refresh operation of the collection unit 12A is performed in S47. In S47, the detection control unit 201 operates a mechanism for moving the brush 60, and reciprocates the brush 60 a predetermined number of times on the surface of the collection unit 12A. When this refresh operation is completed, in S49, the detection control unit 201 operates a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the detection chamber 5B to the collection chamber 5A. Thereby, the next collection operation (S31) can be started immediately upon receiving the start instruction.
 算出部41は、記憶された蛍光強度F1と蛍光強度F2との差分を増大量△Fとして算出する。上述のように、増大量△Fは生物由来の粒子量(粒子数または濃度等)に関連している。算出部41は、予め、図25に表わされたような、増大量△Fと生物由来の粒子量(濃度)との対応関係を記憶しておく。そして、算出部41は、算出された増大量△Fと該対応関係とを用いて得られる濃度を、ケース5内に時間△T1の間に導入された空気中の生物由来の粒子の濃度として算出する。 The calculation unit 41 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ΔF. As described above, the increase amount ΔF is related to the amount of biological particles (number of particles or concentration, etc.). The calculation unit 41 stores in advance a correspondence relationship between the increase amount ΔF and the amount (concentration) of biological particles as shown in FIG. Then, the calculation unit 41 sets the concentration obtained by using the calculated increase amount ΔF and the corresponding relationship as the concentration of biological particles in the air introduced into the case 5 during the time ΔT1. calculate.
 増大量△Fと生物由来の粒子の濃度との対応関係は、予め実験的に決められる。たとえば、1m3の大きさの容器内に、大腸菌やバチルス菌やカビ菌などの微生物の一種を、ネブライザを利用して噴霧し、微生物濃度をN個/m3に維持して、検出器100を用いて、上述の検出方法により時間△T1の間微生物を捕集する。そして、所定加熱量(加熱時間△T3、所定の加熱温度)で捕集した微生物に対してヒータ91によって加熱処理を施し、所定時間△T4の冷却の後、加熱前後の蛍光強度の増大量△Fを測定する。種々の微生物濃度について同様の測定がなされることで、図25に示された増大量△Fと濃度(個/m3)との関係が得られる。 The correspondence relationship between the increase amount ΔF and the concentration of biological particles is experimentally determined in advance. For example, a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed into a 1 m 3 container using a nebulizer, and the concentration of microorganisms is maintained at N / m 3. Is used to collect microorganisms for a time ΔT1 by the above-described detection method. The microorganisms collected at a predetermined heating amount (heating time ΔT3, predetermined heating temperature) are subjected to heat treatment by the heater 91, and after cooling for a predetermined time ΔT4, the amount of increase in fluorescence intensity before and after heating Δ Measure F. The same measurement is performed for various microorganism concentrations, whereby the relationship between the increase ΔF and the concentration (pieces / m 3 ) shown in FIG. 25 is obtained.
 増大量△Fと生物由来の粒子の濃度との対応関係は、図示しないスイッチの操作などによって入力されることで算出部41に記憶されてもよい。また、いったん算出部41に記憶された該対応関係が検出制御部201により更新されてもよい。 The correspondence relationship between the increase amount ΔF and the concentration of biological particles may be stored in the calculation unit 41 by being input by operating a switch (not shown). Further, the correspondence relationship once stored in the calculation unit 41 may be updated by the detection control unit 201.
 算出部41は、増大量△Fが差分△F1と算出された場合、図25の対応関係から増大量△F1に対応する値を特定することで生物由来の粒子の濃度N1(個/m3)を算出する。 When the increase amount ΔF is calculated as the difference ΔF1, the calculation unit 41 specifies the value corresponding to the increase amount ΔF1 from the correspondence relationship in FIG. 25 to thereby determine the concentration N1 (particles / m 3 ) of biological particles. ) Is calculated.
 ただし、増大量△Fと生物由来の粒子の濃度との対応関係は、粒子の種類(たとえば菌種)によって異なる可能性がある。そこで、算出部41は、いずれかの生物由来の粒子を標準と規定して、増大量△Fと当該生物由来の粒子の濃度との対応関係を記憶する。これにより、様々な環境における生物由来の粒子の濃度が、標準を基準として換算された生物由来の粒子の濃度として算出される。その結果、様々な環境を比較することが可能となり、環境管理が容易となる。 However, the correspondence relationship between the increase amount ΔF and the concentration of biological particles may vary depending on the type of particles (for example, fungal species). Therefore, the calculation unit 41 defines any biological particle as a standard, and stores the correspondence between the increase amount ΔF and the concentration of the biological particle. Thereby, the density | concentration of the biological origin particle | grains in various environments is calculated as a density | concentration of the biological origin particle | grain converted on the basis of the standard. As a result, various environments can be compared, and environmental management becomes easy.
 なお、上述の例では増大量△Fには、所定の加熱量(所定の加熱温度、加熱時間△T3)の加熱処理の前後の蛍光強度の差分が用いられているが、これらの比率が用いられてもよい。 In the above example, the increase ΔF uses the difference in fluorescence intensity before and after the heat treatment of a predetermined heating amount (predetermined heating temperature, heating time ΔT3), but these ratios are used. May be.
 <検出動作2>
 なお、検出器100が図5に示される構成である場合、すなわち、捕集するための機構と検出するための機構とが一体とされた構成である場合についての検出装置1Aでの検出動作についても説明する。
<Detection operation 2>
In addition, about the detection operation | movement in 1 A of detection apparatuses when the detector 100 is the structure shown by FIG. 5, ie, the structure where the mechanism for collecting and the mechanism for detection are united. Also explained.
 図26は、検出器100が図5に示される構成である場合の制御部200での制御の流れを示すタイムチャートである。図26に示された制御は、制御部200の図示しないCPUが図示しないメモリに記憶されているプログラムを読み出して実行し、図23の各部を制御することによって実現される。 FIG. 26 is a time chart showing the flow of control in the control unit 200 when the detector 100 has the configuration shown in FIG. The control shown in FIG. 26 is realized by a CPU (not shown) of the control unit 200 reading and executing a program stored in a memory (not shown) to control each unit shown in FIG.
 図26を参照して、図示しないスイッチから検出動作の開始を指示する操作信号が入力されると、ファン制御部202はファン400を駆動させる。また、検出制御部201は、クロック発生部47からのクロック信号に基づいた時刻T1に、シャッタ16A,16Bの駆動機構に対して開放(ON)させるための制御信号を出力する。その後、時刻T1から時間△T1経過後の時刻T2に、検出制御部201は、シャッタ16A,16Bを閉塞させるための制御信号を出力する。 Referring to FIG. 26, when an operation signal instructing the start of a detection operation is input from a switch (not shown), fan control unit 202 drives fan 400. Further, the detection control unit 201 outputs a control signal for opening (ON) the drive mechanism of the shutters 16A and 16B at time T1 based on the clock signal from the clock generation unit 47. Thereafter, at time T2 after time ΔT1 has elapsed from time T1, the detection control unit 201 outputs a control signal for closing the shutters 16A and 16B.
 これにより、時刻T1から時間△T1の間、シャッタ16A,16Bが開放され、ファン400の駆動により外部空気が分離器700に導入される。導入された空気からは花粉などのアレルゲンが分離されて除去され、除去された後の空気がエア管500を経て検出器100に導入される。ケース5内に導入された空気中の粒子は、放電電極17により負電荷に帯電され、空気の流れと放電電極17および捕集治具12表面の皮膜3の間で形成される電界とにより、捕集治具12表面に時間△T1の間、捕集される。 Thereby, between time T1 and time ΔT1, the shutters 16A and 16B are opened, and external air is introduced into the separator 700 by driving the fan 400. Allergens such as pollen are separated and removed from the introduced air, and the air after removal is introduced into the detector 100 through the air tube 500. Particles in the air introduced into the case 5 are negatively charged by the discharge electrode 17, and due to the flow of air and the electric field formed between the discharge electrode 17 and the coating 3 on the surface of the collecting jig 12, It is collected on the surface of the collecting jig 12 for a time ΔT1.
 また、時刻T2にシャッタ16A,16Bが閉塞され、ケース5内の空気の流れが止まる。これにより、捕集治具12での浮遊粒子の捕集が終了する。また、これにより、外部からの迷光が遮光される。 Further, at time T2, the shutters 16A and 16B are closed, and the air flow in the case 5 stops. Thereby, collection of the floating particles by the collection jig 12 is completed. This also blocks stray light from the outside.
 検出制御部201は、シャッタ16A,16Bが閉塞した時刻T2に、受光素子9に受光を開始(ON)させるための制御信号を出力する。さらに、それと同時(時刻T2)または時刻T2から少し遅れた時刻T3に、発光素子6に発光を開始(ON)させるための制御信号を出力する。その後、時刻T3から蛍光強度を測定するための予め規定した測定時間である時間△T2経過後の時刻T4に、検出制御部201は、受光素子9に受光を終了(OFF)させるための制御信号、および発光素子6に発光を終了(OFF)させるための制御信号を出力する。なお、上記測定時間は検出制御部201に予め設定されているものであってもよいし、図示しないスイッチの操作などによって入力、変更されるものであってもよい。 The detection control unit 201 outputs a control signal for starting (ON) light reception to the light receiving element 9 at time T2 when the shutters 16A and 16B are closed. Further, at the same time (time T2) or at time T3 slightly delayed from time T2, a control signal for starting (ON) light emission to the light emitting element 6 is output. After that, at time T4 after the time ΔT2 which is a predetermined measurement time for measuring fluorescence intensity from time T3, the detection control unit 201 controls the light receiving element 9 to end (OFF) light reception. And a control signal for causing the light emitting element 6 to end (OFF) light emission. The measurement time may be preset in the detection control unit 201, or may be input or changed by operating a switch (not shown).
 これにより、時刻T3(または時刻T2)より発光素子6からの照射が開始される。発光素子6からの光は、捕集治具12の表面の照射領域15に照射され、捕集された粒子から蛍光が発光される。時刻T3から規定の測定時間△T2分の蛍光が受光素子9により受光され、その蛍光強度F1に応じた電圧値が検出処理部40に入力されて記憶部42に記憶される。 Thereby, irradiation from the light emitting element 6 is started from time T3 (or time T2). The light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles. Fluorescence for a prescribed measurement time ΔT2 from time T3 is received by the light receiving element 9, and a voltage value corresponding to the fluorescence intensity F1 is input to the detection processing unit 40 and stored in the storage unit 42.
 検出制御部201は、発光素子6の発光および受光素子9の受光を終了させた時刻T4(または時刻T4から少し遅れた時刻)に、ヒータ91に加熱を開始(ON)させるための制御信号を出力する。そして、ヒータ91の加熱開始(時刻T4または時刻T4から少し遅れた時刻)から加熱処理のための予め規定した加熱処理時間である時間△T3経過後の時刻T5に、検出制御部201はヒータ91に加熱を終了(OFF)させるための制御信号を出力する。 The detection control unit 201 generates a control signal for starting (ON) heating of the heater 91 at time T4 (or time slightly delayed from time T4) when the light emission of the light emitting element 6 and the light reception of the light receiving element 9 are terminated. Output. Then, at time T5 after the elapse of time ΔT3, which is a predetermined heat treatment time for the heat treatment from the start of heating of the heater 91 (time T4 or a time slightly delayed from time T4), the detection control unit 201 detects the heater 91. Outputs a control signal for finishing (OFF) heating.
 これにより、時刻T4(または時刻T4から少し遅れた時刻)から加熱処理時間△T3の間、ヒータ91によって捕集治具12表面の照射領域15に捕集した粒子に対して加熱処理が施される。このときの加熱温度は予め規定されている。時間△T3の間加熱処理されることで、捕集治具12表面に捕集された粒子に対して所定の加熱量が加えられることになる。なお、加熱処理時間△T3(すなわち加熱量)もまた、上記測定時間と同様に、検出制御部201に予め設定されているものであってもよいし、図示しないスイッチの操作などによって入力、変更されるものであってもよい。 Thereby, the heat treatment is performed on the particles collected in the irradiation region 15 on the surface of the collection jig 12 by the heater 91 from the time T4 (or a time slightly delayed from the time T4) to the heat treatment time ΔT3. The The heating temperature at this time is defined in advance. By performing the heat treatment for the time ΔT3, a predetermined heating amount is applied to the particles collected on the surface of the collection jig 12. The heat treatment time ΔT3 (that is, the heating amount) may also be set in advance in the detection control unit 201 as in the case of the above measurement time, and may be input or changed by operating a switch (not shown). It may be done.
 その後、時間△T4の間、加熱した粒子が冷却処理される。冷却処理にはファン400が用いられてもよく、この場合、別途HEPA(High Efficiency Particulate Air)フィルタを設けた導入口(図示せず)から外部空気が取り込まれてもよい。または、別途ペルチェ素子等の冷却機構が用いられてもよい。 Thereafter, the heated particles are cooled for a time ΔT4. The fan 400 may be used for the cooling process. In this case, external air may be taken in from an inlet (not shown) provided with a separate HEPA (High Efficiency Particulate Air) filter. Alternatively, a cooling mechanism such as a Peltier element may be used separately.
 その後、ファン制御部202はファン400の動作を終了させるための制御信号を出力し、検出制御部201は時刻T6に受光素子9に受光を開始(ON)させるための制御信号を出力する。さらに、それと同時(時刻T6)または時刻T6から少し遅れた時刻T7に、発光素子6に発光を開始(ON)させるための制御信号を出力する。その後、時刻T7から測定時間△T2経過後の時刻T8に、検出制御部201は、受光素子9に受光を終了(OFF)させるための制御信号、および発光素子6に発光を終了(OFF)させるための制御信号を出力する。 Thereafter, the fan control unit 202 outputs a control signal for terminating the operation of the fan 400, and the detection control unit 201 outputs a control signal for starting (ON) light reception by the light receiving element 9 at time T6. Further, at the same time (time T6) or at time T7 slightly delayed from time T6, a control signal for starting (ON) the light emitting element 6 to emit light is output. Thereafter, at time T8 after the measurement time ΔT2 has elapsed from time T7, the detection control unit 201 causes the light receiving element 9 to end (OFF) light reception, and causes the light emitting element 6 to end (OFF) light emission. Control signal for output.
 これにより、発光素子6から捕集治具12表面の照射領域15に捕集した粒子に対して時間△T3の間加熱処理された後の、測定時間△T2分の蛍光が受光素子9により受光される。その蛍光強度F2に応じた電圧値は検出処理部40に入力されて記憶部42に記憶される。 As a result, the light collected by the light receiving element 9 receives the fluorescence for the measurement time ΔT2 after the particles collected from the light emitting element 6 to the irradiation region 15 on the surface of the collecting jig 12 are heated for the time ΔT3. Is done. The voltage value corresponding to the fluorescence intensity F2 is input to the detection processing unit 40 and stored in the storage unit 42.
 算出部41は、記憶された蛍光強度F1と蛍光強度F2との差分を増大量△Fとして算出する。そして、上述と同様にして、算出された増大量△Fと、予め記憶している増大量△Fと微生物量(濃度)との対応関係(図25)とを用いて得られる生物由来の粒子の濃度を、捕集室5A内に時間△T1の間に導入された空気中の生物由来の粒子の濃度として算出する。 The calculation unit 41 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ΔF. Then, in the same manner as described above, the biologically derived particles obtained using the calculated increase amount ΔF and the correspondence (FIG. 25) between the increase amount ΔF and the microorganism amount (concentration) stored in advance. Is calculated as the concentration of biological particles in the air introduced into the collection chamber 5A during the time ΔT1.
 <実施の形態の効果>
 本実施の形態にかかる検出装置1Aが図1に表わされたように分離器700と検出器100とを含んで構成され、分離器700が上述の形状とされることによって、分離器700において空気中の浮遊粒子からアレルゲンが高精度で除去され後に検出器100での検出が行なわれることになる。これにより、検出精度を向上させることができる。
<Effect of Embodiment>
As shown in FIG. 1, the detection apparatus 1 </ b> A according to the present embodiment includes the separator 700 and the detector 100, and the separator 700 has the shape described above. Allergen is removed from airborne particles with high accuracy, and then detection by the detector 100 is performed. Thereby, detection accuracy can be improved.
 また、検出器100が上述のように生物由来の粒子からの蛍光と蛍光を発する埃からの蛍光との加熱処理による性質の差を利用する構成であることで、検出器100まで到達した空気中に蛍光を発する埃が含まれている場合であっても、リアルタイムに、かつ精度よく、微生物を蛍光を発する埃から分離して検出することができる。 In addition, in the air that has reached the detector 100, the detector 100 uses a difference in properties due to heat treatment between fluorescence from biological particles and fluorescence from dust that emits fluorescence as described above. Even when the fluorescent substance contains dust that emits fluorescence, the microorganisms can be separated and detected from the fluorescent substance dust in real time and with high accuracy.
 さらに、本実施の形態にかかる検出装置1Aでは、検出器100に空気を導入するための機構と、分離器700に空気を導入するための機構とが、流路上に設けられた1つのファン400で兼用されている。これにより、それぞれを別個に設ける場合と比較して、検出装置1Aに用いられる部材数を抑えることができる。また、ポンプやマスフローコントローラなどを用いて空気の導入を制御する場合と比較して、制御も簡素化することができる。そのため、検出装置全体の小型化やコストダウンを図ることができる。 Furthermore, in the detection apparatus 1A according to the present embodiment, a mechanism for introducing air into the detector 100 and a mechanism for introducing air into the separator 700 are provided as one fan 400 provided on the flow path. It is also used in. Thereby, compared with the case where each is provided separately, the number of members used for 1 A of detection apparatuses can be suppressed. Further, the control can be simplified as compared with the case where the introduction of air is controlled using a pump, a mass flow controller or the like. Therefore, it is possible to reduce the size and cost of the entire detection device.
 [第2の実施の形態]
 なお、検出装置において、ファン400の設けられる位置は検出装置の流路上であればいずれの位置であってもよく、図1に示された位置に限定されない。図1に示された第1の実施の形態にかかる検出装置1Aでは、ファン400が検出器100の排出孔11の位置、つまり、検出装置1Aの流路の最下流に設けられ、回転することによって検出装置1A内には吸引力が生じるものとしていた。しかしながら、他の例として、最上流の分離器700の導入孔70までの間、つまり、図1に示された位置よりも上流側に設けられてもよい。そこで、第2の実施の形態として、第1の実施の形態とは異なる位置にファン400が設けられる例について説明する。
[Second Embodiment]
In the detection device, the position where the fan 400 is provided may be any position as long as it is on the flow path of the detection device, and is not limited to the position shown in FIG. In the detection apparatus 1A according to the first embodiment shown in FIG. 1, the fan 400 is provided at the position of the discharge hole 11 of the detector 100, that is, the most downstream of the flow path of the detection apparatus 1A, and rotates. Therefore, a suction force is generated in the detection apparatus 1A. However, as another example, it may be provided up to the introduction hole 70 of the most upstream separator 700, that is, upstream of the position shown in FIG. Therefore, an example in which the fan 400 is provided at a position different from that of the first embodiment will be described as the second embodiment.
 図27は、第2の実施の形態にかかる検出装置1Bの構成の具体例を示す図である。一例として、検出装置1Bでは、ファン400がエア管500内であって、検出器100の導入孔10の位置に設けられている。さらに他の例として、エア管500内であって分離器700の排出孔71に接する位置に設けられてもよいし、分離器700の導入孔70に接する位置に設けられてもよい。 FIG. 27 is a diagram illustrating a specific example of the configuration of the detection apparatus 1B according to the second embodiment. As an example, in the detection apparatus 1 </ b> B, the fan 400 is provided in the air tube 500 at the position of the introduction hole 10 of the detector 100. As yet another example, the air tube 500 may be provided at a position in contact with the discharge hole 71 of the separator 700 or may be provided at a position in contact with the introduction hole 70 of the separator 700.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1A,1B 検出装置、2 高圧電源、3 皮膜、4 支持基板、5 ケース、5A 捕集室、5B 検出室、5C’ 孔、5C 壁、6 発光素子、7 レンズ、8 集光レンズ、9 受光素子、10,70 導入孔、11,71 排出孔、12 捕集治具、12A 捕集ユニット、15 照射領域、16A,16B シャッタ、17 放電電極、30 信号処理部、34 電圧変換回路、35 増幅回路、40 検出処理部、41 算出部、42 記憶部、44 入力部、47 クロック発生部、48 駆動部、60 ブラシ、65A カバー、65B アダプタ、72,73,74,75,76,77,78,79,A,B 曲線、91 ヒータ、100 検出器、200 制御部、201 検出制御部、202 ファン制御部、400 ファン、500 エア管、700 分離器。 1A, 1B detection device, 2 high voltage power supply, 3 coating, 4 support substrate, 5 case, 5A collection chamber, 5B detection chamber, 5C 'hole, 5C wall, 6 light emitting element, 7 lens, 8 condenser lens, 9 light reception Element 10, 70, introduction hole, 11, 71 discharge hole, 12 collection jig, 12A collection unit, 15 irradiation area, 16A, 16B shutter, 17 discharge electrode, 30 signal processing unit, 34 voltage conversion circuit, 35 amplification Circuit, 40 detection processing unit, 41 calculation unit, 42 storage unit, 44 input unit, 47 clock generation unit, 48 drive unit, 60 brush, 65A cover, 65B adapter, 72, 73, 74, 75, 76, 77, 78 79, A, B curve, 91 heater, 100 detector, 200 control unit, 201 detection control unit, 202 fan control unit, 4 0 fans, 500 air tube, 700 separator.

Claims (6)

  1.  導入された空気中の生物由来の粒子である第1の粒子を検出するための検出装置であって、
     前記導入された空気中の粒子から、前記第1の粒子よりも粒子径の大きい第2の粒子を分離して除去するための分離器と、
     前記分離器とエア管で接続され、前記分離器で前記第2の粒子が分離して除去された後の前記導入された空気から前記第1の粒子を検出するための検出器と、
     前記分離器に所定の流速で当該検出装置外の空気を導入し、前記分離器から前記エア管を経て前記検出器まで前記空気を導入するための吸気装置とを備え、
     前記吸気装置は、前記検出装置外の空気を前記分離器へ導入するための導入孔から、前記分離器の内部、前記エア管、および前記検出器の内部を経て、当該検出装置外へ空気を排出するための、前記検出器の排出孔までの間の経路のいずれかの位置に配備される、検出装置。
    A detection device for detecting first particles which are particles derived from living organisms in the air,
    A separator for separating and removing second particles having a particle size larger than that of the first particles from the introduced particles in the air;
    A detector for detecting the first particles from the introduced air after the second particles are separated and removed by the separator, connected to the separator by an air tube;
    An air intake device for introducing air outside the detection device into the separator at a predetermined flow rate, and introducing the air from the separator through the air tube to the detector;
    The intake device passes air from the introduction hole for introducing air outside the detection device to the separator, through the inside of the separator, the air pipe, and the inside of the detector, to the outside of the detection device. A detection device disposed at any position in a path between the detector and a discharge hole for discharging.
  2.  前記吸気装置は、前記検出器の前記検出装置外へ空気を排出するための排出孔に接する位置に設けられる、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the intake device is provided at a position in contact with a discharge hole of the detector for discharging air out of the detection device.
  3.  前記吸気装置は、前記検出器の前記エア管に接続される位置に設けられる、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the intake device is provided at a position connected to the air pipe of the detector.
  4.  前記分離器はサイクロンである、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the separator is a cyclone.
  5.  前記検出器は、
     捕集用部材と、
     発光素子と、
     蛍光を受光するための受光素子と、
     前記捕集用部材を加熱するためのヒータと、
     前記加熱の前後での、前記発光素子で照射された前記捕集用部材からの蛍光量の変化量に基づいて、前記捕集用部材で捕集された生物由来の粒子量を前記第1の粒子の量として算出するための算出部とを含む、請求項1に記載の検出装置。
    The detector is
    A collecting member;
    A light emitting element;
    A light receiving element for receiving fluorescence;
    A heater for heating the collecting member;
    Based on the amount of change in the amount of fluorescence from the collecting member irradiated by the light emitting element before and after the heating, the amount of biological particles collected by the collecting member is changed to the first amount. The detection device according to claim 1, further comprising a calculation unit for calculating the amount of particles.
  6.  導入された空気中の粒子から第1の粒子よりも粒子径の大きい第2の粒子を分離して除去するための分離器と、前記分離器とエア管で接続された検出器とを含む検出装置を用いて、前記検出装置に導入された空気中の生物由来の粒子である前記第1の粒子を検出する方法であって、
     前記検出装置には、前記検出装置外の空気を前記分離器へ導入するための導入孔から、前記分離器の内部、前記エア管、および前記検出器の内部を経て、当該検出装置外へ空気を排出するための、前記検出器の排出孔までの間の経路のいずれかの位置に、前記分離器に所定の流速で当該検出装置外の空気を導入し、前記分離器から前記エア管を経て前記検出器まで前記空気を導入するための吸気装置が配備され、
     前記吸気装置を所定時間稼動することにより、前記所定時間、前記所定の流速で前記検出装置外の空気を前記分離器の前記導入孔から前記検出装置内に導入するステップと、
     前記所定時間の経過の後、前記吸気装置の稼動を停止し、前記検出器における検出動作を実行するステップとを備え、
     前記検出動作を実行するステップは、
     前記検出器に含まれる捕集用部材の、加熱前における発光素子の照射下での蛍光量を測定するステップと、
     前記捕集用部材の、加熱後における前記発光素子の照射下での蛍光量を測定するステップと、
     加熱前の前記捕集用部材から測定された蛍光量から、加熱後の前記捕集用部材から測定された蛍光量への変化量に基づいて、前記捕集用部材で捕集された生物由来の粒子量を前記第1の粒子の量として算出するステップとを含む、検出方法。
    Detection comprising: a separator for separating and removing second particles having a larger particle diameter than the first particles from particles in the introduced air; and a detector connected to the separator by an air tube A method for detecting the first particles, which are biologically derived particles in the air introduced into the detection device, using an apparatus,
    From the introduction hole for introducing the air outside the detection device to the separator, the detection device passes through the inside of the separator, the air tube, and the inside of the detector to the outside of the detection device. Air outside the detection device is introduced into the separator at a predetermined flow rate at any position on the path to the detector discharge hole, and the air tube is connected to the separator from the separator. Via which an air intake device for introducing the air to the detector is deployed,
    Introducing the air outside the detection device from the introduction hole of the separator into the detection device at the predetermined flow rate for the predetermined time by operating the intake device for a predetermined time;
    After the elapse of the predetermined time, stopping the operation of the intake device, and performing a detection operation in the detector,
    The step of executing the detection operation includes:
    Measuring the amount of fluorescence under irradiation of the light emitting element before heating of the collection member included in the detector;
    Measuring the amount of fluorescence under irradiation of the light emitting element after heating of the collecting member;
    Based on the amount of change from the amount of fluorescence measured from the collecting member before heating to the amount of fluorescence measured from the collecting member after heating, derived from the organism collected by the collecting member Calculating the amount of particles as the amount of the first particles.
PCT/JP2011/070357 2010-12-14 2011-09-07 Detection device and detection method WO2012081285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010277864A JP2012127726A (en) 2010-12-14 2010-12-14 Detector and detection method
JP2010-277864 2010-12-14

Publications (1)

Publication Number Publication Date
WO2012081285A1 true WO2012081285A1 (en) 2012-06-21

Family

ID=46244400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070357 WO2012081285A1 (en) 2010-12-14 2011-09-07 Detection device and detection method

Country Status (2)

Country Link
JP (1) JP2012127726A (en)
WO (1) WO2012081285A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869178A1 (en) * 2020-01-21 2021-08-25 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997532B2 (en) * 2012-07-30 2016-09-28 シャープ株式会社 Particle detector
WO2015029673A1 (en) * 2013-08-30 2015-03-05 シャープ株式会社 Collection device and detection device
JP6227425B2 (en) * 2014-01-17 2017-11-08 アズビル株式会社 Method for comparing fluorescence intensity of multiple types of particles and method for evaluating fluorescence detector
JP6541461B2 (en) * 2015-06-25 2019-07-10 シャープ株式会社 Detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006994A1 (en) * 1998-07-27 2000-02-10 Kowa Company, Ltd. Pollen grain counting method and pollen grain counter
JP2001183284A (en) * 1999-12-24 2001-07-06 Nippon Telegr & Teleph Corp <Ntt> Pollen distinguishing method and apparatus, and pollen scattering number measuring method and apparatus
JP2005531003A (en) * 2002-06-24 2005-10-13 サーノフ・コーポレーション Concentrated suspended particle collection method and apparatus
JP2007205831A (en) * 2006-02-01 2007-08-16 Omron Corp Apparatus and method for detecting particulate
JP2008500542A (en) * 2004-05-27 2008-01-10 サーノフ コーポレーション Airborne particulate collection method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006994A1 (en) * 1998-07-27 2000-02-10 Kowa Company, Ltd. Pollen grain counting method and pollen grain counter
JP2001183284A (en) * 1999-12-24 2001-07-06 Nippon Telegr & Teleph Corp <Ntt> Pollen distinguishing method and apparatus, and pollen scattering number measuring method and apparatus
JP2005531003A (en) * 2002-06-24 2005-10-13 サーノフ・コーポレーション Concentrated suspended particle collection method and apparatus
JP2008500542A (en) * 2004-05-27 2008-01-10 サーノフ コーポレーション Airborne particulate collection method and apparatus
JP2007205831A (en) * 2006-02-01 2007-08-16 Omron Corp Apparatus and method for detecting particulate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923081B2 (en) 2017-09-27 2024-03-05 Honeywell International Inc. Respiration-vocalization data collection system for air quality determination
EP3869178A1 (en) * 2020-01-21 2021-08-25 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11221288B2 (en) 2020-01-21 2022-01-11 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11181456B2 (en) 2020-02-14 2021-11-23 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11391613B2 (en) 2020-02-14 2022-07-19 Honeywell International Inc. Fluid composition sensor device and method of using the same
US11835432B2 (en) 2020-10-26 2023-12-05 Honeywell International Inc. Fluid composition sensor device and method of using the same

Also Published As

Publication number Publication date
JP2012127726A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2012081285A1 (en) Detection device and detection method
JP5275522B2 (en) Detection apparatus and detection method for detecting biological particles in air
WO2012150672A1 (en) Detection device and detection method
US8872653B2 (en) Display control device
CN107063951B (en) Planktonic microorganism detection device
JP6328493B2 (en) Measuring apparatus and measuring method
WO2014034355A1 (en) Particle detection device
JP2011097861A (en) Apparatus and method for detecting microorganism
JP2012072946A (en) Air conditioner
JP5844071B2 (en) Detection apparatus and detection method
JP6858851B2 (en) Cyclone collector
JP5755949B2 (en) Detection apparatus and detection method
KR101522665B1 (en) Device and method for detecting of bio-aerosol
WO2012081358A1 (en) Detection device and detection method
JP2012047427A (en) Air purifier, and display method in the same
US9057703B2 (en) Particle detection device
WO2013125119A1 (en) Particle detection device
JP5997532B2 (en) Particle detector
WO2012029649A1 (en) Air purifier, display method for air purifier, and air conditioner
WO2014192787A1 (en) Detection device
JP2013247900A (en) Detecting apparatus and detection method
JP2013250135A (en) Detection device and detection method
WO2013035407A1 (en) Particle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848648

Country of ref document: EP

Kind code of ref document: A1