WO2014192787A1 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
WO2014192787A1
WO2014192787A1 PCT/JP2014/064065 JP2014064065W WO2014192787A1 WO 2014192787 A1 WO2014192787 A1 WO 2014192787A1 JP 2014064065 W JP2014064065 W JP 2014064065W WO 2014192787 A1 WO2014192787 A1 WO 2014192787A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
substrate
heating
collection substrate
detection
Prior art date
Application number
PCT/JP2014/064065
Other languages
French (fr)
Japanese (ja)
Inventor
克佳 高橋
大樹 奥野
藤岡 一志
伸佳 石野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014192787A1 publication Critical patent/WO2014192787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • the present invention relates to a detection device, and more particularly to a detection device for collecting and detecting biological particles.
  • a method for counting microorganisms in a sample such as air a method is generally used in which microorganisms are collected on a medium in a petri dish and then cultured, and colonies formed by the microorganisms are manually counted.
  • Patent Document 1 discloses a pseudo medium composed of silicone rubber for collecting aerosols which are microorganisms in the air.
  • Patent Document 1 discloses that microorganisms collected on a pseudo medium are collected by a collecting liquid and then counted by a measuring instrument such as flow cytometry.
  • the method of culturing in a medium and counting colonies has a problem that it takes a long time to obtain a detection result, that is, the detection result cannot be obtained in a short time.
  • the configuration for detection there is a problem that it is necessary to maintain an environment and a facility for culturing microorganisms and an environment for maintaining the medium in an appropriate state.
  • Patent Document 1 requires a series of complicated operations of pre-fluorescence staining of microorganisms before measurement by flow cytometry, and measurement after collection and staining. Further, the technique disclosed in Patent Document 1 has a problem that the running cost for the detection operation is high because the detection operation requires consumables such as a collected liquid and a fluorescent reagent. Furthermore, in the technique of the above-mentioned patent document 1, since the microorganisms collected by the collected liquid are diluted, the problem that the detection may be difficult, and the used collected liquid cannot be returned to the air. There is also a problem that it must be discarded.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a detection device that can easily and accurately detect biologically-derived particles in a specimen.
  • the detection apparatus includes a collection substrate for collecting particles in the fluid on the surface, a heating mechanism for heating the collection substrate, A detection mechanism for detecting biologically-derived particles among the particles collected on the collecting substrate.
  • the collection substrate is formed of a material having heat resistance of at least 270 ° C.
  • the heating mechanism includes a control mechanism for controlling the collection substrate to be heated at a temperature lower than 270 ° C.
  • the detection mechanism includes a light source for irradiating excitation light onto the surface of the collection substrate and a light receiving element for receiving fluorescence, and is based on fluorescence from the surface of the collection substrate after being heated by the heating mechanism. To detect biological particles.
  • the detection device further includes a collection mechanism for collecting particles with the collection substrate by introducing a fluid toward the collection substrate.
  • the detection device further includes a movement mechanism for moving the collection substrate between a position where the collection mechanism is provided and a position where the detection mechanism is provided.
  • the collection mechanism includes a nozzle substrate having one or more holes drilled toward the collection substrate, and sucks fluid toward the collection substrate through the holes drilled in the nozzle substrate.
  • the present invention it is possible to easily and accurately detect biologically derived particles in a specimen using the detection device.
  • FIG. 1 is a schematic diagram illustrating a configuration of a detection device 100 according to the present embodiment.
  • a detection device 100 includes a collection substrate 10 for collecting particles in the air, which is a fluid, on a surface, and a heating unit 20 that is a heating mechanism for heating the collection substrate 10.
  • the detection unit 30 that is a detection mechanism for detecting biologically-derived particles among the particles collected on the collection substrate 10 and a control device 50 for controlling heating in the heating unit 20 are included.
  • the detection unit 30 includes a light source 31 for irradiating the surface of the collection substrate 10 with excitation light and a light receiving element 32 for receiving fluorescence.
  • the detection apparatus 100 further includes a collection unit 40 that is a collection mechanism for collecting particles with the collection substrate 10 by introducing air toward the collection substrate 10.
  • FIG. 2 is a schematic diagram illustrating another example of the configuration of the detection apparatus 100.
  • the collection part 40, the heating part 20, and the detection part 30 may be installed in the position which left
  • the detection apparatus 100 moves the moving unit 60 that is a moving mechanism for moving the collection substrate 10 between the position where the collection unit 40 and the heating unit 20 are provided and the position where the detection unit 30 is provided.
  • the control device 50 is also electrically connected to the moving unit 60 and controls the movement of the collection substrate 10 by the moving unit 60.
  • the moving unit 60 for example, an electric stage (linear movement, rotation) or the like is preferably used.
  • the detection device 100 has such a configuration, the degree of freedom of arrangement of the optical system (detection unit 30) can be improved. As a result, fluorescence from biologically derived particles can be detected with higher accuracy, and detection accuracy can be improved.
  • the moving unit 60 may be a moving mechanism for moving between the position where the collecting unit 40 is provided, the position where the heating unit 20 is provided, and the position where the detecting unit 30 is provided. By doing in this way, the damage by the heating to the collection part 40 can be suppressed.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the collection substrate 10. That is, as shown in FIG. 3, the collection substrate 10 may have a heat resistant substrate 11 having heat resistance formed on the support substrate 12. The characteristics of the collection substrate 10 will be described later.
  • the detection apparatus 100 particles in the air are collected on one surface of the collection substrate 10, and fluorescence from the particles is received by the light receiving element 32 disposed on the one surface side. Therefore, if the collection substrate 10 transmits light, about 50% of the fluorescence from the particles is transmitted to the surface opposite to the one surface, and the light receiving element 32 receives light. Not. That is, in this case, the light receiving element 32 receives only about 50% of the fluorescence from the particles.
  • the surface of the collection substrate 10 has light reflectivity.
  • the structure of the collection substrate 10 whose surface is reflective is the case where the surface of the collection substrate 10 (the surface on the one surface side) itself is made of a material having light reflectivity, as shown in FIG.
  • the heat resistant substrate 11 transmits light, but the surface on the heat resistant substrate 11 side of the support substrate 12 has light reflectivity.
  • silicon or metal is preferably used as the material of the support substrate 12.
  • the heat-resistant substrate 11 is formed on the support substrate 12 by separately forming and bonding the support substrate 12 and the heat-resistant substrate 11, and forming the heat-resistant substrate 11 on the support substrate 12 as a thin film (spin And the like, and a method of forming the support substrate 12 in a thin film (such as spin coating) on the bottom surface of the heat-resistant substrate 11 are preferably used.
  • the excitation light emitted from the light source 31 may be reflected by the surface of the collection substrate 10 and enter the light receiving element 32 as stray light. In this case, as will be described later, it can be prevented by arranging an optical filter to cut the excitation light or arranging the light source 31 and the light receiving element 32 on an oblique axis.
  • Heating unit 20 As the heating unit 20, for example, a ceramic heater, a far infrared heater, a far infrared lamp, or the like is preferably used. The heating unit 20 heats the collection substrate 10 according to a control signal from the control device 50.
  • FIG. 4 is a schematic diagram illustrating a first example of the collection unit 40.
  • the configuration shown in FIG. 4 is a configuration for collecting particles in the air by the collection substrate 10 using the inertial collision method.
  • the collection unit 40 includes a nozzle substrate 41 that is arranged in parallel or substantially in parallel with the collection substrate 10, a pressure control device 42 that is a mechanism for controlling the pressure in the detection device 100, and including.
  • a fan, a pump, a pressure controller, or the like is preferably used as the pressure control device 42, and the outside air is taken into the detection device by exhausting the air inside the detection device 100, and the outside air is directly taken into the detection device 100.
  • the pressure control device 42 is arranged on the suction side with the collection substrate 10 sandwiched between the nozzle substrate 41 (see FIG. 4).
  • the pressure control device 42 is disposed on the exhaust side with the nozzle substrate 41 sandwiched between the pressure control device 42 and the collection substrate 10.
  • the pressure control device 42 operates according to a control signal from the control device 50.
  • a control signal from the control device 50 In the former case, when the pressure control device 42 is operated, an air flow as indicated by the dotted arrow in FIG. 4 is generated in the device of the detection device 100. That is, outside air is introduced to the collection substrate 10 through the nozzles of the nozzle substrate 41, and is exhausted outside the apparatus through the collection substrate 10. The particles in the outside air collide with the surface of the collection substrate 10 due to the inertial force caused by the air flow and are collected.
  • the pressure control device 42 By using the pressure control device 42, more specimens (air) can be guided onto the collection substrate 10 as compared with the case where the pressure control device 42 is naturally dropped and collected. For example, when a suction fan of 100 L / min is used, 1000 L (1 m 3 ) of specimen (air) can be introduced as a measurement target with 10 minutes of suction, so that the amount of biological particles can be accurately calculated. Can do.
  • the material of the nozzle substrate 41 is not limited to a specific material.
  • stainless steel, resin, glass, and other metals are preferably used.
  • the diameter of the nozzle (hole) is about 0.01 mm to 10 mm, and the nozzle length (that is, the thickness of the nozzle substrate 41) is about 0.1 mm to 50 mm.
  • the distance from the nozzle substrate 41 to the collection substrate 10 is preferably about 0.01 mm to 10 mm.
  • the nozzle shape is not limited.
  • the nozzle substrate 41 may be provided with circular nozzles (holes) as shown in FIG. 5A, or rectangular or slits as shown in FIG. 5B.
  • a shaped nozzle (hole) may be provided.
  • a taper shape etc. may be sufficient.
  • the number is not limited and may be about 1 to 1000.
  • FIG. 6 is a schematic diagram illustrating a second example of the collection unit 40.
  • the configuration shown in FIG. 6 is a configuration for collecting particles in the air by the collection substrate 10 using electrostatic induction.
  • the collection unit 40 includes a discharge electrode 43 instead of the nozzle substrate 41 of FIG. 4.
  • the discharge electrode 43 is electrically connected to the negative electrode of the high voltage power source.
  • the positive electrode of the high voltage power supply is grounded. Thereby, particles in the air in the detection device 100 are negatively charged in the vicinity of the discharge electrode 43.
  • the collection substrate 10 is grounded. As a result, the negatively charged particles in the air move toward the collection substrate 10 by electrostatic force, and are adsorbed and collected on the surface thereof.
  • the relationship between the negative electrode and the positive electrode may be reversed.
  • the detection unit 30 includes a light source 31 and a light receiving element 32.
  • the light source 31 for example, a semiconductor laser, an LED (Light Emitting Diode), a lamp, or the like is preferably used.
  • the wavelength of the excitation light may be in the ultraviolet or visible region as long as it excites biological fine particles and emits fluorescence. Preferably, it is 300 nm to 450 nm, which is contained in the microorganism and excites the fluorescent tryptophan, NADH, riboflavin and the like efficiently.
  • the light receiving element 32 for example, a photodiode, an image sensor, an area sensor, or the like is preferably used. The light receiving element 32 outputs a signal corresponding to the received light intensity to the control device 50.
  • the collection part 40 is the structure which collects the particle
  • the distance between the light source 31 and the light receiving element 32 is preferably as shown in FIG. 1 in order to avoid the influence of the nozzle substrate 41 such as scattering.
  • An area away from directly above the collection substrate 10 is arranged at an angle with respect to the normal direction of the collection substrate 10, that is, on the oblique axis.
  • the detection device 100 when the detection device 100 is configured to be installed at a position where the collection unit 40 and the detection unit 30 are separated from each other, preferably, as shown in FIG. 2,
  • the light source 31 and the light receiving element 32 are arranged so that the excitation light does not enter the light receiving element 32 directly, that is, the oblique axis, that is, the optical axes do not coincide with each other.
  • the detection unit 30 uses a light source to collect the excitation light from the light source 31 in a region where particles on the collection substrate 10 are collected.
  • a lens 33 disposed in the vicinity of 31, a fluorescence detection lens 34 disposed in the vicinity of the light receiving element 32 in order to collect fluorescence from biological particles on the light receiving element 32, and the excitation light is cut off.
  • a fluorescence detection filter 35 disposed in the vicinity of the light receiving element 32 for allowing the fluorescence to pass therethrough.
  • the detection device 100 illustrated in FIG. 2 is configured to be installed at a position where the collection unit 40 and the detection unit 30 are separated from each other.
  • the detection unit 30 is further dichroic.
  • the light source 31 and the light receiving element 32 may be arranged coaxially by using an optical element 36 for selecting a wavelength, such as a mirror.
  • the control device 50 is preferably a general computer (for example, a personal computer).
  • the control device 50 is electrically connected to the heating unit 20 and controls heating in the heating unit 20.
  • the control device 50 is further electrically connected to the heating unit 20 and the detection unit 30, and controls heating by the heating unit 20 and light emission / light reception by the detection unit 30. Further, the control device 50 detects biologically-derived particles from the surface of the collection substrate 10 based on the fluorescence from the surface of the collection substrate 10 after being heated by the heating unit 20 using the signal from the light receiving element 32. To do.
  • FIG. 8 is a block diagram showing a specific example of the configuration of the control device 50, and shows the configuration of a general computer. That is, referring to FIG. 8, control device 50 includes a CPU (Central Processing Unit) 50a which is an arithmetic device for controlling the entire device, and a ROM which is a memory for storing programs executed by CPU 50a. (Read Only Memory) 51, RAM (Random Access Memory) 52, which is a memory used as a work area when the CPU 50a executes a program, and HDD (Hard Disk Drive) 53, a memory for storing detection results and the like. And a communication interface (I / F) 54 for transmitting a control signal and receiving an input of a detection signal by communicating with the heating unit 20 and the like.
  • the control device 50 may include an input device for receiving a user operation, a display device for displaying a detection result, a transmission device for transmitting the detection result to another device, and the like.
  • the fluorescence intensity from biologically derived particles has the property of increasing with heating.
  • the fluorescence intensity from particles that are not derived from organisms such as fluorescent dust does not increase by heating. This is presumably because a brown substance (melanoidin) having fluorescence is formed by the Maillard reaction generated by heating the sugar and amino acids contained in the biological particles.
  • grain by heating is also disclosed by international publication WO2011 / 104770 by this applicant. Yes.
  • the detection device 100 separates and detects biologically derived particles from dust that emits fluorescence among the collected particles using at least the fluorescence intensity after heating.
  • the detection device 100 detects biological particles based on changes in fluorescence intensity before and after heating.
  • FIG. 9 is a flowchart showing a control flow in the control device 50.
  • control device 50 first executes a collection operation (step S1).
  • the collecting operation in step S1 when the collecting unit 40 has the configuration shown in FIG. 4, the pressure control device 42 is operated at a specified control amount, and the outside air is taken into the detection device 100 and the nozzle substrate. In this operation, the nozzle 41 is passed through and introduced to the collection substrate 10.
  • the collection operation in step S ⁇ b> 1 takes the outside air into the detection device 100 by operating the pressure control device 42 with a specified control amount, and discharge electrodes. This is an operation in which the particles in the vicinity are negatively charged by being applied to 43 and adsorbed to the collection substrate 10 by electrostatic force.
  • the control device 50 preferably performs the measurement operation after performing the collection operation of step S1 for a predetermined period (step S2).
  • the measurement operation in step S ⁇ b> 2 is an operation of irradiating excitation light from the light source 31 for a predetermined time and receiving an input of a signal corresponding to the fluorescence intensity received from the light receiving element 32.
  • the detection device 100 is configured to be installed at a position where the collection unit 40, the heating unit 20, and the detection unit 30 are separated as shown in FIG. An operation for moving the collection substrate 10 set at the position of the unit 40 and the heating unit 20 to the position of the detection unit 30 is included. That is, the measurement in step S ⁇ b> 2 is performed after the collection substrate 10 has moved to the detection unit 30.
  • the control device 50 calculates the fluorescence intensity F1 using the signal input from the light receiving element 32 (step S3).
  • step S3 for example, the control device 50 stores a relational expression between the signal intensity and the fluorescence intensity in advance, and obtains the fluorescence intensity F1 before heating by substituting the signal intensity from the light receiving element 32 into the expression. be able to.
  • the control apparatus 50 performs the operation
  • the heating operation in step S4 is an operation for causing the heating unit 20 to generate heat with a predetermined amount of heat.
  • the control device repeats the same measurement operation and calculation operation as in steps S2 and S3 to obtain the fluorescence intensity F2 after heating (steps S5 and S6).
  • the control device 50 calculates the amount of biological particles using at least the fluorescence intensity F2 after heating (step S7).
  • the control device 50 executes the measurement operation and the calculation operation in steps S2 and S3 to obtain the fluorescence intensity F1 before heating, and calculates the amount of biological particles using the fluorescence intensity F1 and F2 before and after heating. (Step S7).
  • step S7 the control device 50 stores in advance a relational expression between the fluorescence intensity F2 after heating and the amount of biological particles (concentration, etc.), and the fluorescence intensity F1 obtained from the relational expression is stored. By substituting, the amount of biological particles can be obtained. Further, for example, the control device 50 stores a relational expression between the difference ⁇ F between the fluorescence intensities F1 and F2 before and after heating and the amount of biological particles, and substitutes the calculated difference ⁇ F into the relational expression. The amount of biological particles can be obtained.
  • FIG. 10 is a block diagram illustrating a specific example of a functional configuration of the control device 50 for performing the above operation.
  • Each function of FIG. 10 is mainly realized by the CPU 50a by the CPU 50a of the control device 50 reading the program stored in the ROM 51 onto the RAM 52 and executing it.
  • the functions may be realized by a hardware configuration of the control device 50 shown in FIG. 8 or a hardware configuration such as an electric circuit (not shown).
  • the CPU 50 a outputs a control signal to the collection unit 40 via the communication I / F 54 to control the collection operation and the light source 31.
  • a light emission control unit 502 for controlling the irradiation of excitation light from the light source 31 by outputting a control signal
  • a heating control unit for controlling the heating operation by outputting a control signal to the heating unit 20 503 and the movement control unit 504 for controlling the movement of the collection substrate 10 by outputting a control signal to the movement unit 60 when the movement unit 60 is connected, and the communication I / F 54
  • a signal input unit 505 for receiving an input of a signal corresponding to the fluorescence intensity from the light receiving element 32, a fluorescence intensity calculating unit 506 for calculating the fluorescence intensity using a signal from the light receiving element 32, and the above relational expression in advance
  • Fluorescence intensity after heating or heating by using the difference of the fluorescence intensity before and after, and a particle amount calculation unit 507 for calculating the amount of particles from organisms.
  • the collection substrate 10 Since the above-described operation is performed by the detection apparatus 100 to detect biologically-derived particles, the collection substrate 10 has heat resistance (high melting point, non-water content), high collection property (stickiness) against microorganisms, flatness. Performance (improvement of collection efficiency, focus position at detection, no scattering due to unevenness), workability, low cost, and low autofluorescence are required.
  • the collection substrate 10 has the configuration shown in FIG. 3, that is, when the heat-resistant substrate 11 is formed on the support substrate 12, the heat-resistant substrate 11 further has optical transparency ( Transparency) is also required.
  • the support substrate 12 has heat resistance, mechanical strength, adhesion to the collection substrate, workability, formability of the collection substrate, Flatness, low cost, low autofluorescence, and high reflectivity are required. Therefore, silicon, glass, and metal (gold, silver, platinum, etc.) are preferably used for the support substrate 12. In particular, silicon is preferably used.
  • the inventor uses PDMS (polydimethylsiloxane) as an example of a thermosetting resin, PMMA (polymethyl methacrylate) as an example of a thermoplastic resin, glass, gold as an example of a metal, and Each agar medium was evaluated for heat resistance and ability to collect microorganisms.
  • PDMS polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • thermoplastic resin glass
  • gold gold
  • FIG. 11 is a diagram showing characteristics of each material. Referring to FIG. 11, among the selected materials, it was found that the material satisfying the heat resistance and the ability to collect microorganisms was PDMS as an example of a thermosetting resin.
  • the inventor formed PDMS on a silicon substrate by spin coating in order to specify the heat resistance of the collection substrate 10 (particularly the heat-resistant substrate 11), and then thermally cured to obtain the collection substrate 10 as shown in FIG.
  • the detection apparatus 100 configured as described above, an experiment for detecting biological particles was performed.
  • fungi are used as an example of biologically derived particles.
  • the experiment is carried out in the following steps; Step 1: Air containing mold bacteria is sucked into the detection device 100 through the nozzle substrate 41 and collected on the collection substrate 10. Step 2: heating the collection substrate 10 to a predetermined temperature by the heating unit 20; Step 3: The light receiving element 32 acquires a bright field image and a fluorescent image of mold.
  • FIG. 12 to FIG. 21 are bright-field images and fluorescent images obtained by experiments, with heating temperatures of 25 ° C. (room temperature without heating), 50 ° C., 100 ° C., 130 ° C., 150 ° C., and 200 ° C., respectively. , 250 ° C., 270 ° C., 280 ° C., and 300 ° C., showing a bright-field image (A) and a fluorescent image (B).
  • FIG. 22 is a diagram showing the relationship between the heating temperature and the fluorescence intensity after heating, obtained by experiments.
  • FIG. 23 is a fluorescence image of E. coli as another example of biological particles before (A) and after (B) heating at 200 ° C.
  • FIG. 23 it can be seen that the same increase in fluorescence intensity is also observed in particles derived from other organisms other than fungi. For this reason, it was found that the fluorescence intensity from biologically-derived particles is greatly increased by heating at 150 to 270 ° C.
  • FIG. 24 shows fluorescence images of non-living particles (fluorescent dust) before and after heating at 200 ° C. As is clear from comparison of this image with FIGS. 12 to 21 and FIG.
  • the non-living particles do not increase in fluorescence intensity even in the above temperature range. Therefore, it was found that the biological particles can be separated from the non-biological particles and detected by heating in the above temperature range, and the biological particles can be detected with high accuracy.
  • the collection substrate 10 (particularly the heat-resistant substrate 11) is formed of a material having heat resistance of at least 270 ° C.
  • the control apparatus 50 controls a heating operation so that the collection board
  • substrate 10 may be heated at temperature lower than the said heat-resistant temperature.
  • the collection substrate 10 by forming the collection substrate 10 with a material having heat resistance of at least 270 ° C., it is possible to heat the collection substrate 10 at a temperature not exceeding the heat resistance temperature after collecting particles in the specimen. Become. Experiments by the inventors have shown that heating from 150 ° C. to 270 ° C. greatly increases the fluorescence intensity from biologically derived particles. Therefore, by heating the collection substrate 10 to this temperature range, even if the collected particles contain non-living particles that emit fluorescence such as chemical dust, By comparing the fluorescence intensity with the threshold, or by using the difference in fluorescence intensity before and after heating, it is possible to separate biologically-derived particles from such non-biologically-derived particles and accurately detect them. Become.
  • the reflectance of light on the surface of the collection substrate 10 is a high reflectance such as 60% or more, for example, most of the emitted fluorescence (for example, 80% or more) is highly efficient. 32 is received. Therefore, it becomes possible to detect biologically derived particles with higher accuracy.

Abstract

This detection device (100) comprises: a collection substrate (10) for collecting particles in a fluid on the surface thereof; a heating unit (20) for heating the collection substrate; a detection unit (30) for detecting particles derived from an organism among the particles collected on the collection substrate; and a control device (50). The collection substrate is formed from a material that has a heat resistance of at least 270°C. The control device controls the heating unit so that the collection substrate is heated at a temperature lower than 270°C. The detection unit comprises a light source (31) for irradiating the surface of the collection substrate with excitation light and a light receiving element (32) for receiving fluorescence. The detection unit detects particles derived from an organism on the basis of the fluorescence from the surface of the collection substrate after heating.

Description

検出装置Detection device
 この発明は検出装置に関し、特に、生物由来の粒子を捕集し、検出するための検出装置に関する。 The present invention relates to a detection device, and more particularly to a detection device for collecting and detecting biological particles.
 従来、空気等の検体中の微生物を計数する方法として、微生物をシャーレ中の培地上に捕集した後、培養し、微生物が形成するコロニーを手動でカウントする手法が一般的に用いられる。 Conventionally, as a method for counting microorganisms in a sample such as air, a method is generally used in which microorganisms are collected on a medium in a petri dish and then cultured, and colonies formed by the microorganisms are manually counted.
 たとえば、特開2009-55790号公報(以下、特許文献1)は、空気中の微生物であるエアロゾルを捕集するための、シリコーンゴムで構成された擬似培地を開示している。特許文献1は、擬似培地上に捕集された微生物を、回収液で回収した後、フローサイトメトリーなどの計測機器により計数することを開示している。 For example, Japanese Patent Application Laid-Open No. 2009-55790 (hereinafter referred to as Patent Document 1) discloses a pseudo medium composed of silicone rubber for collecting aerosols which are microorganisms in the air. Patent Document 1 discloses that microorganisms collected on a pseudo medium are collected by a collecting liquid and then counted by a measuring instrument such as flow cytometry.
特開2009-55790号公報JP 2009-55790 A
 しかしながら、培地で培養してコロニーをカウントする手法は、検出結果を得るまでの時間が長い、つまり、短時間で検出結果を得ることができない、という課題がある。また、検出のための構成とは別に、微生物を培養するための設備や環境、培地を適切な状態に保つための環境の維持が必要となる、という課題がある。 However, the method of culturing in a medium and counting colonies has a problem that it takes a long time to obtain a detection result, that is, the detection result cannot be obtained in a short time. In addition to the configuration for detection, there is a problem that it is necessary to maintain an environment and a facility for culturing microorganisms and an environment for maintaining the medium in an appropriate state.
 また、捕集から検出までの煩雑な手作業が必要で、自動化が困難、という課題がある。たとえば、上記特許文献1の技術では、フローサイトメトリーによる計測の前に微生物を予め蛍光染色する作業や、捕集して染色した上で計測するという一連の複雑な作業が必要となる。また、上記特許文献1の技術では、検出動作が回収液や蛍光試薬などの消耗品を要するため、検出動作のためのランニングコストが高いという課題がある。さらに、上記特許文献1の技術では、回収液によって捕集された微生物が希釈されてしまうため、検出が難しくなる場合もある、といった課題や、用いた回収液を空気中に戻すことができず、廃棄しなければならない、といった課題もある。 Also, there is a problem that complicated manual work from collection to detection is necessary and automation is difficult. For example, the technique of Patent Document 1 requires a series of complicated operations of pre-fluorescence staining of microorganisms before measurement by flow cytometry, and measurement after collection and staining. Further, the technique disclosed in Patent Document 1 has a problem that the running cost for the detection operation is high because the detection operation requires consumables such as a collected liquid and a fluorescent reagent. Furthermore, in the technique of the above-mentioned patent document 1, since the microorganisms collected by the collected liquid are diluted, the problem that the detection may be difficult, and the used collected liquid cannot be returned to the air. There is also a problem that it must be discarded.
 本発明はこのような問題に鑑みてなされたものであって、検体中の生物由来の粒子を容易に精度よく検出することができる検出装置を提供することを目的としている。 The present invention has been made in view of such problems, and an object of the present invention is to provide a detection device that can easily and accurately detect biologically-derived particles in a specimen.
 上記目的を達成するために、本発明のある局面に従うと、検出装置は、流体中の粒子を表面に捕集するための捕集基板と、捕集基板を加熱するための加熱機構と、捕集基板に捕集された粒子のうちから生物由来の粒子を検出するための検出機構とを備える。捕集基板は、少なくとも270℃の耐熱性を有する材質で形成され、加熱機構は、捕集基板を270℃よりも低い温度で加熱するよう制御するための制御機構を含む。検出機構は、捕集基板の表面に対して励起光を照射するための光源、および蛍光を受光するための受光素子を含んで、加熱機構によって加熱後の捕集基板の表面からの蛍光に基づいて生物由来の粒子を検出する。 In order to achieve the above object, according to one aspect of the present invention, the detection apparatus includes a collection substrate for collecting particles in the fluid on the surface, a heating mechanism for heating the collection substrate, A detection mechanism for detecting biologically-derived particles among the particles collected on the collecting substrate. The collection substrate is formed of a material having heat resistance of at least 270 ° C., and the heating mechanism includes a control mechanism for controlling the collection substrate to be heated at a temperature lower than 270 ° C. The detection mechanism includes a light source for irradiating excitation light onto the surface of the collection substrate and a light receiving element for receiving fluorescence, and is based on fluorescence from the surface of the collection substrate after being heated by the heating mechanism. To detect biological particles.
 好ましくは、捕集基板の光の反射率は60%以上である。
 好ましくは、検出装置は、捕集基板に向けて流体を導入することで捕集基板で粒子を捕集するための捕集機構をさらに備える。
Preferably, the light reflectance of the collection substrate is 60% or more.
Preferably, the detection device further includes a collection mechanism for collecting particles with the collection substrate by introducing a fluid toward the collection substrate.
 より好ましくは、検出装置は、捕集基板を、捕集機構の設けられる位置と検出機構の設けられる位置との間で移動させるための移動機構をさらに備える。 More preferably, the detection device further includes a movement mechanism for moving the collection substrate between a position where the collection mechanism is provided and a position where the detection mechanism is provided.
 好ましくは、捕集機構は、捕集基板に向けて削孔された1以上の孔を有するノズル基板を含み、ノズル基板に削孔された孔を通して流体を捕集基板に向けて吸引する。 Preferably, the collection mechanism includes a nozzle substrate having one or more holes drilled toward the collection substrate, and sucks fluid toward the collection substrate through the holes drilled in the nozzle substrate.
 この発明によると、当該検出装置を用いて、検体中の生物由来の粒子を容易に、また、精度よく検出することができる。 According to the present invention, it is possible to easily and accurately detect biologically derived particles in a specimen using the detection device.
実施の形態にかかる検出装置の構成を表わした概略図である。It is the schematic showing the structure of the detection apparatus concerning embodiment. 検出装置の構成の他の例を表わした概略図である。It is the schematic showing the other example of the structure of the detection apparatus. 検出装置に含まれる捕集基板の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the collection board | substrate contained in a detection apparatus. 検出装置に含まれる捕集部の第1の例を表わした概略図である。It is the schematic showing the 1st example of the collection part contained in a detection apparatus. 捕集部に含まれるノズル基板のノズル(孔)形状の具体例の概略図である。It is the schematic of the specific example of the nozzle (hole) shape of the nozzle substrate contained in a collection part. 捕集部の第2の例を表わした概略図である。It is the schematic showing the 2nd example of the collection part. 検出装置に含まれる検出部の構成の他の例を表わした概略図である。It is the schematic showing the other example of the structure of the detection part contained in a detection apparatus. 検出装置に含まれる制御装置の構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a structure of the control apparatus contained in a detection apparatus. 制御装置での制御の流れを表わしたフローチャートである。It is a flowchart showing the flow of control in a control apparatus. 制御装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a control apparatus. 熱硬化性樹脂の一例としてのPDMS(ポリジメチルシロキサン)、熱可塑性樹脂の一例としてのPMMA(ポリメチルメタクリレート)、ガラス、金属の一例としての金、および寒天培地それぞれについての耐熱性および微生物の捕集性の評価結果を表わした図である。Heat resistance and microorganism capture for PDMS (polydimethylsiloxane) as an example of thermosetting resin, PMMA (polymethyl methacrylate) as an example of thermoplastic resin, glass, gold as an example of metal, and agar medium It is a figure showing the evaluation result of collectivity. 加熱温度を25℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 25 degreeC. 加熱温度を50℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 50 degreeC. 加熱温度を100℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 100 degreeC. 加熱温度を130℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 130 degreeC. 加熱温度を150℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 150 degreeC. 加熱温度を200℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 200 degreeC. 加熱温度を250℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 250 degreeC. 加熱温度を270℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 270 degreeC. 加熱温度を280℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 280 degreeC. 加熱温度を300℃としたときの、カビ菌の明視野画像(A)および蛍光画像(B)を表わした図である。It is a figure showing the bright-field image (A) and fluorescence image (B) of mold | fungi when heating temperature is 300 degreeC. 実験によって得られた、加熱温度と加熱後の蛍光強度との関係を表わした図である。It is the figure showing the relationship between the heating temperature and the fluorescence intensity after a heating obtained by experiment. 200℃での加熱の前(A)および後(B)の大腸菌の蛍光画像を表わした図である。It is a figure showing the fluorescence image of colon_bacillus | E._coli before (A) and after (B) heating at 200 degreeC. 200℃での加熱の前(A)および後(B)の蛍光埃の蛍光画像を表わした図である。It is a figure showing the fluorescence image of the fluorescent dust before (A) and after (B) heating at 200 degreeC.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.
 <装置構成>
 (全体構成)
 図1は、本実施の形態にかかる検出装置100の構成を表わした概略図である。図1を参照して、検出装置100は、流体である空気中の粒子を表面に捕集するための捕集基板10と、捕集基板10を加熱するための加熱機構である加熱部20と、捕集基板10に捕集された粒子のうちから生物由来の粒子を検出するための検出機構である検出部30と、加熱部20での加熱を制御するための制御装置50とを含む。検出部30は、捕集基板10の表面に対して励起光を照射するための光源31と、蛍光を受光するための受光素子32とを含む。好ましくは、検出装置100は、捕集基板10に向けて空気を導入することで捕集基板10で粒子を捕集するための捕集機構である捕集部40をさらに含む。
<Device configuration>
(overall structure)
FIG. 1 is a schematic diagram illustrating a configuration of a detection device 100 according to the present embodiment. Referring to FIG. 1, a detection device 100 includes a collection substrate 10 for collecting particles in the air, which is a fluid, on a surface, and a heating unit 20 that is a heating mechanism for heating the collection substrate 10. The detection unit 30 that is a detection mechanism for detecting biologically-derived particles among the particles collected on the collection substrate 10 and a control device 50 for controlling heating in the heating unit 20 are included. The detection unit 30 includes a light source 31 for irradiating the surface of the collection substrate 10 with excitation light and a light receiving element 32 for receiving fluorescence. Preferably, the detection apparatus 100 further includes a collection unit 40 that is a collection mechanism for collecting particles with the collection substrate 10 by introducing air toward the collection substrate 10.
 図2は、検出装置100の構成の他の例を表わした概略図である。図2を参照して、捕集部40および加熱部20と検出部30とが離れた位置に設置されてもよい。このようにすることで、検出部30への加熱によるダメージを抑えることができる。 FIG. 2 is a schematic diagram illustrating another example of the configuration of the detection apparatus 100. With reference to FIG. 2, the collection part 40, the heating part 20, and the detection part 30 may be installed in the position which left | separated. By doing in this way, the damage to the detection part 30 by the heating can be suppressed.
 この場合、検出装置100は、捕集基板10を、捕集部40および加熱部20の設けられる位置と検出部30の設けられる位置との間で移動させるための移動機構である移動部60をさらに含む。制御装置50は、移動部60とも電気的に接続され、移動部60での捕集基板10の移動を制御する。移動部60は、たとえば、電動ステージ(直動、回転)などが好適に用いられる。検出装置100をこのような構成とすることで、光学系(検出部30)の配置の自由度を向上させることができる。その結果、より高精度に生物由来の粒子からの蛍光を検出することができ、検出精度を向上させることができる。 In this case, the detection apparatus 100 moves the moving unit 60 that is a moving mechanism for moving the collection substrate 10 between the position where the collection unit 40 and the heating unit 20 are provided and the position where the detection unit 30 is provided. In addition. The control device 50 is also electrically connected to the moving unit 60 and controls the movement of the collection substrate 10 by the moving unit 60. As the moving unit 60, for example, an electric stage (linear movement, rotation) or the like is preferably used. When the detection device 100 has such a configuration, the degree of freedom of arrangement of the optical system (detection unit 30) can be improved. As a result, fluorescence from biologically derived particles can be detected with higher accuracy, and detection accuracy can be improved.
 また、上記構成で、捕集部40と加熱部20とを離れた位置としてもよい。この場合、移動部60は、捕集部40の設けられる位置と加熱部20の設けられる位置と検出部30の設けられる位置との間を移動させるための移動機構であってもよい。このようにすることで、捕集部40への加熱によるダメージを抑えることができる。 Moreover, it is good also as a position which left | separated the collection part 40 and the heating part 20 by the said structure. In this case, the moving unit 60 may be a moving mechanism for moving between the position where the collecting unit 40 is provided, the position where the heating unit 20 is provided, and the position where the detecting unit 30 is provided. By doing in this way, the damage by the heating to the collection part 40 can be suppressed.
 (捕集基板10)
 捕集基板10は、耐熱性を有する材質で形成される。図3は、捕集基板10の構成の一例を示す概略図である。すなわち、捕集基板10は、図3に表わされたように、耐熱性を有する耐熱基板11が支持基板12上に形成されていてもよい。捕集基板10の特性については後述する。
(Collection substrate 10)
The collection substrate 10 is formed of a heat resistant material. FIG. 3 is a schematic diagram illustrating an example of the configuration of the collection substrate 10. That is, as shown in FIG. 3, the collection substrate 10 may have a heat resistant substrate 11 having heat resistance formed on the support substrate 12. The characteristics of the collection substrate 10 will be described later.
 後述するように、検出装置100では、捕集基板10の一方の面で空気中の粒子を捕集し、その粒子からの蛍光を上記一方の面側に配置された受光素子32で受光する。そのため、捕集基板10が光を透過させるものであると、上記粒子からの蛍光のうちの約50%の蛍光は上記一方の面とは反対側の面に透過して、受光素子32では受光されない。すなわち、この場合、受光素子32では、粒子からの蛍光のうちの約50%程度しか受光しないことになる。 As will be described later, in the detection apparatus 100, particles in the air are collected on one surface of the collection substrate 10, and fluorescence from the particles is received by the light receiving element 32 disposed on the one surface side. Therefore, if the collection substrate 10 transmits light, about 50% of the fluorescence from the particles is transmitted to the surface opposite to the one surface, and the light receiving element 32 receives light. Not. That is, in this case, the light receiving element 32 receives only about 50% of the fluorescence from the particles.
 そこで、好ましくは、捕集基板10はその表面が光の反射性を有する。表面が反射性を有する捕集基板10の構成は、捕集基板10の表面(上記一方の面側の表面)自体が光の反射性を有する材質で構成されている場合と、図3の構成の場合に耐熱基板11は光を透過するものの支持基板12の耐熱基板11側の面が光の反射性を有する場合と、を含む。後者の場合、支持基板12の素材は、たとえば、シリコンや金属が好適に用いられる。また、この場合、支持基板12上への耐熱基板11の形成方法は、支持基板12と耐熱基板11とを別々に形成して接着する方法、支持基板12上に耐熱基板11を薄膜形成(スピンコートなど)する方法、耐熱基板11の底面に支持基板12を薄膜形成(スピンコートなど)する方法、などが好適に用いられる。 Therefore, preferably, the surface of the collection substrate 10 has light reflectivity. The structure of the collection substrate 10 whose surface is reflective is the case where the surface of the collection substrate 10 (the surface on the one surface side) itself is made of a material having light reflectivity, as shown in FIG. In this case, the heat resistant substrate 11 transmits light, but the surface on the heat resistant substrate 11 side of the support substrate 12 has light reflectivity. In the latter case, for example, silicon or metal is preferably used as the material of the support substrate 12. In this case, the heat-resistant substrate 11 is formed on the support substrate 12 by separately forming and bonding the support substrate 12 and the heat-resistant substrate 11, and forming the heat-resistant substrate 11 on the support substrate 12 as a thin film (spin And the like, and a method of forming the support substrate 12 in a thin film (such as spin coating) on the bottom surface of the heat-resistant substrate 11 are preferably used.
 捕集基板10の表面の反射率Y(%)は、好ましくは、受光素子32で総発光量の80%以上の蛍光を受光することができる反射率である。このとき、50%(上方)+(50%(下方)×Y/100)≧80%より、Y=60、すなわち、捕集基板10の表面の反射率Y(%)は60%以上となる。 The reflectance Y (%) of the surface of the collection substrate 10 is preferably a reflectance at which the light receiving element 32 can receive fluorescence of 80% or more of the total light emission amount. At this time, since 50% (upper) + (50% (lower) × Y / 100) ≧ 80%, Y = 60, that is, the reflectance Y (%) of the surface of the collection substrate 10 is 60% or more. .
 なお、捕集基板10の表面が光の反射性を有すると、光源31から照射される励起光が捕集基板10表面で反射し、受光素子32に迷光として入光する可能性も考えられる。この場合、後述するように、光学フィルタを配置して励起光をカットしたり、光源31と受光素子32とを斜軸配置したりすることで防止することができる。 If the surface of the collection substrate 10 has light reflectivity, the excitation light emitted from the light source 31 may be reflected by the surface of the collection substrate 10 and enter the light receiving element 32 as stray light. In this case, as will be described later, it can be prevented by arranging an optical filter to cut the excitation light or arranging the light source 31 and the light receiving element 32 on an oblique axis.
 (加熱部20)
 加熱部20は、たとえば、セラミックヒータ、遠赤外線ヒータ、および遠赤外線ランプなどが好適に用いられる。加熱部20は、制御装置50からの制御信号に従って捕集基板10を加熱する。
(Heating unit 20)
As the heating unit 20, for example, a ceramic heater, a far infrared heater, a far infrared lamp, or the like is preferably used. The heating unit 20 heats the collection substrate 10 according to a control signal from the control device 50.
 (捕集部40)
 図4は、捕集部40の第1の例を表わした概略図である。図4に表わされた構成は、慣性衝突法を利用して空気中の粒子を捕集基板10で捕集するための構成である。図4を参照して、捕集部40は、捕集基板10と平行または略平行に配置されるノズル基板41と、検出装置100内の圧力を制御するための機構である圧力制御装置42とを含む。
(Collector 40)
FIG. 4 is a schematic diagram illustrating a first example of the collection unit 40. The configuration shown in FIG. 4 is a configuration for collecting particles in the air by the collection substrate 10 using the inertial collision method. Referring to FIG. 4, the collection unit 40 includes a nozzle substrate 41 that is arranged in parallel or substantially in parallel with the collection substrate 10, a pressure control device 42 that is a mechanism for controlling the pressure in the detection device 100, and including.
 圧力制御装置42は、たとえば、ファンやポンプや圧力コントローラなどが好適に用いられ、検出装置100内の空気を排気することで外気を検出装置内に取り入れるものと、検出装置100内に外気を直接導入するものとがある。前者の場合、圧力制御装置42は、その吸引側に、ノズル基板41との間に捕集基板10を挟んで配置される(図4参照)。後者の場合、圧力制御装置42は、その排気側に、捕集基板10との間にノズル基板41を挟んで配置される。 For example, a fan, a pump, a pressure controller, or the like is preferably used as the pressure control device 42, and the outside air is taken into the detection device by exhausting the air inside the detection device 100, and the outside air is directly taken into the detection device 100. There is something to introduce. In the former case, the pressure control device 42 is arranged on the suction side with the collection substrate 10 sandwiched between the nozzle substrate 41 (see FIG. 4). In the latter case, the pressure control device 42 is disposed on the exhaust side with the nozzle substrate 41 sandwiched between the pressure control device 42 and the collection substrate 10.
 圧力制御装置42は、制御装置50からの制御信号に従って稼働する。前者の場合、圧力制御装置42が稼働すると、検出装置100の装置内には、図4の点線矢印で表わされたような気流が発生する。すなわち、外気がノズル基板41のノズルを通って捕集基板10まで導入され、捕集基板10を回って装置外に排気される。外気中の粒子は、気流による慣性力のために捕集基板10を回らずにその表面に衝突し、捕集される。 The pressure control device 42 operates according to a control signal from the control device 50. In the former case, when the pressure control device 42 is operated, an air flow as indicated by the dotted arrow in FIG. 4 is generated in the device of the detection device 100. That is, outside air is introduced to the collection substrate 10 through the nozzles of the nozzle substrate 41, and is exhausted outside the apparatus through the collection substrate 10. The particles in the outside air collide with the surface of the collection substrate 10 due to the inertial force caused by the air flow and are collected.
 圧力制御装置42を用いることで、自然落下させて捕集する場合と比較してより多くの検体(空気)を捕集基板10上に誘導することができる。たとえば、100L/minの吸引ファンを用いた場合、10分間の吸引で1000L(1m3)の検体(空気)を測定対象として導入することができるため、生物由来の粒子量を正確に算出することができる。 By using the pressure control device 42, more specimens (air) can be guided onto the collection substrate 10 as compared with the case where the pressure control device 42 is naturally dropped and collected. For example, when a suction fan of 100 L / min is used, 1000 L (1 m 3 ) of specimen (air) can be introduced as a measurement target with 10 minutes of suction, so that the amount of biological particles can be accurately calculated. Can do.
 ノズル基板41の材質は特定の材質に限定されない。たとえば、ステンレス、樹脂、ガラス、その他金属が好適に用いられる。好ましくは、ノズル(孔)の直径は0.01mm~10mm程度であり、ノズル長さ(すなわち、ノズル基板41の厚み)は0.1mm~50mmm程度である。ノズル基板41から捕集基板10までの距離は、好ましくは、0.01mm~10mm程度である。ノズル形状は限定されない。たとえば、ノズル基板41には、図5(A)に表わされたように円形のノズル(孔)が設けられていてもよいし、図5(B)に表わされたように矩形またはスリット状のノズル(孔)が設けられていてもよい。その他、テーパー形状などであってもよい。また、その数も限定されず、1~1000個程度であってよい。 The material of the nozzle substrate 41 is not limited to a specific material. For example, stainless steel, resin, glass, and other metals are preferably used. Preferably, the diameter of the nozzle (hole) is about 0.01 mm to 10 mm, and the nozzle length (that is, the thickness of the nozzle substrate 41) is about 0.1 mm to 50 mm. The distance from the nozzle substrate 41 to the collection substrate 10 is preferably about 0.01 mm to 10 mm. The nozzle shape is not limited. For example, the nozzle substrate 41 may be provided with circular nozzles (holes) as shown in FIG. 5A, or rectangular or slits as shown in FIG. 5B. A shaped nozzle (hole) may be provided. In addition, a taper shape etc. may be sufficient. Also, the number is not limited and may be about 1 to 1000.
 図6は、捕集部40の第2の例を表わした概略図である。図6に表わされた構成は、静電誘導を利用して空気中の粒子を捕集基板10で捕集するための構成である。図6を参照して、捕集部40は、図4のノズル基板41に替えて、放電電極43を含む。放電電極43は高圧電源の負極に電気的に接続される。高圧電源の正極は接地される。これにより、検出装置100内の空気中の粒子は放電電極43付近にて負に帯電される。捕集基板10は接地される。これにより、負に帯電された空気中の粒子は静電気力で捕集基板10の方向に移動してその表面に吸着され、捕集される。また、上記負極、正極の関係は逆でもよい。 FIG. 6 is a schematic diagram illustrating a second example of the collection unit 40. The configuration shown in FIG. 6 is a configuration for collecting particles in the air by the collection substrate 10 using electrostatic induction. With reference to FIG. 6, the collection unit 40 includes a discharge electrode 43 instead of the nozzle substrate 41 of FIG. 4. The discharge electrode 43 is electrically connected to the negative electrode of the high voltage power source. The positive electrode of the high voltage power supply is grounded. Thereby, particles in the air in the detection device 100 are negatively charged in the vicinity of the discharge electrode 43. The collection substrate 10 is grounded. As a result, the negatively charged particles in the air move toward the collection substrate 10 by electrostatic force, and are adsorbed and collected on the surface thereof. The relationship between the negative electrode and the positive electrode may be reversed.
 (検出部30)
 検出部30は、光源31と受光素子32とを含む。光源31は、たとえば、半導体レーザ、LED(Light Emitting Diode)、ランプなどが好適に用いられる。励起光の波長は、生物由来の微粒子を励起して蛍光を発させるものであれば、紫外または可視いずれの領域の波長でもよい。好ましくは、微生物中に含まれ、蛍光を発するトリプトファン、NADH、リボフラビン等が効率よく励起される300nm~450nmである。受光素子32は、たとえば、フォトダイオード、イメージセンサ、エリアセンサなどが好適に用いられる。受光素子32は、受光強度に応じた信号を制御装置50に対して出力する。
(Detector 30)
The detection unit 30 includes a light source 31 and a light receiving element 32. As the light source 31, for example, a semiconductor laser, an LED (Light Emitting Diode), a lamp, or the like is preferably used. The wavelength of the excitation light may be in the ultraviolet or visible region as long as it excites biological fine particles and emits fluorescence. Preferably, it is 300 nm to 450 nm, which is contained in the microorganism and excites the fluorescent tryptophan, NADH, riboflavin and the like efficiently. As the light receiving element 32, for example, a photodiode, an image sensor, an area sensor, or the like is preferably used. The light receiving element 32 outputs a signal corresponding to the received light intensity to the control device 50.
 捕集部40が図4に表わされた慣性衝突法を利用して空気中の粒子を捕集基板10で捕集する構成である場合、上記のように、ノズル基板41から捕集基板10までの距離が0.01mm~10mm程度であり、また、散乱などのノズル基板41による影響を回避するため、好ましくは、光源31および受光素子32は、図1に表わされたように、捕集基板10の真上から離れた領域に、捕集基板10の法線方向に対して角度を有して、つまり斜軸に配置される。 When the collection part 40 is the structure which collects the particle | grains in the air with the collection board | substrate 10 using the inertial collision method represented by FIG. 4, as mentioned above, the collection board | substrate 10 from the nozzle board | substrate 41 is used. The distance between the light source 31 and the light receiving element 32 is preferably as shown in FIG. 1 in order to avoid the influence of the nozzle substrate 41 such as scattering. An area away from directly above the collection substrate 10 is arranged at an angle with respect to the normal direction of the collection substrate 10, that is, on the oblique axis.
 図2に表わされたように、検出装置100が、捕集部40と検出部30とが離れた位置に設置される構成である場合、図2に表わされたように、好ましくは、光源31と受光素子32とは、励起光が直接、受光素子32に入らないよう、斜軸であること、つまり、光軸が一致しないように配置される。 As shown in FIG. 2, when the detection device 100 is configured to be installed at a position where the collection unit 40 and the detection unit 30 are separated from each other, preferably, as shown in FIG. 2, The light source 31 and the light receiving element 32 are arranged so that the excitation light does not enter the light receiving element 32 directly, that is, the oblique axis, that is, the optical axes do not coincide with each other.
 より好ましくは、図7(A)に表わされたように、検出部30は、光源31からの励起光を捕集基板10上の粒子が捕集された領域に集光するために、光源31の近傍に配置されるレンズ33と、生物由来の粒子からの蛍光を受光素子32に集光するために受光素子32の近傍に配置される蛍光検出用のレンズ34と、励起光をカットし、蛍光を通過させるために受光素子32の近傍に配置される蛍光検出用のフィルタ35とをさらに含む。これは、図2に表わされた、検出装置100が、捕集部40と検出部30とが離れた位置に設置される構成である場合も同様である。 More preferably, as shown in FIG. 7A, the detection unit 30 uses a light source to collect the excitation light from the light source 31 in a region where particles on the collection substrate 10 are collected. A lens 33 disposed in the vicinity of 31, a fluorescence detection lens 34 disposed in the vicinity of the light receiving element 32 in order to collect fluorescence from biological particles on the light receiving element 32, and the excitation light is cut off. And a fluorescence detection filter 35 disposed in the vicinity of the light receiving element 32 for allowing the fluorescence to pass therethrough. The same applies to the case where the detection device 100 illustrated in FIG. 2 is configured to be installed at a position where the collection unit 40 and the detection unit 30 are separated from each other.
 また、図7(B)を用いて説明されたように、検出装置100が、捕集部40と検出部30とが離れた位置に設置される構成である場合、検出部30は、さらにダイクロイックミラー等の、波長を選択するための光学素子36を用いて、光源31と受光素子32とを同軸に配置してもよい。 Further, as described with reference to FIG. 7B, when the detection device 100 is configured to be installed at a position where the collection unit 40 and the detection unit 30 are separated from each other, the detection unit 30 is further dichroic. The light source 31 and the light receiving element 32 may be arranged coaxially by using an optical element 36 for selecting a wavelength, such as a mirror.
 (制御装置50)
 制御装置50は、一般的なコンピュータ(たとえばパーソナルコンピュータ)などが好適に用いられる。
(Control device 50)
The control device 50 is preferably a general computer (for example, a personal computer).
 制御装置50は加熱部20と電気的に接続されて、加熱部20での加熱を制御する。制御装置50は、さらに、加熱部20および検出部30と電気的に接続されて、加熱部20での加熱、および検出部30での発光・受光を制御する。また、制御装置50は、受光素子32からの信号を用いて、加熱部20によって加熱後の捕集基板10の表面からの蛍光に基づいて、捕集基板10の表面から生物由来の粒子を検出する。 The control device 50 is electrically connected to the heating unit 20 and controls heating in the heating unit 20. The control device 50 is further electrically connected to the heating unit 20 and the detection unit 30, and controls heating by the heating unit 20 and light emission / light reception by the detection unit 30. Further, the control device 50 detects biologically-derived particles from the surface of the collection substrate 10 based on the fluorescence from the surface of the collection substrate 10 after being heated by the heating unit 20 using the signal from the light receiving element 32. To do.
 図8は、制御装置50の構成の具体例を示すブロック図であって、一般的なコンピュータの構成を表わしたものである。すなわち、図8を参照して、制御装置50は、装置全体を制御するための演算装置であるCPU(Central Processing Unit)50aと、CPU50aで実行されるプログラムなどを記憶するためのメモリであるROM(Read Only Memory)51と、CPU50aがプログラムを実行する際の作業領域ともなるメモリであるRAM(Random Access Memory)52と、検出結果などを記憶するためのメモリであるHDD(Hard Disk Drive)53と、加熱部20などと電気的に接続して通信を行なうことで制御信号を送信したり検出信号の入力を受け付けたりするための通信インタフェース(I/F)54とを含む。制御装置50は、この他、ユーザ操作を受け付けるための入力装置や、検出結果を表示するための表示装置や、検出結果などを他の装置に送信するための送信装置などを含んでもよい。 FIG. 8 is a block diagram showing a specific example of the configuration of the control device 50, and shows the configuration of a general computer. That is, referring to FIG. 8, control device 50 includes a CPU (Central Processing Unit) 50a which is an arithmetic device for controlling the entire device, and a ROM which is a memory for storing programs executed by CPU 50a. (Read Only Memory) 51, RAM (Random Access Memory) 52, which is a memory used as a work area when the CPU 50a executes a program, and HDD (Hard Disk Drive) 53, a memory for storing detection results and the like. And a communication interface (I / F) 54 for transmitting a control signal and receiving an input of a detection signal by communicating with the heating unit 20 and the like. In addition, the control device 50 may include an input device for receiving a user operation, a display device for displaying a detection result, a transmission device for transmitting the detection result to another device, and the like.
 <検出原理>
 生物由来の粒子からの蛍光強度は加熱によって増加するという特性を有する。一方、蛍光を発する埃などの生物由来ではない粒子からの蛍光強度は、加熱によって増加しない。これは、生物由来の粒子に含まれる糖分とアミノ酸とを加熱することによって生じるメイラード反応によって、蛍光性を有する褐色物質(メラノイジン)が形成されるためと推定される。なお、生物由来の粒子からの蛍光強度が加熱によって増加することを利用して非生物由来の粒子と分離して検出する検出原理は、本願出願人による国際公報WO2011/104770号にも開示されている。そこで、検出装置100はこの特性を利用して、少なくとも加熱後の蛍光強度を用いて、捕集された粒子のうち、蛍光を発する埃などから生物由来の粒子を分離して検出する。好ましくは、検出装置100は、加熱前後の蛍光強度の変化に基づいて生物由来の粒子を検出する。
<Detection principle>
The fluorescence intensity from biologically derived particles has the property of increasing with heating. On the other hand, the fluorescence intensity from particles that are not derived from organisms such as fluorescent dust does not increase by heating. This is presumably because a brown substance (melanoidin) having fluorescence is formed by the Maillard reaction generated by heating the sugar and amino acids contained in the biological particles. In addition, the detection principle which isolate | separates and detects from the non-biological origin particle | grains using the increase in the fluorescence intensity from a biological origin particle | grain by heating is also disclosed by international publication WO2011 / 104770 by this applicant. Yes. Therefore, using this characteristic, the detection device 100 separates and detects biologically derived particles from dust that emits fluorescence among the collected particles using at least the fluorescence intensity after heating. Preferably, the detection device 100 detects biological particles based on changes in fluorescence intensity before and after heating.
 図9は、制御装置50での制御の流れを表わしたフローチャートである。図9を参照して、制御装置50は、検出動作を開始すると、はじめに、捕集動作を実行する(ステップS1)。ステップS1の捕集動作は、捕集部40が図4に表わされた構成である場合、圧力制御装置42を規定の制御量で稼働させて、外気を検出装置100内に取り込んでノズル基板41のノズルを通過させ、捕集基板10まで導入する動作である。捕集部40が図6に表わされた構成である場合、ステップS1の捕集動作は、圧力制御装置42を規定の制御量で稼働させて外気を検出装置100内に取り込むと共に、放電電極43に印加して近傍の粒子を負に帯電させ、静電気力で捕集基板10に吸着させる動作である。 FIG. 9 is a flowchart showing a control flow in the control device 50. Referring to FIG. 9, when starting the detection operation, control device 50 first executes a collection operation (step S1). In the collecting operation in step S1, when the collecting unit 40 has the configuration shown in FIG. 4, the pressure control device 42 is operated at a specified control amount, and the outside air is taken into the detection device 100 and the nozzle substrate. In this operation, the nozzle 41 is passed through and introduced to the collection substrate 10. When the collection unit 40 has the configuration shown in FIG. 6, the collection operation in step S <b> 1 takes the outside air into the detection device 100 by operating the pressure control device 42 with a specified control amount, and discharge electrodes. This is an operation in which the particles in the vicinity are negatively charged by being applied to 43 and adsorbed to the collection substrate 10 by electrostatic force.
 制御装置50は、予め規定した期間、ステップS1の捕集動作を実行した後、好ましくは、測定動作を実行する(ステップS2)。ステップS2の測定動作は、光源31から励起光を予め規定した時間、照射すると共に、受光素子32から受光した蛍光強度に応じた信号の入力を受け付ける動作である。なお、検出装置100が図2で表わされた、捕集部40および加熱部20と検出部30とが離れた位置に設置される構成である場合、ステップS2の測定動作には、捕集部40および加熱部20の位置にセットされていた捕集基板10を検出部30の位置まで移動させるための動作が含まれる。すなわち、上記ステップS2での測定は、捕集基板10が検出部30に移動した後に行なわれる。 The control device 50 preferably performs the measurement operation after performing the collection operation of step S1 for a predetermined period (step S2). The measurement operation in step S <b> 2 is an operation of irradiating excitation light from the light source 31 for a predetermined time and receiving an input of a signal corresponding to the fluorescence intensity received from the light receiving element 32. When the detection device 100 is configured to be installed at a position where the collection unit 40, the heating unit 20, and the detection unit 30 are separated as shown in FIG. An operation for moving the collection substrate 10 set at the position of the unit 40 and the heating unit 20 to the position of the detection unit 30 is included. That is, the measurement in step S <b> 2 is performed after the collection substrate 10 has moved to the detection unit 30.
 制御装置50は、上記ステップS2で測定動作を行なう場合には、受光素子32から入力された信号を用いて蛍光強度F1を算出する(ステップS3)。ステップS3では、たとえば、制御装置50は、予め信号強度と蛍光強度との関係式を記憶しておき、受光素子32からの信号強度をその式に代入することで加熱前の蛍光強度F1を得ることができる。 When performing the measurement operation in step S2, the control device 50 calculates the fluorescence intensity F1 using the signal input from the light receiving element 32 (step S3). In step S3, for example, the control device 50 stores a relational expression between the signal intensity and the fluorescence intensity in advance, and obtains the fluorescence intensity F1 before heating by substituting the signal intensity from the light receiving element 32 into the expression. be able to.
 制御装置50は、捕集基板10を加熱する動作を実行する(ステップS4)。ステップS4の加熱動作は、加熱部20に、予め規定された熱量で発熱させる動作である。ステップS4の加熱動作の後、制御装置は、上記ステップS2,S3と同じ測定動作および算出動作を繰り返して、加熱後の蛍光強度F2を得る(ステップS5,S6)。 The control apparatus 50 performs the operation | movement which heats the collection board | substrate 10 (step S4). The heating operation in step S4 is an operation for causing the heating unit 20 to generate heat with a predetermined amount of heat. After the heating operation in step S4, the control device repeats the same measurement operation and calculation operation as in steps S2 and S3 to obtain the fluorescence intensity F2 after heating (steps S5 and S6).
 制御装置50は、少なくとも加熱後の蛍光強度F2を用いて生物由来の粒子量を算出する(ステップS7)。好ましくは、制御装置50は、上記ステップS2,S3の測定動作および算出動作を実行して加熱前の蛍光強度F1を得、加熱前後の蛍光強度F1,F2を用いて生物由来の粒子量を算出する(ステップS7)。 The control device 50 calculates the amount of biological particles using at least the fluorescence intensity F2 after heating (step S7). Preferably, the control device 50 executes the measurement operation and the calculation operation in steps S2 and S3 to obtain the fluorescence intensity F1 before heating, and calculates the amount of biological particles using the fluorescence intensity F1 and F2 before and after heating. (Step S7).
 ステップS7では、たとえば、制御装置50は、予め加熱後の蛍光強度F2と生物由来の粒子量(濃度、等)との関係式を記憶しておき、該関係式に得られた蛍光強度F1を代入することで生物由来の粒子量を得ることができる。また、たとえば、制御装置50は、加熱前後の蛍光強度F1,F2の差分△Fと生物由来の粒子量との関係式を記憶しておき、該関係式に算出した差分△Fを代入することで生物由来の粒子量を得ることができる。 In step S7, for example, the control device 50 stores in advance a relational expression between the fluorescence intensity F2 after heating and the amount of biological particles (concentration, etc.), and the fluorescence intensity F1 obtained from the relational expression is stored. By substituting, the amount of biological particles can be obtained. Further, for example, the control device 50 stores a relational expression between the difference ΔF between the fluorescence intensities F1 and F2 before and after heating and the amount of biological particles, and substitutes the calculated difference ΔF into the relational expression. The amount of biological particles can be obtained.
 <機能構成>
 図10は、上記動作を行なうための制御装置50の機能構成の具体例を示すブロック図である。図10の各機能は、制御装置50のCPU50aがROM51に記憶されているプログラムをRAM52上に読み出して実行することで、主にCPU50aで実現される。しかしながら、少なくとも一部の機能が、図8に表わされた制御装置50のハードウェア構成、または図示しない電気回路などのハードウェア構成によって実現されてもよい。
<Functional configuration>
FIG. 10 is a block diagram illustrating a specific example of a functional configuration of the control device 50 for performing the above operation. Each function of FIG. 10 is mainly realized by the CPU 50a by the CPU 50a of the control device 50 reading the program stored in the ROM 51 onto the RAM 52 and executing it. However, at least a part of the functions may be realized by a hardware configuration of the control device 50 shown in FIG. 8 or a hardware configuration such as an electric circuit (not shown).
 図10を参照して、CPU50aは、通信I/F54を介して捕集部40に対して制御信号を出力することで捕集動作を制御するための捕集制御部501と、光源31に対して制御信号を出力することで光源31での励起光の照射を制御するための発光制御部502と、加熱部20に対して制御信号を出力することで加熱動作を制御するための加熱制御部503と、移動部60が接続される場合には移動部60に対して制御信号を出力することで捕集基板10の移動を制御するための移動制御部504と、通信I/F54を介して受光素子32から蛍光強度に応じた信号の入力を受け付けるための信号入力部505と、受光素子32からの信号を用いて蛍光強度を算出するための蛍光強度算出部506と、予め上記の関係式を記憶しておき、加熱後の蛍光強度、または加熱前後の蛍光強度の差分を用いて生物由来の粒子量を算出するための粒子量算出部507とを含む。 Referring to FIG. 10, the CPU 50 a outputs a control signal to the collection unit 40 via the communication I / F 54 to control the collection operation and the light source 31. A light emission control unit 502 for controlling the irradiation of excitation light from the light source 31 by outputting a control signal, and a heating control unit for controlling the heating operation by outputting a control signal to the heating unit 20 503 and the movement control unit 504 for controlling the movement of the collection substrate 10 by outputting a control signal to the movement unit 60 when the movement unit 60 is connected, and the communication I / F 54 A signal input unit 505 for receiving an input of a signal corresponding to the fluorescence intensity from the light receiving element 32, a fluorescence intensity calculating unit 506 for calculating the fluorescence intensity using a signal from the light receiving element 32, and the above relational expression in advance Remember Fluorescence intensity after heating or heating by using the difference of the fluorescence intensity before and after, and a particle amount calculation unit 507 for calculating the amount of particles from organisms.
 <捕集基板の材質の選定>
 検出装置100で上記動作が行なわれて生物由来の粒子が検出されることから、捕集基板10には、耐熱性(高融点、非含水)、微生物に対する高い捕集性(粘着性)、平坦性(捕集効率向上、検出時焦点位置が合う、凹凸による散乱なし)、加工性、低コスト、および低自家蛍光が要求される。捕集基板10が図3に表わされた構成である場合、つまり、耐熱基板11が支持基板12上に形成される構成である場合、耐熱基板11には、さらに、光学的な透明性(透過性)も要求される。
<Selection of collection substrate material>
Since the above-described operation is performed by the detection apparatus 100 to detect biologically-derived particles, the collection substrate 10 has heat resistance (high melting point, non-water content), high collection property (stickiness) against microorganisms, flatness. Performance (improvement of collection efficiency, focus position at detection, no scattering due to unevenness), workability, low cost, and low autofluorescence are required. When the collection substrate 10 has the configuration shown in FIG. 3, that is, when the heat-resistant substrate 11 is formed on the support substrate 12, the heat-resistant substrate 11 further has optical transparency ( Transparency) is also required.
 なお、捕集基板10が図3に表わされた構成である場合、支持基板12には、耐熱性、機械的強度、捕集基板との密着性、加工性、捕集基板の形成性、平坦性、低コスト、低自家蛍光、および高反射率が要求される。そのため、支持基板12には、シリコン、ガラスおよび、金属(金、銀、白金など)が好適に用いられる。特に、シリコンが好適に用いられる。 When the collection substrate 10 has the configuration shown in FIG. 3, the support substrate 12 has heat resistance, mechanical strength, adhesion to the collection substrate, workability, formability of the collection substrate, Flatness, low cost, low autofluorescence, and high reflectivity are required. Therefore, silicon, glass, and metal (gold, silver, platinum, etc.) are preferably used for the support substrate 12. In particular, silicon is preferably used.
 発明者は、捕集基板10として用いる、熱硬化性樹脂の一例としてのPDMS(ポリジメチルシロキサン)、熱可塑性樹脂の一例としてのPMMA(ポリメチルメタクリレート)、ガラス、金属の一例としての金、および寒天培地それぞれについて、耐熱性および微生物の捕集性を評価した。この評価では、捕集基板10の表面での捕集効率を検討するため、特に、図4に表わされた慣性衝突法を利用した場合の捕集効率を挙げている。図6に表わされた静電誘導を利用した場合には、電圧印加が可能な導電性を有すれば捕集効率は100%となるためである。図11は、各材質の特性を表わした図である。図11を参照して、選定した材質のうち、耐熱性および微生物の捕集性を満たす材質は熱硬化性樹脂の一例としてのPDMSであることがわかった。 The inventor uses PDMS (polydimethylsiloxane) as an example of a thermosetting resin, PMMA (polymethyl methacrylate) as an example of a thermoplastic resin, glass, gold as an example of a metal, and Each agar medium was evaluated for heat resistance and ability to collect microorganisms. In this evaluation, in order to examine the collection efficiency on the surface of the collection substrate 10, the collection efficiency when the inertial collision method shown in FIG. 4 is used is particularly mentioned. This is because when the electrostatic induction shown in FIG. 6 is used, the collection efficiency is 100% if there is conductivity capable of applying a voltage. FIG. 11 is a diagram showing characteristics of each material. Referring to FIG. 11, among the selected materials, it was found that the material satisfying the heat resistance and the ability to collect microorganisms was PDMS as an example of a thermosetting resin.
 発明者は、さらに、捕集基板10(特に耐熱基板11)の耐熱性を特定するために、シリコン基板の上にPDMSをスピンコートで形成した後、熱硬化させて捕集基板10として図2の構成の検出装置100で用いて、生物由来の粒子を検出する実験を行なった。この実験では、生物由来の粒子の一例としてカビ菌を用いている。実験は、次のステップで行なわれている;
  ステップ1:カビ菌を含む空気をノズル基板41を通して検出装置100内に吸引し、捕集基板10上に捕集する、
  ステップ2:捕集基板10を加熱部20で所定温度に加熱する、
  ステップ3:受光素子32で、カビ菌の明視野画像および蛍光画像を取得する。
Further, the inventor formed PDMS on a silicon substrate by spin coating in order to specify the heat resistance of the collection substrate 10 (particularly the heat-resistant substrate 11), and then thermally cured to obtain the collection substrate 10 as shown in FIG. Using the detection apparatus 100 configured as described above, an experiment for detecting biological particles was performed. In this experiment, fungi are used as an example of biologically derived particles. The experiment is carried out in the following steps;
Step 1: Air containing mold bacteria is sucked into the detection device 100 through the nozzle substrate 41 and collected on the collection substrate 10.
Step 2: heating the collection substrate 10 to a predetermined temperature by the heating unit 20;
Step 3: The light receiving element 32 acquires a bright field image and a fluorescent image of mold.
 図12~図21は、実験によって得られた明視野画像および蛍光画像であって、それぞれ、加熱温度が25℃(加熱なしの室温)、50℃、100℃、130℃、150℃、200℃、250℃、270℃、280℃、および300℃での、明視野画像(A)および蛍光画像(B)を表わしている。また、図22は、実験によって得られた、加熱温度と加熱後の蛍光強度との関係を表わした図である。 FIG. 12 to FIG. 21 are bright-field images and fluorescent images obtained by experiments, with heating temperatures of 25 ° C. (room temperature without heating), 50 ° C., 100 ° C., 130 ° C., 150 ° C., and 200 ° C., respectively. , 250 ° C., 270 ° C., 280 ° C., and 300 ° C., showing a bright-field image (A) and a fluorescent image (B). FIG. 22 is a diagram showing the relationship between the heating temperature and the fluorescence intensity after heating, obtained by experiments.
 これらの実験結果より、150℃~270℃の加熱によってカビ菌からの蛍光強度が大きく増加することがわかった。図23は、生物由来の粒子の他の例としての大腸菌の、200℃での加熱前(A)および後(B)の蛍光画像である。たとえば、図23にも示されたように、同様の蛍光強度の増加は、カビ菌以外の、他の生物由来の粒子でも見られることが分かる。そのため、150℃~270℃の加熱によって生物由来の粒子からの蛍光強度が大きく増加することがわかった。なお、図24は、非生物由来の粒子(蛍光を発する埃)の、200℃での加熱前および後の蛍光画像である。この画像と図12~図21、図23を比較しても明らかなように、非生物由来の粒子は、上記の温度帯でも蛍光強度が増加することがないことが分かる。そのため、特に上記温度帯での加熱によって、生物由来の粒子を非生物由来の粒子から分離して検出することが可能であり、高精度で生物由来の粒子が検出されることが分かった。 From these experimental results, it was found that the fluorescence intensity from mold fungi greatly increased by heating at 150 ° C. to 270 ° C. FIG. 23 is a fluorescence image of E. coli as another example of biological particles before (A) and after (B) heating at 200 ° C. For example, as shown in FIG. 23, it can be seen that the same increase in fluorescence intensity is also observed in particles derived from other organisms other than fungi. For this reason, it was found that the fluorescence intensity from biologically-derived particles is greatly increased by heating at 150 to 270 ° C. FIG. 24 shows fluorescence images of non-living particles (fluorescent dust) before and after heating at 200 ° C. As is clear from comparison of this image with FIGS. 12 to 21 and FIG. 23, it can be seen that the non-living particles do not increase in fluorescence intensity even in the above temperature range. Therefore, it was found that the biological particles can be separated from the non-biological particles and detected by heating in the above temperature range, and the biological particles can be detected with high accuracy.
 そこで、この実験より、捕集基板10(特に耐熱基板11)は少なくとも270℃の耐熱性を有する材質で形成されるものとする。そして、制御装置50は、捕集基板10を上記耐熱温度よりも低い温度で加熱するよう加熱動作を制御する。 Therefore, from this experiment, it is assumed that the collection substrate 10 (particularly the heat-resistant substrate 11) is formed of a material having heat resistance of at least 270 ° C. And the control apparatus 50 controls a heating operation so that the collection board | substrate 10 may be heated at temperature lower than the said heat-resistant temperature.
 <実施の形態の効果>
 検出装置100をこのような構成とすることで、検体中の生物由来の粒子を容易に、また、精度よく検出することができる。
<Effect of Embodiment>
By adopting such a configuration for the detection apparatus 100, it is possible to easily and accurately detect biologically derived particles in the specimen.
 特に、捕集基板10を少なくとも270℃の耐熱性を有する材質で形成することで、捕集基板10に検体中の粒子を捕集した後に上記耐熱温度を超えない温度で加熱することが可能となる。発明者による実験によって、150℃~270℃の加熱によって生物由来の粒子からの蛍光強度が大きく増加することがわかっている。そのため、この温度帯まで捕集基板10を加熱することで、捕集された粒子の中にたとえば化学埃など蛍光を発する非生物由来の粒子が含まれている場合であっても、加熱後の蛍光強度としきい値とを比較したり、加熱前後の蛍光強度の差分を用いたりすることで、そのような非生物由来の粒子から生物由来の粒子を分離して精度よく検出することが可能となる。 In particular, by forming the collection substrate 10 with a material having heat resistance of at least 270 ° C., it is possible to heat the collection substrate 10 at a temperature not exceeding the heat resistance temperature after collecting particles in the specimen. Become. Experiments by the inventors have shown that heating from 150 ° C. to 270 ° C. greatly increases the fluorescence intensity from biologically derived particles. Therefore, by heating the collection substrate 10 to this temperature range, even if the collected particles contain non-living particles that emit fluorescence such as chemical dust, By comparing the fluorescence intensity with the threshold, or by using the difference in fluorescence intensity before and after heating, it is possible to separate biologically-derived particles from such non-biologically-derived particles and accurately detect them. Become.
 さらに、その際に、捕集基板10の表面の光の反射率をたとえば60%以上などの高反射率としておくことで、発光した蛍光の大部分(たとえば80%以上)が高効率で受光素子32で受光されることになる。そのため、より精度よく生物由来の粒子を検出することが可能となる。 Furthermore, at that time, by setting the reflectance of light on the surface of the collection substrate 10 to be a high reflectance such as 60% or more, for example, most of the emitted fluorescence (for example, 80% or more) is highly efficient. 32 is received. Therefore, it becomes possible to detect biologically derived particles with higher accuracy.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 捕集基板、11 耐熱基板、12 支持基板、20 加熱部、30 検出部、31 光源、32 受光素子、33,34 レンズ、35 フィルタ、36 光学素子、40 捕集部、41 ノズル基板、42 圧力制御装置、43 放電電極、50 制御装置、50a CPU、51 ROM、52 RAM、53 HDD、54 通信I/F、60 移動部、100 検出装置、501 捕集制御部、502 発光制御部、503 加熱制御部、504 移動制御部、505 信号入力部、506 蛍光強度算出部、507 粒子量算出部。 10 collection substrate, 11 heat resistant substrate, 12 support substrate, 20 heating unit, 30 detection unit, 31 light source, 32 light receiving element, 33, 34 lens, 35 filter, 36 optical element, 40 collection unit, 41 nozzle substrate, 42 Pressure control device, 43 discharge electrode, 50 control device, 50a CPU, 51 ROM, 52 RAM, 53 HDD, 54 communication I / F, 60 moving unit, 100 detection device, 501 collection control unit, 502 light emission control unit, 503 Heating control unit, 504 movement control unit, 505 signal input unit, 506 fluorescence intensity calculation unit, 507 particle amount calculation unit.

Claims (5)

  1.  流体中の粒子を表面に捕集するための捕集基板と、
     前記捕集基板を加熱するための加熱機構と、
     前記捕集基板に捕集された粒子のうちから生物由来の粒子を検出するための検出機構とを備え、
     前記捕集基板は、少なくとも270℃の耐熱性を有する材質で形成され、
     前記加熱機構は、前記捕集基板を270℃よりも低い温度で加熱するよう制御するための制御機構を含み、
     前記検出機構は、前記捕集基板の表面に対して励起光を照射するための光源、および蛍光を受光するための受光素子を含んで、前記加熱機構によって加熱後の前記捕集基板の表面からの蛍光に基づいて前記生物由来の粒子を検出する、検出装置。
    A collection substrate for collecting particles in the fluid on the surface;
    A heating mechanism for heating the collection substrate;
    A detection mechanism for detecting biologically-derived particles among the particles collected on the collection substrate;
    The collection substrate is formed of a material having heat resistance of at least 270 ° C.,
    The heating mechanism includes a control mechanism for controlling the collection substrate to be heated at a temperature lower than 270 ° C.,
    The detection mechanism includes a light source for irradiating excitation light to the surface of the collection substrate and a light receiving element for receiving fluorescence, and from the surface of the collection substrate heated by the heating mechanism. A detection device that detects the particles derived from the organism based on the fluorescence of.
  2.  前記捕集基板の光の反射率は60%以上である、請求項1に記載の検出装置。 The detection apparatus according to claim 1, wherein the collection substrate has a light reflectance of 60% or more.
  3.  前記捕集基板に向けて前記流体を導入することで前記捕集基板で前記粒子を捕集するための捕集機構をさらに備える、請求項1または2に記載の検出装置。 The detection device according to claim 1, further comprising a collection mechanism for collecting the particles by the collection substrate by introducing the fluid toward the collection substrate.
  4.  前記捕集基板を、前記捕集機構の設けられる位置と前記検出機構の設けられる位置との間で移動させるための移動機構をさらに備える、請求項3に記載の検出装置。 The detection apparatus according to claim 3, further comprising a movement mechanism for moving the collection substrate between a position where the collection mechanism is provided and a position where the detection mechanism is provided.
  5.  前記捕集機構は、前記捕集基板に向けて削孔された1以上の孔を有するノズル基板を含み、前記ノズル基板に削孔された前記孔を通して前記流体を前記捕集基板に向けて吸引する、請求項3に記載の検出装置。 The collection mechanism includes a nozzle substrate having one or more holes drilled toward the collection substrate, and sucks the fluid toward the collection substrate through the holes drilled in the nozzle substrate. The detection device according to claim 3.
PCT/JP2014/064065 2013-05-31 2014-05-28 Detection device WO2014192787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-115081 2013-05-31
JP2013115081 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192787A1 true WO2014192787A1 (en) 2014-12-04

Family

ID=51988812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064065 WO2014192787A1 (en) 2013-05-31 2014-05-28 Detection device

Country Status (1)

Country Link
WO (1) WO2014192787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051149A (en) * 2015-09-10 2017-03-16 アズビル株式会社 Device for detecting viable particles in liquid and method for detecting viable particles in liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149064A (en) * 1999-11-25 2001-06-05 Midori Anzen Co Ltd Potable type sampler of airborne bacterium
WO2006073492A2 (en) * 2004-07-30 2006-07-13 Biovigilant Systems, Inc. Pathogen and particle detector system and method
JP2009011265A (en) * 2007-07-06 2009-01-22 Kansai Seiki Kogyo Kk Air-suspended bacteria sampler
JP2009055790A (en) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd Method of sampling microorganism, pseudoculturing medium for microorganism, and tool for sampling microorganism
WO2011104770A1 (en) * 2010-02-26 2011-09-01 Sharp Kabushiki Kaisha Detection apparatus and method for detecting airborne biological particles
WO2012114458A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Device for capturing microorganisms or like in atmosphere and method for capturing same
JP2012233796A (en) * 2011-05-02 2012-11-29 Sharp Corp Detection device and detection method
JP2012249593A (en) * 2011-06-03 2012-12-20 Sharp Corp Detecting apparatus and detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149064A (en) * 1999-11-25 2001-06-05 Midori Anzen Co Ltd Potable type sampler of airborne bacterium
WO2006073492A2 (en) * 2004-07-30 2006-07-13 Biovigilant Systems, Inc. Pathogen and particle detector system and method
JP2009011265A (en) * 2007-07-06 2009-01-22 Kansai Seiki Kogyo Kk Air-suspended bacteria sampler
JP2009055790A (en) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd Method of sampling microorganism, pseudoculturing medium for microorganism, and tool for sampling microorganism
WO2011104770A1 (en) * 2010-02-26 2011-09-01 Sharp Kabushiki Kaisha Detection apparatus and method for detecting airborne biological particles
WO2012114458A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Device for capturing microorganisms or like in atmosphere and method for capturing same
JP2012233796A (en) * 2011-05-02 2012-11-29 Sharp Corp Detection device and detection method
JP2012249593A (en) * 2011-06-03 2012-12-20 Sharp Corp Detecting apparatus and detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051149A (en) * 2015-09-10 2017-03-16 アズビル株式会社 Device for detecting viable particles in liquid and method for detecting viable particles in liquid

Similar Documents

Publication Publication Date Title
JP5275522B2 (en) Detection apparatus and detection method for detecting biological particles in air
US20150177143A1 (en) Particle detection device
WO2012081285A1 (en) Detection device and detection method
JP2011097861A (en) Apparatus and method for detecting microorganism
JP5844071B2 (en) Detection apparatus and detection method
JP2012072946A (en) Air conditioner
WO2015029673A1 (en) Collection device and detection device
JP7093766B2 (en) Specimen detection system
JP5655232B2 (en) Thermal cycle system with transfer heater
WO2013125121A1 (en) Particle detector and air-conditioner
US9057703B2 (en) Particle detection device
WO2014192787A1 (en) Detection device
JP5925519B2 (en) Particle detector
JP5755949B2 (en) Detection apparatus and detection method
WO2012081358A1 (en) Detection device and detection method
JP5923016B2 (en) Microorganism detection system and microorganism detection method
JP2013130362A (en) Air cleaner
JP5997532B2 (en) Particle detector
WO2015056612A1 (en) Heating-cooling device and detection device
JP2017029075A (en) Collection detector
JP2013250135A (en) Detection device and detection method
JP2013247900A (en) Detecting apparatus and detection method
JP2016003883A (en) Particle detection device and particle detection method
JP2023086463A (en) Detection system
JP2013130436A (en) Particle detector and particle detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP