WO2013035407A1 - Particle detection device - Google Patents

Particle detection device Download PDF

Info

Publication number
WO2013035407A1
WO2013035407A1 PCT/JP2012/065351 JP2012065351W WO2013035407A1 WO 2013035407 A1 WO2013035407 A1 WO 2013035407A1 JP 2012065351 W JP2012065351 W JP 2012065351W WO 2013035407 A1 WO2013035407 A1 WO 2013035407A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
collection
unit
particle
cleaning
Prior art date
Application number
PCT/JP2012/065351
Other languages
French (fr)
Japanese (ja)
Inventor
永留 誠一
友規 加茂
藤田 英明
藤岡 一志
大樹 奥野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013035407A1 publication Critical patent/WO2013035407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • the present invention generally relates to a particle detection apparatus, and more particularly to a particle detection apparatus that detects biologically derived particles.
  • Japanese Patent Laid-Open No. 2002-357532 discloses a measurement device for suspended particulate matter for the purpose of simultaneously measuring suspended particulate matter concentration and pollen concentration in the atmosphere. (Patent Document 1).
  • the measuring apparatus disclosed in Patent Document 1 irradiates the suspended particulate matter collection unit that collects suspended particulate matter in the sample gas on the filter paper, and the suspended particulate matter on the filter paper is irradiated with ⁇ -rays, Detecting suspended particulate matter by detecting the amount of permeation, and detecting the amount of pollen by irradiating pollen contained in suspended particulate matter with ultraviolet light and detecting the intensity of the generated fluorescence A pollen detector.
  • Filter paper that collects suspended particulate matter is transported between the suspended particulate matter collection unit, suspended particulate matter detector, and pollen detector using a filter paper supply mechanism that combines a roller and a motor.
  • an object of the present invention is to solve the above-described problems and to provide a particle detection apparatus that performs particle detection at a low cost.
  • the particle detection device is a particle detection device that detects biologically derived particles.
  • the particle detector includes a collection unit that collects particles on a collection member, a fluorescence detection unit that irradiates excitation light toward the particles collected on the collection member and receives fluorescence emitted from the particles, and A cleaning unit for removing particles from the collecting member, a first position for collecting the particles on the collecting member by the collecting unit, a second position for receiving fluorescence by the fluorescence detecting unit, and cleaning. And a moving mechanism unit that moves between the third position where the particles are removed from the collection member by the unit.
  • the cleaning unit that removes the particles from the collection member is provided, and the collection member is moved between the first position, the second position, and the third position by the moving mechanism unit.
  • particles can be detected by repeatedly using the collecting member.
  • grain detection apparatus which implements particle
  • the cleaning unit has a cleaning tool fixedly supported at the third position. As the collection member moves to the third position by the moving mechanism unit, the particles are removed from the collection member by the cleaning tool.
  • a moving mechanism unit for moving the cleaning tool is not necessary, and the particle detection device can be configured easily and at low cost.
  • the particle detection device further includes a housing that houses the collection unit, the fluorescence detection unit, and the cleaning unit, and a fan that exhausts air from the inside of the housing. More preferably, when the particles are removed by the cleaning unit, the fan is driven to collect the particles removed from the collection member from the inside of the housing.
  • particle detector configured in this way, particles removed from the collecting member by the cleaning unit do not stay inside the casing, and therefore particle detection can be repeatedly performed.
  • air is introduced toward the collecting member by driving the fan when collecting the particles by the collecting unit.
  • the particle detection device configured as described above, is combined with the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the particles are collected by the collection unit. It can be configured simply and at low cost.
  • the particle detector further includes a heating unit that heats the particles collected by the collecting member.
  • a heating unit that heats the particles collected by the collecting member.
  • the collecting member that is heated to high temperature by the heating unit is cooled.
  • the particle detection device configured in this way, the particle detection device can be simplified and reduced by combining the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the collection substrate is cooled. Cost can be configured.
  • the cleaning unit has a cleaning tool for removing particles from the collecting member.
  • the particle detector further includes a cleaning tool initialization member that removes particles attached to the cleaning tool as the particles are removed by the cleaning unit.
  • the particle detection can be repeatedly performed by more reliably removing the particles from the collection member by the cleaning tool.
  • the cleaning tool is fixedly supported at the third position.
  • the cleaning tool initialization member is moved together with the collection member by the moving mechanism.
  • a moving mechanism unit for moving the cleaning tool initialization member is not necessary, so that the particle detection apparatus can be configured simply and at low cost.
  • the cleaning tool initialization member is disposed between the collection member and the cleaning tool.
  • particles can be removed from the collection member using the cleaning tool from which particles have been removed by the cleaning tool initialization member.
  • the particle detection device further includes a housing that houses the collection unit, the fluorescence detection unit, and the cleaning unit, and a fan that exhausts air from the inside of the housing.
  • the fan is driven to collect the particles removed from the collecting member and the cleaning tool from the inside of the housing.
  • the particle detection device is used by combining the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the particles are removed by the cleaning tool initialization member. Can be configured simply and at low cost.
  • the particle detection apparatus further includes a particle capturing unit that has adhesiveness and captures suspended particles generated when particles are removed by the cleaning unit.
  • a particle capturing unit that has adhesiveness and captures suspended particles generated when particles are removed by the cleaning unit.
  • the particle detector configured in this way, particles removed from the collecting member by the cleaning unit do not stay inside the casing, and therefore particle detection can be repeatedly performed.
  • the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit.
  • the drive control unit moves the collection member to the third position when the amount of received light detected by the fluorescence detection unit is larger than a predetermined threshold.
  • the particle detection device configured in this way, it is determined whether it is necessary to remove particles from the collection member on the basis of the amount of received light detected by the fluorescence detection unit. Thereby, the frequency which removes particle
  • the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit.
  • the drive control unit moves the collection member from which particles have been removed by the cleaning unit at the third position to the second position, and when the amount of received light detected by the fluorescence detection unit is greater than a predetermined threshold, The collecting member is again moved to the third position.
  • the particle detection apparatus configured in this way, it is determined whether the particles are sufficiently removed from the collection member in the previous process, based on the amount of light received detected by the fluorescence detection unit. If it is determined, the collecting member is moved again to the third position. Thereby, it can prevent that a collection member is moved to the position of a next process, with the removal of the particle
  • the fluorescence detection unit includes a light receiving element that receives fluorescence emitted from the particles and generates a current signal corresponding to the amount of received light.
  • the threshold value is set to a value equal to or less than the upper limit of the amount of light received by the light receiving element where the current signal generated during light reception is saturated. According to the particle detector configured in this way, the particles can be removed from the collection member by the cleaning unit before the light receiving element causes saturation of the current signal.
  • the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit.
  • the drive control unit is configured to remove the particles attached to the cleaning tool by the cleaning tool initialization member when the number of times the cleaning unit removes the particles from the collection member exceeds a predetermined threshold number.
  • the moving mechanism section includes the collection member between the first position, the second position, the third position, and a fourth position where particles attached to the cleaning tool are removed by the cleaning tool initialization member. Move with.
  • the drive control unit moves the collection member to the fourth position when the number of times particles are removed from the collection member by the cleaning unit exceeds a predetermined threshold number.
  • the particle detector configured in this way, it is determined whether or not the particles attached to the cleaning tool need to be removed based on the number of times the particles are removed from the collecting member by the cleaning unit. Thereby, the frequency which removes the particles adhering to the cleaning tool by the cleaning tool initialization member can be suppressed.
  • the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit.
  • the drive control unit is configured to remove the particles attached to the cleaning tool by the cleaning tool initialization member when the cumulative amount of light received detected by the fluorescence detection unit exceeds a predetermined threshold amount.
  • the moving mechanism section includes the collection member between the first position, the second position, the third position, and a fourth position where particles attached to the cleaning tool are removed by the cleaning tool initialization member. Move with.
  • the drive control unit moves the collection member to the fourth position when the total amount of received light detected by the fluorescence detection unit exceeds a predetermined threshold amount.
  • the particle detector configured in this way, it is determined whether or not it is necessary to remove particles adhering to the cleaning tool, based on the total amount of light received detected by the fluorescence detector. Thereby, the frequency which removes the particles adhering to the cleaning tool by the cleaning tool initialization member can be suppressed.
  • FIG. 10 is a perspective view showing a state where a fan is removed from the particle detection device in FIG. 9. It is a perspective view which shows the rotation base which comprises a moving mechanism part.
  • the particle detection device in the present embodiment is a device for detecting particles derived from organisms such as pollen, microorganisms, and mold. First, the principle of detecting biological particles using the particle detection apparatus according to the present embodiment will be described.
  • FIG. 1 is a graph showing changes in fluorescence intensity of biological particles before and after heating and changes in fluorescence intensity of dust before and after heating.
  • the fluorescence intensity emitted from the dust is reduced by the heat treatment. While it does not change, the fluorescence intensity emitted from biological particles increases with heat treatment.
  • the fluorescence intensity before and after heating is measured for particles in which biological particles and dust are mixed, and the difference is obtained to specify the amount of biological particles. .
  • FIG. 2 to FIG. 6 are diagrams showing a process for detecting biological particles.
  • particles are collected on a collection substrate 510 (collection step).
  • the collection substrate 510 is disposed opposite to the electrostatic needle 530, and a potential difference is generated between the collection substrate 510 and the electrostatic needle 530.
  • the particles 600 suspended in the air are charged around the electrostatic needle 530.
  • the charged particles 600 are adsorbed on the surface of the collection substrate 510 by electrostatic force.
  • the particles 600 collected on the collection substrate 510 include biological particles 600A and dust 600B such as chemical fiber dust.
  • the intensity of the fluorescence emitted from the particle 600 before heating is measured (fluorescence measurement step (before heating)).
  • excitation light is irradiated toward the particles 600 collected on the collection substrate 510 from the light emitting element 550 such as a semiconductor laser, and the fluorescence emitted from the particles 600 is received by the light receiving element 565 through the lens 560.
  • the particles 600 collected on the collection substrate 510 are heated using a heater 520. After the heating, the collection substrate 510 is cooled (heating process).
  • the intensity of the fluorescence emitted from the heated particle 600 is measured (fluorescence measurement step (after heating)).
  • fluorescence measurement step (after heating) the intensity of the fluorescence emitted from the heated particle 600 is measured.
  • the fluorescence intensity emitted from the dust 600B is not changed by the heat treatment, whereas the fluorescence intensity emitted from the biological particle 600A is increased by the heat treatment.
  • a fluorescence intensity having a value larger than the fluorescence intensity measured in the fluorescence measurement step (before heating) in FIG. 3 is measured.
  • FIG. 7 is a graph showing the relationship between the fluorescence intensity increase ⁇ F before and after heating and the concentration of biological particles.
  • the increase amount ⁇ F1 of the fluorescence intensity is calculated from the difference between the fluorescence intensity before heating and the fluorescence intensity after heating.
  • the biological particle concentration N1 corresponding to the calculated increase amount ⁇ F1 is specified.
  • the correspondence relationship between the increase amount ⁇ F and the biological particle concentration N is experimentally determined in advance.
  • the particles 600 that have finished detecting the biological particles are removed from the collection substrate 510 (refresh process).
  • FIG. 8 is a perspective view showing the appearance of the particle detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is another perspective view showing the appearance of the particle detector in FIG.
  • FIG. 10 is an exploded view showing the particle detector in FIG.
  • FIG. 11 is a perspective view showing the internal structure of the particle detector in FIG.
  • the particle detection device 10 in the present embodiment includes a cabinet 11 as a housing, a fan 16, a collection unit 20, a fluorescence detection unit 30, and a cleaning unit 50. Have.
  • the cabinet 11 has a substantially rectangular parallelepiped shape, and houses the collection unit 20, the fluorescence detection unit 30, and the cleaning unit 50.
  • the cabinet 11 includes an upper cabinet 12 as a first casing and a lower cabinet 14 as a second casing.
  • the lower cabinet 14 has a box shape opening in one direction.
  • the upper cabinet 12 has a flat plate shape that closes the opening of the lower cabinet 14.
  • the cabinet 11 has a size of 60 mm ⁇ 50 mm (length and width of the upper cabinet 12) ⁇ 30 mm (height).
  • the cabinet 11 has a side surface 11m and a side surface 11n.
  • the side surface 11m and the side surface 11n are disposed to face each other.
  • the side surface 11m is formed in the upper cabinet 12, and the side surface 11n is formed in the lower cabinet 14.
  • the cabinet 11 is integrally formed with a collecting cylinder 15 as a cylindrical member.
  • the collection cylinder 15 opens to the side surface 11m and extends in a cylindrical shape from the side surface 11m to the side surface 11n.
  • the collection cylinder 15 is provided so as to surround an electrostatic needle 22 described later.
  • the collection cylinder 15 guides air containing particles toward the collection substrate 71 positioned facing the electrostatic needle 22.
  • FIG. 12 is a perspective view showing a state in which the fan is removed from the particle detection apparatus in FIG. Referring to FIGS. 9 and 12, fan 16 can be driven to rotate in the normal direction and the reverse direction. By driving the fan 16 in the forward rotation direction, the air inside the cabinet 11 is discharged to the outside of the cabinet 11 through the fan 16. By driving the fan 16 in the reverse direction, the air outside the cabinet 11 is introduced into the cabinet 11 through the fan 16.
  • the fan 16 is attached to the side surface 11n of the cabinet 11.
  • An opening 120 is formed at the position of the cabinet 11 to which the fan 16 is attached.
  • the opening 120 includes a range facing the collection cylinder 15 (a range indicated by a two-dot chain line 122 in FIG. 12) and a range facing a brush 51 described later (a range indicated by a two-dot chain line 121 in FIG. 12). So that it is open.
  • the opening 120 is continuously formed in a range facing the collecting cylinder 15 and a range facing the brush 51.
  • the fan 16 is used for both the collection process, the cooling during the heating process, and the refresh process. Thereby, size reduction and cost reduction of the particle
  • the collection unit 20 performs the collection process described with reference to FIG. 2, and collects particles contained in the air on the collection substrate 71.
  • the collection unit 20 includes a high voltage power source 21 as a power source unit and an electrostatic needle 22 as a discharge electrode.
  • the collection substrate 71 is provided as a collection member that collects particles obtained by mixing biological particles and dust such as chemical fiber dust.
  • the collection substrate 71 is formed from a glass plate.
  • a conductive transparent film is formed on the surface of the glass plate that adsorbs the particles.
  • the collection substrate 71 is not limited to a glass plate, and may be formed of ceramic or metal.
  • the film is not limited to a transparent film, and for example, a metal film may be formed on the surface of the collection substrate 71 formed of ceramic or the like.
  • substrate 71 is formed from a metal, it is not necessary to form a film in the surface.
  • the high-voltage power supply 21 is provided as a power supply unit for generating a potential difference between the collection substrate 71 and the electrostatic needle 22.
  • the electrostatic needle 22 extends from the high-voltage power source 21 and penetrates through the collecting cylinder 15 to reach the inside of the collecting cylinder 15.
  • the collection substrate 71 is disposed to face the electrostatic needle 22.
  • the electrostatic needle 22 is electrically connected to the positive electrode of the high voltage power source 21.
  • the film formed on the collection substrate 71 is electrically connected to the negative electrode of the high-voltage power source 21.
  • the coating formed on the collection substrate 71 may be connected to the ground potential, or the electrostatic needle 22 may be connected to the high-voltage power source.
  • the film formed on the collection substrate 71 may be electrically connected to the positive electrode of the high-voltage power supply 21.
  • particles are collected on the collection substrate 71 by electrostatic collection using electrostatic force.
  • the particles can be reliably held on the collection substrate 71 when the particles are detected, and the particles can be easily removed from the collection substrate 71 after the particles are detected.
  • the charged particles are formed on the surface of the collection substrate 71 facing the electrostatic needle 22 and correspond to an irradiation area of the light emitting element described later. It can be adsorbed in a narrow area. Thereby, the adsorbed microorganisms can be efficiently detected in the fluorescence measurement step.
  • the fluorescence detection unit 30 executes the fluorescence measurement process (before and after heating) described with reference to FIGS. 3 and 5.
  • the fluorescence detection unit 30 includes an excitation light source unit 31 and a light receiving unit 41.
  • the excitation light source unit 31 irradiates excitation light toward the particles collected on the collection substrate 71.
  • the light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated.
  • the excitation light source unit 31 includes a light emitting element 32 as a light source, an excitation unit frame 33, a condenser lens 34, and a lens holder 35.
  • the light receiving unit 41 includes a noise shield 42, an amplifier circuit 43, a light receiving element 44, a light receiving unit frame 45, a Fresnel lens 46, and a lens holder 47.
  • As the light emitting element 32 a semiconductor laser or an LED (Light Emitting Diode) element is used.
  • the light emitted from the light emitting element 32 may have a wavelength in either the ultraviolet or visible region as long as it excites biological particles to emit fluorescence.
  • As the light receiving element 44 a photodiode or an image sensor is used.
  • the cleaning unit 50 performs the refresh process described with reference to FIG. 6 and removes particles from the collection substrate 71.
  • the cleaning unit 50 includes a brush 51 as a cleaning tool, a brush fixing unit 52 and a brush presser 53 as base portions.
  • the cleaning unit 50 is fixedly supported with respect to the high voltage power source 21. During the refresh process, the cleaning unit 50 is stationary.
  • the brush 51 is formed from a fiber assembly.
  • the brush 51 is formed from a conductive fiber assembly.
  • the brush 51 is made of, for example, carbon fiber.
  • the wire diameter of the fiber aggregate forming the brush 51 is preferably not less than ⁇ 0.05 mm and not more than ⁇ 0.2 mm.
  • the brush 51 has a free end 51p and a support end 51q disposed at the end opposite to the free end 51p (see FIG. 11).
  • the support end 51q is supported by the brush fixing portion 52 and the brush presser 53.
  • the brush 51 is provided so as to hang down from the support end 51q toward the free end 51p.
  • the brush 51 is fixedly supported at a refresh position 93 to be described later.
  • the collection substrate 71 moves in a state where the free end 51p of the brush 51 is in contact with the surface of the collection substrate 71, whereby the particles are removed from the collection substrate 71.
  • the brush 51 is used as a collection tool for removing particles from the collection substrate 71.
  • the present invention is not limited to this, and for example, a flat plate-like shape that contacts the surface of the collection substrate 71. It may be a wiper or a nozzle that blows air toward the surface of the collection substrate 71.
  • the particle detector 10 further includes a heater 76 as a heating unit and a moving mechanism unit 60.
  • the heater 76 performs the heating process described with reference to FIG. 4 and heats the particles collected on the collection substrate 71.
  • the moving mechanism unit 60 mounts the collection substrate 71 and moves the collection substrate 71 between the collection process, the fluorescence measurement process (before and after heating), the refresh process, and the heating process.
  • the moving mechanism unit 60 includes a motor holder 61, a rotation motor 62 as a drive unit that can be driven to rotate, a motor presser 63, and a rotation base 64 as an arm unit.
  • FIG. 13 is a perspective view showing a rotation base constituting the moving mechanism unit.
  • FIG. 14 is an exploded view showing the rotating base in FIG. 13.
  • the rotation base 64 viewed from the back side (side surface 11n side of the cabinet 11) is shown, and in FIG. 14, the rotation base 64 viewed from the front side (side surface 11m side of the cabinet 11) is shown. Yes.
  • the output shaft of the rotary motor 62 is connected to the rotary base 64.
  • the rotation base 64 rotates (forward rotation, reverse rotation) about the rotation center axis 66 drawn as a virtual line in FIG.
  • the rotation base 64 is made of a resin material.
  • the rotation base 64 includes a central portion 67, a substrate support portion 68, a brush cleaning arm 81 as a cleaning tool initialization member, and a sensing target portion 82 as constituent parts thereof.
  • the central portion 67 is connected to the output shaft of the rotary motor 62.
  • the center portion 67 is supported by the cabinet 11 so as to be rotatable about the rotation center axis 66.
  • the substrate support portion 68 extends from the center portion 67 in the radial direction of the rotation center shaft 66, and the collection substrate 71 is mounted at the tip thereof.
  • the substrate support portion 68 has a frame shape at a position where the collection substrate 71 is mounted.
  • the brush cleaning arm 81 and the sensing target portion 82 will be described in detail later.
  • a heater 76 is bonded to the back surface of the collection substrate 71.
  • the heater 76 moves together with the collection substrate 71 when the rotation base 64 rotates.
  • a plurality of wirings 111, 112, and 113 including a power supply line of the heater 76 and a signal line of a sensor built in the heater 76 are connected to the heater 76.
  • the wirings 111, 112, and 113 are drawn out of the cabinet 11 through the flexible substrate 96.
  • FIG. 15 is a cross-sectional view showing the particle detection apparatus during the collection process and the heating process.
  • FIG. 16 is a cross-sectional view showing the particle detector in the fluorescence measurement process (before and after heating).
  • FIG. 17 is a cross-sectional view showing the particle detection apparatus during the refresh process. 15 to 17, a cross section of the particle detection device viewed from the side surface 11n side of the cabinet 11 is shown.
  • collection substrate 71 is a collection / heating position as the first position shown in FIG. 15 during the collection step and the heating step. And moved to a detection position 92 as the second position shown in FIG. 16 during the fluorescence measurement process (before and after heating), and the refresh position as the third position shown in FIG. 17 during the refresh process. 93.
  • the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged away from each other.
  • the refresh position 93 in FIG. 17 is shown as a representative example.
  • the surface of the collection substrate 71 is brought into contact with the brush 51 while moving the collection substrate 71 during the refresh process.
  • the movement range of the collection substrate 71 while the collection substrate 71 and the brush 51 are in contact corresponds to the refresh position 93.
  • the collection substrate 71 is held in the same plane while moving between the collection / heating position 91, the detection position 92, and the refresh position 93.
  • the collection substrate 71 is held in the same plane orthogonal to the rotation center axis 66 while moving between the collection / heating position 91, the detection position 92, and the refresh position 93.
  • the particle detection apparatus 10 in the present embodiment moves the collection substrate 71 between the collection / heating position 91, the detection position 92, and the refresh position 93 while holding the collection substrate 71 in the same plane.
  • the positioning accuracy of the collection substrate 71 at each of the collection / heating position 91, the detection position 92, and the refresh position 93 can be improved.
  • the overall height of the particle detection device 10 can be kept low.
  • the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference.
  • the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference around the rotation center axis 66.
  • the collection / heating position 91 is disposed between the detection position 92 and the refresh position 93.
  • the refresh position 93 is arranged on the opposite side of the detection position 92 when viewed from the collection / heating position 91 in the moving direction of the collection substrate 71.
  • the detection position 92, the collection / heating position 91, and the refresh position 93 are arranged in the order mentioned.
  • the movement distance of the collection substrate 71 between the detection position 92 and the refresh position 93 is greater than the movement distance of the collection substrate 71 between the collection / heating position 91 and the refresh position 93.
  • the range of movement of the collection substrate 71 between the collection / heating position 91, the detection position 92, and the refresh position 93 is 180 ° or less around the rotation center axis 66.
  • FIG. 18 is a flowchart showing a flow of operations of the particle detection apparatus according to Embodiment 1 of the present invention.
  • clockwise rotation around the rotation center axis 66 is referred to as normal rotation direction, and counterclockwise rotation around the rotation center axis 66 is referred to as reverse direction. That's it.
  • the collection substrate 71 is positioned at the collection / heating position 91, and the collection process is performed (S101). At this time, air is introduced into the cabinet 11 by driving the fan 16 in the forward direction, and a potential difference is generated between the electrostatic needle 22 and the collection substrate 71 by the high voltage power source 21, The particles are collected on the surface of the collection substrate 71.
  • the rotation base 64 is rotated in the forward rotation direction, and the collection substrate 71 is moved from the collection / heating position 91 to the detection position 92.
  • the excitation light source unit 31 emits excitation light toward the particles collected on the collection substrate 71, and the light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated. Thereby, the fluorescence intensity before the heating of the particles collected on the collection substrate 71 is measured (S103).
  • the rotation base 64 is rotated in the reverse direction by driving the rotation motor 62, and the collection substrate 71 is moved from the detection position 92 to the collection / heating position 91 ( S104).
  • the particles collected on the collection substrate 71 are heated (S105).
  • energization to the heater 76 is stopped, and the collection substrate 71 is cooled (S106).
  • driving the fan 16 in the reverse direction air is introduced into the cabinet 11 and cooling of the collection substrate 71 is promoted.
  • the rotation base 64 is rotated in the forward rotation direction, and the collection substrate 71 is moved from the collection / heating position 91 to the detection position 92.
  • the excitation light source unit 31 emits excitation light toward the particles collected on the collection substrate 71, and the light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated. Thereby, the fluorescence intensity after the heating of the particles collected on the collection substrate 71 is measured (S108).
  • the rotation base 64 is rotated in the reverse direction by driving the rotation motor 62, and the collection substrate 71 is moved from the detection position 92 to the refresh position 93.
  • the surface of the collection substrate 71 is brought into contact with the brush 51 by rotating the rotation base 64 in the reverse direction at the refresh position 93 and further rotating in the forward direction. Thereby, particles are removed from the collection substrate 71 (S109).
  • the fan 16 is driven in the forward direction to discharge particles that are removed from the collection substrate 71 and scatter in the air to the outside of the cabinet 11 through the opening 120.
  • the range in which the collection substrate 71 and the collection cylinder 15 overlap becomes smaller.
  • the opening area of the collection tube 15 that is an air inlet is increased. Thereby, particles can be efficiently recovered outside the cabinet 11.
  • the opening area of the collection cylinder 15 is reduced by being shielded by the collection substrate 71 during the collection process, the air introduction loss can be reduced.
  • the refresh process is performed by moving the collection substrate 71 while the cleaning unit 50 is stationary, it is not necessary to separately provide a moving mechanism unit for performing the refresh process. For this reason, size reduction and cost reduction of the particle
  • the rotation base 64 is rotated in the normal rotation direction by driving the rotation motor 62, and the collection substrate 71 is moved from the refresh position 93 to the collection / heating position 91 (S110). .
  • the detection of the particles derived from living organisms is carried out continuously.
  • the particle detection apparatus 10 is a particle detection apparatus that detects biologically derived particles.
  • the particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles.
  • the fluorescence detection unit 30 that receives received fluorescence, the collection / heating position 91 as a first position for collecting particles on the collection substrate 71 by the collection unit 20, and the second position for receiving fluorescence by the fluorescence detection unit 30 And a cleaning unit 50 for removing particles from the collection substrate 71 at a refresh position 93 as a third position apart from the detection position 92.
  • the particle detection device 10 in the present embodiment is a particle detection device that detects biological particles.
  • the particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles.
  • the fluorescence detection unit 30 that receives the fluorescence that is received, the cleaning unit 50 that removes the particles from the collection substrate 71, and the collection substrate 71 as the first position where the collection unit 20 collects the particles on the collection substrate 71
  • a collection / heating position 91 a detection position 92 as a second position for receiving fluorescence by the fluorescence detection unit 30, and a refresh position 93 as a third position for removing particles from the collection substrate 71 by the cleaning unit 50.
  • a moving mechanism unit 60 that moves between the two.
  • the particle detection device 10 in the present embodiment is a particle detection device that detects biological particles.
  • the particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles.
  • a fluorescence detection unit 30 that receives the generated fluorescence and a cleaning unit 50 that removes particles from the collection substrate 71.
  • the collection substrate 71 rotates and moves in the normal rotation direction and the reverse direction, whereby the collection / heating position 91 as a first position for collecting particles on the collection substrate 71 by the collection unit 20, and the fluorescence detection unit It moves between a detection position 92 as a second position for receiving fluorescence by 30 and a refresh position 93 as a third position for removing particles from the collection substrate 71 by the cleaning unit 50.
  • the cleaning unit 50 for removing particles from the collection substrate 71 by providing the cleaning unit 50 for removing particles from the collection substrate 71, the collection substrate 71 can be repeatedly used to detect biologically derived particles. For this reason, compared with the case where the collection board
  • the refreshing process for removing the particles from the collection substrate 71 is performed at the refresh position 93 away from the collection / heating position 91 and the detection position 92. For this reason, the particles removed from the collection substrate 71 are collected again on the collection substrate 71 in the next collection step, or the particles that have entered the detection position 92 from the collection substrate 71 are received by the light emitting element 32 or the light reception. It can be prevented from adhering to the optical system such as the element 44.
  • the collection / heating position 91 is provided so as to block between the refresh position 93 and the detection position 92, particles removed from the collection substrate 71 enter the detection position 92. Can be effectively prevented. For these reasons, according to the particle detection apparatus 10 in the present embodiment, it is possible to detect biologically derived particles with high accuracy.
  • the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference, and the collection substrate 71 is rotated so that the space between these positions is set.
  • grain detection apparatus 10 can be reduced in size by arrange
  • the collection substrate 71 rotates in the normal rotation direction and the reverse direction and moves to the collection / heating position 91, the detection position 92, and the refresh position 93. There is also an effect that a plurality of wires and wires for electrostatic collection are not entangled.
  • the structure of the heater 76 as a heating unit will be described collectively.
  • the particle detection device 10 in the present embodiment has a heater 76 as a heating unit for heating the particles collected on the collection substrate 71.
  • Biologically derived particles are detected from the difference between the fluorescence intensity emitted from the particles before heating and the fluorescence intensity emitted from the heated particles grasped by the fluorescence detection unit 30.
  • the collection substrate 71 is moved to the collection / heating position 91 as the first position.
  • the heater 76 is moved together with the collection substrate 71 by the moving mechanism unit 60.
  • the collection substrate 71 heated by the heater 76 is cooled by the air introduced into the cabinet 11 by the fan 16.
  • the heating step of heating the particles collected on the collection substrate 71 is performed at the same position (collection / heating position 91) as the collection step of collecting particles on the collection substrate 71.
  • grain detection apparatus 10 can be achieved.
  • grain detection apparatus 10 can be simplified by the structure which mounts the heater 76 in the moving mechanism part 60, and moves it with the collection board
  • each component of the collection unit 20, the fluorescence detection unit 30, and the cleaning unit 50 is arranged in the circumferential direction around the rotation center axis 66. Is arranged in.
  • the collecting cylinder 15 and the electrostatic needle 22 are arranged facing the collecting / heating position 91.
  • the high-voltage power supply 21 and the cleaning unit 50 are arranged facing the refresh position 93.
  • the light receiving unit 41 is disposed to face the detection position 92.
  • the collecting tube 15 and the light receiving unit 41 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66.
  • the excitation light source unit 31 is arranged adjacent to the light receiving unit 41 on the side opposite to the collection tube 15 in the circumferential direction around the rotation center axis 66. That is, the light receiving unit 41 is disposed between the excitation light source unit 31 and the collection tube 15 in the circumferential direction around the rotation center axis 66.
  • the excitation light source unit 31 is disposed on the opposite side of the collection tube 15 with the rotation center shaft 66 interposed therebetween.
  • the high-voltage power supply 21 is arranged adjacent to the collecting cylinder 15 on the side opposite to the light receiving unit 41 in the circumferential direction around the rotation center axis 66. That is, the collection tube 15 is disposed between the high-voltage power supply 21 and the light receiving unit 41 in the circumferential direction around the rotation center shaft 66.
  • the high voltage power source 21 is disposed on the opposite side of the light receiving unit 41 with the rotation center shaft 66 interposed therebetween.
  • the high-voltage power source 21 and the excitation light source unit 31 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66.
  • the collection tube 15, the light receiving unit 41, and the high-voltage power supply 21 are arranged so as to overlap with the movement range of the collection substrate 71 around the rotation center shaft 66.
  • the excitation light source unit 31 is arranged so as to be shifted from the moving range of the collection substrate 71 around the axis of the rotation center axis 66.
  • the excitation light source unit 31 is disposed on the opposite side of the collection tube 15 with respect to the light receiving unit 41 in the moving direction of the collection substrate 71. With this configuration, the distance between the collection / heating position 91 and the detection position 92 is prevented from being increased due to the arrangement of the excitation light source unit 31.
  • the cleaning unit 50 When viewed from the axial direction of the rotation center shaft 66, the cleaning unit 50 is disposed so as to overlap the high voltage power source 21. More specifically, a brush fixing part 52 constituting the cleaning part 50 is attached to the high voltage power source 21.
  • the excitation light source unit 31 and the light receiving unit 41 have a height H1 (length in the axial direction of the rotation center shaft 66) and a height H2, respectively.
  • the high voltage power supply 21 has a height H3.
  • the height H3 is smaller than the height H1 and the height H2, and the height H1 is larger than the height H2 (H3 ⁇ H2 ⁇ H1).
  • the cleaning unit 50 is provided in a limited space in the cabinet 11 by overlapping the excitation light source unit 31, the light receiving unit 41, and the high voltage power source 21 having the smallest height.
  • Each component of the collection part 20, the fluorescence detection part 30, and the cleaning part 50 is arrange
  • the cleaning unit 50 and the collecting cylinder 15 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66.
  • the fan 16 can be shared between the collection process, the cooling during the heating process, and the refresh process.
  • FIG. 19 is a perspective view showing the internal structure of the particle detector. Referring to FIG. 19, collection tube 15 and moving mechanism unit 60 are provided so as to block between light receiving unit 41 and excitation light source unit 31 and cleaning unit 50.
  • the particle detection apparatus 10 has a brush cleaning arm 81 as a cleaning tool initialization member, and removes particles adhering to the brush 51 by the brush cleaning arm 81.
  • the brush cleaning arm 81 is provided integrally with the rotating base 64.
  • the brush cleaning arm 81 moves together with the collection substrate 71 when the rotation base 64 rotates.
  • the brush cleaning arm 81 extends in the radial direction of the rotation center shaft 66 from the center portion 67 of the rotation base 64. When the brush cleaning arm 81 rotates while being in contact with the free end 51p of the brush 51, particles adhering to the brush 51 are removed.
  • the brush cleaning arm 81 is provided at a position shifted from the substrate support 68 in the circumferential direction around the rotation center shaft 66. As shown in FIG. 16, when the collection substrate 71 is moved to the detection position 92, the brush cleaning arm 81 is disposed between the collection substrate 71 and the brush 51.
  • FIG. 20 to 22 are cross-sectional views showing the movement of the collection substrate and the brush cleaning arm during the refresh process.
  • FIG. 22 shows the moving end of the collection substrate 71 during the refresh process.
  • the rotation base 64 is rotated in the reverse direction, and the collection substrate 71 is moved from the detection position 92 toward the refresh position 93.
  • the brush cleaning arm 81 moves in the reverse direction while contacting the free end 51p of the brush 51, thereby removing particles adhering to the brush 51.
  • the fan 16 is driven in the forward direction to collect the particles removed from the brush 51 from the refresh position 93 to the outside of the cabinet 11.
  • the rotating base 64 is rotated in the reverse direction, and the surface of the collection substrate 71 is brought into contact with the brush 51 to remove particles from the collection substrate 71.
  • the rotation base 64 is rotated in the forward rotation direction, and the surface of the collection substrate 71 is brought into contact with the brush 51 again, whereby particles are collected from the collection substrate 71. Remove.
  • the brush cleaning arm 81 is disposed between the collection substrate 71 and the brush 51 when the collection substrate 71 is moved to the detection position 92, the collection substrate 71 and the brush 51 are separated from each other. Before the contact, the brush cleaning arm 81 and the brush 51 come into contact with each other. Thereby, since the collection board
  • the brush cleaning arm 81 is provided integrally with the rotation base 64 on which the collection substrate 71 is mounted. With such a configuration, it is not necessary to separately provide a moving mechanism unit for moving the brush cleaning arm 81, and the particle detector 10 can be reduced in size and cost.
  • acquisition part which has adhesiveness may be provided.
  • the particle capturing part is formed from an adhesive sheet, for example.
  • the particle capturing unit is preferably provided between the refresh position 93 or between the refresh position 93 and the collection / heating position 91. According to such a configuration, in addition to collecting particles by driving the fan 16, particles removed from the collection substrate 71 or the brush 51 by the particle capturing unit can be collected.
  • FIG. 23 is a diagram showing the height relationship between the brush, the brush cleaning arm, and the collection substrate.
  • brush cleaning arm 81 and collection substrate 71 each have a top surface 81a and a top surface 71a that contact free end 51p of brush 51.
  • the height of the free end 51p of the brush 51 with respect to an arbitrary position is set to H6, the height of the top surface 81a of the brush cleaning arm 81 is set to H7, and the height of the top surface 71a of the collection substrate 71 is set to H8. In this case, it is preferable to satisfy the relationship of H6 ⁇ H8 ⁇ H7.
  • the particle detection apparatus 10 in the present embodiment includes a position sensor 77, a position sensor 78, and a sensing target unit 82 as a position detection unit for detecting the position of the collection substrate 71.
  • position sensor 77 and position sensor 78 are sensors that detect the position of collection substrate 71 by detecting the proximity of sensing target portion 82.
  • the position sensor 77 and the position sensor 78 are attached to the inner wall of the cabinet 11.
  • the position sensor 77 and the position sensor 78 are provided in the same plane orthogonal to the rotation center axis 66.
  • the position sensor 77 is disposed between the collection / heating position 91 and the detection position 92
  • the position sensor 78 is composed of the collection / heating position 91 and the refresh position 93. It is arranged between.
  • the sensing target portion 82 is provided integrally with the rotation base 64.
  • the sensing target portion 82 moves together with the collection substrate 71 when the rotation base 64 rotates.
  • the sensing target portion 82 is provided at the tip of a brush cleaning arm 81 extending in the radial direction of the rotation center shaft 66 from the center portion 67 of the rotation base 64.
  • the control unit (not shown) positions the collection substrate 71 at the collection / heating position 91. Detect that. At this time, the control unit issues a command to the collection unit 20 and the fan 16 so that the collection of particles on the collection substrate 71 is started. Further, the control unit detects that the collection substrate 71 is positioned at the detection position 92 when the position sensor 77 detects the proximity of the sensing target unit 82. At this time, the control unit issues a command to the fluorescence detection unit 30 so that detection of biologically derived particles is started.
  • the particle detection device 10 in the present embodiment has a protrusion 19 that is disposed at the moving end of the moving mechanism 60 and serves as a restricting member that restricts the movement of the moving mechanism 60.
  • the protruding portion 19 is provided so as to protrude from the inner wall of the cabinet 11.
  • the protruding portion 19 is provided at a position adjacent to the detection position 92.
  • grain detection apparatus 10 in this Embodiment may be used as an apparatus single unit for detecting the particle
  • FIG. 24 is a plan view showing a particle detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 25 is a side view showing the particle detection apparatus in FIG.
  • the particle detection device in the present embodiment basically has the same structure. Hereinafter, the description of overlapping structures will not be repeated.
  • collection / heating position 91, detection position 92, and refresh position 93 are arranged side by side on a straight line.
  • the collection substrate 71 mounted on a moving mechanism unit moves between the collection / heating position 91, the detection position 92, and the refresh position 93 while reciprocating along the direction indicated by the arrow 131.
  • the collection substrate 71 reciprocates in the direction indicated by the arrow 132 at the refresh position 93, whereby the particles collected on the collection substrate 71 are removed.
  • the collection / heating position 91 is disposed between the detection position 92 and the refresh position 93.
  • the refresh position 93 is arranged on the opposite side of the detection position 92 when viewed from the collection / heating position 91 in the moving direction of the collection substrate 71.
  • the detection position 92, the collection / heating position 91, and the refresh position 93 are arranged in the order mentioned.
  • the detection position 92 and the refresh position are compared with those in the first embodiment in which they are arranged on the circumference.
  • the position 93 can be further separated. Thereby, it is possible to effectively prevent the particles removed from the collection substrate 71 at the refresh position 93 from entering the detection position 92.
  • the collection unit 20, the fluorescence detection unit 30 and the cleaning unit 50 are configured so that the detection position 92 is disposed between the collection / heating position 91 and the refresh position 93 in the moving direction of the collection substrate 71. May be.
  • FIG. 26 is a block diagram illustrating a configuration of a control device included in the particle detection device.
  • the particle detection device in the present embodiment has a control device 200.
  • the control device 200 performs a signal processing unit 230 for processing a current signal from the light receiving element 44 of the light receiving unit 41, and controls the operation of the particle detection device and processes the detection result based on each current signal. Measurement unit 220.
  • FIG. 26 shows an example in which the function of the signal processing unit 230 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may include a software configuration that includes a CPU (Central Processing Unit) (not shown) and that is realized by the CPU executing a predetermined program.
  • FIG. 26 illustrates an example in which the configuration of the measurement unit 220 is a software configuration. However, at least a part of these functions may be realized by a hardware configuration such as an electric circuit.
  • a hardware configuration such as an electric circuit.
  • the signal processing unit 230 includes a current-voltage conversion circuit 231 connected to the light receiving element 44 of the fluorescence detection unit 30, and an amplification circuit 232 connected to the current-voltage conversion circuit 231.
  • the measurement unit 220 includes a control unit 221 and a drive unit 223 for driving the heater 76, the fan 16, and the rotary motor 62 based on a command from the control unit 221.
  • the current-voltage conversion circuit 231 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 44 and converts it to the voltage value Eh.
  • the voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 232 and output to the measurement unit 220.
  • the control unit 221 is electrically connected to the light emitting element 32 and the light receiving element 44 of the fluorescence detection unit 30, and controls ON / OFF thereof.
  • the control unit 221 outputs a control signal that instructs the drive unit 223 to start / stop various operations for particle detection.
  • the drive unit 223 is electrically connected to a mechanism for driving the heater 76, the fan 16 and the rotary motor 62, and drives the heater 76, the fan 16 and the rotary motor 62 according to this control signal, or stops driving. Or Thereby, the operation
  • the control unit 221 includes a detection control unit 211 for performing control to output a particle detection result, and a drive control unit 212 for controlling various operations for particle detection.
  • a detection control unit 211 for performing control to output a particle detection result
  • a drive control unit 212 for controlling various operations for particle detection.
  • FIG. 27 is a flowchart showing an operation flow of the particle detection apparatus according to Embodiment 3 of the present invention. Each step shown in FIG. 27 corresponds to a step having the same name shown in FIG. The same applies to the steps shown in FIGS. 28, 31 and 32 described later.
  • the drive control unit 212 changes the signal processing unit 230 to the measurement unit 220. Based on the output measurement result, it is determined whether or not the fluorescence amount detected by the fluorescence detection unit 30 is larger than a predetermined threshold (S120).
  • the light receiving element 44 generates a current signal corresponding to the amount of received light and inputs the current signal to the current-voltage conversion circuit 231, and has a characteristic that the current signal generated when the amount of received light exceeds the upper limit is saturated.
  • the threshold value determined in S120 is set to a value equal to or smaller than the received light amount upper limit value.
  • the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 toward the refresh position 93.
  • a command is issued to the drive unit 223 (S109).
  • the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91 (S110). .
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
  • the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 to the collection / heating position 91.
  • a command is issued to the drive unit 223 for causing it (S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through a refresh process.
  • the collection substrate 71 is moved at a timing before the current signal generated in the light receiving element 44 is saturated. Can be cleaned.
  • FIG. 28 is a flowchart showing an operation flow of the particle detection apparatus according to the fourth embodiment of the present invention.
  • the configuration of the control device included in the particle detection device described in the third embodiment is the same.
  • the step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. To do. Thereafter, the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 so as to move the collection substrate 71 from the refresh position 93 to the detection position 92 (S130).
  • the excitation light source unit 31 irradiates the collection substrate 71 with excitation light, and the light receiving unit 41 receives fluorescence emitted from the particles along with the excitation light irradiation. Thereby, the fluorescence intensity of the particles remaining on the collection substrate 71 after the refresh process is finished is measured (S131).
  • the drive control unit 212 determines whether or not the fluorescence amount detected by the fluorescence detection unit 30 is greater than a predetermined threshold based on the measurement result output from the signal processing unit 230 to the measurement unit 220. (S132). Also in the present embodiment, the threshold value is set to a value equal to or less than the upper limit value of the light receiving amount of the light receiving element 44.
  • the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 toward the refresh position 93.
  • a command is issued to the drive unit 223 (S133).
  • the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91 (S110). .
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
  • the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 to the collection / heating position 91.
  • a command is issued to the drive unit 223 for causing it (S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
  • the contamination level of the collection substrate 71 is ascertained based on the amount of received light detected by the fluorescence detection unit 30 in step S131, whereby particles are collected from the collection substrate 71 in the previous refresh process. Determine whether it has been sufficiently removed. Thereby, it can prevent that the collection board
  • FIGS. 5 and 30 are sectional views showing a particle detection apparatus according to Embodiment 5 of the present invention.
  • a cross section of the particle detection device viewed from the side surface 11n side of the cabinet 11 is shown.
  • FIG. 29 shows the moving end of the collection substrate 71 during the refresh process
  • FIG. 30 shows the movement end of the collection substrate 71 during the brush cleaning process.
  • brush cleaning arm 81 for removing particles adhering to brush 51 is provided.
  • the position provided is different.
  • the brush cleaning arm 81 has the brush 51 (refresh position 93) and the collection cylinder 15 (collection / heating position 91). ).
  • the brush cleaning arm 81 moves beyond the moving end during the refresh process, and the brush cleaning arm 81 moves the brush 51. It is necessary to move to a position that passes through (cleaning position 94 shown in FIG. 30).
  • FIG. 31 is a flowchart showing a flow of operations of the particle detection apparatus according to Embodiment 5 of the present invention.
  • the configuration of the control device included in the particle detection device described in the third embodiment is the same.
  • control unit 221 counts the cumulative number of refresh steps for removing particles from collection substrate 71 and stores this. At this time, the cumulative number of refresh steps is reset to zero when the brush cleaning step by the brush cleaning arm 81 is performed.
  • the step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. Thereafter, the drive control unit 212 determines whether or not the cumulative number of refresh processes since the previous brush cleaning process is performed is greater than the set number (S140).
  • the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 further from the refresh position 93 toward the brush cleaning position 94.
  • a command is issued to the drive unit 223 for driving 62 (S141).
  • the drive control unit 212 issues a command to the drive unit 223 for driving the rotation motor 62 to move the collection substrate 71 from the cleaning position 94 to the collection / heating position 91 ( S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
  • the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91.
  • a command is issued to the drive unit 223 for driving 62 (S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through the cleaning process of a brush.
  • the degree of contamination of the brush 51 is ascertained based on the cumulative number of refresh steps, and it is determined whether it is necessary to remove particles attached to the brush 51. Thereby, the frequency which removes particle
  • FIG. 32 is a flowchart showing a modification of the operation flow of the particle detection apparatus according to the fifth embodiment of the present invention.
  • control unit 221 calculates the total amount of fluorescence detected by the fluorescence detection unit 30 in step S103, and stores this. At this time, the total amount of fluorescence is returned to zero when the brush cleaning process by the brush cleaning arm 81 is performed.
  • the step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. Thereafter, the drive control unit 212 determines whether or not the total amount of fluorescence in step S103 after the previous brush cleaning process is performed is larger than the set amount (S146).
  • the drive control unit 212 moves the collection substrate 71 further from the refresh position 93 toward the brush cleaning position 94, so that the rotary motor 62 is moved.
  • a command is issued to the drive unit 223 for driving (S141).
  • the drive control unit 212 issues a command to the drive unit 223 for driving the rotation motor 62 to move the collection substrate 71 from the cleaning position 94 to the collection / heating position 91 ( S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
  • the drive control unit 212 moves the collection substrate 71 from the refresh position 93 to the collection / heating position 91 so as to move the collection motor 71.
  • a command is issued to the drive unit 223 for driving (S110).
  • substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through the cleaning process of a brush.
  • the contamination level of the brush 51 is grasped by using the total amount of fluorescence in step S103 as a guideline, and it is determined whether it is necessary to remove particles attached to the brush 51. Thereby, the frequency which removes particle
  • the movement of the brush cleaning arm 81 during the brush cleaning process shown in FIG. 20 is different from that of the particle detection device 10 according to the first embodiment.
  • the particles adhering to the brush 51 are removed by the rotation base 64 repeatedly rotating in the normal direction and the reverse direction within a range where the brush cleaning arm 81 and the free end 51p of the brush 51 are in contact with each other. To do.
  • the drive control unit 212 sets the brush cleaning arm 81 and the brush 51.
  • a command is issued to the drive unit 223 for driving the rotation motor 62 so that the rotation base 64 repeatedly rotates in the normal rotation direction and the reverse rotation direction within a range in contact with the free end 51p.
  • the drive control unit 212 rotates so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91.
  • a command is issued to the drive unit 223 for driving the motor 62.
  • the drive control unit 212 when the cumulative amount of fluorescence is larger than the predetermined set amount in step S146 in FIG. 32, the drive control unit 212 includes the brush cleaning arm 81 and the free end 51p of the brush 51. A command is issued to the drive unit 223 for driving the rotary motor 62 so that the rotation base 64 repeatedly rotates in the forward rotation direction and the reverse rotation direction in the range where the two come into contact with each other.
  • the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91.
  • a command is issued to the drive unit 223 for driving 62.
  • This invention is mainly used as an apparatus for detecting particles derived from organisms such as pollen, microorganisms, and mold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The particle detection device detects particles of biological origin. The particle detection device is provided with: a collecting unit (20) that collects particles on a collecting substrate (71); a fluorescence-detecting unit (30) that irradiates excitation light on the particles collected on the collection substrate (71) and receives the fluorescence emitted from the particles; a cleaning unit (50) that removes particles from the collecting substrate (71); and a moving mechanism (60) that moves the collecting substrate (71) between a collecting/heating position for collecting particles on the collecting substrate (71) using the collecting unit (20), a detection position for receiving fluorescence using the fluorescence detecting unit (30), and a refreshing position for removing the particles from the collecting substrate (71) using the cleaning unit (50). Said configuration provides a particle detection device for performing particle detection at low cost.

Description

粒子検出装置Particle detector
 この発明は、一般的には、粒子検出装置に関し、より特定的には、生物由来の粒子を検出する粒子検出装置に関する。 The present invention generally relates to a particle detection apparatus, and more particularly to a particle detection apparatus that detects biologically derived particles.
 従来の粒子検出装置に関して、たとえば、特開2002-357532号公報には、大気中の浮遊粒子状物質濃度と花粉濃度とを同時に測定することを目的とした浮遊粒子状物質の測定装置が開示されている(特許文献1)。 Regarding a conventional particle detection device, for example, Japanese Patent Laid-Open No. 2002-357532 discloses a measurement device for suspended particulate matter for the purpose of simultaneously measuring suspended particulate matter concentration and pollen concentration in the atmosphere. (Patent Document 1).
 特許文献1に開示された測定装置は、試料ガス中の浮遊粒子状物質をろ紙上に捕集する浮遊粒子状物質捕集部と、ろ紙上の浮遊粒子状物質にβ線を照射して、その透過量を検出して浮遊粒子状物質を検知する浮遊粒子状物質検出器と、浮遊粒子状物質内に含まれる花粉に紫外線を照射して、発生する蛍光強度を検出して花粉量を検知する花粉検出器とを備える。浮遊粒子状物質を捕集したろ紙は、ローラとモータとを組み合わせたろ紙供給機構を用いて、浮遊粒子状物質捕集部と、浮遊粒子状物質検出器および花粉検出器との間で搬送される。 The measuring apparatus disclosed in Patent Document 1 irradiates the suspended particulate matter collection unit that collects suspended particulate matter in the sample gas on the filter paper, and the suspended particulate matter on the filter paper is irradiated with β-rays, Detecting suspended particulate matter by detecting the amount of permeation, and detecting the amount of pollen by irradiating pollen contained in suspended particulate matter with ultraviolet light and detecting the intensity of the generated fluorescence A pollen detector. Filter paper that collects suspended particulate matter is transported between the suspended particulate matter collection unit, suspended particulate matter detector, and pollen detector using a filter paper supply mechanism that combines a roller and a motor. The
特開2002-357532号公報JP 2002-357532 A
 上述の特許文献に開示されるように、空気中の粒子に紫外線を照射し、粒子からの蛍光発光を受光することによって粒子の量を検出する装置が知られている。このような粒子検出装置においては、基板など、粒子を捕集するための捕集部材が利用されるが、このような捕集部材が測定毎に新たな捕集部材に交換されると、粒子検出時の費用が高コストになるという問題が生じる。 As disclosed in the above-mentioned patent document, there is known an apparatus that detects the amount of particles by irradiating particles in the air with ultraviolet rays and receiving fluorescence emission from the particles. In such a particle detection device, a collecting member for collecting particles, such as a substrate, is used. When such a collecting member is replaced with a new collecting member for each measurement, particles are collected. There is a problem that the cost for detection becomes high.
 そこでこの発明の目的は、上記の課題を解決することであり、低コストで粒子検出を実施する粒子検出装置を提供することである。 Therefore, an object of the present invention is to solve the above-described problems and to provide a particle detection apparatus that performs particle detection at a low cost.
 この発明に従った粒子検出装置は、生物由来の粒子を検出する粒子検出装置である。粒子検出装置は、粒子を捕集部材に捕集する捕集部と、捕集部材に捕集された粒子に向けて励起光を照射するとともに、粒子から発せられる蛍光を受光する蛍光検出部と、粒子を捕集部材から除去する清掃部と、捕集部材を、捕集部により捕集部材に粒子を捕集する第1位置と、蛍光検出部により蛍光を受光する第2位置と、清掃部により捕集部材から粒子を除去する第3位置との間で移動させる移動機構部とを備える。 The particle detection device according to the present invention is a particle detection device that detects biologically derived particles. The particle detector includes a collection unit that collects particles on a collection member, a fluorescence detection unit that irradiates excitation light toward the particles collected on the collection member and receives fluorescence emitted from the particles, and A cleaning unit for removing particles from the collecting member, a first position for collecting the particles on the collecting member by the collecting unit, a second position for receiving fluorescence by the fluorescence detecting unit, and cleaning. And a moving mechanism unit that moves between the third position where the particles are removed from the collection member by the unit.
 このように構成された粒子検出装置によれば、粒子を捕集部材から除去する清掃部を設けるとともに、移動機構部により捕集部材を第1位置、第2位置および第3位置間で移動させることによって、捕集部材を繰り返し用いて粒子を検出することができる。これにより、低コストで粒子検出を実施する粒子検出装置を実現できる。 According to the particle detection apparatus configured as described above, the cleaning unit that removes the particles from the collection member is provided, and the collection member is moved between the first position, the second position, and the third position by the moving mechanism unit. Thus, particles can be detected by repeatedly using the collecting member. Thereby, the particle | grain detection apparatus which implements particle | grain detection at low cost is realizable.
 また好ましくは、清掃部は、第3位置に固定支持された清掃具を有する。移動機構部によって捕集部材が第3位置を移動するのに伴って、清掃具により捕集部材から粒子が除去される。 Also preferably, the cleaning unit has a cleaning tool fixedly supported at the third position. As the collection member moves to the third position by the moving mechanism unit, the particles are removed from the collection member by the cleaning tool.
 このように構成された粒子検出装置によれば、清掃具を移動させるための移動機構部が不要となるため、粒子検出装置を簡易かつ低コストに構成することができる。 According to the particle detection device configured as described above, a moving mechanism unit for moving the cleaning tool is not necessary, and the particle detection device can be configured easily and at low cost.
 また好ましくは、粒子検出装置は、捕集部、蛍光検出部および清掃部を収容する筐体と、筐体の内部から空気を排出するファンとをさらに備える。さらに好ましくは、清掃部による粒子の除去時、ファンが駆動することによって、捕集部材から除去された粒子が筐体の内部から回収される。 Preferably, the particle detection device further includes a housing that houses the collection unit, the fluorescence detection unit, and the cleaning unit, and a fan that exhausts air from the inside of the housing. More preferably, when the particles are removed by the cleaning unit, the fan is driven to collect the particles removed from the collection member from the inside of the housing.
 このように構成された粒子検出装置によれば、清掃部によって捕集部材から除去された粒子が筐体内部に留まることがないため、粒子検出を繰り返し実施することができる。 According to the particle detector configured in this way, particles removed from the collecting member by the cleaning unit do not stay inside the casing, and therefore particle detection can be repeatedly performed.
 また好ましくは、捕集部による粒子の捕集時、ファンが駆動することによって、捕集部材に向けて空気が導入される。 Also preferably, air is introduced toward the collecting member by driving the fan when collecting the particles by the collecting unit.
 このように構成された粒子検出装置によれば、清掃部による粒子の除去時に駆動されるファンと、捕集部による粒子の捕集時に駆動されるファンとを兼用することによって、粒子検出装置を簡易かつ低コストに構成することができる。 According to the particle detection device configured as described above, the particle detection device is combined with the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the particles are collected by the collection unit. It can be configured simply and at low cost.
 また好ましくは、粒子検出装置は、捕集部材に捕集された粒子を加熱する加熱部をさらに備える。ファンが駆動することによって、加熱部による加熱によって高温となった捕集部材が冷却される。 Preferably, the particle detector further includes a heating unit that heats the particles collected by the collecting member. When the fan is driven, the collecting member that is heated to high temperature by the heating unit is cooled.
 このように構成された粒子検出装置によれば、清掃部による粒子の除去時に駆動されるファンと、捕集基板の冷却時に駆動されるファンとを兼用することによって、粒子検出装置を簡易かつ低コストに構成することができる。 According to the particle detection device configured in this way, the particle detection device can be simplified and reduced by combining the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the collection substrate is cooled. Cost can be configured.
 また好ましくは、清掃部は、捕集部材から粒子を除去する清掃具を有する。粒子検出装置は、清掃部による粒子の除去に伴って清掃具に付着した粒子を除去する清掃具初期化部材をさらに備える。 Also preferably, the cleaning unit has a cleaning tool for removing particles from the collecting member. The particle detector further includes a cleaning tool initialization member that removes particles attached to the cleaning tool as the particles are removed by the cleaning unit.
 このように構成された粒子検出装置によれば、清掃具により捕集部材から粒子をより確実に除去することで、粒子検出を繰り返し実施することができる。 According to the particle detection apparatus configured as described above, the particle detection can be repeatedly performed by more reliably removing the particles from the collection member by the cleaning tool.
 また好ましくは、清掃具は、第3位置に固定支持される。清掃具初期化部材は、移動機構部により、捕集部材とともに移動される。 Also preferably, the cleaning tool is fixedly supported at the third position. The cleaning tool initialization member is moved together with the collection member by the moving mechanism.
 このように構成された粒子検出装置によれば、清掃具初期化部材を移動させるための移動機構部が不要となるため、粒子検出装置を簡易かつ低コストに構成することができる。 According to the particle detection apparatus configured as described above, a moving mechanism unit for moving the cleaning tool initialization member is not necessary, so that the particle detection apparatus can be configured simply and at low cost.
 また好ましくは、捕集部材が第2位置に位置決めされた時に、清掃具初期化部材は、捕集部材と清掃具との間に配置される。 Also preferably, when the collection member is positioned at the second position, the cleaning tool initialization member is disposed between the collection member and the cleaning tool.
 このように構成された粒子検出装置によれば、清掃具初期化部材によって粒子が除去された清掃具を用いて、捕集部材から粒子を除去することができる。 According to the particle detector configured in this way, particles can be removed from the collection member using the cleaning tool from which particles have been removed by the cleaning tool initialization member.
 また好ましくは、粒子検出装置は、捕集部、蛍光検出部および清掃部を収容する筐体と、筐体の内部から空気を排出するファンとをさらに備える。清掃部による粒子の除去時および清掃具初期化部材による粒子の除去時、ファンが駆動することによって、捕集部材および清掃具から除去された粒子が筐体の内部から回収される。 Preferably, the particle detection device further includes a housing that houses the collection unit, the fluorescence detection unit, and the cleaning unit, and a fan that exhausts air from the inside of the housing. When the particles are removed by the cleaning unit and when the particles are removed by the cleaning tool initialization member, the fan is driven to collect the particles removed from the collecting member and the cleaning tool from the inside of the housing.
 このように構成された粒子検出装置によれば、清掃部による粒子の除去時に駆動されるファンと、清掃具初期化部材による粒子の除去時に駆動されるファンとを兼用することによって、粒子検出装置を簡易かつ低コストに構成することができる。 According to the particle detection device configured as described above, the particle detection device is used by combining the fan that is driven when the particles are removed by the cleaning unit and the fan that is driven when the particles are removed by the cleaning tool initialization member. Can be configured simply and at low cost.
 また好ましくは、粒子検出装置は、粘着性を有し、清掃部による粒子の除去時に生じた浮遊粒子を捕獲する粒子捕獲部をさらに備える。このように構成された粒子検出装置によれば、清掃部によって捕集部材から除去された粒子が筐体内部に留まることがないため、粒子検出を繰り返し実施することができる。 Preferably, the particle detection apparatus further includes a particle capturing unit that has adhesiveness and captures suspended particles generated when particles are removed by the cleaning unit. According to the particle detector configured in this way, particles removed from the collecting member by the cleaning unit do not stay inside the casing, and therefore particle detection can be repeatedly performed.
 また好ましくは、粒子検出装置は、移動機構部の駆動を制御する駆動制御部をさらに備える。駆動制御部は、蛍光検出部で検出された受光量が予め定められた閾値よりも大きい場合に、捕集部材を第3位置に移動させる。 Preferably, the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit. The drive control unit moves the collection member to the third position when the amount of received light detected by the fluorescence detection unit is larger than a predetermined threshold.
 このように構成された粒子検出装置によれば、蛍光検出部で検出された受光量を基準に、捕集部材から粒子を除去する必要があるか否かを判断する。これにより、清掃部により捕集部材から粒子を除去する頻度を抑えることができる。 According to the particle detection device configured in this way, it is determined whether it is necessary to remove particles from the collection member on the basis of the amount of received light detected by the fluorescence detection unit. Thereby, the frequency which removes particle | grains from a collection member by a cleaning part can be suppressed.
 また好ましくは、粒子検出装置は、移動機構部の駆動を制御する駆動制御部をさらに備える。駆動制御部は、第3位置で清掃部により粒子が除去された捕集部材を第2位置に移動させ、蛍光検出部で検出された受光量が予め定められた閾値よりも大きい場合に、捕集部材を再び第3位置に移動させる。 Preferably, the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit. The drive control unit moves the collection member from which particles have been removed by the cleaning unit at the third position to the second position, and when the amount of received light detected by the fluorescence detection unit is greater than a predetermined threshold, The collecting member is again moved to the third position.
 このように構成された粒子検出装置によれば、蛍光検出部で検出された受光量を基準に、前工程で捕集部材から粒子が十分に除去されたか否かを判断し、十分でなかったと判断した場合に捕集部材を再び第3位置に移動させる。これにより、清掃部による粒子の除去が不十分なまま、捕集部材が次工程の位置に移動されることを防止できる。 According to the particle detection apparatus configured in this way, it is determined whether the particles are sufficiently removed from the collection member in the previous process, based on the amount of light received detected by the fluorescence detection unit. If it is determined, the collecting member is moved again to the third position. Thereby, it can prevent that a collection member is moved to the position of a next process, with the removal of the particle | grains by a cleaning part being inadequate.
 また好ましくは、蛍光検出部は、粒子から発せられる蛍光を受光し、その受光量に応じた電流信号を発生する受光素子を有する。閾値は、受光時に発生する電流信号が飽和する受光素子の受光量上限値以下の値に設定される。このように構成された粒子検出装置によれば、受光素子が電流信号の飽和を起こす前に、清掃部により捕集部材から粒子を除去することができる。 Preferably, the fluorescence detection unit includes a light receiving element that receives fluorescence emitted from the particles and generates a current signal corresponding to the amount of received light. The threshold value is set to a value equal to or less than the upper limit of the amount of light received by the light receiving element where the current signal generated during light reception is saturated. According to the particle detector configured in this way, the particles can be removed from the collection member by the cleaning unit before the light receiving element causes saturation of the current signal.
 また好ましくは、粒子検出装置は、移動機構部の駆動を制御する駆動制御部をさらに備える。駆動制御部は、清掃部により粒子を捕集部材から除去した回数が予め定められた閾回数を超えた場合に、清掃具初期化部材によって清掃具に付着した粒子を除去するように捕集部材を移動させる。また好ましくは、移動機構部は、捕集部材を、第1位置と、第2位置と、第3位置と、清掃具初期化部材により清掃具に付着した粒子を除去する第4位置との間で移動させる。駆動制御部は、清掃部により粒子を捕集部材から除去した回数が予め定められた閾回数を超えた場合に、捕集部材を第4位置に移動させる。 Preferably, the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit. The drive control unit is configured to remove the particles attached to the cleaning tool by the cleaning tool initialization member when the number of times the cleaning unit removes the particles from the collection member exceeds a predetermined threshold number. Move. Further preferably, the moving mechanism section includes the collection member between the first position, the second position, the third position, and a fourth position where particles attached to the cleaning tool are removed by the cleaning tool initialization member. Move with. The drive control unit moves the collection member to the fourth position when the number of times particles are removed from the collection member by the cleaning unit exceeds a predetermined threshold number.
 このように構成された粒子検出装置によれば、清掃部により粒子を捕集部材から除去した回数を基準に、清掃具に付着した粒子を除去する必要があるか否かを判断する。これにより、清掃具初期化部材により清掃具に付着した粒子を除去する頻度を抑えることができる。 According to the particle detector configured in this way, it is determined whether or not the particles attached to the cleaning tool need to be removed based on the number of times the particles are removed from the collecting member by the cleaning unit. Thereby, the frequency which removes the particles adhering to the cleaning tool by the cleaning tool initialization member can be suppressed.
 また好ましくは、粒子検出装置は、移動機構部の駆動を制御する駆動制御部をさらに備える。駆動制御部は、蛍光検出部で検出された受光量の累計が予め定められた閾量を超えた場合に、清掃具初期化部材によって清掃具に付着した粒子を除去するように捕集部材を移動させる。また好ましくは、移動機構部は、捕集部材を、第1位置と、第2位置と、第3位置と、清掃具初期化部材により清掃具に付着した粒子を除去する第4位置との間で移動させる。駆動制御部は、蛍光検出部で検出された受光量の累計が予め定められた閾量を超えた場合に、捕集部材を第4位置に移動させる。 Preferably, the particle detection apparatus further includes a drive control unit that controls driving of the moving mechanism unit. The drive control unit is configured to remove the particles attached to the cleaning tool by the cleaning tool initialization member when the cumulative amount of light received detected by the fluorescence detection unit exceeds a predetermined threshold amount. Move. Further preferably, the moving mechanism section includes the collection member between the first position, the second position, the third position, and a fourth position where particles attached to the cleaning tool are removed by the cleaning tool initialization member. Move with. The drive control unit moves the collection member to the fourth position when the total amount of received light detected by the fluorescence detection unit exceeds a predetermined threshold amount.
 このように構成された粒子検出装置によれば、蛍光検出部で検出された受光量の累計を基準に、清掃具に付着した粒子を除去する必要があるか否かを判断する。これにより、清掃具初期化部材により清掃具に付着した粒子を除去する頻度を抑えることができる。 According to the particle detector configured in this way, it is determined whether or not it is necessary to remove particles adhering to the cleaning tool, based on the total amount of light received detected by the fluorescence detector. Thereby, the frequency which removes the particles adhering to the cleaning tool by the cleaning tool initialization member can be suppressed.
 以上に説明したように、この発明に従えば、低コストで粒子検出を実施する粒子検出装置を提供することができる。 As described above, according to the present invention, it is possible to provide a particle detection apparatus that performs particle detection at low cost.
加熱前後における生物由来の粒子の蛍光強度の変化と、加熱前後における粉塵の蛍光強度の変化とを示すグラフである。It is a graph which shows the change of the fluorescence intensity of the biological particle before and behind a heating, and the change of the fluorescence intensity of the dust before and after a heating. 生物由来の粒子を検出する捕集工程を示す図である。It is a figure which shows the collection process which detects biological-origin particle | grains. 生物由来の粒子を検出する蛍光測定工程(加熱前)を示す図である。It is a figure which shows the fluorescence measurement process (before a heating) which detects biological-origin particle | grains. 生物由来の粒子を検出する加熱工程を示す図である。It is a figure which shows the heating process which detects biological-origin particle | grains. 生物由来の粒子を検出する蛍光測定工程(加熱後)を示す図である。It is a figure which shows the fluorescence measurement process (after a heating) which detects biological-origin particle | grains. 生物由来の粒子を検出するリフレッシュ工程を示す図である。It is a figure which shows the refresh process which detects the particle | grains derived from a living body. 加熱前後の蛍光強度の増大量ΔFと、生物由来の粒子濃度との関係を示すグラフである。It is a graph which shows the relationship between increase amount (DELTA) F of the fluorescence intensity before and behind heating, and the particle | grain density | concentration of biological origin. この発明の実施の形態1における粒子検出装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the particle | grain detection apparatus in Embodiment 1 of this invention. 図8中の粒子検出装置の外観を示す別の斜視図である。It is another perspective view which shows the external appearance of the particle | grain detection apparatus in FIG. 図8中の粒子検出装置を示す分解組み立て図である。It is a disassembled assembly figure which shows the particle | grain detection apparatus in FIG. 図8中の粒子検出装置の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the particle | grain detection apparatus in FIG. 図9中の粒子検出装置からファンが取り外された状態を示す斜視図である。FIG. 10 is a perspective view showing a state where a fan is removed from the particle detection device in FIG. 9. 移動機構部を構成する回転ベースを示す斜視図である。It is a perspective view which shows the rotation base which comprises a moving mechanism part. 図13中の回転ベースを示す分解組み立て図である。It is a disassembled assembly figure which shows the rotation base in FIG. 捕集工程および加熱工程時の粒子検出装置を示す断面図である。It is sectional drawing which shows the particle | grain detection apparatus at the time of a collection process and a heating process. 蛍光測定工程(加熱前,加熱後)時の粒子検出装置を示す断面図である。It is sectional drawing which shows the particle | grain detection apparatus at the time of a fluorescence measurement process (before a heating, after a heating). リフレッシュ工程時の粒子検出装置を示す断面図である。It is sectional drawing which shows the particle | grain detection apparatus at the time of a refresh process. この発明の実施の形態1における粒子検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the particle | grain detection apparatus in Embodiment 1 of this invention. 粒子検出装置の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of a particle | grain detection apparatus. リフレッシュ工程時の捕集基板およびブラシ清掃アームの動きを示す断面図である。It is sectional drawing which shows a motion of the collection board | substrate at the time of a refresh process and a brush cleaning arm. リフレッシュ工程時の捕集基板およびブラシ清掃アームの動きを示す別の断面図である。It is another sectional view showing movement of a collection board at the time of a refresh process, and a brush cleaning arm. リフレッシュ工程時の捕集基板およびブラシ清掃アームの動きを示すさらに別の断面図である。It is another sectional drawing which shows the movement of the collection board | substrate at the time of a refresh process, and a brush cleaning arm. ブラシ、ブラシ清掃アームおよび捕集基板の高さ関係を示す図である。It is a figure which shows the height relationship of a brush, a brush cleaning arm, and a collection board | substrate. この発明の実施の形態2における粒子検出装置を示す平面図である。It is a top view which shows the particle | grain detection apparatus in Embodiment 2 of this invention. 図24中の粒子検出装置を示す側面図である。It is a side view which shows the particle | grain detection apparatus in FIG. 粒子検出装置に含まれる制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus contained in a particle | grain detection apparatus. この発明の実施の形態3における粒子検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the particle | grain detection apparatus in Embodiment 3 of this invention. この発明の実施の形態4における粒子検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the particle | grain detection apparatus in Embodiment 4 of this invention. この発明の実施の形態5における粒子検出装置を示す断面図である。It is sectional drawing which shows the particle | grain detection apparatus in Embodiment 5 of this invention. この発明の実施の形態5における粒子検出装置を示す別の断面図である。It is another sectional drawing which shows the particle | grain detection apparatus in Embodiment 5 of this invention. この発明の実施の形態5における粒子検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the particle | grain detection apparatus in Embodiment 5 of this invention. この発明の実施の形態5における粒子検出装置の動作の流れの変形例を示すフローチャートである。It is a flowchart which shows the modification of the flow of operation | movement of the particle | grain detection apparatus in Embodiment 5 of this invention.
 この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 Embodiments of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are denoted by the same reference numerals.
 (実施の形態1)
 [生物由来の粒子の検出原理について]
 本実施の形態における粒子検出装置は、花粉や微生物、カビといった生物由来の粒子を検出するための装置である。最初に、本実施の形態における粒子検出装置を用いて生物由来の粒子を検出する原理について説明する。
(Embodiment 1)
[Detection principle of biological particles]
The particle detection device in the present embodiment is a device for detecting particles derived from organisms such as pollen, microorganisms, and mold. First, the principle of detecting biological particles using the particle detection apparatus according to the present embodiment will be described.
 図1は、加熱前後における生物由来の粒子の蛍光強度の変化と、加熱前後における粉塵の蛍光強度の変化とを示すグラフである。 FIG. 1 is a graph showing changes in fluorescence intensity of biological particles before and after heating and changes in fluorescence intensity of dust before and after heating.
 空気中に浮遊する生物由来の粒子に紫外光または青色光を照射すると、生物由来の粒子は蛍光を発する。しかしながら、空気中には化学繊維の埃など(以下、粉塵ともいう)の、同様に蛍光を発する粒子が浮遊しており、蛍光を検出するのみでは、生物由来の粒子からのものであるのか粉塵からのものであるのかが区別されない。 When biological particles floating in the air are irradiated with ultraviolet light or blue light, the biological particles emit fluorescence. However, particles that emit fluorescence, such as chemical fiber dust (hereinafter also referred to as dust), are suspended in the air. If only fluorescence is detected, it may be from biological particles. It is not distinguished whether it is from.
 一方、図1中に示すように、生物由来の粒子および粉塵に対してそれぞれ加熱処理を施し、加熱前後における蛍光強度(蛍光量)の変化を測定すると、粉塵から発せられる蛍光強度が加熱処理によって変化しないのに対して、生物由来の粒子から発せられる蛍光強度は、加熱処理によって増加する。本実施の形態における粒子検出装置では、生物由来の粒子と粉塵とが混合する粒子に対して、加熱前後の蛍光強度を測定し、その差分を求めることにより、生物由来の粒子の量を特定する。 On the other hand, as shown in FIG. 1, when heat treatment is performed on biologically derived particles and dust, and changes in fluorescence intensity (fluorescence amount) before and after heating are measured, the fluorescence intensity emitted from the dust is reduced by the heat treatment. While it does not change, the fluorescence intensity emitted from biological particles increases with heat treatment. In the particle detection apparatus according to the present embodiment, the fluorescence intensity before and after heating is measured for particles in which biological particles and dust are mixed, and the difference is obtained to specify the amount of biological particles. .
 図2から図6は、生物由来の粒子を検出する工程を示す図である。図2を参照して、まず、粒子を捕集基板510に捕集する(捕集工程)。 FIG. 2 to FIG. 6 are diagrams showing a process for detecting biological particles. Referring to FIG. 2, first, particles are collected on a collection substrate 510 (collection step).
 本工程では、捕集基板510を静電針530に対向配置するとともに、捕集基板510および静電針530間に電位差を生じさせる。ファン500の駆動により、空気を捕集基板510に向けて導入すると、空気中に浮遊する粒子600は、静電針530の周囲にて帯電される。帯電された粒子600は、静電気力によって捕集基板510の表面に吸着される。捕集基板510に捕集された粒子600には、生物由来の粒子600Aと、化学繊維の埃などの粉塵600Bとが含まれる。 In this step, the collection substrate 510 is disposed opposite to the electrostatic needle 530, and a potential difference is generated between the collection substrate 510 and the electrostatic needle 530. When air is introduced toward the collection substrate 510 by driving the fan 500, the particles 600 suspended in the air are charged around the electrostatic needle 530. The charged particles 600 are adsorbed on the surface of the collection substrate 510 by electrostatic force. The particles 600 collected on the collection substrate 510 include biological particles 600A and dust 600B such as chemical fiber dust.
 図3を参照して、次に、加熱前の粒子600から発せられる蛍光の強度を測定する(蛍光測定工程(加熱前))。本工程では、半導体レーザなどの発光素子550から捕集基板510に捕集された粒子600に向けて励起光を照射するとともに、粒子600から発せられた蛍光をレンズ560を通じて受光素子565にて受光する。 Referring to FIG. 3, next, the intensity of the fluorescence emitted from the particle 600 before heating is measured (fluorescence measurement step (before heating)). In this step, excitation light is irradiated toward the particles 600 collected on the collection substrate 510 from the light emitting element 550 such as a semiconductor laser, and the fluorescence emitted from the particles 600 is received by the light receiving element 565 through the lens 560. To do.
 図4を参照して、次に、ヒータ520を用いて、捕集基板510に捕集された粒子600を加熱する。加熱後、捕集基板510を冷却する(加熱工程)。 Referring to FIG. 4, next, the particles 600 collected on the collection substrate 510 are heated using a heater 520. After the heating, the collection substrate 510 is cooled (heating process).
 図5を参照して、次に、加熱後の粒子600から発せられる蛍光の強度を測定する(蛍光測定工程(加熱後))。既に説明したように、粉塵600Bから発せられる蛍光強度が加熱処理によって変化しないのに対して、生物由来の粒子600Aから発せられる蛍光強度は、加熱処理によって増加する。このため、本工程では、図3中の蛍光測定工程(加熱前)で測定された蛍光強度よりも大きい値の蛍光強度が測定される。 Referring to FIG. 5, next, the intensity of the fluorescence emitted from the heated particle 600 is measured (fluorescence measurement step (after heating)). As already described, the fluorescence intensity emitted from the dust 600B is not changed by the heat treatment, whereas the fluorescence intensity emitted from the biological particle 600A is increased by the heat treatment. For this reason, in this step, a fluorescence intensity having a value larger than the fluorescence intensity measured in the fluorescence measurement step (before heating) in FIG. 3 is measured.
 図7は、加熱前後の蛍光強度の増大量ΔFと、生物由来の粒子濃度との関係を示すグラフである。図7を参照して、加熱前の蛍光強度と加熱後の蛍光強度との差から、蛍光強度の増大量ΔF1を算出する。予め用意した蛍光強度の増大量ΔFと生物由来の粒子濃度Nとの関係に基づき、算出された増大量ΔF1に対応する生物由来の粒子濃度N1を特定する。なお、増大量ΔFと生物由来の粒子濃度Nとの対応関係は、予め実験的に決められる。 FIG. 7 is a graph showing the relationship between the fluorescence intensity increase ΔF before and after heating and the concentration of biological particles. With reference to FIG. 7, the increase amount ΔF1 of the fluorescence intensity is calculated from the difference between the fluorescence intensity before heating and the fluorescence intensity after heating. Based on the relationship between the fluorescence intensity increase amount ΔF prepared in advance and the biological particle concentration N, the biological particle concentration N1 corresponding to the calculated increase amount ΔF1 is specified. The correspondence relationship between the increase amount ΔF and the biological particle concentration N is experimentally determined in advance.
 図6を参照して、次に、生物由来の粒子の検出を終えた粒子600を捕集基板510から除去する(リフレッシュ工程)。 Referring to FIG. 6, next, the particles 600 that have finished detecting the biological particles are removed from the collection substrate 510 (refresh process).
 [粒子検出装置の全体構造について]
 図8は、この発明の実施の形態1における粒子検出装置の外観を示す斜視図である。図9は、図8中の粒子検出装置の外観を示す別の斜視図である。図10は、図8中の粒子検出装置を示す分解組み立て図である。図11は、図8中の粒子検出装置の内部構造を示す斜視図である。
[Overall structure of particle detector]
FIG. 8 is a perspective view showing the appearance of the particle detection apparatus according to Embodiment 1 of the present invention. FIG. 9 is another perspective view showing the appearance of the particle detector in FIG. FIG. 10 is an exploded view showing the particle detector in FIG. FIG. 11 is a perspective view showing the internal structure of the particle detector in FIG.
 図8から図11を参照して、本実施の形態における粒子検出装置10は、筐体としてのキャビネット11と、ファン16と、捕集部20と、蛍光検出部30と、清掃部50とを有する。 With reference to FIG. 8 to FIG. 11, the particle detection device 10 in the present embodiment includes a cabinet 11 as a housing, a fan 16, a collection unit 20, a fluorescence detection unit 30, and a cleaning unit 50. Have.
 キャビネット11は、略直方体形状を有し、捕集部20、蛍光検出部30、清掃部50を収容する。本実施の形態では、キャビネット11が、第1筐体としての上キャビネット12と、第2筐体としての下キャビネット14から構成されている。下キャビネット14は、一方向に開口する箱形状を有する。上キャビネット12は、下キャビネット14の開口を塞ぐ平板形状を有する。一例として、キャビネット11は、60mm×50mm(上キャビネット12の縦、横)×30mm(高さ)の大きさを有する。 The cabinet 11 has a substantially rectangular parallelepiped shape, and houses the collection unit 20, the fluorescence detection unit 30, and the cleaning unit 50. In the present embodiment, the cabinet 11 includes an upper cabinet 12 as a first casing and a lower cabinet 14 as a second casing. The lower cabinet 14 has a box shape opening in one direction. The upper cabinet 12 has a flat plate shape that closes the opening of the lower cabinet 14. As an example, the cabinet 11 has a size of 60 mm × 50 mm (length and width of the upper cabinet 12) × 30 mm (height).
 キャビネット11は、側面11mおよび側面11nを有する。側面11mおよび側面11nは、互いに対向して配置されている。側面11mは、上キャビネット12に形成され、側面11nは、下キャビネット14に形成されている。 The cabinet 11 has a side surface 11m and a side surface 11n. The side surface 11m and the side surface 11n are disposed to face each other. The side surface 11m is formed in the upper cabinet 12, and the side surface 11n is formed in the lower cabinet 14.
 キャビネット11には、筒状部材としての捕集筒15が一体に形成されている。捕集筒15は、側面11mに開口し、側面11mから側面11nに向けて円筒状に延びている。捕集筒15は、後述する静電針22を取り囲むように設けられている。捕集筒15は、静電針22と対向して位置決めされた捕集基板71に向けて、粒子を含む空気を案内する。 The cabinet 11 is integrally formed with a collecting cylinder 15 as a cylindrical member. The collection cylinder 15 opens to the side surface 11m and extends in a cylindrical shape from the side surface 11m to the side surface 11n. The collection cylinder 15 is provided so as to surround an electrostatic needle 22 described later. The collection cylinder 15 guides air containing particles toward the collection substrate 71 positioned facing the electrostatic needle 22.
 図12は、図9中の粒子検出装置からファンが取り外された状態を示す斜視図である。図9および図12を参照して、ファン16は、正転方向および反転方向に回転駆動可能である。ファン16が正転方向に駆動されることにより、キャビネット11の内部の空気がファン16を通じてキャビネット11の外部に排出される。ファン16が反転方向に駆動されることにより、キャビネット11の外部の空気がファン16を通じてキャビネット11の内部に導入される。 FIG. 12 is a perspective view showing a state in which the fan is removed from the particle detection apparatus in FIG. Referring to FIGS. 9 and 12, fan 16 can be driven to rotate in the normal direction and the reverse direction. By driving the fan 16 in the forward rotation direction, the air inside the cabinet 11 is discharged to the outside of the cabinet 11 through the fan 16. By driving the fan 16 in the reverse direction, the air outside the cabinet 11 is introduced into the cabinet 11 through the fan 16.
 ファン16は、キャビネット11の側面11nに取り付けられている。ファン16が取り付けられたキャビネット11の位置には、開口部120が形成されている。開口部120は、捕集筒15と向かい合う範囲(図12中の2点鎖線122に示す範囲)と、後述するブラシ51と向かい合う範囲(図12中の2点鎖線121に示す範囲)とを含むように開口している。開口部120は、捕集筒15と向かい合う範囲とブラシ51と向かい合う範囲とで連続的に形成されている。 The fan 16 is attached to the side surface 11n of the cabinet 11. An opening 120 is formed at the position of the cabinet 11 to which the fan 16 is attached. The opening 120 includes a range facing the collection cylinder 15 (a range indicated by a two-dot chain line 122 in FIG. 12) and a range facing a brush 51 described later (a range indicated by a two-dot chain line 121 in FIG. 12). So that it is open. The opening 120 is continuously formed in a range facing the collecting cylinder 15 and a range facing the brush 51.
 このような構成によって、ファン16は、捕集工程と、加熱工程時の冷却と、リフレッシュ工程とで兼用して用いられる。これにより、粒子検出装置10の小型化や低コスト化を図ることができる。 With such a configuration, the fan 16 is used for both the collection process, the cooling during the heating process, and the refresh process. Thereby, size reduction and cost reduction of the particle | grain detection apparatus 10 can be achieved.
 図8から図11を参照して、捕集部20は、図2を参照して説明した捕集工程を実行し、空気中に含まれる粒子を捕集基板71に捕集する。捕集部20は、電源部としての高圧電源21と、放電電極としての静電針22とを有する。 8 to 11, the collection unit 20 performs the collection process described with reference to FIG. 2, and collects particles contained in the air on the collection substrate 71. The collection unit 20 includes a high voltage power source 21 as a power source unit and an electrostatic needle 22 as a discharge electrode.
 捕集基板71は、生物由来の粒子と化学繊維の埃などの粉塵とが混合した粒子が捕集される捕集部材として設けられている。捕集基板71は、ガラス板から形成されている。粒子を吸着するガラス板の表面には、導電性の透明被膜が形成されている。捕集基板71は、ガラス板に限定されず、セラミックもしくは金属などから形成されてもよい。被膜は、透明被膜に限定されず、たとえば、セラミック等から形成された捕集基板71の表面に、金属被膜が形成されてもよい。また、捕集基板71が金属から形成される場合、その表面に被膜を形成する必要はない。 The collection substrate 71 is provided as a collection member that collects particles obtained by mixing biological particles and dust such as chemical fiber dust. The collection substrate 71 is formed from a glass plate. A conductive transparent film is formed on the surface of the glass plate that adsorbs the particles. The collection substrate 71 is not limited to a glass plate, and may be formed of ceramic or metal. The film is not limited to a transparent film, and for example, a metal film may be formed on the surface of the collection substrate 71 formed of ceramic or the like. Moreover, when the collection board | substrate 71 is formed from a metal, it is not necessary to form a film in the surface.
 高圧電源21は、捕集基板71と静電針22との間に電位差を生じさせるための電源部として設けられている。 The high-voltage power supply 21 is provided as a power supply unit for generating a potential difference between the collection substrate 71 and the electrostatic needle 22.
 静電針22は、高圧電源21から延出し、捕集筒15を貫通して捕集筒15の内部に達している。捕集工程時、捕集基板71は、静電針22と対向して配置される。本実施の形態では、静電針22が、高圧電源21の正極に電気的に接続されている。捕集基板71に形成された被膜は、高圧電源21の負極に電気的に接続されている。 The electrostatic needle 22 extends from the high-voltage power source 21 and penetrates through the collecting cylinder 15 to reach the inside of the collecting cylinder 15. During the collection step, the collection substrate 71 is disposed to face the electrostatic needle 22. In the present embodiment, the electrostatic needle 22 is electrically connected to the positive electrode of the high voltage power source 21. The film formed on the collection substrate 71 is electrically connected to the negative electrode of the high-voltage power source 21.
 なお、静電針22が高圧電源21の正極に電気的に接続されている場合に、捕集基板71に形成された被膜が接地電位に接続されてもよいし、静電針22が高圧電源21の負極に電気的に接続され、捕集基板71に形成された被膜が高圧電源21の正極に電気的に接続されてもよい。 When the electrostatic needle 22 is electrically connected to the positive electrode of the high-voltage power source 21, the coating formed on the collection substrate 71 may be connected to the ground potential, or the electrostatic needle 22 may be connected to the high-voltage power source. The film formed on the collection substrate 71 may be electrically connected to the positive electrode of the high-voltage power supply 21.
 捕集工程時、ファン16が正転方向に駆動されると、キャビネット11内部の空気が排気されると同時に、キャビネット11の外部の空気が捕集筒15を通って捕集基板71に向けて導入される。この際、高圧電源21によって静電針22と捕集基板71との間に電位差を発生させると、空気中の粒子は、静電針22の周囲で正極に帯電される。正極に帯電された粒子が、静電気力によって捕集基板71に移動し、導電性の被膜に吸着されることによって、捕集基板71に捕集される。 When the fan 16 is driven in the forward rotation direction during the collection process, the air inside the cabinet 11 is exhausted, and at the same time, the air outside the cabinet 11 passes through the collection tube 15 toward the collection substrate 71. be introduced. At this time, when a potential difference is generated between the electrostatic needle 22 and the collection substrate 71 by the high-voltage power source 21, particles in the air are charged to the positive electrode around the electrostatic needle 22. The particles charged in the positive electrode move to the collection substrate 71 by electrostatic force and are collected by the collection substrate 71 by being adsorbed by the conductive film.
 このように本実施の形態における粒子検出装置10においては、静電気力を利用した静電捕集により、粒子を捕集基板71に捕集する。この場合、粒子の検出時に粒子を確実に捕集基板71に保持するとともに、粒子の検出後には粒子を容易に捕集基板71から除去することができる。 As described above, in the particle detection apparatus 10 according to the present embodiment, particles are collected on the collection substrate 71 by electrostatic collection using electrostatic force. In this case, the particles can be reliably held on the collection substrate 71 when the particles are detected, and the particles can be easily removed from the collection substrate 71 after the particles are detected.
 また、放電電極として針状の静電針22を用いることによって、帯電した粒子を、静電針22に対向する捕集基板71の表面であって、後述する発光素子の照射領域に対応した極めて狭い領域に吸着させることができる。これにより、蛍光測定工程において、吸着された微生物を効率的に検出することができる。 In addition, by using the needle-like electrostatic needle 22 as the discharge electrode, the charged particles are formed on the surface of the collection substrate 71 facing the electrostatic needle 22 and correspond to an irradiation area of the light emitting element described later. It can be adsorbed in a narrow area. Thereby, the adsorbed microorganisms can be efficiently detected in the fluorescence measurement step.
 蛍光検出部30は、図3および図5を参照して説明した蛍光測定工程(加熱前,加熱後)を実行する。蛍光検出部30は、励起光源部31および受光部41から構成されている。励起光源部31は、捕集基板71に捕集された粒子に向けて励起光を照射する。受光部41は、励起光の照射に伴って粒子から発せられる蛍光を受光する。 The fluorescence detection unit 30 executes the fluorescence measurement process (before and after heating) described with reference to FIGS. 3 and 5. The fluorescence detection unit 30 includes an excitation light source unit 31 and a light receiving unit 41. The excitation light source unit 31 irradiates excitation light toward the particles collected on the collection substrate 71. The light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated.
 励起光源部31は、光源としての発光素子32と、励起部フレーム33と、集光レンズ34と、レンズ押さえ35とを有する。受光部41は、ノイズシールド42と、増幅回路43と、受光素子44と、受光部フレーム45と、フレネルレンズ46と、レンズ押さえ47とを有する。発光素子32としては、半導体レーザまたはLED(Light Emitting Diode)素子などが用いられる。発光素子32から発せられる光は、生物由来の粒子を励起して蛍光を発せさせるものであれば、紫外または可視いずれの領域の波長を有してもよい。受光素子44としては、フォトダイオードまたはイメージセンサなどが用いられる。 The excitation light source unit 31 includes a light emitting element 32 as a light source, an excitation unit frame 33, a condenser lens 34, and a lens holder 35. The light receiving unit 41 includes a noise shield 42, an amplifier circuit 43, a light receiving element 44, a light receiving unit frame 45, a Fresnel lens 46, and a lens holder 47. As the light emitting element 32, a semiconductor laser or an LED (Light Emitting Diode) element is used. The light emitted from the light emitting element 32 may have a wavelength in either the ultraviolet or visible region as long as it excites biological particles to emit fluorescence. As the light receiving element 44, a photodiode or an image sensor is used.
 清掃部50は、図6を参照して説明したリフレッシュ工程を実行し、粒子を捕集基板71から除去する。清掃部50は、清掃具としてのブラシ51と、ベース部としてのブラシ固定部52およびブラシ押さえ53とを有する。清掃部50は、高圧電源21に対して固定支持されている。リフレッシュ工程時、清掃部50は静止している。 The cleaning unit 50 performs the refresh process described with reference to FIG. 6 and removes particles from the collection substrate 71. The cleaning unit 50 includes a brush 51 as a cleaning tool, a brush fixing unit 52 and a brush presser 53 as base portions. The cleaning unit 50 is fixedly supported with respect to the high voltage power source 21. During the refresh process, the cleaning unit 50 is stationary.
 ブラシ51は、繊維集合体から形成されている。ブラシ51は、導電性を有する繊維集合体から形成されている。ブラシ51は、たとえば、カーボンファイバから形成されている。ブラシ51を形成する繊維集合体の線径は、φ0.05mm以上φ0.2mm以下であることが好ましい。 The brush 51 is formed from a fiber assembly. The brush 51 is formed from a conductive fiber assembly. The brush 51 is made of, for example, carbon fiber. The wire diameter of the fiber aggregate forming the brush 51 is preferably not less than φ0.05 mm and not more than φ0.2 mm.
 ブラシ51は、自由端51pと、自由端51pの反対側の端部に配置される支持端51qとを有する(図11を参照)。支持端51qは、ブラシ固定部52およびブラシ押さえ53により支持されている。ブラシ51は、支持端51qから自由端51pに向けて垂れ下がるように設けられる。ブラシ51は、後述するリフレッシュ位置93に固定支持されている。ブラシ51の自由端51pが捕集基板71の表面に接触した状態で捕集基板71が移動することにより、粒子が捕集基板71から除去される。 The brush 51 has a free end 51p and a support end 51q disposed at the end opposite to the free end 51p (see FIG. 11). The support end 51q is supported by the brush fixing portion 52 and the brush presser 53. The brush 51 is provided so as to hang down from the support end 51q toward the free end 51p. The brush 51 is fixedly supported at a refresh position 93 to be described later. The collection substrate 71 moves in a state where the free end 51p of the brush 51 is in contact with the surface of the collection substrate 71, whereby the particles are removed from the collection substrate 71.
 なお、本実施の形態では、捕集基板71から粒子を除去する捕集具としてブラシ51を用いたが、本発明はこれに限られず、たとえば、捕集基板71の表面と接触する平板状のワイパーであってもよいし、捕集基板71の表面に向けて空気を噴き出すノズルであってもよい。 In the present embodiment, the brush 51 is used as a collection tool for removing particles from the collection substrate 71. However, the present invention is not limited to this, and for example, a flat plate-like shape that contacts the surface of the collection substrate 71. It may be a wiper or a nozzle that blows air toward the surface of the collection substrate 71.
 粒子検出装置10は、加熱部としてのヒータ76と、移動機構部60とをさらに有する。 The particle detector 10 further includes a heater 76 as a heating unit and a moving mechanism unit 60.
 ヒータ76は、図4を参照して説明した加熱工程を実行し、捕集基板71に捕集された粒子を加熱する。 The heater 76 performs the heating process described with reference to FIG. 4 and heats the particles collected on the collection substrate 71.
 移動機構部60は、捕集基板71を搭載し、捕集工程、蛍光測定工程(加熱前,加熱後)、リフレッシュ工程および加熱工程間で捕集基板71を移動させる。移動機構部60は、モータホルダ61と、回転駆動可能な駆動部としての回転モータ62と、モータ押さえ63と、アーム部としての回転ベース64を有する。 The moving mechanism unit 60 mounts the collection substrate 71 and moves the collection substrate 71 between the collection process, the fluorescence measurement process (before and after heating), the refresh process, and the heating process. The moving mechanism unit 60 includes a motor holder 61, a rotation motor 62 as a drive unit that can be driven to rotate, a motor presser 63, and a rotation base 64 as an arm unit.
 図13は、移動機構部を構成する回転ベースを示す斜視図である。図14は、図13中の回転ベースを示す分解組み立て図である。図13中には、裏側(キャビネット11の側面11n側)から見た回転ベース64が示され、図14中には、表側(キャビネット11の側面11m側)から見た回転ベース64が示されている。 FIG. 13 is a perspective view showing a rotation base constituting the moving mechanism unit. FIG. 14 is an exploded view showing the rotating base in FIG. 13. In FIG. 13, the rotation base 64 viewed from the back side (side surface 11n side of the cabinet 11) is shown, and in FIG. 14, the rotation base 64 viewed from the front side (side surface 11m side of the cabinet 11) is shown. Yes.
 図11、図13および図14を参照して、回転ベース64には、回転モータ62の出力軸が接続されている。回転モータ62の駆動に伴って、回転ベース64は、図11中に仮想線として描かれた回転中心軸66を中心に回転(正転、反転)する。 Referring to FIGS. 11, 13, and 14, the output shaft of the rotary motor 62 is connected to the rotary base 64. As the rotation motor 62 is driven, the rotation base 64 rotates (forward rotation, reverse rotation) about the rotation center axis 66 drawn as a virtual line in FIG.
 回転ベース64は、樹脂材料により形成されている。回転ベース64は、その構成部位として、中心部67と、基板支持部68と、清掃具初期化部材としてのブラシ清掃アーム81と、センシング対象部82とを有する。 The rotation base 64 is made of a resin material. The rotation base 64 includes a central portion 67, a substrate support portion 68, a brush cleaning arm 81 as a cleaning tool initialization member, and a sensing target portion 82 as constituent parts thereof.
 中心部67は、回転モータ62の出力軸に接続されている。中心部67は、キャビネット11により回転中心軸66を中心に回転自在に支持されている。基板支持部68は、中心部67から回転中心軸66の半径方向に延伸し、その先端で捕集基板71を搭載している。基板支持部68は、捕集基板71を搭載する位置で枠形状を有する。ブラシ清掃アーム81およびセンシング対象部82については、後の項目で詳細に説明する。 The central portion 67 is connected to the output shaft of the rotary motor 62. The center portion 67 is supported by the cabinet 11 so as to be rotatable about the rotation center axis 66. The substrate support portion 68 extends from the center portion 67 in the radial direction of the rotation center shaft 66, and the collection substrate 71 is mounted at the tip thereof. The substrate support portion 68 has a frame shape at a position where the collection substrate 71 is mounted. The brush cleaning arm 81 and the sensing target portion 82 will be described in detail later.
 捕集基板71の裏面には、ヒータ76が貼り合わされている。ヒータ76は、回転ベース64の回転時、捕集基板71とともに移動する。ヒータ76には、ヒータ76の電力供給線や、ヒータ76に内蔵されたセンサの信号線を含む、複数の配線111,112,113が接続されている。配線111,112,113は、フレキシブル基板96を通じてキャビネット11の外部に引き出されている。 A heater 76 is bonded to the back surface of the collection substrate 71. The heater 76 moves together with the collection substrate 71 when the rotation base 64 rotates. A plurality of wirings 111, 112, and 113 including a power supply line of the heater 76 and a signal line of a sensor built in the heater 76 are connected to the heater 76. The wirings 111, 112, and 113 are drawn out of the cabinet 11 through the flexible substrate 96.
 図15は、捕集工程および加熱工程時の粒子検出装置を示す断面図である。図16は、蛍光測定工程(加熱前,加熱後)時の粒子検出装置を示す断面図である。図17は、リフレッシュ工程時の粒子検出装置を示す断面図である。図15から図17中には、キャビネット11の側面11n側からみた粒子検出装置の断面が示されている。 FIG. 15 is a cross-sectional view showing the particle detection apparatus during the collection process and the heating process. FIG. 16 is a cross-sectional view showing the particle detector in the fluorescence measurement process (before and after heating). FIG. 17 is a cross-sectional view showing the particle detection apparatus during the refresh process. 15 to 17, a cross section of the particle detection device viewed from the side surface 11n side of the cabinet 11 is shown.
 図15から図17を参照して、本実施の形態における粒子検出装置10では、捕集基板71が、捕集工程および加熱工程時に、図15中に示す第1位置としての捕集・加熱位置91に移動され、蛍光測定工程(加熱前,加熱後)時に、図16中に示す第2位置としての検出位置92に移動され、リフレッシュ工程時に、図17中に示す第3位置としてのリフレッシュ位置93に移動される。捕集・加熱位置91と、検出位置92と、リフレッシュ位置93とは、互いに離れて配置されている。 Referring to FIGS. 15 to 17, in particle detection device 10 in the present embodiment, collection substrate 71 is a collection / heating position as the first position shown in FIG. 15 during the collection step and the heating step. And moved to a detection position 92 as the second position shown in FIG. 16 during the fluorescence measurement process (before and after heating), and the refresh position as the third position shown in FIG. 17 during the refresh process. 93. The collection / heating position 91, the detection position 92, and the refresh position 93 are arranged away from each other.
 なお、図17中のリフレッシュ位置93は、代表的な例として示したものであり、実際には、リフレッシュ工程時に捕集基板71を移動させつつ、捕集基板71の表面をブラシ51に接触させて捕集基板71から粒子を除去するため、捕集基板71とブラシ51とが接触する間の捕集基板71の移動範囲がリフレッシュ位置93に相当する。 Note that the refresh position 93 in FIG. 17 is shown as a representative example. In practice, the surface of the collection substrate 71 is brought into contact with the brush 51 while moving the collection substrate 71 during the refresh process. In order to remove particles from the collection substrate 71, the movement range of the collection substrate 71 while the collection substrate 71 and the brush 51 are in contact corresponds to the refresh position 93.
 捕集基板71は、捕集・加熱位置91、検出位置92およびリフレッシュ位置93間を移動する間、同一平面内に保持される。捕集基板71は、捕集・加熱位置91、検出位置92およびリフレッシュ位置93間を移動する間、回転中心軸66に直交する同一平面内に保持される。 The collection substrate 71 is held in the same plane while moving between the collection / heating position 91, the detection position 92, and the refresh position 93. The collection substrate 71 is held in the same plane orthogonal to the rotation center axis 66 while moving between the collection / heating position 91, the detection position 92, and the refresh position 93.
 すなわち、本実施の形態における粒子検出装置10は、捕集基板71を、同一平面内に保持しながら、捕集・加熱位置91、検出位置92およびリフレッシュ位置93の間で移動させる移動機構部60を備える。本実施の形態では、捕集基板71を同一平面内で移動させるため、捕集・加熱位置91、検出位置92およびリフレッシュ位置93の各位置における捕集基板71の位置決め精度を向上させることができる。また、回転中心軸66の軸方向において捕集基板71が移動しないため、粒子検出装置10の全高を低く抑えることができる。 That is, the particle detection apparatus 10 in the present embodiment moves the collection substrate 71 between the collection / heating position 91, the detection position 92, and the refresh position 93 while holding the collection substrate 71 in the same plane. Is provided. In the present embodiment, since the collection substrate 71 is moved in the same plane, the positioning accuracy of the collection substrate 71 at each of the collection / heating position 91, the detection position 92, and the refresh position 93 can be improved. . Further, since the collection substrate 71 does not move in the axial direction of the rotation center shaft 66, the overall height of the particle detection device 10 can be kept low.
 捕集・加熱位置91と、検出位置92と、リフレッシュ位置93とは、円周上に並んで配置されている。捕集・加熱位置91と、検出位置92と、リフレッシュ位置93とは、回転中心軸66を中心とする円周上に並んで配置されている。捕集基板71の移動方向において、捕集・加熱位置91は、検出位置92とリフレッシュ位置93との間に配置されている。言い換えれば、捕集基板71の移動方向において、リフレッシュ位置93は、捕集・加熱位置91から見て検出位置92の反対側に配置されている。捕集基板71の移動方向において、検出位置92、捕集・加熱位置91およびリフレッシュ位置93が挙げた順に並んで配置されている。 The collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference. The collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference around the rotation center axis 66. In the movement direction of the collection substrate 71, the collection / heating position 91 is disposed between the detection position 92 and the refresh position 93. In other words, the refresh position 93 is arranged on the opposite side of the detection position 92 when viewed from the collection / heating position 91 in the moving direction of the collection substrate 71. In the moving direction of the collection substrate 71, the detection position 92, the collection / heating position 91, and the refresh position 93 are arranged in the order mentioned.
 捕集・加熱位置91とリフレッシュ位置93との間の捕集基板71の移動距離よりも、検出位置92とリフレッシュ位置93との間の捕集基板71の移動距離の方が大きい。捕集・加熱位置91、検出位置92およびリフレッシュ位置93の間における捕集基板71の移動範囲は、回転中心軸66の軸周りにおいて180°以下である。 The movement distance of the collection substrate 71 between the detection position 92 and the refresh position 93 is greater than the movement distance of the collection substrate 71 between the collection / heating position 91 and the refresh position 93. The range of movement of the collection substrate 71 between the collection / heating position 91, the detection position 92, and the refresh position 93 is 180 ° or less around the rotation center axis 66.
 続いて、本実施の形態における粒子検出装置10の動作について説明する。図18は、この発明の実施の形態1における粒子検出装置の動作の流れを示すフローチャートである。 Subsequently, the operation of the particle detection apparatus 10 in the present embodiment will be described. FIG. 18 is a flowchart showing a flow of operations of the particle detection apparatus according to Embodiment 1 of the present invention.
 なお、以下の説明では、図15から図17中において、回転中心軸66を中心とする時計周りの回転を正転方向といい、回転中心軸66を中心とする反時計周りの回転を反転方向という。 In the following description, in FIGS. 15 to 17, clockwise rotation around the rotation center axis 66 is referred to as normal rotation direction, and counterclockwise rotation around the rotation center axis 66 is referred to as reverse direction. That's it.
 図15および図18を参照して、まず、捕集基板71を捕集・加熱位置91に位置決めして、捕集工程を実施する(S101)。この際、ファン16を正転方向に駆動させることによって、キャビネット11内部に空気を導入するとともに、高圧電源21によって静電針22と捕集基板71との間に電位差を発生させ、空気中の粒子を捕集基板71の表面に捕集する。 15 and 18, first, the collection substrate 71 is positioned at the collection / heating position 91, and the collection process is performed (S101). At this time, air is introduced into the cabinet 11 by driving the fan 16 in the forward direction, and a potential difference is generated between the electrostatic needle 22 and the collection substrate 71 by the high voltage power source 21, The particles are collected on the surface of the collection substrate 71.
 図16および図18を参照して、次に、回転モータ62を駆動させることによって回転ベース64を正転方向に回転させ、捕集基板71を捕集・加熱位置91から検出位置92に移動させる(S102)。次に、励起光源部31によって、捕集基板71に捕集された粒子に向けて励起光を照射するとともに、受光部41によって、励起光の照射に伴って粒子から発せられる蛍光を受光する。これにより、捕集基板71に捕集された粒子の加熱前の蛍光強度を測定する(S103)。 Referring to FIGS. 16 and 18, next, by driving the rotation motor 62, the rotation base 64 is rotated in the forward rotation direction, and the collection substrate 71 is moved from the collection / heating position 91 to the detection position 92. (S102). Next, the excitation light source unit 31 emits excitation light toward the particles collected on the collection substrate 71, and the light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated. Thereby, the fluorescence intensity before the heating of the particles collected on the collection substrate 71 is measured (S103).
 図15および図18を参照して、次に、回転モータ62を駆動させることによって回転ベース64を反転方向に回転させ、捕集基板71を検出位置92から捕集・加熱位置91に移動させる(S104)。次に、ヒータ76に通電することによって、捕集基板71に捕集された粒子を加熱する(S105)。次に、ヒータ76への通電を停止して、捕集基板71を冷却する(S106)。この際、ファン16を反転方向に駆動させることによって、空気をキャビネット11内部に導入し、捕集基板71の冷却を促進させる。 Referring to FIGS. 15 and 18, the rotation base 64 is rotated in the reverse direction by driving the rotation motor 62, and the collection substrate 71 is moved from the detection position 92 to the collection / heating position 91 ( S104). Next, by energizing the heater 76, the particles collected on the collection substrate 71 are heated (S105). Next, energization to the heater 76 is stopped, and the collection substrate 71 is cooled (S106). At this time, by driving the fan 16 in the reverse direction, air is introduced into the cabinet 11 and cooling of the collection substrate 71 is promoted.
 図16および図18を参照して、次に、回転モータ62を駆動させることによって回転ベース64を正転方向に回転させ、捕集基板71を捕集・加熱位置91から検出位置92に移動させる(S107)。次に、励起光源部31によって、捕集基板71に捕集された粒子に向けて励起光を照射するとともに、受光部41によって、励起光の照射に伴って粒子から発せられる蛍光を受光する。これにより、捕集基板71に捕集された粒子の加熱後の蛍光強度を測定する(S108)。 Referring to FIGS. 16 and 18, next, by driving the rotation motor 62, the rotation base 64 is rotated in the forward rotation direction, and the collection substrate 71 is moved from the collection / heating position 91 to the detection position 92. (S107). Next, the excitation light source unit 31 emits excitation light toward the particles collected on the collection substrate 71, and the light receiving unit 41 receives fluorescence emitted from the particles as the excitation light is irradiated. Thereby, the fluorescence intensity after the heating of the particles collected on the collection substrate 71 is measured (S108).
 図17および図18を参照して、次に、回転モータ62を駆動させることによって回転ベース64を反転方向に回転させ、捕集基板71を検出位置92からリフレッシュ位置93に移動させる。リフレッシュ位置93において回転ベース64を反転方向に回転させ、さらに正転方向に回転させることによって、捕集基板71の表面をブラシ51に接触させる。これにより、捕集基板71から粒子を除去する(S109)。 17 and 18, next, the rotation base 64 is rotated in the reverse direction by driving the rotation motor 62, and the collection substrate 71 is moved from the detection position 92 to the refresh position 93. The surface of the collection substrate 71 is brought into contact with the brush 51 by rotating the rotation base 64 in the reverse direction at the refresh position 93 and further rotating in the forward direction. Thereby, particles are removed from the collection substrate 71 (S109).
 リフレッシュ工程時、ファン16を正転方向に駆動させることによって、捕集基板71から除去されて空気中を飛散する粒子を開口部120を通じてキャビネット11の外部に排出する。開口部120を通じてキャビネット11の外部に排出された粒子を回収するため、開口部120とファン16との間にフィルタを設けることが好ましい。 During the refresh process, the fan 16 is driven in the forward direction to discharge particles that are removed from the collection substrate 71 and scatter in the air to the outside of the cabinet 11 through the opening 120. In order to collect particles discharged to the outside of the cabinet 11 through the opening 120, it is preferable to provide a filter between the opening 120 and the fan 16.
 この際、捕集基板71が、図15中に示す捕集・加熱位置91から図17中に示すリフレッシュ位置93に近づくに従って、捕集基板71と捕集筒15とが重なる範囲が小さくなるため、空気の導入口である捕集筒15の開口面積が大きくなる。これにより、粒子を効率的にキャビネット11の外部に回収することができる。一方、捕集工程時には、捕集基板71に遮蔽されることによって捕集筒15の開口面積が小さくなるため、空気の導入ロスを減らすことができる。 At this time, since the collection substrate 71 approaches the refresh position 93 shown in FIG. 17 from the collection / heating position 91 shown in FIG. 15, the range in which the collection substrate 71 and the collection cylinder 15 overlap becomes smaller. The opening area of the collection tube 15 that is an air inlet is increased. Thereby, particles can be efficiently recovered outside the cabinet 11. On the other hand, since the opening area of the collection cylinder 15 is reduced by being shielded by the collection substrate 71 during the collection process, the air introduction loss can be reduced.
 本実施の形態では、清掃部50を静止させたまま捕集基板71の移動によってリフレッシュ工程を実施するため、リフレッシュ工程を実施するための移動機構部を別途設ける必要がない。このため、粒子検出装置10の小型化や低コスト化を図ることができる。 In the present embodiment, since the refresh process is performed by moving the collection substrate 71 while the cleaning unit 50 is stationary, it is not necessary to separately provide a moving mechanism unit for performing the refresh process. For this reason, size reduction and cost reduction of the particle | grain detection apparatus 10 can be achieved.
 図15および図18を参照して、回転モータ62を駆動させることによって回転ベース64を正転方向に回転させ、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させる(S110)。以上のS101~S110の工程を繰り返すことによって、生物由来の粒子の検出を連続的に実施する。 Referring to FIGS. 15 and 18, the rotation base 64 is rotated in the normal rotation direction by driving the rotation motor 62, and the collection substrate 71 is moved from the refresh position 93 to the collection / heating position 91 (S110). . By repeating the above steps S101 to S110, the detection of the particles derived from living organisms is carried out continuously.
 以上に説明した、この発明の実施の形態1における粒子検出装置の構造についてまとめて説明すると、本実施の形態における粒子検出装置10は、生物由来の粒子を検出する粒子検出装置である。粒子検出装置10は、粒子を捕集部材としての捕集基板71に捕集する捕集部20と、捕集基板71に捕集された粒子に向けて励起光を照射するとともに、粒子から発せられる蛍光を受光する蛍光検出部30と、捕集部20により捕集基板71に粒子を捕集する第1位置としての捕集・加熱位置91および蛍光検出部30により蛍光を受光する第2位置としての検出位置92とは離れた第3位置としてのリフレッシュ位置93で、粒子を捕集基板71から除去する清掃部50とを備える。 The structure of the particle detection apparatus according to Embodiment 1 of the present invention described above will be described together. The particle detection apparatus 10 according to the present embodiment is a particle detection apparatus that detects biologically derived particles. The particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles. The fluorescence detection unit 30 that receives received fluorescence, the collection / heating position 91 as a first position for collecting particles on the collection substrate 71 by the collection unit 20, and the second position for receiving fluorescence by the fluorescence detection unit 30 And a cleaning unit 50 for removing particles from the collection substrate 71 at a refresh position 93 as a third position apart from the detection position 92.
 また別に、本実施の形態における粒子検出装置10は、生物由来の粒子を検出する粒子検出装置である。粒子検出装置10は、粒子を捕集部材としての捕集基板71に捕集する捕集部20と、捕集基板71に捕集された粒子に向けて励起光を照射するとともに、粒子から発せられる蛍光を受光する蛍光検出部30と、粒子を捕集基板71から除去する清掃部50と、捕集基板71を、捕集部20により捕集基板71に粒子を捕集する第1位置としての捕集・加熱位置91と、蛍光検出部30により蛍光を受光する第2位置としての検出位置92と、清掃部50により捕集基板71から粒子を除去する第3位置としてのリフレッシュ位置93との間で移動させる移動機構部60とを備える。 Separately, the particle detection device 10 in the present embodiment is a particle detection device that detects biological particles. The particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles. The fluorescence detection unit 30 that receives the fluorescence that is received, the cleaning unit 50 that removes the particles from the collection substrate 71, and the collection substrate 71 as the first position where the collection unit 20 collects the particles on the collection substrate 71 A collection / heating position 91, a detection position 92 as a second position for receiving fluorescence by the fluorescence detection unit 30, and a refresh position 93 as a third position for removing particles from the collection substrate 71 by the cleaning unit 50. And a moving mechanism unit 60 that moves between the two.
 さらに別に、本実施の形態における粒子検出装置10は、生物由来の粒子を検出する粒子検出装置である。粒子検出装置10は、粒子を捕集部材としての捕集基板71に捕集する捕集部20と、捕集基板71に捕集された粒子に向けて励起光を照射するとともに、粒子から発せられる蛍光を受光する蛍光検出部30と、粒子を捕集基板71から除去する清掃部50とを備える。捕集基板71は、正転方向および反転方向に回転移動することにより、捕集部20により捕集基板71に粒子を捕集する第1位置としての捕集・加熱位置91と、蛍光検出部30により蛍光を受光する第2位置としての検出位置92と、清掃部50により捕集基板71から粒子を除去する第3位置としてのリフレッシュ位置93との間を移動する。 Furthermore, the particle detection device 10 in the present embodiment is a particle detection device that detects biological particles. The particle detection device 10 irradiates excitation light toward the particles collected on the collection substrate 71 and the collection unit 20 that collects the particles on the collection substrate 71 as a collection member, and emits the particles from the particles. A fluorescence detection unit 30 that receives the generated fluorescence and a cleaning unit 50 that removes particles from the collection substrate 71. The collection substrate 71 rotates and moves in the normal rotation direction and the reverse direction, whereby the collection / heating position 91 as a first position for collecting particles on the collection substrate 71 by the collection unit 20, and the fluorescence detection unit It moves between a detection position 92 as a second position for receiving fluorescence by 30 and a refresh position 93 as a third position for removing particles from the collection substrate 71 by the cleaning unit 50.
 本実施の形態では、粒子を捕集基板71から除去するための清掃部50を設けることによって、捕集基板71を繰り返し使用して生物由来の粒子の検出を行なうことができる。このため、1回の検出ごとに捕集基板71を交換する場合と比較して、粒子検出にかかる費用を低コストにできる。 In the present embodiment, by providing the cleaning unit 50 for removing particles from the collection substrate 71, the collection substrate 71 can be repeatedly used to detect biologically derived particles. For this reason, compared with the case where the collection board | substrate 71 is replaced | exchanged for every detection, the expense concerning particle detection can be made low-cost.
 また、本実施の形態では、粒子を捕集基板71から除去するリフレッシュ工程が、捕集・加熱位置91および検出位置92から離れたリフレッシュ位置93で実施される。このため、捕集基板71から除去された粒子が、次工程の捕集工程時に再び捕集基板71に捕集されたり、捕集基板71から検出位置92に侵入した粒子が発光素子32や受光素子44などの光学系に付着したりすることを防止できる。特に本実施の形態では、リフレッシュ位置93と検出位置92との間を遮るように捕集・加熱位置91が設けられているため、捕集基板71から除去された粒子が検出位置92に侵入することを効果的に防ぐことができる。これらの理由により、本実施の形態における粒子検出装置10によれば、生物由来の粒子の検出を高精度に行なうことができる。 In the present embodiment, the refreshing process for removing the particles from the collection substrate 71 is performed at the refresh position 93 away from the collection / heating position 91 and the detection position 92. For this reason, the particles removed from the collection substrate 71 are collected again on the collection substrate 71 in the next collection step, or the particles that have entered the detection position 92 from the collection substrate 71 are received by the light emitting element 32 or the light reception. It can be prevented from adhering to the optical system such as the element 44. In particular, in the present embodiment, since the collection / heating position 91 is provided so as to block between the refresh position 93 and the detection position 92, particles removed from the collection substrate 71 enter the detection position 92. Can be effectively prevented. For these reasons, according to the particle detection apparatus 10 in the present embodiment, it is possible to detect biologically derived particles with high accuracy.
 また、本実施の形態では、捕集・加熱位置91、検出位置92およびリフレッシュ位置93が円周上に並んで配置されており、捕集基板71は回転することによって、これらの各位置間を移動する。このような構成によれば、捕集部20、蛍光検出部30および清掃部50をコンパクトな空間に配置して、粒子検出装置10の小型化を図ることができる。また、本実施の形態では、捕集基板71が正転方向および反転方向に回転して捕集・加熱位置91、検出位置92およびリフレッシュ位置93の各位置に移動するため、フレキシブル基板96を通じて引き出される複数の配線や静電捕集のための配線が絡み合わないという効果も奏される。 Further, in the present embodiment, the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged side by side on the circumference, and the collection substrate 71 is rotated so that the space between these positions is set. Moving. According to such a structure, the particle | grain detection apparatus 10 can be reduced in size by arrange | positioning the collection part 20, the fluorescence detection part 30, and the cleaning part 50 in a compact space. In the present embodiment, the collection substrate 71 rotates in the normal rotation direction and the reverse direction and moves to the collection / heating position 91, the detection position 92, and the refresh position 93. There is also an effect that a plurality of wires and wires for electrostatic collection are not entangled.
 加熱部としてのヒータ76の構造についてまとめて説明すると、本実施の形態における粒子検出装置10は、捕集基板71に捕集された粒子を加熱するための加熱部としてのヒータ76を有する。蛍光検出部30により把握される加熱前の粒子から発せられる蛍光強度と加熱後の粒子から発せられる蛍光強度との差分から、生物由来の粒子を検出する。ヒータ76によって粒子を加熱するとき、捕集基板71は、第1位置としての捕集・加熱位置91に移動される。ヒータ76は、移動機構部60によって捕集基板71とともに移動される。ヒータ76によって加熱された捕集基板71は、ファン16によってキャビネット11内に導入された空気により冷却される。 The structure of the heater 76 as a heating unit will be described collectively. The particle detection device 10 in the present embodiment has a heater 76 as a heating unit for heating the particles collected on the collection substrate 71. Biologically derived particles are detected from the difference between the fluorescence intensity emitted from the particles before heating and the fluorescence intensity emitted from the heated particles grasped by the fluorescence detection unit 30. When the particles are heated by the heater 76, the collection substrate 71 is moved to the collection / heating position 91 as the first position. The heater 76 is moved together with the collection substrate 71 by the moving mechanism unit 60. The collection substrate 71 heated by the heater 76 is cooled by the air introduced into the cabinet 11 by the fan 16.
 本実施の形態では、捕集基板71に捕集された粒子を加熱する加熱工程を、捕集基板71に粒子を捕集する捕集工程と同じ位置(捕集・加熱位置91)で実施することにより、粒子検出装置10の小型化を図ることができる。また、ヒータ76を移動機構部60に搭載して、捕集基板71と一緒に移動させる構成により、粒子検出装置10の構造を簡易化できる。 In the present embodiment, the heating step of heating the particles collected on the collection substrate 71 is performed at the same position (collection / heating position 91) as the collection step of collecting particles on the collection substrate 71. Thereby, size reduction of the particle | grain detection apparatus 10 can be achieved. Moreover, the structure of the particle | grain detection apparatus 10 can be simplified by the structure which mounts the heater 76 in the moving mechanism part 60, and moves it with the collection board | substrate 71. FIG.
 [粒子検出装置の構成部品の配置について]
 図11、図15から図17を参照して、本実施の形態では、捕集部20、蛍光検出部30および清掃部50の各構成部品が、回転中心軸66を中心にその周方向に並んで配置されている。
[Disposition of component parts of particle detector]
With reference to FIGS. 11 and 15 to 17, in the present embodiment, each component of the collection unit 20, the fluorescence detection unit 30, and the cleaning unit 50 is arranged in the circumferential direction around the rotation center axis 66. Is arranged in.
 捕集筒15および静電針22は、捕集・加熱位置91に向かい合って配置されている。高圧電源21および清掃部50は、リフレッシュ位置93に向かい合って配置されている。受光部41は、検出位置92に向かい合って配置されている。 The collecting cylinder 15 and the electrostatic needle 22 are arranged facing the collecting / heating position 91. The high-voltage power supply 21 and the cleaning unit 50 are arranged facing the refresh position 93. The light receiving unit 41 is disposed to face the detection position 92.
 捕集筒15と受光部41とは、回転中心軸66を中心とする周方向において互いに隣り合って配置されている。励起光源部31は、回転中心軸66を中心とする周方向において、捕集筒15とは反対側で受光部41と隣り合って配置されている。すなわち、回転中心軸66を中心とする周方向において、励起光源部31と捕集筒15との間に受光部41が配置されている。励起光源部31は、回転中心軸66を挟んで捕集筒15の反対側に配置されている。 The collecting tube 15 and the light receiving unit 41 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66. The excitation light source unit 31 is arranged adjacent to the light receiving unit 41 on the side opposite to the collection tube 15 in the circumferential direction around the rotation center axis 66. That is, the light receiving unit 41 is disposed between the excitation light source unit 31 and the collection tube 15 in the circumferential direction around the rotation center axis 66. The excitation light source unit 31 is disposed on the opposite side of the collection tube 15 with the rotation center shaft 66 interposed therebetween.
 高圧電源21は、回転中心軸66を中心とする周方向において、受光部41とは反対側で捕集筒15と隣り合って配置されている。すなわち、回転中心軸66を中心とする周方向において、高圧電源21と受光部41との間に捕集筒15が配置されている。高圧電源21は、回転中心軸66を挟んで受光部41の反対側に配置されている。高圧電源21と励起光源部31とは、回転中心軸66を中心とする周方向において互いに隣り合って配置されている。 The high-voltage power supply 21 is arranged adjacent to the collecting cylinder 15 on the side opposite to the light receiving unit 41 in the circumferential direction around the rotation center axis 66. That is, the collection tube 15 is disposed between the high-voltage power supply 21 and the light receiving unit 41 in the circumferential direction around the rotation center shaft 66. The high voltage power source 21 is disposed on the opposite side of the light receiving unit 41 with the rotation center shaft 66 interposed therebetween. The high-voltage power source 21 and the excitation light source unit 31 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66.
 回転中心軸66の軸方向から見た場合に、捕集筒15、受光部41および高圧電源21は、回転中心軸66の軸周りにおける捕集基板71の移動範囲と重なって配置されている。回転中心軸66の軸方向から見た場合に、励起光源部31は、回転中心軸66の軸周りにおける捕集基板71の移動範囲からずれて配置されている。 When viewed from the axial direction of the rotation center shaft 66, the collection tube 15, the light receiving unit 41, and the high-voltage power supply 21 are arranged so as to overlap with the movement range of the collection substrate 71 around the rotation center shaft 66. When viewed from the axial direction of the rotation center axis 66, the excitation light source unit 31 is arranged so as to be shifted from the moving range of the collection substrate 71 around the axis of the rotation center axis 66.
 本実施の形態では、捕集基板71の移動方向において、励起光源部31は、受光部41に対して捕集筒15の反対側に配置されている。このように構成により、励起光源部31の配置に起因して、捕集・加熱位置91と検出位置92との間の距離が長くなることを防止している。 In the present embodiment, the excitation light source unit 31 is disposed on the opposite side of the collection tube 15 with respect to the light receiving unit 41 in the moving direction of the collection substrate 71. With this configuration, the distance between the collection / heating position 91 and the detection position 92 is prevented from being increased due to the arrangement of the excitation light source unit 31.
 回転中心軸66の軸方向から見た場合に、清掃部50は、高圧電源21と重なって配置されている。より具体的には、清掃部50を構成するブラシ固定部52が、高圧電源21に取り付けられている。図11中に示すように、励起光源部31および受光部41は、それぞれ、高さH1(回転中心軸66の軸方向の長さ)および高さH2を有する。高圧電源21は、高さH3を有する。高さH3は、高さH1および高さH2よりも小さく、高さH1は、高さH2よりも大きい(H3<H2<H1)。 When viewed from the axial direction of the rotation center shaft 66, the cleaning unit 50 is disposed so as to overlap the high voltage power source 21. More specifically, a brush fixing part 52 constituting the cleaning part 50 is attached to the high voltage power source 21. As shown in FIG. 11, the excitation light source unit 31 and the light receiving unit 41 have a height H1 (length in the axial direction of the rotation center shaft 66) and a height H2, respectively. The high voltage power supply 21 has a height H3. The height H3 is smaller than the height H1 and the height H2, and the height H1 is larger than the height H2 (H3 <H2 <H1).
 本実施の形態では、清掃部50を、励起光源部31、受光部41および高圧電源21のうち最も小さい高さを有する高圧電源21と重ねて設けることによって、キャビネット11内の限られた空間に捕集部20、蛍光検出部30および清掃部50の各構成部品を効率よく配置している。 In the present embodiment, the cleaning unit 50 is provided in a limited space in the cabinet 11 by overlapping the excitation light source unit 31, the light receiving unit 41, and the high voltage power source 21 having the smallest height. Each component of the collection part 20, the fluorescence detection part 30, and the cleaning part 50 is arrange | positioned efficiently.
 また、本実施の形態では、清掃部50と捕集筒15とが回転中心軸66を中心とする周方向において互いに隣り合って配置されている。このような構成によって、捕集工程、加熱工程時の冷却およびリフレッシュ工程間におけるファン16の兼用を可能としている。 Further, in the present embodiment, the cleaning unit 50 and the collecting cylinder 15 are arranged adjacent to each other in the circumferential direction around the rotation center axis 66. With such a configuration, the fan 16 can be shared between the collection process, the cooling during the heating process, and the refresh process.
 図19は、粒子検出装置の内部構造を示す斜視図である。図19を参照して、受光部41および励起光源部31と、清掃部50との間を遮るように、捕集筒15および移動機構部60が設けられている。 FIG. 19 is a perspective view showing the internal structure of the particle detector. Referring to FIG. 19, collection tube 15 and moving mechanism unit 60 are provided so as to block between light receiving unit 41 and excitation light source unit 31 and cleaning unit 50.
 このような構成により、リフレッシュ位置93において捕集基板71から除去された粒子が検出位置92に侵入することを効果的に抑制できる。また、リフレッシュ位置93から検出位置92への粒子の侵入を防止することを目的にキャビネット11内に隔壁を設ける必要がなく、捕集・加熱位置91、検出位置92およびリフレッシュ位置93がキャビネット11内の同一空間に設けられる。このため、粒子検出装置10を小型化することができる。 With such a configuration, it is possible to effectively suppress the particles removed from the collection substrate 71 at the refresh position 93 from entering the detection position 92. Further, there is no need to provide a partition in the cabinet 11 for the purpose of preventing the entry of particles from the refresh position 93 to the detection position 92, and the collection / heating position 91, the detection position 92, and the refresh position 93 are located in the cabinet 11. Are provided in the same space. For this reason, the particle | grain detection apparatus 10 can be reduced in size.
 [ブラシのクリーニング構造について]
 リフレッシュ工程時、清掃部50により捕集基板71から粒子が除去されるのに伴って、捕集基板71の表面と接触するブラシ51に粒子が付着する。本実施の形態における粒子検出装置10は、清掃具初期化部材としてのブラシ清掃アーム81を有し、このブラシ清掃アーム81によってブラシ51に付着した粒子を除去する。
[About brush cleaning structure]
During the refresh process, as the particles are removed from the collection substrate 71 by the cleaning unit 50, the particles adhere to the brush 51 that contacts the surface of the collection substrate 71. The particle detection apparatus 10 according to the present embodiment has a brush cleaning arm 81 as a cleaning tool initialization member, and removes particles adhering to the brush 51 by the brush cleaning arm 81.
 図13および図14を参照して、ブラシ清掃アーム81は、回転ベース64に一体に設けられている。ブラシ清掃アーム81は、回転ベース64の回転時、捕集基板71とともに移動する。ブラシ清掃アーム81は、回転ベース64の中心部67から回転中心軸66の半径方向に延伸する。ブラシ清掃アーム81がブラシ51の自由端51pに接触した状態で回転移動することにより、ブラシ51に付着した粒子が除去される。 Referring to FIGS. 13 and 14, the brush cleaning arm 81 is provided integrally with the rotating base 64. The brush cleaning arm 81 moves together with the collection substrate 71 when the rotation base 64 rotates. The brush cleaning arm 81 extends in the radial direction of the rotation center shaft 66 from the center portion 67 of the rotation base 64. When the brush cleaning arm 81 rotates while being in contact with the free end 51p of the brush 51, particles adhering to the brush 51 are removed.
 ブラシ清掃アーム81は、回転中心軸66の軸周りにおいて基板支持部68と周方向にずれた位置に設けられている。図16中に示すように、捕集基板71が検出位置92に移動された時に、ブラシ清掃アーム81は、捕集基板71とブラシ51との間に配置される。 The brush cleaning arm 81 is provided at a position shifted from the substrate support 68 in the circumferential direction around the rotation center shaft 66. As shown in FIG. 16, when the collection substrate 71 is moved to the detection position 92, the brush cleaning arm 81 is disposed between the collection substrate 71 and the brush 51.
 図20から図22は、リフレッシュ工程時の捕集基板およびブラシ清掃アームの動きを示す断面図である。図22中には、リフレッシュ工程時の捕集基板71の移動端が示されている。 20 to 22 are cross-sectional views showing the movement of the collection substrate and the brush cleaning arm during the refresh process. FIG. 22 shows the moving end of the collection substrate 71 during the refresh process.
 図20から図22を参照して、粒子の加熱後の蛍光強度を測定した後、回転ベース64を反転方向に回転させ、捕集基板71を検出位置92からリフレッシュ位置93に向けて移動させる。 20 to 22, after measuring the fluorescence intensity after heating the particles, the rotation base 64 is rotated in the reverse direction, and the collection substrate 71 is moved from the detection position 92 toward the refresh position 93.
 この際、まず、ブラシ清掃アーム81がブラシ51の自由端51pに接触しながら反転方向に移動することにより、ブラシ51に付着した粒子を除去する。同時に、ファン16を正転方向に駆動させることによって、ブラシ51から除去された粒子をリフレッシュ位置93からキャビネット11の外部に回収する。さらに回転ベース64を反転方向に回転させ、捕集基板71の表面をブラシ51に接触させることにより、捕集基板71から粒子を除去する。捕集基板71が図22中に示す移動端まで移動したら、回転ベース64を正転方向に回転させ、再び捕集基板71の表面をブラシ51に接触させることにより、捕集基板71から粒子を除去する。 At this time, first, the brush cleaning arm 81 moves in the reverse direction while contacting the free end 51p of the brush 51, thereby removing particles adhering to the brush 51. At the same time, the fan 16 is driven in the forward direction to collect the particles removed from the brush 51 from the refresh position 93 to the outside of the cabinet 11. Further, the rotating base 64 is rotated in the reverse direction, and the surface of the collection substrate 71 is brought into contact with the brush 51 to remove particles from the collection substrate 71. When the collection substrate 71 moves to the moving end shown in FIG. 22, the rotation base 64 is rotated in the forward rotation direction, and the surface of the collection substrate 71 is brought into contact with the brush 51 again, whereby particles are collected from the collection substrate 71. Remove.
 本実施の形態では、捕集基板71が検出位置92に移動された時に、ブラシ清掃アーム81が捕集基板71とブラシ51との間に配置されるため、捕集基板71とブラシ51とが接触する前に、ブラシ清掃アーム81とブラシ51とが接触する。これにより、ブラシ清掃アーム81によってリフレッシュされたブラシ51により捕集基板71を清掃できるため、捕集基板71から粒子を効率的に除去することができる。 In this embodiment, since the brush cleaning arm 81 is disposed between the collection substrate 71 and the brush 51 when the collection substrate 71 is moved to the detection position 92, the collection substrate 71 and the brush 51 are separated from each other. Before the contact, the brush cleaning arm 81 and the brush 51 come into contact with each other. Thereby, since the collection board | substrate 71 can be cleaned with the brush 51 refreshed by the brush cleaning arm 81, particle | grains can be efficiently removed from the collection board | substrate 71. FIG.
 また、ブラシ清掃アーム81は、捕集基板71を搭載する回転ベース64に一体に設けられている。このような構成により、ブラシ清掃アーム81を移動させるための移動機構部を別途設ける必要がなくなり、粒子検出装置10の小型化や低コスト化を図ることができる。 Further, the brush cleaning arm 81 is provided integrally with the rotation base 64 on which the collection substrate 71 is mounted. With such a configuration, it is not necessary to separately provide a moving mechanism unit for moving the brush cleaning arm 81, and the particle detector 10 can be reduced in size and cost.
 なお、キャビネット11内部には、粘着性を有する粒子捕獲部が設けられてもよい。粒子捕獲部は、たとえば、粘着性シートから形成される。粒子捕獲部は、リフレッシュ位置93や、リフレッシュ位置93と捕集・加熱位置91との間に設けられることが好ましい。このような構成によれば、ファン16の駆動による粒子の回収に加えて、粒子捕獲部によって捕集基板71もしくはブラシ51から除去された粒子を回収することができる。 In addition, in the cabinet 11, the particle | grain capture | acquisition part which has adhesiveness may be provided. The particle capturing part is formed from an adhesive sheet, for example. The particle capturing unit is preferably provided between the refresh position 93 or between the refresh position 93 and the collection / heating position 91. According to such a configuration, in addition to collecting particles by driving the fan 16, particles removed from the collection substrate 71 or the brush 51 by the particle capturing unit can be collected.
 図23は、ブラシ、ブラシ清掃アームおよび捕集基板の高さ関係を示す図である。図23を参照して、ブラシ清掃アーム81および捕集基板71は、それぞれ、ブラシ51の自由端51pと接触する頂面81aおよび頂面71aを有する。任意の位置を基準とした時のブラシ51の自由端51pの高さをH6とし、ブラシ清掃アーム81の頂面81aの高さをH7とし、捕集基板71の頂面71aの高さをH8とした場合に、H6<H8<H7の関係を満たすことが好ましい。 FIG. 23 is a diagram showing the height relationship between the brush, the brush cleaning arm, and the collection substrate. Referring to FIG. 23, brush cleaning arm 81 and collection substrate 71 each have a top surface 81a and a top surface 71a that contact free end 51p of brush 51. The height of the free end 51p of the brush 51 with respect to an arbitrary position is set to H6, the height of the top surface 81a of the brush cleaning arm 81 is set to H7, and the height of the top surface 71a of the collection substrate 71 is set to H8. In this case, it is preferable to satisfy the relationship of H6 <H8 <H7.
 [粒子検出装置の細部構造について]
 本実施の形態における粒子検出装置10は、捕集基板71の位置を検出するための位置検出部として、位置センサ77および位置センサ78と、センシング対象部82とを有する。
[Detailed structure of particle detector]
The particle detection apparatus 10 in the present embodiment includes a position sensor 77, a position sensor 78, and a sensing target unit 82 as a position detection unit for detecting the position of the collection substrate 71.
 図11、図15および図16を参照して、位置センサ77および位置センサ78は、センシング対象部82の近接を検知することによって捕集基板71の位置を検出するセンサである。位置センサ77および位置センサ78は、キャビネット11の内壁に取り付けられている。位置センサ77および位置センサ78は、回転中心軸66に直交する同一平面内に設けられている。回転中心軸66の軸方向から見た場合に、位置センサ77は、捕集・加熱位置91と検出位置92との間に配置され、位置センサ78は、捕集・加熱位置91とリフレッシュ位置93との間に配置されている。 Referring to FIGS. 11, 15, and 16, position sensor 77 and position sensor 78 are sensors that detect the position of collection substrate 71 by detecting the proximity of sensing target portion 82. The position sensor 77 and the position sensor 78 are attached to the inner wall of the cabinet 11. The position sensor 77 and the position sensor 78 are provided in the same plane orthogonal to the rotation center axis 66. When viewed from the axial direction of the rotation center shaft 66, the position sensor 77 is disposed between the collection / heating position 91 and the detection position 92, and the position sensor 78 is composed of the collection / heating position 91 and the refresh position 93. It is arranged between.
 図13を参照して、センシング対象部82は、回転ベース64に一体に設けられている。センシング対象部82は、回転ベース64の回転時、捕集基板71とともに移動する。センシング対象部82は、回転ベース64の中心部67から回転中心軸66の半径方向に延伸するブラシ清掃アーム81の先端に設けられている。 Referring to FIG. 13, the sensing target portion 82 is provided integrally with the rotation base 64. The sensing target portion 82 moves together with the collection substrate 71 when the rotation base 64 rotates. The sensing target portion 82 is provided at the tip of a brush cleaning arm 81 extending in the radial direction of the rotation center shaft 66 from the center portion 67 of the rotation base 64.
 図11、図15および図16を参照して、図示しない制御部は、位置センサ78がセンシング対象部82の近接を検知した場合に、捕集基板71が捕集・加熱位置91に位置決めされたことを検出する。このとき、制御部は、捕集基板71への粒子の捕集が開始されるように、捕集部20およびファン16に向けて指令を出す。また、制御部は、位置センサ77がセンシング対象部82の近接を検知した場合に、捕集基板71が検出位置92に位置決めされたことを検出する。このとき、制御部は、生物由来の粒子の検出が開始されるように、蛍光検出部30に向けて指令を出す。 Referring to FIGS. 11, 15, and 16, when the position sensor 78 detects the proximity of the sensing target unit 82, the control unit (not shown) positions the collection substrate 71 at the collection / heating position 91. Detect that. At this time, the control unit issues a command to the collection unit 20 and the fan 16 so that the collection of particles on the collection substrate 71 is started. Further, the control unit detects that the collection substrate 71 is positioned at the detection position 92 when the position sensor 77 detects the proximity of the sensing target unit 82. At this time, the control unit issues a command to the fluorescence detection unit 30 so that detection of biologically derived particles is started.
 位置センサ78および位置センサ77を用いた捕集基板71の位置検出により、捕集工程および検出工程における捕集基板71の位置精度を向上させ、生物由来の粒子の検出の再現性を高めることができる。 By detecting the position of the collection substrate 71 using the position sensor 78 and the position sensor 77, it is possible to improve the position accuracy of the collection substrate 71 in the collection step and the detection step, and to improve the reproducibility of detection of biologically derived particles. it can.
 図16を参照して、本実施の形態における粒子検出装置10は、移動機構部60の移動端に配置され、移動機構部60の移動を規制する規制部材としての突出部19を有する。突出部19は、キャビネット11の内壁から突出して設けられている。突出部19は、検出位置92に隣り合った位置に設けられている。捕集基板71が検出位置92に移動された時、回転ベース64が突出部19に当接することにより、回転ベース64のそれ以上の移動が規制される。 Referring to FIG. 16, the particle detection device 10 in the present embodiment has a protrusion 19 that is disposed at the moving end of the moving mechanism 60 and serves as a restricting member that restricts the movement of the moving mechanism 60. The protruding portion 19 is provided so as to protrude from the inner wall of the cabinet 11. The protruding portion 19 is provided at a position adjacent to the detection position 92. When the collection substrate 71 is moved to the detection position 92, the rotation base 64 is brought into contact with the protruding portion 19, whereby further movement of the rotation base 64 is restricted.
 なお、本実施の形態における粒子検出装置10は、生物由来の粒子を検出するための装置単体として用いられてもよいし、空気清浄機やエアーコンディショナ、加湿器、除湿機、掃除機、冷蔵庫、テレビなどの家電製品に組み込まれてもよい。 In addition, the particle | grain detection apparatus 10 in this Embodiment may be used as an apparatus single unit for detecting the particle | grains derived from a living body, or an air cleaner, an air conditioner, a humidifier, a dehumidifier, a vacuum cleaner, a refrigerator It may also be incorporated into household appliances such as televisions.
 (実施の形態2)
 図24は、この発明の実施の形態2における粒子検出装置を示す平面図である。図25は、図24中の粒子検出装置を示す側面図である。本実施の形態における粒子検出装置は、実施の形態1における粒子検出装置10と比較して、基本的には同様の構造を備える。以下、重複する構造についてはその説明を繰り返さない。
(Embodiment 2)
FIG. 24 is a plan view showing a particle detection apparatus according to Embodiment 2 of the present invention. FIG. 25 is a side view showing the particle detection apparatus in FIG. Compared with the particle detection device 10 in the first embodiment, the particle detection device in the present embodiment basically has the same structure. Hereinafter, the description of overlapping structures will not be repeated.
 図24および図25を参照して、本実施の形態における粒子検出装置では、捕集・加熱位置91と、検出位置92と、リフレッシュ位置93とが、直線上に並んで配置されている。図示しない移動機構部に搭載された捕集基板71は、矢印131に示す方向に沿って往復運動しつつ、捕集・加熱位置91、検出位置92およびリフレッシュ位置93の間を移動する。捕集基板71は、リフレッシュ位置93において矢印132に示す方向に往復運動することによって、捕集基板71に捕集された粒子が除去される。 Referring to FIGS. 24 and 25, in the particle detection apparatus according to the present embodiment, collection / heating position 91, detection position 92, and refresh position 93 are arranged side by side on a straight line. The collection substrate 71 mounted on a moving mechanism unit (not shown) moves between the collection / heating position 91, the detection position 92, and the refresh position 93 while reciprocating along the direction indicated by the arrow 131. The collection substrate 71 reciprocates in the direction indicated by the arrow 132 at the refresh position 93, whereby the particles collected on the collection substrate 71 are removed.
 捕集基板71の移動方向において、捕集・加熱位置91は、検出位置92とリフレッシュ位置93との間に配置されている。言い換えれば、捕集基板71の移動方向において、リフレッシュ位置93は、捕集・加熱位置91から見て検出位置92の反対側に配置されている。捕集基板71の移動方向において、検出位置92、捕集・加熱位置91およびリフレッシュ位置93が挙げた順に並んで配置されている。 In the moving direction of the collection substrate 71, the collection / heating position 91 is disposed between the detection position 92 and the refresh position 93. In other words, the refresh position 93 is arranged on the opposite side of the detection position 92 when viewed from the collection / heating position 91 in the moving direction of the collection substrate 71. In the moving direction of the collection substrate 71, the detection position 92, the collection / heating position 91, and the refresh position 93 are arranged in the order mentioned.
 本実施の形態では、捕集・加熱位置91と検出位置92とリフレッシュ位置93とが、直線上に並ぶため、これらが円周上に並ぶ実施の形態1と比較して、検出位置92とリフレッシュ位置93とをより大きく離すことができる。これにより、リフレッシュ位置93において捕集基板71から除去された粒子が検出位置92に侵入することを効果的に防ぐことができる。 In the present embodiment, since the collection / heating position 91, the detection position 92, and the refresh position 93 are arranged in a straight line, the detection position 92 and the refresh position are compared with those in the first embodiment in which they are arranged on the circumference. The position 93 can be further separated. Thereby, it is possible to effectively prevent the particles removed from the collection substrate 71 at the refresh position 93 from entering the detection position 92.
 なお、捕集基板71の移動方向において、検出位置92が捕集・加熱位置91とリフレッシュ位置93との間に配置されるように、捕集部20、蛍光検出部30および清掃部50を構成してもよい。 The collection unit 20, the fluorescence detection unit 30 and the cleaning unit 50 are configured so that the detection position 92 is disposed between the collection / heating position 91 and the refresh position 93 in the moving direction of the collection substrate 71. May be.
 (実施の形態3)
 図26は、粒子検出装置に含まれる制御装置の構成を示すブロック図である。図26を参照して、本実施の形態における粒子検出装置は、制御装置200を有する。
(Embodiment 3)
FIG. 26 is a block diagram illustrating a configuration of a control device included in the particle detection device. Referring to FIG. 26, the particle detection device in the present embodiment has a control device 200.
 制御装置200は、受光部41の受光素子44からの電流信号を処理するための信号処理部230と、各電流信号に基づいて粒子検出装置の動作の制御やその検出結果の処理などを行なうための測定部220とを含む。 The control device 200 performs a signal processing unit 230 for processing a current signal from the light receiving element 44 of the light receiving unit 41, and controls the operation of the particle detection device and processes the detection result based on each current signal. Measurement unit 220.
 図26では、信号処理部230の機能が主に電気回路であるハードウェア構成で実現される例が示されている。しかしながら、これら機能のうちの少なくとも一部は、図示しないCPU(Central Processing Unit)を備え、該CPUが所定のプログラムを実行することによって実現される、ソフトウェア構成であってもよい。また、図26では、測定部220の構成がソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部が、電気回路などのハードウェア構成で実現されてもよい。 FIG. 26 shows an example in which the function of the signal processing unit 230 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may include a software configuration that includes a CPU (Central Processing Unit) (not shown) and that is realized by the CPU executing a predetermined program. FIG. 26 illustrates an example in which the configuration of the measurement unit 220 is a software configuration. However, at least a part of these functions may be realized by a hardware configuration such as an electric circuit.
 信号処理部230は、蛍光検出部30の受光素子44に接続される電流-電圧変換回路231と、電流-電圧変換回路231に接続される増幅回路232とを含む。 The signal processing unit 230 includes a current-voltage conversion circuit 231 connected to the light receiving element 44 of the fluorescence detection unit 30, and an amplification circuit 232 connected to the current-voltage conversion circuit 231.
 測定部220は、制御部221と、制御部221からの指令に基づいて、ヒータ76、ファン16および回転モータ62を駆動させるための駆動部223とを含む。 The measurement unit 220 includes a control unit 221 and a drive unit 223 for driving the heater 76, the fan 16, and the rotary motor 62 based on a command from the control unit 221.
 捕集基板71に捕集された粒子に対して発光素子32から光が照射されることにより、照射領域にある粒子からの蛍光が受光素子44で受光される。受光素子44からの受光量に応じた電流信号が、電流-電圧変換回路231に入力される。 By irradiating light from the light emitting element 32 to the particles collected on the collection substrate 71, fluorescence from the particles in the irradiation region is received by the light receiving element 44. A current signal corresponding to the amount of light received from the light receiving element 44 is input to the current-voltage conversion circuit 231.
 電流-電圧変換回路231は、受光素子44から入力された電流信号より蛍光強度を表わすピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは、増幅回路232で予め設定した増幅率に増幅され、測定部220に対して出力される。 The current-voltage conversion circuit 231 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving element 44 and converts it to the voltage value Eh. The voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 232 and output to the measurement unit 220.
 制御部221は、蛍光検出部30の発光素子32および受光素子44と電気的に接続され、それらのON/OFFを制御する。 The control unit 221 is electrically connected to the light emitting element 32 and the light receiving element 44 of the fluorescence detection unit 30, and controls ON / OFF thereof.
 制御部221は、駆動部223に対して、粒子検出のための各種動作の開始/停止を指示する制御信号を出力する。駆動部223は、ヒータ76、ファン16および回転モータ62を駆動させるための機構と電気的に接続されて、この制御信号に従ってヒータ76、ファン16および回転モータ62を駆動させたり、駆動を停止させたりする。これにより、粒子検出装置において、必要な粒子検出のための動作が行なわれる。 The control unit 221 outputs a control signal that instructs the drive unit 223 to start / stop various operations for particle detection. The drive unit 223 is electrically connected to a mechanism for driving the heater 76, the fan 16 and the rotary motor 62, and drives the heater 76, the fan 16 and the rotary motor 62 according to this control signal, or stops driving. Or Thereby, the operation | movement for required particle | grain detection is performed in a particle | grain detection apparatus.
 制御部221は、粒子の検出結果を出力する制御を行なうための検出制御部211と、粒子検出のための各種動作を制御するための駆動制御部212とを含む。以下、駆動制御部212による回転モータ62の制御を通じて、粒子検出装置がどのように動作するかについて説明する。 The control unit 221 includes a detection control unit 211 for performing control to output a particle detection result, and a drive control unit 212 for controlling various operations for particle detection. Hereinafter, how the particle detection device operates through the control of the rotation motor 62 by the drive control unit 212 will be described.
 図27は、この発明の実施の形態3における粒子検出装置の動作の流れを示すフローチャートである。なお、図27中に示される各ステップは、図18中に示される同一名称のステップに対応する。後述する図28、図31および図32中に示されるステップについても同様である。 FIG. 27 is a flowchart showing an operation flow of the particle detection apparatus according to Embodiment 3 of the present invention. Each step shown in FIG. 27 corresponds to a step having the same name shown in FIG. The same applies to the steps shown in FIGS. 28, 31 and 32 described later.
 図26および図27を参照して、捕集基板71に捕集された粒子の加熱後の蛍光強度を測定するS108のステップの後、駆動制御部212は、信号処理部230から測定部220に出力された測定結果に基づき、蛍光検出部30で検出された蛍光量が予め定められた閾値よりも大きいか否かを判断する(S120)。 Referring to FIGS. 26 and 27, after step S108 of measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71, the drive control unit 212 changes the signal processing unit 230 to the measurement unit 220. Based on the output measurement result, it is determined whether or not the fluorescence amount detected by the fluorescence detection unit 30 is larger than a predetermined threshold (S120).
 受光素子44は、受光量に応じた電流信号を発生してこれを電流-電圧変換回路231に入力するが、受光量が上限値を超えた場合に発生する電流信号が飽和する特性を有する。本実施の形態では、S120において定められる閾値が、この受光量上限値以下の値に設定されている。 The light receiving element 44 generates a current signal corresponding to the amount of received light and inputs the current signal to the current-voltage conversion circuit 231, and has a characteristic that the current signal generated when the amount of received light exceeds the upper limit is saturated. In the present embodiment, the threshold value determined in S120 is set to a value equal to or smaller than the received light amount upper limit value.
 S120において蛍光量が予め定められた設定値よりも大きい場合、駆動制御部212は、捕集基板71を検出位置92からリフレッシュ位置93に向けて移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S109)。これにより、リフレッシュ位置93において、清掃部50のブラシ51により捕集基板71から粒子を除去する。リフレッシュ工程の後、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、捕集工程を実施するための捕集・加熱位置91に移動される。 When the amount of fluorescence is larger than the preset value in S120, the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 toward the refresh position 93. A command is issued to the drive unit 223 (S109). Thereby, the particles are removed from the collection substrate 71 by the brush 51 of the cleaning unit 50 at the refresh position 93. After the refresh step, the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91 (S110). . Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
 一方、S120において蛍光量が予め定められた設定値以下である場合、駆動制御部212は、捕集基板71を検出位置92から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、リフレッシュ工程を経ることなく、捕集工程を実施するための捕集・加熱位置91に移動される。 On the other hand, when the fluorescence amount is equal to or smaller than the predetermined set value in S120, the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 to the collection / heating position 91. A command is issued to the drive unit 223 for causing it (S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through a refresh process.
 本実施の形態では、S108のステップにおいて蛍光検出部30で検出された受光量を目安にして捕集基板71の汚染度を把握し、捕集基板71から粒子を除去する必要があるか否かを判断する。これにより、捕集基板71から粒子を除去する頻度を抑えて、清掃部50のブラシ51が消耗することを抑制できる。また、本実施の形態では、S120のステップにおける閾値が受光素子44の受光量上限値に設定されているため、受光素子44で発生する電流信号が飽和する前のタイミングで、捕集基板71をクリーニングすることができる。 In the present embodiment, whether or not it is necessary to grasp the degree of contamination of the collection substrate 71 with reference to the amount of received light detected by the fluorescence detection unit 30 in step S108 and to remove particles from the collection substrate 71. Judging. Thereby, the frequency which removes particle | grains from the collection board | substrate 71 can be suppressed, and it can suppress that the brush 51 of the cleaning part 50 is consumed. In the present embodiment, since the threshold value in the step of S120 is set to the upper limit value of the light receiving amount of the light receiving element 44, the collection substrate 71 is moved at a timing before the current signal generated in the light receiving element 44 is saturated. Can be cleaned.
 (実施の形態4)
 図28は、この発明の実施の形態4における粒子検出装置の動作の流れを示すフローチャートである。なお、本実施の形態においても、実施の形態3で説明した粒子検出装置に含まれる制御装置の構成は同様である。
(Embodiment 4)
FIG. 28 is a flowchart showing an operation flow of the particle detection apparatus according to the fourth embodiment of the present invention. In the present embodiment also, the configuration of the control device included in the particle detection device described in the third embodiment is the same.
 図26および図28を参照して、捕集基板71に捕集された粒子の加熱後の蛍光強度を測定するS108のステップと、捕集基板71から粒子を除去するS109のステップとを順に実行する。その後、駆動制御部212は、捕集基板71をリフレッシュ位置93から検出位置92に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S130)。 26 and 28, the step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. To do. Thereafter, the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 so as to move the collection substrate 71 from the refresh position 93 to the detection position 92 (S130).
 次に、励起光源部31によって、捕集基板71に向けて励起光を照射するとともに、受光部41によって、励起光の照射に伴って粒子から発せられる蛍光を受光する。これにより、リフレッシュ工程を終えた後の捕集基板71に残る粒子の蛍光強度を測定する(S131)。 Next, the excitation light source unit 31 irradiates the collection substrate 71 with excitation light, and the light receiving unit 41 receives fluorescence emitted from the particles along with the excitation light irradiation. Thereby, the fluorescence intensity of the particles remaining on the collection substrate 71 after the refresh process is finished is measured (S131).
 次に、駆動制御部212は、信号処理部230から測定部220に出力された測定結果に基づき、蛍光検出部30で検出された蛍光量が予め定められた閾値よりも大きいか否かを判断する(S132)。本実施の形態においても、閾値が、受光素子44の受光量上限値以下の値に設定されている。 Next, the drive control unit 212 determines whether or not the fluorescence amount detected by the fluorescence detection unit 30 is greater than a predetermined threshold based on the measurement result output from the signal processing unit 230 to the measurement unit 220. (S132). Also in the present embodiment, the threshold value is set to a value equal to or less than the upper limit value of the light receiving amount of the light receiving element 44.
 S132において蛍光量が予め定められた設定値よりも大きい場合、駆動制御部212は、捕集基板71を検出位置92からリフレッシュ位置93に向けて移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S133)。これにより、リフレッシュ位置93において、清掃部50のブラシ51により捕集基板71から粒子を除去する。リフレッシュ工程の後、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、捕集工程を実施するための捕集・加熱位置91に移動される。 When the amount of fluorescence is larger than the preset value in S132, the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 toward the refresh position 93. A command is issued to the drive unit 223 (S133). Thereby, the particles are removed from the collection substrate 71 by the brush 51 of the cleaning unit 50 at the refresh position 93. After the refresh step, the drive control unit 212 issues a command to the drive unit 223 for driving the rotary motor 62 to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91 (S110). . Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
 一方、S132において蛍光量が予め定められた設定値以下である場合、駆動制御部212は、捕集基板71を検出位置92から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、捕集工程を実施するための捕集・加熱位置91に移動される。 On the other hand, when the fluorescence amount is equal to or smaller than the predetermined set value in S132, the drive control unit 212 drives the rotary motor 62 so as to move the collection substrate 71 from the detection position 92 to the collection / heating position 91. A command is issued to the drive unit 223 for causing it (S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
 本実施の形態では、S131のステップにおいて蛍光検出部30で検出された受光量を目安にして捕集基板71の汚染度を把握し、これによって、前のリフレッシュ工程で捕集基板71から粒子が十分に除去されたか否かを判断する。これにより、清掃部50による粒子の除去が不十分なまま、捕集基板71が次の捕集工程を実施するための捕集・加熱位置91に移動されることを防止できる。 In the present embodiment, the contamination level of the collection substrate 71 is ascertained based on the amount of received light detected by the fluorescence detection unit 30 in step S131, whereby particles are collected from the collection substrate 71 in the previous refresh process. Determine whether it has been sufficiently removed. Thereby, it can prevent that the collection board | substrate 71 is moved to the collection and heating position 91 for implementing the next collection process, with the removal of the particle | grains by the cleaning part 50 being inadequate.
 (実施の形態5)
 図29および図30は、この発明の実施の形態5における粒子検出装置を示す断面図である。図中には、キャビネット11の側面11n側からみた粒子検出装置の断面が示されている。図29は、リフレッシュ工程時の捕集基板71の移動端が示され、図30中には、ブラシのクリーニング工程時の捕集基板71の移動端が示されている。
(Embodiment 5)
29 and 30 are sectional views showing a particle detection apparatus according to Embodiment 5 of the present invention. In the figure, a cross section of the particle detection device viewed from the side surface 11n side of the cabinet 11 is shown. FIG. 29 shows the moving end of the collection substrate 71 during the refresh process, and FIG. 30 shows the movement end of the collection substrate 71 during the brush cleaning process.
 図29および図30を参照して、本実施の形態における粒子検出装置では、実施の形態1における粒子検出装置10と比較して、ブラシ51に付着した粒子を除去するためのブラシ清掃アーム81が設けられる位置が異なる。図29中に示すように、捕集基板71がリフレッシュ工程時の移動端に移動された時に、ブラシ清掃アーム81は、ブラシ51(リフレッシュ位置93)と捕集筒15(捕集・加熱位置91)との間に配置される。このような構成を備える粒子検出装置においては、ブラシ清掃アーム81によりブラシのクリーニング工程を実施するには、捕集基板71を、リフレッシュ工程時の移動端を超えて、ブラシ清掃アーム81がブラシ51を通過する位置(図30中に示すクリーニング位置94)まで移動させる必要がある。 29 and 30, in the particle detection device in the present embodiment, compared to particle detection device 10 in the first embodiment, brush cleaning arm 81 for removing particles adhering to brush 51 is provided. The position provided is different. As shown in FIG. 29, when the collection substrate 71 is moved to the moving end during the refreshing process, the brush cleaning arm 81 has the brush 51 (refresh position 93) and the collection cylinder 15 (collection / heating position 91). ). In the particle detection apparatus having such a configuration, in order to perform the brush cleaning process by the brush cleaning arm 81, the brush cleaning arm 81 moves beyond the moving end during the refresh process, and the brush cleaning arm 81 moves the brush 51. It is necessary to move to a position that passes through (cleaning position 94 shown in FIG. 30).
 図31は、この発明の実施の形態5における粒子検出装置の動作の流れを示すフローチャートである。なお、本実施の形態においても、実施の形態3で説明した粒子検出装置に含まれる制御装置の構成は同様である。 FIG. 31 is a flowchart showing a flow of operations of the particle detection apparatus according to Embodiment 5 of the present invention. In the present embodiment also, the configuration of the control device included in the particle detection device described in the third embodiment is the same.
 図26および図31を参照して、本実施の形態では、制御部221が、捕集基板71から粒子を除去するリフレッシュ工程の累積回数をカウントし、これを記憶する。この際、リフレッシュ工程の累積回数は、ブラシ清掃アーム81によるブラシのクリーニング工程が実施された時点でゼロに戻される。 Referring to FIGS. 26 and 31, in the present embodiment, control unit 221 counts the cumulative number of refresh steps for removing particles from collection substrate 71 and stores this. At this time, the cumulative number of refresh steps is reset to zero when the brush cleaning step by the brush cleaning arm 81 is performed.
 捕集基板71に捕集された粒子の加熱後の蛍光強度を測定するS108のステップと、捕集基板71から粒子を除去するS109のステップとを順に実行する。その後、駆動制御部212は、前回のブラシのクリーニング工程が実施されてからのリフレッシュ工程の累積回数が設定回数よりも大きいか否かを判断する(S140)。 The step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. Thereafter, the drive control unit 212 determines whether or not the cumulative number of refresh processes since the previous brush cleaning process is performed is greater than the set number (S140).
 S140においてリフレッシュ工程の累積回数が予め定められた設定回数よりも大きい場合、駆動制御部212は、捕集基板71をリフレッシュ位置93からさらにブラシのクリーニング位置94に向けて移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S141)。これにより、捕集基板71がクリーニング位置94に移動するのに伴って、ブラシ清掃アーム81がブラシ51と接触することによって、ブラシ51に付着した粒子が除去される。ブラシのクリーニング工程の後、駆動制御部212は、捕集基板71をクリーニング位置94から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、捕集工程を実施するための捕集・加熱位置91に移動される。 In S140, when the cumulative number of refresh steps is larger than a predetermined number of times, the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 further from the refresh position 93 toward the brush cleaning position 94. A command is issued to the drive unit 223 for driving 62 (S141). Thereby, as the collection substrate 71 moves to the cleaning position 94, the brush cleaning arm 81 comes into contact with the brush 51, whereby the particles attached to the brush 51 are removed. After the brush cleaning process, the drive control unit 212 issues a command to the drive unit 223 for driving the rotation motor 62 to move the collection substrate 71 from the cleaning position 94 to the collection / heating position 91 ( S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
 一方、S140においてリフレッシュ工程の累積回数が予め定められた設定回数以下である場合、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、ブラシのクリーニング工程を経ることなく、捕集工程を実施するための捕集・加熱位置91に移動される。 On the other hand, in S140, when the cumulative number of refresh steps is equal to or less than a predetermined number of times, the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91. A command is issued to the drive unit 223 for driving 62 (S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through the cleaning process of a brush.
 本実施の形態では、リフレッシュ工程の累積回数を目安にしてブラシ51の汚染度を把握し、ブラシ51に付着した粒子を除去する必要があるかを判断する。これにより、ブラシ51から粒子を除去する頻度を抑えて、捕集基板71の移動時間を短くすることができる。 In the present embodiment, the degree of contamination of the brush 51 is ascertained based on the cumulative number of refresh steps, and it is determined whether it is necessary to remove particles attached to the brush 51. Thereby, the frequency which removes particle | grains from the brush 51 can be suppressed, and the movement time of the collection board | substrate 71 can be shortened.
 図32は、この発明の実施の形態5における粒子検出装置の動作の流れの変形例を示すフローチャートである。 FIG. 32 is a flowchart showing a modification of the operation flow of the particle detection apparatus according to the fifth embodiment of the present invention.
 図26および図32を参照して、本変形例では、制御部221が、S103のステップにおいて蛍光検出部30で検出された蛍光量の累計を算出し、これを記憶する。この際、蛍光量の累計は、ブラシ清掃アーム81によるブラシのクリーニング工程が実施された時点でゼロに戻される。 Referring to FIG. 26 and FIG. 32, in this modification, the control unit 221 calculates the total amount of fluorescence detected by the fluorescence detection unit 30 in step S103, and stores this. At this time, the total amount of fluorescence is returned to zero when the brush cleaning process by the brush cleaning arm 81 is performed.
 捕集基板71に捕集された粒子の加熱後の蛍光強度を測定するS108のステップと、捕集基板71から粒子を除去するS109のステップとを順に実行する。その後、駆動制御部212は、前回のブラシのクリーニング工程が実施されてからのS103のステップにおける蛍光量の累計が設定量よりも大きいか否かを判断する(S146)。 The step of S108 for measuring the fluorescence intensity after heating of the particles collected on the collection substrate 71 and the step of S109 for removing particles from the collection substrate 71 are executed in order. Thereafter, the drive control unit 212 determines whether or not the total amount of fluorescence in step S103 after the previous brush cleaning process is performed is larger than the set amount (S146).
 S146において蛍光量の累計が予め定められた設定量よりも大きい場合、駆動制御部212は、捕集基板71をリフレッシュ位置93からさらにブラシのクリーニング位置94に向けて移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S141)。これにより、捕集基板71がクリーニング位置94に移動するのに伴って、ブラシ清掃アーム81がブラシ51と接触することによって、ブラシ51に付着した粒子が除去される。ブラシのクリーニング工程の後、駆動制御部212は、捕集基板71をクリーニング位置94から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、捕集工程を実施するための捕集・加熱位置91に移動される。 When the cumulative amount of fluorescence in S146 is larger than the predetermined set amount, the drive control unit 212 moves the collection substrate 71 further from the refresh position 93 toward the brush cleaning position 94, so that the rotary motor 62 is moved. A command is issued to the drive unit 223 for driving (S141). Thereby, as the collection substrate 71 moves to the cleaning position 94, the brush cleaning arm 81 comes into contact with the brush 51, whereby the particles attached to the brush 51 are removed. After the brush cleaning process, the drive control unit 212 issues a command to the drive unit 223 for driving the rotation motor 62 to move the collection substrate 71 from the cleaning position 94 to the collection / heating position 91 ( S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process.
 一方、S146において蛍光量の累計が予め定められた設定量以下である場合、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す(S110)。これにより、捕集基板71は、ブラシのクリーニング工程を経ることなく、捕集工程を実施するための捕集・加熱位置91に移動される。 On the other hand, in S146, when the total amount of fluorescence is equal to or less than a predetermined set amount, the drive control unit 212 moves the collection substrate 71 from the refresh position 93 to the collection / heating position 91 so as to move the collection motor 71. A command is issued to the drive unit 223 for driving (S110). Thereby, the collection board | substrate 71 is moved to the collection and heating position 91 for implementing a collection process, without passing through the cleaning process of a brush.
 本変形例では、S103のステップにおける蛍光量の累計を目安にしてブラシ51の汚染度を把握し、ブラシ51に付着した粒子を除去する必要があるかを判断する。これにより、ブラシ51から粒子を除去する頻度を抑えて、捕集基板71の移動時間を短くすることができる。 In this modification, the contamination level of the brush 51 is grasped by using the total amount of fluorescence in step S103 as a guideline, and it is determined whether it is necessary to remove particles attached to the brush 51. Thereby, the frequency which removes particle | grains from the brush 51 can be suppressed, and the movement time of the collection board | substrate 71 can be shortened.
 (実施の形態6)
 本実施の形態における粒子検出装置では、実施の形態1における粒子検出装置10と比較して、図20中に示すブラシのクリーニング工程時におけるブラシ清掃アーム81の動きが異なる。本実施の形態では、ブラシ清掃アーム81とブラシ51の自由端51pとが接触する範囲で、回転ベース64が正転方向および反転方向に繰り返し回動することによって、ブラシ51に付着した粒子を除去する。
(Embodiment 6)
In the particle detection device according to the present embodiment, the movement of the brush cleaning arm 81 during the brush cleaning process shown in FIG. 20 is different from that of the particle detection device 10 according to the first embodiment. In the present embodiment, the particles adhering to the brush 51 are removed by the rotation base 64 repeatedly rotating in the normal direction and the reverse direction within a range where the brush cleaning arm 81 and the free end 51p of the brush 51 are in contact with each other. To do.
 このような構成を備える粒子検出装置において、図31中のS140のステップにてリフレッシュ工程の累積回数が予め定められた設定回数よりも大きい場合、駆動制御部212は、ブラシ清掃アーム81とブラシ51の自由端51pとが接触する範囲で、回転ベース64が正転方向および反転方向に繰り返し回動するように、回転モータ62を駆動させるための駆動部223に指令を出す。一方、S140にてリフレッシュ工程の累積回数が予め定められた設定回数以下である場合、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す。 In the particle detection apparatus having such a configuration, when the cumulative number of refresh processes is larger than the predetermined number of times set in step S140 in FIG. 31, the drive control unit 212 sets the brush cleaning arm 81 and the brush 51. A command is issued to the drive unit 223 for driving the rotation motor 62 so that the rotation base 64 repeatedly rotates in the normal rotation direction and the reverse rotation direction within a range in contact with the free end 51p. On the other hand, when the cumulative number of the refresh process is equal to or smaller than the predetermined number of times in S140, the drive control unit 212 rotates so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91. A command is issued to the drive unit 223 for driving the motor 62.
 また、その変形例として、図32中のS146のステップにて蛍光量の累計が予め定められた設定量よりも大きい場合、駆動制御部212は、ブラシ清掃アーム81とブラシ51の自由端51pとが接触する範囲で、回転ベース64が正転方向および反転方向に繰り返し回動するように、回転モータ62を駆動させるための駆動部223に指令を出す。一方、S146にて蛍光量の累計が予め定められた設定量以下である場合、駆動制御部212は、捕集基板71をリフレッシュ位置93から捕集・加熱位置91に移動させるように、回転モータ62を駆動させるための駆動部223に指令を出す。 As a modification thereof, when the cumulative amount of fluorescence is larger than the predetermined set amount in step S146 in FIG. 32, the drive control unit 212 includes the brush cleaning arm 81 and the free end 51p of the brush 51. A command is issued to the drive unit 223 for driving the rotary motor 62 so that the rotation base 64 repeatedly rotates in the forward rotation direction and the reverse rotation direction in the range where the two come into contact with each other. On the other hand, when the cumulative amount of fluorescence is equal to or less than a predetermined set amount in S146, the drive control unit 212 rotates the rotary motor so as to move the collection substrate 71 from the refresh position 93 to the collection / heating position 91. A command is issued to the drive unit 223 for driving 62.
 このように構成された、この発明の実施の形態6における粒子検出装置によれば、実施の形態5に記載の効果と同様の効果を得ることができる。 According to the thus configured particle detection apparatus in the sixth embodiment of the present invention, the same effects as those described in the fifth embodiment can be obtained.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、主に、花粉や微生物、カビといった生物由来の粒子を検出する装置として利用される。 This invention is mainly used as an apparatus for detecting particles derived from organisms such as pollen, microorganisms, and mold.
 10 粒子検出装置、11 キャビネット、11m,11n 側面、12 上キャビネット、14 下キャビネット、15 捕集筒、16 ファン、19 突出部、20 捕集部、21 高圧電源、22 静電針、30 蛍光検出部、31 励起光源部、32 発光素子、33 励起部フレーム、34 集光レンズ、41 受光部、42 ノイズシールド、43 増幅回路、44 受光素子、45 受光部フレーム、46 フレネルレンズ、50 清掃部、51 ブラシ、51p 自由端、51q 支持端、52 ブラシ固定部、53 ブラシ押さえ、60 移動機構部、61 モータホルダ、62 回転モータ、64 回転ベース、66 回転中心軸、67 中心部、68 基板支持部、71 捕集基板、71a,81a 頂面、76 ヒータ、77,78 位置センサ、81 ブラシ清掃アーム、82 センシング対象部、91 捕集・加熱位置、92 検出位置、93 リフレッシュ位置、94 クリーニング位置、96 フレキシブル基板、111,112,113 配線、120 開口部、200 制御装置、211 検出制御部、212 駆動制御部、220 測定部、221 制御部、223 駆動部、230 信号処理部、231 電流-電圧変換回路。 10 particle detector, 11 cabinet, 11m, 11n side, 12 upper cabinet, 14 lower cabinet, 15 collecting cylinder, 16 fan, 19 protruding part, 20 collecting part, 21 high voltage power supply, 22 electrostatic needle, 30 fluorescence detection Part, 31 excitation light source part, 32 light emitting element, 33 excitation part frame, 34 condensing lens, 41 light receiving part, 42 noise shield, 43 amplification circuit, 44 light receiving element, 45 light receiving part frame, 46 Fresnel lens, 50 cleaning part, 51 brush, 51p free end, 51q support end, 52 brush fixing part, 53 brush presser, 60 moving mechanism part, 61 motor holder, 62 rotation motor, 64 rotation base, 66 rotation center axis, 67 center part, 68 substrate support part 71, collection substrate, 71a, 81a top surface, 76 77, 78 position sensor, 81 brush cleaning arm, 82 sensing target, 91 collection / heating position, 92 detection position, 93 refresh position, 94 cleaning position, 96 flexible substrate, 111, 112, 113 wiring, 120 Opening part, 200 control device, 211 detection control part, 212 drive control part, 220 measurement part, 221 control part, 223 drive part, 230 signal processing part, 231 current-voltage conversion circuit.

Claims (18)

  1.  生物由来の粒子を検出する粒子検出装置であって、
     粒子を捕集部材(71)に捕集する捕集部(20)と、
     捕集部材(71)に捕集された粒子に向けて励起光を照射するとともに、粒子から発せられる蛍光を受光する蛍光検出部(30)と、
     粒子を捕集部材(71)から除去する清掃部(50)と、
     捕集部材(71)を、前記捕集部(20)により捕集部材(71)に粒子を捕集する第1位置(91)と、前記蛍光検出部(30)により蛍光を受光する第2位置(92)と、前記清掃部(50)により捕集部材(71)から粒子を除去する第3位置(93)との間で移動させる移動機構部(60)とを備える、粒子検出装置。
    A particle detection device for detecting biological particles,
    A collection part (20) for collecting particles in the collection member (71);
    A fluorescence detection unit (30) for irradiating excitation light toward the particles collected by the collection member (71) and receiving fluorescence emitted from the particles;
    A cleaning section (50) for removing particles from the collection member (71);
    The collection member (71) has a first position (91) for collecting particles in the collection member (71) by the collection unit (20), and a second position for receiving fluorescence by the fluorescence detection unit (30). A particle detection apparatus comprising: a position (92); and a moving mechanism (60) that moves between a position (92) and a third position (93) for removing particles from the collection member (71) by the cleaning unit (50).
  2.  前記清掃部(50)は、前記第3位置(93)に固定支持された清掃具(51)を有し、
     前記移動機構部(60)によって捕集部材(71)が前記第3位置(93)を移動するのに伴って、前記清掃具(51)により捕集部材(71)から粒子が除去される、請求項1に記載の粒子検出装置。
    The cleaning part (50) has a cleaning tool (51) fixedly supported at the third position (93),
    Particles are removed from the collection member (71) by the cleaning tool (51) as the collection member (71) moves through the third position (93) by the moving mechanism (60). The particle | grain detection apparatus of Claim 1.
  3.  前記捕集部(20)、前記蛍光検出部(30)および前記清掃部(50)を収容する筐体(11)と、
     前記筐体(11)の内部から空気を排出するファン(16)とをさらに備える、請求項1に記載の粒子検出装置。
    A housing (11) that houses the collection unit (20), the fluorescence detection unit (30), and the cleaning unit (50);
    The particle detection device according to claim 1, further comprising a fan (16) for discharging air from the inside of the housing (11).
  4.  前記清掃部(50)による粒子の除去時、前記ファン(16)が駆動することによって、捕集部材(71)から除去された粒子が前記筐体(11)の内部から回収される、請求項3に記載の粒子検出装置。 The particles removed from the collecting member (71) are recovered from the inside of the casing (11) by driving the fan (16) when removing the particles by the cleaning unit (50). 4. The particle detector according to 3.
  5.  前記捕集部(20)による粒子の捕集時、前記ファン(16)が駆動することによって、捕集部材(71)に向けて空気が導入される、請求項3に記載の粒子検出装置。 The particle detection device according to claim 3, wherein air is introduced toward the collection member (71) by driving the fan (16) when collecting the particles by the collection unit (20).
  6.  捕集部材(71)に捕集された粒子を加熱する加熱部(76)をさらに備え、
     前記ファン(16)が駆動することによって、前記加熱部(76)による加熱によって高温となった捕集部材(71)が冷却される、請求項3に記載の粒子検出装置。
    A heating unit (76) for heating the particles collected by the collection member (71);
    The particle detection device according to claim 3, wherein the fan (16) is driven to cool the collection member (71) that has been heated to a high temperature by the heating unit (76).
  7.  前記清掃部(50)は、捕集部材(71)から粒子を除去する清掃具(51)を有し、さらに、
     前記清掃部(50)による粒子の除去に伴って前記清掃具(51)に付着した粒子を除去する清掃具初期化部材(81)を備える、請求項1に記載の粒子検出装置。
    The cleaning section (50) has a cleaning tool (51) for removing particles from the collecting member (71), and
    The particle detector according to claim 1, further comprising a cleaning tool initialization member (81) for removing particles attached to the cleaning tool (51) as the particles are removed by the cleaning unit (50).
  8.  前記清掃具(51)は、前記第3位置(93)に固定支持され、
     前記清掃具初期化部材(81)は、前記移動機構部(60)により、捕集部材(71)とともに移動される、請求項7に記載の粒子検出装置。
    The cleaning tool (51) is fixedly supported at the third position (93),
    The particle detection apparatus according to claim 7, wherein the cleaning tool initialization member (81) is moved together with the collection member (71) by the moving mechanism section (60).
  9.  捕集部材(71)が前記第2位置(92)に位置決めされた時に、前記清掃具初期化部材(81)は、捕集部材(71)と前記清掃具(51)との間に配置される、請求項8に記載の粒子検出装置。 When the collecting member (71) is positioned at the second position (92), the cleaning tool initialization member (81) is disposed between the collecting member (71) and the cleaning tool (51). The particle detector according to claim 8.
  10.  前記捕集部(20)、前記蛍光検出部(30)および前記清掃部(50)を収容する筐体(11)と、
     前記筐体(11)の内部から空気を排出するファン(16)とをさらに備え、
     前記清掃部(50)による粒子の除去時および前記清掃具初期化部材(81)による粒子の除去時、前記ファン(16)が駆動することによって、捕集部材(71)および前記清掃具(51)から除去された粒子が前記筐体(11)の内部から回収される、請求項7に記載の粒子検出装置。
    A housing (11) that houses the collection unit (20), the fluorescence detection unit (30), and the cleaning unit (50);
    A fan (16) for discharging air from the inside of the housing (11),
    When the particles are removed by the cleaning unit (50) and the particles are removed by the cleaning tool initialization member (81), the fan (16) is driven to drive the collecting member (71) and the cleaning tool (51). The particle detection device according to claim 7, wherein the particles removed from are recovered from the inside of the housing (11).
  11.  粘着性を有し、前記清掃部(50)による粒子の除去時に生じた浮遊粒子を捕獲する粒子捕獲部をさらに備える、請求項1に記載の粒子検出装置。 The particle detection device according to claim 1, further comprising a particle capturing unit that has adhesiveness and captures suspended particles generated when particles are removed by the cleaning unit (50).
  12.  前記移動機構部(60)の駆動を制御する駆動制御部(212)をさらに備え、
     前記駆動制御部(212)は、前記蛍光検出部(30)で検出された受光量が予め定められた閾値よりも大きい場合に、捕集部材(71)を前記第3位置(93)に移動させる、請求項1に記載の粒子検出装置。
    A drive control unit (212) for controlling the drive of the moving mechanism unit (60);
    The drive control unit (212) moves the collection member (71) to the third position (93) when the amount of received light detected by the fluorescence detection unit (30) is larger than a predetermined threshold value. The particle | grain detection apparatus of Claim 1 made to make.
  13.  前記移動機構部(60)の駆動を制御する駆動制御部(212)をさらに備え、
     前記駆動制御部(212)は、前記第3位置(93)で前記清掃部(50)により粒子が除去された捕集部材(71)を前記第2位置(92)に移動させ、前記蛍光検出部(30)で検出された受光量が予め定められた閾値よりも大きい場合に、捕集部材(71)を再び前記第3位置(93)に移動させる、請求項1に記載の粒子検出装置。
    A drive control unit (212) for controlling the drive of the moving mechanism unit (60);
    The drive control unit (212) moves the collection member (71) from which particles have been removed by the cleaning unit (50) at the third position (93) to the second position (92) to detect the fluorescence. The particle detection device according to claim 1, wherein when the amount of received light detected by the section (30) is larger than a predetermined threshold value, the collection member (71) is moved again to the third position (93). .
  14.  前記蛍光検出部(30)は、粒子から発せられる蛍光を受光し、その受光量に応じた電流信号を発生する受光素子(44)を有し、
     前記閾値は、受光時に発生する電流信号が飽和する前記受光素子(44)の受光量上限値以下の値に設定される、請求項12または13に記載の粒子検出装置。
    The fluorescence detection unit (30) has a light receiving element (44) that receives fluorescence emitted from particles and generates a current signal according to the amount of received light.
    The particle detection device according to claim 12 or 13, wherein the threshold value is set to a value equal to or less than an upper limit of received light amount of the light receiving element (44) at which a current signal generated at the time of light reception is saturated.
  15.  前記移動機構部(60)の駆動を制御する駆動制御部(212)をさらに備え、
     前記駆動制御部(212)は、前記清掃部(50)により粒子を捕集部材(71)から除去した回数が予め定められた閾回数を超えた場合に、前記清掃具初期化部材(81)によって前記清掃具(51)に付着した粒子を除去するように捕集部材(71)を移動させる、請求項7に記載の粒子検出装置。
    A drive control unit (212) for controlling the drive of the moving mechanism unit (60);
    The drive control unit (212), when the number of times particles are removed from the collection member (71) by the cleaning unit (50) exceeds a predetermined threshold number, the cleaning tool initialization member (81). The particle detector according to claim 7, wherein the collecting member (71) is moved so as to remove particles adhering to the cleaning tool (51).
  16.  前記移動機構部(60)は、捕集部材(71)を、前記第1位置(91)と、前記第2位置(92)と、前記第3位置(93)と、前記清掃具初期化部材(81)により前記清掃具(51)に付着した粒子を除去する第4位置(94)との間で移動させ、
     前記駆動制御部(212)は、前記清掃部(50)により粒子を捕集部材(71)から除去した回数が予め定められた閾回数を超えた場合に、捕集部材(71)を前記第4位置(94)に移動させる、請求項15に記載の粒子検出装置。
    The moving mechanism (60) includes a collecting member (71), the first position (91), the second position (92), the third position (93), and the cleaning tool initialization member. (81) is moved between the fourth position (94) to remove particles adhering to the cleaning tool (51),
    The drive control unit (212) moves the collection member (71) to the first when the number of times the particles are removed from the collection member (71) by the cleaning unit (50) exceeds a predetermined threshold number. 16. The particle detector according to claim 15, wherein the particle detector is moved to four positions (94).
  17.  前記移動機構部(60)の駆動を制御する駆動制御部(212)をさらに備え、
     前記駆動制御部(212)は、前記蛍光検出部(30)で検出された受光量の累計が予め定められた閾量を超えた場合に、前記清掃具初期化部材(81)によって前記清掃具(51)に付着した粒子を除去するように捕集部材(71)を移動させる、請求項7に記載の粒子検出装置。
    A drive control unit (212) for controlling the drive of the moving mechanism unit (60);
    The drive control unit (212) causes the cleaning tool initialization member (81) to perform the cleaning tool when the cumulative amount of received light detected by the fluorescence detection unit (30) exceeds a predetermined threshold amount. The particle detector according to claim 7, wherein the collecting member (71) is moved so as to remove particles adhering to (51).
  18.  前記移動機構部(60)は、捕集部材(71)を、前記第1位置(91)と、前記第2位置(92)と、前記第3位置(93)と、前記清掃具初期化部材(81)により前記清掃具(51)に付着した粒子を除去する第4位置(94)との間で移動させ、
     前記駆動制御部(212)は、前記蛍光検出部(30)で検出された受光量の累計が予め定められた閾量を超えた場合に、捕集部材(71)を前記第4位置(94)に移動させる、請求項17に記載の粒子検出装置。
    The moving mechanism (60) includes a collecting member (71), the first position (91), the second position (92), the third position (93), and the cleaning tool initialization member. (81) is moved between the fourth position (94) to remove particles adhering to the cleaning tool (51),
    The drive control unit (212) moves the collection member (71) to the fourth position (94) when the total amount of received light detected by the fluorescence detection unit (30) exceeds a predetermined threshold amount. The particle detection device according to claim 17, which is moved to ().
PCT/JP2012/065351 2011-09-09 2012-06-15 Particle detection device WO2013035407A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-197390 2011-09-09
JP2011197390 2011-09-09
JP2012037350A JP5134147B1 (en) 2011-09-09 2012-02-23 Particle detector
JP2012-037350 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013035407A1 true WO2013035407A1 (en) 2013-03-14

Family

ID=47693068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065351 WO2013035407A1 (en) 2011-09-09 2012-06-15 Particle detection device

Country Status (2)

Country Link
JP (1) JP5134147B1 (en)
WO (1) WO2013035407A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839586U (en) * 1981-09-09 1983-03-15 富士電機株式会社 Filter cartridge delivery mechanism
JPH0426387U (en) * 1990-06-28 1992-03-02
JP2002502027A (en) * 1998-01-30 2002-01-22 アプライド マテリアルズ インコーポレイテッド Increasing the sensitivity of in-situ particle monitors
JP2004347469A (en) * 2003-05-22 2004-12-09 Fuji Electric Systems Co Ltd Dust monitor
JP2006250048A (en) * 2005-03-11 2006-09-21 Ngk Insulators Ltd Regeneration control method of filter for exhaust emission control
JP2007528214A (en) * 2003-12-10 2007-10-11 スミスズ ディテクション インコーポレイティド Independent monitoring system
JP2008514911A (en) * 2004-09-24 2008-05-08 シティ テクノロジー リミテッド Sampling and analysis of environmental pollutants
JP2010054447A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Device for monitoring radioactive iodine
JP2011004704A (en) * 2009-06-29 2011-01-13 Olympus Corp Device for treating living body tissue
WO2011024672A1 (en) * 2009-08-27 2011-03-03 シャープ株式会社 Display control device
JP2011083214A (en) * 2009-10-14 2011-04-28 Sharp Corp Microorganism detection apparatus and detection method
JP2011097861A (en) * 2009-11-05 2011-05-19 Sharp Corp Apparatus and method for detecting microorganism
JP2011163722A (en) * 2010-02-15 2011-08-25 Fujitsu General Ltd Air conditioner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839586U (en) * 1981-09-09 1983-03-15 富士電機株式会社 Filter cartridge delivery mechanism
JPH0426387U (en) * 1990-06-28 1992-03-02
JP2002502027A (en) * 1998-01-30 2002-01-22 アプライド マテリアルズ インコーポレイテッド Increasing the sensitivity of in-situ particle monitors
JP2004347469A (en) * 2003-05-22 2004-12-09 Fuji Electric Systems Co Ltd Dust monitor
JP2007528214A (en) * 2003-12-10 2007-10-11 スミスズ ディテクション インコーポレイティド Independent monitoring system
JP2008514911A (en) * 2004-09-24 2008-05-08 シティ テクノロジー リミテッド Sampling and analysis of environmental pollutants
JP2006250048A (en) * 2005-03-11 2006-09-21 Ngk Insulators Ltd Regeneration control method of filter for exhaust emission control
JP2010054447A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Device for monitoring radioactive iodine
JP2011004704A (en) * 2009-06-29 2011-01-13 Olympus Corp Device for treating living body tissue
WO2011024672A1 (en) * 2009-08-27 2011-03-03 シャープ株式会社 Display control device
JP2011083214A (en) * 2009-10-14 2011-04-28 Sharp Corp Microorganism detection apparatus and detection method
JP2011097861A (en) * 2009-11-05 2011-05-19 Sharp Corp Apparatus and method for detecting microorganism
JP2011163722A (en) * 2010-02-15 2011-08-25 Fujitsu General Ltd Air conditioner

Also Published As

Publication number Publication date
JP2013068597A (en) 2013-04-18
JP5134147B1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5275522B2 (en) Detection apparatus and detection method for detecting biological particles in air
JP5112553B1 (en) Particle detector
WO2014034355A1 (en) Particle detection device
JP5748687B2 (en) Particle detector and air conditioner
JP5134130B1 (en) Particle detector
JP5925519B2 (en) Particle detector
WO2012165036A1 (en) Detection device and detection method
JP5134131B1 (en) Particle detector
JP2013130362A (en) Air cleaner
JP5134147B1 (en) Particle detector
JP2013200278A (en) Particle detector and particle detecting method
JP2016006391A (en) Particle detection device
JP5134146B1 (en) Particle detector
JP5053453B1 (en) Particle detector
JP2016057147A (en) Detection device
JP2013130435A (en) Particle detector
JP5997532B2 (en) Particle detector
JP2013195194A (en) Micro light amount detection device and microbial sensor
JP2016003884A (en) Particle detection device
JP2015129668A (en) Particle detection device
JP2016003883A (en) Particle detection device and particle detection method
JP2013130436A (en) Particle detector and particle detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830808

Country of ref document: EP

Kind code of ref document: A1