WO2012029649A1 - Air purifier, display method for air purifier, and air conditioner - Google Patents

Air purifier, display method for air purifier, and air conditioner Download PDF

Info

Publication number
WO2012029649A1
WO2012029649A1 PCT/JP2011/069282 JP2011069282W WO2012029649A1 WO 2012029649 A1 WO2012029649 A1 WO 2012029649A1 JP 2011069282 W JP2011069282 W JP 2011069282W WO 2012029649 A1 WO2012029649 A1 WO 2012029649A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sensor
display
control
detection result
Prior art date
Application number
PCT/JP2011/069282
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 奥野
八木 久晴
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010191983A external-priority patent/JP2012047427A/en
Priority claimed from JP2010217323A external-priority patent/JP2012072946A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012029649A1 publication Critical patent/WO2012029649A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/46Auxiliary equipment or operation thereof controlling filtration automatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/50Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for air conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air cleaner, a display method in an air cleaner, and an air conditioner, and more particularly, to an air cleaner having a sensor function, a display method in an air cleaner, and an air conditioner.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-283533 discloses a device that takes in outside air with a fan and removes dust or odor with a filter and exhausts the air.
  • a dust sensor is connected to the microcomputer in the apparatus.
  • the microcomputer displays the detection result.
  • the detection result is displayed step by step as the degree of air contamination. By viewing this display, the user can grasp the current degree of air contamination, and can switch the mode of the air purifier to an appropriate mode.
  • This invention is made in view of such a problem, Comprising: The air cleaner which displays a cleaning effect, the display method in this air cleaner, and the air conditioner which performs suitable air-conditioning control according to a sensor result It is intended to provide.
  • an air cleaner includes a first sensor for detecting predetermined particles or components in the air, a purification mechanism for purifying the air, The display device and a control device for controlling display on the display device, the control device at a second time point different from the detection result of the first sensor at the first time point and the first time point. Control for displaying the detection result of the first sensor on the display device is performed.
  • the control device determines a display amount of the detection result based on a calculation unit for calculating a ratio of the detection result of the first sensor to a predetermined amount, and a calculation result of the calculation unit, and displays the display data.
  • a generation unit for generating and a storage unit for storing display data, and a detection result of the first sensor at a first time point and a detection result of the first sensor at a second time point; In any case, each detection result is displayed in a display amount corresponding to a ratio to the predetermined amount.
  • control device displays the detection result of the first sensor at the first time point and the detection result of the first sensor at the second time point on one display screen.
  • control device displays the detection result of the first sensor at the first time point on one display screen, and the detection result of the first sensor at the second time point on the display screen according to the switching instruction. Switch to.
  • the first sensor is at least one of a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor.
  • the first sensor includes at least two types of sensors: a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor.
  • control device displays the control amount of the purification mechanism in accordance with the detection result of the first sensor.
  • the control device detects the detection result of the first sensor at the first time point, the control amount of the purification mechanism at the first time point, the detection result of the first sensor at the second time point, and the first Control for displaying on the display device the cumulative amount of the control amount of the purification mechanism from the time point to the second time point is performed.
  • the air cleaner further includes a second sensor for detecting an air condition
  • the control device includes a second sensor in accordance with detection results of the first sensor at the first time point and the second time point. Control for displaying the detection result of the sensor on the display device is performed.
  • the second sensor includes at least one of a temperature sensor and a humidity sensor.
  • a display method in an air cleaner includes a sensor for detecting predetermined particles or components in the air and a purification mechanism for purifying the air.
  • the step of generating the first display data for displaying the detection result of the sensor at the first time point, the step of storing the first display data in the storage device, and the first time point Generating the second display data for displaying the detection results of the sensors at different second time points, and the sensor at the first time point based on the first display data and the second display data. Displaying the detection result and the detection result of the sensor at the second time point on a display device.
  • the air conditioner includes a first sensor for detecting predetermined particles in the air, an air conditioning mechanism for conditioning the air, the first sensor, and the air conditioning. And a control device for controlling the air conditioning mechanism connected to the mechanism. The control device determines suitability of the control status of the air conditioning mechanism based on the control status of the air conditioning mechanism and the detection result of the first sensor, and performs control based on the determination result.
  • the control device has an input unit for receiving inputs of the detection result of the first sensor and the control status of the air conditioning mechanism, and a value representing the air state with respect to a predetermined amount as a reference for the particles.
  • the calculation unit for calculating the ratio of the detection result is compared with a value representing the control state of the air conditioning mechanism and a value representing the air state to determine whether the control state of the air conditioning mechanism is appropriate for the air state.
  • the air conditioner further includes a notification unit for reporting information based on the determination result.
  • the notification is for changing the control status of the air conditioning mechanism to a balance corresponding to the air state
  • the control device further includes a storage unit for storing information used for notification. Information used for notification is associated with the determination result.
  • control device further includes an output unit for outputting a control signal corresponding to the determination result to the air conditioning mechanism.
  • the air conditioner includes a second sensor for detecting particles or components different from the first sensor.
  • the calculation unit calculates a ratio with respect to a predetermined amount for each type of particle or component as a value representing an air state, and calculates a ratio with respect to the predetermined amount for all types of particles or components.
  • the determination unit includes a value representing the control status of the air conditioning mechanism, and a value representing the air state calculated from the detection result of the type of particles or components previously associated with the air conditioning mechanism.
  • the control device repeats the determination at predetermined time intervals.
  • the air conditioning mechanism includes at least one of an ion generation device, a blower device, a humidity adjustment device, and a temperature adjustment device.
  • the present invention it is possible to grasp the cleaning effect due to the operation of the air cleaner from the display of the air cleaner. Further, appropriate air conditioning control can be executed according to the sensor result.
  • FIG. 2 is a fluorescence micrograph of dust that emits fluorescence after heat treatment. It is a figure which shows the comparison result of the fluorescence spectrum of the dust which fluoresces before and behind heat processing. It is a block diagram which shows the specific example of a function structure of a detection apparatus. It is a time chart which shows the flow of operation
  • FIG. 1A is a diagram illustrating a specific example of the appearance of an air cleaner 1A according to the first embodiment.
  • air cleaner 1A includes a switch 110 for receiving an operation instruction, a display panel 130 for displaying a detection result, and a plurality of types of predetermined particles or components in the air.
  • Sensors 100A, 100B,... For detection (which are also referred to as sensors 100), an ion generator 300, and a blower 400 are included.
  • a suction port for introducing air, an exhaust port for exhausting, and the like, which are not shown, are included.
  • 1 A of air cleaners may also contain the communication part 150 for communicating with another apparatus.
  • the sensor 100 corresponds to a sensor for detecting microorganisms from airborne particles, a pollen sensor, an odor sensor (gas sensor), and the like, which will be described later.
  • the sensor 100A is a sensor for detecting microorganisms
  • the sensor 100B is a pollen sensor
  • the sensor 100C is an odor sensor.
  • microorganisms including dead bodies
  • microorganisms such as bacteria and viruses are representative, but these “microorganisms” are those that perform life activities or part of them regardless of whether they are alive or dead and float in the air. It is the one of the size to do.
  • mites including dead bodies
  • the like may be included.
  • the air cleaner 1A may include a sensor for detecting the air state in addition to the sensor 100.
  • a sensor for detecting the air state for example, a humidity sensor or a temperature sensor is applicable.
  • an electric bulletin board system using LED Light Emitting Diode
  • liquid crystal liquid crystal
  • air cleaner 1A further includes a control device 200.
  • the control device 200 includes a CPU (Central Processing Unit) and a memory (not shown).
  • the CPU reads and executes the program stored in the memory according to the instruction signal from the switch 110.
  • the control device 200 includes a display control unit 210 for controlling display on the display panel 130, a detection control unit 220 for controlling the sensor 100, and an ion control unit 230 for controlling the ion generator 300.
  • an air volume control unit 240 for controlling the blower 400.
  • the display control unit 210, the detection control unit 220, and the ion control unit 230 may have a function mainly configured in a CPU by executing a program, or a function configured by hardware such as an electric circuit. May be.
  • the blower 400 includes a fan and its drive mechanism, and the drive mechanism is connected to the air volume control unit 240.
  • the air volume control unit 240 controls the rotation of the fan by controlling the drive mechanism. Thereby, the air volume from the air blower 400 is controlled.
  • a filter is provided at a suction port (not shown) of the air cleaner 1A.
  • the outside air taken in from the outside by the fan passes through the filter, so that dust and microorganisms contained in the air adhere to the filter, and the air that has been removed and purified is exhausted from the exhaust port to the outside of the machine.
  • the air volume control unit 240 controls ON / OFF of the switches 302A and 302B in accordance with an instruction signal from the switch 110. For example, when the cleaning mode is high, the drive mechanism is controlled so as to increase the rotational speed of the fan, and when it is low, the drive mechanism is controlled so as to decrease the rotational speed of the fan. By doing in this way, the air cleanliness degree is controlled.
  • the control result in the air volume control unit 240 that is, the information on the air volume from the blower 400, which is the amount of purified air, is output to the display controller 210.
  • the output timing is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
  • FIG. 2 is a diagram illustrating one specific example of the sensor 100A.
  • a sensor 100A according to the first example has a case 5 provided with an introduction hole 10 for introducing air from a suction port and an exhaust hole (not shown). 20, a signal processing unit 30, and a measurement detection unit 40.
  • the sensor 100A is provided with an air introduction mechanism 50. Air from the suction port is introduced into the case 5 at a predetermined flow rate by the air introduction mechanism 50.
  • the air introduction mechanism 50 may be, for example, a fan or pump installed outside the case 5 and a drive mechanism thereof. Further, for example, a heat heater, a micro pump, a micro fan, and a driving mechanism thereof incorporated in the case 5 may be used.
  • the air introduction mechanism 50 is different from the blower 400, but the blower 400 may function as the air introduction mechanism 50. The same applies to the second and third examples of the sensor 100A.
  • the drive mechanism included in the air introduction mechanism 50 is controlled by the detection control unit 220, whereby the flow velocity of the introduced air is controlled.
  • the flow rate when air is introduced by the air introduction mechanism 50 is not limited to a predetermined flow rate, but the sensor 100A converts the size of suspended particles from the current signal from the light receiving element 9 by a method described later. Therefore, it is necessary to control the flow rate within a range that is not too large.
  • the flow rate of the introduced air is 0.01 L (liter) / min to 10 L / min.
  • the sensor mechanism 20 includes a light emitting element 6 that is a light source, an irradiation direction of the light emitting element 6, a lens 7 for making light from the light emitting element 6 parallel light or a predetermined width, and a light receiving element 9. And a condensing lens 8 that is provided in the light receiving direction of the light receiving element 9 and collects the scattered light generated from the suspended fine particles existing in the air by the parallel light on the light receiving element 9.
  • the light emitting element 6 includes a semiconductor laser or an LED (Light Emitting Diode) element.
  • the wavelength may be any wavelength in the ultraviolet, visible, or near infrared region.
  • Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass.
  • the width of the parallel light by the lens 7 is not limited to a specific width, but is preferably about 0.05 mm to 5 mm.
  • the fluorescence is cut before the condenser lens 8 or the light receiving element 9 so that the fluorescence from the microorganisms does not enter the light receiving element 9.
  • An optical filter is installed.
  • Case 5 is a rectangular parallelepiped with each side having a length of 3 mm to 500 mm.
  • the shape of the case 5 is a rectangular parallelepiped, but is not limited to a rectangular parallelepiped, and may be another shape.
  • at least the inside is applied with a black paint or a black alumite treatment. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed.
  • the material of the case 5 is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used.
  • the introduction hole 10 and the discharge hole provided in the case 5 are circular with a diameter of 1 mm to 50 mm.
  • the shapes of the introduction hole 10 and the discharge hole are not limited to a circle, and may be other shapes such as an ellipse or a rectangle.
  • the light emitting element 6 and the lens 7, and the light receiving element 9 and the condensing lens 8 are respectively the irradiation direction of the light emitting element 6 made parallel light by the lens 7 and the light receiving element by being condensed by the condensing lens 8.
  • the light receiving direction is set at a predetermined angle ⁇ .
  • the air moving from the introduction hole 10 to the discharge hole is condensed by the irradiation region from the light emitting element 6 which is converted into parallel light by the lens 7 and the light collecting element 8.
  • 9 is installed at an angle so as to pass through the area A in FIG.
  • FIG. 2 shows an example in which these are installed so that the angle ⁇ is about 60 degrees and the region A is in front of the introduction hole 10.
  • the angle ⁇ is not limited to 60 degrees and may be another angle.
  • the signal processing unit 30 is connected to the measurement detection unit 40 and outputs a result of processing the pulsed current signal to the measurement detection unit 40. Based on the processing result from the signal processing unit 30, the measurement detection unit 40 detects microorganisms from airborne particles in the air and performs processing for outputting the detection result.
  • the intensity of scattered light from airborne particles depends on the size and refractive index of the airborne particles. Since microorganisms are filled with a liquid close to water, the microorganism can be approximated to transparent particles having a refractive index close to water.
  • the sensor 100A has a scattering intensity at a specific scattering angle when light is irradiated with dust particles of the same size, assuming that the refractive index of microorganisms floating in the air is a refractive index close to water. The difference is used to separate and detect microorganisms from other suspended particles.
  • FIG. 3 plots the scattering intensity at each scattering angle for spherical particles having a diameter of 1 ⁇ m and having a refractive index of 1.3, which is the same as that of water, and 1.6, which is different from water. Simulation results are shown.
  • the thick line represents the simulation result of the scattering intensity of the particles having a refractive index of 1.3
  • the dotted line represents the simulation result of the scattering intensity of the particles having a refractive index of 1.6.
  • a particle having a refractive index of 1.3 that is, a scattering intensity X1 from a microorganism
  • a particle having a refractive index of 1.6 that is, a representative of dust.
  • the scattering intensity X2 from the assumed particle. That is, when the scattering intensity at a scattering angle of 60 degrees of a spherical particle having a diameter of 1 ⁇ m is smaller than the boundary value by using a value between the scattering intensity X1 and the scattering intensity X2 as the boundary value in advance. It can be identified as microbial particles, and dust particles when large.
  • Sensor 100A uses this principle to discriminate the suspended particles in the introduced air from microorganisms and others. Therefore, a boundary value for distinguishing microorganisms and other suspended particles for each particle size is set in advance in the sensor 100A.
  • the sensor 100A measures the size and scattering intensity of airborne particles introduced in the air, and if the measured scattering intensity is smaller than a preset boundary value for the measured size, the microorganism, When it becomes large, it is determined as dust particles.
  • Sensor 100A can detect the size of airborne particles introduced using the following principle. That is, it is known that the velocity of suspended particles in the air carried at a certain flow rate becomes slower as the size of the suspended particles increases when the air flow rate is not large. According to this principle, the speed of the suspended particles traverses the irradiation light becomes longer because the speed decreases as the size of the suspended particles increases.
  • the light receiving element 9 of the sensor 100 ⁇ / b> A receives the scattered light generated by the suspended particles that are transported at a certain flow velocity when the suspended particles cross the irradiation light from the light emitting elements 6. Therefore, the current signal output from the light receiving element 9 has a pulse shape, and the pulse width is related to the time that the floating particles cross the irradiation light.
  • the size of the suspended particles is converted from the pulse width of the output current signal.
  • the detection control unit 220 reflects the flow velocity when air is introduced by the air introduction mechanism 50, and the pulse width of the current signal from the light receiving element 9 reflects the size of the suspended particles. The speed is controlled so as not to be too large.
  • FIG. 4 is a block diagram showing a specific example of the functional configuration of the sensor 100A as a first example that detects microorganisms in the air using the above principle.
  • FIG. 4 shows an example in which the function of the signal processing unit 30 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may be a software configuration that is realized by the signal processing unit 30 including a CPU (not shown) and executing a predetermined program by the CPU.
  • the configuration of the measurement detection unit 40 is a software configuration is shown. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
  • signal processing unit 30 is connected to pulse width measuring circuit 32 connected to light receiving element 9, pulse width-voltage converting circuit 33 connected to pulse width measuring circuit 32, and light receiving element 9.
  • a filter circuit 31 is provided between the light receiving element 9, the pulse width measurement circuit 32, and the current-voltage conversion circuit 34 for removing a signal having a preset current value or less. It is done. By providing the filter circuit 31, noise components due to stray light in the detection signal of the light receiving element 9 can be reduced.
  • the measurement detection unit 40 includes a calculation unit 45, a storage unit 42, and an output unit 43 for outputting a detection result.
  • the scattered particles from the suspended particles in the region A of FIG. 2 are condensed on the light receiving element 9 by irradiating the suspended particles introduced into the case 5 from the light emitting element 6.
  • a pulsed current signal shown in FIG. 5 corresponding to the amount of received light is output to the signal processing unit 30.
  • the current signal is input to the pulse width measurement circuit 32 and the current-voltage conversion circuit 34 of the signal processing unit 30.
  • a signal equal to or less than a preset current value is cut through the filter circuit 31.
  • the current-voltage conversion circuit 34 detects the peak current value H representing the scattering intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh.
  • the voltage value Eh is amplified to a preset gain by the amplifier circuit 35 and output to the voltage comparison circuit 36.
  • the pulse width measurement circuit 32 measures the pulse width W of the current signal input from the light receiving element 9.
  • the method for measuring the pulse width or the value related thereto in the pulse width measuring circuit 32 is not limited to a specific method, and may be a well-known signal processing method. As an example, a measurement method when a differential circuit (not shown) is incorporated in the pulse width measurement circuit 32 will be described. That is, when a pulsed current signal is input, in the differentiating circuit, a constant voltage determined according to the first pulse signal is generated, and the voltage returns to 0 according to the next pulse signal.
  • the pulse width measuring circuit 32 can measure the time from the rising edge to the falling edge of the voltage signal generated in the differentiating circuit and use it as the pulse width.
  • the pulse width W may be, for example, a width between peaks of a differential curve obtained through a differentiating circuit, which is represented by a dotted line in FIG.
  • an interval of a half value of the peak voltage value of the pulse waveform that is, a half value width, or an interval from the rising edge to the falling edge of the pulse waveform may be used.
  • a signal indicating the pulse width W measured by such a method or by another method is output to the pulse width-voltage conversion circuit 33.
  • a voltage value Ew used as a boundary value of the scattering intensity for determining whether or not it is a microorganism is set in advance.
  • the pulse width-voltage conversion circuit 33 converts the input pulse width W into a voltage value Ew according to the setting.
  • the correspondence between the pulse width W and the voltage value Ew may be set as a function or a coefficient, or may be set in a table.
  • the voltage value Ew is output to the voltage comparison circuit 36.
  • the voltage value Ew which is a boundary value corresponding to the pulse width W, is experimentally determined in advance.
  • a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed in a 1 m 3 container using a nebulizer, and a pulse width is obtained from a current signal from the light receiving element 9 using a sensor 100A.
  • the scattering intensity (peak voltage value) is measured.
  • polystyrene particles having a uniform size are substituted for dust, and the pulse width and scattering intensity (peak voltage value) are measured using the sensor 100A.
  • FIG. 6 is a schematic diagram when the scattering intensity (peak voltage value) with respect to the pulse width obtained from each of the microorganisms and polystyrene particles is plotted using the sensor 100A in this manner.
  • the scattering intensity with respect to the pulse width obtained from the polystyrene particles is mainly plotted in the region 51
  • the scattering intensity with respect to the pulse width obtained from the microorganism is mainly plotted in the region 52.
  • some of these plots span both regions and mix to some extent.
  • the causes include variations in the flow velocity of air into the case 5, variations in routes across the irradiation light of suspended particles, and intensity distribution of the irradiation light.
  • these boundaries are determined as a straight line 53, for example.
  • a function or coefficient representing the straight line 53 is set in the pulse width-voltage conversion circuit 33.
  • the correspondence relationship between the pulse width W represented by the straight line 53 and the voltage value Ew may be input by operating the switch 110 or the like, and may be set in the voltage comparison circuit 36 by the detection control unit 220.
  • the information may be set by the detection control unit 220 by reading the information from the recording medium in which the communication unit 150 records the correspondence between the pulse width W and the voltage value Ew.
  • the communication unit 150 may receive from a connected PC such as a dedicated line, or another device that communicates using the Internet or infrared rays, and may be set by the detection control unit 220.
  • the correspondence relationship between the pulse width W and the voltage value Ew once set in the voltage comparison circuit 36 may be updated by the detection control unit 220.
  • the voltage comparison circuit 36 has a boundary value corresponding to the voltage value Eh representing the scattering intensity input from the current-voltage conversion circuit 34 via the amplification circuit 35 and the pulse width W input from the pulse width-voltage conversion circuit 33. Is compared with the voltage value Ew. Based on this comparison, the voltage comparison circuit 36 determines whether or not the suspended particles that generate the scattered light received by the light receiving element 9 are microorganisms.
  • a specific example of the determination method in the voltage comparison circuit 36 will be described with reference to FIG.
  • the pulse width-voltage conversion circuit 33 is based on the correspondence represented by the set straight line 53.
  • the pulse width r1 is converted into a voltage value Y3.
  • the voltage comparison circuit 36 receives the peak voltage value Y1 and the voltage value Y3 and compares them. Since the peak voltage value Y1 is smaller than the boundary value voltage value Y3, the particle P1 is determined to be a microorganism.
  • the pulse width-voltage conversion circuit 33 is based on the correspondence relationship represented by the set straight line 53.
  • the pulse width r2 is converted into a voltage value Y2.
  • the voltage comparison circuit 36 receives the peak voltage value Y4 and the voltage value Y2, and compares them. Since the peak voltage value Y4 is larger than the boundary value voltage value Y2, it is determined that the particle P2 is not a microorganism.
  • the determination by the voltage comparison circuit 36 is performed based on the scattered light from the particles every time the suspended light crosses the irradiation light from the light emitting element 6, and a signal indicating the determination result is output to the measurement detection unit 40.
  • the calculation unit 45 of the measurement detection unit 40 receives an input of the determination result from the voltage comparison circuit 36 and sequentially stores it in the storage unit 42.
  • the calculation unit 45 inputs the number of signals indicating a determination result that the detection target suspended particles are microorganisms and / or other determination results. This counts the number of times signals are input.
  • the calculation unit 45 reads the flow rate of the introduced air from the air introduction mechanism 50 and multiplies the detection time to obtain the air amount Vs introduced into the case 5 during the detection time. As the detection result, the calculation unit 45 divides the number Ns of microorganisms or the number Nd of dust particles, which is the above-described total result, by the air amount Vs to obtain the concentration Ns / Vs of microorganisms or the concentration Nd / Vs of dust particles. .
  • the number of microorganisms Ns and the number of dust particles Nd counted within the detection time, the calculated microorganism concentration Ns / Vs, and the dust particle concentration Nd / Vs, which are detection results, are stored in the storage unit 42.
  • the detection result is output to the display control unit 210 by the output unit 43 at a predetermined timing.
  • the output timing at the output unit 43 is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
  • a control signal from an arithmetic unit such as a CPU (not shown) included in the sensor 100A is input to the signal processing unit 30 and the measurement detection unit 40, and each of the detection signals shown in FIG. This is realized by demonstrating the circuit and each function.
  • the suspended particle carried by the moving air crosses the irradiation light from the light emitting element 6, whereby a current signal by the scattered light generated by the suspended particle is changed to a step (hereinafter abbreviated as S).
  • the pulse width measurement circuit 32 detects the pulse width W of the pulsed current signal in S03.
  • the pulse width-voltage conversion circuit 33 converts the pulse width W detected in S03 into a voltage value Ew that is a boundary value based on a preset correspondence.
  • the current-voltage conversion circuit 34 detects the peak current value H representing the scattering intensity from the pulsed current signal input from the light receiving element 9 in S01, and converts it into the peak voltage value Eh. Note that the processing order of S03 to S07 is not limited to this order.
  • the voltage value Eh obtained in S07 is amplified to a preset amplification factor by the amplification circuit 35, and is compared with the voltage value Ew obtained in S05 by the voltage comparison circuit 36 in S09.
  • the voltage comparison circuit 36 determines that the suspended particles that have generated the scattered light detected as the current signal are microorganisms, A signal indicating the result is output to the measurement detector 40.
  • the voltage comparison circuit 36 determines that the suspended particle is not a microorganism, and a signal indicating the result is sent to the measurement detection unit 40. Is output.
  • the detection result output from the voltage comparison circuit 36 in S13 or S15 is stored in the storage unit 42 of the measurement detection unit 40 in S17.
  • the calculation unit 45 for the determination results for the predetermined detection time stored in the storage unit 42, the number of input of the determination result that is a microorganism and / or the number of input of the determination result that is not a microorganism. Are counted, and the former is the detected value of the number of microorganisms Ns and the latter is the number of dust particles Nd.
  • the calculation unit 45 obtains the air amount Vs introduced into the case 5 during the detection time by multiplying the detection time by the flow velocity of air.
  • the microorganism concentration Ns / Vs or the dust particle concentration Nd / Vs is obtained as a detection value by dividing the number Ns of microorganisms or the number Nd of dust particles obtained by the aggregation by the air amount Vs.
  • the detection value obtained in S19 is output from the output unit 43 to the display control unit 210 at a predetermined timing in S21.
  • the sensor 100A according to the first example determines microorganisms and dust as described above. Thereby, microorganisms and dust can be separated and detected from airborne particles in real time and with high accuracy.
  • FIG. 8A is a diagram illustrating another specific example of the sensor 100A.
  • a sensor 100A according to the second example has a case 5 provided with an introduction hole 10 and an exhaust hole 11 for introducing air from the suction port.
  • the sensor mechanism 20 including the measurement detection unit 40 therein.
  • members having the same reference numerals as those of the sensor 100A according to the first example are substantially the same as those of the sensor 100A according to the first example.
  • differences from the sensor 100A according to the first example will be particularly described. To do.
  • the air introduction mechanism 50 is also provided in the sensor 100A according to the second example, whereby air from the suction port is introduced into the case 5.
  • the flow rate of the air introduced by the air introduction mechanism 50 is preferably 1 L / min to 50 m 3 / min.
  • the sensor mechanism 20 includes a detection mechanism, a collection mechanism, and a heating mechanism.
  • FIG. 8A shows an example of the collection mechanism including the discharge electrode 17, the collection jig 12, and the high-voltage power supply 2.
  • the discharge electrode 17 is electrically connected to the negative electrode of the high voltage power source 2.
  • the positive electrode of the high voltage power supply 2 is grounded.
  • the collection jig 12 is a support substrate 4 made of a glass plate or the like having a conductive transparent film 3.
  • the film 3 is grounded.
  • the negatively charged airborne particles in the air move toward the collecting jig 12 by electrostatic force and are adsorbed by the conductive film 3 to be collected on the collecting jig 12.
  • the support substrate 4 is not limited to a glass plate, but may be ceramic, metal, or the like. Further, the coating 3 formed on the surface of the support substrate 4 is not limited to being transparent. As another example, the support substrate 4 may be configured by forming a metal film on an insulating material such as ceramic. Moreover, when the support substrate 4 is a metal material, it is not necessary to form a film on the surface. Specifically, a silicon substrate, a SUS (Stainless Used Steel) substrate, a copper substrate, or the like can be used as the support substrate 4.
  • the detection mechanism includes a light-emitting element 6 that is a light source, a lens (or a lens group) 7 that is provided in the irradiation direction of the light-emitting element 6 and makes the light from the light-emitting element 6 parallel light or has a predetermined width.
  • the aperture 13, the light receiving element 9 and the light receiving element 9 are provided in the light receiving direction of the light receiving element 9, and the fluorescence generated by irradiating the floating fine particles collected on the collecting jig 12 by the collecting mechanism from the light emitting element 6.
  • 9 includes a condensing lens (or lens group) 8 for condensing light to 9 and a filter (or filter group) 14 for preventing irradiation light from entering the light receiving element 9.
  • the aperture 13 is provided as necessary. Conventional technology can be applied to these configurations.
  • the light emitting element 6 includes a semiconductor laser or an LED element.
  • the wavelength may be in the ultraviolet or visible region as long as it excites a microorganism to emit fluorescence.
  • the wavelength is from 300 nm to 450 nm, which is contained in a microorganism and excites fluorescent tryptophan, NaDH, riboflavin, and the like efficiently.
  • the light receiving element 9 a conventionally used photodiode, image sensor, or the like is used.
  • Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass. Due to the combination of the lens 7 and the aperture 13, the light emitted from the light emitting element 6 is irradiated onto the surface of the collecting jig 12, and an irradiation region 15 is formed on the collecting jig 12.
  • the shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like.
  • the irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
  • the filter 14 is configured by a single or a combination of several types of filters, and is installed in front of the condenser lens 8 or the light receiving element 9. Thereby, it is possible to suppress the stray light reflected by the collection jig 12 and the case 5 from being incident on the light receiving element 9 together with the fluorescence from the particles collected by the collection jig 12. Can do.
  • the heating mechanism includes a heater 91 that is electrically connected to the measurement detection unit 40 and whose heating amount (heating time, heating temperature, etc.) is controlled by the measurement detection unit 40.
  • a ceramic heater is preferably used as the heater 91. In the following description, a ceramic heater is assumed as the heater 91. However, a far infrared heater, a far infrared lamp, or the like may be used.
  • the heater 91 is a position where the suspended particles in the air collected on the collecting jig 12 can be heated, and is a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9 at least during heating. Deployed.
  • the light-emitting element 6 and the light-receiving element 9 are disposed on the side far from the sensor device with the collection jig 12 interposed therebetween. In this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. Can do. More preferably, as shown in FIG.
  • the heater 91 is surrounded by a heat insulating material.
  • a heat insulating material a glass epoxy resin is preferably used.
  • the filter 14 is installed in front of the light receiving element 9 and plays a role of preventing the stray light from entering the light receiving element 9.
  • the light emitting element 6 and the light receiving element 9 are preferably arranged in a positional relationship such that the stray light intensity does not exceed the light shielding effect of the filter 14.
  • FIGS. 8A, 9A, and 9B An example of the arrangement of the light-emitting element 6 and the light-receiving element 9 will be described with reference to FIGS. 8A, 9A, and 9B.
  • 9A is a cross-sectional view of the sensor 100A according to the second example as viewed from the position AA in FIG. 8A in the direction of the arrow
  • FIG. 9B is a cross-section as viewed from the position BB in FIG. 9A in the direction of the arrow.
  • FIG. For convenience of explanation, these drawings do not show a collecting mechanism other than the collecting jig 12.
  • light emitting element 6 and lens 7, light receiving element 9 and condenser lens 8 are provided at a right angle or a substantially right angle when viewed from the direction of arrow A (upper surface) in FIG. 8A.
  • Reflected light from the irradiation region 15 formed on the surface of the collecting jig 12 from the light emitting element 6 through the lens 7 and the aperture 13 is directed in a direction along the incident light. Therefore, with this configuration, the reflected light does not directly enter the light receiving element 9.
  • the arrangement is not limited to the illustrated arrangement as long as it is an arrangement that can prevent the reflected light and stray light from entering the light receiving element 9.
  • the collection jig 12 has a configuration for collecting fluorescence from the particles collected on the surface corresponding to the irradiation region 15 in the light receiving element 9.
  • This configuration corresponds to, for example, a spherical recess 51 with reference to FIG. 9B.
  • the collection jig 12 is preferably provided so as to be inclined by an angle ⁇ in the direction toward the light receiving element 9 so that the surface of the collection jig 12 faces the light receiving element 9.
  • the size of the recess 51 is not limited, but is preferably larger than the irradiation region 15.
  • the light receiving element 9 is connected to the signal processing unit 30 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the signal processing unit 30.
  • shutters 16A and 16B are installed in the introduction hole 10 and the discharge hole 11 of the case 5, respectively.
  • the shutters 16A and 16B are connected to the measurement detection unit 40, and their opening and closing are controlled. By closing the shutters 16A and 16B, the inflow of air into the case 5 and the incidence of external light are blocked.
  • the measurement detection unit 40 closes the shutters 16A and 16B during fluorescence measurement to be described later, and blocks the inflow of air into the case 5 and the incidence of external light. This interrupts the collection of suspended particles in the collection mechanism during fluorescence measurement.
  • stray light in the case 5 can be suppressed by blocking external light from entering the case 5 during fluorescence measurement.
  • either one of the shutters 16A and 16B for example, at least the shutter 16B of the discharge hole 11 may be provided.
  • a light shielding portion 10 ⁇ / b> A as shown in FIGS. 10A and 10B is provided as a configuration for blocking the incidence of external light so that air can enter and exit the case 5.
  • a light shielding part 11A may be provided.
  • the light shielding plates 10a and the light shielding plates 10b are alternately overlapped at intervals of about 4.5 mm in both the light shielding portions 10A provided in the introduction holes 10 and the light shielding portions 11A provided in the discharge holes 11.
  • the light shielding plate 10a and the light shielding plate 10b have shapes corresponding to the shapes of the introduction holes 10 and the discharge holes 11 (here, circular) as shown in FIGS. 10C and 10D, respectively.
  • the light shielding plate 10a has a hole in the peripheral portion
  • the light shielding plate 10b has a hole in the central portion.
  • the light shielding portion 10A provided in the introduction hole 10 has a light shielding plate arranged in the order of the light shielding plate 10a, the light shielding plate 10b, the light shielding plate 10a, and the light shielding plate 10b from the outside to the inside.
  • the light shielding plates are arranged in the order of the light shielding plate 10b, the light shielding plate 10a, and the light shielding plate 10b from the outside (the air introduction mechanism 50 side) to the inside.
  • the inventors performed heat treatment on each of microorganisms and chemical fiber dust, and measured changes in fluorescence before and after heating. Specific measurement results by the inventors are shown in FIGS. From the measurement results, the inventors found that the fluorescence intensity of dust does not change by heat treatment, whereas the fluorescence intensity of microorganisms increases by heat treatment.
  • FIG. 11 shows the measurement results of the fluorescence spectrum before and after the heat treatment (curve 71) when Escherichia coli was heat treated at 200 ° C. for 5 minutes. From the measurement results shown in FIG. 11, it was found that the fluorescence intensity from E. coli was greatly increased by the heat treatment. Further, by comparing the fluorescence micrograph before the heat treatment shown in FIG. 12A with the fluorescence micrograph after the heat treatment shown in FIG. 12B, the fluorescence intensity from E. coli is greatly increased by the heat treatment. It is clear that it has increased.
  • FIG. 13 shows the measurement results of the fluorescence spectrum before heat treatment (curve 73) and after heat treatment (curve 74) when Bacillus was heat treated at 200 ° C. for 5 minutes
  • FIG. 14A shows the heat treatment
  • FIG. 14B is a fluorescence micrograph after the heat treatment
  • FIG. 15 shows the measurement results of the fluorescence spectra before and after the heat treatment (curve 75) when the mold was heat treated at 200 ° C. for 5 minutes
  • FIG. 16A shows the result before the heat treatment.
  • FIG. 16B is a fluorescence micrograph after the heat treatment. As shown in these figures, it was found that the fluorescence intensity of other microorganisms significantly increased by heat treatment as in the case of E. coli.
  • FIG. 17A and FIG. 17B show measurement of fluorescence spectra before and after heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively.
  • FIG. 18A shows the result
  • FIG. 18B is a fluorescence micrograph after the heat treatment.
  • the above phenomenon is applied as a detection principle in the sensor 100A according to the second example. That is, in the air, dust, dust to which microorganisms adhere, and microorganisms are mixed. Based on the above-mentioned phenomenon, when dust that emits fluorescence is mixed in the collected particles, the fluorescence spectrum measured before heat treatment includes fluorescence from microorganisms and fluorescence from dust that emits fluorescence. Therefore, microorganisms cannot be detected separately from chemical fiber dust. However, by performing the heat treatment, only the microorganisms increase the fluorescence intensity, and the fluorescence intensity of the dust that emits fluorescence does not change. Therefore, the amount of microorganisms can be determined by measuring the difference between the fluorescence intensity before the heat treatment and the fluorescence intensity after the predetermined heat treatment.
  • FIG. 20 is a block diagram showing a specific example of the functional configuration of a sensor 100A as a second example that detects microorganisms in the air using the above principle.
  • FIG. 20 also shows an example in which the function of the signal processing unit 30 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may be a software configuration that is realized by the signal processing unit 30 including a CPU (not shown) and executing a predetermined program by the CPU.
  • the configuration of the measurement detection unit 40 is a software configuration is shown. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
  • the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
  • the measurement detection unit 40 includes a control unit 41, a storage unit 42, and a clock generation unit 47. Further, the measurement detection unit 40 receives data input from the switch 110 in response to an operation of the switch 110 and receives data from the input unit 44 for receiving information and an external device connected to the communication unit 150.
  • the external connection part 46 for performing a process required for the exchange of the shutter, the shutters 16A and 16B, the air introduction mechanism 50, and the drive part 48 for driving the heater 91 are included.
  • the fluorescence from the particles in the irradiation region 15 is condensed on the light receiving element 9. .
  • a current signal corresponding to the amount of received light is output from the light receiving element 9 to the signal processing unit 30.
  • the current signal is input to the current-voltage conversion circuit 34.
  • the current-voltage conversion circuit 34 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh.
  • the voltage value Eh is amplified to a preset amplification factor by the amplification circuit 35 and output to the measurement detection unit 40.
  • the control unit 41 of the measurement detection unit 40 receives the input of the voltage value Eh from the signal processing unit 30 and sequentially stores it in the storage unit 42.
  • the clock generation unit 47 generates a clock signal and outputs it to the control unit 41.
  • the control unit 41 outputs a control signal for opening and closing the shutters 16A and 16B to the driving unit 48 at a timing based on the clock signal, and controls the opening and closing of the shutters 16A and 16B.
  • the control part 41 is electrically connected with the light emitting element 6 and the light receiving element 9, and controls those ON / OFF.
  • the control unit 41 includes a calculation unit 411.
  • the calculation unit 411 an operation for calculating the amount of microorganisms in the introduced air is performed using the voltage value Eh stored in the storage unit. A specific operation will be described with reference to a time chart showing a flow of control in the control unit 41 of FIG.
  • the concentration of microorganisms in the air introduced into the case 5 is calculated as the amount of microorganisms.
  • the control unit 41 of the measurement detection unit 40 outputs a control signal to the drive unit 48 when the sensor 100 ⁇ / b> A is turned on, and drives the air introduction mechanism 50. Further, the control unit 41 outputs a control signal for opening (turning on) the shutters 16 ⁇ / b> A and 16 ⁇ / b> B to the drive unit 48 at time T ⁇ b> 1 based on the clock signal from the clock generation unit 47. After that, at time T2 after time ⁇ T1 has elapsed from time T1, the control unit 41 outputs a control signal for closing (OFF) the shutters 16A and 16B to the driving unit 48.
  • the shutters 16A and 16B are opened from time T1 to time ⁇ T1, and external air is introduced into the case 5 through the introduction hole 10 by driving the air introduction mechanism 50. Particles in the air introduced into the case 5 are negatively charged by the discharge electrode 17, and due to the flow of air and the electric field formed between the discharge electrode 17 and the coating 3 on the surface of the collecting jig 12, It is collected on the surface of the collecting jig 12 for a time ⁇ T1.
  • the shutters 16A and 16B are closed, and the air flow in the case 5 stops. Thereby, collection of the floating particles by the collection jig 12 is completed. This also blocks stray light from the outside.
  • the control unit 41 outputs a control signal for causing the light receiving element 9 to start receiving light (ON) at time T2 when the shutters 16A and 16B are closed. Further, at the same time (time T2) or at time T3 slightly delayed from time T2, a control signal for starting (ON) light emission to the light emitting element 6 is output. Thereafter, at time T4 after time ⁇ T2 has elapsed, which is a predetermined measurement time for measuring fluorescence intensity from time T3, the control unit 41 causes the light receiving element 9 to end (OFF) light reception, And the control signal for making the light emitting element 6 complete
  • the measurement time may be set in advance in the control unit 41, the operation of the switch 110, a signal from the PC 300 connected to the communication unit 150 via a cable, the communication unit 150, or the like. It may be input or changed by a signal from a recording medium attached to the recording medium.
  • irradiation from the light emitting element 6 is started from time T3 (or time T2).
  • the light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles.
  • Fluorescence for a prescribed measurement time ⁇ T2 from time T3 is received by the light receiving element 9, and a voltage value corresponding to the fluorescence intensity F1 is input to the measurement detection unit 40 and stored in the storage unit 42.
  • the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received.
  • Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0.
  • the control unit 41 outputs a control signal for causing the heater 91 to start heating (ON) at the time T4 when the light emission of the light emitting element 6 and the light reception of the light receiving element 9 are finished (or a time slightly delayed from the time T4). To do. Then, at time T5 after elapse of time ⁇ T3, which is a predetermined heat treatment time for the heat treatment from the start of heating of the heater 91 (time T4 or a time slightly delayed from time T4), the control unit 41 turns the heater 91 on. A control signal for finishing (OFF) heating is output.
  • the heat treatment is performed on the particles collected in the irradiation region 15 on the surface of the collection jig 12 by the heater 91 from the time T4 (or a time slightly delayed from the time T4) to the heat treatment time ⁇ T3.
  • the heating temperature at this time is defined in advance.
  • a predetermined heating amount is applied to the particles collected on the surface of the collection jig 12.
  • the heat treatment time ⁇ T3 (that is, the amount of heat) may also be set in advance in the control unit 41 as in the case of the measurement time, or may be operated via the switch 110 or the like or via a cable. It may be input or changed by a signal from the PC 300 connected to the communication unit 150 or a signal from a recording medium attached to the communication unit 150.
  • An air introduction mechanism 50 may be used for the cooling process.
  • external air may be taken in from an inlet (not shown in FIG. 8A) provided with a separate HEPA (High Efficiency Particulate Air) filter.
  • HEPA High Efficiency Particulate Air
  • a cooling mechanism such as a Peltier element may be used separately.
  • control unit 41 outputs a control signal for ending the operation of the air introduction mechanism 50, and outputs a control signal for starting (ON) light reception by the light receiving element 9 at time T6. Further, at the same time (time T6) or at time T7 slightly delayed from time T6, a control signal for starting (ON) the light emitting element 6 to emit light is output. Thereafter, at time T8 after the measurement time ⁇ T2 has elapsed from time T7, the control unit 41 causes the light receiving element 9 to end (OFF) light reception and the light emitting element 6 to end light emission (OFF). The control signal is output.
  • the light collected by the light receiving element 9 receives the fluorescence for the measurement time ⁇ T2 after the particles collected from the light emitting element 6 to the irradiation region 15 on the surface of the collecting jig 12 are heated for the time ⁇ T3. Is done.
  • the voltage value corresponding to the fluorescence intensity F2 is input to the measurement detection unit 40 and stored in the storage unit 42.
  • the calculation unit 411 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ⁇ F.
  • the increase ⁇ F is related to the amount of microorganisms (such as the number or concentration of microorganisms).
  • the calculation unit 411 stores a correspondence relationship between the increase amount ⁇ F and the microorganism amount (concentration) as illustrated in FIG. 22 in advance. Then, the calculation unit 411 calculates the microorganism concentration obtained by using the calculated increase amount ⁇ F and the corresponding relationship as the microorganism concentration in the air introduced into the case 5 during the time ⁇ T1.
  • the correspondence between the increase amount ⁇ F and the microorganism concentration is experimentally determined in advance.
  • a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed in a 1 m 3 container using a nebulizer, and the concentration of microorganisms is maintained at N / m 3 , so that the sensor 100A is Used to collect microorganisms for a time ⁇ T1 by the detection method described above.
  • the microorganisms collected at a predetermined heating amount heat treatment by the heater 91, and after cooling for a predetermined time ⁇ T4, the amount of increase in fluorescence intensity before and after heating ⁇ Measure F.
  • the same measurement is performed for various microorganism concentrations, whereby the relationship between the increase ⁇ F and the microorganism concentration (cells / m 3 ) shown in FIG. 22 is obtained.
  • the correspondence relationship between the increase amount ⁇ F and the microorganism concentration may be stored in the calculation unit 411 by being input by operating the switch 110 or the like.
  • a recording medium in which the correspondence relationship is recorded may be loaded in the communication unit 150 and read by the external connection unit 46 and stored in the calculation unit 411.
  • the calculation may be stored in the calculation unit 411 by the external connection unit 46 receiving and transmitting via the cable that is input and transmitted by the PC 300 and connected to the communication unit 150.
  • the external connection unit 46 may receive data from another device through the communication performed by the communication unit 150 and may be stored in the calculation unit 411.
  • the correspondence relationship once stored in the calculation unit 411 may be updated by the measurement detection unit 40.
  • the calculation unit 411 calculates the microorganism concentration N1 (pieces / m 3 ) by specifying a value corresponding to the increase amount ⁇ F1 from the correspondence relationship in FIG. .
  • the calculation unit 411 defines one of the microorganisms as a standard microorganism and stores the correspondence relationship between the increase amount ⁇ F and the concentration of the microorganism.
  • the microorganism concentration in various environments is calculated as a microorganism concentration converted with reference to the standard microorganism. As a result, various environments can be compared, and environmental management becomes easy.
  • the increase ⁇ F uses the difference in fluorescence intensity before and after the heat treatment of a predetermined heating amount (predetermined heating temperature, heating time ⁇ T3), but these ratios are used. May be.
  • the concentration of collected microorganisms calculated by the calculation unit 411 is output from the control unit 41 to the display control unit 210.
  • the sensor 100A according to the second example uses the difference in properties due to the heat treatment between the fluorescence from the microorganism and the fluorescence from the dust that emits the fluorescence, and detects the microorganism based on the increase after the predetermined heat treatment. It is to detect. That is, the sensor 100A according to the second example detects microorganisms by utilizing a phenomenon that when the collected microorganisms and dust are subjected to heat treatment, the fluorescence intensity of the microorganisms increases and the dust does not change. . For this reason, even when dust that emits fluorescence is contained in the introduced air, microorganisms can be separated and detected from dust that emits fluorescence in real time and with high accuracy.
  • the control shown in FIG. 21 is performed, so that the shutters 16A and 16B are closed when shifting from the collection process by the collection mechanism to the detection process by the detection mechanism. Incident external light is blocked. As a result, stray light due to scattering by suspended particles during fluorescence measurement can be suppressed, and measurement accuracy can be improved.
  • FIG. 23 is a diagram illustrating another specific example of the sensor 100A.
  • the sensor 100A according to the third example is a modification of the sensor 100A according to the second example.
  • a sensor 100A according to a third example includes a detection mechanism, a collection mechanism, and a heating mechanism.
  • the members having the same reference numerals as those of the sensor 100A according to the first example and the sensor 100A according to the second example are substantially the same as those members, and the difference from the sensor 100A according to the second example is described below. Will be explained in particular.
  • a sensor 100A includes a collection chamber 5A including at least a part of a collection mechanism, separated by a wall 5C that is a partition wall having a hole 5C ′. And a detection chamber 5B including a detection mechanism.
  • the collection chamber 5A is provided with a needle-like discharge electrode 17 and a collection jig 12 as a collection mechanism, and the detection chamber 5B has a light emitting element 6, a light receiving element 9, and a condenser lens 8 as a detection mechanism. Deployed.
  • the discharge electrode 17 side and the collection jig 12 are respectively provided with an introduction hole 10 and a discharge hole 11 for introducing air into the collection chamber 5A.
  • the introduction hole 10 may be provided with a filter (pre-filter) 10B.
  • the introduction hole 10 and the discharge hole 11 are configured as shown in FIG. 10A, which is similar to the sensor 100A according to the second example, as a configuration for blocking the incidence of external light by allowing air to enter and exit the collection chamber 5A.
  • a light shielding part 10A and a light shielding part 11A as shown in FIG. 10B may be provided.
  • a fan 50A as an air introduction mechanism is provided in the vicinity of the discharge hole 11. Air from the suction port is introduced into the collection chamber 5A by the fan 50A.
  • the drive mechanism of the fan 50A is controlled by the measurement detection unit 40, and the flow rate of the introduced air is controlled.
  • the flow rate of air introduced by the fan 50A is 1 L / min to 50 m 3 / min.
  • the fan 50A is driven by a drive mechanism (not shown) controlled by the measurement detection unit 40, so that air outside the collection chamber 5A is collected from the introduction hole 10 through the collection chamber 5A as represented by a dotted arrow in the figure.
  • the air in the collection chamber 5A is exhausted from the discharge hole 11 to the outside of the collection chamber 5A.
  • the collection mechanism can employ the same collection mechanism as the sensor 100A according to the second example. That is, referring to FIG. 23, the collection mechanism includes a discharge electrode 17, a collection jig 12, and a high voltage power supply 2.
  • the discharge electrode 17 is electrically connected to the positive electrode of the high voltage power source 2. Electrically connected to the collection jig 12 and the negative electrode of the high-voltage power supply 2.
  • the collection jig 12 is a support substrate made of a glass plate or the like having a conductive transparent film, similar to the sensor 100A according to the second example.
  • the film side of the collecting jig 12 is electrically connected to the negative electrode of the high-voltage power supply 2. Thereby, a potential difference is generated between the discharge electrode 17 and the collecting jig 12, and an electric field in the direction indicated by the arrow E in FIG.
  • the airborne particles introduced from the introduction hole 10 by driving the fan 50A are negatively charged in the vicinity of the discharge electrode 17.
  • the negatively charged particles move toward the collecting jig 12 by electrostatic force and are adsorbed by the conductive film, thereby being collected on the collecting jig 12.
  • the charged particles face the discharge electrode 17 of the collecting jig 12, and are adsorbed in a very narrow range corresponding to the irradiation region 15 of the light emitting element (described later). Can be made. Thereby, the adsorbed microorganisms can be efficiently detected in the detection step described later.
  • the detection mechanism included in the detection chamber 5B includes a light emitting element 6, which is a light source, a light receiving element 9, and a light receiving direction of the light receiving element 9, and the suspended fine particles collected on the collecting jig 12 by the collecting mechanism. And a condensing lens (or lens group) 8 for condensing the fluorescence generated by irradiating from the light emitting element 6 onto the light receiving element 9.
  • a lens (or a lens group), an aperture, and irradiation light that are provided in the irradiation direction of the light emitting element 6 and make the light from the light emitting element 6 parallel light or have a predetermined width enter the light receiving element 9.
  • a filter (or filter group) for prevention may be included. Conventional technology can be applied to these configurations.
  • the condenser lens 8 may be made of plastic resin or glass.
  • the detection chamber 5B is preferably at least internally coated with black paint or black anodized. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed.
  • the material of the collection chamber 5A and the detection chamber 5B is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used.
  • the introduction hole 10 and the discharge hole 11 are circular with a diameter of 1 mm to 50 mm.
  • the shapes of the introduction hole 10 and the discharge hole 11 are not limited to a circle, but may be other shapes such as an ellipse or a rectangle.
  • the light emitting element 6 is the same as the sensor 100A according to the second example.
  • the light emitted from the light emitting element 6 is irradiated on the surface of the collecting jig 12 to form an irradiation region 15 on the collecting jig 12.
  • the shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like.
  • the irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
  • the light receiving element 9 is connected to the signal processing unit 30 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the signal processing unit 30.
  • a brush 60 for refreshing the surface of the collecting jig 12 is provided at a position in the detection chamber 5B that touches the surface of the collecting jig 12.
  • the brush 60 is connected to a moving mechanism (not shown) controlled by the measurement detection unit 40 and moves so as to reciprocate on the collecting jig 12 as indicated by a double-sided arrow B in the drawing. Thereby, dust and microorganisms adhering to the surface of the collecting jig 12 are removed.
  • the heater 91 is preferably disposed on the surface of the collection jig 12 far from the discharge electrode 17 as shown in FIG.
  • the unit including the collecting jig 12 and the heater 91 is referred to herein as a collecting unit 12A.
  • the collection unit 12A is connected to a moving mechanism (not shown) controlled by the measurement detection unit 40, and as shown by a double-sided arrow A in the drawing, that is, from the collection chamber 5A to the detection chamber 5B, from the detection chamber 5B. It moves to the collection chamber 5A through the hole 5C ′ provided in the wall 5C.
  • the heater 91 is a position where airborne particles collected on the collecting jig 12 can be heated, and at least when heated, sensor devices such as the light emitting element 6 and the light receiving element 9 are used. Therefore, it is not included in the collection unit 12A and may be provided at another position.
  • the heater 91 when the heating operation is performed in the collection chamber 5A, the heater 91 is not included in the collection unit 12A, and is a position of the collection chamber 5A where the collection unit 12A is set, and a collection jig. 12 may be fixed to the side opposite to the sensor device such as the light emitting element 6 and the light receiving element 9. Even in this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. be able to. In this case, at least the collection jig 12 may be included in the collection unit 12A.
  • a cover 65A having projections on the top and bottom is provided at the end of the collection unit 12A farthest from the wall 5C.
  • An adapter 65B corresponding to the cover 65A is provided around the hole 5C ′ on the surface of the wall 5C on the collection chamber 5A side.
  • the adapter 65B is provided with a recess that fits into the protrusion of the cover 65A, whereby the cover 65A and the adapter 65B are completely joined to cover the hole 5C '. That is, when the collection unit 12A moves from the collection chamber 5A to the detection chamber 5B through the hole 5C ′ in the direction of arrow A ′ in FIG. 24, and the collection unit 12A completely enters the detection chamber 5B.
  • the cover 65A is joined to the adapter 65B so that the hole 5C ′ is completely covered, and the inside of the detection chamber 5B is shielded from light. As a result, the incidence in the detection chamber 5B is blocked while the detection operation is being performed in the detection chamber 5B.
  • the sensor 100A according to the third example also detects microorganisms in the air using the principle described above with reference to FIGS.
  • the functional configuration of the sensor 100A according to the third example is substantially the same as the functional configuration of the sensor 100A according to the second example shown in FIG.
  • the driving unit 48 reciprocally moves the fan 50A, the heater 91, and the collection unit 12A in place of the heater 91, the air introduction mechanism 50, and the shutters 16A and 16B. And a mechanism (not shown) for reciprocating the brush 60 is driven.
  • the concentration of microorganisms in the air introduced in the collection chamber 5A for a predetermined time is calculated as the amount of microorganisms.
  • step S1 when sensor 100A is turned on, in step S1, the collection operation in collection chamber 5A is performed for a time ⁇ T1, which is a predefined collection time.
  • the control unit 41 outputs a control signal to the drive unit 48 to drive the fan 50A and take air into the collection chamber 5A. Particles in the air introduced into the collection chamber 5A are charged with a negative charge by the discharge electrode 17, and formed between the air flow by the fan 50A and the coating 3 on the surface of the discharge electrode 17 and the collection jig 12. Is collected in a narrow range corresponding to the irradiation region 15 on the surface of the collecting jig 12.
  • the control unit 41 ends the collection operation, that is, finishes driving the fan 50A.
  • step S3 the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber. Move to 5B.
  • a detection operation is performed in step S5.
  • the control unit 41 causes the light emitting element 6 to emit light and causes the light receiving element 9 to receive the fluorescence for a specified measurement time ⁇ T2.
  • the light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles.
  • a voltage value corresponding to the fluorescence intensity F ⁇ b> 1 is input to the measurement detection unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S1 before heating is measured.
  • the measurement time ⁇ T2 may be set in advance in the control unit 41, the operation of the switch 110, a signal from the PC 300 connected to the communication unit 150 via a cable, a communication It may be input or changed by a signal from a recording medium mounted on the unit 150.
  • the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received.
  • Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0.
  • step S7 the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, and detects the collection unit 12A.
  • the chamber 5B is moved to the collection chamber 5A.
  • step S9 similarly to the sensor 100A according to the second example, the control unit 41 causes the heater 91 to perform heating for a time ⁇ T3 which is a predetermined heat treatment time. The heating temperature at this time is defined in advance.
  • step S11 the control unit 41 outputs a control signal to the drive unit 48, and reversely rotates the fan 50A for a predetermined cooling time. It cools by making external air touch the collection unit 12A.
  • the heat treatment time ⁇ T3, the heating temperature, and the cooling time may also be set in advance in the control unit 41, or the PC 300 connected to the communication unit 150 via an operation of the switch 110 or a cable. Or a signal from a recording medium mounted on the communication unit 150 may be input or changed.
  • step S7 the collection unit 12A is moved to the collection chamber 5A, and then the heating operation and the cooling operation are performed in the collection chamber 5A.
  • the collection unit 12A moves to the detection chamber 5B so
  • the heater 91 is located at a distance from the sensor device such as the light emitting element 6 and the light receiving element 9 and is also separated by the wall 5C and the like, thereby suppressing the influence of heat on the light emitting element 6, the light receiving element 9 and the like. be able to.
  • the heater 91 is in the collection chamber 5A separated from the sensor devices such as the light emitting element 6 and the light receiving element 9 by the wall 5C and the like at the time of heating as described above, the heater 91 is disposed in the collection unit 12A.
  • the surface far from the discharge electrode 17, that is, the surface far from the light emitting element 6, the light receiving element 9, etc. when the collection unit 12 ⁇ / b> A moves to the detection chamber 5 ⁇ / b> B may not be present. It may be on the side.
  • step S13 the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A.
  • the collection unit 12A is moved from the collection chamber 5A to the detection chamber 5B.
  • step S15 the detection operation is performed again in step S15.
  • the detection operation in step S15 is the same as the detection operation in step S5.
  • the voltage value according to the fluorescence intensity F2 is input to the measurement detection unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S2 after heating is measured.
  • step S17 the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the brush 60, and reciprocates the brush 60 a predetermined number of times on the surface of the collection unit 12A.
  • step S19 the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, thereby causing the collection unit 12A to move to the detection chamber 5B. To the collection chamber 5A. Thereby, the next collection operation (S1) can be started immediately upon receiving the start instruction.
  • the calculation unit 411 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ⁇ F. Then, similarly to the sensor 100A according to the second example, the calculated increase amount ⁇ F and the correspondence relationship (FIG. 22) between the increase amount ⁇ F and the microorganism amount (concentration) stored in advance are used. The obtained microbial concentration is calculated as the microbial concentration in the air introduced into the collection chamber 5A during the time ⁇ T1. The calculated concentration of microorganisms in the collected particles is output from the control unit 41 to the display control unit 210.
  • the collection chamber 5A and the detection chamber 5B are separated, and the collection unit 12A moves back and forth between them to perform collection and detection. Can be performed continuously.
  • the collection jig 12 is heated and cooled in the collection chamber 5A as described above and is moved to the detection chamber 5B, the influence of heat on the sensors and the like in the detection chamber 5B can be suppressed. .
  • the cover provided on the collection unit 12A is the cover of the wall 5C.
  • the hole 5C ′ is shielded. For this reason, the incidence of external light into the detection chamber 5B is blocked. As a result, stray light due to scattering by suspended particles during fluorescence measurement can be suppressed, and measurement accuracy can be improved.
  • the collection chamber 5A and the detection chamber 5B separated by the wall 5C are shown, but the sensor 100A according to the third example is a collection device that is another individual completely separated from each other. It may be configured with a detection device, and the configuration in which the collection unit 12A is moved between them, or the configuration in which the collection unit 12A is set in each device.
  • the heating of the collection jig 12 may be performed at a place other than the detection device as a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9.
  • it may be performed in the collection device corresponding to the collection chamber 5A, or other position that is neither the collection device nor the detection device (for example, movement of the collection device to the detection device).
  • the heater 91 may be included in the collection unit 12A, or may be provided at a location where heating is performed, which is a location other than the detection device.
  • the collection device corresponding to the collection chamber 5A or the detection device alone corresponding to the detection chamber 5B may be used. In that case, the function corresponding to the signal processing unit 30 and the measurement detection unit 40 is included in the apparatus to be used.
  • one collection unit 12A is provided and reciprocates between the collection chamber 5A and the detection chamber 5B by performing a reciprocating motion represented by a double-sided arrow A.
  • the collection unit 12A two or more may be provided on a rotatable disk, and may move between the collection chamber 5A and the detection chamber 5B with rotation.
  • the collection operation and the detection operation are performed in parallel by positioning one of the plurality of collection units 12A in the collection chamber 5A and the other one in the detection chamber 5B. be able to.
  • Example of sensor 100B A general pollen sensor can be adopted as the sensor 100B.
  • Specific examples of the technique include those disclosed in JP-A-5-240768, JP-A-2003-38163, JP-A-2005-283152, JP-A-4-315053, and the like. Is mentioned.
  • the configuration is the same as that of the sensor 100A according to the first example, the scattered light having a predetermined angle and a predetermined wavelength is measured, and the amount (number, concentration) of pollen floating in the air is detected based on the intensity. be able to. This detected value is also output to the display control unit 210.
  • a general gas sensor can be employed as the sensor 100C.
  • a semiconductor gas sensor such as SB-AQ1 manufactured by FIS can be used.
  • a heater coil and an electrode lead wire are embedded in a gas-sensitive material obtained by adding a sensitizer to metal oxide secondary particles such as oxidized varnish (SnO 2 ) and sintering at high temperature.
  • This gas sensitive element is mounted on a base with three electrode terminals, and is connected in series with the sensor resistance in a state where a constant voltage is applied to the heater to control the temperature of the gas sensitive element. Gas is detected by detecting a change in output voltage across the load resistor.
  • Metal oxide crystals such as oxidized varnish adsorb oxygen on the surface in clean air and maintain a stable state.
  • a reducing gas is present in the air, the adsorbed oxygen is reduced by reacting with oxygen and gas on the crystal surface, and as a result, electrons in the crystal are increased. Thereby, the resistance value of the metal oxide decreases.
  • the sensor 100C can detect the gas concentration in the air using the principle described above.
  • SB-AQ1 manufactured by FIS the sensor resistance value decreases as the gas concentration increases, and is based on the change in output voltage across the load resistance connected in series with the sensor resistance.
  • the gas concentration can be obtained by calculating the sensor resistance value. This detected value is also output to the display control unit 210.
  • FIG. 26 is a diagram showing a specific example of the appearance of a part of the ion generator 300.
  • ion generator 300 has a rectangular parallelepiped case with a hole cut, and a line for connecting to a DC power supply of about 12 V (not shown) extends from the case.
  • a plurality of holes are drilled, and a positive needle electrode 301A and a negative needle electrode 301B are positioned at the approximate center of each of the pair of holes.
  • FIG. 27 is a diagram showing a specific example of a circuit configuration corresponding to a pair of holes of the ion generator 300.
  • the ion generator 300 includes a plurality of circuit configurations shown in FIG.
  • a specific example of the circuit configuration in the case is mainly composed of a positive-side circuit and a negative-side circuit, which are connected / disconnected to a DC power source by switches 302A and 302B, respectively.
  • Each circuit includes a conversion circuit for converting a direct current having a transistor and a piezoelectric element into an alternating current, and high voltage generation circuits 303A and 303B.
  • FIG. 28 is a diagram showing a specific example of the circuit configuration on the positive electrode side in FIG.
  • switch 302A when switch 302A is closed, a current from a DC power source of about 1.5V to 12V is converted to DC by a conversion circuit, rectified to the positive electrode side by a diode, and then a high voltage is generated through a protection circuit.
  • the high voltage generation circuit 303A includes a piezoelectric element, and generates a high voltage by boosting the input voltage rectified to the positive electrode side.
  • the high voltage is supplied to the positive needle electrode 301A, and corona discharge occurs at the tip of the electrode 301A.
  • positive ions are generated and discharged out of the case from the hole of the case of the ion generator 300 provided with the electrode 301A.
  • the negative side circuit is the same as the circuit of FIG. 28 except that the direction of the diode is reversed. That is, when the switch 302B is closed, corona discharge is generated at the tip of the negative needle electrode 301B, thereby generating negative ions and releasing them out of the case.
  • the positive ion is a cluster ion in which a plurality of water molecules are attached around a hydrogen ion (H + ), and is represented as H + (H 2 O) m (m is an arbitrary natural number).
  • the negative ion is a cluster ion in which a plurality of water molecules are attached around an oxygen ion (O 2 ⁇ ), and is expressed as O 2 ⁇ (H 2 O) n (n is an arbitrary natural number).
  • the switches 302A and 302B are connected to the ion control unit 230 and are turned ON / OFF by the control. When both switches are ON, positive and negative ions are released from the circuit, and when only one of the switches is ON, positive or negative unipolar ions are output from the circuit. Released. When both switches are OFF, no ions are released from the circuit.
  • the ion controller 230 When functioning as a conventional ion generator, the ion controller 230 turns on only one of the switches to generate unipolar ions such as negative ions from the circuit.
  • 2- (H 2 O) n (n is an arbitrary natural number) is generated in an approximately equivalent amount, so that both ions surround airborne fungi and viruses in the air, and the active species produced at that time It is possible to remove floating fungi and the like by the action of hydroxyl radicals (.OH).
  • the ion generator 300 is installed downstream of the filter in the air flow path in the air cleaner 1A. As a result, the generated ions ride on the air cleaned by the filter and are released from the exhaust port to the outside of the machine.
  • the ion controller 230 controls ON / OFF of the switches 302A and 302B according to the instruction signal from the switch 110. For example, when the ion generation mode is a mode in which ions are generated at a high concentration, the switches of all circuits included in the ion generation apparatus 300 are turned on. The switches of several circuits are turned on and the switches of other circuits are turned off. By doing so, the ion concentration to be generated is controlled.
  • the switch ON / OFF control result in the ion control unit 230 is output to the display control unit 210 as information on the amount of generated ions.
  • the output timing is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
  • the method for controlling the concentration of ions to be generated there is a method for controlling the ON / OFF intervals of the switches 302A and 302B.
  • the ion concentration can be easily controlled.
  • the display control unit 210 executes processing for displaying the detection result received from the sensor 100 on the display panel 130.
  • the display control unit 210 displays the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, the amount of gas in the air, and the air state that combines these.
  • FIG. 29 is a block diagram illustrating a specific example of a functional configuration of the display control unit 210.
  • FIG. 29 shows an example in which the function of the display control unit 210 is mainly a software configuration. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
  • display control unit 210 generates an input unit 201 for receiving an input of a detection result from sensor 100, a calculation unit 202 for calculating a display amount, which will be described later, and display data. Generating section 203, output section 204 for outputting display data to display panel 130 to cause screen display, and storage section 205 for storing display data and the like.
  • the “air condition” is a value representing the amount of contaminants (predetermined particles or components) in the air, calculated based on the detection results of each sensor, and each detection result. It is calculated by adding. For example, a value obtained by adding a ratio (%) to a predetermined sensing target air amount for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air ( %) Is “air condition”, and “air condition” represents the ratio of the amount of unclean elements in the amount of air to be sensed. Based on the detection results of these sensors, the air state may be expressed by other methods.
  • FIG. 30A is a diagram illustrating a specific example of a display screen by the first display control.
  • display control unit 210 displays the current air state and the past air state so as to be comparable.
  • the display control unit 210 displays the value represented as the above-described air state. Therefore, the calculating part 202 performs the calculation for obtaining the ratio (%) of the detection result of each sensor to the predetermined sensing target air amount. Then, a calculation for obtaining a value representing the air state from each calculation result is performed.
  • display control unit 210 has a value (%) expressed as “air condition” in display bar 131 having a length corresponding to the total ratio (100%). ) Is represented by a display segment 131A having a length corresponding to the value.
  • the display bar 131 is composed of a predetermined number of lights (for example, LEDs) continuously, and the display segment 131A is turned on by illuminating the number of lights corresponding to the value represented as “air condition”. It may be displayed.
  • the display bar 131 has a rectangular shape with a predetermined length displayed on the display panel 130 which is a liquid crystal screen, and a length portion corresponding to a value represented as “air condition” is the other portion.
  • the display form may be different. The same applies to the following display control examples.
  • the predetermined sensing target air amount as a reference value for obtaining the ratio (%) of the detection result of each sensor to the predetermined sensing target air amount is stored in advance in the calculation unit 202. Alternatively, it may be input and stored by the switch 110 or the like by a predetermined registration operation.
  • the calculation unit 202 In order to perform a calculation for obtaining the ratio (%) of the amount of microorganisms in the air to the amount of air of a predetermined sensing target, when the amount of microorganisms is obtained as the number of particles in the sensor 100A, the calculation unit 202 The maximum value Nmax of the number of microorganisms in the amount of air (for example, the amount of air Vs introduced into the case 5 per the above detection time) is stored, and the number N of microorganisms per predetermined volume input as a detection result is applied. By dividing by the maximum value Nmax, the ratio N / Nmax of the number of microorganisms to the maximum value of the number of particles per predetermined volume is obtained.
  • the calculation unit 202 stores the maximum value of the microorganism concentration in the predetermined sensing target air amount, and the concentration of microorganisms input as a detection result is stored. By dividing by this maximum value, the ratio of the microorganism concentration to the maximum concentration value is obtained.
  • the calculation for obtaining the ratio (%) of the dust amount, pollen amount, and gas amount in the air to the predetermined sensing target air amount is similarly performed.
  • the calculation unit 202 further adds each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air calculated as described above, and sets the “air state”. Get the value (%) to represent.
  • each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air is multiplied by a predetermined coefficient.
  • the method of adding it is mentioned.
  • the value representing the “air condition” is obtained at 55% by adding them.
  • the air condition may be 100% even if the values of all items are not 100%.
  • the value after multiplying the coefficient representing the amount of dust in the air is 40
  • the value after multiplying the coefficient representing the amount of microorganisms in the air is 40
  • the coefficient representing the amount of gas in the air is 100% by adding them.
  • the coefficient here is not limited to a predetermined coefficient. For example, when the values of all items are 100%, the value indicating “air condition” may be set to 100%.
  • a predetermined value in advance for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air And calculating using the ratio (%) of each sensor output value with respect to the specified value.
  • the arithmetic unit 202 calculates the length of the display segment 131A based on values representing the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, the amount of gas in the air, and the state of the air. .
  • the length of the display bar 131 corresponding to 100% or the number of lights forming the display bar 131 is stored in advance, and the length corresponding to the value (%) calculated with respect to the length or the number of lights. Calculate the number.
  • the generation unit 203 generates display data for displaying the display bar 131 as shown in FIG. 30A on the display panel 130 based on the length (or the number of lights) of the display segment 131A calculated by the calculation unit 202. Generate.
  • the generated display data is stored in the storage unit 205 in association with, for example, an input time as information for specifying a point in time when information to be displayed is input.
  • the output unit 204 displays display data associated with information specifying a time point closest to the time point as the air state at the time when the display instruction is given, and a preset time point a predetermined time before that time point.
  • the display data associated with the specified information is read from the storage unit 205 and output to the display panel 130, and the respective display bars represented by these display data are simultaneously displayed on the display panel 130.
  • FIG. 30A shows an example in which the state of air one hour before is displayed as the time point before the predetermined time.
  • the calculation unit 202 sets the length (or the number of lights) of the display segment 131A for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air.
  • the output unit 204 can display the current value and the past value as in FIG. 30A.
  • the display bar is displayed together with information (characters, etc.) indicating the displayed time point.
  • information characters, etc.
  • the display bar 131 includes a predetermined number of lights, such information is displayed on the liquid crystal portion of the display panel 130 separately from the display bar 131. This makes it easy to switch the display of such information.
  • the positional relationship between the display bar and the information (characters or the like) indicating the displayed time is not limited to a predetermined positional relationship. For example, adjacent left and right arrangements or upper and lower arrangements may be used. The same applies to the following display control examples.
  • the current air condition and the past air condition are displayed simultaneously on one screen, so that the user can simply view the screen with the air cleaner 1A.
  • the cleaning effect of can be grasped at a glance.
  • the air condition at the present time and the air condition at a time before a predetermined time are simultaneously displayed on one screen, so that the user can install the air purifier 1A only by looking at the screen. It is possible to grasp at a glance the change in the degree of air purification in the space.
  • the amount of microorganisms in the air at the current time and the amount of microorganisms at the time before the predetermined time are simultaneously displayed on one screen, the amount of dust in the air at the current time and the dust at the time before the predetermined time.
  • the amount of pollen in the air at the current time and the amount of pollen in the previous time are displayed on the same screen at the same time, the gas in the air at the current time Even when the amount and the gas amount at the time before the predetermined time are simultaneously displayed on one screen, the cleaning effect of the air cleaner 1A at the predetermined time can be grasped at a glance. In addition, since the cleaning effect can be grasped in this way, the air volume at the blower 400 and the amount of ions generated at the ion generator 300 can be set appropriately.
  • the display bar representing the current air condition and the display bar representing the past air condition may be arranged one above the other as shown in FIG. 30A, or may be arranged left and right. . Other positional relationships may be used. Further, any one of the display bars may not be displayed by a predetermined operation. Further, as shown in FIG. 30A, the display segment 131A may be displayed by the same display method in the display bar representing the current air condition and the display bar representing the past air condition. Preferably it is displayed in a different way. For example, the display segment in the display bar representing the past air condition may be blinked, or the display color and color tone of the display segment in the display bar representing the current air condition may be different. This makes it easy to distinguish the current air condition from the past air condition.
  • the display segments may be divided for each unit length and the divisions may be displayed, or the display segments may be gradationed as shown in FIG. 30C. .
  • the display segments may be gradationed as shown in FIG. 30C.
  • FIG. 30D and FIG. 30E only the edge of the display position may be displayed and the others may not be displayed.
  • the display bar is not limited to a rectangle, and may be a circle as shown in FIG. 30F. In that case, the detection result may be displayed as a display segment in a range from the center.
  • the display control unit 210 displays the air condition at a plurality of time points on the display panel 130 as shown in FIG. May be displayed in sequence.
  • the display switching may be performed in response to an instruction input from the switch 110 or may be performed at predetermined time intervals.
  • the display is switched not only by the switch 110 being operated, but the display bars representing the air states at a plurality of times may be sequentially switched in response to one operation.
  • the output unit 204 reads display data at predetermined time intervals from the storage unit 205 and outputs the display data to the display panel 130, and displays each display bar represented by these display data. Display them in order.
  • the order of switching is not particularly limited. At this time, when information (characters or the like) indicating the time point displayed with the display bar is displayed, the information is also switched.
  • the air states at a plurality of time points are sequentially displayed, so that the air states at a plurality of time points can be displayed even when the display panel 130 is small. Moreover, the state of the air in several time points can be compared by switching these sequentially, and the cleaning effect in 1 A of air cleaners can be grasped
  • FIG. 32 is a diagram illustrating a specific example of a display screen by the second display control. Referring to FIG. 32, as the second display control, display control unit 210 displays detection results for a plurality of items.
  • the items to be displayed may be stored in the display control unit 210 in advance, or may be input and stored by the switch 110 or the like by a predetermined registration operation.
  • the display control unit 210 performs the same as the control described in the first display control, the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the gas in the air.
  • a value for each item such as a value and a value representing the air state obtained by combining them is calculated, and based on this value, control is performed for display on display segment 131A.
  • the output unit 204 reads out display data on items set in advance as items to be displayed on the display panel 130 from the display data generated for each item from the storage unit 205 and outputs the display data to the display panel 130. Each display bar represented by the display data is displayed on the display panel 130 at the same time.
  • the current detection results are displayed for a plurality of items, so that the user can grasp the current air condition in detail at a glance by combining the detection results of the plurality of items. be able to. That is, it is possible to grasp at a glance the breakdown of pollutants in the air in the room where the air purifier 1A is installed. Since the detection results of a plurality of items can be grasped in this way, the air volume in the blower 400 and the amount of ions generated in the ion generator 300 can be set appropriately.
  • the display control unit 210 displays a plurality of items on the display panel 130 as shown in FIG. 33 as in the first display control. You may switch and display it sequentially.
  • detection results at a plurality of time points are sequentially displayed, so that detection results for many items can be displayed even when the display panel 130 is small. Moreover, by sequentially switching these, the detection results of the respective items can be compared, and the current air condition can be easily grasped in detail.
  • the display control unit 210 corresponds to each item in a polygon having the displayed items as vertices, as shown in FIG. 34A.
  • a range corresponding to the amount of the display target from the vertex to be determined is determined as a display segment.
  • FIG. 34A shows an example in which the amount of dust, the amount of microorganisms, and the amount of gas in the air are displayed as a plurality of items in a triangle with each apex as a plurality of items.
  • the closer the display segment is to the apex of the triangle the greater the amount.
  • the polygon is a quadrangle, a pentagon,. Even in that case, it can be the same as the example displayed in the triangle described below.
  • FIG. 34A three items, the amount of dust in the air, the amount of microorganisms in the air, and the amount of gas in the air, are displayed in a range of 3 to 5 levels from the vertices A, B, and C, respectively.
  • An example is shown.
  • the hierarchy is divided into three stages from the vertices A, B, and C, and lights such as red (LED) are installed in each hierarchy.
  • the number of lights installed may be one for each level, or may be the number according to the area of the level as shown in FIG. 34B.
  • the calculation unit 202 identifies the layer to be lit in the same manner as when the display segment 131A is calculated based on the value obtained from the detection value of each item, and the output unit 204 sets the vertex corresponding to the item to be displayed from the center. Turn on the specified number of levels.
  • a character representing the item is displayed in the vicinity of each vertex, and the character is also lighted. Further, when a certain area or more is lit, the character representing the corresponding item is also lit. To do. Further, an illustration or the like representing the item may be displayed instead of the character.
  • the corresponding hierarchy may be turned off based on the value obtained from the detected value.
  • the light of each level is good in colors such as blue and green that make it purify being purified.
  • the number of lamps that are turned on increases as the air in the room in which the air purifier 1A is installed is purified. Alternatively, only the letters may be lit red.
  • the display of FIG. 34A and FIG. 35A may be combined.
  • a plurality of color lights for example, three-stage lights of green, yellow, and red
  • radial from the center to the outside (linear toward the apex) May be displayed with gradation.
  • the display color is calculated by the calculation unit 202 based on the display color of the layer in the item that overlaps the display color of the layer in the item. It is preferred that For example, when it is calculated that green and yellow are the same ratio in two items for a certain area, the level is set to yellow green by 50%.
  • the color boundary is preferably displayed smoothly.
  • the current state and the past (here, one hour ago) state of one item are displayed simultaneously on one screen, and the other
  • the item here, the amount of microorganisms in the air
  • the screen of the current state and the past (here, one hour ago) is switched to the screen of the current state and the past (here, one hour ago), and the item (here, the amount of microorganisms in the air) is further different.
  • the screen example of FIG. 36 is an example, and the first display control and the second display control may be combined in any way.
  • the display may be switched as shown in FIG. 37 for each item.
  • a hierarchy of display differences at two time points to be compared may blink.
  • the display control unit 210 further receives information on the air volume from the blower 400 and information on the ion volume from the ion generator 300, and in addition to the first display control or the second display control described above, these control variables May also be displayed.
  • the “control amount” refers to a control level of the blower 400, the ion generator 300, and the like. For example, the amount of air blown from the blower 400 (“strong”, “weak”, etc.) The ion concentration to be generated (“dense”, “thin”, etc.), the total amount of ion emission generated in a predetermined time, and the like are applicable.
  • FIG. 38 in addition to the air state one hour ago, a display bar that displays the ion concentration released from the ion generator 300 at that time, and the current air state in addition to the current air state It is a figure which shows the example by which the display bar with which the air volume in the air blower 400 and the accumulated amount of the ion discharge
  • the input unit 201 receives the input of information indicating the amount of ion emission per unit time (ion concentration) from the ion generator 300 as the amount of ions released, and the calculation unit 202 calculates the accumulated amount to release ions. The total amount is obtained. When displaying the past time point, the calculation unit 202 calculates the cumulative amount of ion emission from the past time point to the current time point.
  • the generation unit 203 When displaying the current time point, the generation unit 203, in addition to the display segment corresponding to the value representing the current air state, the air volume in the blower 400 received by the input unit 201, and the calculation Display data for displaying the cumulative amount of ion emission calculated by the unit 202 is also generated.
  • the display data and the ion concentration released from the ion generator 300 at that time are stored in the storage unit 205 together.
  • the generation unit 203 When displaying the past time, the generation unit 203 reads the display data at that time, and updates the display data so that the ion concentration released from the ion generator 300 at that time is also displayed.
  • the detection result of each item can be displayed in the same way.
  • the lower example of FIG. 38 shows a display example of the amount of microorganisms in the air.
  • the first display control and the second display control are combined, and as shown in FIG. 38, the current state and the past (here, one hour ago) for a certain item (here, the air state). May be displayed simultaneously on one screen, and the screen may be switched between the current state and the past state (here, one hour ago) for other items (here, microorganisms in the air).
  • the screen example of FIG. 38 is merely an example, and the first display control and the second display control may be combined in any manner.
  • the display of the control amount is not limited to the display in the example of FIG. 38, and a display bar for displaying the control amount orthogonal to the display bar for displaying the detection result is provided as shown in FIG. 39A.
  • the control amount may be expressed according to the position of the display bar for displaying the control amount in the same direction as the display direction.
  • a bar representing the control amount may be provided in the display bar for displaying the detection result, and the control amount may be represented at that position.
  • a lamp for displaying the control amount may be provided in parallel with a display bar for displaying the detection result, and the control amount may be represented by its lighting position.
  • the control state can be grasped at a glance.
  • the air cleaner 1A further includes a sensor for detecting an air state such as a humidity sensor or a temperature sensor in addition to the sensor 100
  • the display control unit 210 receives a sensor signal from the sensor, In addition to the display of sensor results in each of the sensors 100 described above, the air state such as temperature and humidity may be displayed.
  • This display also makes it possible to grasp at a glance the current air condition together with the control condition.
  • FIG. 40A is a diagram illustrating a specific example of the appearance of an air conditioner 1B according to the second embodiment.
  • the air conditioner refers to a device having a sensor function for detecting the air condition and an air conditioner function for setting the air condition.
  • the air conditioner 1B has substantially the same appearance as the air purifier 1A shown in FIG. 1A.
  • a humidity adjusting device 500 and a temperature adjusting device 600 are included.
  • Examples of the sensor 100 include a sensor for detecting microorganisms included in the air cleaner 1A as a sensor for detecting predetermined particles or components in the air, a pollen sensor, an odor sensor (gas sensor), and the like.
  • a temperature sensor, a humidity sensor, and the like are further included as sensors for detecting the air state. These sensors detect the air state at a predetermined timing, or always detect the air state, and output the detection result to the display control unit 210 and the drive control unit 230A.
  • air conditioner 1B further includes a control device 200.
  • Control device 200 includes a CPU and a memory (not shown). The CPU reads and executes the program stored in the memory according to the instruction signal from the switch 110. Thereby, display on the display panel 130, control of the sensor 100, control of the communication unit 150, control of the ion generator 300, and the like are realized. That is, when control device 200 accepts an instruction operation for setting the air conditioning mechanism ON / OFF or level at switch 110, control device 200 sends a control signal according to the operation signal to the corresponding air conditioning mechanism such as ion generator 300. To control these devices. Further, the detection result from the sensor 100 is displayed on the display panel 130.
  • the control device 200 includes a display control unit 210 for controlling display on the display panel 130, a detection control unit 220 for controlling the sensor 100, an ion generation device 300, a blower device 400, and a humidity adjustment device 500. And a drive control unit 230A for controlling the temperature adjustment device 600.
  • the display control unit 210, the detection control unit 220, and the drive control unit 230A may be functions mainly configured in the CPU by executing a program, or functions configured by hardware such as an electric circuit. May be.
  • the drive control unit 230A has a function including the ion control unit 230 and the air volume control unit 240 of the air cleaner 1A.
  • Sensor 100, blower 400, and ion generator 300 are the same as those provided in air cleaner 1A, and the same description will not be repeated here.
  • the information regarding the amount of ions generated in the ion generation device 300 is the measurement result of the measurement device when a measurement device (not shown) is included instead of the switch ON / OFF control result in the drive control unit 230A. It may be.
  • the ion generator 300 outputs the measurement result of the measurement device to the display controller 210 and the drive controller 230A as information on the amount of ions generated.
  • the humidity adjusting apparatus 500 may be an apparatus having general humidifying and dehumidifying functions. In other words, it has a tank that holds water (not shown), a heating mechanism, and a cooling mechanism, and heats the water in the tank to send steam into the air and cool the air taken in from outside the machine. Remove water vapor from water.
  • the heating mechanism and the cooling mechanism are connected to the drive control unit 230A.
  • the drive control unit 230A controls the heating mechanism and the cooling mechanism.
  • the temperature adjustment device 600 may be a device having general heating and cooling functions. That is, it has a heating mechanism and a cooling mechanism (not shown), raises the air temperature by heating the air taken from outside the apparatus, and lowers the air temperature by cooling the air taken from outside the apparatus.
  • the heating mechanism and the cooling mechanism are connected to the drive control unit 230A.
  • the drive control unit 230A controls the heating mechanism and the cooling mechanism.
  • the drive control unit 230A receives the output indicating the detection result from the sensor 100 and the output indicating the driving state from each of the devices 300, 400, 500, and 600, which are air conditioning mechanisms, and performs control based on these.
  • a manual mode for controlling the driving of each device 300, 400, 500, 600 according to a setting from the user as a control mode and a driving for each device 300, 400, 500, 600 are automatically controlled.
  • the drive control unit 230A controls the drive of each device 300, 400, 500, 600 according to a control signal from the switch 110.
  • the automatic mode a determination process described later is performed, and the driving of each device 300, 400, 500, 600 is controlled according to the processing result.
  • the drive control unit 230 ⁇ / b> A performs control for causing the display control unit 210 to notify the display panel 130 of information according to a result of determination processing described later.
  • FIG. 41 is a block diagram showing a specific example of a functional configuration of the drive control unit 230A for performing the above control.
  • FIG. 41 shows an example in which the function of the drive control unit 230A is mainly a software configuration. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
  • drive control unit 230 ⁇ / b> A calculates first air input unit 231 for receiving an input of a detection result of sensor 100 and “air pollution state” to be described later using the detection result of sensor 100.
  • a second input unit 233 for receiving an input of a signal indicating the driving state of the device from each of the devices 300, 400, 500, and 600, and the calculated “air pollution state”.
  • a comparison unit 234 for comparing the control status of each device 300, 400, 500, 600 to determine the suitability of the control status of the air conditioning mechanism with respect to the air condition
  • Output unit 235 and a storage unit 236 for storing notification information associated with the comparison result.
  • the “air contamination state” refers to a value representing the amount of contaminants (predetermined particles or components) in the air, which is calculated based on the detection results of the sensors 100A to 100C. Specifically, it indicates a value obtained by adding the detection results of the sensors 100A to 100C.
  • the “air pollution state” the ratio of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air to the predetermined sensing target air amount (%) And the value (%) obtained by adding each ratio can be used. It can be said that the “air pollution state” represents the ratio of the amount of elements that are not clean to the amount of air to be sensed.
  • the “air contamination state” may be calculated by another method based on the detection results of the sensors 100A to 100C.
  • the predetermined sensing target air amount as a reference value for obtaining a ratio (%) of the detection result of each sensor to the predetermined sensing target air amount is stored in the arithmetic unit 232 in advance. Alternatively, it may be input and stored by, for example, the switch 110 by a predetermined registration operation.
  • the calculation unit 232 In order to perform the calculation for obtaining the ratio (%) of the amount of microorganisms in the air to the amount of air of a predetermined sensing target, when the amount of microorganisms is obtained as the number of particles in the sensor 100A, the calculation unit 232 The maximum value Nmax of the number of microorganisms in the amount of air (for example, the amount of air Vs introduced into the case 5 per the above detection time) is stored, and the number N of microorganisms per predetermined volume input as a detection result is applied. By dividing by the maximum value Nmax, the ratio N / Nmax of the number of microorganisms to the maximum value of the number of particles per predetermined volume is obtained.
  • the calculation unit 232 stores the maximum value of the microorganism concentration in the predetermined amount of air to be sensed, and calculates the concentration of microorganisms input as a detection result. By dividing by this maximum value, the ratio of the microorganism concentration to the maximum concentration value is obtained.
  • the calculation for obtaining the ratio (%) of the dust amount, pollen amount, and gas amount in the air to the predetermined sensing target air amount is similarly performed.
  • the calculation unit 232 further adds each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air calculated as described above to obtain the “air pollution state”.
  • a value (%) representing is obtained.
  • a predetermined coefficient is set for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air. The method of adding after multiplying is mentioned.
  • the value representing the “air pollution status” is added at 55%.
  • the air condition may be 100% even if the values of all items are not 100%.
  • the value after multiplying the coefficient representing the amount of dust in the air is 40
  • the value after multiplying the coefficient representing the amount of microorganisms in the air is 40
  • the coefficient representing the amount of gas in the air is 100% by adding them.
  • the coefficient here is not limited to a predetermined coefficient. For example, when the values of all items are 100%, the value indicating “air pollution state” may be set to 100%.
  • each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air is specified in advance.
  • a value is determined and calculated using the ratio (%) of each sensor output value to the specified value.
  • FIG. 42 is a flowchart showing the flow of determination processing. The process shown in the flowchart of FIG. 42 is realized by causing a CPU (not shown) included in the control device 200 to read out and execute a program stored in the memory, thereby causing the functions shown in FIGS. 40A and 40B to be performed.
  • a CPU not shown
  • drive control unit 230A first outputs an area for storing a value indicating the detection result output from sensor 100 of the memory and each device 300, 400, 500, 600 in S101. In addition, an area for storing a value indicating the driving state of the apparatus is initialized.
  • the drive control unit 230A receives the signal output from the sensor 100, thereby detecting the detected value in each of the sensors 100A to 100C, the temperature detected by the temperature sensor, and the humidity sensor. The humidity is written in a predetermined area of the memory.
  • the drive control unit 230A calculates an “air contamination state” based on the detection values of the sensors 100A to 100C.
  • the drive control unit 230A receives the signals output from the devices 300, 400, 500, and 600, and thereby stores information indicating the control status of the devices 300, 400, 500, and 600 in a predetermined area of the memory.
  • the information indicating the control status includes the ion concentration currently set based on the signal from the ion generator 300, the air volume currently set based on the signal from the blower 400, and the humidity adjustment device 500.
  • the humidity that is currently set based on the signal from, and the temperature that is currently set based on the signal from the temperature adjustment device 600 are applicable.
  • the drive control unit 230A compares the current air contamination state with the current control status of each device 300, 400, 500, 600. Specifically, the drive control unit 230A stores a conversion formula that makes it possible to compare the control status in each of the devices 300, 400, 500, and 600 with the air contamination status, and the control status of the device to be compared. Is converted into a value comparable with the conversion formula and compared with the air contamination state calculated in S105.
  • the drive control unit 230A determines that the current device 300, It is determined that the control status of 400, 500, and 600 is an “overdrive state” that is excessive with respect to the current air state. In this case, in S111, the drive control unit 230A causes the display panel 130 to display a warning that promotes energy saving. Note that the warning in S111 is not limited to display on the display panel 130, but may be voice (buzzer, chime), melody, light, text display, or a combination thereof.
  • warning information for warning is stored in advance in the storage unit 236 in association with the determination result.
  • the drive control unit 230A reads the warning information and inputs it to the display control unit 210 together with a control signal for display.
  • the drive control unit 230A maintains the current control status of each device 300, 400, 500, 600 in S115.
  • the control mode is the automatic mode (“automatic” in S113)
  • the drive control unit 230A determines that the control status of each device 300, 400, 500, 600 is appropriate for the current air contamination state in S117.
  • the control which becomes becomes is executed.
  • the control status of the device to be controlled among the devices 300, 400, 500, and 600 is changed to a direction in which the cleaning capability is reduced by a predetermined rank. Control.
  • control which reduces the generation amount of the ion in the ion generator 300 by predetermined amount is mentioned. Further, for example, there is a control for reducing the amount of air blown by the blower 400 by a predetermined amount.
  • the control signal for this purpose is also stored in advance in the storage unit 236 in association with the determination result that is the “overdrive state” that is the determination result.
  • an instruction input for changing from the manual mode to the automatic mode may be accepted, or conversely, an instruction input for changing from the automatic mode to the manual mode may be accepted.
  • the drive control unit 230A changes the control mode to the instructed mode, and executes the process of S115 or the process of S117.
  • the drive control unit 230A determines that the control status of each of the devices 300, 400, 500, 600 is an “appropriate driving state” that is appropriate for the current air state. In this case, in S119, the drive control unit 230A outputs a control signal for maintaining the current control status of each device 300, 400, 500, 600.
  • the drive control unit 230A causes the display panel 130 to display a warning that prompts the control mode of each device 300, 400, 500, 600 to be increased.
  • the warning in S121 is not limited to the display on the display panel 130, and may be voice (buzzer, chime), melody, light, text display, or a combination thereof. Warning information for this purpose is also stored in advance in the storage unit 236 in association with the determination result that the state is the “under drive state”.
  • the drive control unit 230A maintains the current control status of each device 300, 400, 500, 600 in S125.
  • the control mode is the manual mode (“manual” in S123)
  • the drive control unit 230A determines that the control status of each device 300, 400, 500, 600 is appropriate for the current air contamination state in S127. The control which becomes becomes is executed.
  • an instruction input for changing from the manual mode to the automatic mode may be accepted, or conversely, an instruction input for changing from the automatic mode to the manual mode may be accepted.
  • the drive control unit 230A changes the control mode to the instructed mode, and executes the process of S125 or the process of S127.
  • control in S127 specifically, control for changing the control status of a required device among the devices 300, 400, 500, and 600 in a direction to increase the cleaning capability by a predetermined rank.
  • control which increases the generation amount of the ion in the ion generator 300 by predetermined amount is mentioned.
  • control for increasing the amount of air blown by the blower 400 by a predetermined amount is mentioned.
  • the drive control unit 230A After performing the above determination and control at a predetermined determination timing, the drive control unit 230A waits until the next determination timing is reached. When the next determination timing is reached (YES in S129), the processes after S103 are repeated. Preferably, the drive control unit 230A repeats the processes after S103 at predetermined time intervals while the air purifier 1A is operating. Thereby, the control condition of the air conditioning mechanism is in a well-balanced state with respect to the air state.
  • the display control unit 210 executes processing for causing the display panel 130 to display the detection result received from the sensor 100 and the control status of each device 300, 400, 500, 600.
  • the display control unit 210 includes an air pollution state obtained by combining the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air, An example in which a display screen representing the air volume obtained from the signal from the blower 400 is displayed on the display panel 130 will be described. The same applies to the case of displaying the control status of another device among the devices 300, 400, 500, and 600.
  • FIG. 43 is a block diagram illustrating a specific example of a functional configuration of the display control unit 210.
  • the functional configuration of FIG. 43 is substantially the same as the functional configuration of the display control unit 210 of the air purifier 1A shown in FIG. 29, except that the above-described storage unit 205 is not included.
  • display control unit 210 has an input unit 201 for receiving an input of a detection result from sensor 100 and an input of a signal indicating a control status from devices 300, 400, 500, 600, A calculation unit 202 for calculating a display amount, which will be described later, a generation unit 203 for generating display data, and an output unit 204 for outputting the display data to the display panel 130 to cause screen display. .
  • FIG. 44A is a diagram showing a specific example of the display screen.
  • the display control unit 210 displays the current air pollution state in the display segment 131A having a length corresponding to the value in the display bar 131 having a length corresponding to the total ratio (100%). Represent.
  • the “air contamination state” is the same as that calculated in the control by the drive control unit 230A.
  • the calculation unit 202 may calculate the air contamination state in the same manner as the calculation unit 232, or may acquire a calculation result from the calculation unit 232.
  • the display bar 131 As the display bar 131, a predetermined number of lights (for example, LEDs, etc.) are continuously formed, and the number of lights corresponding to the value represented as the “air pollution state” is turned on to display segments.
  • a predetermined number of lights for example, LEDs, etc.
  • the display bar 131 has a rectangular shape with a predetermined length displayed on the display panel 130 which is a liquid crystal screen, and the length portion corresponding to the value represented as “air contamination state” is the other length.
  • the part and the display form may be different.
  • the computing unit 202 calculates the length of the display segment 131A based on the calculated value representing the air state.
  • the length of the display bar 131 corresponding to 100% or the number of lights forming the display bar 131 is stored in advance, and the length corresponding to the air pollution state value (%) calculated for the length. Or the number of lights.
  • the calculation unit 202 displays a display area for displaying the control status of the blower device 400 to be displayed among the control statuses of the input devices 300, 400, 500, and 600.
  • the control status is displayed at 132. Therefore, the calculation unit 202 calculates a display position representing the control status in the display area 132.
  • the display area 132 is also composed of a predetermined number of lights (for example, LEDs) continuously, and the control status is indicated by lighting the position and the number of lights according to the control status of the blower 400. What is displayed.
  • a predetermined number of lights for example, LEDs
  • the display width of the display area 132 corresponds to the display width of the display bar 131, and the display width of the display area 132 represents an appropriate control state with respect to the air contamination state corresponding to the entire display width of the display bar 131.
  • the calculation unit 202 stores in advance an appropriate control status for the air contamination state corresponding to the entire display width of the display bar 131 with respect to the control status of each device 300, 400, 500, 600, and the current By calculating the ratio of the control status, the display position in the display area 132 is specified.
  • the display position in the display area 132 can compare the output value from each apparatus 300,400,500,600 with the air pollution state in S109 using the conversion formula stored in the drive control unit 230A. This corresponds to the display position of the converted value on the display bar 131 when converted to a value. Therefore, the calculation unit 202 may acquire the converted value obtained by the above processing of the drive control unit 230A.
  • the display position indicating the control status can also be mentioned. That is, reflecting the control status of the blower 400, for example, if the airflow level in the blower 400 is three levels of “weak”, “medium”, and “strong”, the entire display area 132 is displayed when “strong”. For example, a position corresponding to the width, a position that is 2/3 of the total display width when “medium”, and a position that is 1/3 of the total display width when “weak” are used. In this method, the display position can be specified by the ratio to the total display width in the same manner even in three or more stages.
  • the calculation unit 202 when the control status is displayed based on a signal indicating the control status from the blower 400, the calculation unit 202 has an appropriate air volume for the air contamination state corresponding to the entire display width of the display bar 131. Is the total display width of the display area 132, and the ratio of the currently set air volume obtained from the signal from the blower 400 to the appropriate air volume is calculated and corresponds to the ratio of the total display width of the display area 132. The position is specified as a position corresponding to the control situation.
  • the generation unit 203 displays a screen as shown in FIG. 44A based on the display segment 131A length (or the number of lights) calculated by the calculation unit 202 and the display position indicating the control status on the display area 132.
  • Display data to be displayed on the display panel 130 is generated.
  • the output unit 204 outputs the generated display data to the display panel 130 and causes the display panel 130 to display a display screen represented by the display data.
  • FIG. 44A is an example of the display screen.
  • a display segment corresponding to each air volume is provided in advance, and the currently set air volume is set.
  • a display method may be used in which the display segment corresponding to is turned on.
  • the display area 132 is provided so as to overlap the display bar 131, and a display segment 131 ⁇ / b> A representing the air contamination state is displayed in the display bar 131 and the currently set air volume is set.
  • a display method in which the corresponding position is lit may be used.
  • the display area 132 may have the same configuration as the display bar 131, and the display method may be such that the position corresponding to the currently set air volume is lit.
  • FIG. 45A is a diagram showing a specific example of a display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A.
  • the display width of the display segment 131A indicating the air contamination state exceeds the display position indicating the currently set air volume. Therefore, in this case, it is determined that the drive control unit 230A is in the “under drive state”. Then, a warning display (not shown) is made to notify that the air volume is insufficient and that the air pollution state is progressing.
  • the control of S127 is performed in the drive control unit 230A, and the air volume of the blower 400 is controlled to be increased. This control increases the air volume from the blower 400, thereby reducing the air pollution state.
  • the drive control unit 230A is in the “appropriate driving state”. Determination is made and the driving state is maintained.
  • FIG. 46A is a diagram showing a specific example of a display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A.
  • the display control unit 210 may display the control status of a plurality of devices among the devices 300, 400, 500, and 600. In the example of FIG. 46A, the ion concentration and the air volume are displayed.
  • the drive control unit 230A may determine “appropriate drive state” in S109.
  • the drive control unit 230A compares the items corresponding to the devices 300, 400, 500, and 600 among the detection results of the sensor 100 with the control status of the device. For example, regarding the ion concentration, the detection result by the gas sensor and the detection result of the microorganism by the microorganism sensor are set as corresponding items, and the currently set ion concentration and the detection result by these sensors are compared.
  • the detection result by the gas sensor, the detection result of the microorganism by the microorganism sensor, and the detection result by the pollen sensor correspond to the ion generator.
  • the detection result of the dust by the microorganism sensor and the detection result of the pollen sensor are applicable.
  • the air conditioner 1B employs a filter or an activated carbon filter as an air cleaning function
  • a detection result by a gas sensor can also correspond.
  • the humidity adjustment device 500 corresponds to the detection result of the humidity sensor and the microorganism detection result of the microorganism sensor
  • the temperature adjustment device 600 corresponds to the detection result of the temperature sensor and the microorganism detection result of the microorganism sensor. Is applicable.
  • the drive control unit 230A determines that the ion generation device is “under-driven”, and controls the ion generation device to increase the ion concentration in the automatic control mode.
  • the display segment representing the air contamination state is below the ion concentration display position, the display segment or gas sensor representing the detection result of microorganisms by the microorganism sensor as a breakdown of the air contamination state If any one of the display segments representing the detection results at is above the display position of the ion concentration, it is determined that the ion generator is in an “under-driven state”, and a warning or automatic control to that effect is performed.
  • the breakdown of the air pollution state is caused by the display segment representing the detection result of the microorganisms by the microorganism sensor or the gas sensor.
  • the ion generator may not be determined to be in the “under-driven state”. This is because in this case, the air is considered to be contaminated due to factors such as dust that are not related to the ion concentration.
  • FIG. 47 is a diagram showing a specific example of the display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A. In the example of FIG. 47 as well, the control status of a plurality of devices among the devices 300, 400, 500, and 600 is displayed, specifically, the ion concentration and the air volume are displayed.
  • the display segment representing the air pollution state exceeds the display position of the air volume, it is determined that the blower is “under-driven” regardless of the breakdown, and a warning or automatic control to that effect is performed. To do.
  • the corresponding item in the breakdown of the air pollution state is determined, and warning and automatic control are performed for each device.
  • the detection result by the gas sensor, the detection result of the microorganism by the microorganism sensor, and the detection result of the dust by the microorganism sensor are shown in FIG. 48A, respectively.
  • the display position of the ion concentration does not exceed the detection result of the corresponding gas sensor and the detection result of the microorganism by the microorganism sensor. Therefore, the drive control unit 230A determines “appropriate drive state” for the ion generator.
  • the drive control unit 230A determines that the air blower is in an “under-driven state”, gives a warning to that effect, and controls the air blower to increase the air volume in the automatic control mode.
  • the detection results of the gas sensor, the microorganisms detected by the microorganism sensor, and the dust detection results by the microorganism sensor are as shown in FIG. 48B.
  • the display position of the detection result of the microorganism sensor is higher than the display position of the detection result of the corresponding gas sensor. Therefore, the drive control unit 230A determines that the ion generation device is in an “under-driven state”, gives a warning to that effect, and controls the ion generation device to increase the amount of ion generation in the automatic control mode.
  • the drive control unit 230 ⁇ / b> A determines the “appropriate drive state” for the blower.
  • the detection result of the gas sensor, the detection result of the microorganisms by the microorganism sensor, and the detection result of the dust by the microorganism sensor are as shown in FIG. 48C.
  • the display position of the detection result of the microorganism sensor is higher than the display position of the detection result of the corresponding gas sensor. Therefore, the drive control unit 230A determines that the ion generation device is in an “under-driven state”, gives a warning to that effect, and controls the ion generation device to increase the amount of ion generation in the automatic control mode.
  • the drive control unit 230A determines that the air blower is in an “under-driven state”, gives a warning to that effect, and controls the air blower to increase the air volume in the automatic control mode.
  • the display segment exceeds the display position of the ion concentration in any one of the detection results of the items (bacteria and odors) corresponding to the ion concentration, regardless of the air pollution state. Determines that the ion generator is in an “under-driven state”, gives a warning to that effect, and controls the ion generator to increase the amount of ion generation in the automatic control mode.
  • the drive control unit 230A determines that the ion generator and the blower are in “appropriate drive state” and does not give a warning or the like.
  • the display control unit 210 displays the item used for the determination together with the air contamination state. Switch the display screen to display.
  • the air conditioner 1B can appropriately control the ion generator and the blower according to the detected air state. That is, in the manual mode, the user can instruct an appropriate control level by the above-described warning, and in the automatic mode, the appropriate control state is automatically set.

Abstract

The control device of an air conditioner acquires the detection results from each sensor (S103), and calculates the air contamination state on the basis of the detection results (S105). Moreover, the control levels set at air conditioning mechanisms such as an ion generating device or an air blower are acquired (S107) and the control levels are compared (S109). As a result, a warning to lower the control level is issued when the control level is higher than the air contamination state (S111) and a warning to raise the control level is issued when the control level is lower than the air contamination state (S121).

Description

空気清浄機、空気清浄機における表示方法、および空気調和機Air purifier, display method in air purifier, and air conditioner
 この発明は空気清浄機、空気清浄機における表示方法、空気調和機に関し、特に、センサ機能を備えた空気清浄機、空気清浄機における表示方法、空気調和機に関する。 The present invention relates to an air cleaner, a display method in an air cleaner, and an air conditioner, and more particularly, to an air cleaner having a sensor function, a display method in an air cleaner, and an air conditioner.
 一般的な空気清浄機として、たとえば特開2000-283533号公報(以下、特許文献1)は、ファンで外気を取り込んでフィルタで塵埃や臭気等を除去して排気する装置を開示している。装置内のマイコンにはダストセンサが接続されている。ダストセンサでは単位体積あたりの埃等の粒子数やその成分が検出され、マイコンがその検出結果を表示する。検出結果は、空気の汚れ度として段階的に表示される。この表示を見ることでユーザは現在の空気の汚れ度を把握することができ、空気清浄機のモードを適切なモードに切り替えることができる。 As a general air cleaner, for example, Japanese Patent Application Laid-Open No. 2000-283533 (hereinafter referred to as Patent Document 1) discloses a device that takes in outside air with a fan and removes dust or odor with a filter and exhausts the air. A dust sensor is connected to the microcomputer in the apparatus. In the dust sensor, the number of particles such as dust per unit volume and its components are detected, and the microcomputer displays the detection result. The detection result is displayed step by step as the degree of air contamination. By viewing this display, the user can grasp the current degree of air contamination, and can switch the mode of the air purifier to an appropriate mode.
特開2000-283533号公報JP 2000-283533 A
 しかしながら、特許文献1に開示されているような一般的な空気清浄機における表示では、その時点の空気の状況は表示されるものの、その表示から空気清浄機の稼動に関する効果は把握することができない、という問題がある。 However, in the display in a general air cleaner as disclosed in Patent Document 1, the air condition at that time is displayed, but the effect on the operation of the air cleaner cannot be grasped from the display. There is a problem.
 また、空気の状態に影響するものは埃の量のみならず、微生物の量や、温度、湿度、気候、天候もある。これら指標が組み合わさって空気の状態が構成されるものである。そのため、たとえ特許文献1に開示された技術を応用してそれぞれの状態が表示されたとしても、その表示を見て空気調和機のモードを適切なモードに切り替えることは難しい、という問題がある。 Also, what affects the air condition is not only the amount of dust, but also the amount of microorganisms, temperature, humidity, climate, and weather. These indicators are combined to form the air condition. Therefore, even if each state is displayed by applying the technique disclosed in Patent Document 1, it is difficult to switch the mode of the air conditioner to an appropriate mode by looking at the display.
 本発明はこのような問題に鑑みてなされたものであって、清浄効果を表示する空気清浄機、該空気清浄機における表示方法、センサ結果に応じて適切な空調制御を実行する空気調和機を提供することを目的としている。 This invention is made in view of such a problem, Comprising: The air cleaner which displays a cleaning effect, the display method in this air cleaner, and the air conditioner which performs suitable air-conditioning control according to a sensor result It is intended to provide.
 上記目的を達成するために、本発明のある局面に従うと、空気清浄機は、空気中の所定の粒子または成分を検出するための第1のセンサと、空気を浄化するための浄化機構と、表示装置と、表示装置での表示を制御するための制御装置とを備え、制御装置は、第1の時点での第1のセンサの検出結果と第1の時点とは異なる第2の時点での第1のセンサの検出結果とを表示装置に表示するための制御を行なう。 In order to achieve the above object, according to one aspect of the present invention, an air cleaner includes a first sensor for detecting predetermined particles or components in the air, a purification mechanism for purifying the air, The display device and a control device for controlling display on the display device, the control device at a second time point different from the detection result of the first sensor at the first time point and the first time point. Control for displaying the detection result of the first sensor on the display device is performed.
 好ましくは、制御装置は、第1のセンサの検出結果の所定の量に対する割合を算出するための算出部と、算出部での算出結果に基づいて検出結果の表示量を決定し、表示データを生成するための生成部と、表示データを記憶するための記憶部とを備え、第1の時点での第1のセンサの検出結果と第2の時点での前記第1のセンサの検出結果とは、いずれも、それぞれの検出結果が上記所定の量に対する割合に応じた表示量で表示される。 Preferably, the control device determines a display amount of the detection result based on a calculation unit for calculating a ratio of the detection result of the first sensor to a predetermined amount, and a calculation result of the calculation unit, and displays the display data. A generation unit for generating and a storage unit for storing display data, and a detection result of the first sensor at a first time point and a detection result of the first sensor at a second time point; In any case, each detection result is displayed in a display amount corresponding to a ratio to the predetermined amount.
 好ましくは、制御装置は1つの表示画面に第1の時点での第1のセンサの検出結果と第2の時点での第1のセンサの検出結果とを表示させる。 Preferably, the control device displays the detection result of the first sensor at the first time point and the detection result of the first sensor at the second time point on one display screen.
 好ましくは、制御装置は1つの表示画面に第1の時点での第1のセンサの検出結果を表示させ、切り替えの指示に応じて表示画面を第2の時点での第1のセンサの検出結果に切り替える。 Preferably, the control device displays the detection result of the first sensor at the first time point on one display screen, and the detection result of the first sensor at the second time point on the display screen according to the switching instruction. Switch to.
 好ましくは、第1のセンサは、空気中の微生物を検出するためのセンサと、空気中の埃を検出するためのセンサと、花粉センサと、ガスセンサとのうちの少なくとも1つである。 Preferably, the first sensor is at least one of a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor.
 好ましくは、第1のセンサは、空気中の微生物を検出するためのセンサと、空気中の埃を検出するためのセンサと、花粉センサと、ガスセンサとのうちの少なくとも2種類のセンサを含む。 Preferably, the first sensor includes at least two types of sensors: a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor.
 好ましくは、制御装置は第1のセンサの検出結果に併せて浄化機構の制御量を表示する。 Preferably, the control device displays the control amount of the purification mechanism in accordance with the detection result of the first sensor.
 好ましくは、制御装置は、第1の時点での第1のセンサの検出結果および第1の時点での浄化機構の制御量と第2の時点での第1のセンサの検出結果および第1の時点から第2の時点までの浄化機構の制御量の累積量とを表示装置に表示するための制御を行なう。 Preferably, the control device detects the detection result of the first sensor at the first time point, the control amount of the purification mechanism at the first time point, the detection result of the first sensor at the second time point, and the first Control for displaying on the display device the cumulative amount of the control amount of the purification mechanism from the time point to the second time point is performed.
 好ましくは、空気清浄機は空気状態を検出するための第2のセンサをさらに備え、制御装置は、第1の時点および第2の時点での第1のセンサの検出結果に併せて第2のセンサの検出結果を表示装置に表示するための制御を行なう。 Preferably, the air cleaner further includes a second sensor for detecting an air condition, and the control device includes a second sensor in accordance with detection results of the first sensor at the first time point and the second time point. Control for displaying the detection result of the sensor on the display device is performed.
 より好ましくは、第2のセンサは、温度センサと湿度センサとのうちの少なくとも一方を含む。 More preferably, the second sensor includes at least one of a temperature sensor and a humidity sensor.
 本発明の他の局面に従うと、空気清浄機における表示方法は、空気中の所定の粒子または成分を検出するためのセンサと空気を浄化するための浄化機構とを備えた空気清浄機における表示方法であって、第1の時点でのセンサの検出結果を表示するための第1の表示データを生成するステップと、第1の表示データを記憶装置に格納するステップと、第1の時点とは異なる第2の時点でのセンサの検出結果を表示するための第2の表示データを生成するステップと、第1の表示データと第2の表示データとに基づいて第1の時点でのセンサの検出結果と第2の時点でのセンサの検出結果とを表示装置に表示するステップとを含む。 According to another aspect of the present invention, a display method in an air cleaner includes a sensor for detecting predetermined particles or components in the air and a purification mechanism for purifying the air. The step of generating the first display data for displaying the detection result of the sensor at the first time point, the step of storing the first display data in the storage device, and the first time point Generating the second display data for displaying the detection results of the sensors at different second time points, and the sensor at the first time point based on the first display data and the second display data. Displaying the detection result and the detection result of the sensor at the second time point on a display device.
 本発明のさらに他の局面に従うと、空気調和機は、空気中の所定の粒子を検出するための第1のセンサと、空気を調和させるための空気調和機構と、第1のセンサと空気調和機構とに接続された、空気調和機構を制御するための制御装置と含む。制御装置は、空気調和機構の制御状況と第1のセンサでの検出結果とに基づいて、空気調和機構の制御状況の適否を判定し、その判定結果に基づく制御を行なう。 According to still another aspect of the present invention, the air conditioner includes a first sensor for detecting predetermined particles in the air, an air conditioning mechanism for conditioning the air, the first sensor, and the air conditioning. And a control device for controlling the air conditioning mechanism connected to the mechanism. The control device determines suitability of the control status of the air conditioning mechanism based on the control status of the air conditioning mechanism and the detection result of the first sensor, and performs control based on the determination result.
 好ましくは、制御装置は、第1のセンサの検出結果と、空気調和機構の制御状況との入力を受け付けるための入力部と、空気の状態を表わす値として、粒子についての基準とする所定量に対する検出結果の割合を算出するための算出部と、空気調和機構の制御状況を表わす値と空気の状態を表わす値とを比較することにより、空気の状態に対する空気調和機構の制御状況の適否を判定するための判定部とを含む。空気調和機は、さらに、判定の結果に基づく情報を報知するための報知部を備える。 Preferably, the control device has an input unit for receiving inputs of the detection result of the first sensor and the control status of the air conditioning mechanism, and a value representing the air state with respect to a predetermined amount as a reference for the particles. The calculation unit for calculating the ratio of the detection result is compared with a value representing the control state of the air conditioning mechanism and a value representing the air state to determine whether the control state of the air conditioning mechanism is appropriate for the air state. And a determination unit for performing. The air conditioner further includes a notification unit for reporting information based on the determination result.
 より好ましくは、報知は、空気調和機構の制御状況を空気の状態に対応したバランスに変更させるためのものであり、制御装置は、報知に用いる情報を記憶するための記憶部をさらに含む。報知に用いる情報は判定の結果に対応付けられている。 More preferably, the notification is for changing the control status of the air conditioning mechanism to a balance corresponding to the air state, and the control device further includes a storage unit for storing information used for notification. Information used for notification is associated with the determination result.
 好ましくは、制御装置は、空気調和機構に対して判定の結果に応じた制御信号を出力するための出力部をさらに含む。 Preferably, the control device further includes an output unit for outputting a control signal corresponding to the determination result to the air conditioning mechanism.
 好ましくは、空気調和機は第1のセンサとは異なる粒子または成分を検出するための第2のセンサを含む。算出部は、空気の状態を表わす値として、粒子または成分の種類ごとの所定量に対する割合を算出すると共に、すべての種類の粒子または成分についての所定量に対する割合を算出する。 Preferably, the air conditioner includes a second sensor for detecting particles or components different from the first sensor. The calculation unit calculates a ratio with respect to a predetermined amount for each type of particle or component as a value representing an air state, and calculates a ratio with respect to the predetermined amount for all types of particles or components.
 より好ましくは、判定部は、空気調和機構の制御状況を表わす値と、当該空気調和機構に予め対応付けられている粒子または成分の種類についての検出結果から算出された空気の状態を表わす値とを比較する。 More preferably, the determination unit includes a value representing the control status of the air conditioning mechanism, and a value representing the air state calculated from the detection result of the type of particles or components previously associated with the air conditioning mechanism. Compare
 好ましくは、制御装置は、上記判定を所定の時間間隔で繰り返す。
 好ましくは、空気調和機構は、イオン発生装置、送風装置、湿度調整装置、および温度調整装置のうちの少なくとも1つを含む。
Preferably, the control device repeats the determination at predetermined time intervals.
Preferably, the air conditioning mechanism includes at least one of an ion generation device, a blower device, a humidity adjustment device, and a temperature adjustment device.
 この発明によると、空気清浄機の表示から該空気清浄機の稼動による清浄効果を把握することができる。また、センサ結果に応じて適切な空調制御を実行することができる。 According to the present invention, it is possible to grasp the cleaning effect due to the operation of the air cleaner from the display of the air cleaner. Further, appropriate air conditioning control can be executed according to the sensor result.
第1の実施の形態にかかる空気清浄機の外観の具体例を示す図である。It is a figure which shows the specific example of the external appearance of the air cleaner concerning 1st Embodiment. 第1の実施の形態にかかる空気清浄機の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the air cleaner concerning 1st Embodiment. 空気清浄機に含まれる、検出装置の基本構成の具体例を示す図である。It is a figure which shows the specific example of the basic composition of the detection apparatus contained in an air cleaner. サイズが同じ埃粒子と微生物粒子とについての、散乱角と散乱強度との相関のシミュレーションの結果を表わす図である。It is a figure showing the result of the simulation of the correlation of a scattering angle and scattering intensity about the dust particle and microorganisms particle | grains with the same size. 検出装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a detection apparatus. 検出信号の具体例を示す図である。It is a figure which shows the specific example of a detection signal. パルス幅と散乱強度との関係を表わす図である。It is a figure showing the relationship between a pulse width and scattering intensity. 微生物検出装置での検出方法の具体例を示すフローチャートである。It is a flowchart which shows the specific example of the detection method in a microorganisms detection apparatus. 空気清浄機に含まれる検出装置の基本構成の他の具体例を示す図である。It is a figure which shows the other specific example of the basic composition of the detection apparatus contained in an air cleaner. 空気清浄機に含まれる検出装置の捕集治具ならびにヒータ周辺の構成を示す図である。It is a figure which shows the collection jig | tool of the detection apparatus contained in an air cleaner, and the structure of a heater periphery. 検出装置の、検出機構の構成を説明する図である。It is a figure explaining the structure of the detection mechanism of a detection apparatus. 検出装置の、検出機構の構成を説明する図である。It is a figure explaining the structure of the detection mechanism of a detection apparatus. 検出機構における遮光機構の他の具体例として、導入孔に設けられる機構を説明する図である。It is a figure explaining the mechanism provided in an introduction hole as other specific examples of the light-shielding mechanism in a detection mechanism. 検出機構における遮光機構の他の具体例として、導入孔に設けられる機構を説明する図である。It is a figure explaining the mechanism provided in an introduction hole as other specific examples of the light-shielding mechanism in a detection mechanism. 検出機構における遮光機構の他の具体例として、導入孔に設けられる機構を説明する図である。It is a figure explaining the mechanism provided in an introduction hole as other specific examples of the light-shielding mechanism in a detection mechanism. 検出機構における遮光機構の他の具体例として、導入孔に設けられる機構を説明する図である。It is a figure explaining the mechanism provided in an introduction hole as other specific examples of the light-shielding mechanism in a detection mechanism. 加熱処理前後での大腸菌の蛍光スペクトルの時間変化を示す図である。It is a figure which shows the time change of the fluorescence spectrum of colon_bacillus | E._coli before and behind heat processing. 加熱処理前の大腸菌の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph of colon_bacillus | E._coli before heat processing. 加熱処理後での大腸菌の蛍光顕微鏡写真である。It is the fluorescence-microscope photograph of colon_bacillus | E._coli after heat processing. 加熱処理前後でのバチルス菌の蛍光スペクトルの時間変化を示す図である。It is a figure which shows the time change of the fluorescence spectrum of Bacillus bacteria before and behind heat processing. 加熱処理前のバチルス菌の蛍光顕微鏡写真である。It is a fluorescence micrograph of Bacillus bacteria before heat processing. 加熱処理でのバチルス菌の蛍光顕微鏡写真である。It is a fluorescence micrograph of Bacillus bacteria by heat processing. 加熱処理前後でのアオカビ菌の蛍光スペクトルの時間変化を示す図である。It is a figure which shows the time change of the fluorescence spectrum of the blue mold before and behind heat processing. 加熱処理前のアオカビ菌の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph of the blue mold before heat processing. 加熱処理後でのアオカビ菌の蛍光顕微鏡写真である。It is a fluorescence micrograph of the blue mold after heat processing. 加熱処理前の蛍光発光する埃の蛍光スペクトルの時間変化を示す図である。It is a figure which shows the time change of the fluorescence spectrum of the dust which carries out the fluorescence light emission before heat processing. 加熱処理後での蛍光発光する埃の蛍光スペクトルの時間変化を示す図である。It is a figure which shows the time change of the fluorescence spectrum of the dust which carries out the fluorescence emission after heat processing. 加熱処理前の蛍光発光する埃の蛍光顕微鏡写真である。It is a fluorescence micrograph of the dust which fluoresces before heat processing. 加熱処理後での蛍光発光する埃の蛍光顕微鏡写真である。2 is a fluorescence micrograph of dust that emits fluorescence after heat treatment. 加熱処理前後での蛍光発光する埃の蛍光スペクトルの比較結果を示す図である。It is a figure which shows the comparison result of the fluorescence spectrum of the dust which fluoresces before and behind heat processing. 検出装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a detection apparatus. 検出装置での動作の流れを示すタイムチャートである。It is a time chart which shows the flow of operation | movement in a detection apparatus. 蛍光の減衰量と微生物濃度との対応関係の具体例を示す図である。It is a figure which shows the specific example of the correspondence of fluorescence attenuation amount and microorganism concentration. 空気清浄機に含まれる検出装置の基本構成の他の具体例を示す図である。It is a figure which shows the other specific example of the basic composition of the detection apparatus contained in an air cleaner. 検出装置の捕集ユニットの動作を説明する図である。It is a figure explaining operation | movement of the collection unit of a detection apparatus. 検出装置での動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement in a detection apparatus. 空気清浄機に含まれるイオン発生装置の一部の外観の具体例を示す図である。It is a figure which shows the specific example of the one part external appearance of the ion generator contained in an air cleaner. イオン発生装置の、一対の孔に対応した回路構成の具体例を示す図である。It is a figure which shows the specific example of the circuit structure corresponding to a pair of hole of an ion generator. 図27中の正極側の回路構成の具体例を示す図である。It is a figure which shows the specific example of the circuit structure of the positive electrode side in FIG. 表示制御部の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a display control part. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 1st display control. 第1の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 1st display control. 第2の表示制御による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by 2nd display control. 第2の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 2nd display control. 第2の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 2nd display control. 第2の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 2nd display control. 第2の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 2nd display control. 第2の表示制御による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by 2nd display control. 表示制御の変形例1による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by the modification 1 of display control. 表示制御の変形例1による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by the modification 1 of display control. 表示制御の変形例2による表示画面の具体例を示す図である。It is a figure which shows the specific example of the display screen by the modification 2 of display control. 表示制御の変形例2による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by the modification 2 of display control. 表示制御の変形例2による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by the modification 2 of display control. 表示制御の変形例2による表示画面の他の具体例を示す図である。It is a figure which shows the other specific example of the display screen by the modification 2 of display control. 第2の実施の形態にかかる空気調和機の外観の具体例を示す図である。It is a figure which shows the specific example of the external appearance of the air conditioner concerning 2nd Embodiment. 第2の実施の形態にかかる空気調和機の構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the air conditioner concerning 2nd Embodiment. 空気調和機の駆動制御部の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of the drive control part of an air conditioner. 判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a determination process. 表示制御部の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a display control part. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 表示画面の具体例を示す図である。It is a figure which shows the specific example of a display screen. 図47の表示画面で表わされた空気の汚染状態の内訳の具体例を示す図である。It is a figure which shows the specific example of the breakdown of the pollution state of the air represented on the display screen of FIG. 図47の表示画面で表わされた空気の汚染状態の内訳の具体例を示す図である。It is a figure which shows the specific example of the breakdown of the pollution state of the air represented on the display screen of FIG. 図47の表示画面で表わされた空気の汚染状態の内訳の具体例を示す図である。It is a figure which shows the specific example of the breakdown of the pollution state of the air represented on the display screen of FIG.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same.
 [第1の実施の形態]
 <空気清浄機の全体構成>
 図1Aは、第1の実施の形態にかかる空気清浄機1Aの外観の具体例を示す図である。図1Aを参照して、空気清浄機1Aは、操作指示を受け付けるためのスイッチ110と、検出結果などを表示するための表示パネル130と、複数の種類の、空気中の所定の粒子または成分を検出するためのセンサ100A,100B,…(これらを代表させてセンサ100とも称する)と、イオン発生装置300と、送風装置400とを含む。その他、図示されない、空気を導入するための吸引口、排気するための排気口、などを含む。さらに、空気清浄機1Aは、他の装置と通信するための通信部150を含んでもよい。
[First Embodiment]
<Overall configuration of the air purifier>
FIG. 1A is a diagram illustrating a specific example of the appearance of an air cleaner 1A according to the first embodiment. Referring to FIG. 1A, air cleaner 1A includes a switch 110 for receiving an operation instruction, a display panel 130 for displaying a detection result, and a plurality of types of predetermined particles or components in the air. Sensors 100A, 100B,... For detection (which are also referred to as sensors 100), an ion generator 300, and a blower 400 are included. In addition, a suction port for introducing air, an exhaust port for exhausting, and the like, which are not shown, are included. Furthermore, 1 A of air cleaners may also contain the communication part 150 for communicating with another apparatus.
 センサ100としては、後述する空気中の浮遊粒子から微生物を検出するためのセンサや、花粉センサや、においセンサ(ガスセンサ)、などが該当する。ここでは、センサ100Aが微生物を検出するためのセンサ、センサ100Bが花粉センサ、センサ100Cがにおいセンサであるものとする。この「微生物」とは、以降の説明においては菌、ウィルスなどの微生物(死骸も含む)が代表されるが、生死に関わらず、生命活動を行なうものまたはその一部であって空気中に浮遊する程度のサイズのものを指す。具体的には、菌、ウィルスなどの微生物(死骸も含む)の他に、ダニ(死骸も含む)等を含み得る。 The sensor 100 corresponds to a sensor for detecting microorganisms from airborne particles, a pollen sensor, an odor sensor (gas sensor), and the like, which will be described later. Here, it is assumed that the sensor 100A is a sensor for detecting microorganisms, the sensor 100B is a pollen sensor, and the sensor 100C is an odor sensor. In the following explanation, microorganisms (including dead bodies) such as bacteria and viruses are representative, but these “microorganisms” are those that perform life activities or part of them regardless of whether they are alive or dead and float in the air. It is the one of the size to do. Specifically, in addition to microorganisms (including dead bodies) such as bacteria and viruses, mites (including dead bodies) and the like may be included.
 なお、空気清浄機1Aには、センサ100に併せて、空気の状態を検出するためのセンサが含まれてもよい。空気の状態を検出するためのセンサとしては、たとえば湿度センサや温度センサなどが該当する。 In addition, the air cleaner 1A may include a sensor for detecting the air state in addition to the sensor 100. As a sensor for detecting the air state, for example, a humidity sensor or a temperature sensor is applicable.
 表示パネル130での表示方法としては、好ましくは、LED(Light Emitting Diode)や液晶等による電光掲示板方式が採用される。これにより、後述する表示の切り替えを容易とすることができる。 As a display method on the display panel 130, an electric bulletin board system using LED (Light Emitting Diode), liquid crystal, or the like is preferably employed. Thereby, it is possible to easily switch the display described later.
 図1Bを参照して、空気清浄機1Aは、さらに、制御装置200を含む。制御装置200は、図示しないCPU(Central Processing Unit)およびメモリを含む。CPUは、スイッチ110からの指示信号に従って、メモリに記憶されているプログラムを読み出して実行する。これにより、表示パネル130での表示や、センサ100の制御や、通信部150の制御や、イオン発生装置300の制御などを実現する。そのため、制御装置200は、表示パネル130での表示を制御するための表示制御部210と、センサ100を制御するための検出制御部220と、イオン発生装置300を制御するためのイオン制御部230と、送風装置400を制御するための風量制御部240とを含む。表示制御部210、検出制御部220およびイオン制御部230は、プログラムを実行することで主にCPUに構成される機能であってもよいし、電気回路などのハードウェアで構成される機能であってもよい。 Referring to FIG. 1B, air cleaner 1A further includes a control device 200. The control device 200 includes a CPU (Central Processing Unit) and a memory (not shown). The CPU reads and executes the program stored in the memory according to the instruction signal from the switch 110. Thereby, display on the display panel 130, control of the sensor 100, control of the communication unit 150, control of the ion generator 300, and the like are realized. Therefore, the control device 200 includes a display control unit 210 for controlling display on the display panel 130, a detection control unit 220 for controlling the sensor 100, and an ion control unit 230 for controlling the ion generator 300. And an air volume control unit 240 for controlling the blower 400. The display control unit 210, the detection control unit 220, and the ion control unit 230 may have a function mainly configured in a CPU by executing a program, or a function configured by hardware such as an electric circuit. May be.
 <送風装置400の説明>
 送風装置400はファンとその駆動機構とを含み、駆動機構が風量制御部240に接続される。風量制御部240は駆動機構を制御することによってファンの回転を制御する。それにより、送風装置400からの風量が制御される。
<Description of Blower 400>
The blower 400 includes a fan and its drive mechanism, and the drive mechanism is connected to the air volume control unit 240. The air volume control unit 240 controls the rotation of the fan by controlling the drive mechanism. Thereby, the air volume from the air blower 400 is controlled.
 空気清浄機1Aの図示しない吸引口にはフィルタが設けられる。ファンによって機外から取り込まれた外気が該フィルタを通過することで、含まれる埃や微生物がフィルタに付着し、それらが除去されて清浄された空気が排気口から機外に排気される。 A filter is provided at a suction port (not shown) of the air cleaner 1A. The outside air taken in from the outside by the fan passes through the filter, so that dust and microorganisms contained in the air adhere to the filter, and the air that has been removed and purified is exhausted from the exhaust port to the outside of the machine.
 風量制御部240はスイッチ110からの指示信号に従ってスイッチ302A,302BのON/OFFを制御する。たとえば、清浄モードが高い場合にはファンの回転数を高くなるよう駆動機構を制御し、低い場合にはファンの回転数を低くなるよう駆動機構を制御する。このようにすることで、空気の清浄度合いが制御される。 The air volume control unit 240 controls ON / OFF of the switches 302A and 302B in accordance with an instruction signal from the switch 110. For example, when the cleaning mode is high, the drive mechanism is controlled so as to increase the rotational speed of the fan, and when it is low, the drive mechanism is controlled so as to decrease the rotational speed of the fan. By doing in this way, the air cleanliness degree is controlled.
 風量制御部240での制御結果、つまり清浄された空気量である送風装置400からの風量の情報は、表示制御部210に対して出力される。出力のタイミングは、予め設定されている所定の時間間隔や、表示制御部210から要求されたタイミングなどである。 The control result in the air volume control unit 240, that is, the information on the air volume from the blower 400, which is the amount of purified air, is output to the display controller 210. The output timing is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
 <センサ100の説明>
 (センサ100Aの第1の例)
 図2は、センサ100Aの一つの具体例を示す図である。図2を参照して、第1の例によるセンサ100Aは、吸引口からの空気を導入するための導入孔10および図示されない排気孔が設けられたケース5を有し、その内部に、センサ機構20、信号処理部30、および測定検出部40を含む。
<Description of Sensor 100>
(First example of sensor 100A)
FIG. 2 is a diagram illustrating one specific example of the sensor 100A. Referring to FIG. 2, a sensor 100A according to the first example has a case 5 provided with an introduction hole 10 for introducing air from a suction port and an exhaust hole (not shown). 20, a signal processing unit 30, and a measurement detection unit 40.
 センサ100Aには空気導入機構50が設けられる。空気導入機構50によって、吸引口からの空気が、所定の流速でケース5に導入される。空気導入機構50としては、たとえば、ケース5外に設置されたファンやポンプ、およびその駆動機構などであってよい。またたとえば、ケース5内に組み込まれた熱ヒータやマイクロポンプ、マイクロファン、およびその駆動機構などであってもよい。以降の説明では、空気導入機構50は送風装置400とは異なるものとしているが、送風装置400が空気導入機構50として機能してもよい。以降、センサ100Aの第2の例、第3の例でも同様とする。 The sensor 100A is provided with an air introduction mechanism 50. Air from the suction port is introduced into the case 5 at a predetermined flow rate by the air introduction mechanism 50. The air introduction mechanism 50 may be, for example, a fan or pump installed outside the case 5 and a drive mechanism thereof. Further, for example, a heat heater, a micro pump, a micro fan, and a driving mechanism thereof incorporated in the case 5 may be used. In the following description, the air introduction mechanism 50 is different from the blower 400, but the blower 400 may function as the air introduction mechanism 50. The same applies to the second and third examples of the sensor 100A.
 空気導入機構50に含まれる駆動機構は、検出制御部220によって制御されることで、導入する空気の流速が制御される。空気導入機構50で空気を導入する際の流速は所定の流速には限定されないが、センサ100Aでは以降に説明される方法で受光素子9からの電流信号から浮遊粒子のサイズを換算するため、それが可能となるように、流速が大きすぎない範囲に制御される必要がある。好ましくは、導入する空気の流速は0.01L(リットル)/minから10L/minである。 The drive mechanism included in the air introduction mechanism 50 is controlled by the detection control unit 220, whereby the flow velocity of the introduced air is controlled. The flow rate when air is introduced by the air introduction mechanism 50 is not limited to a predetermined flow rate, but the sensor 100A converts the size of suspended particles from the current signal from the light receiving element 9 by a method described later. Therefore, it is necessary to control the flow rate within a range that is not too large. Preferably, the flow rate of the introduced air is 0.01 L (liter) / min to 10 L / min.
 センサ機構20は、光源である発光素子6と、発光素子6の照射方向に備えられ、発光素子6からの光を平行光にする、または所定幅とするためのレンズ7と、受光素子9と、受光素子9の受光方向に備えられ、平行光により空気中に存在する浮遊微粒子からの生じる散乱光を受光素子9に集光するための集光レンズ8とを含む。 The sensor mechanism 20 includes a light emitting element 6 that is a light source, an irradiation direction of the light emitting element 6, a lens 7 for making light from the light emitting element 6 parallel light or a predetermined width, and a light receiving element 9. And a condensing lens 8 that is provided in the light receiving direction of the light receiving element 9 and collects the scattered light generated from the suspended fine particles existing in the air by the parallel light on the light receiving element 9.
 発光素子6は、半導体レーザまたはLED(Light Emitting Diode)素子を含む。波長は、紫外、可視、または近赤外のいずれの領域の波長でもよい。受光素子9は、従来用いられている、フォトダイオード、イメージセンサなどが用いられる。 The light emitting element 6 includes a semiconductor laser or an LED (Light Emitting Diode) element. The wavelength may be any wavelength in the ultraviolet, visible, or near infrared region. As the light receiving element 9, a conventionally used photodiode, image sensor, or the like is used.
 レンズ7および集光レンズ8は、いずれも、プラスチック樹脂製またはガラス製でよい。レンズ7による平行光の幅は特定の幅に限定されないが、好ましくは、0.05mmから5mm程度である。 Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass. The width of the parallel light by the lens 7 is not limited to a specific width, but is preferably about 0.05 mm to 5 mm.
 発光素子6からの照射光が紫外領域の波長の光である場合は、微生物からの蛍光が受光素子9に入らないように、集光レンズ8または受光素子9の前に、蛍光をカットするような光学フィルタが設置される。 When the irradiation light from the light emitting element 6 is light having a wavelength in the ultraviolet region, the fluorescence is cut before the condenser lens 8 or the light receiving element 9 so that the fluorescence from the microorganisms does not enter the light receiving element 9. An optical filter is installed.
 ケース5は、各辺が3mmから500mmの長さの直方体である。本実施の形態ではケース5の形状を直方体としているが、直方体に限定されず、他の形状であってもよい。好ましくは、少なくとも内部に、黒色塗料の塗布または、黒色アルマイト処理等が施される。これにより、迷光の原因となる内部壁面での光の反射が抑えられる。ケース5の材質は特定の材質に限定されないが、好ましくは、プラスチック樹脂、アルミもしくはステンレスなどの金属、またはそれらの組み合わせが用いられる。ケース5に設けられる導入孔10および排出孔は、直径が1mmから50mmの円形である。導入孔10および排出孔の形状は円形に限定されず、楕円形、四角形など他の形状であってもよい。 Case 5 is a rectangular parallelepiped with each side having a length of 3 mm to 500 mm. In the present embodiment, the shape of the case 5 is a rectangular parallelepiped, but is not limited to a rectangular parallelepiped, and may be another shape. Preferably, at least the inside is applied with a black paint or a black alumite treatment. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed. The material of the case 5 is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used. The introduction hole 10 and the discharge hole provided in the case 5 are circular with a diameter of 1 mm to 50 mm. The shapes of the introduction hole 10 and the discharge hole are not limited to a circle, and may be other shapes such as an ellipse or a rectangle.
 発光素子6およびレンズ7と、受光素子9および集光レンズ8とは、それぞれ、レンズ7によって平行光とされた発光素子6の照射方向と、集光レンズ8で集光されることで受光素子9において受光可能な方向とが、所定の角度αとなる角度を保って設置される。さらに、これらは、それぞれ、導入孔10から排出孔へと移動する空気が、レンズ7によって平行光とされた発光素子6からの照射領域と、集光レンズ8で集光されることで受光素子9において受光可能な領域との重なる領域である、図2の領域Aを通過するような角度を保って、設置される。図2では、角度αが約60度となる位置関係であり、かつ、領域Aが導入孔10の正面となるように、これらが設置されている例が示されている。角度αは60度に限定されず、他の角度であってもよい。 The light emitting element 6 and the lens 7, and the light receiving element 9 and the condensing lens 8 are respectively the irradiation direction of the light emitting element 6 made parallel light by the lens 7 and the light receiving element by being condensed by the condensing lens 8. In FIG. 9, the light receiving direction is set at a predetermined angle α. Furthermore, in these, the air moving from the introduction hole 10 to the discharge hole is condensed by the irradiation region from the light emitting element 6 which is converted into parallel light by the lens 7 and the light collecting element 8. 9 is installed at an angle so as to pass through the area A in FIG. FIG. 2 shows an example in which these are installed so that the angle α is about 60 degrees and the region A is in front of the introduction hole 10. The angle α is not limited to 60 degrees and may be another angle.
 受光素子9は信号処理部30に接続されて、受光量に比例した電流信号を信号処理部30に対して出力する。図2の構成により、発光素子6から照射され、空気導入機構50によって領域Aで導入孔10から排出孔へと所定速度で移動する空気中に浮遊する粒子で散乱された光のうちの、発光素子6の照射方向に対して角度α(=60度)方向の散乱光が、受光素子9において受光され、その受光量が検出される。 The light receiving element 9 is connected to the signal processing unit 30 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. 2, light emitted from the light emitting element 6 and scattered by particles suspended in the air moving at a predetermined speed from the introduction hole 10 to the discharge hole in the region A by the air introduction mechanism 50. Scattered light in an angle α (= 60 degrees) direction with respect to the irradiation direction of the element 6 is received by the light receiving element 9, and the amount of received light is detected.
 信号処理部30は測定検出部40に接続されて、パルス状の電流信号を処理した結果を測定検出部40に対して出力する。測定検出部40は、信号処理部30からの処理結果に基づいて、空気中の浮遊粒子から微生物を検出し、検出結果として出力するための処理を行なう。 The signal processing unit 30 is connected to the measurement detection unit 40 and outputs a result of processing the pulsed current signal to the measurement detection unit 40. Based on the processing result from the signal processing unit 30, the measurement detection unit 40 detects microorganisms from airborne particles in the air and performs processing for outputting the detection result.
 ここで、第1の例によるセンサ100Aにおける検出原理について説明する。
 空気中の浮遊粒子からの散乱光の強度は、浮遊粒子のサイズと屈折率とに依存する。微生物は細胞内が水に近い液体で満たされていることから、屈折率が水に近い、透明な粒子と近似できる。センサ100Aは、空気中の浮遊する微生物の屈折率を水に近い屈折率であると仮定したときの、同サイズの埃粒子との、光を照射したときの特定の散乱角での散乱強度の差を利用して、微生物をそうでない浮遊粒子から分別し、検出する。
Here, the detection principle in the sensor 100A according to the first example will be described.
The intensity of scattered light from airborne particles depends on the size and refractive index of the airborne particles. Since microorganisms are filled with a liquid close to water, the microorganism can be approximated to transparent particles having a refractive index close to water. The sensor 100A has a scattering intensity at a specific scattering angle when light is irradiated with dust particles of the same size, assuming that the refractive index of microorganisms floating in the air is a refractive index close to water. The difference is used to separate and detect microorganisms from other suspended particles.
 図3は、直径1μmの球形の粒子であって、屈折率が水と同程度の1.3のものと、水とは異なる1.6のものとについて、各散乱角における散乱強度をプロットしたシミュレーション結果を示している。図3において、太線は屈折率1.3の粒子での散乱強度のシミュレーション結果を表わし、点線は屈折率1.6の粒子での散乱強度のシミュレーション結果を表わしている。 FIG. 3 plots the scattering intensity at each scattering angle for spherical particles having a diameter of 1 μm and having a refractive index of 1.3, which is the same as that of water, and 1.6, which is different from water. Simulation results are shown. In FIG. 3, the thick line represents the simulation result of the scattering intensity of the particles having a refractive index of 1.3, and the dotted line represents the simulation result of the scattering intensity of the particles having a refractive index of 1.6.
 図3を参照して、たとえば、散乱角60度での散乱強度を比較すると、屈折率1.3の粒子、すなわち微生物からの散乱強度X1と、屈折率1.6の粒子、すなわち埃の代表と仮定した粒子からの散乱強度X2との間に、判別可能な差が生じることがわかる。すなわち、予め、散乱強度X1と散乱強度X2と間の値を境界値として用いることで、直径が1μmの球形の粒子の散乱角60度での散乱強度について、該境界値よりも小なる場合に微生物の粒子、大なる場合に埃粒子、と判別することができる。 Referring to FIG. 3, for example, when the scattering intensity at a scattering angle of 60 degrees is compared, a particle having a refractive index of 1.3, that is, a scattering intensity X1 from a microorganism, and a particle having a refractive index of 1.6, that is, a representative of dust. It can be seen that there is a discernable difference between the scattering intensity X2 from the assumed particle. That is, when the scattering intensity at a scattering angle of 60 degrees of a spherical particle having a diameter of 1 μm is smaller than the boundary value by using a value between the scattering intensity X1 and the scattering intensity X2 as the boundary value in advance. It can be identified as microbial particles, and dust particles when large.
 センサ100Aは、この原理を用いて、導入された空気中の浮遊粒子を微生物とそれ以外とに判別する。そのため、センサ100Aには、予め、粒子サイズごとの、微生物とそれ以外の浮遊粒子とを判別するための境界値が設定される。センサ100Aは、導入された空気中の浮遊粒子のサイズと散乱強度とを測定し、測定された散乱強度が、測定されたサイズに対して予め設定された境界値よりも小なる場合に微生物、大なる場合に埃粒子と判別する。 Sensor 100A uses this principle to discriminate the suspended particles in the introduced air from microorganisms and others. Therefore, a boundary value for distinguishing microorganisms and other suspended particles for each particle size is set in advance in the sensor 100A. The sensor 100A measures the size and scattering intensity of airborne particles introduced in the air, and if the measured scattering intensity is smaller than a preset boundary value for the measured size, the microorganism, When it becomes large, it is determined as dust particles.
 センサ100Aは、次の原理を用いて導入された空気中の浮遊粒子のサイズを検出できる。すなわち、ある流速で運ばれる空気中の浮遊粒子の速度は、空気の流速が大きくない場合、浮遊粒子のサイズが大きくなれば、遅くなることが知られている。この原理によると、浮遊粒子のサイズが大きくなると速度が遅くなるために、浮遊粒子が照射光を横切る時間が長くなる。センサ100Aの受光素子9は、ある流速で運ばれる浮遊粒子が発光素子6からの照射光を横切ることによって当該浮遊粒子が発生させた散乱光を受光する。そのため、受光素子9が出力する電流信号はパルス状になり、そのパルス幅は、当該浮遊粒子が照射光を横切る時間に関係する。したがって、出力される電流信号のパルス幅から浮遊粒子のサイズが換算される。この換算を可能とするため、検出制御部220は、空気導入機構50で空気を導入する際の流速を、受光素子9からの電流信号のパルス幅は浮遊粒子のサイズを反映したものとなるような、大きすぎない速度となるように制御する。 Sensor 100A can detect the size of airborne particles introduced using the following principle. That is, it is known that the velocity of suspended particles in the air carried at a certain flow rate becomes slower as the size of the suspended particles increases when the air flow rate is not large. According to this principle, the speed of the suspended particles traverses the irradiation light becomes longer because the speed decreases as the size of the suspended particles increases. The light receiving element 9 of the sensor 100 </ b> A receives the scattered light generated by the suspended particles that are transported at a certain flow velocity when the suspended particles cross the irradiation light from the light emitting elements 6. Therefore, the current signal output from the light receiving element 9 has a pulse shape, and the pulse width is related to the time that the floating particles cross the irradiation light. Therefore, the size of the suspended particles is converted from the pulse width of the output current signal. In order to enable this conversion, the detection control unit 220 reflects the flow velocity when air is introduced by the air introduction mechanism 50, and the pulse width of the current signal from the light receiving element 9 reflects the size of the suspended particles. The speed is controlled so as not to be too large.
 図4は、上の原理を利用して空気中の微生物を検出する、第1の例としてのセンサ100Aの機能構成の具体例を示すブロック図である。図4では、信号処理部30の機能が主に電気回路であるハードウェア構成で実現される例が示されている。しかしながら、これら機能のうちの少なくとも一部は、信号処理部30が図示しないCPUを備え、該CPUが所定のプログラムを実行することによって実現される、ソフトウェア構成であってもよい。また、測定検出部40の構成がソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部は、電気回路などのハードウェア構成で実現されてもよい。 FIG. 4 is a block diagram showing a specific example of the functional configuration of the sensor 100A as a first example that detects microorganisms in the air using the above principle. FIG. 4 shows an example in which the function of the signal processing unit 30 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may be a software configuration that is realized by the signal processing unit 30 including a CPU (not shown) and executing a predetermined program by the CPU. In addition, an example in which the configuration of the measurement detection unit 40 is a software configuration is shown. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
 図4を参照して、信号処理部30は、受光素子9に接続されるパルス幅測定回路32と、パルス幅測定回路32に接続されるパルス幅-電圧変換回路33と、受光素子9に接続される電流-電圧変換回路34と、電流-電圧変換回路34に接続される増幅回路35と、パルス幅-電圧変換回路33および増幅回路35に接続される電圧比較回路36とを含む。好ましくは、図4に示されるように、受光素子9とパルス幅測定回路32および電流-電圧変換回路34との間に、予め設定した電流値以下の信号を除去するためのフィルタ回路31が設けられる。フィルタ回路31が設けられることにより、受光素子9の検出信号中の、迷光によるノイズ成分を低減できる。 Referring to FIG. 4, signal processing unit 30 is connected to pulse width measuring circuit 32 connected to light receiving element 9, pulse width-voltage converting circuit 33 connected to pulse width measuring circuit 32, and light receiving element 9. Current-voltage conversion circuit 34, an amplification circuit 35 connected to current-voltage conversion circuit 34, a pulse width-voltage conversion circuit 33, and a voltage comparison circuit 36 connected to amplification circuit 35. Preferably, as shown in FIG. 4, a filter circuit 31 is provided between the light receiving element 9, the pulse width measurement circuit 32, and the current-voltage conversion circuit 34 for removing a signal having a preset current value or less. It is done. By providing the filter circuit 31, noise components due to stray light in the detection signal of the light receiving element 9 can be reduced.
 測定検出部40は、算出部45と、記憶部42と、検出結果を出力するための出力部43とを含む。 The measurement detection unit 40 includes a calculation unit 45, a storage unit 42, and an output unit 43 for outputting a detection result.
 ケース5に導入された浮遊粒子に発光素子6から照射されることで、図2の領域Aにある当該浮遊粒子からの散乱光が、受光素子9に集光される。受光素子9から、受光量に応じた、図5に示される、パルス状の電流信号が信号処理部30に対して出力される。電流信号は、信号処理部30のパルス幅測定回路32および電流-電圧変換回路34に入力される。受光素子9からの電流信号のうちの、予め設定された電流値以下の信号は、フィルタ回路31を介することでカットされる。 The scattered particles from the suspended particles in the region A of FIG. 2 are condensed on the light receiving element 9 by irradiating the suspended particles introduced into the case 5 from the light emitting element 6. From the light receiving element 9, a pulsed current signal shown in FIG. 5 corresponding to the amount of received light is output to the signal processing unit 30. The current signal is input to the pulse width measurement circuit 32 and the current-voltage conversion circuit 34 of the signal processing unit 30. Of the current signal from the light receiving element 9, a signal equal to or less than a preset current value is cut through the filter circuit 31.
 電流-電圧変換回路34は、受光素子9から入力された電流信号より散乱強度を表わすピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、電圧比較回路36に対して出力される。 The current-voltage conversion circuit 34 detects the peak current value H representing the scattering intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh. The voltage value Eh is amplified to a preset gain by the amplifier circuit 35 and output to the voltage comparison circuit 36.
 パルス幅測定回路32は、受光素子9から入力された電流信号のパルス幅Wを測定する。パルス幅測定回路32でのパルス幅またはそれに関連した値の測定方法は特定の方法に限定されず、従来よく知られた信号処理方法でよい。一例として、パルス幅測定回路32に図示しない微分回路が組み込まれている場合の測定方法について説明する。すなわち、パルス状の電流信号が入力されることで、微分回路では、最初のパルス信号に応じて決められた一定電圧が生じ、次のパルス信号に応じて、電圧が0に戻る。パルス幅測定回路32は、微分回路に生じた電圧信号の立ち上がりから立ち下がりまでの時間を測定して、それをパルス幅とすることができる。すなわち、パルス幅Wは、たとえば、図5において点線で表わされている、微分回路を通して得られる微分曲線のピーク間の幅でもよい。他の例としては、パルス波形のピーク電圧値の半分の値の間隔、すなわち半値幅でもよいし、パルス波形の立ち上がりから立下りの間隔でもよい。このような方法により、または他の方法により測定されたパルス幅Wを示す信号は、パルス幅-電圧変換回路33に対して出力される。 The pulse width measurement circuit 32 measures the pulse width W of the current signal input from the light receiving element 9. The method for measuring the pulse width or the value related thereto in the pulse width measuring circuit 32 is not limited to a specific method, and may be a well-known signal processing method. As an example, a measurement method when a differential circuit (not shown) is incorporated in the pulse width measurement circuit 32 will be described. That is, when a pulsed current signal is input, in the differentiating circuit, a constant voltage determined according to the first pulse signal is generated, and the voltage returns to 0 according to the next pulse signal. The pulse width measuring circuit 32 can measure the time from the rising edge to the falling edge of the voltage signal generated in the differentiating circuit and use it as the pulse width. That is, the pulse width W may be, for example, a width between peaks of a differential curve obtained through a differentiating circuit, which is represented by a dotted line in FIG. As another example, an interval of a half value of the peak voltage value of the pulse waveform, that is, a half value width, or an interval from the rising edge to the falling edge of the pulse waveform may be used. A signal indicating the pulse width W measured by such a method or by another method is output to the pulse width-voltage conversion circuit 33.
 パルス幅-電圧変換回路33には、予め、各パルス幅Wに対して、微生物であるか否かの判別を行なうための散乱強度の境界値として用いる電圧値Ewが設定されている。パルス幅-電圧変換回路33は、該設定に従って、入力されるパルス幅Wを電圧値Ewに変換する。パルス幅Wと電圧値Ewとの対応は、関数や係数として設定されてもよいし、テーブルで設定されてもよい。電圧値Ewは電圧比較回路36に対して出力される。 In the pulse width-voltage conversion circuit 33, for each pulse width W, a voltage value Ew used as a boundary value of the scattering intensity for determining whether or not it is a microorganism is set in advance. The pulse width-voltage conversion circuit 33 converts the input pulse width W into a voltage value Ew according to the setting. The correspondence between the pulse width W and the voltage value Ew may be set as a function or a coefficient, or may be set in a table. The voltage value Ew is output to the voltage comparison circuit 36.
 パルス幅Wに対応する境界値である電圧値Ewは、予め実験的に決められる。たとえば、1m3の大きさの容器内に、大腸菌やバチルス菌やカビ菌などの微生物の一種を、ネブライザを利用して噴霧し、センサ100Aを用いて、受光素子9からの電流信号よりパルス幅および散乱強度(ピーク電圧値)を測定する。同様に、サイズが揃ったポリスチレン粒子などを埃の代替とし、センサ100Aを用いて、パルス幅および散乱強度(ピーク電圧値)を測定する。図6は、このようにして、センサ100Aを用いて、微生物およびポリスチレン粒子のそれぞれから得られた、パルス幅に対する散乱強度(ピーク電圧値)をプロットしたときの模式図である。図6中の領域51には、主に、ポリスチレン粒子から得られたパルス幅に対する散乱強度がプロットされ、領域52には、主に、微生物から得られたパルス幅に対する散乱強度がプロットされる。実際には、これらのプロットの一部は両領域にまたがり、ある程度混ざり合う。その原因としては、空気のケース5内への導入流速のばらつき、浮遊粒子の照射光を横切るルートのばらつき、および照射光の強度分布、などが挙げられる。実験から領域51および領域52が得られることで、これらの境界が、たとえば直線53のように決定される。パルス幅-電圧変換回路33には一例としてこの直線53を表わす関数または係数が設定される。 The voltage value Ew, which is a boundary value corresponding to the pulse width W, is experimentally determined in advance. For example, a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed in a 1 m 3 container using a nebulizer, and a pulse width is obtained from a current signal from the light receiving element 9 using a sensor 100A. The scattering intensity (peak voltage value) is measured. Similarly, polystyrene particles having a uniform size are substituted for dust, and the pulse width and scattering intensity (peak voltage value) are measured using the sensor 100A. FIG. 6 is a schematic diagram when the scattering intensity (peak voltage value) with respect to the pulse width obtained from each of the microorganisms and polystyrene particles is plotted using the sensor 100A in this manner. In FIG. 6, the scattering intensity with respect to the pulse width obtained from the polystyrene particles is mainly plotted in the region 51, and the scattering intensity with respect to the pulse width obtained from the microorganism is mainly plotted in the region 52. In practice, some of these plots span both regions and mix to some extent. The causes include variations in the flow velocity of air into the case 5, variations in routes across the irradiation light of suspended particles, and intensity distribution of the irradiation light. By obtaining the region 51 and the region 52 from the experiment, these boundaries are determined as a straight line 53, for example. As an example, a function or coefficient representing the straight line 53 is set in the pulse width-voltage conversion circuit 33.
 直線53で表わされるパルス幅Wと電圧値Ewとの対応関係は、スイッチ110などの操作によって入力され、検出制御部220によって電圧比較回路36に設定されてもよい。または、通信部150がパルス幅Wと電圧値Ewとの対応関係を記録した記録媒体からかかる情報を読出し、検出制御部220によって設定されてもよい。または、通信部150が、専用回線など接続されたPCや、インターネットまたは赤外線を用いて通信する他の装置から受信し、検出制御部220によって設定されてもよい。また、いったん電圧比較回路36に設定されたパルス幅Wと電圧値Ewとの対応関係が、検出制御部220により更新されてもよい。 The correspondence relationship between the pulse width W represented by the straight line 53 and the voltage value Ew may be input by operating the switch 110 or the like, and may be set in the voltage comparison circuit 36 by the detection control unit 220. Alternatively, the information may be set by the detection control unit 220 by reading the information from the recording medium in which the communication unit 150 records the correspondence between the pulse width W and the voltage value Ew. Alternatively, the communication unit 150 may receive from a connected PC such as a dedicated line, or another device that communicates using the Internet or infrared rays, and may be set by the detection control unit 220. The correspondence relationship between the pulse width W and the voltage value Ew once set in the voltage comparison circuit 36 may be updated by the detection control unit 220.
 電圧比較回路36は、電流-電圧変換回路34から増幅回路35を介して入力された散乱強度を表わす電圧値Ehと、パルス幅-電圧変換回路33から入力されたパルス幅Wに対応した境界値としての電圧値Ewとを比較する。電圧比較回路36は、この比較に基づいて、受光素子9が受光した散乱光を生じた浮遊粒子が微生物であるか否かを判定する。 The voltage comparison circuit 36 has a boundary value corresponding to the voltage value Eh representing the scattering intensity input from the current-voltage conversion circuit 34 via the amplification circuit 35 and the pulse width W input from the pulse width-voltage conversion circuit 33. Is compared with the voltage value Ew. Based on this comparison, the voltage comparison circuit 36 determines whether or not the suspended particles that generate the scattered light received by the light receiving element 9 are microorganisms.
 電圧比較回路36での判定方法の具体例を、図6を用いて説明する。たとえば、ある浮遊粒子P1について、パルス幅r1、散乱光強度、すなわちピーク電圧値Y1が検出された場合、パルス幅-電圧変換回路33は、設定されている直線53で表わされる対応関係に基づき、パルス幅r1を電圧値Y3に変換する。電圧比較回路36には、ピーク電圧値Y1と電圧値Y3とが入力され、これらが比較される。ピーク電圧値Y1は境界値である電圧値Y3より小さいので、粒子P1は微生物と判定される。 A specific example of the determination method in the voltage comparison circuit 36 will be described with reference to FIG. For example, when a pulse width r 1 and scattered light intensity, that is, a peak voltage value Y 1 is detected for a certain suspended particle P 1, the pulse width-voltage conversion circuit 33 is based on the correspondence represented by the set straight line 53. The pulse width r1 is converted into a voltage value Y3. The voltage comparison circuit 36 receives the peak voltage value Y1 and the voltage value Y3 and compares them. Since the peak voltage value Y1 is smaller than the boundary value voltage value Y3, the particle P1 is determined to be a microorganism.
 またたとえば、ある浮遊粒子P2について、パルス幅r2、散乱光強度、すなわちピーク電圧値Y4が検出された場合、パルス幅-電圧変換回路33は、設定されている直線53で表わされる対応関係に基づき、パルス幅r2を電圧値Y2に変換する。電圧比較回路36には、ピーク電圧値Y4と電圧値Y2とが入力され、これらが比較される。ピーク電圧値Y4は境界値である電圧値Y2より大きいので、粒子P2は微生物ではないと判定される。 Further, for example, when the pulse width r2 and the scattered light intensity, that is, the peak voltage value Y4 are detected for a certain suspended particle P2, the pulse width-voltage conversion circuit 33 is based on the correspondence relationship represented by the set straight line 53. The pulse width r2 is converted into a voltage value Y2. The voltage comparison circuit 36 receives the peak voltage value Y4 and the voltage value Y2, and compares them. Since the peak voltage value Y4 is larger than the boundary value voltage value Y2, it is determined that the particle P2 is not a microorganism.
 電圧比較回路36での判定は、発光素子6からの照射光を浮遊粒子が横切るたびにその粒子からの散乱光に基づいて行なわれ、判定結果を示す信号が、測定検出部40に対して出力される。測定検出部40の算出部45は電圧比較回路36からの判定結果の入力を受け付けて、順次、記憶部42に記憶させる。 The determination by the voltage comparison circuit 36 is performed based on the scattered light from the particles every time the suspended light crosses the irradiation light from the light emitting element 6, and a signal indicating the determination result is output to the measurement detection unit 40. The The calculation unit 45 of the measurement detection unit 40 receives an input of the determination result from the voltage comparison circuit 36 and sequentially stores it in the storage unit 42.
 算出部45は、記憶部42に記憶された所定の検出時間分の判定結果について、検出対象の浮遊粒子が微生物であるとの判定結果を示す信号の入力回数、および/またはそれ以外の判定結果を示す信号の入力回数を集計する。 For the determination results for a predetermined detection time stored in the storage unit 42, the calculation unit 45 inputs the number of signals indicating a determination result that the detection target suspended particles are microorganisms and / or other determination results. This counts the number of times signals are input.
 算出部45は、空気導入機構50から、導入される空気の流速を読出し、上記検出時間に乗じることで、上記検出時間にケース5に導入された空気量Vsを得る。算出部45は、検出結果として、上述の集計結果である微生物の個数Nsまたは埃粒子の個数Ndを空気量Vsで除して、微生物の濃度Ns/Vsまたは埃粒子の濃度Nd/Vsを得る。 The calculation unit 45 reads the flow rate of the introduced air from the air introduction mechanism 50 and multiplies the detection time to obtain the air amount Vs introduced into the case 5 during the detection time. As the detection result, the calculation unit 45 divides the number Ns of microorganisms or the number Nd of dust particles, which is the above-described total result, by the air amount Vs to obtain the concentration Ns / Vs of microorganisms or the concentration Nd / Vs of dust particles. .
 検出結果である、当該検出時間内にカウントされた微生物の個数Ns、埃粒子の個数Ndや、算出された微生物の濃度Ns/Vs、埃粒子の濃度Nd/Vsは、記憶部42に記憶される。そして、所定のタイミングで、出力部43によって、検出結果が表示制御部210に対して出力される。出力部43での出力のタイミングは、予め設定されている所定の時間間隔や、表示制御部210から要求されたタイミングなどである。 The number of microorganisms Ns and the number of dust particles Nd counted within the detection time, the calculated microorganism concentration Ns / Vs, and the dust particle concentration Nd / Vs, which are detection results, are stored in the storage unit 42. The The detection result is output to the display control unit 210 by the output unit 43 at a predetermined timing. The output timing at the output unit 43 is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
 第1の例のセンサ100Aでの検出方法の具体例を、図7を用いて説明する。図7の検出方法は、センサ100Aに含まれている図示しないCPUなどの演算装置からの制御信号が信号処理部30および測定検出部40に入力され、該制御信号に従って図4に示された各回路および各機能が発揮されることにより実現される。 A specific example of the detection method by the sensor 100A of the first example will be described with reference to FIG. In the detection method of FIG. 7, a control signal from an arithmetic unit such as a CPU (not shown) included in the sensor 100A is input to the signal processing unit 30 and the measurement detection unit 40, and each of the detection signals shown in FIG. This is realized by demonstrating the circuit and each function.
 図7を参照して、移動する空気によって運ばれた浮遊粒子が発光素子6からの照射光を横切ることによって、当該浮遊粒子が発生させた散乱光による電流信号が、ステップ(以下、Sと略する)101で、受光素子9からフィルタ回路31を介して信号処理部30に入力されると、S03でパルス幅測定回路32において、パルス状の当該電流信号のパルス幅Wが検出される。S05でパルス幅-電圧変換回路33において、予め設定されている対応関係に基づいて、S03で検出されたパルス幅Wが境界値である電圧値Ewに変換される。 Referring to FIG. 7, the suspended particle carried by the moving air crosses the irradiation light from the light emitting element 6, whereby a current signal by the scattered light generated by the suspended particle is changed to a step (hereinafter abbreviated as S). When the signal is input from the light receiving element 9 to the signal processing unit 30 through the filter circuit 31 in 101, the pulse width measurement circuit 32 detects the pulse width W of the pulsed current signal in S03. In S05, the pulse width-voltage conversion circuit 33 converts the pulse width W detected in S03 into a voltage value Ew that is a boundary value based on a preset correspondence.
 一方、S07で電流-電圧変換回路34において、S01で受光素子9から入力されたパルス状の電流信号より、散乱強度を表わすピーク電流値Hが検出され、ピーク電圧値Ehに変換される。なお、S03~S07の処理順は、この順には限定されない。 On the other hand, in S07, the current-voltage conversion circuit 34 detects the peak current value H representing the scattering intensity from the pulsed current signal input from the light receiving element 9 in S01, and converts it into the peak voltage value Eh. Note that the processing order of S03 to S07 is not limited to this order.
 S07で得られた電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、S09で、電圧比較回路36において、S05で得られた電圧値Ewと比較される。その結果、ピーク電圧値が境界値よりも小さい場合には(S11でYES)、電圧比較回路36において、当該電流信号として検出された散乱光を発生された浮遊粒子が微生物であると判断され、その結果を示す信号が測定検出部40に対して出力される。一方、ピーク電圧値が境界値よりも大きい場合には(S11でNO)、電圧比較回路36において、当該浮遊粒子が微生物ではないと判断され、その結果を示す信号が測定検出部40に対して出力される。 The voltage value Eh obtained in S07 is amplified to a preset amplification factor by the amplification circuit 35, and is compared with the voltage value Ew obtained in S05 by the voltage comparison circuit 36 in S09. As a result, when the peak voltage value is smaller than the boundary value (YES in S11), the voltage comparison circuit 36 determines that the suspended particles that have generated the scattered light detected as the current signal are microorganisms, A signal indicating the result is output to the measurement detector 40. On the other hand, when the peak voltage value is larger than the boundary value (NO in S11), the voltage comparison circuit 36 determines that the suspended particle is not a microorganism, and a signal indicating the result is sent to the measurement detection unit 40. Is output.
 S13またはS15で電圧比較回路36から出力された検出結果は、S17で測定検出部40の記憶部42に記憶される。そして、S19で算出部45において、記憶部42に記憶された所定の検出時間分の判定結果について、微生物であるとの判定結果の入力回数、および/または微生物ではないとの判定結果の入力回数が集計され、前者が微生物の個数Ns、後者が埃粒子の個数Ndとの検出値とされる。さらに、算出部45では、上記検出時間に空気の流速を乗じることで上記検出時間にケース5に導入された空気量Vsが得られる。そのため、集計で得られた微生物の個数Nsまたは埃粒子の個数Ndを空気量Vsで除することで、検出値として、微生物の濃度Ns/Vsまたは埃粒子の濃度Nd/Vsが得られる。S19で得られた検出値は、S21で出力部43より、所定のタイミングで表示制御部210に対して出力される。 The detection result output from the voltage comparison circuit 36 in S13 or S15 is stored in the storage unit 42 of the measurement detection unit 40 in S17. Then, in S19, in the calculation unit 45, for the determination results for the predetermined detection time stored in the storage unit 42, the number of input of the determination result that is a microorganism and / or the number of input of the determination result that is not a microorganism. Are counted, and the former is the detected value of the number of microorganisms Ns and the latter is the number of dust particles Nd. Furthermore, the calculation unit 45 obtains the air amount Vs introduced into the case 5 during the detection time by multiplying the detection time by the flow velocity of air. Therefore, the microorganism concentration Ns / Vs or the dust particle concentration Nd / Vs is obtained as a detection value by dividing the number Ns of microorganisms or the number Nd of dust particles obtained by the aggregation by the air amount Vs. The detection value obtained in S19 is output from the output unit 43 to the display control unit 210 at a predetermined timing in S21.
 第1の例によるセンサ100Aでは上述のようにして微生物と埃とが判定される。これにより、リアルタイムに、かつ精度よく、空気中の浮遊粒子から微生物と埃とを分離して検出することができる。 The sensor 100A according to the first example determines microorganisms and dust as described above. Thereby, microorganisms and dust can be separated and detected from airborne particles in real time and with high accuracy.
 (センサ100Aの第2の例)
 図8Aは、センサ100Aの他の具体例を示す図である。図8Aを参照して、第2の例によるセンサ100Aは、吸引口からの空気を導入するための導入孔10および排出孔11が設けられたケース5を有し、ケース5、信号処理部30、および測定検出部40を内部に含んだセンサ機構20を含む。図8Aにおいて、第1の例によるセンサ100Aと同じ参照符号を付した部材は第1の例によるセンサ100Aのそれとほぼ同じものであり、以降、第1の例によるセンサ100Aとの差異を特に説明する。
(Second example of sensor 100A)
FIG. 8A is a diagram illustrating another specific example of the sensor 100A. Referring to FIG. 8A, a sensor 100A according to the second example has a case 5 provided with an introduction hole 10 and an exhaust hole 11 for introducing air from the suction port. And the sensor mechanism 20 including the measurement detection unit 40 therein. In FIG. 8A, members having the same reference numerals as those of the sensor 100A according to the first example are substantially the same as those of the sensor 100A according to the first example. Hereinafter, differences from the sensor 100A according to the first example will be particularly described. To do.
 第2の例によるセンサ100Aにも空気導入機構50が設けられ、それによって吸引口からの空気がケース5に導入される。第2の例によるセンサ100Aでは、好ましくは、空気導入機構50で導入する空気の流速は1L/minから50m3/minである。 The air introduction mechanism 50 is also provided in the sensor 100A according to the second example, whereby air from the suction port is introduced into the case 5. In the sensor 100A according to the second example, the flow rate of the air introduced by the air introduction mechanism 50 is preferably 1 L / min to 50 m 3 / min.
 センサ機構20は、検出機構と捕集機構と加熱機構とを含む。図8Aは、捕集機構の一例として、放電電極17、捕集治具12、および高圧電源2を含むものを示している。放電電極17は高圧電源2の負極に電気的に接続される。高圧電源2の正極は接地される。これにより、導入された空気中の浮遊粒子は放電電極17付近にて負に帯電される。捕集治具12は、導電性の透明の皮膜3を有する、ガラス板などからなる支持基板4である。皮膜3は、接地される。これにより、負に帯電された空気中の浮遊粒子は静電気力で捕集治具12の方向に移動して導電性の皮膜3に吸着されることで、捕集治具12上に捕集される。 The sensor mechanism 20 includes a detection mechanism, a collection mechanism, and a heating mechanism. FIG. 8A shows an example of the collection mechanism including the discharge electrode 17, the collection jig 12, and the high-voltage power supply 2. The discharge electrode 17 is electrically connected to the negative electrode of the high voltage power source 2. The positive electrode of the high voltage power supply 2 is grounded. As a result, the introduced airborne particles in the air are negatively charged in the vicinity of the discharge electrode 17. The collection jig 12 is a support substrate 4 made of a glass plate or the like having a conductive transparent film 3. The film 3 is grounded. As a result, the negatively charged airborne particles in the air move toward the collecting jig 12 by electrostatic force and are adsorbed by the conductive film 3 to be collected on the collecting jig 12. The
 支持基板4は、ガラス板には限定されず、その他、セラミック、金属等であってもよい。また、支持基板4表面に形成される皮膜3は、透明に限定されない。他の例として、支持基板4は、金属皮膜をセラミック等の絶縁材料の上に形成して構成されてもよい。また、支持基板4が金属材料の場合は、その表面に皮膜を形成する必要もない。具体的には、支持基板4として、シリコン基板、SUS(Stainless Used Steel)基板、銅基板などが利用できる。 The support substrate 4 is not limited to a glass plate, but may be ceramic, metal, or the like. Further, the coating 3 formed on the surface of the support substrate 4 is not limited to being transparent. As another example, the support substrate 4 may be configured by forming a metal film on an insulating material such as ceramic. Moreover, when the support substrate 4 is a metal material, it is not necessary to form a film on the surface. Specifically, a silicon substrate, a SUS (Stainless Used Steel) substrate, a copper substrate, or the like can be used as the support substrate 4.
 検出機構は、光源である発光素子6と、発光素子6の照射方向に備えられ、発光素子6からの光を平行光にする、または所定幅とするためのレンズ(またはレンズ群)7と、アパーチャ13と、受光素子9と、受光素子9の受光方向に備えられ、捕集機構により捕集治具12上に捕集された浮遊微粒子に発光素子6から照射することにより生じる蛍光を受光素子9に集光するための集光レンズ(またはレンズ群)8と、照射光が受光素子9に入り込むのを防ぐためのフィルタ(またはフィルタ群)14とを含む。このうち、アパーチャ13は、必要に応じて設けられる。これらの構成は、従来技術を応用できる。 The detection mechanism includes a light-emitting element 6 that is a light source, a lens (or a lens group) 7 that is provided in the irradiation direction of the light-emitting element 6 and makes the light from the light-emitting element 6 parallel light or has a predetermined width. The aperture 13, the light receiving element 9 and the light receiving element 9 are provided in the light receiving direction of the light receiving element 9, and the fluorescence generated by irradiating the floating fine particles collected on the collecting jig 12 by the collecting mechanism from the light emitting element 6. 9 includes a condensing lens (or lens group) 8 for condensing light to 9 and a filter (or filter group) 14 for preventing irradiation light from entering the light receiving element 9. Of these, the aperture 13 is provided as necessary. Conventional technology can be applied to these configurations.
 発光素子6は、半導体レーザまたはLED素子を含む。波長は、微生物を励起して蛍光を発させるものであれば、紫外または可視いずれの領域の波長でもよい。好ましくは、特表2008-508527号公報に開示されているように、微生物中に含まれ、蛍光を発するトリプトファン、NaDH、リボフラビン等が効率よく励起される300nmから450nmである。受光素子9は、従来用いられている、フォトダイオード、イメージセンサなどが用いられる。 The light emitting element 6 includes a semiconductor laser or an LED element. The wavelength may be in the ultraviolet or visible region as long as it excites a microorganism to emit fluorescence. Preferably, as disclosed in JP-A-2008-508527, the wavelength is from 300 nm to 450 nm, which is contained in a microorganism and excites fluorescent tryptophan, NaDH, riboflavin, and the like efficiently. As the light receiving element 9, a conventionally used photodiode, image sensor, or the like is used.
 レンズ7および集光レンズ8は、いずれも、プラスチック樹脂製またはガラス製でよい。レンズ7とアパーチャ13との組み合わせにより、発光素子6の発光は捕集治具12の表面に照射され、捕集治具12上に照射領域15を形成する。照射領域15の形状に限定はなく、円形、楕円形、四角形などであってよい。照射領域15は特定のサイズに限定されないが、好ましくは、円の直径または楕円の長軸方向の長さまたは四角形の1辺の長さが約0.05mmから50mmである。 Both the lens 7 and the condenser lens 8 may be made of plastic resin or glass. Due to the combination of the lens 7 and the aperture 13, the light emitted from the light emitting element 6 is irradiated onto the surface of the collecting jig 12, and an irradiation region 15 is formed on the collecting jig 12. The shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like. The irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
 フィルタ14は、単一または数種のフィルタの組み合わせで構成され、集光レンズ8または受光素子9の前に設置される。これにより、捕集治具12で捕集された粒子からの蛍光と共に、発光素子6からの照射光が捕集治具12やケース5に反射した迷光が受光素子9に入射することを抑えることができる。 The filter 14 is configured by a single or a combination of several types of filters, and is installed in front of the condenser lens 8 or the light receiving element 9. Thereby, it is possible to suppress the stray light reflected by the collection jig 12 and the case 5 from being incident on the light receiving element 9 together with the fluorescence from the particles collected by the collection jig 12. Can do.
 加熱機構は、測定検出部40に電気的に接続され、測定検出部40によって加熱量(加熱時間、加熱温度等)が制御されるヒータ91を含む。ヒータ91としては、好適にはセラミックヒータが用いられる。以降の説明ではヒータ91としてセラミックヒータが想定されているが、その他、遠赤外線ヒータや遠赤外線ランプなどであってもよい。 The heating mechanism includes a heater 91 that is electrically connected to the measurement detection unit 40 and whose heating amount (heating time, heating temperature, etc.) is controlled by the measurement detection unit 40. A ceramic heater is preferably used as the heater 91. In the following description, a ceramic heater is assumed as the heater 91. However, a far infrared heater, a far infrared lamp, or the like may be used.
 ヒータ91は、捕集治具12上に捕集された空気中の浮遊粒子を加熱し得る位置であって、少なくとも加熱時には発光素子6、受光素子9等のセンサ機器から何かによって隔てられる位置に配備される。好ましくは、図8Aに表わされたように、捕集治具12を間に挟んで発光素子6、受光素子9等のセンサ機器から遠い側に配備される。このようにすることにより加熱時にヒータ91は捕集治具12によって発光素子6、受光素子9等のセンサ機器から隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。より好ましくは、図8Bに示されるように、ヒータ91は周囲が断熱材で囲まれる。断熱材としては、好適にはガラスエポキシ樹脂が用いられる。このように構成することによって、セラミックヒータであるヒータ91が約2分で200℃に到達したときに断熱材を介してヒータ91に接続される部分(図示せず)の温度が30℃以下であったことを発明者らが確認している。 The heater 91 is a position where the suspended particles in the air collected on the collecting jig 12 can be heated, and is a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9 at least during heating. Deployed. Preferably, as illustrated in FIG. 8A, the light-emitting element 6 and the light-receiving element 9 are disposed on the side far from the sensor device with the collection jig 12 interposed therebetween. In this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. Can do. More preferably, as shown in FIG. 8B, the heater 91 is surrounded by a heat insulating material. As the heat insulating material, a glass epoxy resin is preferably used. By configuring in this way, when the heater 91 which is a ceramic heater reaches 200 ° C. in about 2 minutes, the temperature of the portion (not shown) connected to the heater 91 via the heat insulating material is 30 ° C. or less. The inventors have confirmed that this was the case.
 上述のように、フィルタ14は、受光素子9の前に設置されて迷光の受光素子9への入射を防止する役割を果たすものである。しかしながら、より大きな蛍光強度を得ようとすると、発光素子6での発光強度を大きくする必要がある。これは、反射光強度、すなわち、迷光強度の増大を招く。そこで、好ましくは、発光素子6および受光素子9が、迷光強度がフィルタ14による遮光効果を上回らないような位置関係で配置される。 As described above, the filter 14 is installed in front of the light receiving element 9 and plays a role of preventing the stray light from entering the light receiving element 9. However, in order to obtain higher fluorescence intensity, it is necessary to increase the emission intensity in the light emitting element 6. This leads to an increase in reflected light intensity, that is, stray light intensity. Therefore, the light emitting element 6 and the light receiving element 9 are preferably arranged in a positional relationship such that the stray light intensity does not exceed the light shielding effect of the filter 14.
 図8A、図9A、および図9Bを用いて、発光素子6および受光素子9の配置の一例について説明する。図9Aは、第2の例によるセンサ100Aを図8AのA-A位置から矢印の方向に見た断面図であり、図9Bは、図9AのB-B位置から矢印の方向に見た断面図である。なお、説明の便宜上、これらの図には捕集治具12以外の収集機構は示されていない。 An example of the arrangement of the light-emitting element 6 and the light-receiving element 9 will be described with reference to FIGS. 8A, 9A, and 9B. 9A is a cross-sectional view of the sensor 100A according to the second example as viewed from the position AA in FIG. 8A in the direction of the arrow, and FIG. 9B is a cross-section as viewed from the position BB in FIG. 9A in the direction of the arrow. FIG. For convenience of explanation, these drawings do not show a collecting mechanism other than the collecting jig 12.
 図9Aを参照して、発光素子6およびレンズ7と、受光素子9および集光レンズ8とは、図8Aの矢印A方向(上面)から見て直角または略直角に設けられる。発光素子6からレンズ7およびアパーチャ13を通って捕集治具12表面に形成される照射領域15からの反射光は、入射光に沿った方向に向かう。そのため、この構成とすることで、反射光が直接受光素子9に入らない。なお、捕集治具12表面からの蛍光は等方的に発光するので、反射光および迷光の受光素子9への入射を抑えられる配置であれば、図示された配置には限定されない。 Referring to FIG. 9A, light emitting element 6 and lens 7, light receiving element 9 and condenser lens 8 are provided at a right angle or a substantially right angle when viewed from the direction of arrow A (upper surface) in FIG. 8A. Reflected light from the irradiation region 15 formed on the surface of the collecting jig 12 from the light emitting element 6 through the lens 7 and the aperture 13 is directed in a direction along the incident light. Therefore, with this configuration, the reflected light does not directly enter the light receiving element 9. In addition, since the fluorescence from the surface of the collection jig 12 emits isotropically, the arrangement is not limited to the illustrated arrangement as long as it is an arrangement that can prevent the reflected light and stray light from entering the light receiving element 9.
 より好ましくは、捕集治具12は、照射領域15に対応する表面に捕集した粒子からの蛍光を受光素子9に集めるための構成を備える。該構成は、図9Bを参照して、たとえば球面状の窪み51が該当する。さらに、捕集治具12は、好ましくは、受光素子9に捕集治具12表面が相対するよう、受光素子9に向かう方向に角度θだけ傾けて設けられる。この構成により、球面状の窪み51内の粒子から等方的に発光した蛍光が球面表面で反射して受光素子9方向に集められる効果があり、受光信号を大きくできるメリットがある。窪み51の大きさは限定されないが、好ましくは、照射領域15よりも大きい。 More preferably, the collection jig 12 has a configuration for collecting fluorescence from the particles collected on the surface corresponding to the irradiation region 15 in the light receiving element 9. This configuration corresponds to, for example, a spherical recess 51 with reference to FIG. 9B. Furthermore, the collection jig 12 is preferably provided so as to be inclined by an angle θ in the direction toward the light receiving element 9 so that the surface of the collection jig 12 faces the light receiving element 9. With this configuration, there is an advantage that the fluorescence emitted isotropically from the particles in the spherical recess 51 is reflected by the spherical surface and collected in the direction of the light receiving element 9, and the light reception signal can be increased. The size of the recess 51 is not limited, but is preferably larger than the irradiation region 15.
 再び図8Aを参照して、受光素子9は信号処理部30に接続されて、受光量に比例した電流信号を信号処理部30に対して出力する。従って、導入された空気中に浮遊し、捕集治具12表面に捕集された粒子に発光素子6から光が照射されることによって該粒子から発光された蛍光は、受光素子9において受光され、信号処理部30においてその受光量が検出される。 Referring to FIG. 8A again, the light receiving element 9 is connected to the signal processing unit 30 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the signal processing unit 30.
 さらに、ケース5の導入孔10および排出孔11には、それぞれ、シャッタ16A,16Bが設置される。シャッタ16A,16Bは、それぞれ測定検出部40に接続され、その開閉が制御される。シャッタ16A,16Bが閉塞されることでケース5内への空気の流入および外部光の入射が遮断される。測定検出部40は、後述する蛍光測定時にシャッタ16A,16Bを閉塞し、ケース5内への空気の流入および外部光の入射を遮断する。これにより、蛍光測定時には捕集機構での浮遊粒子の捕集が中断される。また、蛍光測定時に外部光のケース5内への入射が遮断されることで、ケース5内の迷光が抑えられる。なお、シャッタ16A,16Bのうちのいずれか一方、たとえば、少なくとも排出孔11のシャッタ16Bのみが備えられてもよい。 Furthermore, shutters 16A and 16B are installed in the introduction hole 10 and the discharge hole 11 of the case 5, respectively. The shutters 16A and 16B are connected to the measurement detection unit 40, and their opening and closing are controlled. By closing the shutters 16A and 16B, the inflow of air into the case 5 and the incidence of external light are blocked. The measurement detection unit 40 closes the shutters 16A and 16B during fluorescence measurement to be described later, and blocks the inflow of air into the case 5 and the incidence of external light. This interrupts the collection of suspended particles in the collection mechanism during fluorescence measurement. In addition, stray light in the case 5 can be suppressed by blocking external light from entering the case 5 during fluorescence measurement. Note that either one of the shutters 16A and 16B, for example, at least the shutter 16B of the discharge hole 11 may be provided.
 または、導入孔10および排出孔11には、ケース5内への空気の出入りは可能として外部光の入射を遮断するための構成として、それぞれ、図10A、図10Bに表わされるような遮光部10Aおよび遮光部11Aが備えられてもよい。 Alternatively, in the introduction hole 10 and the discharge hole 11, a light shielding portion 10 </ b> A as shown in FIGS. 10A and 10B is provided as a configuration for blocking the incidence of external light so that air can enter and exit the case 5. In addition, a light shielding part 11A may be provided.
 図10Aおよび図10Bを参照して、導入孔10に備えられる遮光部10Aおよび排出孔11に備えられる遮光部11A共に、4.5mm程度の間隔で遮光板10aおよび遮光板10bが交互に重ねられた構造を有する。遮光板10aおよび遮光板10bは、それぞれ図10Cおよび図10Dに示されるように導入孔10および排出孔11の形状(ここでは円形)に対応した形状であって、互いに重ならない部分に削孔を有する。具体的には、遮光板10aは周辺部分に削孔を有し、遮光板10bは中央部分に削孔を有する。遮光板10aおよび遮光板10bが重ねられたときに、それぞれの板に設けられた孔は重ならない。図10Aに示されるように、導入孔10に備えられる遮光部10Aは外部から内部へ遮光板10a、遮光板10b、遮光板10a、遮光板10bの順に遮光板が配置され、図10Bに示されるように、排出孔11に備えられる遮光部11Aは外部(空気導入機構50側)から内部へ遮光板10b、遮光板10a、遮光板10bの順に遮光板が配置される。この構成によって、ケース5内への空気の出入りは可能となるものの、外部光の入射が遮断され、ケース5内の迷光が抑えられる。 Referring to FIG. 10A and FIG. 10B, the light shielding plates 10a and the light shielding plates 10b are alternately overlapped at intervals of about 4.5 mm in both the light shielding portions 10A provided in the introduction holes 10 and the light shielding portions 11A provided in the discharge holes 11. Has a structure. The light shielding plate 10a and the light shielding plate 10b have shapes corresponding to the shapes of the introduction holes 10 and the discharge holes 11 (here, circular) as shown in FIGS. 10C and 10D, respectively. Have. Specifically, the light shielding plate 10a has a hole in the peripheral portion, and the light shielding plate 10b has a hole in the central portion. When the light shielding plate 10a and the light shielding plate 10b are overlapped, the holes provided in the respective plates do not overlap. As shown in FIG. 10A, the light shielding portion 10A provided in the introduction hole 10 has a light shielding plate arranged in the order of the light shielding plate 10a, the light shielding plate 10b, the light shielding plate 10a, and the light shielding plate 10b from the outside to the inside. As described above, in the light shielding portion 11A provided in the discharge hole 11, the light shielding plates are arranged in the order of the light shielding plate 10b, the light shielding plate 10a, and the light shielding plate 10b from the outside (the air introduction mechanism 50 side) to the inside. With this configuration, air can enter and exit the case 5, but external light is blocked and stray light in the case 5 is suppressed.
 ここで、第2の例によるセンサ100Aにおける検出原理について説明する。
 特表開2008-508527号公報にも開示されているように、空気中に浮遊する微生物に紫外光または青色光を照射すると蛍光を発することは、従来から知られている。しかし、空気中には化学繊維の埃など同様に蛍光を発するものが浮遊しており、蛍光を検出するのみでは、微生物からのものであるか化学繊維の埃などからのものであるかが区別されない。
Here, the detection principle in the sensor 100A according to the second example will be described.
As disclosed in JP-T-2008-508527, it has been known that fluorescence is emitted when a microorganism floating in the air is irradiated with ultraviolet light or blue light. However, fluorescent substances such as chemical fiber dust are floating in the air, and it can be distinguished whether it is from microorganisms or chemical fiber dust only by detecting the fluorescence. Not.
 そこで、発明者らは、微生物と化学繊維の埃などとのそれぞれに対して加熱処理を施し、加熱の前後における蛍光の変化を測定した。発明者らによる、具体的な測定結果が図11~図17に示されている。測定の結果より、発明者らは、埃は加熱処理によって蛍光強度が変化しないのに対して、微生物は加熱処理によって蛍光強度が増加することを見出した。 Therefore, the inventors performed heat treatment on each of microorganisms and chemical fiber dust, and measured changes in fluorescence before and after heating. Specific measurement results by the inventors are shown in FIGS. From the measurement results, the inventors found that the fluorescence intensity of dust does not change by heat treatment, whereas the fluorescence intensity of microorganisms increases by heat treatment.
 具体的に、図11は、大腸菌を200℃にて5分間加熱処理したときの、加熱処理前(曲線71)および加熱処理後(曲線72)の蛍光スペクトルの測定結果である。図11に表わされた測定結果より、加熱処理を施すことによって大腸菌からの蛍光強度が大幅に増加していることが分かった。また、図12Aに示された加熱処理前の蛍光顕微鏡写真と、図12Bに示された加熱処理後の蛍光顕微鏡写真との比較によっても、加熱処理を施すことによって大腸菌からの蛍光強度が大幅に増加していることが明らかとなっている。 Specifically, FIG. 11 shows the measurement results of the fluorescence spectrum before and after the heat treatment (curve 71) when Escherichia coli was heat treated at 200 ° C. for 5 minutes. From the measurement results shown in FIG. 11, it was found that the fluorescence intensity from E. coli was greatly increased by the heat treatment. Further, by comparing the fluorescence micrograph before the heat treatment shown in FIG. 12A with the fluorescence micrograph after the heat treatment shown in FIG. 12B, the fluorescence intensity from E. coli is greatly increased by the heat treatment. It is clear that it has increased.
 同様に、図13は、バチルス菌を200℃にて5分間加熱処理したときの加熱処理前(曲線73)および加熱処理後(曲線74)の蛍光スペクトルの測定結果であり、図14Aが加熱処理前、図14Bが加熱処理後の蛍光顕微鏡写真である。また、図15は、アオカビ菌を200℃にて5分間加熱処理したときの加熱処理前(曲線75)および加熱処理後(曲線76)の蛍光スペクトルの測定結果であり、図16Aが加熱処理前、図16Bが加熱処理後の蛍光顕微鏡写真である。これらに示されるように、他の微生物でも大腸菌と同様に加熱処理によって蛍光強度が大幅に増加することが分かった。 Similarly, FIG. 13 shows the measurement results of the fluorescence spectrum before heat treatment (curve 73) and after heat treatment (curve 74) when Bacillus was heat treated at 200 ° C. for 5 minutes, and FIG. 14A shows the heat treatment. FIG. 14B is a fluorescence micrograph after the heat treatment. FIG. 15 shows the measurement results of the fluorescence spectra before and after the heat treatment (curve 75) when the mold was heat treated at 200 ° C. for 5 minutes. FIG. 16A shows the result before the heat treatment. FIG. 16B is a fluorescence micrograph after the heat treatment. As shown in these figures, it was found that the fluorescence intensity of other microorganisms significantly increased by heat treatment as in the case of E. coli.
 これに対して、図17Aおよび図17Bは、それぞれ、蛍光を発する埃を200℃にて5分間加熱処理したときの加熱処理前(曲線77)および加熱処理後(曲線78)の蛍光スペクトルの測定結果であり、図18Aが加熱処理前、図18Bが加熱処理後の蛍光顕微鏡写真である。図17Aに示された蛍光スペクトルと図17Bに示された蛍光スペクトルとを重ねると図19に示されるように、これらはほぼ重なることが検証された。すなわち、図19の結果や図17A、図17Bの比較に示されるように、埃からの蛍光強度は加熱処理の前後において変化がないことが分かった。 On the other hand, FIG. 17A and FIG. 17B show measurement of fluorescence spectra before and after heat treatment (curve 78) when the fluorescent dust is heat treated at 200 ° C. for 5 minutes, respectively. FIG. 18A shows the result, and FIG. 18B is a fluorescence micrograph after the heat treatment. When the fluorescence spectrum shown in FIG. 17A and the fluorescence spectrum shown in FIG. 17B are overlapped, it was verified that they almost overlap as shown in FIG. That is, as shown in the results of FIG. 19 and the comparison of FIGS. 17A and 17B, it was found that the fluorescence intensity from dust did not change before and after the heat treatment.
 第2の例によるセンサ100Aにおける検出原理として、上述の現象が応用される。すなわち、空気中では、埃と、微生物が付着した埃と、微生物とが混合されている。上述の現象を基にすると、捕集した粒子に蛍光を発する埃が混ざっている場合、加熱処理前に測定される蛍光スペクトルには、微生物からの蛍光と蛍光を発する埃からの蛍光とが含まれ、微生物を化学繊維の埃などから区別して検出することができない。しかしながら、加熱処理を施すことで微生物だけが蛍光強度が増加し、蛍光を発する埃の蛍光強度は変化しない。そのため、加熱処理前の蛍光強度と所定の加熱処理後の蛍光強度との差を測定することで、微生物の量を求めることができる。 The above phenomenon is applied as a detection principle in the sensor 100A according to the second example. That is, in the air, dust, dust to which microorganisms adhere, and microorganisms are mixed. Based on the above-mentioned phenomenon, when dust that emits fluorescence is mixed in the collected particles, the fluorescence spectrum measured before heat treatment includes fluorescence from microorganisms and fluorescence from dust that emits fluorescence. Therefore, microorganisms cannot be detected separately from chemical fiber dust. However, by performing the heat treatment, only the microorganisms increase the fluorescence intensity, and the fluorescence intensity of the dust that emits fluorescence does not change. Therefore, the amount of microorganisms can be determined by measuring the difference between the fluorescence intensity before the heat treatment and the fluorescence intensity after the predetermined heat treatment.
 図20は、上の原理を利用して空気中の微生物を検出する、第2の例としてのセンサ100Aの機能構成の具体例を示すブロック図である。図20でも、信号処理部30の機能が主に電気回路であるハードウェア構成で実現される例が示されている。しかしながら、これら機能のうちの少なくとも一部は、信号処理部30が図示しないCPUを備え、該CPUが所定のプログラムを実行することによって実現される、ソフトウェア構成であってもよい。また、測定検出部40の構成がソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部は、電気回路などのハードウェア構成で実現されてもよい。 FIG. 20 is a block diagram showing a specific example of the functional configuration of a sensor 100A as a second example that detects microorganisms in the air using the above principle. FIG. 20 also shows an example in which the function of the signal processing unit 30 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may be a software configuration that is realized by the signal processing unit 30 including a CPU (not shown) and executing a predetermined program by the CPU. In addition, an example in which the configuration of the measurement detection unit 40 is a software configuration is shown. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
 図20を参照して、信号処理部30は、受光素子9に接続される電流-電圧変換回路34と、電流-電圧変換回路34に接続される増幅回路35とを含む。 Referring to FIG. 20, the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
 測定検出部40は、制御部41、記憶部42、およびクロック発生部47を含む。さらに、測定検出部40は、スイッチ110の操作に伴ったスイッチ110からの入力信号を受け付けることで情報の入力を受け付けるための入力部44と、通信部150に接続された外部装置とのデータ等のやり取りに必要な処理を行なうための外部接続部46と、シャッタ16A,16B、空気導入機構50、およびヒータ91を駆動させるための駆動部48とを含む。 The measurement detection unit 40 includes a control unit 41, a storage unit 42, and a clock generation unit 47. Further, the measurement detection unit 40 receives data input from the switch 110 in response to an operation of the switch 110 and receives data from the input unit 44 for receiving information and an external device connected to the communication unit 150. The external connection part 46 for performing a process required for the exchange of the shutter, the shutters 16A and 16B, the air introduction mechanism 50, and the drive part 48 for driving the heater 91 are included.
 ケース5に導入され捕集治具12上に捕集された粒子に対して発光素子6から照射されることで、照射領域15にある当該粒子からの蛍光が、受光素子9に集光される。受光素子9から、受光量に応じた電流信号が信号処理部30に対して出力される。電流信号は、電流-電圧変換回路34に入力される。 By irradiating the particles introduced into the case 5 and collected on the collecting jig 12 from the light emitting element 6, the fluorescence from the particles in the irradiation region 15 is condensed on the light receiving element 9. . A current signal corresponding to the amount of received light is output from the light receiving element 9 to the signal processing unit 30. The current signal is input to the current-voltage conversion circuit 34.
 電流-電圧変換回路34は、受光素子9から入力された電流信号より蛍光強度を表わすピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、測定検出部40に対して出力される。測定検出部40の制御部41は信号処理部30から電圧値Ehの入力を受け付けて、順次、記憶部42に記憶させる。 The current-voltage conversion circuit 34 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 9, and converts it into the voltage value Eh. The voltage value Eh is amplified to a preset amplification factor by the amplification circuit 35 and output to the measurement detection unit 40. The control unit 41 of the measurement detection unit 40 receives the input of the voltage value Eh from the signal processing unit 30 and sequentially stores it in the storage unit 42.
 クロック発生部47はクロック信号を発生させ、制御部41に対して出力する。制御部41は、クロック信号に基づいたタイミングで、シャッタ16A,16Bを開閉させるための制御信号を駆動部48に対して出力して、シャッタ16A,16Bの開閉を制御する。また、制御部41は発光素子6および受光素子9と電気的に接続され、それらのON/OFFを制御する。 The clock generation unit 47 generates a clock signal and outputs it to the control unit 41. The control unit 41 outputs a control signal for opening and closing the shutters 16A and 16B to the driving unit 48 at a timing based on the clock signal, and controls the opening and closing of the shutters 16A and 16B. Moreover, the control part 41 is electrically connected with the light emitting element 6 and the light receiving element 9, and controls those ON / OFF.
 制御部41は計算部411を含み、計算部411において、記憶部42に記憶された電圧値Ehを用いて、導入された空気中の微生物量を算出するための動作が行なわれる。具体的な動作について、図22の制御部41での制御の流れを示すタイムチャートを用いて説明する。ここでは、微生物量として、ケース5内に導入された空気中の微生物濃度を算出するものとする。 The control unit 41 includes a calculation unit 411. In the calculation unit 411, an operation for calculating the amount of microorganisms in the introduced air is performed using the voltage value Eh stored in the storage unit. A specific operation will be described with reference to a time chart showing a flow of control in the control unit 41 of FIG. Here, the concentration of microorganisms in the air introduced into the case 5 is calculated as the amount of microorganisms.
 図21を参照して、測定検出部40の制御部41は、センサ100AがONされたことに伴って駆動部48に対して制御信号を出力し、空気導入機構50を駆動させる。また、制御部41は、クロック発生部47からのクロック信号に基づいた時刻T1に、駆動部48に対して、シャッタ16A,16Bを開放(ON)させるための制御信号を出力する。その後、時刻T1から時間△T1経過後の時刻T2に、制御部41は、駆動部48に対して、シャッタ16A,16Bを閉塞(OFF)させるための制御信号を出力する。 Referring to FIG. 21, the control unit 41 of the measurement detection unit 40 outputs a control signal to the drive unit 48 when the sensor 100 </ b> A is turned on, and drives the air introduction mechanism 50. Further, the control unit 41 outputs a control signal for opening (turning on) the shutters 16 </ b> A and 16 </ b> B to the drive unit 48 at time T <b> 1 based on the clock signal from the clock generation unit 47. After that, at time T2 after time ΔT1 has elapsed from time T1, the control unit 41 outputs a control signal for closing (OFF) the shutters 16A and 16B to the driving unit 48.
 これにより、時刻T1から時間△T1の間シャッタ16A,16Bが開放され、空気導入機構50の駆動により外部空気がケース5内に導入孔10を通じて導入される。ケース5内に導入された空気中の粒子は、放電電極17により負電荷に帯電され、空気の流れと放電電極17および捕集治具12表面の皮膜3の間で形成される電界とにより、捕集治具12表面に時間△T1の間、捕集される。 Thereby, the shutters 16A and 16B are opened from time T1 to time ΔT1, and external air is introduced into the case 5 through the introduction hole 10 by driving the air introduction mechanism 50. Particles in the air introduced into the case 5 are negatively charged by the discharge electrode 17, and due to the flow of air and the electric field formed between the discharge electrode 17 and the coating 3 on the surface of the collecting jig 12, It is collected on the surface of the collecting jig 12 for a time ΔT1.
 また、時刻T2にシャッタ16A,16Bが閉塞され、ケース5内の空気の流れが止まる。これにより、捕集治具12での浮遊粒子の捕集が終了する。また、これにより、外部からの迷光が遮光される。 Further, at time T2, the shutters 16A and 16B are closed, and the air flow in the case 5 stops. Thereby, collection of the floating particles by the collection jig 12 is completed. This also blocks stray light from the outside.
 制御部41は、シャッタ16A,16Bが閉塞した時刻T2に、受光素子9に受光を開始(ON)させるための制御信号を出力する。さらに、それと同時(時刻T2)または時刻T2から少し遅れた時刻T3に、発光素子6に発光を開始(ON)させるための制御信号を出力する。その後、時刻T3から蛍光強度を測定するための予め規定した測定時間である時間△T2経過後の時刻T4に、制御部41は、受光素子9に受光を終了(OFF)させるための制御信号、および発光素子6に発光を終了(OFF)させるための制御信号を出力する。なお、上記測定時間は制御部41に予め設定されているものであってもよいし、スイッチ110などの操作や、ケーブルを介して通信部150に接続されたPC300からの信号や、通信部150に装着された記録媒体からの信号などによって入力、変更されるものであってもよい。 The control unit 41 outputs a control signal for causing the light receiving element 9 to start receiving light (ON) at time T2 when the shutters 16A and 16B are closed. Further, at the same time (time T2) or at time T3 slightly delayed from time T2, a control signal for starting (ON) light emission to the light emitting element 6 is output. Thereafter, at time T4 after time ΔT2 has elapsed, which is a predetermined measurement time for measuring fluorescence intensity from time T3, the control unit 41 causes the light receiving element 9 to end (OFF) light reception, And the control signal for making the light emitting element 6 complete | finish light emission (OFF) is output. Note that the measurement time may be set in advance in the control unit 41, the operation of the switch 110, a signal from the PC 300 connected to the communication unit 150 via a cable, the communication unit 150, or the like. It may be input or changed by a signal from a recording medium attached to the recording medium.
 これにより、時刻T3(または時刻T2)より発光素子6からの照射が開始される。発光素子6からの光は、捕集治具12の表面の照射領域15に照射され、捕集された粒子から蛍光が発光される。時刻T3から規定の測定時間△T2分の蛍光が受光素子9により受光され、その蛍光強度F1に応じた電圧値が測定検出部40に入力されて記憶部42に記憶される。 Thereby, irradiation from the light emitting element 6 is started from time T3 (or time T2). The light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles. Fluorescence for a prescribed measurement time ΔT2 from time T3 is received by the light receiving element 9, and a voltage value corresponding to the fluorescence intensity F1 is input to the measurement detection unit 40 and stored in the storage unit 42.
 このとき、別途設けたLED等の発光素子(図示せず)からの発光の、捕集治具12表面の粒子が捕集されない反射領域(図示せず)からの反射光を、別途設けた受光素子(図示せず)で受光し、その受光量を参照値I0として用いてF1/I0を記憶部42に記憶してもよい。参照値I0に対する比率を算出することで、発光素子や受光素子の温度、湿度等の環境条件や劣化等による特性変動に起因する蛍光強度の変動を補償することができるという利点が生じる。 At this time, the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received. Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0. By calculating the ratio with respect to the reference value I0, there is an advantage that fluctuations in fluorescence intensity caused by characteristic fluctuations due to environmental conditions such as the temperature and humidity of the light emitting element and the light receiving element and deterioration can be compensated.
 制御部41は、発光素子6の発光および受光素子9の受光を終了させた時刻T4(または時刻T4から少し遅れた時刻)に、ヒータ91に加熱を開始(ON)させるための制御信号を出力する。そして、ヒータ91の加熱開始(時刻T4または時刻T4から少し遅れた時刻)から加熱処理のための予め規定した加熱処理時間である時間△T3経過後の時刻T5に、制御部41はヒータ91に加熱を終了(OFF)させるための制御信号を出力する。 The control unit 41 outputs a control signal for causing the heater 91 to start heating (ON) at the time T4 when the light emission of the light emitting element 6 and the light reception of the light receiving element 9 are finished (or a time slightly delayed from the time T4). To do. Then, at time T5 after elapse of time ΔT3, which is a predetermined heat treatment time for the heat treatment from the start of heating of the heater 91 (time T4 or a time slightly delayed from time T4), the control unit 41 turns the heater 91 on. A control signal for finishing (OFF) heating is output.
 これにより、時刻T4(または時刻T4から少し遅れた時刻)から加熱処理時間△T3の間、ヒータ91によって捕集治具12表面の照射領域15に捕集した粒子に対して加熱処理が施される。このときの加熱温度は予め規定されている。時間△T3の間加熱処理されることで、捕集治具12表面に捕集された粒子に対して所定の加熱量が加えられることになる。なお、加熱処理時間△T3(すなわち加熱量)もまた、上記測定時間と同様に、制御部41に予め設定されているものであってもよいし、スイッチ110などの操作や、ケーブルを介して通信部150に接続されたPC300からの信号や、通信部150に装着された記録媒体からの信号などによって入力、変更されるものであってもよい。 Thereby, the heat treatment is performed on the particles collected in the irradiation region 15 on the surface of the collection jig 12 by the heater 91 from the time T4 (or a time slightly delayed from the time T4) to the heat treatment time ΔT3. The The heating temperature at this time is defined in advance. By performing the heat treatment for the time ΔT3, a predetermined heating amount is applied to the particles collected on the surface of the collection jig 12. The heat treatment time ΔT3 (that is, the amount of heat) may also be set in advance in the control unit 41 as in the case of the measurement time, or may be operated via the switch 110 or the like or via a cable. It may be input or changed by a signal from the PC 300 connected to the communication unit 150 or a signal from a recording medium attached to the communication unit 150.
 その後、△T4の間、加熱した粒子が冷却処理される。冷却処理には空気導入機構50が用いられてもよく、この場合、別途HEPA(High Efficiency Particulate Air)フィルタを設けた導入口(図8Aには図示せず)から外部空気が取り込まれてもよい。または、別途ペルチェ素子等の冷却機構が用いられてもよい。 Thereafter, the heated particles are cooled during ΔT4. An air introduction mechanism 50 may be used for the cooling process. In this case, external air may be taken in from an inlet (not shown in FIG. 8A) provided with a separate HEPA (High Efficiency Particulate Air) filter. . Alternatively, a cooling mechanism such as a Peltier element may be used separately.
 その後、制御部41は空気導入機構50の動作を終了させるための制御信号を出力し、時刻T6に受光素子9に受光を開始(ON)させるための制御信号を出力する。さらに、それと同時(時刻T6)または時刻T6から少し遅れた時刻T7に、発光素子6に発光を開始(ON)させるための制御信号を出力する。その後、時刻T7から測定時間△T2経過後の時刻T8に、制御部41は、受光素子9に受光を終了(OFF)させるための制御信号、および発光素子6に発光を終了(OFF)させるための制御信号を出力する。 Thereafter, the control unit 41 outputs a control signal for ending the operation of the air introduction mechanism 50, and outputs a control signal for starting (ON) light reception by the light receiving element 9 at time T6. Further, at the same time (time T6) or at time T7 slightly delayed from time T6, a control signal for starting (ON) the light emitting element 6 to emit light is output. Thereafter, at time T8 after the measurement time ΔT2 has elapsed from time T7, the control unit 41 causes the light receiving element 9 to end (OFF) light reception and the light emitting element 6 to end light emission (OFF). The control signal is output.
 これにより、発光素子6から捕集治具12表面の照射領域15に捕集した粒子に対して時間△T3の間加熱処理された後の、測定時間△T2分の蛍光が受光素子9により受光される。その蛍光強度F2に応じた電圧値は測定検出部40に入力されて記憶部42に記憶される。 As a result, the light collected by the light receiving element 9 receives the fluorescence for the measurement time ΔT2 after the particles collected from the light emitting element 6 to the irradiation region 15 on the surface of the collecting jig 12 are heated for the time ΔT3. Is done. The voltage value corresponding to the fluorescence intensity F2 is input to the measurement detection unit 40 and stored in the storage unit 42.
 計算部411は、記憶された蛍光強度F1と蛍光強度F2との差分を増大量△Fとして算出する。上述のように、増大量△Fは微生物量(微生物数または濃度等)に関連している。計算部411は、予め、図22に表わされたような、増大量△Fと微生物量(濃度)との対応関係を記憶しておく。そして、計算部411は、算出された増大量△Fと該対応関係とを用いて得られる微生物濃度を、ケース5内に時間△T1の間に導入された空気中の微生物濃度として算出する。 The calculation unit 411 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ΔF. As described above, the increase ΔF is related to the amount of microorganisms (such as the number or concentration of microorganisms). The calculation unit 411 stores a correspondence relationship between the increase amount ΔF and the microorganism amount (concentration) as illustrated in FIG. 22 in advance. Then, the calculation unit 411 calculates the microorganism concentration obtained by using the calculated increase amount ΔF and the corresponding relationship as the microorganism concentration in the air introduced into the case 5 during the time ΔT1.
 増大量△Fと微生物濃度との対応関係は、予め実験的に決められる。たとえば、1m3の大きさの容器内に、大腸菌やバチルス菌やカビ菌などの微生物の一種を、ネブライザを利用して噴霧し、微生物濃度をN個/m3に維持して、センサ100Aを用いて、上述の検出方法により時間△T1の間微生物を捕集する。そして、所定加熱量(加熱時間△T3、所定の加熱温度)で捕集した微生物に対してヒータ91によって加熱処理を施し、所定時間△T4の冷却の後、加熱前後の蛍光強度の増大量△Fを測定する。種々の微生物濃度について同様の測定がなされることで、図22に示された増大量△Fと微生物濃度(個/m3)との関係が得られる。 The correspondence between the increase amount ΔF and the microorganism concentration is experimentally determined in advance. For example, a type of microorganism such as Escherichia coli, Bacillus, or mold is sprayed in a 1 m 3 container using a nebulizer, and the concentration of microorganisms is maintained at N / m 3 , so that the sensor 100A is Used to collect microorganisms for a time ΔT1 by the detection method described above. The microorganisms collected at a predetermined heating amount (heating time ΔT3, predetermined heating temperature) are subjected to heat treatment by the heater 91, and after cooling for a predetermined time ΔT4, the amount of increase in fluorescence intensity before and after heating Δ Measure F. The same measurement is performed for various microorganism concentrations, whereby the relationship between the increase ΔF and the microorganism concentration (cells / m 3 ) shown in FIG. 22 is obtained.
 増大量△Fと微生物濃度との対応関係は、スイッチ110などの操作によって入力されることで計算部411に記憶されてもよい。または、該対応関係を記録した記録媒体が通信部150に装着され、外部接続部46が読み込むことで計算部411に記憶されてもよい。または、PC300によって入力および送信され、通信部150に接続されたケーブルを介して外部接続部46が受け付けることで、計算部411に記憶されてもよい。または、通信部150が赤外線通信やインターネット通信を行なう場合には、外部接続部46が通信部150でのそれらの通信によって他の装置から受け付けることで、計算部411に記憶されてもよい。また、いったん計算部411に記憶された該対応関係が、測定検出部40により更新されてもよい。 The correspondence relationship between the increase amount ΔF and the microorganism concentration may be stored in the calculation unit 411 by being input by operating the switch 110 or the like. Alternatively, a recording medium in which the correspondence relationship is recorded may be loaded in the communication unit 150 and read by the external connection unit 46 and stored in the calculation unit 411. Alternatively, the calculation may be stored in the calculation unit 411 by the external connection unit 46 receiving and transmitting via the cable that is input and transmitted by the PC 300 and connected to the communication unit 150. Alternatively, when the communication unit 150 performs infrared communication or Internet communication, the external connection unit 46 may receive data from another device through the communication performed by the communication unit 150 and may be stored in the calculation unit 411. The correspondence relationship once stored in the calculation unit 411 may be updated by the measurement detection unit 40.
 計算部411は、増大量△Fが差分△F1と算出された場合、図22の対応関係から増大量△F1に対応する値を特定することで微生物濃度N1(個/m3)を算出する。 When the increase amount ΔF is calculated as the difference ΔF1, the calculation unit 411 calculates the microorganism concentration N1 (pieces / m 3 ) by specifying a value corresponding to the increase amount ΔF1 from the correspondence relationship in FIG. .
 ただし、増大量△Fと微生物濃度との対応関係は、微生物の種類(たとえば菌種)によって異なる可能性がある。そこで、計算部411は、いずれかの微生物を標準の微生物と規定して、増大量△Fと該微生物の濃度との対応関係を記憶する。これにより、様々な環境における微生物濃度が、標準の微生物を基準として換算された微生物濃度として算出される。その結果、様々な環境を比較することが可能となり、環境管理が容易となる。 However, the correspondence relationship between the increase amount ΔF and the microorganism concentration may vary depending on the type of microorganism (for example, the bacterial species). Therefore, the calculation unit 411 defines one of the microorganisms as a standard microorganism and stores the correspondence relationship between the increase amount ΔF and the concentration of the microorganism. Thereby, the microorganism concentration in various environments is calculated as a microorganism concentration converted with reference to the standard microorganism. As a result, various environments can be compared, and environmental management becomes easy.
 なお、上述の例では増大量△Fには、所定の加熱量(所定の加熱温度、加熱時間△T3)の加熱処理の前後の蛍光強度の差分が用いられているが、これらの比率が用いられてもよい。 In the above example, the increase ΔF uses the difference in fluorescence intensity before and after the heat treatment of a predetermined heating amount (predetermined heating temperature, heating time ΔT3), but these ratios are used. May be.
 計算部411で算出された捕集された微生物の濃度は、制御部41から表示制御部210に対して出力される。 The concentration of collected microorganisms calculated by the calculation unit 411 is output from the control unit 41 to the display control unit 210.
 このように、第2の例によるセンサ100Aは、微生物からの蛍光と蛍光を発する埃からの蛍光との加熱処理による性質の差を利用し、所定の加熱処理後の増大量に基づいて微生物を検出するものである。すなわち、第2の例によるセンサ100Aは、捕集された微生物と埃とに加熱処理を施すと微生物は蛍光強度が増加し埃は変化しない、という現象を利用して微生物を検出するものである。そのため、導入された空気中に蛍光を発する埃が含まれている場合であっても、リアルタイムに、かつ精度よく、微生物を蛍光を発する埃から分離して検出することができる。 As described above, the sensor 100A according to the second example uses the difference in properties due to the heat treatment between the fluorescence from the microorganism and the fluorescence from the dust that emits the fluorescence, and detects the microorganism based on the increase after the predetermined heat treatment. It is to detect. That is, the sensor 100A according to the second example detects microorganisms by utilizing a phenomenon that when the collected microorganisms and dust are subjected to heat treatment, the fluorescence intensity of the microorganisms increases and the dust does not change. . For this reason, even when dust that emits fluorescence is contained in the introduced air, microorganisms can be separated and detected from dust that emits fluorescence in real time and with high accuracy.
 さらに、第2の例によるセンサ100Aでは図21の制御がなされることによって、捕集機構での捕集工程から検出機構での検出工程に移行する際にシャッタ16A,16Bを閉塞してケース5内への外部光の入射が遮断される。これにより、蛍光測定中に浮遊粒子による散乱等での迷光が抑えられ、測定精度を向上させることができる。 Further, in the sensor 100A according to the second example, the control shown in FIG. 21 is performed, so that the shutters 16A and 16B are closed when shifting from the collection process by the collection mechanism to the detection process by the detection mechanism. Incident external light is blocked. As a result, stray light due to scattering by suspended particles during fluorescence measurement can be suppressed, and measurement accuracy can be improved.
 (センサ100Aの第3の例)
 図23は、センサ100Aの他の具体例を示す図である。第3の例によるセンサ100Aは第2の例によるセンサ100Aの変形例である。
(Third example of sensor 100A)
FIG. 23 is a diagram illustrating another specific example of the sensor 100A. The sensor 100A according to the third example is a modification of the sensor 100A according to the second example.
 図23を参照して、第3の例にかかるセンサ100Aは、検出機構と捕集機構と加熱機構とを含む。図23において、第1の例によるセンサ100Aおよび第2の例によるセンサ100Aと同じ参照符号を付した部材はそれらの部材とほぼ同じものであり、以降、第2の例によるセンサ100Aとの差異を特に説明する。 Referring to FIG. 23, a sensor 100A according to a third example includes a detection mechanism, a collection mechanism, and a heating mechanism. In FIG. 23, the members having the same reference numerals as those of the sensor 100A according to the first example and the sensor 100A according to the second example are substantially the same as those members, and the difference from the sensor 100A according to the second example is described below. Will be explained in particular.
 詳しくは、図23を参照して、第3の例にかかるセンサ100Aは、孔5C’を有する区切り壁である壁5Cで隔てられた、捕集機構の少なくとも一部を含んだ捕集室5Aと、検出機構を含んだ検出室5Bとを備える。捕集室5Aには、捕集機構として針状の放電電極17および捕集治具12が配備され、検出室5Bには、検出機構として発光素子6、受光素子9、および集光レンズ8が配備される。 Specifically, referring to FIG. 23, a sensor 100A according to a third example includes a collection chamber 5A including at least a part of a collection mechanism, separated by a wall 5C that is a partition wall having a hole 5C ′. And a detection chamber 5B including a detection mechanism. The collection chamber 5A is provided with a needle-like discharge electrode 17 and a collection jig 12 as a collection mechanism, and the detection chamber 5B has a light emitting element 6, a light receiving element 9, and a condenser lens 8 as a detection mechanism. Deployed.
 捕集室5Aの放電電極17側および捕集治具12には、それぞれ、捕集室5A内に空気を導入するための導入孔10および排出孔11が設けられる。図23に示されるように、導入孔10にはフィルタ(プレフィルタ)10Bが設けられてもよい。 In the collection chamber 5A, the discharge electrode 17 side and the collection jig 12 are respectively provided with an introduction hole 10 and a discharge hole 11 for introducing air into the collection chamber 5A. As shown in FIG. 23, the introduction hole 10 may be provided with a filter (pre-filter) 10B.
 導入孔10および排出孔11には、捕集室5A内への空気の出入りは可能として外部光の入射を遮断するための構成として、それぞれ、第2の例によるセンサ100Aと同様の図10A、図10Bに表わされるような遮光部10Aおよび遮光部11Aが備えられてもよい。 The introduction hole 10 and the discharge hole 11 are configured as shown in FIG. 10A, which is similar to the sensor 100A according to the second example, as a configuration for blocking the incidence of external light by allowing air to enter and exit the collection chamber 5A. A light shielding part 10A and a light shielding part 11A as shown in FIG. 10B may be provided.
 排出孔11近傍には空気導入機構としてのファン50Aが設けられる。ファン50Aによって、吸引口からの空気が捕集室5Aに導入される。好ましくは、ファン50Aの駆動機構は、測定検出部40によって制御され、導入する空気の流速が制御される。好ましくは、ファン50Aで導入する空気の流速は1L/minから50m3/minである。ファン50Aは測定検出部40によって制御される図示しない駆動機構により駆動することで、図中の点線矢印で表わされたように、導入孔10から捕集室5A外の空気を捕集室5A内に導入し、捕集室5A内の空気を排出孔11から捕集室5A外に排気する。 A fan 50A as an air introduction mechanism is provided in the vicinity of the discharge hole 11. Air from the suction port is introduced into the collection chamber 5A by the fan 50A. Preferably, the drive mechanism of the fan 50A is controlled by the measurement detection unit 40, and the flow rate of the introduced air is controlled. Preferably, the flow rate of air introduced by the fan 50A is 1 L / min to 50 m 3 / min. The fan 50A is driven by a drive mechanism (not shown) controlled by the measurement detection unit 40, so that air outside the collection chamber 5A is collected from the introduction hole 10 through the collection chamber 5A as represented by a dotted arrow in the figure. The air in the collection chamber 5A is exhausted from the discharge hole 11 to the outside of the collection chamber 5A.
 捕集機構は第2の例によるセンサ100Aと同様の捕集機構を採用することができる。すなわち、図23を参照して、捕集機構は、放電電極17、捕集治具12、および高圧電源2を含む。放電電極17は高圧電源2の正極に電気的に接続される。捕集治具12と高圧電源2の負極に電気的に接続される。 The collection mechanism can employ the same collection mechanism as the sensor 100A according to the second example. That is, referring to FIG. 23, the collection mechanism includes a discharge electrode 17, a collection jig 12, and a high voltage power supply 2. The discharge electrode 17 is electrically connected to the positive electrode of the high voltage power source 2. Electrically connected to the collection jig 12 and the negative electrode of the high-voltage power supply 2.
 捕集治具12は、第2の例によるセンサ100Aと同様の、導電性の透明の皮膜を有する、ガラス板などからなる支持基板である。捕集治具12の皮膜側は高圧電源2の負極に電気的に接続される。これにより、放電電極17と捕集治具12と間に電位差が発生し、これらの間に図23の矢印Eに示される向きの電界が構成される。 The collection jig 12 is a support substrate made of a glass plate or the like having a conductive transparent film, similar to the sensor 100A according to the second example. The film side of the collecting jig 12 is electrically connected to the negative electrode of the high-voltage power supply 2. Thereby, a potential difference is generated between the discharge electrode 17 and the collecting jig 12, and an electric field in the direction indicated by the arrow E in FIG.
 ファン50Aの駆動によって導入孔10から導入された空気中の浮遊粒子は、放電電極17付近にて負に帯電される。負に帯電した粒子は静電気力で捕集治具12の方向に移動して導電性の皮膜に吸着されることで、捕集治具12上に捕集される。ここで、放電電極17として針状電極を用いることによって、帯電した粒子を捕集治具12の放電電極17に対面する、(後述する)発光素子の照射領域15に対応したきわめて狭い範囲に吸着させることができる。これにより、後述する検出工程において、吸着された微生物を効率的に検出することができる。 The airborne particles introduced from the introduction hole 10 by driving the fan 50A are negatively charged in the vicinity of the discharge electrode 17. The negatively charged particles move toward the collecting jig 12 by electrostatic force and are adsorbed by the conductive film, thereby being collected on the collecting jig 12. Here, by using a needle-like electrode as the discharge electrode 17, the charged particles face the discharge electrode 17 of the collecting jig 12, and are adsorbed in a very narrow range corresponding to the irradiation region 15 of the light emitting element (described later). Can be made. Thereby, the adsorbed microorganisms can be efficiently detected in the detection step described later.
 検出室5Bに含まれる検出機構は、光源である発光素子6と、受光素子9と、受光素子9の受光方向に備えられ、捕集機構により捕集治具12上に捕集された浮遊微粒子に発光素子6から照射することにより生じる蛍光を受光素子9に集光するための集光レンズ(またはレンズ群)8とを含む。その他、発光素子6の照射方向に備えられ、発光素子6からの光を平行光にする、または所定幅とするためのレンズ(またはレンズ群)、アパーチャ、照射光が受光素子9に入り込むのを防ぐためのフィルタ(またはフィルタ群)などが含まれてもよい。これらの構成は、従来技術を応用できる。集光レンズ8は、プラスチック樹脂製またはガラス製でよい。 The detection mechanism included in the detection chamber 5B includes a light emitting element 6, which is a light source, a light receiving element 9, and a light receiving direction of the light receiving element 9, and the suspended fine particles collected on the collecting jig 12 by the collecting mechanism. And a condensing lens (or lens group) 8 for condensing the fluorescence generated by irradiating from the light emitting element 6 onto the light receiving element 9. In addition, a lens (or a lens group), an aperture, and irradiation light that are provided in the irradiation direction of the light emitting element 6 and make the light from the light emitting element 6 parallel light or have a predetermined width enter the light receiving element 9. A filter (or filter group) for prevention may be included. Conventional technology can be applied to these configurations. The condenser lens 8 may be made of plastic resin or glass.
 検出室5Bは、好ましくは、少なくとも内部に、黒色塗料の塗布または、黒色アルマイト処理等が施される。これにより、迷光の原因となる内部壁面での光の反射が抑えられる。捕集室5Aおよび検出室5B筐体の材質は特定の材質に限定されないが、好ましくは、プラスチック樹脂、アルミもしくはステンレスなどの金属、またはそれらの組み合わせが用いられる。導入孔10および排出孔11は、直径が1mmから50mmの円形である。導入孔10および排出孔11の形状は円形に限定されず、楕円形、四角形など他の形状であってもよい。 The detection chamber 5B is preferably at least internally coated with black paint or black anodized. Thereby, reflection of light on the inner wall surface that causes stray light is suppressed. The material of the collection chamber 5A and the detection chamber 5B is not limited to a specific material, but a plastic resin, a metal such as aluminum or stainless steel, or a combination thereof is preferably used. The introduction hole 10 and the discharge hole 11 are circular with a diameter of 1 mm to 50 mm. The shapes of the introduction hole 10 and the discharge hole 11 are not limited to a circle, but may be other shapes such as an ellipse or a rectangle.
 発光素子6は、第2の例によるセンサ100Aと同様のものである。発光素子6の発光は捕集治具12の表面に照射され、捕集治具12上に照射領域15を形成する。照射領域15の形状に限定はなく、円形、楕円形、四角形などであってよい。照射領域15は特定のサイズに限定されないが、好ましくは、円の直径または楕円の長軸方向の長さまたは四角形の1辺の長さが約0.05mmから50mmである。 The light emitting element 6 is the same as the sensor 100A according to the second example. The light emitted from the light emitting element 6 is irradiated on the surface of the collecting jig 12 to form an irradiation region 15 on the collecting jig 12. The shape of the irradiation region 15 is not limited, and may be a circle, an ellipse, a rectangle, or the like. The irradiation region 15 is not limited to a specific size, but preferably, the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
 受光素子9は信号処理部30に接続されて、受光量に比例した電流信号を信号処理部30に対して出力する。従って、導入された空気中に浮遊し、捕集治具12表面に捕集された粒子に発光素子6から光が照射されることによって該粒子から発光された蛍光は、受光素子9において受光され、信号処理部30においてその受光量が検出される。 The light receiving element 9 is connected to the signal processing unit 30 and outputs a current signal proportional to the amount of received light to the signal processing unit 30. Therefore, the light emitted from the light-emitting element 6 by irradiating the particles floating in the introduced air and collected on the surface of the collecting jig 12 from the light-emitting element 6 is received by the light-receiving element 9. The amount of received light is detected by the signal processing unit 30.
 検出室5B内の、捕集治具12表面に触れる位置には、捕集治具12表面をリフレッシュするためのブラシ60が設けられる。ブラシ60は、測定検出部40によって制御される図示しない移動機構に接続され、図中の両側矢印Bに示されるように、すなわち、捕集治具12上を往復するように移動する。これにより、捕集治具12表面に付着した埃や微生物が取り除かれる。 A brush 60 for refreshing the surface of the collecting jig 12 is provided at a position in the detection chamber 5B that touches the surface of the collecting jig 12. The brush 60 is connected to a moving mechanism (not shown) controlled by the measurement detection unit 40 and moves so as to reciprocate on the collecting jig 12 as indicated by a double-sided arrow B in the drawing. Thereby, dust and microorganisms adhering to the surface of the collecting jig 12 are removed.
 ヒータ91は、好ましくは、図23に表わされたように、捕集治具12の放電電極17から遠い側の面に配備される。 The heater 91 is preferably disposed on the surface of the collection jig 12 far from the discharge electrode 17 as shown in FIG.
 捕集治具12とヒータ91とを含んだユニットをここでは捕集ユニット12Aと称する。捕集ユニット12Aは測定検出部40によって制御される図示しない移動機構に接続され、図中の両側矢印Aに示されるように、すなわち、捕集室5Aから検出室5Bへ、検出室5Bから捕集室5Aへ、壁5Cに設けられた孔5C’を通って移動する。なお、上述のように、ヒータ91は、捕集治具12上に捕集された空気中の浮遊粒子を加熱し得る位置であって、少なくとも加熱時には発光素子6、受光素子9等のセンサ機器から何かによって隔てられる位置に配備されればよいため、捕集ユニット12Aに含まれず、他の位置に備えられてもよい。後述するように加熱動作が捕集室5Aで行なわれる場合、ヒータ91は捕集ユニット12Aに含まれず、捕集室5Aの、捕集ユニット12Aがセットされる位置であって、捕集治具12の、発光素子6、受光素子9等のセンサ機器と反対側に固定されていてもよい。このようにすることよっても加熱時にはヒータ91は捕集治具12によって発光素子6、受光素子9等のセンサ機器から隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。この場合、捕集ユニット12Aには少なくとも捕集治具12が含まれていればよい。 The unit including the collecting jig 12 and the heater 91 is referred to herein as a collecting unit 12A. The collection unit 12A is connected to a moving mechanism (not shown) controlled by the measurement detection unit 40, and as shown by a double-sided arrow A in the drawing, that is, from the collection chamber 5A to the detection chamber 5B, from the detection chamber 5B. It moves to the collection chamber 5A through the hole 5C ′ provided in the wall 5C. As described above, the heater 91 is a position where airborne particles collected on the collecting jig 12 can be heated, and at least when heated, sensor devices such as the light emitting element 6 and the light receiving element 9 are used. Therefore, it is not included in the collection unit 12A and may be provided at another position. As will be described later, when the heating operation is performed in the collection chamber 5A, the heater 91 is not included in the collection unit 12A, and is a position of the collection chamber 5A where the collection unit 12A is set, and a collection jig. 12 may be fixed to the side opposite to the sensor device such as the light emitting element 6 and the light receiving element 9. Even in this way, the heater 91 is separated from the sensor device such as the light emitting element 6 and the light receiving element 9 by the collecting jig 12 during heating, thereby suppressing the influence of heat on the light emitting element 6 and the light receiving element 9 and the like. be able to. In this case, at least the collection jig 12 may be included in the collection unit 12A.
 図24に示されるように、捕集ユニット12Aの壁5Cから最も遠い側の端部には、上下に突起を有したカバー65Aが備えられる。壁5Cの捕集室5A側の面であって、孔5C’の周囲には、カバー65Aに対応したアダプタ65Bが備えられる。アダプタ65Bには、カバー65Aの上記突起に嵌合する凹部が設けられ、これによりカバー65Aとアダプタ65Bとが完全に接合され、孔5C’を覆うことになる。すなわち、捕集ユニット12Aが図24中の矢印A’の方向に、孔5C’を通って捕集室5Aから検出室5Bへ移動し、捕集ユニット12Aが完全に検出室5Bに入った時点で、カバー65Aがアダプタ65Bに接合されて孔5C’が完全に覆われ、検出室5B内が遮光される。これにより、検出室5Bで検出動作が行なわれている間には検出室5B内への入射が遮断される。 As shown in FIG. 24, a cover 65A having projections on the top and bottom is provided at the end of the collection unit 12A farthest from the wall 5C. An adapter 65B corresponding to the cover 65A is provided around the hole 5C ′ on the surface of the wall 5C on the collection chamber 5A side. The adapter 65B is provided with a recess that fits into the protrusion of the cover 65A, whereby the cover 65A and the adapter 65B are completely joined to cover the hole 5C '. That is, when the collection unit 12A moves from the collection chamber 5A to the detection chamber 5B through the hole 5C ′ in the direction of arrow A ′ in FIG. 24, and the collection unit 12A completely enters the detection chamber 5B. Thus, the cover 65A is joined to the adapter 65B so that the hole 5C ′ is completely covered, and the inside of the detection chamber 5B is shielded from light. As a result, the incidence in the detection chamber 5B is blocked while the detection operation is being performed in the detection chamber 5B.
 第3の例によるセンサ100Aでも、上述の、図11~図16を用いて説明した原理を利用して空気中の微生物を検出する。第3の例によるセンサ100Aの機能構成は、図20に示された第2の例によるセンサ100Aの機能構成とほぼ同様である。第3の例によるセンサ100Aの機能構成では、駆動部48は、ヒータ91、空気導入機構50およびシャッタ16A,16Bに替えて、ファン50A、ヒータ91、捕集ユニット12Aを往復移動させるための図示しない機構、およびブラシ60を往復移動させるための図示しない機構を駆動させる。 The sensor 100A according to the third example also detects microorganisms in the air using the principle described above with reference to FIGS. The functional configuration of the sensor 100A according to the third example is substantially the same as the functional configuration of the sensor 100A according to the second example shown in FIG. In the functional configuration of the sensor 100A according to the third example, the driving unit 48 reciprocally moves the fan 50A, the heater 91, and the collection unit 12A in place of the heater 91, the air introduction mechanism 50, and the shutters 16A and 16B. And a mechanism (not shown) for reciprocating the brush 60 is driven.
 制御部41での、捕集室5Aに導入された空気中の微生物量を算出するための具体的な動作について、図25のフローチャートを用いて説明する。ここでは、微生物量として、捕集室5A内に所定時間の間に導入された空気中の微生物濃度を算出するものとする。 Specific operation for calculating the amount of microorganisms in the air introduced into the collection chamber 5A in the control unit 41 will be described with reference to the flowchart of FIG. Here, the concentration of microorganisms in the air introduced in the collection chamber 5A for a predetermined time is calculated as the amount of microorganisms.
 図25を参照して、センサ100AがONされると、ステップS1で、予め規定されている捕集時間である時間△T1の間、捕集室5Aでの捕集動作が行なわれる。ステップS1での具体的な動作としては、制御部41は駆動部48に対して制御信号を出力してファン50Aを駆動させて捕集室5A内に空気を取り込む。捕集室5A内に導入された空気中の粒子は、放電電極17により負電荷に帯電され、ファン50Aによる空気の流れと放電電極17および捕集治具12表面の皮膜3の間で形成される電界とにより、捕集治具12表面の照射領域15に対応した狭い範囲に捕集される。捕集時間△T1が経過すると制御部41は捕集動作を終了、すなわち、ファン50Aの駆動を終了させる。 Referring to FIG. 25, when sensor 100A is turned on, in step S1, the collection operation in collection chamber 5A is performed for a time ΔT1, which is a predefined collection time. As a specific operation in step S1, the control unit 41 outputs a control signal to the drive unit 48 to drive the fan 50A and take air into the collection chamber 5A. Particles in the air introduced into the collection chamber 5A are charged with a negative charge by the discharge electrode 17, and formed between the air flow by the fan 50A and the coating 3 on the surface of the discharge electrode 17 and the collection jig 12. Is collected in a narrow range corresponding to the irradiation region 15 on the surface of the collecting jig 12. When the collection time ΔT1 elapses, the control unit 41 ends the collection operation, that is, finishes driving the fan 50A.
 これにより、時間△T1の間、外部空気が捕集室5A内に導入孔10を通じて導入され、その空気中の粒子は、捕集治具12表面に時間△T1の間、捕集される。 Thus, external air is introduced into the collection chamber 5A through the introduction hole 10 for a time ΔT1, and particles in the air are collected on the surface of the collection jig 12 for a time ΔT1.
 次に、ステップS3で制御部41は、駆動部48に対して制御信号を出力して捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを捕集室5Aから検出室5Bに移動させる。移動が完了すると、ステップS5で検出動作が行なわれる。ステップS5では第2の例によるセンサ100Aと同様に、制御部41は発光素子6に発光させ、規定の測定時間△T2の間、受光素子9により蛍光を受光させる。発光素子6からの光は、捕集治具12の表面の照射領域15に照射され、捕集された粒子から蛍光が発光される。その蛍光強度F1に応じた電圧値が測定検出部40に入力されて記憶部42に記憶される。これにより、加熱前の蛍光量S1が測定される。 Next, in step S3, the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, and moves the collection unit 12A from the collection chamber 5A to the detection chamber. Move to 5B. When the movement is completed, a detection operation is performed in step S5. In step S5, similarly to the sensor 100A according to the second example, the control unit 41 causes the light emitting element 6 to emit light and causes the light receiving element 9 to receive the fluorescence for a specified measurement time ΔT2. The light from the light emitting element 6 is applied to the irradiation region 15 on the surface of the collecting jig 12, and fluorescence is emitted from the collected particles. A voltage value corresponding to the fluorescence intensity F <b> 1 is input to the measurement detection unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S1 before heating is measured.
 なお、上記測定時間△T2は制御部41に予め設定されているものであってもよいし、スイッチ110などの操作や、ケーブルを介して通信部150に接続されたPC300からの信号や、通信部150に装着された記録媒体からの信号などによって入力、変更されるものであってもよい。 Note that the measurement time ΔT2 may be set in advance in the control unit 41, the operation of the switch 110, a signal from the PC 300 connected to the communication unit 150 via a cable, a communication It may be input or changed by a signal from a recording medium mounted on the unit 150.
 このとき、別途設けたLED等の発光素子(図示せず)からの発光の、捕集治具12表面の粒子が捕集されない反射領域(図示せず)からの反射光を、別途設けた受光素子(図示せず)で受光し、その受光量を参照値I0として用いてF1/I0を記憶部42に記憶してもよい。参照値I0に対する比率を算出することで、発光素子や受光素子の温度、湿度等の環境条件や劣化等による特性変動に起因する蛍光強度の変動を補償することができるという利点が生じる。 At this time, the light received from the reflection region (not shown) where the particles on the surface of the collecting jig 12 are not collected, which is emitted from a light emitting element (not shown) such as an LED provided separately, is received. Light may be received by an element (not shown), and F1 / I0 may be stored in the storage unit 42 using the received light amount as a reference value I0. By calculating the ratio with respect to the reference value I0, there is an advantage that fluctuations in fluorescence intensity caused by characteristic fluctuations due to environmental conditions such as the temperature and humidity of the light emitting element and the light receiving element and deterioration can be compensated.
 ステップS5の測定動作が終了すると、ステップS7で制御部41は、駆動部48に対して制御信号を出力して捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを検出室5Bから捕集室5Aに移動させる。移動が完了すると、ステップS9で加熱動作が行なわれる。ステップS9では第2の例によるセンサ100Aと同様に、制御部41は予め規定した加熱処理時間である時間△T3の間、ヒータ91に加熱を行なわせる。このときの加熱温度は予め規定されている。 When the measurement operation in step S5 is completed, in step S7, the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, and detects the collection unit 12A. The chamber 5B is moved to the collection chamber 5A. When the movement is completed, a heating operation is performed in step S9. In step S9, similarly to the sensor 100A according to the second example, the control unit 41 causes the heater 91 to perform heating for a time ΔT3 which is a predetermined heat treatment time. The heating temperature at this time is defined in advance.
 加熱動作後、ステップS11で冷却動作が行なわれる。ステップS11では、制御部41は、駆動部48に制御信号を出力して、所定の冷却時間、ファン50Aを逆回転させる。捕集ユニット12Aに外部の空気を触れさせることで冷却する。加熱処理時間△T3、加熱温度、および冷却時間も、制御部41に予め設定されているものであってもよいし、スイッチ110などの操作や、ケーブルを介して通信部150に接続されたPC300からの信号や、通信部150に装着された記録媒体からの信号などによって入力、変更されるものであってもよい。 After the heating operation, a cooling operation is performed in step S11. In step S11, the control unit 41 outputs a control signal to the drive unit 48, and reversely rotates the fan 50A for a predetermined cooling time. It cools by making external air touch the collection unit 12A. The heat treatment time ΔT3, the heating temperature, and the cooling time may also be set in advance in the control unit 41, or the PC 300 connected to the communication unit 150 via an operation of the switch 110 or a cable. Or a signal from a recording medium mounted on the communication unit 150 may be input or changed.
 ステップS7で捕集ユニット12Aを捕集室5Aに移動させた後に捕集室5A内で加熱動作および冷却動作が行なわれ、冷却後に捕集ユニット12Aが検出室5Bに移動することで、加熱時にヒータ91は発光素子6、受光素子9等のセンサ機器から隔てられた距離に位置し、また、壁5C等によっても隔てられ、それにより発光素子6、受光素子9等への熱の影響を抑えることができる。なお、このように加熱時にヒータ91は発光素子6、受光素子9等のセンサ機器とは壁5C等によっても隔てられた捕集室5A内にあることから、ヒータ91は捕集ユニット12A内の必ずしも放電電極17から遠い側の面、すなわち検出室5Bに捕集ユニット12Aが移動したときに発光素子6、受光素子9等から遠い側の面になくてもよく、たとえば放電電極17から近い側の面にあってもよい。 In step S7, the collection unit 12A is moved to the collection chamber 5A, and then the heating operation and the cooling operation are performed in the collection chamber 5A. After cooling, the collection unit 12A moves to the detection chamber 5B so The heater 91 is located at a distance from the sensor device such as the light emitting element 6 and the light receiving element 9 and is also separated by the wall 5C and the like, thereby suppressing the influence of heat on the light emitting element 6, the light receiving element 9 and the like. be able to. In addition, since the heater 91 is in the collection chamber 5A separated from the sensor devices such as the light emitting element 6 and the light receiving element 9 by the wall 5C and the like at the time of heating as described above, the heater 91 is disposed in the collection unit 12A. The surface far from the discharge electrode 17, that is, the surface far from the light emitting element 6, the light receiving element 9, etc. when the collection unit 12 </ b> A moves to the detection chamber 5 </ b> B may not be present. It may be on the side.
 ステップS9の加熱動作およびステップS11の冷却動作が終了すると、ステップS13で制御部41は、駆動部48に対して制御信号を出力して捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを捕集室5Aから検出室5Bに移動させる。移動が完了すると、ステップS15で再度検出動作が行なわれる。ステップS15の検出動作はステップS5での検出動作と同じである。ここでの蛍光強度F2に応じた電圧値が測定検出部40に入力されて記憶部42に記憶される。これにより、加熱後の蛍光量S2が測定される。 When the heating operation in step S9 and the cooling operation in step S11 are completed, in step S13, the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A. The collection unit 12A is moved from the collection chamber 5A to the detection chamber 5B. When the movement is completed, the detection operation is performed again in step S15. The detection operation in step S15 is the same as the detection operation in step S5. The voltage value according to the fluorescence intensity F2 here is input to the measurement detection unit 40 and stored in the storage unit 42. Thereby, the fluorescence amount S2 after heating is measured.
 ステップS15で加熱後の蛍光量S2が測定されると、ステップS17で捕集ユニット12Aのリフレッシュ動作が行なわれる。ステップS17で制御部41は、駆動部48に対して制御信号を出力してブラシ60を移動させるための機構を稼動させて、捕集ユニット12A表面でブラシ60を所定回数往復移動させる。このリフレッシュ動作が完了すると、ステップS19で制御部41は、駆動部48に対して制御信号を出力して捕集ユニット12Aを移動させるための機構を稼動させて、捕集ユニット12Aを検出室5Bから捕集室5Aに移動させる。これにより、開始の指示を受けると直ちに次の捕集動作(S1)を開始することができる。 When the fluorescence amount S2 after heating is measured in step S15, the refresh operation of the collection unit 12A is performed in step S17. In step S17, the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the brush 60, and reciprocates the brush 60 a predetermined number of times on the surface of the collection unit 12A. When this refresh operation is completed, in step S19, the control unit 41 outputs a control signal to the drive unit 48 to operate a mechanism for moving the collection unit 12A, thereby causing the collection unit 12A to move to the detection chamber 5B. To the collection chamber 5A. Thereby, the next collection operation (S1) can be started immediately upon receiving the start instruction.
 計算部411は、記憶された蛍光強度F1と蛍光強度F2との差分を増大量△Fとして算出する。そして、第2の例によるセンサ100Aと同様にして、算出された増大量△Fと、予め記憶している増大量△Fと微生物量(濃度)との対応関係(図22)とを用いて得られる微生物濃度を、捕集室5A内に時間△T1の間に導入された空気中の微生物濃度として算出する。算出された捕集された粒子中の微生物の濃度は、制御部41から表示制御部210に対して出力される。 The calculation unit 411 calculates the difference between the stored fluorescence intensity F1 and fluorescence intensity F2 as the increase amount ΔF. Then, similarly to the sensor 100A according to the second example, the calculated increase amount ΔF and the correspondence relationship (FIG. 22) between the increase amount ΔF and the microorganism amount (concentration) stored in advance are used. The obtained microbial concentration is calculated as the microbial concentration in the air introduced into the collection chamber 5A during the time ΔT1. The calculated concentration of microorganisms in the collected particles is output from the control unit 41 to the display control unit 210.
 このように、第3の例によるセンサ100Aでは捕集室5Aと検出室5Bとが区切られ、その間を捕集ユニット12Aが行き来して捕集と検出とが行なわれるため、捕集と検出とを連続して行なうことができる。また、上述のように捕集室5Aで捕集治具12が加熱され、冷却された後に検出室5Bに移動させるため、検出室5B内にあるセンサ等への熱の影響を抑えることができる。 As described above, in the sensor 100A according to the third example, the collection chamber 5A and the detection chamber 5B are separated, and the collection unit 12A moves back and forth between them to perform collection and detection. Can be performed continuously. In addition, since the collection jig 12 is heated and cooled in the collection chamber 5A as described above and is moved to the detection chamber 5B, the influence of heat on the sensors and the like in the detection chamber 5B can be suppressed. .
 さらに、第3の例によるセンサ100Aでは捕集室5Aでの捕集工程から検出室5Bでの検出工程に捕集ユニット12Aが移動する際に捕集ユニット12Aに備えられたカバーが壁5Cの孔5C’を遮蔽する。そのため、検出室5B内への外部光の入射が遮断される。これにより、蛍光測定中に浮遊粒子による散乱等での迷光が抑えられ、測定精度を向上させることができる。 Furthermore, in the sensor 100A according to the third example, when the collection unit 12A moves from the collection step in the collection chamber 5A to the detection step in the detection chamber 5B, the cover provided on the collection unit 12A is the cover of the wall 5C. The hole 5C ′ is shielded. For this reason, the incidence of external light into the detection chamber 5B is blocked. As a result, stray light due to scattering by suspended particles during fluorescence measurement can be suppressed, and measurement accuracy can be improved.
 なお図23では壁5Cで区切られた捕集室5A、検出室5Bが示されているが、第3の例によるセンサ100Aは、それぞれを完全に分離された別の個体である捕集装置、検出装置で構成され、それらの間で捕集ユニット12Aを移動させる構成、またはそれぞれの装置に捕集ユニット12Aをセットする構成であってもよい。この場合、捕集治具12の加熱は発光素子6、受光素子9等のセンサ機器から隔てられた位置として、検出装置以外の箇所で行なわれればよい。たとえば、上述のように捕集室5Aに対応した捕集装置内で行なわれてもよいし、捕集装置および検出装置のいずれでもないその他の位置(たとえば捕集装置から検出装置への移動の途中等)で行なわれてもよい。ヒータ91は捕集ユニット12Aに含まれてもよいし、検出装置以外の箇所である加熱を行なう箇所に設けられてもよい。また、捕集装置と検出装置とをセットとして用いるのみならず、上記捕集室5Aに対応した捕集装置、または上記検出室5Bに対応した検出装置単体で用いてもよい。その場合、用いる方の装置に信号処理部30および測定検出部40等に対応した機能が含まれる。 In FIG. 23, the collection chamber 5A and the detection chamber 5B separated by the wall 5C are shown, but the sensor 100A according to the third example is a collection device that is another individual completely separated from each other. It may be configured with a detection device, and the configuration in which the collection unit 12A is moved between them, or the configuration in which the collection unit 12A is set in each device. In this case, the heating of the collection jig 12 may be performed at a place other than the detection device as a position separated from the sensor device such as the light emitting element 6 and the light receiving element 9. For example, as described above, it may be performed in the collection device corresponding to the collection chamber 5A, or other position that is neither the collection device nor the detection device (for example, movement of the collection device to the detection device). It may be performed on the way). The heater 91 may be included in the collection unit 12A, or may be provided at a location where heating is performed, which is a location other than the detection device. In addition to using the collection device and the detection device as a set, the collection device corresponding to the collection chamber 5A or the detection device alone corresponding to the detection chamber 5B may be used. In that case, the function corresponding to the signal processing unit 30 and the measurement detection unit 40 is included in the apparatus to be used.
 さらに図23では捕集ユニット12Aが1つ設けられ、両側矢印Aで表わされた往復運動を行なうことで捕集室5Aと検出室5Bとの間を往復移動するものとしている。しかしながら、捕集ユニット12Aの他の例として回転可能な円盤の上に2以上設けられ、回転に伴って捕集室5Aと検出室5Bとの間を移動するものとしてもよい。この場合、複数の捕集ユニット12Aのうちの1つを捕集室5Aに位置させ、他の1つを検出室5Bに位置させることで、捕集動作と検出動作とを並行して行なわせることができる。このような構成にすることで、連続的に捕集動作を行なうことが可能となり、それと並行して検出動作を連続して行なうことが可能となる。 Further, in FIG. 23, one collection unit 12A is provided and reciprocates between the collection chamber 5A and the detection chamber 5B by performing a reciprocating motion represented by a double-sided arrow A. However, as another example of the collection unit 12A, two or more may be provided on a rotatable disk, and may move between the collection chamber 5A and the detection chamber 5B with rotation. In this case, the collection operation and the detection operation are performed in parallel by positioning one of the plurality of collection units 12A in the collection chamber 5A and the other one in the detection chamber 5B. be able to. By adopting such a configuration, it is possible to continuously perform the collecting operation, and it is possible to continuously perform the detecting operation in parallel therewith.
 (センサ100Bの例)
 センサ100Bとしては、一般的な花粉センサを採用することができる。その具体的な手法としては、たとえば、特開平5-240768号公報、特開2003-38163号公報、特開2005-283152号公報、および特開平4-315053号公報、などに開示されている手法が挙げられる。具体的には、第1の例によるセンサ100Aと同様の構成とし、所定角度、所定波長の散乱光を測定し、その強度に基づいて空気中に浮遊する花粉量(数、濃度)を検出することができる。この検出値もまた、表示制御部210に対して出力される。
(Example of sensor 100B)
A general pollen sensor can be adopted as the sensor 100B. Specific examples of the technique include those disclosed in JP-A-5-240768, JP-A-2003-38163, JP-A-2005-283152, JP-A-4-315053, and the like. Is mentioned. Specifically, the configuration is the same as that of the sensor 100A according to the first example, the scattered light having a predetermined angle and a predetermined wavelength is measured, and the amount (number, concentration) of pollen floating in the air is detected based on the intensity. be able to. This detected value is also output to the display control unit 210.
 (センサ100Cの例)
 センサ100Cとしては、一般的なガスセンサを採用することができる。たとえば、エフアイエス社製SB-AQ1などの半導体ガスセンサを用いることができる。具体的には、金属酸化物二次粒子としてたとえば酸化第ニスズ(SnO2)などに増感剤を添加して高温で焼結させた感ガス材料に、ヒータコイルと電極リード線とを埋設して感ガス素子として用いる。この感ガス素子は3本の電極端子付のベースにマウントされ、ヒータに一定の電圧を印加して感ガス素子の温度を制御した状態で、センサ抵抗と直列に接続されている、固定あるいは可変負荷抵抗両端の出力電圧変化を検出することでガスが検出される。
(Example of sensor 100C)
A general gas sensor can be employed as the sensor 100C. For example, a semiconductor gas sensor such as SB-AQ1 manufactured by FIS can be used. Specifically, a heater coil and an electrode lead wire are embedded in a gas-sensitive material obtained by adding a sensitizer to metal oxide secondary particles such as oxidized varnish (SnO 2 ) and sintering at high temperature. Used as a gas sensitive element. This gas sensitive element is mounted on a base with three electrode terminals, and is connected in series with the sensor resistance in a state where a constant voltage is applied to the heater to control the temperature of the gas sensitive element. Gas is detected by detecting a change in output voltage across the load resistor.
 エフアイエス社製SB-AQ1でのガス検出原理を説明する。
 酸化第ニスズなどの金属酸化物結晶は、清浄空気中ではその表面に空気中の酸素が吸着し、安定状態を保つ。空気中に還元性ガスが存在すると、結晶表面の酸素とガスと反応することで吸着酸素が減少し、その結果、結晶内の電子が増加する。これにより、当該金属酸化物の抵抗値が下がる。
The gas detection principle of the SB-AQ1 manufactured by FIS will be described.
Metal oxide crystals such as oxidized varnish adsorb oxygen on the surface in clean air and maintain a stable state. When a reducing gas is present in the air, the adsorbed oxygen is reduced by reacting with oxygen and gas on the crystal surface, and as a result, electrons in the crystal are increased. Thereby, the resistance value of the metal oxide decreases.
 センサ100Cは上述の原理を利用して空気中のガス濃度を検出することができる。つまり、エフアイエス社製SB-AQ1を利用する場合にはセンサ抵抗値はガス濃度の増加に伴って減少することになり、センサ抵抗と直列に接続されている負荷抵抗両端の出力電圧変化に基づいてセンサ抵抗値を算出することによって、ガス濃度を得ることができる。この検出値もまた、表示制御部210に対して出力される。 The sensor 100C can detect the gas concentration in the air using the principle described above. In other words, when SB-AQ1 manufactured by FIS is used, the sensor resistance value decreases as the gas concentration increases, and is based on the change in output voltage across the load resistance connected in series with the sensor resistance. The gas concentration can be obtained by calculating the sensor resistance value. This detected value is also output to the display control unit 210.
 <イオン発生装置300の説明>
 図26は、イオン発生装置300の一部の外観の具体例を示す図である。図26を参照して、イオン発生装置300は、削孔された直方体のケースを有し、該ケースから図示しない12V程度の直流電源に接続するためのラインが伸びる。孔は複数対削孔されており、一対の孔のそれぞれのほぼ中央には、正極の針状電極301Aと、負極の針状電極301Bとが位置する。
<Description of Ion Generator 300>
FIG. 26 is a diagram showing a specific example of the appearance of a part of the ion generator 300. Referring to FIG. 26, ion generator 300 has a rectangular parallelepiped case with a hole cut, and a line for connecting to a DC power supply of about 12 V (not shown) extends from the case. A plurality of holes are drilled, and a positive needle electrode 301A and a negative needle electrode 301B are positioned at the approximate center of each of the pair of holes.
 図27は、イオン発生装置300の、一対の孔に対応した回路構成の具体例を示す図である。イオン発生装置300内には、図28に表わされた回路構成が複数含まれる。 FIG. 27 is a diagram showing a specific example of a circuit configuration corresponding to a pair of holes of the ion generator 300. The ion generator 300 includes a plurality of circuit configurations shown in FIG.
 図27を参照して、ケース内の回路構成の具体例としては、大きくは、正極側の回路と負極側の回路とからなり、それぞれ、スイッチ302A,302Bによって、直流電源に接続/非接続となる。各回路は、トランジスタと圧電素子とを有する直流を交流に変換するための変換回路と、高圧発生回路303A,303Bとを含む。 Referring to FIG. 27, a specific example of the circuit configuration in the case is mainly composed of a positive-side circuit and a negative-side circuit, which are connected / disconnected to a DC power source by switches 302A and 302B, respectively. Become. Each circuit includes a conversion circuit for converting a direct current having a transistor and a piezoelectric element into an alternating current, and high voltage generation circuits 303A and 303B.
 図28は、図27中の正極側の回路構成の具体例を示す図である。図28を参照して、スイッチ302Aが閉じると、1.5V~12V程度である直流電源からの電流は変換回路によって直流に変換され、ダイオードによって正極側に整流された後に保護回路を経て高圧発生回路303Aに入力される。高圧発生回路303Aは圧電素子を含み、正極側に整流された入力電圧を昇圧させて高電圧を発生させる。高電圧は正極の針状電極301Aに供給され、電極301Aの先端でコロナ放電が生じる。これにより、正イオンが発生し、電極301Aが設けられたイオン発生装置300のケースの孔からケース外に放出される。 FIG. 28 is a diagram showing a specific example of the circuit configuration on the positive electrode side in FIG. Referring to FIG. 28, when switch 302A is closed, a current from a DC power source of about 1.5V to 12V is converted to DC by a conversion circuit, rectified to the positive electrode side by a diode, and then a high voltage is generated through a protection circuit. Input to the circuit 303A. The high voltage generation circuit 303A includes a piezoelectric element, and generates a high voltage by boosting the input voltage rectified to the positive electrode side. The high voltage is supplied to the positive needle electrode 301A, and corona discharge occurs at the tip of the electrode 301A. As a result, positive ions are generated and discharged out of the case from the hole of the case of the ion generator 300 provided with the electrode 301A.
 負極側の回路についても、図28の回路のダイオードの向きを逆とするのみで、後は同様である。すなわち、スイッチ302Bが閉じると、負極の針状電極301Bの先端でもコロナ放電が生じ、これにより負イオンが発生してケース外に放出される。 The negative side circuit is the same as the circuit of FIG. 28 except that the direction of the diode is reversed. That is, when the switch 302B is closed, corona discharge is generated at the tip of the negative needle electrode 301B, thereby generating negative ions and releasing them out of the case.
 ここで、正イオンは、水素イオン(H+)の周囲に複数の水分子が付随したクラスターイオンであり、H+(H2O)m(mは任意の自然数)として表わされる。また負イオンは、酸素イオン(O2-)の周囲に複数の水分子が付随したクラスターイオンであり、O2-(H2O)n(nは任意の自然数)として表わされる。 Here, the positive ion is a cluster ion in which a plurality of water molecules are attached around a hydrogen ion (H + ), and is represented as H + (H 2 O) m (m is an arbitrary natural number). The negative ion is a cluster ion in which a plurality of water molecules are attached around an oxygen ion (O 2− ), and is expressed as O 2− (H 2 O) n (n is an arbitrary natural number).
 スイッチ302A,302Bはイオン制御部230に接続され、その制御によってON/OFFされる。両スイッチともONの場合には当該回路から正イオンおよび負イオンの両極性のイオンが放出され、いずれか一方のスイッチのみONの場合には当該回路から正イオンまたは負イオンの単極性のイオンが放出される。両スイッチともOFFの場合には当該回路からいずれのイオンも放出されない。 The switches 302A and 302B are connected to the ion control unit 230 and are turned ON / OFF by the control. When both switches are ON, positive and negative ions are released from the circuit, and when only one of the switches is ON, positive or negative unipolar ions are output from the circuit. Released. When both switches are OFF, no ions are released from the circuit.
 従来のイオン発生装置として機能する場合、イオン制御部230がいずれか一方のスイッチのみONさせることで、当該回路から単極イオン、たとえば負イオンを発生させる。 When functioning as a conventional ion generator, the ion controller 230 turns on only one of the switches to generate unipolar ions such as negative ions from the circuit.
 当該回路から正イオンおよび負イオンの両極性のイオンが放出される場合には、空気中の正イオンであるH+(H2O)m(mは任意の自然数)と、負イオンであるO2-(H2O)n(nは任意の自然数)とが略同等量発生することにより、両イオンが空気中の浮遊カビ菌やウィルスの周りを取り囲み、その際に生成される活性種の水酸化ラジカル(・OH)の作用により、浮遊カビ菌などを除去することが可能となる。 When positive and negative ions are released from the circuit, H + (H 2 O) m (m is an arbitrary natural number) that is a positive ion in the air and O that is a negative ion. 2- (H 2 O) n (n is an arbitrary natural number) is generated in an approximately equivalent amount, so that both ions surround airborne fungi and viruses in the air, and the active species produced at that time It is possible to remove floating fungi and the like by the action of hydroxyl radicals (.OH).
 イオン発生装置300は、空気清浄機1A内の空気の流路において、フィルタよりも下流側に設置される。これにより、発生したイオンは、フィルタによって清浄された空気に乗って排気口から機外に放出される。 The ion generator 300 is installed downstream of the filter in the air flow path in the air cleaner 1A. As a result, the generated ions ride on the air cleaned by the filter and are released from the exhaust port to the outside of the machine.
 イオン制御部230はスイッチ110からの指示信号に従ってスイッチ302A,302BのON/OFFを制御する。たとえば、イオン発生モードがイオンを高濃度で発生させるモードである場合にはイオン発生装置300に含まれるすべての回路のスイッチをONとし、その他の濃度のモードである場合、予め記憶されている所定数の回路のスイッチをONとしその他の回路のスイッチをOFFとする。このようにすることで、発生させるイオン濃度が制御される。イオン制御部230でのスイッチのON/OFFの制御結果は、発生させたイオン量に関する情報として表示制御部210に対して出力される。出力のタイミングは、予め設定されている所定の時間間隔や、表示制御部210から要求されたタイミングなどである。 The ion controller 230 controls ON / OFF of the switches 302A and 302B according to the instruction signal from the switch 110. For example, when the ion generation mode is a mode in which ions are generated at a high concentration, the switches of all circuits included in the ion generation apparatus 300 are turned on. The switches of several circuits are turned on and the switches of other circuits are turned off. By doing so, the ion concentration to be generated is controlled. The switch ON / OFF control result in the ion control unit 230 is output to the display control unit 210 as information on the amount of generated ions. The output timing is a predetermined time interval set in advance, a timing requested from the display control unit 210, or the like.
 なお、発生させるイオン濃度を制御する方法の他の例としては、スイッチ302A,302BのON/OFFの間隔を制御する方法も挙げられる。この方法では簡易にイオン濃度を制御することができる。 As another example of the method for controlling the concentration of ions to be generated, there is a method for controlling the ON / OFF intervals of the switches 302A and 302B. In this method, the ion concentration can be easily controlled.
 <表示制御の説明>
 表示制御部210は、センサ100から受信した検出結果などを表示パネル130に表示させるための処理を実行する。具体例として、表示制御部210は、空気中の微生物量、空気中の埃量、空気中の花粉量、空気中のガス量、およびこれらを総合した空気の状態などを表示させる。
<Description of display control>
The display control unit 210 executes processing for displaying the detection result received from the sensor 100 on the display panel 130. As a specific example, the display control unit 210 displays the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, the amount of gas in the air, and the air state that combines these.
 図29は、表示制御部210の機能構成の具体例を示すブロック図である。図29では、表示制御部210の機能が主にソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部は、電気回路などのハードウェア構成で実現されてもよい。 FIG. 29 is a block diagram illustrating a specific example of a functional configuration of the display control unit 210. FIG. 29 shows an example in which the function of the display control unit 210 is mainly a software configuration. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
 図29を参照して、表示制御部210は、センサ100からの検出結果の入力を受け付けるための入力部201と、後述する表示量を演算するための演算部202と、表示データを生成するための生成部203と、表示データを表示パネル130に対して出力し画面表示を行なわせるための出力部204と、表示データ等を記憶するための記憶部205とを含む。 Referring to FIG. 29, display control unit 210 generates an input unit 201 for receiving an input of a detection result from sensor 100, a calculation unit 202 for calculating a display amount, which will be described later, and display data. Generating section 203, output section 204 for outputting display data to display panel 130 to cause screen display, and storage section 205 for storing display data and the like.
 なお、ここで「空気の状態」とは、各センサでの検出結果に基づいて算出される、空気中の汚染物質(所定の粒子または成分)の量を表わす値であって、それぞれの検出結果を加算することによって算出される。たとえば、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれについての、所定のセンシング対象の空気量に対する割合(%)を加えて得られる値(%)を「空気の状態」とし、「空気の状態」でセンシング対象の空気量における清浄ではない要素の量の割合を表わす。これら各センサでの検出結果に基づき、他の方法で空気の状態が表わされてもよい。 Here, the “air condition” is a value representing the amount of contaminants (predetermined particles or components) in the air, calculated based on the detection results of each sensor, and each detection result. It is calculated by adding. For example, a value obtained by adding a ratio (%) to a predetermined sensing target air amount for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air ( %) Is “air condition”, and “air condition” represents the ratio of the amount of unclean elements in the amount of air to be sensed. Based on the detection results of these sensors, the air state may be expressed by other methods.
 (第1の表示制御についての説明)
 図30Aは、第1の表示制御による表示画面の具体例を示す図である。図30Aを参照して、第1の表示制御として、表示制御部210は、現時点での空気の状態と過去の空気の状態とを比較可能なように表示させる。
(Description of first display control)
FIG. 30A is a diagram illustrating a specific example of a display screen by the first display control. Referring to FIG. 30A, as the first display control, display control unit 210 displays the current air state and the past air state so as to be comparable.
 第1の表示制御において、表示制御部210は、上述の空気の状態として表わされる値を表示させる。そのため、演算部202は、各センサでの検出結果の所定のセンシング対象の空気量に対する割合(%)を得るための演算を行なう。そして、それぞれの演算結果から空気の状態を表わす値を得るための演算を行なう。 In the first display control, the display control unit 210 displays the value represented as the above-described air state. Therefore, the calculating part 202 performs the calculation for obtaining the ratio (%) of the detection result of each sensor to the predetermined sensing target air amount. Then, a calculation for obtaining a value representing the air state from each calculation result is performed.
 再び図30Aを参照して、第1の表示制御においては、表示制御部210は、全割合(100%)に相当する長さの表示バー131において、「空気の状態」として表わされる値(%)を、その値に応じた長さの表示セグメント131Aで表わす。 Referring to FIG. 30A again, in the first display control, display control unit 210 has a value (%) expressed as “air condition” in display bar 131 having a length corresponding to the total ratio (100%). ) Is represented by a display segment 131A having a length corresponding to the value.
 表示バー131は、所定数のライト(たとえばLED等)を連続してなるものであって、そのうちの「空気の状態」として表わされる値に応じた数のライトを点灯させることで表示セグメント131Aを表示するものであってもよい。または、表示バー131は、液晶画面である表示パネル130上で表示される所定長さの矩形形状であって、そのうちの「空気の状態」として表わされる値に応じた長さ部分が他の部分と表示形態が異なるものであってもよい。これは、以降の表示制御の例でも同様である。 The display bar 131 is composed of a predetermined number of lights (for example, LEDs) continuously, and the display segment 131A is turned on by illuminating the number of lights corresponding to the value represented as “air condition”. It may be displayed. Alternatively, the display bar 131 has a rectangular shape with a predetermined length displayed on the display panel 130 which is a liquid crystal screen, and a length portion corresponding to a value represented as “air condition” is the other portion. And the display form may be different. The same applies to the following display control examples.
 各センサでの検出結果の所定のセンシング対象の空気量に対する割合(%)を得るための、基準値とする所定のセンシング対象の空気量は、予め演算部202に予め記憶されているものであってもよいし、所定の登録動作によってたとえばスイッチ110などによって入力され、記憶されるものであってもよい。 The predetermined sensing target air amount as a reference value for obtaining the ratio (%) of the detection result of each sensor to the predetermined sensing target air amount is stored in advance in the calculation unit 202. Alternatively, it may be input and stored by the switch 110 or the like by a predetermined registration operation.
 空気中の微生物量の所定のセンシング対象の空気量に対する割合(%)を得るための演算を行なうため、センサ100Aにおいて微生物量が粒子個数として得られる場合、演算部202は、所定のセンシング対象の空気量(たとえば上述の検出時間あたりにケース5に導入された空気量Vs)中の微生物数の最大値Nmaxを記憶しておき、検出結果として入力される所定体積あたりの微生物の数Nをかかる最大値Nmaxで除することで、所定体積あたりの粒子数の最大値に対する微生物数の割合N/Nmaxを得る。または、センサ100Aにおいて微生物量が粒子濃度として得られる場合、演算部202は、所定のセンシング対象の空気量中の微生物濃度の最大値を記憶しておき、検出結果として入力される微生物の濃度をかかる最大値で除することで、濃度の最大値に対する微生物濃度の割合を得る。 In order to perform a calculation for obtaining the ratio (%) of the amount of microorganisms in the air to the amount of air of a predetermined sensing target, when the amount of microorganisms is obtained as the number of particles in the sensor 100A, the calculation unit 202 The maximum value Nmax of the number of microorganisms in the amount of air (for example, the amount of air Vs introduced into the case 5 per the above detection time) is stored, and the number N of microorganisms per predetermined volume input as a detection result is applied. By dividing by the maximum value Nmax, the ratio N / Nmax of the number of microorganisms to the maximum value of the number of particles per predetermined volume is obtained. Alternatively, when the amount of microorganisms is obtained as the particle concentration in the sensor 100A, the calculation unit 202 stores the maximum value of the microorganism concentration in the predetermined sensing target air amount, and the concentration of microorganisms input as a detection result is stored. By dividing by this maximum value, the ratio of the microorganism concentration to the maximum concentration value is obtained.
 空気中の埃量、花粉量、ガス量の所定のセンシング対象の空気量に対する割合(%)を得るための演算も同様に行なわれる。 The calculation for obtaining the ratio (%) of the dust amount, pollen amount, and gas amount in the air to the predetermined sensing target air amount is similarly performed.
 演算部202は、さらに、上述のように算出された空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれを加えて、「空気の状態」を表わす値(%)を得る。「空気の状態」を表わす値を得る方法の一例としては、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれに予め規定された係数を乗じた上で加える方法が挙げられる。たとえば、空気中の埃量を表わす係数を乗じた後の値が20点、空気中の微生物量を表わす係数を乗じた後の値が25、および空気中のガス量を表わす係数を乗じた後の値が10で得られた場合、「空気の状態」を表わす値はそれらを加えて55%で得られる。なお、この場合は、すべての項目の値が100%でなくても空気状態は100%となる場合がある。たとえば、空気中の埃量を表わす係数を乗じた後の値が40、空気中の微生物量を表わす係数を乗じた後の値が40、および空気中のガス量を表わす係数を乗じた後の値が20となった場合には、「空気の状態」を表わす値はそれらを加えて100%となる。なお、ここでの係数は所定の係数に限定されない。たとえば、すべての項目の値が100%となるときに「空気の状態」を表わす値が100%となるよう設定されていてもよい。 The calculation unit 202 further adds each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air calculated as described above, and sets the “air state”. Get the value (%) to represent. As an example of a method for obtaining a value representing the “air condition”, each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air is multiplied by a predetermined coefficient. In addition, the method of adding it is mentioned. For example, after multiplying the coefficient representing the amount of dust in the air by 20 points, multiplying the coefficient representing the amount of microorganisms in the air by 25, and the coefficient representing the amount of gas in the air When the value of is obtained at 10, the value representing the “air condition” is obtained at 55% by adding them. In this case, the air condition may be 100% even if the values of all items are not 100%. For example, the value after multiplying the coefficient representing the amount of dust in the air is 40, the value after multiplying the coefficient representing the amount of microorganisms in the air is 40, and the coefficient representing the amount of gas in the air When the value is 20, the value representing the “air condition” is 100% by adding them. The coefficient here is not limited to a predetermined coefficient. For example, when the values of all items are 100%, the value indicating “air condition” may be set to 100%.
 なお、「空気の状態」を表わす値を得る方法の他の例としては、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれについて予め規定値を定め、該規定値に対するそれぞれのセンサ出力値の割合(%)を用いて算出する方法も挙げられる。 In addition, as another example of a method for obtaining a value representing “the state of air”, a predetermined value in advance for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air And calculating using the ratio (%) of each sensor output value with respect to the specified value.
 そして、演算部202は、空気中の微生物量、空気中の埃量、空気中の花粉量、空気中のガス量、および空気の状態を表わす値に基づいて表示セグメント131Aの長さを算出する。ここでは、予め100%に対応した表示バー131の長さまたは表示バー131を形成するライトの数を記憶しており、それに対して算出された値(%)に対応した長さ、またはライトの数を算出する。 Then, the arithmetic unit 202 calculates the length of the display segment 131A based on values representing the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, the amount of gas in the air, and the state of the air. . Here, the length of the display bar 131 corresponding to 100% or the number of lights forming the display bar 131 is stored in advance, and the length corresponding to the value (%) calculated with respect to the length or the number of lights. Calculate the number.
 生成部203は、演算部202で算出された表示セグメント131Aの長さ(またはライトの数)に基づいて図30Aに示されたような表示バー131を表示パネル130に表示させるための表示データを生成する。生成された表示データは表示対象の情報が入力された時点を特定する情報としてたとえば入力時刻などと関連付けて記憶部205に記憶される。 The generation unit 203 generates display data for displaying the display bar 131 as shown in FIG. 30A on the display panel 130 based on the length (or the number of lights) of the display segment 131A calculated by the calculation unit 202. Generate. The generated display data is stored in the storage unit 205 in association with, for example, an input time as information for specifying a point in time when information to be displayed is input.
 出力部204は、表示の指示がなされた時点の空気の状態としてその時点に最も近い時点を特定する情報と関連付けられた表示データと、予め設定されている、その時点から所定時間前の時点を特定する情報と関連付けられた表示データとを記憶部205から読み出して表示パネル130に対して出力し、これら表示データで表わされるそれぞれの表示バーを表示パネル130で同時に表示させる。図30Aでは、上記所定時間前の時点として、1時間前の空気の状態が表示される例が示されている。 The output unit 204 displays display data associated with information specifying a time point closest to the time point as the air state at the time when the display instruction is given, and a preset time point a predetermined time before that time point. The display data associated with the specified information is read from the storage unit 205 and output to the display panel 130, and the respective display bars represented by these display data are simultaneously displayed on the display panel 130. FIG. 30A shows an example in which the state of air one hour before is displayed as the time point before the predetermined time.
 同様にして、演算部202が、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれについても表示セグメント131Aの長さ(またはライトの数)を算出して、生成部203が表示データを生成することによって、出力部204では図30Aと同様にして現時点の値と過去の値とを表示することができる。 Similarly, the calculation unit 202 sets the length (or the number of lights) of the display segment 131A for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air. By calculating and generating the display data by the generation unit 203, the output unit 204 can display the current value and the past value as in FIG. 30A.
 好ましくは、図30Aに示されるように、表示バーは表示されている時点を表わす情報(文字等)と共に表示される。表示バー131が所定数のライトが連続してなるものである場合には、かかる情報は、表示バー131とは別に表示パネル130の液晶部分に表示される。これにより、かかる情報を表示の切り替えが容易になる。なお、表示バーと表示されている時点を表わす情報(文字等)との位置関係は所定の位置関係には限定されない。たとえば隣接した左右配置にしてもよいし、上下配置でもよい。これは、以降の表示制御の例でも同様である。 Preferably, as shown in FIG. 30A, the display bar is displayed together with information (characters, etc.) indicating the displayed time point. When the display bar 131 includes a predetermined number of lights, such information is displayed on the liquid crystal portion of the display panel 130 separately from the display bar 131. This makes it easy to switch the display of such information. Note that the positional relationship between the display bar and the information (characters or the like) indicating the displayed time is not limited to a predetermined positional relationship. For example, adjacent left and right arrangements or upper and lower arrangements may be used. The same applies to the following display control examples.
 図30Aに示されたように、現時点での空気の状態と、過去の空気の状態とが1つの画面で同時に表示されることで、ユーザは、当該画面を見るだけで、空気清浄機1Aでの清浄効果を一目で把握することができる。たとえば、現時点での空気の状態と所定時間前の時点での空気の状態とが1つの画面で同時に表示されることで、ユーザは、当該画面を見るだけで、空気清浄機1Aが設置された空間での空気の清浄度合いの変化を一目で把握することができる。同様に、現時点での空気中の微生物量と所定時間前の時点での微生物量とが1つの画面で同時に表示されること、現時点での空気中の埃量と所定時間前の時点での埃量とが1つの画面で同時に表示されること、現時点での空気中の花粉量と所定時間前の時点での花粉量とが1つの画面で同時に表示されること、現時点での空気中のガス量と所定時間前の時点でのガス量とが1つの画面で同時に表示されることでも、それぞれ、空気清浄機1Aの当該所定時間での清浄効果を一目で把握することができる。また、このように清浄効果が把握できることで、送風装置400での風量や、イオン発生装置300でのイオン発生量を適正に設定することができる。 As shown in FIG. 30A, the current air condition and the past air condition are displayed simultaneously on one screen, so that the user can simply view the screen with the air cleaner 1A. The cleaning effect of can be grasped at a glance. For example, the air condition at the present time and the air condition at a time before a predetermined time are simultaneously displayed on one screen, so that the user can install the air purifier 1A only by looking at the screen. It is possible to grasp at a glance the change in the degree of air purification in the space. Similarly, the amount of microorganisms in the air at the current time and the amount of microorganisms at the time before the predetermined time are simultaneously displayed on one screen, the amount of dust in the air at the current time and the dust at the time before the predetermined time. The amount of pollen in the air at the current time and the amount of pollen in the previous time are displayed on the same screen at the same time, the gas in the air at the current time Even when the amount and the gas amount at the time before the predetermined time are simultaneously displayed on one screen, the cleaning effect of the air cleaner 1A at the predetermined time can be grasped at a glance. In addition, since the cleaning effect can be grasped in this way, the air volume at the blower 400 and the amount of ions generated at the ion generator 300 can be set appropriately.
 なお、現時点での空気の状態を表わす表示バーと過去の空気の状態を表わす表示バーとは、図30Aに表わされたように上下に配置されてもよいし、左右に配置されてもよい。その他の位置関係であってもよい。また、いずれか一方の表示バーが所定の操作によって表示されないようにしてもよい。また、図30Aに表わされたように、現時点での空気の状態を表わす表示バーと過去の空気の状態を表わす表示バーとで表示セグメント131Aが同じ表示方法で表示されてもよいが、より好ましくは、異なる方法で表示される。たとえば、過去の空気の状態を表わす表示バーにおいて表示セグメントを点滅させたり、現在の空気の状態を表わす表示バーにおける表示セグメントの表示色と色調を異ならせたりしてもよい。これにより、現時点での空気の状態と過去の空気の状態とが見分けやすくなる。 Note that the display bar representing the current air condition and the display bar representing the past air condition may be arranged one above the other as shown in FIG. 30A, or may be arranged left and right. . Other positional relationships may be used. Further, any one of the display bars may not be displayed by a predetermined operation. Further, as shown in FIG. 30A, the display segment 131A may be displayed by the same display method in the display bar representing the current air condition and the display bar representing the past air condition. Preferably it is displayed in a different way. For example, the display segment in the display bar representing the past air condition may be blinked, or the display color and color tone of the display segment in the display bar representing the current air condition may be different. This makes it easy to distinguish the current air condition from the past air condition.
 さらに、図30Bに示されたように、表示セグメントが単位長さごとに区切られてその区切りも表示されるようにしてもよいし、図30Cに示されるように表示セグメントがグラデーションされてもよい。また、図30Dや図30Eに示されるように表示位置の端のみが表示されてその他は表示されないようにしてもよい。また、表示バーは矩形に限定されず、図30Fに表わされたように円形であってもよく、その場合、表示セグメントとして中心からの範囲で検出結果を表示するようにしてもよい。これらの表示例は、以降の例でも同様である。 Further, as shown in FIG. 30B, the display segments may be divided for each unit length and the divisions may be displayed, or the display segments may be gradationed as shown in FIG. 30C. . Further, as shown in FIG. 30D and FIG. 30E, only the edge of the display position may be displayed and the others may not be displayed. The display bar is not limited to a rectangle, and may be a circle as shown in FIG. 30F. In that case, the detection result may be displayed as a display segment in a range from the center. These display examples are the same in the following examples.
 現時点での空気の状態と過去の空気の状態とが比較可能な表示の他の例として、表示制御部210は、図31に示されるように、複数の時点での空気の状態を表示パネル130に順次切り替えて表示させてもよい。表示の切り替えは、スイッチ110からの指示入力に応じてなされてもよいし、所定時間間隔でなされてもよい。さらには、表示の切り替えは、スイッチ110が操作されることになされるのみならず、1回の操作に応じて複数の時点での空気の状態を表わす表示バーが順次切り替わってもよい。 As another example of the display in which the current air condition and the past air condition can be compared, the display control unit 210 displays the air condition at a plurality of time points on the display panel 130 as shown in FIG. May be displayed in sequence. The display switching may be performed in response to an instruction input from the switch 110 or may be performed at predetermined time intervals. Furthermore, the display is switched not only by the switch 110 being operated, but the display bars representing the air states at a plurality of times may be sequentially switched in response to one operation.
 この表示を行なう場合、出力部204が予め設定された所定時間間隔の表示データを記憶部205から読み出して表示パネル130に対して出力し、これら表示データで表わされるそれぞれの表示バーを表示パネル130で順に表示させる。なお、切り替わる順番は特に限定されない。このとき、表示バーと共に表示されている時点を表わす情報(文字等)が表示される場合には、当該情報も併せて切り替えられる。 When this display is performed, the output unit 204 reads display data at predetermined time intervals from the storage unit 205 and outputs the display data to the display panel 130, and displays each display bar represented by these display data. Display them in order. The order of switching is not particularly limited. At this time, when information (characters or the like) indicating the time point displayed with the display bar is displayed, the information is also switched.
 図31に示されるように、複数の時点での空気の状態が順次表示されることで、表示パネル130が小さい場合であっても複数の時点での空気の状態を表示させることができる。また、これらが順次切り替わることで、複数の時点での空気の状態を比較することができ、空気清浄機1Aでの清浄効果を容易に把握することができる。 As shown in FIG. 31, the air states at a plurality of time points are sequentially displayed, so that the air states at a plurality of time points can be displayed even when the display panel 130 is small. Moreover, the state of the air in several time points can be compared by switching these sequentially, and the cleaning effect in 1 A of air cleaners can be grasped | ascertained easily.
 (第2の表示制御についての説明)
 図32は、第2の表示制御による表示画面の具体例を示す図である。図32を参照して、第2の表示制御として、表示制御部210は、複数の項目についての検出結果を表示させる。
(Description of second display control)
FIG. 32 is a diagram illustrating a specific example of a display screen by the second display control. Referring to FIG. 32, as the second display control, display control unit 210 displays detection results for a plurality of items.
 表示させる項目は、予め表示制御部210に記憶されているものであってもよいし、所定の登録動作によってたとえばスイッチ110などによって入力され、記憶されるものであってもよい。 The items to be displayed may be stored in the display control unit 210 in advance, or may be input and stored by the switch 110 or the like by a predetermined registration operation.
 第2の表示制御において、表示制御部210は、第1の表示制御で説明された制御と同様にして、空気中の微生物量、空気中の埃量、空気中の花粉量、空気中のガス量、およびそれらを総合して得られる空気の状態を表わす値などの各項目についての値を算出し、それに基づいて表示セグメント131Aで表示させるための制御を行なう。そして、出力部204は、各項目について生成された表示データのうち、同時に表示パネル130で表示させる項目として予め設定されている項目についての表示データを記憶部205から読み出して表示パネル130に対して出力し、これら表示データで表わされるそれぞれの表示バーを表示パネル130で同時に表示させる。 In the second display control, the display control unit 210 performs the same as the control described in the first display control, the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the gas in the air. A value for each item such as a value and a value representing the air state obtained by combining them is calculated, and based on this value, control is performed for display on display segment 131A. Then, the output unit 204 reads out display data on items set in advance as items to be displayed on the display panel 130 from the display data generated for each item from the storage unit 205 and outputs the display data to the display panel 130. Each display bar represented by the display data is displayed on the display panel 130 at the same time.
 図32に示されたように、現時点での検出結果が複数の項目について表示されることで、ユーザは、複数の項目の検出結果を総合して現時点の空気の状態を一目で詳細に把握することができる。つまり、空気清浄機1Aが設置された室内の空気中の汚染物質の内訳を一目で把握することができる。このように複数の項目の検出結果を把握できることで、送風装置400での風量や、イオン発生装置300でのイオン発生量を、それぞれ適正に設定することができる。 As shown in FIG. 32, the current detection results are displayed for a plurality of items, so that the user can grasp the current air condition in detail at a glance by combining the detection results of the plurality of items. be able to. That is, it is possible to grasp at a glance the breakdown of pollutants in the air in the room where the air purifier 1A is installed. Since the detection results of a plurality of items can be grasped in this way, the air volume in the blower 400 and the amount of ions generated in the ion generator 300 can be set appropriately.
 現時点での複数の項目の検出結果の表示の他の例として、表示制御部210は、第1の表示制御と同様に、図33に示されるように、複数の項目の表示を表示パネル130に順次切り替えて表示させてもよい。 As another example of the display of the detection results of a plurality of items at the present time, the display control unit 210 displays a plurality of items on the display panel 130 as shown in FIG. 33 as in the first display control. You may switch and display it sequentially.
 図33に示されるように、複数の時点での検出結果が順次表示されることで、表示パネル130が小さい場合であっても多くの項目の検出結果を表示させることができる。また、これらが順次切り替わることで、各項目の検出結果を比較することができ、現時点での空気の状態を容易に詳細に把握することができる。 As shown in FIG. 33, detection results at a plurality of time points are sequentially displayed, so that detection results for many items can be displayed even when the display panel 130 is small. Moreover, by sequentially switching these, the detection results of the respective items can be compared, and the current air condition can be easily grasped in detail.
 現時点での複数の項目の検出結果の表示のさらに他の例として、表示制御部210は、図34Aに表わされたように、表示する項目をそれぞれ頂点とする多角形において、各項目について対応する頂点から表示対象の量に応じた範囲を表示セグメントとして決定する。図34Aでは、複数の項目として空気中の埃量、微生物量、およびガス量を、それぞれを頂点とする三角形において表示する例が示されている。この例においては、表示セグメントが三角形の頂点に近くなるほどその量が多いことを表わしている。もちろん、検出する項目を4種類以上とする場合には、上記多角形はそれに応じて四角形、五角形…となる。その場合でも以下に説明する三角形において表示する例と同様とすることができる。 As yet another example of displaying the detection results of a plurality of items at the present time, the display control unit 210 corresponds to each item in a polygon having the displayed items as vertices, as shown in FIG. 34A. A range corresponding to the amount of the display target from the vertex to be determined is determined as a display segment. FIG. 34A shows an example in which the amount of dust, the amount of microorganisms, and the amount of gas in the air are displayed as a plurality of items in a triangle with each apex as a plurality of items. In this example, the closer the display segment is to the apex of the triangle, the greater the amount. Of course, when the number of items to be detected is four or more, the polygon is a quadrangle, a pentagon,. Even in that case, it can be the same as the example displayed in the triangle described below.
 具体的には、図34Aの例では、空気中の埃量、空気中の微生物量、および空気中のガス量の3項目をそれぞれ頂点A、B、Cからの3~5段階の範囲で表示する例が示されている。図34Aの例では、各頂点A、B、Cから3段階に階層を分割し、それぞれの階層にたとえば赤色等のライト(LED)が設置されているものとする。ライトの設置数は階層ごとに1個ずつでもよい、図34Bに示されたように階層の面積に応じた個数としてもよい。 Specifically, in the example of FIG. 34A, three items, the amount of dust in the air, the amount of microorganisms in the air, and the amount of gas in the air, are displayed in a range of 3 to 5 levels from the vertices A, B, and C, respectively. An example is shown. In the example of FIG. 34A, it is assumed that the hierarchy is divided into three stages from the vertices A, B, and C, and lights such as red (LED) are installed in each hierarchy. The number of lights installed may be one for each level, or may be the number according to the area of the level as shown in FIG. 34B.
 演算部202は各項目の検出値から得られた値に基づいて表示セグメント131Aを算出する場合と同様にして点灯させる階層を特定し、出力部204は、中央から表示する項目に応じた頂点に向けて特定された数の階層を点灯させる。 The calculation unit 202 identifies the layer to be lit in the same manner as when the display segment 131A is calculated based on the value obtained from the detection value of each item, and the output unit 204 sets the vertex corresponding to the item to be displayed from the center. Turn on the specified number of levels.
 好ましくは、各頂点近傍にその項目を表わす文字が表示され、当該文字も点灯するものであり、さらには、一定以上の面積が点灯した場合に、それに対応した項目を表わす文字も点灯させるものとする。また、文字に替えて、その項目を表わすイラストなどが表示されてもよい。 Preferably, a character representing the item is displayed in the vicinity of each vertex, and the character is also lighted. Further, when a certain area or more is lit, the character representing the corresponding item is also lit. To do. Further, an illustration or the like representing the item may be displayed instead of the character.
 このような表示制御がなされることでも、複数の項目の検出結果を総合して現時点の空気の状態を一目で詳細に把握することができる。たとえば、当該空気清浄機1Aが設置されている室内の空気が汚染されている程三角形は全体的に点灯され(たとえば赤くなり)、一目で室内の空気の汚染状況を把握することができる。 Even with such display control, it is possible to grasp the current air condition in detail at a glance by combining the detection results of a plurality of items. For example, as the air in the room in which the air purifier 1A is installed is contaminated, the triangle is lit as a whole (for example, turns red), and the state of indoor air contamination can be grasped at a glance.
 なお、逆に、図35Aに示されるように、検出値から得られた値に基づいて対応する階層を消灯させるようにしてもよい。この場合、各階層のライトは青色や緑色など、浄化されていることをイメージさせる色がよい。この場合には、当該空気清浄機1Aが設置されている室内の空気が浄化される程点灯するランプが多くなり、汚染されている場合、三角形に点灯はなくなる。または文字のみ赤く点灯させてもよい。このようにすることで、室内の空気の清浄状況が把握されるため、当該空気清浄機1Aによる清浄効果がより実感されることになる。 Note that, conversely, as shown in FIG. 35A, the corresponding hierarchy may be turned off based on the value obtained from the detected value. In this case, the light of each level is good in colors such as blue and green that make it purify being purified. In this case, the number of lamps that are turned on increases as the air in the room in which the air purifier 1A is installed is purified. Alternatively, only the letters may be lit red. By doing in this way, since the clean condition of indoor air is grasped | ascertained, the cleaning effect by the said air cleaner 1A will be felt more.
 表示パネル130に2種類の色のライトが設置されている場合、図34Aと図35Aとの表示を組み合わせてもよい。また、さらに複数の色のライト、たとえば緑、黄、赤の3段階のライト等が設置されている場合、図35Bに示されるように、中心から外側に向かって放射状(頂点に向かって線状でもよい)にグラデーションをつけて表示してもよい。表示する項目に対応した階層のうち他の表示する項目と重なる階層に関しては、当該項目における当該階層の表示色と重なる項目における当該階層の表示色とに基づいて演算部202によってその表示色が算出されることが好ましい。たとえば、ある領域について2つの項目で緑色と黄色とを同率とすると算出された場合には、当該階層を50%ずつの黄緑色とする、などが挙げられる。色の境界は滑らかに表示することが好ましい。 When two kinds of color lights are installed on the display panel 130, the display of FIG. 34A and FIG. 35A may be combined. In addition, when a plurality of color lights, for example, three-stage lights of green, yellow, and red, are installed, as shown in FIG. 35B, radial from the center to the outside (linear toward the apex) May be displayed with gradation. For a layer that overlaps with other items to be displayed among the layers corresponding to the item to be displayed, the display color is calculated by the calculation unit 202 based on the display color of the layer in the item that overlaps the display color of the layer in the item. It is preferred that For example, when it is calculated that green and yellow are the same ratio in two items for a certain area, the level is set to yellow green by 50%. The color boundary is preferably displayed smoothly.
 (表示制御の変形例1についての説明)
 上述の第1の表示制御と第2の表示制御とが組み合わされてもよい。
(Description of Modification 1 of Display Control)
The first display control and the second display control described above may be combined.
 具体的には、図36に示されたように1つの項目(ここでは空気の状態)について現時点での状態と過去(ここでは1時間前)の状態とが1つの画面で同時に表示され、他の項目(ここでは空気中の微生物量)について現時点での状態と過去(ここでは1時間前)の状態との画面に切り替わり、さらに、該項目(ここでは空気中の微生物量)についてさらに異なる時点(ここでは30分前)の状態の画面に、順次切り替わってもよい。 Specifically, as shown in FIG. 36, the current state and the past (here, one hour ago) state of one item (here, air condition) are displayed simultaneously on one screen, and the other The item (here, the amount of microorganisms in the air) is switched to the screen of the current state and the past (here, one hour ago), and the item (here, the amount of microorganisms in the air) is further different. You may sequentially switch to the screen in the state (here 30 minutes ago).
 もちろん、図36の画面例は一例であって、第1の表示制御と第2の表示制御とがどのように組み合わされてもよい。 Of course, the screen example of FIG. 36 is an example, and the first display control and the second display control may be combined in any way.
 このように表示されることにより、項目ごとに、空気清浄機1Aでの清浄効果を容易に把握することができる。 By displaying in this way, it is possible to easily grasp the cleaning effect of the air cleaner 1A for each item.
 なお、複数の項目の検出結果が図34Aに示されたように同時に表示される場合、各項目について、図37に示されたように表示が切り替わってもよい。このとき、所定の操作が行なわれることで、比較する2つの時点での表示の差分の階層が点滅するなどしてもよい。このようにすることで、空気清浄機1Aによる清浄効果が直感的に把握される。 In addition, when the detection results of a plurality of items are displayed at the same time as shown in FIG. 34A, the display may be switched as shown in FIG. 37 for each item. At this time, by performing a predetermined operation, a hierarchy of display differences at two time points to be compared may blink. By doing in this way, the cleaning effect by 1 A of air cleaners is grasped | ascertained intuitively.
 (表示制御の変形例2についての説明)
 表示制御部210は、さらに送風装置400からの風量の情報、イオン発生装置300からのイオン量に関する情報を受信し、上述の第1の表示制御または第2の表示制御に加えて、これら制御量も併せて表示されるようにしてもよい。ここで、「制御量」とは、送風装置400やイオン発生装置300などの制御レベルを指し、たとえば送風装置400から送風される風量(「強」、「弱」等)、イオン発生装置300で発生させるイオン濃度(「濃」、「薄」等)、所定時間で発生させたイオン放出総量、などが該当する。
(Description on Modification 2 of Display Control)
The display control unit 210 further receives information on the air volume from the blower 400 and information on the ion volume from the ion generator 300, and in addition to the first display control or the second display control described above, these control variables May also be displayed. Here, the “control amount” refers to a control level of the blower 400, the ion generator 300, and the like. For example, the amount of air blown from the blower 400 (“strong”, “weak”, etc.) The ion concentration to be generated (“dense”, “thin”, etc.), the total amount of ion emission generated in a predetermined time, and the like are applicable.
 具体的に、図38の上方は、1時間前の空気の状態に加えてその時点でのイオン発生装置300から放出されるイオン濃度が表示された表示バーと、現時点の空気状態に加えて現時点での送風装置400での風量および1時間前からのイオン放出量の累積量が表示された表示バーとが表示される例を示す図である。 Specifically, in the upper part of FIG. 38, in addition to the air state one hour ago, a display bar that displays the ion concentration released from the ion generator 300 at that time, and the current air state in addition to the current air state It is a figure which shows the example by which the display bar with which the air volume in the air blower 400 and the accumulated amount of the ion discharge | release amount from 1 hour ago were displayed is displayed.
 放出したイオンの量として入力部201はイオン発生装置300から単位時間当たりのイオン放出量(イオン濃度)を示す情報の入力を受け付けて、演算部202がその累積量を算出することによってイオンの放出総量が得られる。過去の時点の表示を行なう場合、演算部202は、その過去の時点から現在の時点までのイオン放出量の累積量を算出する。 The input unit 201 receives the input of information indicating the amount of ion emission per unit time (ion concentration) from the ion generator 300 as the amount of ions released, and the calculation unit 202 calculates the accumulated amount to release ions. The total amount is obtained. When displaying the past time point, the calculation unit 202 calculates the cumulative amount of ion emission from the past time point to the current time point.
 現在の時点の表示を行なう場合には、生成部203は、現時点での空気の状態を表わす値に応じた表示セグメントに加えて、入力部201で受け付けた、送風装置400での風量、および演算部202で算出されたイオン放出量の累積量を併せて表示する表示データを生成する。そして、その表示データと、その時点でのイオン発生装置300から放出されるイオン濃度とが併せて記憶部205に記憶される。 When displaying the current time point, the generation unit 203, in addition to the display segment corresponding to the value representing the current air state, the air volume in the blower 400 received by the input unit 201, and the calculation Display data for displaying the cumulative amount of ion emission calculated by the unit 202 is also generated. The display data and the ion concentration released from the ion generator 300 at that time are stored in the storage unit 205 together.
 過去の時点の表示を行なう場合には、生成部203はその時点の表示データを読み出すと共に、その時点でのイオン発生装置300から放出されるイオン濃度を併せて表示するよう表示データを更新する。 When displaying the past time, the generation unit 203 reads the display data at that time, and updates the display data so that the ion concentration released from the ion generator 300 at that time is also displayed.
 各項目の検出結果についても同様に表示することができる。たとえば図38の下方の例では、空気中の微生物量についての表示例を示している。 The detection result of each item can be displayed in the same way. For example, the lower example of FIG. 38 shows a display example of the amount of microorganisms in the air.
 このように表示されることで、現在と過去との検出結果を一目で把握することができるのに加えて、制御状態も一目で把握することができる。たとえば図38の上方の例では、現時点での放出されるイオン濃度が高くても1時間の累積量が低いことから、除菌が遅れていることが把握される。 By displaying in this way, in addition to being able to grasp the current and past detection results at a glance, it is also possible to grasp the control state at a glance. For example, in the example in the upper part of FIG. 38, it is understood that sterilization is delayed because the cumulative amount per hour is low even if the ion concentration released at the present time is high.
 さらに、第1の表示制御と第2の表示制御とが組み合わされ、図38に示されたように、ある項目(ここでは空気の状態)について現時点での状態と過去(ここでは1時間前)の状態が1つの画面で同時に表示され、他の項目(ここでは空気中の微生物)について現時点での状態と過去(ここでは1時間前)の状態との画面に切り替わってもよい。 Furthermore, the first display control and the second display control are combined, and as shown in FIG. 38, the current state and the past (here, one hour ago) for a certain item (here, the air state). May be displayed simultaneously on one screen, and the screen may be switched between the current state and the past state (here, one hour ago) for other items (here, microorganisms in the air).
 もちろん、図38の画面例は一例であって、第1の表示制御と第2の表示制御とがどのように組み合わされてもよい。 Of course, the screen example of FIG. 38 is merely an example, and the first display control and the second display control may be combined in any manner.
 このように表示されることにより、項目ごとに、空気清浄機1Aでの清浄効果を容易に把握することができる。 By displaying in this way, it is possible to easily grasp the cleaning effect of the air cleaner 1A for each item.
 なお、制御量の表示は図38の例の表示に限定されず、図39Aのように、検出結果を表示するための表示バーに直交する制御量を表示するための表示バーを設け、検出結果の表示方向と同じ方向の制御量を表示するための表示バーの位置に応じて制御量を表わすようにしてもよい。 The display of the control amount is not limited to the display in the example of FIG. 38, and a display bar for displaying the control amount orthogonal to the display bar for displaying the detection result is provided as shown in FIG. 39A. The control amount may be expressed according to the position of the display bar for displaying the control amount in the same direction as the display direction.
 または、図39Bのように、検出結果を表示するための表示バー内に制御量を表わすバーを設けて、その位置で制御量を表わすようにしてもよい。または、図39Cのように、検出結果を表示するための表示バーに並行して制御量を表示するためのランプを並べて設け、その点灯位置で制御量を表わすようにしてもよい。 Alternatively, as shown in FIG. 39B, a bar representing the control amount may be provided in the display bar for displaying the detection result, and the control amount may be represented at that position. Alternatively, as shown in FIG. 39C, a lamp for displaying the control amount may be provided in parallel with a display bar for displaying the detection result, and the control amount may be represented by its lighting position.
 このように表示されることでも、制御状態も一目で把握することができる。
 (表示制御の変形例2についての説明)
 なお、空気清浄機1Aがセンサ100に加えて、湿度センサや温度センサなどの空気の状態を検出するためのセンサをさらに含む場合、表示制御部210は該センサからのセンサ信号を受信して、上述のセンサ100のそれぞれでのセンサ結果の表示に併せて、温度や湿度などの空気の状態を表示してもよい。
By displaying in this way, the control state can be grasped at a glance.
(Description on Modification 2 of Display Control)
In addition, when the air cleaner 1A further includes a sensor for detecting an air state such as a humidity sensor or a temperature sensor in addition to the sensor 100, the display control unit 210 receives a sensor signal from the sensor, In addition to the display of sensor results in each of the sensors 100 described above, the air state such as temperature and humidity may be displayed.
 このように表示されることでも、制御状態と併せて現在の空気の状態も一目で把握することができる。 This display also makes it possible to grasp at a glance the current air condition together with the control condition.
 [第2の実施の形態]
 <空気調和機の全体構成>
 図40Aは、第2の実施の形態にかかる空気調和機1Bの外観の具体例を示す図である。ここで、空気調和機とは、空気の状態を検出するためのセンサ機能と、空気の状態を設定した状態にするための空気調和機能とを有する装置を指す。
[Second Embodiment]
<Overall configuration of air conditioner>
FIG. 40A is a diagram illustrating a specific example of the appearance of an air conditioner 1B according to the second embodiment. Here, the air conditioner refers to a device having a sensor function for detecting the air condition and an air conditioner function for setting the air condition.
 図40Aを参照して、空気調和機1Bは、図1Aに示された空気清浄機1Aと概ね同じ外観を有するものであり、空気調和機構としてのイオン発生装置300および送風装置400に加えて、湿度調整装置500と、温度調整装置600とを含む。 Referring to FIG. 40A, the air conditioner 1B has substantially the same appearance as the air purifier 1A shown in FIG. 1A. In addition to the ion generator 300 and the blower 400 as an air conditioning mechanism, A humidity adjusting device 500 and a temperature adjusting device 600 are included.
 センサ100としては、空気中の所定の粒子または成分を検出するためのセンサとしての空気清浄機1Aに含まれた微生物を検出するためのセンサや、花粉センサや、においセンサ(ガスセンサ)、などに加えて、空気の状態を検出するためのセンサとして、温度センサや湿度センサなどがさらに含まれる。これらセンサは所定のタイミングで空気の状態を検出し、または常に空気の状態を検出し、その検出結果を表示制御部210および駆動制御部230Aに対して出力する。 Examples of the sensor 100 include a sensor for detecting microorganisms included in the air cleaner 1A as a sensor for detecting predetermined particles or components in the air, a pollen sensor, an odor sensor (gas sensor), and the like. In addition, a temperature sensor, a humidity sensor, and the like are further included as sensors for detecting the air state. These sensors detect the air state at a predetermined timing, or always detect the air state, and output the detection result to the display control unit 210 and the drive control unit 230A.
 図40Bを参照して、空気調和機1Bは、さらに、制御装置200を含む。制御装置200は、図示しないCPUおよびメモリを含む。CPUは、スイッチ110からの指示信号に従って、メモリに記憶されているプログラムを読み出して実行する。これにより、表示パネル130での表示や、センサ100の制御や、通信部150の制御や、イオン発生装置300の制御などを実現する。すなわち、制御装置200は、スイッチ110において空気調和機構のON/OFFやレベルの設定の指示操作を受け付けると、その操作信号に従った制御信号をイオン発生装置300等の該当する空気調和機構に対して出力することで、これら装置を制御する。また、センサ100からの検出結果を表示パネル130に表示させる。そのため、制御装置200は、表示パネル130での表示を制御するための表示制御部210と、センサ100を制御するための検出制御部220と、イオン発生装置300、送風装置400、湿度調整装置500、および温度調整装置600を制御するための駆動制御部230Aとを含む。表示制御部210、検出制御部220および駆動制御部230Aは、プログラムを実行することで主にCPUに構成される機能であってもよいし、電気回路などのハードウェアで構成される機能であってもよい。駆動制御部230Aは、空気清浄機1Aのイオン制御部230や風量制御部240を含む機能である。 Referring to FIG. 40B, air conditioner 1B further includes a control device 200. Control device 200 includes a CPU and a memory (not shown). The CPU reads and executes the program stored in the memory according to the instruction signal from the switch 110. Thereby, display on the display panel 130, control of the sensor 100, control of the communication unit 150, control of the ion generator 300, and the like are realized. That is, when control device 200 accepts an instruction operation for setting the air conditioning mechanism ON / OFF or level at switch 110, control device 200 sends a control signal according to the operation signal to the corresponding air conditioning mechanism such as ion generator 300. To control these devices. Further, the detection result from the sensor 100 is displayed on the display panel 130. Therefore, the control device 200 includes a display control unit 210 for controlling display on the display panel 130, a detection control unit 220 for controlling the sensor 100, an ion generation device 300, a blower device 400, and a humidity adjustment device 500. And a drive control unit 230A for controlling the temperature adjustment device 600. The display control unit 210, the detection control unit 220, and the drive control unit 230A may be functions mainly configured in the CPU by executing a program, or functions configured by hardware such as an electric circuit. May be. The drive control unit 230A has a function including the ion control unit 230 and the air volume control unit 240 of the air cleaner 1A.
 センサ100、送風装置400、およびイオン発生装置300は、空気清浄機1Aに備えられるものと同じであり、ここでは同じ説明を繰り返さない。 Sensor 100, blower 400, and ion generator 300 are the same as those provided in air cleaner 1A, and the same description will not be repeated here.
 なお、イオン発生装置300において発生させたイオン量に関する情報は、駆動制御部230AでのスイッチのON/OFFの制御結果に替えて、図示しない測定装置を含む場合には該測定装置での測定結果であってもよい。この場合、イオン発生装置300は発生させたイオン量に関する情報として該測定装置での測定結果を表示制御部210および駆動制御部230Aに対して出力する。 In addition, the information regarding the amount of ions generated in the ion generation device 300 is the measurement result of the measurement device when a measurement device (not shown) is included instead of the switch ON / OFF control result in the drive control unit 230A. It may be. In this case, the ion generator 300 outputs the measurement result of the measurement device to the display controller 210 and the drive controller 230A as information on the amount of ions generated.
 <湿度調整装置500の説明>
 湿度調整装置500は、一般的な加湿、除湿機能を有する装置であればよい。すなわち、図示しない水を保持するタンク、加熱機構、および冷却機構を有し、タンク内の水を加熱することで蒸気を空気中に送り出し、機外から取り込まれた空気を冷却することで空気内の水蒸気を水にして取り除く。
<Description of Humidity Adjustment Device 500>
The humidity adjusting apparatus 500 may be an apparatus having general humidifying and dehumidifying functions. In other words, it has a tank that holds water (not shown), a heating mechanism, and a cooling mechanism, and heats the water in the tank to send steam into the air and cool the air taken in from outside the machine. Remove water vapor from water.
 加熱機構および冷却機構は駆動制御部230Aに接続される。駆動制御部230Aは加熱機構および冷却機構を制御する。 The heating mechanism and the cooling mechanism are connected to the drive control unit 230A. The drive control unit 230A controls the heating mechanism and the cooling mechanism.
 <温度調整装置600の説明>
 温度調整装置600は、一般的な加熱、冷却機能を有する装置であればよい。すなわち、図示しない加熱機構および冷却機構を有し、機外から取り込まれた空気を加熱することで空気温度を上げ、機外から取り込まれた空気を冷却することで空気温度を下げる。
<Description of Temperature Control Device 600>
The temperature adjustment device 600 may be a device having general heating and cooling functions. That is, it has a heating mechanism and a cooling mechanism (not shown), raises the air temperature by heating the air taken from outside the apparatus, and lowers the air temperature by cooling the air taken from outside the apparatus.
 加熱機構および冷却機構は駆動制御部230Aに接続される。駆動制御部230Aは加熱機構および冷却機構を制御する。 The heating mechanism and the cooling mechanism are connected to the drive control unit 230A. The drive control unit 230A controls the heating mechanism and the cooling mechanism.
 <駆動制御の説明>
 駆動制御部230Aは、センサ100からの検出結果を示す出力と空気調和機構である各装置300,400,500,600からの駆動状態を示す出力とを受け取り、これらに基づいて制御を行なう。
<Description of drive control>
The drive control unit 230A receives the output indicating the detection result from the sensor 100 and the output indicating the driving state from each of the devices 300, 400, 500, and 600, which are air conditioning mechanisms, and performs control based on these.
 空気調和機1Bには、制御モードとしてユーザからの設定に従って各装置300,400,500,600の駆動を制御する手動モードと、自動的に各装置300,400,500,600の駆動を制御する自動モードとがある。駆動制御部230Aは、手動モードの場合にはスイッチ110からの制御信号に従って各装置300,400,500,600の駆動を制御する。一方、自動モードの場合には、後述する判定処理を行なって、その処理結果に従って各装置300,400,500,600の駆動を制御する。なお、手動モードである場合にも、駆動制御部230Aは、表示制御部210に後述する判定処理の結果に応じた情報を表示パネル130で報知させるための制御を行なう。 In the air conditioner 1B, a manual mode for controlling the driving of each device 300, 400, 500, 600 according to a setting from the user as a control mode and a driving for each device 300, 400, 500, 600 are automatically controlled. There is an automatic mode. In the manual mode, the drive control unit 230A controls the drive of each device 300, 400, 500, 600 according to a control signal from the switch 110. On the other hand, in the case of the automatic mode, a determination process described later is performed, and the driving of each device 300, 400, 500, 600 is controlled according to the processing result. Even in the manual mode, the drive control unit 230 </ b> A performs control for causing the display control unit 210 to notify the display panel 130 of information according to a result of determination processing described later.
 図41は、上記の制御を行なうための駆動制御部230Aの機能構成の具体例を示すブロック図である。図41では、駆動制御部230Aの機能が主にソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部は、電気回路などのハードウェア構成で実現されてもよい。 FIG. 41 is a block diagram showing a specific example of a functional configuration of the drive control unit 230A for performing the above control. FIG. 41 shows an example in which the function of the drive control unit 230A is mainly a software configuration. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
 図41を参照して、駆動制御部230Aは、センサ100の検出結果の入力を受け付けるための第1の入力部231と、センサ100の検出結果を用いて後述する「空気の汚染状態」を算出するための演算部232と、各装置300,400,500,600から当該装置の駆動状態を示す信号の入力を受け付けるための第2の入力部233と、算出された「空気の汚染状態」と各装置300,400,500,600の制御状況とを比較して空気の状態に対する空気調和機構の制御状況の適否を判定するための比較部234と、比較結果に応じた制御信号を出力するための出力部235と、比較結果に対応付けた報知情報を記憶するための記憶部236とを含む。 Referring to FIG. 41, drive control unit 230 </ b> A calculates first air input unit 231 for receiving an input of a detection result of sensor 100 and “air pollution state” to be described later using the detection result of sensor 100. A second input unit 233 for receiving an input of a signal indicating the driving state of the device from each of the devices 300, 400, 500, and 600, and the calculated “air pollution state”. In order to output a control signal corresponding to the comparison result, and a comparison unit 234 for comparing the control status of each device 300, 400, 500, 600 to determine the suitability of the control status of the air conditioning mechanism with respect to the air condition Output unit 235 and a storage unit 236 for storing notification information associated with the comparison result.
 ここで「空気の汚染状態」とは、センサ100A~100Cでの検出結果に基づいて算出される、空気中の汚染物質(所定の粒子または成分)の量を表わす値を指す。具体的には、センサ100A~100Cそれぞれの検出結果を加算して得られる値を指す。たとえば、「空気の汚染状態」として、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれについて、所定のセンシング対象の空気量に対する割合(%)を算出し、各割合を加えて得られる値(%)を用いることができる。「空気の汚染状態」は、センシング対象の空気量における清浄ではない要素の量の割合を表わしていると言える。「空気の汚染状態」は、センサ100A~100Cの検出結果に基づいた他の方法で算出されてもよい。 Here, the “air contamination state” refers to a value representing the amount of contaminants (predetermined particles or components) in the air, which is calculated based on the detection results of the sensors 100A to 100C. Specifically, it indicates a value obtained by adding the detection results of the sensors 100A to 100C. For example, as the “air pollution state”, the ratio of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air to the predetermined sensing target air amount (%) And the value (%) obtained by adding each ratio can be used. It can be said that the “air pollution state” represents the ratio of the amount of elements that are not clean to the amount of air to be sensed. The “air contamination state” may be calculated by another method based on the detection results of the sensors 100A to 100C.
 各センサでの検出結果の所定のセンシング対象の空気量に対する割合(%)を得るための、基準値とする所定のセンシング対象の空気量は、予め演算部232に記憶されているものであってもよいし、所定の登録動作によってたとえばスイッチ110などによって入力され、記憶されるものであってもよい。 The predetermined sensing target air amount as a reference value for obtaining a ratio (%) of the detection result of each sensor to the predetermined sensing target air amount is stored in the arithmetic unit 232 in advance. Alternatively, it may be input and stored by, for example, the switch 110 by a predetermined registration operation.
 空気中の微生物量の所定のセンシング対象の空気量に対する割合(%)を得るための演算を行なうため、センサ100Aにおいて微生物量が粒子個数として得られる場合、演算部232は、所定のセンシング対象の空気量(たとえば上述の検出時間あたりにケース5に導入された空気量Vs)中の微生物数の最大値Nmaxを記憶しておき、検出結果として入力される所定体積あたりの微生物の数Nをかかる最大値Nmaxで除することで、所定体積あたりの粒子数の最大値に対する微生物数の割合N/Nmaxを得る。または、センサ100Aにおいて微生物量が粒子濃度として得られる場合、演算部232は、所定のセンシング対象の空気量中の微生物濃度の最大値を記憶しておき、検出結果として入力される微生物の濃度をかかる最大値で除することで、濃度の最大値に対する微生物濃度の割合を得る。 In order to perform the calculation for obtaining the ratio (%) of the amount of microorganisms in the air to the amount of air of a predetermined sensing target, when the amount of microorganisms is obtained as the number of particles in the sensor 100A, the calculation unit 232 The maximum value Nmax of the number of microorganisms in the amount of air (for example, the amount of air Vs introduced into the case 5 per the above detection time) is stored, and the number N of microorganisms per predetermined volume input as a detection result is applied. By dividing by the maximum value Nmax, the ratio N / Nmax of the number of microorganisms to the maximum value of the number of particles per predetermined volume is obtained. Alternatively, when the amount of microorganisms is obtained as the particle concentration in the sensor 100A, the calculation unit 232 stores the maximum value of the microorganism concentration in the predetermined amount of air to be sensed, and calculates the concentration of microorganisms input as a detection result. By dividing by this maximum value, the ratio of the microorganism concentration to the maximum concentration value is obtained.
 空気中の埃量、花粉量、ガス量の所定のセンシング対象の空気量に対する割合(%)を得るための演算も同様に行なわれる。 The calculation for obtaining the ratio (%) of the dust amount, pollen amount, and gas amount in the air to the predetermined sensing target air amount is similarly performed.
 演算部232は、さらに、上述のように算出された空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれを加えて、「空気の汚染状態」を表わす値(%)を得る。「空気の汚染状態」を表わす値を得る方法の一例としては、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれに予め規定された係数を乗じた上で加える方法が挙げられる。たとえば、空気中の埃量を表わす係数を乗じた後の値が20点、空気中の微生物量を表わす係数を乗じた後の値が25、および空気中のガス量を表わす係数を乗じた後の値が10で得られた場合、「空気の汚染状態」を表わす値はそれらを加えて55%で得られる。なお、この場合は、すべての項目の値が100%でなくても空気状態は100%となる場合がある。たとえば、空気中の埃量を表わす係数を乗じた後の値が40、空気中の微生物量を表わす係数を乗じた後の値が40、および空気中のガス量を表わす係数を乗じた後の値が20となった場合には、「空気の汚染状態」を表わす値はそれらを加えて100%となる。なお、ここでの係数は所定の係数に限定されない。たとえば、すべての項目の値が100%となるときに「空気の汚染状態」を表わす値が100%となるよう設定されていてもよい。 The calculation unit 232 further adds each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air calculated as described above to obtain the “air pollution state”. A value (%) representing is obtained. As an example of a method for obtaining a value representing the “air pollution state”, a predetermined coefficient is set for each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air. The method of adding after multiplying is mentioned. For example, after multiplying the coefficient representing the amount of dust in the air by 20 points, multiplying the coefficient representing the amount of microorganisms in the air by 25, and the coefficient representing the amount of gas in the air If the value of is obtained at 10, the value representing the “air pollution status” is added at 55%. In this case, the air condition may be 100% even if the values of all items are not 100%. For example, the value after multiplying the coefficient representing the amount of dust in the air is 40, the value after multiplying the coefficient representing the amount of microorganisms in the air is 40, and the coefficient representing the amount of gas in the air When the value is 20, the value representing the “air pollution state” is 100% by adding them. The coefficient here is not limited to a predetermined coefficient. For example, when the values of all items are 100%, the value indicating “air pollution state” may be set to 100%.
 なお、「空気の汚染状態」を表わす値を得る方法の他の例としては、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量のそれぞれについて予め規定値を定め、該規定値に対するそれぞれのセンサ出力値の割合(%)を用いて算出する方法も挙げられる。 In addition, as another example of a method for obtaining a value representing “air pollution state”, each of the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air is specified in advance. There is also a method in which a value is determined and calculated using the ratio (%) of each sensor output value to the specified value.
 図42は、判定処理の流れを示すフローチャートである。図42のフローチャートに示される処理は、制御装置200に含まれる図示しないCPUがメモリに記憶されるプログラムを読み出して実行することによって図40Aおよび図40Bに示された各機能を発揮させて実現される。 FIG. 42 is a flowchart showing the flow of determination processing. The process shown in the flowchart of FIG. 42 is realized by causing a CPU (not shown) included in the control device 200 to read out and execute a program stored in the memory, thereby causing the functions shown in FIGS. 40A and 40B to be performed. The
 図42を参照して、駆動制御部230Aは、はじめにS101で、メモリのセンサ100から出力された検出結果を示す値を記憶するための領域と、各装置300,400,500,600から出力された当該装置の駆動状態を示す値を記憶するための領域とを初期化する。 Referring to FIG. 42, drive control unit 230A first outputs an area for storing a value indicating the detection result output from sensor 100 of the memory and each device 300, 400, 500, 600 in S101. In addition, an area for storing a value indicating the driving state of the apparatus is initialized.
 次に、S103で駆動制御部230Aは、センサ100から出力された信号を受信することで、センサ100A~100Cのそれぞれでの検出値、および温度センサで検出された温度、湿度センサで検出された湿度をメモリの所定領域に書き込む。そして、S105で駆動制御部230Aは、センサ100A~100Cでの検出値に基づいて「空気の汚染状態」を算出する。 Next, in S103, the drive control unit 230A receives the signal output from the sensor 100, thereby detecting the detected value in each of the sensors 100A to 100C, the temperature detected by the temperature sensor, and the humidity sensor. The humidity is written in a predetermined area of the memory. In S105, the drive control unit 230A calculates an “air contamination state” based on the detection values of the sensors 100A to 100C.
 また、S107で駆動制御部230Aは、各装置300,400,500,600から出力された信号を受信することで、装置300,400,500,600それぞれの制御状況を表わす情報をメモリの所定領域に書き込む。制御状況を表わす情報は、具体的には、イオン発生装置300からの信号に基づいて現在設定されているイオン濃度、送風装置400からの信号に基づいて現在設定されている風量、湿度調整装置500からの信号に基づいて現在設定されている湿度、温度調整装置600からの信号に基づいて現在設定されている温度、が該当する。 In S107, the drive control unit 230A receives the signals output from the devices 300, 400, 500, and 600, and thereby stores information indicating the control status of the devices 300, 400, 500, and 600 in a predetermined area of the memory. Write to. Specifically, the information indicating the control status includes the ion concentration currently set based on the signal from the ion generator 300, the air volume currently set based on the signal from the blower 400, and the humidity adjustment device 500. The humidity that is currently set based on the signal from, and the temperature that is currently set based on the signal from the temperature adjustment device 600 are applicable.
 S109で駆動制御部230Aは、現在の空気の汚染状態と各装置300,400,500,600の現在の制御状況とを比較する。具体的には、駆動制御部230Aは各装置300,400,500,600における制御状況を空気の汚染状態と比較可能とするような換算式を記憶しており、比較対象とする装置の制御状況を該換算式で比較可能な値に換算してS105で算出された空気の汚染状態と比較する。 In S109, the drive control unit 230A compares the current air contamination state with the current control status of each device 300, 400, 500, 600. Specifically, the drive control unit 230A stores a conversion formula that makes it possible to compare the control status in each of the devices 300, 400, 500, and 600 with the air contamination status, and the control status of the device to be compared. Is converted into a value comparable with the conversion formula and compared with the air contamination state calculated in S105.
 比較の結果、空気の汚染状態が各装置300,400,500,600における制御状況を表わす値よりも小さい場合(S109で「状態<能力」)、駆動制御部230Aは、現在の各装置300,400,500,600の制御状況が現在の空気の状態に対して過剰である「過剰駆動状態」であると判定する。この場合、S111で駆動制御部230Aは、表示パネル130に省エネルギーを促すような警告表示をさせる。なお、S111での警告は表示パネル130での表示には限定されず、音声(ブザー、チャイム)やメロディや光やテキスト表示やそれらの組み合わせであってもよい。 As a result of the comparison, when the air pollution state is smaller than the value representing the control status in each device 300, 400, 500, 600 (“state <ability” in S109), the drive control unit 230A determines that the current device 300, It is determined that the control status of 400, 500, and 600 is an “overdrive state” that is excessive with respect to the current air state. In this case, in S111, the drive control unit 230A causes the display panel 130 to display a warning that promotes energy saving. Note that the warning in S111 is not limited to display on the display panel 130, but may be voice (buzzer, chime), melody, light, text display, or a combination thereof.
 なお、予め、判定結果に対応付けて警告のための情報が記憶部236に記憶されている。「過剰駆動状態」であるとの判定結果に対しては、省エネルギーを促すような警告内容である警告情報が記憶されている。そこで、この場合、駆動制御部230Aでは当該警告情報を読み出して、表示させるための制御信号と共に表示制御部210に入力する。 Note that information for warning is stored in advance in the storage unit 236 in association with the determination result. For the determination result that the state is the “overdrive state”, warning information that is a warning content that promotes energy saving is stored. Therefore, in this case, the drive control unit 230A reads the warning information and inputs it to the display control unit 210 together with a control signal for display.
 このとき、制御モードが手動モードである場合には(S113で「手動」)、S115で駆動制御部230Aは現在の各装置300,400,500,600の制御状況を維持する。しかしながら、制御モードが自動モードである場合は(S113で「自動」)、S117で駆動制御部230Aは、現在の空気の汚染状態に対して各装置300,400,500,600の制御状況が適切になるような制御を実行する。S117の制御の具体例としては、具体的には、装置300,400,500,600の内の制御対象の装置の制御状況を、予め規定しているランク分だけ清浄能力を落とす方向に変更する制御が挙げられる。たとえば、イオン発生装置300におけるイオンの発生量を所定量だけ減少させる制御が挙げられる。またたとえば、送風装置400における送風量を所定量だけ減少させる制御が挙げられる。このための制御信号もまた、予めこの判定結果である「過剰駆動状態」であるとの判定結果に対応付けて記憶部236に記憶されている。 At this time, if the control mode is the manual mode (“manual” in S113), the drive control unit 230A maintains the current control status of each device 300, 400, 500, 600 in S115. However, when the control mode is the automatic mode (“automatic” in S113), the drive control unit 230A determines that the control status of each device 300, 400, 500, 600 is appropriate for the current air contamination state in S117. The control which becomes becomes is executed. As a specific example of the control of S117, specifically, the control status of the device to be controlled among the devices 300, 400, 500, and 600 is changed to a direction in which the cleaning capability is reduced by a predetermined rank. Control. For example, the control which reduces the generation amount of the ion in the ion generator 300 by predetermined amount is mentioned. Further, for example, there is a control for reducing the amount of air blown by the blower 400 by a predetermined amount. The control signal for this purpose is also stored in advance in the storage unit 236 in association with the determination result that is the “overdrive state” that is the determination result.
 さらにこの場合、手動モードから自動モードに変更する指示入力を受け付けてもよいし、逆に、自動モードから手動モードに変更する指示入力を受け付けてもよい。その場合、駆動制御部230Aは制御モードを指示されたモードに変更し、S115の処理またはS117の処理を実行する。 Further, in this case, an instruction input for changing from the manual mode to the automatic mode may be accepted, or conversely, an instruction input for changing from the automatic mode to the manual mode may be accepted. In that case, the drive control unit 230A changes the control mode to the instructed mode, and executes the process of S115 or the process of S117.
 S109での比較の結果、空気の汚染状態が各装置300,400,500,600における制御状況を表わす値とほぼ同等である場合(S109で「状態≒能力」)、駆動制御部230Aは、現在の各装置300,400,500,600の制御状況が現在の空気の状態に対して適切である「適正駆動状態」であると判定する。この場合、S119で駆動制御部230Aは、現在の各装置300,400,500,600の制御状況を維持するための制御信号を出力する。 As a result of the comparison in S109, when the air contamination state is substantially equal to the value representing the control status in each device 300, 400, 500, 600 (“state≈capability” in S109), the drive control unit 230A It is determined that the control status of each of the devices 300, 400, 500, 600 is an “appropriate driving state” that is appropriate for the current air state. In this case, in S119, the drive control unit 230A outputs a control signal for maintaining the current control status of each device 300, 400, 500, 600.
 S109での比較の結果、空気の汚染状態が各装置300,400,500,600における制御状況を表わす値よりも大きい場合(S109で「状態>能力」)、駆動制御部230Aは、現在の各装置300,400,500,600の制御状況が現在の空気の状態に対して過少である「過少駆動状態」であると判定する。この場合、S121で駆動制御部230Aは、表示パネル130に各装置300,400,500,600の制御モードのアップを促すような警告表示をさせる。なお、S121での警告も表示パネル130での表示には限定されず、音声(ブザー、チャイム)やメロディや光やテキスト表示やそれらの組み合わせであってもよい。このための警告情報も、予め、「過少駆動状態」であるとの判定結果に対応付けて記憶部236に記憶されている。 As a result of the comparison in S109, when the air pollution state is larger than the value representing the control status in each device 300, 400, 500, 600 (“state> capability” in S109), the drive control unit 230A It is determined that the control status of the devices 300, 400, 500, 600 is an “under-driven state” in which the control status is too small relative to the current air status. In this case, in S121, the drive control unit 230A causes the display panel 130 to display a warning that prompts the control mode of each device 300, 400, 500, 600 to be increased. Note that the warning in S121 is not limited to the display on the display panel 130, and may be voice (buzzer, chime), melody, light, text display, or a combination thereof. Warning information for this purpose is also stored in advance in the storage unit 236 in association with the determination result that the state is the “under drive state”.
 このとき、制御モードが手動モードである場合には(S123で「手動」)、S125で駆動制御部230Aは現在の各装置300,400,500,600の制御状況を維持する。しかしながら、制御モードが自動モードである場合は(S123で「自動」)、S127で駆動制御部230Aは、現在の空気の汚染状態に対して各装置300,400,500,600の制御状況が適切になるような制御を実行する。 At this time, if the control mode is the manual mode (“manual” in S123), the drive control unit 230A maintains the current control status of each device 300, 400, 500, 600 in S125. However, when the control mode is the automatic mode (“automatic” in S123), the drive control unit 230A determines that the control status of each device 300, 400, 500, 600 is appropriate for the current air contamination state in S127. The control which becomes becomes is executed.
 さらにこの場合、手動モードから自動モードに変更する指示入力を受け付けてもよいし、逆に、自動モードから手動モードに変更する指示入力を受け付けてもよい。その場合、駆動制御部230Aは制御モードを指示されたモードに変更し、S125の処理またはS127の処理を実行する。 Further, in this case, an instruction input for changing from the manual mode to the automatic mode may be accepted, or conversely, an instruction input for changing from the automatic mode to the manual mode may be accepted. In that case, the drive control unit 230A changes the control mode to the instructed mode, and executes the process of S125 or the process of S127.
 S127の制御の具体例としては、具体的には、装置300,400,500,600の内の必要な装置の制御状況を、予め規定しているランク分だけ清浄能力を挙げる方向に変更する制御が挙げられる。たとえば、イオン発生装置300におけるイオンの発生量を所定量だけ増加させる制御が挙げられる。またたとえば、送風装置400における送風量を所定量だけ増加させる制御が挙げられる。 As a specific example of the control in S127, specifically, control for changing the control status of a required device among the devices 300, 400, 500, and 600 in a direction to increase the cleaning capability by a predetermined rank. Is mentioned. For example, the control which increases the generation amount of the ion in the ion generator 300 by predetermined amount is mentioned. Further, for example, there is a control for increasing the amount of air blown by the blower 400 by a predetermined amount.
 所定の判定タイミングで以上の判定および制御を行なった後、駆動制御部230Aは次の判定タイミングに達するまで待機する。そして、次の判定タイミングに達すると(S129でYES)、S103以降の処理を繰り返す。好ましくは、駆動制御部230Aは、当該空気清浄機1Aが稼動している間、所定の時間間隔でS103以降の処理を繰り返す。これにより、空気調和機構の制御状況が空気の状態に対してバランスのよい状態となる。 After performing the above determination and control at a predetermined determination timing, the drive control unit 230A waits until the next determination timing is reached. When the next determination timing is reached (YES in S129), the processes after S103 are repeated. Preferably, the drive control unit 230A repeats the processes after S103 at predetermined time intervals while the air purifier 1A is operating. Thereby, the control condition of the air conditioning mechanism is in a well-balanced state with respect to the air state.
 以上の処理については、後に、表示例と併せて具体的に説明する。
 <表示制御の説明>
 表示制御部210は、センサ100から受信した検出結果および各装置300,400,500,600での制御状況を表示パネル130に表示させるための処理を実行する。ここでは、具体例として、表示制御部210は、空気中の微生物量、空気中の埃量、空気中の花粉量、および空気中のガス量を総合して得られた空気の汚染状態と、送風装置400からの信号より得られた風量とを表わした表示画面を表示パネル130に表示させる例を挙げて、説明する。装置300,400,500,600のうちの他の装置での制御状況を表示する場合も同様である。
The above processing will be specifically described later together with display examples.
<Description of display control>
The display control unit 210 executes processing for causing the display panel 130 to display the detection result received from the sensor 100 and the control status of each device 300, 400, 500, 600. Here, as a specific example, the display control unit 210 includes an air pollution state obtained by combining the amount of microorganisms in the air, the amount of dust in the air, the amount of pollen in the air, and the amount of gas in the air, An example in which a display screen representing the air volume obtained from the signal from the blower 400 is displayed on the display panel 130 will be described. The same applies to the case of displaying the control status of another device among the devices 300, 400, 500, and 600.
 図43は、表示制御部210の機能構成の具体例を示すブロック図である。図43の機能構成は、図29に示された空気清浄機1Aの表示制御部210の機能構成と概ね同じであり、上述の記憶部205が含まれていない点のみが異なっている。 FIG. 43 is a block diagram illustrating a specific example of a functional configuration of the display control unit 210. The functional configuration of FIG. 43 is substantially the same as the functional configuration of the display control unit 210 of the air purifier 1A shown in FIG. 29, except that the above-described storage unit 205 is not included.
 すなわち、図43を参照して、表示制御部210は、センサ100からの検出結果の入力および装置300,400,500,600からの制御状況を示す信号の入力を受け付けるための入力部201と、後述する表示量を演算するための演算部202と、表示データを生成するための生成部203と、表示データを表示パネル130に対して出力し画面表示を行なわせるための出力部204とを含む。 That is, referring to FIG. 43, display control unit 210 has an input unit 201 for receiving an input of a detection result from sensor 100 and an input of a signal indicating a control status from devices 300, 400, 500, 600, A calculation unit 202 for calculating a display amount, which will be described later, a generation unit 203 for generating display data, and an output unit 204 for outputting the display data to the display panel 130 to cause screen display. .
 図44Aは、表示画面の具体例を示す図である。図44Aを参照して、表示制御部210は、全割合(100%)に相当する長さの表示バー131において、現時点での空気の汚染状態をその値に応じた長さの表示セグメント131Aで表わす。「空気の汚染状態」は駆動制御部230Aでの制御において算出されたものと同じである。演算部202は演算部232と同様にして空気の汚染状態を算出してもよいし、演算部232から演算結果を取得してもよい。 FIG. 44A is a diagram showing a specific example of the display screen. Referring to FIG. 44A, the display control unit 210 displays the current air pollution state in the display segment 131A having a length corresponding to the value in the display bar 131 having a length corresponding to the total ratio (100%). Represent. The “air contamination state” is the same as that calculated in the control by the drive control unit 230A. The calculation unit 202 may calculate the air contamination state in the same manner as the calculation unit 232, or may acquire a calculation result from the calculation unit 232.
 表示バー131としては、所定数のライト(たとえばLED等)を連続してなるものであって、そのうちの「空気の汚染状態」として表わされる値に応じた数のライトを点灯させることで表示セグメント131Aを表示するものが挙げられる。または、表示バー131は、液晶画面である表示パネル130上で表示される所定長さの矩形形状であって、そのうちの「空気の汚染状態」として表わされる値に応じた長さ部分が他の部分と表示形態が異なるものであってもよい。 As the display bar 131, a predetermined number of lights (for example, LEDs, etc.) are continuously formed, and the number of lights corresponding to the value represented as the “air pollution state” is turned on to display segments. One that displays 131A is mentioned. Alternatively, the display bar 131 has a rectangular shape with a predetermined length displayed on the display panel 130 which is a liquid crystal screen, and the length portion corresponding to the value represented as “air contamination state” is the other length. The part and the display form may be different.
 演算部202は、算出された空気の状態を表わす値に基づいて表示セグメント131Aの長さを算出する。ここでは、予め100%に対応した表示バー131の長さまたは表示バー131を形成するライトの数を記憶しており、それに対して算出された空気の汚染状の値(%)に対応した長さ、またはライトの数を算出する。 The computing unit 202 calculates the length of the display segment 131A based on the calculated value representing the air state. Here, the length of the display bar 131 corresponding to 100% or the number of lights forming the display bar 131 is stored in advance, and the length corresponding to the air pollution state value (%) calculated for the length. Or the number of lights.
 さらに、演算部202は、図44Aに示されるように、入力された装置300,400,500,600での制御状況のうちの表示対象とする送風装置400の制御状況を表示するための表示領域132に当該制御状況を表示する。そのため、演算部202は、表示領域132における当該制御状況を表わす表示位置を算出する。 Furthermore, as shown in FIG. 44A, the calculation unit 202 displays a display area for displaying the control status of the blower device 400 to be displayed among the control statuses of the input devices 300, 400, 500, and 600. The control status is displayed at 132. Therefore, the calculation unit 202 calculates a display position representing the control status in the display area 132.
 表示領域132としても、所定数のライト(たとえばLED等)を連続してなるものであって、そのうちの送風装置400の制御状況に応じた位置や数のライトを点灯させることで当該制御状況を表示させるものが挙げられる。 The display area 132 is also composed of a predetermined number of lights (for example, LEDs) continuously, and the control status is indicated by lighting the position and the number of lights according to the control status of the blower 400. What is displayed.
 表示領域132の表示幅は表示バー131の表示幅と対応しており、表示領域132の表示幅は、表示バー131の全表示幅に対応した空気の汚染状態に対して適正な制御状況を表わすものである。演算部202は、予め各装置300,400,500,600の制御状況について表示バー131の全表示幅に対応した空気の汚染状態に対して適正な制御状況を記憶しており、それに対する現在の制御状況の割合を算出することで、表示領域132における表示位置を特定する。 The display width of the display area 132 corresponds to the display width of the display bar 131, and the display width of the display area 132 represents an appropriate control state with respect to the air contamination state corresponding to the entire display width of the display bar 131. Is. The calculation unit 202 stores in advance an appropriate control status for the air contamination state corresponding to the entire display width of the display bar 131 with respect to the control status of each device 300, 400, 500, 600, and the current By calculating the ratio of the control status, the display position in the display area 132 is specified.
 なお、表示領域132における表示位置は、駆動制御部230Aに記憶されている換算式を用いて、上記S109で各装置300,400,500,600からの出力値を空気の汚染状態と比較可能な値に換算したときの、換算後の値の表示バー131での表示位置に相当する。従って、演算部202は、駆動制御部230Aの上記処理で得られた換算された値を取得するようにしてもよい。 In addition, the display position in the display area 132 can compare the output value from each apparatus 300,400,500,600 with the air pollution state in S109 using the conversion formula stored in the drive control unit 230A. This corresponds to the display position of the converted value on the display bar 131 when converted to a value. Therefore, the calculation unit 202 may acquire the converted value obtained by the above processing of the drive control unit 230A.
 制御状況を示す表示位置を決定する他の方法も挙げられる。すなわち、送風装置400の制御状況を反映して、たとえば、送風装置400における風量のレベルが「弱」「中」「強」の3段階ならば、「強」のときに表示領域132の全表示幅に相当する位置、「中」のときに全表示幅の2/3の位置、「弱」のときに全表示幅の1/3の位置と特定する、などの方法が挙げられる。この方法では、3段階以上の多段階であっても、同様に全表示幅に対しての比率で表示位置を特定することができる。 Other methods for determining the display position indicating the control status can also be mentioned. That is, reflecting the control status of the blower 400, for example, if the airflow level in the blower 400 is three levels of “weak”, “medium”, and “strong”, the entire display area 132 is displayed when “strong”. For example, a position corresponding to the width, a position that is 2/3 of the total display width when “medium”, and a position that is 1/3 of the total display width when “weak” are used. In this method, the display position can be specified by the ratio to the total display width in the same manner even in three or more stages.
 具体例として、送風装置400からの制御状況を示す信号に基づいてその制御状況を表示する場合、演算部202は、表示バー131の全表示幅に対応した空気の汚染状態に対して適正な風量を表示領域132の全表示幅とし、送風装置400からの信号から得られる現在設定されている風量の上記適正な風量に対する割合を算出して、表示領域132の全表示幅に対する該割合に相当する位置をその制御状況に応じた位置として特定する。 As a specific example, when the control status is displayed based on a signal indicating the control status from the blower 400, the calculation unit 202 has an appropriate air volume for the air contamination state corresponding to the entire display width of the display bar 131. Is the total display width of the display area 132, and the ratio of the currently set air volume obtained from the signal from the blower 400 to the appropriate air volume is calculated and corresponds to the ratio of the total display width of the display area 132. The position is specified as a position corresponding to the control situation.
 生成部203は、演算部202で算出された表示セグメント131Aの長さ(またはライトの数)および表示領域132上の制御状況を表わす表示位置に基づいて、図44Aに示されたような画面を表示パネル130に表示させるための表示データを生成する。出力部204は、生成された表示データを表示パネル130に対して出力し、該表示データで表わされる表示画面を表示パネル130で表示させる。 The generation unit 203 displays a screen as shown in FIG. 44A based on the display segment 131A length (or the number of lights) calculated by the calculation unit 202 and the display position indicating the control status on the display area 132. Display data to be displayed on the display panel 130 is generated. The output unit 204 outputs the generated display data to the display panel 130 and causes the display panel 130 to display a display screen represented by the display data.
 なお、図44Aは表示画面の一例であって、制御状況の表示の他の例として、たとえば図44Bに示されたように、予め各風量に応じた表示セグメントを設け、現在設定されている風量に該当する表示セグメントを点灯するような表示方法であってもよい。または、図44Cに示されるように、表示領域132は表示バー131と重なって設けられ、表示バー131内に空気の汚染状態を表わす表示セグメント131Aが表示されると共に、現在設定されている風量に相当する位置が点灯するような表示方法であってもよい。または、図44Dに示されるように、表示領域132が表示バー131と同様の構成であって、現在設定されている風量に該当する位置が点灯するような表示方法であってもよい。 FIG. 44A is an example of the display screen. As another example of the display of the control status, for example, as shown in FIG. 44B, a display segment corresponding to each air volume is provided in advance, and the currently set air volume is set. A display method may be used in which the display segment corresponding to is turned on. Alternatively, as shown in FIG. 44C, the display area 132 is provided so as to overlap the display bar 131, and a display segment 131 </ b> A representing the air contamination state is displayed in the display bar 131 and the currently set air volume is set. A display method in which the corresponding position is lit may be used. Alternatively, as shown in FIG. 44D, the display area 132 may have the same configuration as the display bar 131, and the display method may be such that the position corresponding to the currently set air volume is lit.
 <表示と駆動制御との具体例>
 (第1の例)
 図45Aは、あるタイミングにおける表示画面の具体例を示す図である。この状態において判定タイミングに達し、駆動制御部230Aにおいて判定処理が行なわれるものとする。
<Specific examples of display and drive control>
(First example)
FIG. 45A is a diagram showing a specific example of a display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A.
 図45Aを参照して、このとき、空気の汚染状態を示す表示セグメント131Aの表示幅は、現在設定されている風量を示す表示位置を越えている。従って、この場合、駆動制御部230Aにおいて「過少駆動状態」であると判定される。そして、図示しない、警告表示がなされて、風量が不足している旨、および空気の汚染状態が進んでいる旨が報知される。 Referring to FIG. 45A, at this time, the display width of the display segment 131A indicating the air contamination state exceeds the display position indicating the currently set air volume. Therefore, in this case, it is determined that the drive control unit 230A is in the “under drive state”. Then, a warning display (not shown) is made to notify that the air volume is insufficient and that the air pollution state is progressing.
 また、自動制御モードである場合には、駆動制御部230AにおいてS127の制御が行なわれ、送風装置400の風量を増加するように制御される。この制御によって送風装置400からの風量が増加し、それによって空気の汚染状態が減少する。そして、図45Bに示されるように、空気の汚染状態を示す表示セグメント131Aの表示幅が現在設定されている風量を示す表示位置を下回ると、駆動制御部230Aにおいて「適正駆動状態」であると判定され、その駆動状態が維持される。 In the case of the automatic control mode, the control of S127 is performed in the drive control unit 230A, and the air volume of the blower 400 is controlled to be increased. This control increases the air volume from the blower 400, thereby reducing the air pollution state. Then, as shown in FIG. 45B, when the display width of the display segment 131A indicating the air contamination state falls below the display position indicating the currently set air volume, the drive control unit 230A is in the “appropriate driving state”. Determination is made and the driving state is maintained.
 (第2の例)
 図46Aは、あるタイミングにおける表示画面の具体例を示す図である。この状態において判定タイミングに達し、駆動制御部230Aにおいて判定処理が行なわれるものとする。
(Second example)
FIG. 46A is a diagram showing a specific example of a display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A.
 図46Aに示されるように、表示制御部210は、装置300,400,500,600の内の複数の装置の制御状況を表示するようにしてもよい。図46Aの例では、イオン濃度と風量とが表示されている。 46A, the display control unit 210 may display the control status of a plurality of devices among the devices 300, 400, 500, and 600. In the example of FIG. 46A, the ion concentration and the air volume are displayed.
 図46Aを参照して、このとき、空気の汚染状態を示す表示セグメントの表示幅はイオン濃度の表示位置および風量の表示位置のいずれも上回っていない。従って、この場合、S109で駆動制御部230Aにおいて「適正駆動状態」と判定されてもよい。 Referring to FIG. 46A, at this time, the display width of the display segment indicating the air contamination state does not exceed either the ion concentration display position or the airflow display position. Therefore, in this case, the drive control unit 230A may determine “appropriate drive state” in S109.
 しかしながら、第2の例として、駆動制御部230Aは、センサ100でのそれぞれの検出結果のうち、装置300,400,500,600のそれぞれに対応する項目について、該装置の制御状況と比較する。たとえば、イオン濃度に関しては、ガスセンサでの検出結果よおび微生物センサでの微生物の検出結果が対応する項目とされ、現在設定されているイオン濃度とこれらセンサでの検出結果とが比較される。 However, as a second example, the drive control unit 230A compares the items corresponding to the devices 300, 400, 500, and 600 among the detection results of the sensor 100 with the control status of the device. For example, regarding the ion concentration, the detection result by the gas sensor and the detection result of the microorganism by the microorganism sensor are set as corresponding items, and the currently set ion concentration and the detection result by these sensors are compared.
 対応する項目の具体例として、イオン発生装置に対してはガスセンサでの検出結果や微生物センサでの微生物の検出結果や花粉センサでの検出結果が該当する。送風装置に対しては微生物センサでの埃の検出結果や花粉センサでの検出結果が該当する。空気調和機1Bが空気清浄機能としてフィルタや活性炭フィルタを採用するものである場合には、さらに、ガスセンサでの検出結果も該当し得る。湿度調整装置500に対しては湿度センサでの検出結果および微生物センサでの微生物の検出結果が該当し、温度調整装置600に対しては温度センサでの検出結果および微生物センサでの微生物の検出結果が該当する。 As a specific example of the corresponding item, the detection result by the gas sensor, the detection result of the microorganism by the microorganism sensor, and the detection result by the pollen sensor correspond to the ion generator. For the blower, the detection result of the dust by the microorganism sensor and the detection result of the pollen sensor are applicable. When the air conditioner 1B employs a filter or an activated carbon filter as an air cleaning function, a detection result by a gas sensor can also correspond. The humidity adjustment device 500 corresponds to the detection result of the humidity sensor and the microorganism detection result of the microorganism sensor, and the temperature adjustment device 600 corresponds to the detection result of the temperature sensor and the microorganism detection result of the microorganism sensor. Is applicable.
 図46Aに表わされた空気の汚染状態の内訳として、ガスセンサでの検出結果と微生物センサでの微生物の検出結果とが、それぞれ図46Bに示されるような内訳である場合、いずれの検出結果を表わす表示セグメントも現在設定されているイオン濃度の表示位置を上回っていない。そのため、この内訳である場合には、駆動制御部230Aは「適正駆動状態」と判定する。 As the breakdown of the air pollution state shown in FIG. 46A, when the detection result of the gas sensor and the detection result of the microorganism by the microorganism sensor are the breakdown as shown in FIG. 46B, which detection result is The displayed display segment does not exceed the currently set ion concentration display position. Therefore, in the case of this breakdown, the drive control unit 230A determines “appropriate drive state”.
 一方、図46Aに表わされた空気の汚染状態の内訳として、ガスセンサでの検出結果と微生物センサでの微生物の検出結果とが、それぞれ図46Cに示されるような内訳である場合、微生物センサでの微生物の検出結果を表わす表示セグメントが現在設定されているイオン濃度の表示位置を上回っている。そのため、この内訳である場合には、駆動制御部230Aはイオン発生装置に関して「過少駆動状態」と判定し、自動制御モードである場合にはイオン濃度を増加させるようイオン発生装置を制御する。すなわち、第2の例の場合、空気の汚染状態を表わす表示セグメントがイオン濃度の表示位置を下回っていても、空気の汚染状態の内訳として微生物センサでの微生物の検出結果を表わす表示セグメントやガスセンサでの検出結果を表わす表示セグメントが一つでもイオン濃度の表示位置を上回っているなら、イオン発生装置に関して「過少駆動状態」と判定し、その旨の警告や自動制御を行なう。 On the other hand, as a breakdown of the air pollution state shown in FIG. 46A, when the detection result of the gas sensor and the detection result of the microorganism by the microorganism sensor are the breakdown as shown in FIG. The display segment representing the detection result of the microorganism exceeds the display position of the currently set ion concentration. Therefore, in this breakdown, the drive control unit 230A determines that the ion generation device is “under-driven”, and controls the ion generation device to increase the ion concentration in the automatic control mode. That is, in the case of the second example, even if the display segment representing the air contamination state is below the ion concentration display position, the display segment or gas sensor representing the detection result of microorganisms by the microorganism sensor as a breakdown of the air contamination state If any one of the display segments representing the detection results at is above the display position of the ion concentration, it is determined that the ion generator is in an “under-driven state”, and a warning or automatic control to that effect is performed.
 第2の例の場合、空気の汚染状態を表わす表示セグメントがイオン濃度の表示位置を上回っていても、空気の汚染状態の内訳として微生物センサでの微生物の検出結果を表わす表示セグメントやガスセンサでの検出結果を表わす表示セグメントがイオン濃度の表示位置を上回っていない場合には、イオン発生装置に関しては「過少駆動状態」と判定しないようにしてもよい。なぜなら、この場合は、イオン濃度に関連しないたとえば埃等の項目を要因として空気が汚染していると考えられるからである。 In the case of the second example, even if the display segment representing the air pollution state exceeds the display position of the ion concentration, the breakdown of the air pollution state is caused by the display segment representing the detection result of the microorganisms by the microorganism sensor or the gas sensor. When the display segment representing the detection result does not exceed the ion concentration display position, the ion generator may not be determined to be in the “under-driven state”. This is because in this case, the air is considered to be contaminated due to factors such as dust that are not related to the ion concentration.
 なお、空気の汚染状態を表わす表示セグメントが風量の表示位置を上回った場合は、その内訳に関わらず送風装置に関して「過少駆動状態」と判定し、その旨の警告や自動制御を行なうようにしてもよい。 When the display segment indicating the air pollution status exceeds the display position of the air volume, it is determined that the blower is “under-driven” regardless of the breakdown, and a warning or automatic control is performed to that effect. Also good.
 (第3の例)
 図47は、あるタイミングにおける表示画面の具体例を示す図である。この状態において判定タイミングに達し、駆動制御部230Aにおいて判定処理が行なわれるものとする。図47の例でも、装置300,400,500,600の内の複数の装置の制御状況が表示され、具体的には、イオン濃度と風量とが表示されている。
(Third example)
FIG. 47 is a diagram showing a specific example of the display screen at a certain timing. In this state, it is assumed that the determination timing is reached and the determination process is performed in the drive control unit 230A. In the example of FIG. 47 as well, the control status of a plurality of devices among the devices 300, 400, 500, and 600 is displayed, specifically, the ion concentration and the air volume are displayed.
 第2の例では、空気の汚染状態を表わす表示セグメントが風量の表示位置を上回った場合は、その内訳に関わらず送風装置に関して「過少駆動状態」と判定し、その旨の警告や自動制御を行なうものとしている。しかしながら、第3の例では、表示される制御状況のそれぞれについて、空気の汚染状態の内訳の対応する項目について判定して、それぞれの装置について警告や自動制御を行なう。 In the second example, if the display segment representing the air pollution state exceeds the display position of the air volume, it is determined that the blower is “under-driven” regardless of the breakdown, and a warning or automatic control to that effect is performed. To do. However, in the third example, for each of the displayed control situations, the corresponding item in the breakdown of the air pollution state is determined, and warning and automatic control are performed for each device.
 具体的には、図47に表わされた空気の汚染状態の内訳として、ガスセンサでの検出結果と微生物センサでの微生物の検出結果と微生物センサでの埃の検出結果とが、それぞれ図48Aに示されるような内訳である場合、イオン濃度に関しては、対応する項目であるガスセンサでの検出結果も微生物センサでの微生物の検出結果も表示位置は上回っていない。そのため、イオン発生装置に関して駆動制御部230Aは「適正駆動状態」と判定する。 Specifically, as a breakdown of the air pollution state shown in FIG. 47, the detection result by the gas sensor, the detection result of the microorganism by the microorganism sensor, and the detection result of the dust by the microorganism sensor are shown in FIG. 48A, respectively. When the breakdown is as shown, the display position of the ion concentration does not exceed the detection result of the corresponding gas sensor and the detection result of the microorganism by the microorganism sensor. Therefore, the drive control unit 230A determines “appropriate drive state” for the ion generator.
 しかしながら、風量に関していは対応する項目である微生物センサでの埃の検出結果の表示位置が上回っている。そのため、送風装置に関して駆動制御部230Aは「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合には風量を増加させるよう送風装置を制御する。 However, the display position of the dust detection result of the microorganism sensor, which is a corresponding item, is over the air volume. For this reason, the drive control unit 230A determines that the air blower is in an “under-driven state”, gives a warning to that effect, and controls the air blower to increase the air volume in the automatic control mode.
 図47に表わされた空気の汚染状態の内訳として、ガスセンサでの検出結果と微生物センサでの微生物の検出結果と微生物センサでの埃の検出結果とが、それぞれ図48Bに示されるような内訳である場合、イオン濃度に関しては、対応する項目であるガスセンサでの検出結果の表示位置は上回っていないものの微生物センサでの微生物の検出結果の表示位置が上回っている。そのため、イオン発生装置に関して駆動制御部230Aは「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合にはイオン発生量を増加させるようイオン発生装置を制御する。 As the breakdown of the air pollution state shown in FIG. 47, the detection results of the gas sensor, the microorganisms detected by the microorganism sensor, and the dust detection results by the microorganism sensor are as shown in FIG. 48B. In this case, with respect to the ion concentration, the display position of the detection result of the microorganism sensor is higher than the display position of the detection result of the corresponding gas sensor. Therefore, the drive control unit 230A determines that the ion generation device is in an “under-driven state”, gives a warning to that effect, and controls the ion generation device to increase the amount of ion generation in the automatic control mode.
 風量に関しては、対応する項目である微生物センサでの埃の検出結果の表示位置が上回っていない。そのため、送風装置に関して駆動制御部230Aは「適正駆動状態」と判定する。 Regarding the air volume, the display position of the detection result of dust with the corresponding microorganism sensor is not exceeded. Therefore, the drive control unit 230 </ b> A determines the “appropriate drive state” for the blower.
 図47に表わされた空気の汚染状態の内訳として、ガスセンサでの検出結果と微生物センサでの微生物の検出結果と微生物センサでの埃の検出結果とが、それぞれ図48Cに示されるような内訳である場合、イオン濃度に関しては、対応する項目であるガスセンサでの検出結果の表示位置は上回っていないものの微生物センサでの微生物の検出結果の表示位置が上回っている。そのため、イオン発生装置に関して駆動制御部230Aは「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合にはイオン発生量を増加させるようイオン発生装置を制御する。 As the breakdown of the air pollution state shown in FIG. 47, the detection result of the gas sensor, the detection result of the microorganisms by the microorganism sensor, and the detection result of the dust by the microorganism sensor are as shown in FIG. 48C. In this case, with respect to the ion concentration, the display position of the detection result of the microorganism sensor is higher than the display position of the detection result of the corresponding gas sensor. Therefore, the drive control unit 230A determines that the ion generation device is in an “under-driven state”, gives a warning to that effect, and controls the ion generation device to increase the amount of ion generation in the automatic control mode.
 また、風量に関しては、対応する項目である微生物センサでの埃の検出結果の表示位置が上回っている。そのため、送風装置に関して駆動制御部230Aは「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合には風量を増加させるよう送風装置を制御する。 Also, with regard to the air volume, the display position of the dust detection result by the microorganism sensor, which is a corresponding item, is higher. For this reason, the drive control unit 230A determines that the air blower is in an “under-driven state”, gives a warning to that effect, and controls the air blower to increase the air volume in the automatic control mode.
 すなわち、第3の例では、空気の汚染状態に関わらず、イオン濃度に対応した項目(菌および臭い)の検出結果のいずれか1つでも表示セグメントがイオン濃度の表示位置を上回っている場合には、イオン発生装置に関して「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合にはイオン発生量を増加させるようイオン発生装置を制御する。 That is, in the third example, when the display segment exceeds the display position of the ion concentration in any one of the detection results of the items (bacteria and odors) corresponding to the ion concentration, regardless of the air pollution state. Determines that the ion generator is in an “under-driven state”, gives a warning to that effect, and controls the ion generator to increase the amount of ion generation in the automatic control mode.
 また、空気の汚染状態に関わらず、風量(空気清浄機能)に対応した項目(埃等)の検出結果のいずれか1つでも表示セグメントが風量の表示位置を上回っている場合には、送風装置に関して「過少駆動状態」と判定し、その旨の警告を行なうと共に自動制御モードである場合には風量を増加させるよう送風装置を制御する。 In addition, if any one of the detection results of the items (dust etc.) corresponding to the air volume (air cleaning function) is above the air volume display position regardless of the air contamination state, Is determined as “under-driving state”, a warning to that effect is given, and in the automatic control mode, the blower is controlled to increase the air volume.
 なお、イオン濃度に対応した項目の検出結果の表示セグメントがいずれもイオン濃度の表示位置を下回り、かつ、風量に対応した項目の検出結果の表示セグメントがいずれも風量の表示位置を下回る場合には、駆動制御部230Aはイオン発生装置についても送風装置についても「適正駆動状態」と判定し、警告等は行なわない。 If the detection result display segment for the item corresponding to the ion concentration is below the ion concentration display position and the detection result display segment for the item corresponding to the air volume is below the air flow display position, The drive control unit 230A determines that the ion generator and the blower are in “appropriate drive state” and does not give a warning or the like.
 さらに、好ましくは、現在表示されている検出結果とは異なる項目が原因として「過少駆動状態」と判定された場合には、表示制御部210は、その判定に用いた項目を空気の汚染状態と共に表示するよう表示画面を切り替える。 Further, preferably, when it is determined that the “under-driving state” is caused by an item different from the currently displayed detection result, the display control unit 210 displays the item used for the determination together with the air contamination state. Switch the display screen to display.
 上述の制御および表示が行なわれることで、空気調和機1Bでは検出された空気の状態に応じてイオン発生装置や送風装置などの制御を適正に行なうことができる。すなわち、手動モードの場合には上述の警告によってユーザは適正な制御レベルを指示することができ、自動モードである場合には自動的に適正な制御状況とされる。 By performing the above-described control and display, the air conditioner 1B can appropriately control the ion generator and the blower according to the detected air state. That is, in the manual mode, the user can instruct an appropriate control level by the above-described warning, and in the automatic mode, the appropriate control state is automatically set.
 これにより、空気の状態を適正にできると共に、過剰な駆動を抑えて省エネルギーも実現できる。 This makes it possible to optimize the air condition and to save energy by suppressing excessive driving.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1A 空気清浄機、1B 空気調和機、2 高圧電源、3 皮膜、4 支持基板、5 ケース、5A 捕集室、5B 検出室、5C 壁、5C’ 孔、6 発光素子、7 レンズ、8 集光レンズ、9 受光素子、10 導入孔、10A,11A 遮光部、10a,10b 遮光板、11 排出孔、12 集治具、12A 捕集ユニット、13 アパーチャ、14 フィルタ、15 照射領域、16A,16B シャッタ、17 放電電極、20 センサ機構、30 信号処理部、31 フィルタ回路、32 パルス幅測定回路、33,34 電圧変換回路、35 増幅回路、36 電圧比較回路、40 測定検出部、41 制御部、42,205 記憶部、43,204 出力部、44,201 入力部、45 算出部、46 外部接続部、47 クロック発生部、48 駆動部、50 空気導入機構、50A ファン、51,52 領域、53 直線、60 ブラシ、65A カバー、65B アダプタ、71,72,73,74,75,76,77,78 曲線、91 ヒータ、100,100A,100B,100A,100B,100C センサ、110,302A,302A,302B,302B スイッチ、130 表示パネル、131 表示バー、131A 表示セグメント、150 通信部、200 制御装置、202 演算部、203 生成部、210 表示制御部、220 検出制御部、230 イオン制御部、230A 駆動制御部、231 第1の入力部、232 演算部、233 第2の入力部、234 比較部、235 出力部、236 記憶部、240 風量制御部、300 イオン発生装置、301A,301B 電極、303A,303B,303A 高圧発生回路、400 送風装置、411 計算部、500 湿度調整装置、600 温度調整装置。 1A air purifier, 1B air conditioner, 2 high voltage power supply, 3 coating, 4 support substrate, 5 case, 5A collection chamber, 5B detection chamber, 5C wall, 5C 'hole, 6 light emitting element, 7 lens, 8 condensing Lens, 9 light receiving element, 10 introduction hole, 10A, 11A light shielding part, 10a, 10b light shielding plate, 11 discharge hole, 12 collecting jig, 12A collecting unit, 13 aperture, 14 filter, 15 irradiation area, 16A, 16B shutter , 17 discharge electrode, 20 sensor mechanism, 30 signal processing unit, 31 filter circuit, 32 pulse width measurement circuit, 33, 34 voltage conversion circuit, 35 amplification circuit, 36 voltage comparison circuit, 40 measurement detection unit, 41 control unit, 42 , 205 storage unit, 43, 204 output unit, 44, 201 input unit, 45 calculation unit, 46 external connection , 47 clock generation unit, 48 drive unit, 50 air introduction mechanism, 50A fan, 51, 52 area, 53 straight line, 60 brush, 65A cover, 65B adapter, 71, 72, 73, 74, 75, 76, 77, 78 Curve, 91 heater, 100, 100A, 100B, 100A, 100B, 100C sensor, 110, 302A, 302A, 302B, 302B switch, 130 display panel, 131 display bar, 131A display segment, 150 communication unit, 200 controller, 202 Calculation unit, 203 generation unit, 210 display control unit, 220 detection control unit, 230 ion control unit, 230A drive control unit, 231 first input unit, 232 calculation unit, 233 second input unit, 234 comparison unit, 235 Output unit, 236 storage unit 240 air volume control unit, 300 an ion generating device, 301A, 301B electrodes, 303A, 303B, 303A high-voltage generation circuit, 400 blower, 411 calculation unit, 500 a humidity adjusting apparatus, 600 temperature adjusting device.

Claims (19)

  1.  空気中の所定の粒子または成分を検出するための第1のセンサと、
     空気を浄化するための浄化機構と、
     表示装置と、
     前記表示装置での表示を制御するための制御装置とを備え、
     前記制御装置は、第1の時点での前記第1のセンサの検出結果と前記第1の時点とは異なる第2の時点での前記第1のセンサの検出結果とを前記表示装置に表示するための制御を行なう、空気清浄機。
    A first sensor for detecting predetermined particles or components in the air;
    A purification mechanism for purifying the air;
    A display device;
    A control device for controlling display on the display device,
    The control device displays the detection result of the first sensor at a first time point and the detection result of the first sensor at a second time point different from the first time point on the display device. An air purifier that performs control.
  2.  前記制御装置は、
     前記第1のセンサの検出結果の所定の量に対する割合を算出するための算出部と、
     前記算出部での算出結果に基づいて前記検出結果の表示量を決定し、表示データを生成するための生成部と、
     前記表示データを記憶するための記憶部とを備え、
     前記第1の時点での前記第1のセンサの検出結果と前記第2の時点での前記第1のセンサの検出結果とは、いずれも、それぞれの検出結果が前記所定の量に対する割合に応じた表示量で表示される、請求項1に記載の空気清浄機。
    The controller is
    A calculation unit for calculating a ratio of a detection result of the first sensor to a predetermined amount;
    A generation unit for determining a display amount of the detection result based on a calculation result in the calculation unit, and generating display data;
    A storage unit for storing the display data,
    The detection result of the first sensor at the first time point and the detection result of the first sensor at the second time point both depend on the ratio of the detection result to the predetermined amount. The air cleaner according to claim 1, wherein the air cleaner is displayed in a displayed amount.
  3.  前記制御装置は1つの表示画面に前記第1の時点での前記第1のセンサの検出結果と前記第2の時点での前記第1のセンサの検出結果とを表示させる、請求項1に記載の空気清浄機。 The said control apparatus displays the detection result of the said 1st sensor in the said 1st time point, and the detection result of the said 1st sensor in the said 2nd time point on one display screen. Air purifier.
  4.  前記制御装置は1つの表示画面に前記第1の時点での前記第1のセンサの検出結果を表示させ、切り替えの指示に応じて前記表示画面を前記第2の時点での前記第1のセンサの検出結果に切り替える、請求項1に記載の空気清浄機。 The control device displays the detection result of the first sensor at the first time point on one display screen, and the first sensor at the second time point is displayed on the display screen according to a switching instruction. The air cleaner according to claim 1, wherein the air purifier is switched to the detection result.
  5.  前記第1のセンサは、空気中の微生物を検出するためのセンサと、空気中の埃を検出するためのセンサと、花粉センサと、ガスセンサとのうちの少なくとも1つである、請求項1に記載の空気清浄機。 The first sensor is at least one of a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor. The air cleaner described.
  6.  前記第1のセンサは、空気中の微生物を検出するためのセンサと、空気中の埃を検出するためのセンサと、花粉センサと、ガスセンサとのうちの少なくとも2種類のセンサを含む、請求項1に記載の空気清浄機。 The first sensor includes at least two types of sensors of a sensor for detecting microorganisms in the air, a sensor for detecting dust in the air, a pollen sensor, and a gas sensor. The air cleaner according to 1.
  7.  前記制御装置は前記第1のセンサの検出結果に併せて前記浄化機構の制御量を表示する、請求項1に記載の空気清浄機。 The air cleaner according to claim 1, wherein the control device displays a control amount of the purification mechanism in accordance with a detection result of the first sensor.
  8.  前記制御装置は、前記第1の時点での前記第1のセンサの検出結果および前記第1の時点での前記浄化機構の制御量と前記第2の時点での前記第1のセンサの検出結果および前記第1の時点から前記第2の時点までの前記浄化機構の制御量の累積量とを前記表示装置に表示するための制御を行なう、請求項7に記載の空気清浄機。 The control device includes a detection result of the first sensor at the first time point, a control amount of the purification mechanism at the first time point, and a detection result of the first sensor at the second time point. The air cleaner according to claim 7, wherein control is performed to display the cumulative amount of the control amount of the purification mechanism from the first time point to the second time point on the display device.
  9.  空気状態を検出するための第2のセンサをさらに備え、
     前記制御装置は、前記第1の時点および前記第2の時点での前記第1のセンサの検出結果に併せて前記第2のセンサの検出結果を前記表示装置に表示するための制御を行なう、請求項1に記載の空気清浄機。
    A second sensor for detecting an air condition;
    The control device performs control for displaying the detection result of the second sensor on the display device together with the detection result of the first sensor at the first time point and the second time point. The air cleaner according to claim 1.
  10.  前記第2のセンサは、温度センサと湿度センサとのうちの少なくとも一方を含む、請求項9に記載の空気清浄機。 The air cleaner according to claim 9, wherein the second sensor includes at least one of a temperature sensor and a humidity sensor.
  11.  空気中の所定の粒子または成分を検出するためのセンサと空気を浄化するための浄化機構とを備えた空気清浄機における表示方法であって、
     第1の時点での前記センサの検出結果を表示するための第1の表示データを生成するステップと、
     前記第1の表示データを記憶装置に格納するステップと、
     前記第1の時点とは異なる第2の時点での前記センサの検出結果を表示するための第2の表示データを生成するステップと、
     前記第1の表示データと前記第2の表示データとに基づいて前記第1の時点での前記センサの検出結果と前記第2の時点での前記センサの検出結果とを表示装置に表示するステップとを含む、空気清浄機における表示方法。
    A display method in an air cleaner comprising a sensor for detecting predetermined particles or components in the air and a purification mechanism for purifying the air,
    Generating first display data for displaying a detection result of the sensor at a first time point;
    Storing the first display data in a storage device;
    Generating second display data for displaying a detection result of the sensor at a second time point different from the first time point;
    The step of displaying the detection result of the sensor at the first time point and the detection result of the sensor at the second time point on a display device based on the first display data and the second display data. And a display method in an air cleaner.
  12.  空気中の所定の粒子を検出するための第1のセンサと、
     空気を調和させるための空気調和機構と、
     前記第1のセンサと前記空気調和機構とに接続された、前記空気調和機構を制御するための制御装置とを含み、
     前記制御装置は、前記空気調和機構の制御状況と前記第1のセンサでの検出結果とに基づいて、前記空気調和機構の制御状況の適否を判定し、その判定結果に基づく制御を行なう、空気調和機。
    A first sensor for detecting predetermined particles in the air;
    An air conditioning mechanism to harmonize the air;
    A controller for controlling the air conditioning mechanism, connected to the first sensor and the air conditioning mechanism;
    The control device determines whether or not the control condition of the air-conditioning mechanism is appropriate based on the control condition of the air-conditioning mechanism and the detection result of the first sensor, and performs control based on the determination result. Harmony machine.
  13.  前記制御装置は、
     前記第1のセンサの検出結果と、前記空気調和機構の制御状況との入力を受け付けるための入力部と、
     前記空気の状態を表わす値として、前記粒子についての基準とする所定量に対する前記検出結果の割合を算出するための算出部と、
     前記空気調和機構の制御状況を表わす値と前記空気の状態を表わす値とを比較することにより、前記空気の状態に対する前記空気調和機構の制御状況の適否を判定するための判定部とを含み、
     前記判定の結果に基づく情報を報知するための報知部を備える、請求項12に記載の空気調和機。
    The controller is
    An input unit for receiving an input of a detection result of the first sensor and a control status of the air conditioning mechanism;
    A calculation unit for calculating a ratio of the detection result with respect to a predetermined amount as a reference for the particles as a value representing the state of the air;
    A determination unit for determining the suitability of the control condition of the air conditioner for the air condition by comparing a value indicating the control condition of the air conditioner and a value indicating the state of the air;
    The air conditioner of Claim 12 provided with the alerting | reporting part for alerting | reporting the information based on the result of the said determination.
  14.  前記報知は、前記空気調和機構の制御状況を前記空気の状態に対応したバランスに変更させるためのものであり、
     前記制御装置は、前記報知に用いる情報を記憶するための記憶部をさらに含み、
     前記報知に用いる情報は前記判定の結果に対応付けられている、請求項13に記載の空気調和機。
    The notification is for changing the control status of the air conditioning mechanism to a balance corresponding to the state of the air,
    The control device further includes a storage unit for storing information used for the notification,
    The air conditioner according to claim 13, wherein information used for the notification is associated with a result of the determination.
  15.  前記制御装置は、前記空気調和機構に対して前記判定の結果に応じた制御信号を出力するための出力部をさらに含む、請求項13に記載の空気調和機。 The air conditioner according to claim 13, wherein the control device further includes an output unit for outputting a control signal corresponding to a result of the determination to the air conditioning mechanism.
  16.  前記第1のセンサとは異なる粒子または成分を検出するための第2のセンサを含み、
     前記算出部は、前記空気の状態を表わす値として、前記粒子または成分の種類ごとの前記所定量に対する割合を算出すると共に、すべての種類の粒子または成分についての前記所定量に対する割合を算出する、請求項13に記載の空気調和機。
    A second sensor for detecting particles or components different from the first sensor;
    The calculation unit calculates, as a value representing the state of the air, a ratio with respect to the predetermined amount for each type of the particles or components, and calculates a ratio with respect to the predetermined amount for all types of particles or components. The air conditioner according to claim 13.
  17.  前記判定部は、前記空気調和機構の制御状況を表わす値と、当該空気調和機構に予め対応付けられている粒子または成分の種類についての前記検出結果から算出された前記空気の状態を表わす値とを比較する、請求項16に記載の空気調和機。 The determination unit includes a value representing the control status of the air conditioning mechanism, and a value representing the state of the air calculated from the detection result of the type of particles or components previously associated with the air conditioning mechanism. The air conditioner of Claim 16 which compares.
  18.  前記制御装置は、前記判定を所定の時間間隔で繰り返す、請求項12に記載の空気調和機。 The air conditioner according to claim 12, wherein the control device repeats the determination at predetermined time intervals.
  19.  前記空気調和機構は、イオン発生装置、送風装置、湿度調整装置、および温度調整装置のうちの少なくとも1つを含む、請求項12に記載の空気調和機。 The air conditioner according to claim 12, wherein the air conditioning mechanism includes at least one of an ion generating device, a blower device, a humidity adjusting device, and a temperature adjusting device.
PCT/JP2011/069282 2010-08-30 2011-08-26 Air purifier, display method for air purifier, and air conditioner WO2012029649A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010191983A JP2012047427A (en) 2010-08-30 2010-08-30 Air purifier, and display method in the same
JP2010-191983 2010-08-30
JP2010-217323 2010-09-28
JP2010217323A JP2012072946A (en) 2010-09-28 2010-09-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2012029649A1 true WO2012029649A1 (en) 2012-03-08

Family

ID=45772739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069282 WO2012029649A1 (en) 2010-08-30 2011-08-26 Air purifier, display method for air purifier, and air conditioner

Country Status (1)

Country Link
WO (1) WO2012029649A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202421A (en) * 2013-04-05 2014-10-27 シャープ株式会社 Air conditioner
CN107178874A (en) * 2017-06-15 2017-09-19 珠海格力电器股份有限公司 Air purifier control method and air purifier

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424053U (en) * 1990-06-22 1992-02-27
JPH0929039A (en) * 1995-07-17 1997-02-04 Tiger Vacuum Bottle Co Ltd Air cleaning machine
JP2000177379A (en) * 1998-12-21 2000-06-27 Equos Research Co Ltd Air cleaning system
JP2002126431A (en) * 2000-10-20 2002-05-08 Dainichi Co Ltd Air cleaner
JP2003139361A (en) * 2001-11-02 2003-05-14 Sharp Corp Air purifier
JP2004105897A (en) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd Negative ion generator and air cleaner provided therewith
JP2005016841A (en) * 2003-06-26 2005-01-20 Daikin Ind Ltd Air cleaner
JP2005027744A (en) * 2003-07-08 2005-02-03 Sharp Corp Air conditioner
JP2005238063A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Control device of air cleaner
JP2008273332A (en) * 2007-04-26 2008-11-13 Fujitsu Ten Ltd Air-conditioning control device
JP2010019430A (en) * 2008-07-08 2010-01-28 Sharp Corp Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424053U (en) * 1990-06-22 1992-02-27
JPH0929039A (en) * 1995-07-17 1997-02-04 Tiger Vacuum Bottle Co Ltd Air cleaning machine
JP2000177379A (en) * 1998-12-21 2000-06-27 Equos Research Co Ltd Air cleaning system
JP2002126431A (en) * 2000-10-20 2002-05-08 Dainichi Co Ltd Air cleaner
JP2003139361A (en) * 2001-11-02 2003-05-14 Sharp Corp Air purifier
JP2004105897A (en) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd Negative ion generator and air cleaner provided therewith
JP2005016841A (en) * 2003-06-26 2005-01-20 Daikin Ind Ltd Air cleaner
JP2005027744A (en) * 2003-07-08 2005-02-03 Sharp Corp Air conditioner
JP2005238063A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Control device of air cleaner
JP2008273332A (en) * 2007-04-26 2008-11-13 Fujitsu Ten Ltd Air-conditioning control device
JP2010019430A (en) * 2008-07-08 2010-01-28 Sharp Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202421A (en) * 2013-04-05 2014-10-27 シャープ株式会社 Air conditioner
CN107178874A (en) * 2017-06-15 2017-09-19 珠海格力电器股份有限公司 Air purifier control method and air purifier
CN107178874B (en) * 2017-06-15 2020-04-10 珠海格力电器股份有限公司 Air purifier control method and air purifier

Similar Documents

Publication Publication Date Title
JP2012072946A (en) Air conditioner
WO2011024672A1 (en) Display control device
JP5766736B2 (en) Detection apparatus and detection method for detecting biological particles in air
JP2012047427A (en) Air purifier, and display method in the same
JP2011083214A (en) Microorganism detection apparatus and detection method
JP2011097861A (en) Apparatus and method for detecting microorganism
JP2012251732A (en) Control device and control method
WO2012165036A1 (en) Detection device and detection method
US8901512B2 (en) Particle detector
JP2012251889A (en) Control device and presentation method
WO2012081285A1 (en) Detection device and detection method
KR20150101650A (en) An air cleaning system and a method controlling the same
KR20190007993A (en) Fine Particulate Matter Sensor with Auto-Cleaning Function
WO2012029649A1 (en) Air purifier, display method for air purifier, and air conditioner
WO2012165558A1 (en) Control device and presentation method
WO2012081284A1 (en) Detection device and detection method
JP2013022539A (en) Air cleaner
WO2012081358A1 (en) Detection device and detection method
JP2014045725A (en) Microorganism detection system and microorganism detection method
JP5997532B2 (en) Particle detector
JP2013130362A (en) Air cleaner
JP2012251890A (en) Control device and presentation method
JPH08206540A (en) Air cleaner
JP2012251891A (en) Control device and presentation method
JP2017090040A (en) Air-conditioning system for microbial suppression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821666

Country of ref document: EP

Kind code of ref document: A1