WO2015029662A1 - Defoaming device - Google Patents

Defoaming device Download PDF

Info

Publication number
WO2015029662A1
WO2015029662A1 PCT/JP2014/069714 JP2014069714W WO2015029662A1 WO 2015029662 A1 WO2015029662 A1 WO 2015029662A1 JP 2014069714 W JP2014069714 W JP 2014069714W WO 2015029662 A1 WO2015029662 A1 WO 2015029662A1
Authority
WO
WIPO (PCT)
Prior art keywords
defoaming
axial
shaft portion
shaft
blade
Prior art date
Application number
PCT/JP2014/069714
Other languages
French (fr)
Japanese (ja)
Inventor
博文 代田
誠人 尾田
寿生 萩本
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to KR1020167000288A priority Critical patent/KR101859853B1/en
Priority to CN201480041186.3A priority patent/CN105407996B/en
Publication of WO2015029662A1 publication Critical patent/WO2015029662A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention

Definitions

  • the present invention relates to an antifoaming device.
  • This application claims priority on Japanese Patent Application No. 2013-175045 filed on August 26, 2013, the contents of which are incorporated herein by reference.
  • the defoaming device includes an upper plate, a lower plate, a plurality of fins arranged radially from the rotation center between the upper plate and the lower plate, and a bubble suction port opened at the rotation center of the lower plate, A rotor (antifoaming blade) having Between the fins, a defoaming path is formed which communicates with the foam suction port and has a discharge port on the outer peripheral side of the rotor, and the foam collides with the upper plate, the lower plate and the fin and is destroyed.
  • the defoaming device is required to widen the range of the effect of the defoaming effect brought about by the defoaming device on the bubbles on the water to be treated.
  • the defoaming apparatus has a demand not only for defoaming but also for exerting a defoaming action on bubbles separated from the defoaming blade.
  • the range of the effect of the defoaming action cannot be widened.
  • An object of the present invention is to provide a defoaming device capable of widening the range of the effect of the defoaming effect brought about by the defoaming device.
  • the defoaming device includes a drive unit, a rotation shaft rotated by the drive unit, a hollow defoaming blade attached to the rotation shaft, and the defoaming device. And an axial guide device that is attached below the blade and creates an axial flow of the rotating shaft with respect to the defoaming blade.
  • the fluidity directed upward or the fluidity directed downward is given to the foam part by inserting the axial guide device into the foam part.
  • the defoaming effect brought about by the defoaming device can be changed.
  • the axial guide device protrudes from an outer peripheral surface of the shaft portion and a shaft portion provided concentrically with the rotation shaft, and is provided spirally on the outer peripheral surface of the shaft portion. It is good also as a structure which has a protruding item
  • the direction in which the fluidity is given can be controlled by reversing the rotation of the shaft portion of the axial guide device. That is, the defoaming effect can be promoted by rotating the axial guide device in one direction, and the foam portion can be settled by rotating in the other direction.
  • the axial guide device may include a shaft portion provided concentrically with the rotation shaft, and a plurality of recesses formed on an outer peripheral surface of the shaft portion.
  • the axial guide device may include a shaft portion provided concentrically with the rotating shaft, and a plurality of protrusions formed on an outer peripheral surface of the shaft portion.
  • the axial guide device includes a shaft portion concentrically provided with the rotation shaft, and a plurality of shaft portions protruding from an outer peripheral surface of the shaft portion and extending along a longitudinal direction of the shaft portion. It is good also as a structure which has a blade part.
  • the fluidity directed upward or the fluidity directed downward is imparted to the foam part by inserting the axial guide device into the foam part.
  • the defoaming effect brought about by the defoaming device can be changed.
  • FIG. 3 It is the side view which carried out partial cross section of the defoaming device of a first embodiment of the present invention. It is a perspective view of the defoaming body and axial direction guide apparatus of the defoaming apparatus of 1st embodiment of this invention. It is a top view of the defoaming body of the defoaming apparatus of 1st embodiment of this invention. It is A arrow directional view of FIG. 3, Comprising: It is a side view of the defoaming blade
  • FIG. 4 is a side view of the defoaming blade of the defoaming device according to the first embodiment of the present invention, as viewed from the direction indicated by the arrow B in FIG. 3. It is a side schematic diagram explaining the operation of the defoaming device of the first embodiment of the present invention. It is a side schematic diagram explaining the operation of the defoaming device of the first embodiment of the present invention. It is a side view of the modification of the defoaming apparatus of 1st embodiment of this invention. It is a side view of the modification of the defoaming apparatus of 1st embodiment of this invention. It is a perspective view of the defoaming body and axial direction guide apparatus of the defoaming apparatus of 2nd embodiment of this invention.
  • FIG. 1 is a front sectional view showing a state in which the defoaming apparatus 1 is installed in a cylindrical processing tank 50 in which the liquid W to be processed is stored.
  • the treatment tank 50 is provided in a part of equipment for concentrating the waste water to make it semi-solid and finally incinerating it.
  • the treatment tank 50 is supplied or discharged with waste water that becomes the liquid W to be treated through the water supply / drainage device 51.
  • the waste water used as the liquid W to be treated includes, for example, ethylene glycol, a surfactant, and adhesive components such as acrylamide and cyanoacrylate. Bubbles (indicated by symbol B) generated by transportation, stirring, centrifugation, etc. are floating on the surface of the waste water.
  • the processing tank 50 in which the defoaming apparatus 1 is provided has a side wall 52 that surrounds the periphery and a slab 53 that covers the upper part thereof.
  • a cylindrical support portion 55 is provided in the opening 54 formed in the center of the slab 53.
  • a mounting base 56 is provided on the upper portion of the support portion 55.
  • the mounting base 56 supports the defoaming device 1.
  • a drive motor 57 as a drive unit is provided at the center of the mounting base 56, and the defoaming body 3 and the axial guide device 16 according to the present invention are attached to the rotating shaft 2 of the drive motor 57.
  • the rotary shaft 2 of the drive motor 57 is arranged in the vertical direction at the upper center of the processing tank 50.
  • the defoamer 3 and the axial guide device 16 are attached to the lower end of the rotating shaft 2.
  • the rotating shaft 2 is provided on the mounting base 56 so as to be movable in the vertical direction along the axis 2 ⁇ / b> A of the rotating shaft 2.
  • the defoaming body 3 has a pair of defoaming blades 4 having a hollow structure arranged at intervals in the circumferential direction of the rotating shaft 2. Yes.
  • Each of the defoaming blades 4 is opened to the upstream side in the rotational direction R of the rotating shaft 2 and the inlet 5 into which the bubbles B flow in, and the outlet opening to the radially outer side of the rotating shaft 2 to discharge the bubbles B 6.
  • the defoamer 3 rotates with the inflow port 5 forward by the rotation of the rotating shaft 2.
  • the defoaming blade 4 is composed of a pair of plate members that are spaced apart from each other in the axial direction of the rotary shaft 2, and an upper disk 7 and a lower disk 8, and a partition plate 9 that connects the upper disk 7 and the lower disk 8. And have.
  • the upper disk 7 and the lower disk 8 are plate-like members that are formed so as to protrude radially outward from the rotary shaft 2 and have a substantially triangular shape in plan view.
  • the defoaming blade 4 forms a channel having a triangular cross section by three surfaces including the upper disk 7, the lower disk 8, and the partition plate 9.
  • the main surface of the lower disk 8 is formed so as to be orthogonal to the axis 2 ⁇ / b> A of the rotating shaft 2.
  • the upper disk 7 is an inclined surface that is inclined with respect to the axis 2 ⁇ / b> A of the rotary shaft 2.
  • the partition plate 9 is formed to be orthogonal to the lower disk 8.
  • the inflow port 5 is a triangular opening composed of the upper front side 11 of the upper disk 7, the lower front side 12 of the lower disk 8, and the outer peripheral surface of the rotating shaft 2.
  • the lower front side 12 of the lower disk 8 is formed to form a straight line extending outward in the radial direction from the rotary shaft 2.
  • the inner side in the radial direction (hereinafter simply referred to as the radial direction) of the rotary shaft 2 is retracted rearward in the rotational direction R from the lower front side 12 of the lower disk 8.
  • the upper front side 11 of the upper disk 7 has a radially outer end 11 a that coincides with a radially outer end 12 a of the front side of the lower disk 8.
  • the radially inner end portion 11b moves rearward in the rotational direction R from the radially inner end portion 12b of the lower disk 8.
  • Sides of the upper disk 7 and the lower disk 8 in the rotation direction R are formed so as to form a straight line extending outward in the radial direction from the rotation shaft 2. Further, the sides of the upper disk 7 and the lower disk 8 that are not connected to the rotating shaft 2 (hereinafter referred to as the side 14) are formed to be orthogonal to the lower front side 12. ing.
  • the vicinity of the portion where the rear side 13 and the side side 14 of the upper disk 7 and the lower disk 8 intersect has an obliquely cut shape.
  • a discharge port 6 for the flow path is formed.
  • the rear side 13 of the upper disk 7 and the rear side 13 of the lower disk 8 are connected via a partition plate 9. That is, the partition plate 9 is formed so as to face the foam B flowing in from the inflow port 5 and to guide the foam B to the discharge port 6.
  • the upper disk 7 and the lower disk 8 are directly connected to each other at the side edges 14. As a result, the upper disk 7 and the lower disk 8 gradually approach from the radially inner side toward the radially outer side. That is, the upper disk 7 has an inclined surface that is inclined with respect to the horizontal.
  • the axial guide device 16 includes a cylindrical shaft portion 17 formed concentrically with the rotation shaft 2 so that the rotation shaft 2 is extended, and an outer peripheral surface of the shaft portion 17. And a spiral blade portion 18 that is a pair of protruding strip portions.
  • the spiral blade portion 18 has a double spiral structure.
  • the shaft portion 17 extends below the defoaming body 3.
  • the shaft part 17 is sufficiently longer than the dimension (thickness) in the axial direction of the defoamer 3 (for example, 5 times). That is, the shaft portion 17 has a length capable of contacting the foam B even when the lower surface of the defoaming body 3 is separated from the foam surface SB (see FIG. 1).
  • the spiral blade portion 18 is a plate-like member that protrudes from the outer peripheral surface of the shaft portion 17 and spirally provided on the outer peripheral surface of the shaft portion 17.
  • the diameter of the spiral blade portion 18 of the present embodiment is substantially equal to the diameter of the defoaming body 3.
  • the shaft portion 17 of the axial direction guide device 16 may be one obtained by extending the rotating shaft 2 downward. That is, the rotating shaft 2 and the shaft portion 17 may be formed integrally.
  • the spiral blade portion 18 of the axial direction guide device 16 of the present embodiment is formed to be right-handed (Z-wound) corresponding to the shape of the defoaming body 3.
  • One of the pair of spiral blade portions 18 is connected to the lower front side 12 of the lower disk 8 constituting the inflow port 5 of the one defoaming blade 4.
  • the other of the pair of spiral blade portions 18 is connected to the lower front side 12 of the inlet 5 of the other defoaming blade 4.
  • the defoaming body 3 and the axial guide device 16 are rotated by driving the rotating shaft 2 of the drive motor 57 (see FIG. 1).
  • the rotation speed is preferably about 1000 rpm.
  • liquidity which goes upwards is given to the foam B, and the foam B is introduce
  • the bubble B that has contacted the spiral blade portion 18 of the axial guide device 16 moves upward so as to be carried to the spiral blade portion 18. Since the spiral blade 18 and the lower disk 8 are connected, the foam B is smoothly introduced into the defoaming body 3. This promotes the defoaming effect.
  • the foam B introduced into the defoaming body 3 by the axial guide device 16 flows in from the inlet 5 and is discharged from the outlet 6.
  • the upper disk 7 and the lower disk 8 are configured to gradually approach toward the outer side in the radial direction, the bubbles B flowing in from the inlet 5 are reliably compressed and broken.
  • the upper front side 11 of the upper disk 7 is arranged offset to the discharge port 6 side, the bubbles B are swallowed from above the inflow port 5.
  • the direction in which the fluidity is given can be controlled. That is, the defoaming effect can be promoted by rotating the axial guide device 16 in one direction, and the bubbles B can be settled by rotating in the other direction.
  • the defoaming body 3 when the foam B flowing in from the inflow port 5 moves toward the discharge port 6, the upper disk 7 and the lower disk 8 gradually decrease in the axial interval toward the radially outer side. Compressed.
  • the side edges 14 of the upper disk 7 and the lower disk 8 are connected to each other, and the interval between the bubbles in the axial direction becomes narrower. Therefore, the compression effect can be further enhanced.
  • the defoaming blade 4 is formed only by the upper disk 7, the lower disk 8 and the partition plate 9, the number of parts constituting the defoaming blade 4 can be reduced. That is, the defoaming blade 4 can be formed more easily.
  • the length in the radial direction can be made longer while securing the area of the inflow port 5. That is, the radial length of the inflow port 5 can be increased without increasing the resistance when rotating. Thereby, the peripheral speed of the edge part of the radial direction outer side of the defoaming blade
  • the rectangular inflow port 5 and the axial length and the radial length are the same, the opening area becomes small, so that the power can be reduced.
  • the inflow port 5 is opened upward, it is possible to swallow the bubbles from above. Thereby, more bubbles B can be processed.
  • the shape of the axial direction guide apparatus 16 is not restricted to what was mentioned above, It can change suitably.
  • the spiral blade portion 18 has a double spiral structure, but the single spiral blade portion 18 may be provided on the outer peripheral surface of the shaft portion 17 without making the spiral blade portion 18 double. Good.
  • three or more spiral blade portions 18 may be provided.
  • the winding direction of the spiral blade portion 18 is not limited to the right winding (Z winding), and may be the left winding (S winding).
  • the spiral blade portion 18 does not need to be formed from a plate-like member, and as shown in FIG. 8, a rod 19 having a square cross section may be wound in a spiral shape.
  • the cross-sectional shape of the bar 19 is not limited to a rectangular shape, and may be a round shape or a triangular shape.
  • the cross-sectional shape of the groove 20 may be an arc shape or a rectangular shape.
  • the axial guide device 16 ⁇ / b> B of the present embodiment includes a shaft portion 17 and a plurality of recess portions 21 formed on the outer peripheral surface of the shaft portion 17.
  • the recess 21 is a hemispherical recess and is regularly formed on the outer peripheral surface of the shaft 17. Specifically, a plurality of rows are formed in the circumferential direction of the shaft portion 17 by a plurality of recesses 21 arranged linearly in the axial direction of the shaft portion 17. The recesses 21 adjacent in the circumferential direction are formed offset in the axial direction.
  • action of the defoaming apparatus 1 of this embodiment is demonstrated.
  • the axial guide device 16B is arranged at the same position as in FIG. 1 and the axial guide device 16B is rotated, the bubble B is directed upward depending on the properties such as the viscosity of the liquid W to be processed and the shape of the recess 21. Fluidity is given or downward fluidity is given.
  • the behavior of the bubbles B changes according to the shape, size, quantity, interval, and the like of the recess 21, it is preferable to appropriately adjust according to the properties of the liquid W to be processed.
  • the shape of the recess 21 is not limited to the above-described hemispherical shape, and may be, for example, a quadrangular recess. Further, a hemispherical dent and a quadrangular dent may be mixed. Moreover, as shown in FIG. 11, it is good also as the protrusion 22 of hemispherical shape instead of a dent.
  • the shape of the protrusion 22 is not limited to a hemispherical shape, and may be a rectangular protrusion. Moreover, it is good also as a structure in which the hollow part 21 and the protrusion 22 are mixed.
  • the configuration of the recess 21 and the protrusion 22 can be appropriately adjusted according to the properties of the liquid W to be processed.
  • the recess 21 can be formed above the axial guide device 16B, and the protrusion 22 can be formed below the axial guide device 16B. Thereby, the contact area of the bubble B and the axial direction guide apparatus 16 becomes large as it goes below the axial direction guide apparatus 16B.
  • the defoaming device of 3rd embodiment which concerns on this invention is demonstrated based on drawing.
  • the axial guide device 16 ⁇ / b> C of the present embodiment has a plurality of linear blades that protrude from the outer peripheral surface of the shaft portion 17 and the shaft portion 17 and extend along the longitudinal direction of the shaft portion 17.
  • the straight blade portion 23 is a rectangular plate-like member provided in plural (four in this embodiment) at equal intervals in the circumferential direction of the shaft portion 17.
  • the straight blade portion 23 is attached so as to be orthogonal to the outer peripheral surface of the shaft portion 17.
  • the axial guide device 16C of the present embodiment is arranged at the same position as in FIG. 1, and when the axial guide device 16C is rotated, Depending on the properties such as the viscosity of the liquid W to be treated and the size of the straight blade 23, the bubbles B are given fluidity upward or fluidity downwards.
  • the shape and quantity of the straight blade portion 23 can be changed as appropriate.
  • it may be a triangular triangular blade portion 24 that becomes wider as it goes downward.
  • the contact area between the bubble B and the axial guide device 16C increases as it goes downward.
  • wing part 23 is not restricted to the rectangular plate shape mentioned above, For example, it is good also as a shape using the rod-shaped member 25 with a circular cross section.
  • the cross-sectional shape of the rod-like member 25 is not limited to a circle, and may be a square shape or a triangle shape.
  • the linear blade portion 23 (or the triangular blade portion 24) may be inclined and attached to the shaft portion 17. For example, when the radial outer peripheral side of the straight blade portion 23 is inclined so as to go to the downstream side in the rotation direction, the resistance when the axial guide device 16C rotates can be reduced.

Abstract

Provided is a defoaming device that has a driving unit, a rotary shaft (2) that rotates by way of the driving unit, a hollow structure defoaming blade (4) that is attached to the rotary shaft (2), and an axial guiding device (16) that is attached below the defoaming blade (4) and that creates a flow toward the defoaming blades (4) in the axial direction of the rotary shaft (2).

Description

消泡装置Defoaming device
 本発明は、消泡装置に関する。
 本願は、2013年8月26日に出願された特願2013-175045号について優先権を主張し、その内容をここに援用する。
The present invention relates to an antifoaming device.
This application claims priority on Japanese Patent Application No. 2013-175045 filed on August 26, 2013, the contents of which are incorporated herein by reference.
 容器内の被処理水上に発生する多量の泡を処理して、泡漏れや作業環境の悪化を抑制するための消泡装置としては、特許文献1に記載されている装置が知られている。
 この消泡装置は、上板と下板と、上板と下板との間において回転中心部から放射状に配置された複数のフィンと、下板の回転中心部に開口した泡吸引口と、を有するローター(消泡羽根)を備えている。フィン間には、泡吸引口に連通しローターの外周側において排出口を有する消泡路が形成されており、泡は上板と下板とフィンに衝突して破壊される。
As a defoaming device for treating a large amount of foam generated on water to be treated in a container and suppressing foam leakage and deterioration of the working environment, an apparatus described in Patent Document 1 is known.
The defoaming device includes an upper plate, a lower plate, a plurality of fins arranged radially from the rotation center between the upper plate and the lower plate, and a bubble suction port opened at the rotation center of the lower plate, A rotor (antifoaming blade) having Between the fins, a defoaming path is formed which communicates with the foam suction port and has a discharge port on the outer peripheral side of the rotor, and the foam collides with the upper plate, the lower plate and the fin and is destroyed.
特開2007-216113号公報JP 2007-216113 A
 とろこで、消泡装置には消泡装置によって被処理水上の泡にもたらされる消泡作用の効果の範囲を広くすることが要求されている。具体的には、消泡装置には、単なる消泡のみならず、消泡羽根に対して離間する泡に対して消泡作用を働かせる要求がある。また、消泡装置には、泡を沈降させることによって液中に泡の濃縮したものを溶解させる要求がある。即ち、消泡装置には、処理可能な泡の高さの拡大や、溶解作用の促進が望まれている。
 しかしながら、消泡羽根のみの形状変更では、処理可能な泡の高さには限界があり、消泡作用の効果の範囲を広くすることができなかった。
On the other hand, the defoaming device is required to widen the range of the effect of the defoaming effect brought about by the defoaming device on the bubbles on the water to be treated. Specifically, the defoaming apparatus has a demand not only for defoaming but also for exerting a defoaming action on bubbles separated from the defoaming blade. Moreover, there exists a request | requirement in an antifoaming device to dissolve what the foam concentrated in the liquid by settling a foam. That is, the defoaming apparatus is desired to increase the height of the foam that can be treated and to promote the dissolving action.
However, when only the shape of the defoaming blade is changed, there is a limit to the height of the foam that can be treated, and the range of the effect of the defoaming action cannot be widened.
 この発明は、消泡装置によってもたらされる消泡作用の効果の範囲を広くすることができる消泡装置を提供することを目的とする。 An object of the present invention is to provide a defoaming device capable of widening the range of the effect of the defoaming effect brought about by the defoaming device.
 本発明の第一の態様によれば、消泡装置は、駆動部と、前記駆動部によって回転される回転軸と、前記回転軸に取り付けられている中空構造の消泡羽根と、前記消泡羽根の下方に取り付けられ、前記消泡羽根に対して前記回転軸の軸方向の流れを作り出す軸方向案内装置と、を有することを特徴とする。 According to the first aspect of the present invention, the defoaming device includes a drive unit, a rotation shaft rotated by the drive unit, a hollow defoaming blade attached to the rotation shaft, and the defoaming device. And an axial guide device that is attached below the blade and creates an axial flow of the rotating shaft with respect to the defoaming blade.
 上記構成によれば、軸方向案内装置を泡部に挿入することによって泡部に上方に向かう流動性、又は下方に向かう流動性が与えられる。これにより、消泡装置によってもたらされる消泡作用を変化させることができる。 According to the above configuration, the fluidity directed upward or the fluidity directed downward is given to the foam part by inserting the axial guide device into the foam part. Thereby, the defoaming effect brought about by the defoaming device can be changed.
 上記消泡装置において、前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面から突出するとともに、前記軸部の外周面に螺旋状に設けられた凸条部と、を有する構成としてもよい。 In the defoaming device, the axial guide device protrudes from an outer peripheral surface of the shaft portion and a shaft portion provided concentrically with the rotation shaft, and is provided spirally on the outer peripheral surface of the shaft portion. It is good also as a structure which has a protruding item | line part.
 上記構成によれば、軸方向案内装置の軸部の回転を反転させることによって、流動性が与えられる方向を制御することができる。即ち、軸方向案内装置を一方向に回転させることで、消泡効果を促進させることができ、他方向に回転させることで、泡部を沈降させることができる。 According to the above configuration, the direction in which the fluidity is given can be controlled by reversing the rotation of the shaft portion of the axial guide device. That is, the defoaming effect can be promoted by rotating the axial guide device in one direction, and the foam portion can be settled by rotating in the other direction.
 上記消泡装置において、前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面に形成された複数の窪部と、を有する構成としてもよい。 In the defoaming device, the axial guide device may include a shaft portion provided concentrically with the rotation shaft, and a plurality of recesses formed on an outer peripheral surface of the shaft portion.
 上記消泡装置において、前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面に形成された複数の突起部と、を有する構成としてもよい。 In the defoaming device, the axial guide device may include a shaft portion provided concentrically with the rotating shaft, and a plurality of protrusions formed on an outer peripheral surface of the shaft portion.
 上記消泡装置において、前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面から突出するとともに、前記軸部の長手方向に沿って延在する複数の羽根部と、を有する構成としてもよい。 In the defoaming device, the axial guide device includes a shaft portion concentrically provided with the rotation shaft, and a plurality of shaft portions protruding from an outer peripheral surface of the shaft portion and extending along a longitudinal direction of the shaft portion. It is good also as a structure which has a blade part.
 本発明によれば、軸方向案内装置を泡部に挿入することによって泡部に上方に向かう流動性、又は下方に向かう流動性が与えられる。これにより、消泡装置によってもたらされる消泡作用を変化させることができる。 According to the present invention, the fluidity directed upward or the fluidity directed downward is imparted to the foam part by inserting the axial guide device into the foam part. Thereby, the defoaming effect brought about by the defoaming device can be changed.
本発明の第一実施形態の消泡装置の一部断面した側面図である。It is the side view which carried out partial cross section of the defoaming device of a first embodiment of the present invention. 本発明の第一実施形態の消泡装置の消泡体及び軸方向案内装置の斜視図である。It is a perspective view of the defoaming body and axial direction guide apparatus of the defoaming apparatus of 1st embodiment of this invention. 本発明の第一実施形態の消泡装置の消泡体の平面図である。It is a top view of the defoaming body of the defoaming apparatus of 1st embodiment of this invention. 図3のA矢視図であって、本発明の第一実施形態の消泡装置の消泡羽根の側面図である。It is A arrow directional view of FIG. 3, Comprising: It is a side view of the defoaming blade | wing of the defoaming apparatus of 1st embodiment of this invention. 図3のB矢視図であって、本発明の第一実施形態の消泡装置の消泡羽根の側面図である。FIG. 4 is a side view of the defoaming blade of the defoaming device according to the first embodiment of the present invention, as viewed from the direction indicated by the arrow B in FIG. 3. 本発明の第一実施形態の消泡装置の作用を説明する側方概略図である。It is a side schematic diagram explaining the operation of the defoaming device of the first embodiment of the present invention. 本発明の第一実施形態の消泡装置の作用を説明する側方概略図である。It is a side schematic diagram explaining the operation of the defoaming device of the first embodiment of the present invention. 本発明の第一実施形態の消泡装置の変形例の側面図である。It is a side view of the modification of the defoaming apparatus of 1st embodiment of this invention. 本発明の第一実施形態の消泡装置の変形例の側面図である。It is a side view of the modification of the defoaming apparatus of 1st embodiment of this invention. 本発明の第二実施形態の消泡装置の消泡体及び軸方向案内装置の斜視図である。It is a perspective view of the defoaming body and axial direction guide apparatus of the defoaming apparatus of 2nd embodiment of this invention. 本発明の第二実施形態の消泡装置の消泡体及び軸方向案内装置の変形例の斜視図である。It is a perspective view of the modification of the defoaming body of the defoaming apparatus of 2nd embodiment of this invention, and an axial direction guide apparatus. 本発明の第三実施形態の消泡装置の消泡体及び軸方向案内装置の斜視図である。It is a perspective view of the defoaming body and axial direction guide apparatus of the defoaming apparatus of 3rd embodiment of this invention. 本発明の第三実施形態の消泡装置の消泡体及び軸方向案内装置の変形例の斜視図である。It is a perspective view of the modification of the defoaming body of the defoaming apparatus of 3rd embodiment of this invention, and an axial direction guide apparatus. 本発明の第三実施形態の消泡装置の消泡体及び軸方向案内装置の変形例の斜視図である。It is a perspective view of the modification of the defoaming body of the defoaming apparatus of 3rd embodiment of this invention, and an axial direction guide apparatus. 本発明の第三実施形態の軸方向案内装置の軸方向から視た平面図である。It is the top view seen from the axial direction of the axial direction guide apparatus of 3rd embodiment of this invention.
(第一実施形態)
 以下、本発明の第一実施形態について図面を参照して詳細に説明する。
 図1は、内部に被処理液Wが貯留される筒状の処理槽50に、消泡装置1が設置された状態を示す正断面図である。処理槽50は、排水を濃縮して半固形状にし、最後は焼却する設備の一部に設けられるものである。処理槽50には、給排水装置51を通じて被処理液Wとなる排水が供給又は排出される。
 なお、被処理液Wとなる排水には、例えば、エチレングリコールや界面活性剤、アクリルアミドやシアノアクリレート等の接着成分などが含まれている。排水の水面には、輸送、撹拌、遠心分離処理などで生じた泡(符号Bで示す)が浮遊している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front sectional view showing a state in which the defoaming apparatus 1 is installed in a cylindrical processing tank 50 in which the liquid W to be processed is stored. The treatment tank 50 is provided in a part of equipment for concentrating the waste water to make it semi-solid and finally incinerating it. The treatment tank 50 is supplied or discharged with waste water that becomes the liquid W to be treated through the water supply / drainage device 51.
In addition, the waste water used as the liquid W to be treated includes, for example, ethylene glycol, a surfactant, and adhesive components such as acrylamide and cyanoacrylate. Bubbles (indicated by symbol B) generated by transportation, stirring, centrifugation, etc. are floating on the surface of the waste water.
 消泡装置1が設けられる処理槽50は、周囲を囲む側壁52とその上部を覆うスラブ53とを有している。スラブ53の中央に形成された開口部54には、筒状の支持部55が設けられている。この支持部55の上部には取付架台56が設けられている。取付架台56は、消泡装置1を支持している。取付架台56の中央部には、駆動部である駆動モータ57が設けられ、この駆動モータ57の回転軸2に、本発明に係る消泡体3及び軸方向案内装置16が取り付けられている。 The processing tank 50 in which the defoaming apparatus 1 is provided has a side wall 52 that surrounds the periphery and a slab 53 that covers the upper part thereof. A cylindrical support portion 55 is provided in the opening 54 formed in the center of the slab 53. A mounting base 56 is provided on the upper portion of the support portion 55. The mounting base 56 supports the defoaming device 1. A drive motor 57 as a drive unit is provided at the center of the mounting base 56, and the defoaming body 3 and the axial guide device 16 according to the present invention are attached to the rotating shaft 2 of the drive motor 57.
 駆動モータ57の回転軸2は、処理槽50の中央上部に上下方向に配置されるものである。回転軸2の下端部に、消泡体3及び軸方向案内装置16が取り付けられている。また、回転軸2は、回転軸2の軸線2Aに沿うように取付架台56に上下方向に移動自在に設けられている。 The rotary shaft 2 of the drive motor 57 is arranged in the vertical direction at the upper center of the processing tank 50. The defoamer 3 and the axial guide device 16 are attached to the lower end of the rotating shaft 2. The rotating shaft 2 is provided on the mounting base 56 so as to be movable in the vertical direction along the axis 2 </ b> A of the rotating shaft 2.
 次に、本実施形態の消泡体3について説明する。
 図2、図3、図4、及び図5に示すように、消泡体3は、回転軸2の周方向に間隔をあけて配置された一対の中空構造の消泡羽根4を有している。各々の消泡羽根4は、回転軸2の回転方向R上流側に開口して泡Bが流入する流入口5と、回転軸2の径方向外側に開口して泡Bが排出される排出口6を有している。消泡体3は、回転軸2の回転によって流入口5を前方にして回転する。
Next, the defoamer 3 of this embodiment will be described.
As shown in FIGS. 2, 3, 4, and 5, the defoaming body 3 has a pair of defoaming blades 4 having a hollow structure arranged at intervals in the circumferential direction of the rotating shaft 2. Yes. Each of the defoaming blades 4 is opened to the upstream side in the rotational direction R of the rotating shaft 2 and the inlet 5 into which the bubbles B flow in, and the outlet opening to the radially outer side of the rotating shaft 2 to discharge the bubbles B 6. The defoamer 3 rotates with the inflow port 5 forward by the rotation of the rotating shaft 2.
 消泡羽根4は、互いに回転軸2の軸方向に間隔をあけて配置された一対の板部材である上ディスク7及び下ディスク8と、上ディスク7と下ディスク8とを接続する仕切板9と、を有している。上ディスク7及び下ディスク8は、回転軸2から径方向外側に向かって張り出すように形成され、平面視において略三角形状をなす板状部材である。 The defoaming blade 4 is composed of a pair of plate members that are spaced apart from each other in the axial direction of the rotary shaft 2, and an upper disk 7 and a lower disk 8, and a partition plate 9 that connects the upper disk 7 and the lower disk 8. And have. The upper disk 7 and the lower disk 8 are plate-like members that are formed so as to protrude radially outward from the rotary shaft 2 and have a substantially triangular shape in plan view.
 消泡羽根4は、上ディスク7と下ディスク8と仕切板9とからなる3つの面によって、断面三角形状の流路を形成している。
 下ディスク8の主面は、回転軸2の軸線2Aに直交するように形成されている。上ディスク7は、回転軸2の軸線2Aに対して傾斜する傾斜面とされている。仕切板9は、下ディスク8と直交するように形成されている。
The defoaming blade 4 forms a channel having a triangular cross section by three surfaces including the upper disk 7, the lower disk 8, and the partition plate 9.
The main surface of the lower disk 8 is formed so as to be orthogonal to the axis 2 </ b> A of the rotating shaft 2. The upper disk 7 is an inclined surface that is inclined with respect to the axis 2 </ b> A of the rotary shaft 2. The partition plate 9 is formed to be orthogonal to the lower disk 8.
 上ディスク7の回転方向Rの前方の辺(以下、上前方辺11と呼ぶ)と下ディスク8の回転方向Rの前方の辺(下前方辺12)との間に流路の流入口5が形成されている。流入口5は、上ディスク7の上前方辺11と、下ディスク8の下前方辺12と、回転軸2の外周面とからなる三角形状の開口である。 Between the front side of the upper disk 7 in the rotational direction R (hereinafter referred to as the upper front side 11) and the front side of the lower disk 8 in the rotational direction R (lower front side 12) Is formed. The inflow port 5 is a triangular opening composed of the upper front side 11 of the upper disk 7, the lower front side 12 of the lower disk 8, and the outer peripheral surface of the rotating shaft 2.
 下ディスク8の下前方辺12は、回転軸2より放射方向に外方に延びる直線をなすように形成されている。
 上ディスク7の上前方辺11は、回転軸2の径方向(以下、単に径方向と呼ぶ)内側が下ディスク8の下前方辺12よりも回転方向Rの後方に後退している。具体的には、図3に示すように、上ディスク7の上前方辺11は、径方向外側の端部11aが下ディスク8の前方辺の径方向外側の端部12aと一致しているが、径方向内側の端部11bは、下ディスク8の径方向内側の端部12bよりも回転方向R後方に移動している。
The lower front side 12 of the lower disk 8 is formed to form a straight line extending outward in the radial direction from the rotary shaft 2.
In the upper front side 11 of the upper disk 7, the inner side in the radial direction (hereinafter simply referred to as the radial direction) of the rotary shaft 2 is retracted rearward in the rotational direction R from the lower front side 12 of the lower disk 8. Specifically, as shown in FIG. 3, the upper front side 11 of the upper disk 7 has a radially outer end 11 a that coincides with a radially outer end 12 a of the front side of the lower disk 8. The radially inner end portion 11b moves rearward in the rotational direction R from the radially inner end portion 12b of the lower disk 8.
 上ディスク7及び下ディスク8の回転方向R後方の辺(以下、後方辺13と呼ぶ)は、回転軸2より放射方向に外方に延びる直線をなすように形成されている。
 また、上ディスク7及び下ディスク8の側方の辺であって、回転軸2と接続されていない辺(以下、側方辺14と呼ぶ)は、下前方辺12と直交するように形成されている。
Sides of the upper disk 7 and the lower disk 8 in the rotation direction R (hereinafter referred to as the rear side 13) are formed so as to form a straight line extending outward in the radial direction from the rotation shaft 2.
Further, the sides of the upper disk 7 and the lower disk 8 that are not connected to the rotating shaft 2 (hereinafter referred to as the side 14) are formed to be orthogonal to the lower front side 12. ing.
 上ディスク7及び下ディスク8の後方辺13と側方辺14とが交わる部分の近傍は、斜めに切り落とされた形状を有している。この部分には、流路の排出口6が形成されている。
 上ディスク7の後方辺13と下ディスク8の後方辺13とは、仕切板9を介して接続されている。即ち、仕切板9は、流入口5より流入した泡Bに対向するとともに、泡Bを排出口6に案内するように形成されている。
The vicinity of the portion where the rear side 13 and the side side 14 of the upper disk 7 and the lower disk 8 intersect has an obliquely cut shape. In this part, a discharge port 6 for the flow path is formed.
The rear side 13 of the upper disk 7 and the rear side 13 of the lower disk 8 are connected via a partition plate 9. That is, the partition plate 9 is formed so as to face the foam B flowing in from the inflow port 5 and to guide the foam B to the discharge port 6.
 上ディスク7と下ディスク8とは、側方辺14にて直接端部同士が接続されている。これにより、上ディスク7と下ディスク8とは、径方向内側から径方向外側に向かうに従って漸次接近する。即ち、上ディスク7は、水平に対して傾斜する傾斜面となっている。 The upper disk 7 and the lower disk 8 are directly connected to each other at the side edges 14. As a result, the upper disk 7 and the lower disk 8 gradually approach from the radially inner side toward the radially outer side. That is, the upper disk 7 has an inclined surface that is inclined with respect to the horizontal.
 次に、本実施形態の軸方向案内装置16について説明する。
 図2に示すように、軸方向案内装置16は、回転軸2が延長されるように、回転軸2と同心となるように形成された円柱形状の軸部17と、軸部17の外周面に設けられた一対凸条部である螺旋羽根部18と、を有している。螺旋羽根部18は、二重螺旋構造とされている。
Next, the axial direction guide apparatus 16 of this embodiment is demonstrated.
As shown in FIG. 2, the axial guide device 16 includes a cylindrical shaft portion 17 formed concentrically with the rotation shaft 2 so that the rotation shaft 2 is extended, and an outer peripheral surface of the shaft portion 17. And a spiral blade portion 18 that is a pair of protruding strip portions. The spiral blade portion 18 has a double spiral structure.
 軸部17は、消泡体3の下方に延在している。軸部17は、消泡体3の軸方向の寸法(厚さ)よりも十分に長い(例えば5倍)。即ち、軸部17は、消泡体3の下面が泡面SB(図1参照)に対して離間している場合においても、泡Bに接触可能な長さを有している。 The shaft portion 17 extends below the defoaming body 3. The shaft part 17 is sufficiently longer than the dimension (thickness) in the axial direction of the defoamer 3 (for example, 5 times). That is, the shaft portion 17 has a length capable of contacting the foam B even when the lower surface of the defoaming body 3 is separated from the foam surface SB (see FIG. 1).
 螺旋羽根部18は、軸部17の外周面から突出するとともに、軸部17の外周面に螺旋状に設けられた板状の部材である。本実施形態の螺旋羽根部18の直径は、消泡体3の直径と略等しい。
 なお、軸方向案内装置16の軸部17は、回転軸2を下方に延長したものでもよい。即ち、回転軸2と軸部17とは一体に形成されてもよい。
The spiral blade portion 18 is a plate-like member that protrudes from the outer peripheral surface of the shaft portion 17 and spirally provided on the outer peripheral surface of the shaft portion 17. The diameter of the spiral blade portion 18 of the present embodiment is substantially equal to the diameter of the defoaming body 3.
The shaft portion 17 of the axial direction guide device 16 may be one obtained by extending the rotating shaft 2 downward. That is, the rotating shaft 2 and the shaft portion 17 may be formed integrally.
 本実施形態の軸方向案内装置16の螺旋羽根部18は、消泡体3の形状に対応して右巻き(Z巻き)となるように形成されている。一対の螺旋羽根部18のうち一方は、一方の消泡羽根4の流入口5を構成する下ディスク8の下前方辺12に接続されている。また、一対の螺旋羽根部18のうち他方は、他方の消泡羽根4の流入口5の下前方辺12に接続されている。 The spiral blade portion 18 of the axial direction guide device 16 of the present embodiment is formed to be right-handed (Z-wound) corresponding to the shape of the defoaming body 3. One of the pair of spiral blade portions 18 is connected to the lower front side 12 of the lower disk 8 constituting the inflow port 5 of the one defoaming blade 4. The other of the pair of spiral blade portions 18 is connected to the lower front side 12 of the inlet 5 of the other defoaming blade 4.
 上記の消泡装置1の作用について説明する。
 図6に示すように、消泡体3が泡面SBよりも上方に位置し、かつ、軸方向案内装置16の下端が液面SWよりも僅かに上方に位置している場合における作用について説明する。
The effect | action of said defoaming apparatus 1 is demonstrated.
As shown in FIG. 6, the operation when the defoaming body 3 is located above the foam surface SB and the lower end of the axial guide device 16 is located slightly above the liquid level SW will be described. To do.
 図6に矢印R1で示すように、駆動モータ57(図1参照)の回転軸2を駆動することによって、消泡体3及び軸方向案内装置16を回転させる。回転速度は1000rpm程度が好ましい。すると、泡Bに上方に向かう流動性が与えられ、泡Bが泡面SBよりも上方に位置する消泡体3に導入される。即ち、通常消泡体3による消泡に適した泡の高さ(SB1)よりも、泡の高さが低い場合(SB2)でも泡Bを消泡体3に吸い込ませることができる。
 具体的には、軸方向案内装置16の螺旋羽根部18に接触した泡Bが、螺旋羽根部18に運ばれるようにして上方に移動する。螺旋羽根部18と下ディスク8が接続されているため、泡Bは消泡体3に滑らかに導入される。これによって、消泡効果が促進される。
As indicated by an arrow R1 in FIG. 6, the defoaming body 3 and the axial guide device 16 are rotated by driving the rotating shaft 2 of the drive motor 57 (see FIG. 1). The rotation speed is preferably about 1000 rpm. Then, the fluidity | liquidity which goes upwards is given to the foam B, and the foam B is introduce | transduced into the defoaming body 3 located above the foam surface SB. That is, the foam B can be sucked into the defoaming body 3 even when the height of the foam is lower (SB2) than the foam height (SB1) suitable for defoaming by the normal defoaming body 3.
Specifically, the bubble B that has contacted the spiral blade portion 18 of the axial guide device 16 moves upward so as to be carried to the spiral blade portion 18. Since the spiral blade 18 and the lower disk 8 are connected, the foam B is smoothly introduced into the defoaming body 3. This promotes the defoaming effect.
 軸方向案内装置16によって消泡体3に導入された泡Bは、流入口5から流入して、排出口6から排出される。この際、上ディスク7と下ディスク8とが、径方向外側に向かうに従って、漸次近づく構成となっていることによって、流入口5から流入した泡Bは確実に圧縮され破泡される。
 また、上ディスク7の上前方辺11が排出口6側にオフセットして配置されているため、流入口5の上方からも泡Bが飲み込まれる。
The foam B introduced into the defoaming body 3 by the axial guide device 16 flows in from the inlet 5 and is discharged from the outlet 6. At this time, since the upper disk 7 and the lower disk 8 are configured to gradually approach toward the outer side in the radial direction, the bubbles B flowing in from the inlet 5 are reliably compressed and broken.
In addition, since the upper front side 11 of the upper disk 7 is arranged offset to the discharge port 6 side, the bubbles B are swallowed from above the inflow port 5.
 一方で、流入口5が泡を吸い込む際には、消泡羽根4の回転によってせん断破泡が生じる。せん断破泡が生じることによって流入口5の泡Bの吸引力が更に増す。
 また、上ディスク7が下方に傾斜していることにより、破泡された泡Bは、下方及び遠方に噴霧され、シャワー効果による消泡がなされる。
On the other hand, when the inflow port 5 sucks bubbles, shear bubble breakage occurs due to the rotation of the defoaming blade 4. The suction force of the bubbles B at the inlet 5 is further increased by the occurrence of shear bubble breakage.
In addition, since the upper disk 7 is inclined downward, the foamed foam B is sprayed downward and far away, and defoaming due to the shower effect is performed.
 一方、図7に矢印R2で示す方向、即ち図6のR1とは反対の方向に、消泡体3及び軸方向案内装置16を回転させると、泡Bを沈降させることができる。即ち、泡Bに下方に向かう流動性が与えられる。具体的には、軸方向案内装置16の螺旋羽根部18に接触した泡Bが、螺旋羽根部18に運ばれるようにして下方に移動する。これにより、被処理液W中に泡Bの圧縮したものを溶解させる作用が促進される。 On the other hand, when the defoamer 3 and the axial guide device 16 are rotated in the direction indicated by the arrow R2 in FIG. 7, that is, the direction opposite to R1 in FIG. That is, fluidity toward the bottom is given to the bubbles B. Specifically, the bubble B that has contacted the spiral blade portion 18 of the axial guide device 16 moves downward so as to be carried to the spiral blade portion 18. Thereby, the effect | action which dissolves what the bubble B compressed in the to-be-processed liquid W is accelerated | stimulated.
 上記実施形態によれば、回転する軸方向案内装置16を泡面SBに挿入することによって泡面SBに上方に向かう流動性、又は下方に向かう流動性が与えられる。これにより、消泡装置1によって被処理水W上の泡Bにもたらされる消泡作用を変化させることができる。 According to the above-described embodiment, by inserting the rotating axial guide device 16 into the foam surface SB, fluidity directed upward or downward fluidity is imparted to the foam surface SB. Thereby, the defoaming effect | action brought about by the foam B on the to-be-processed water W by the defoaming apparatus 1 can be changed.
 また、軸方向案内装置16の軸部17の回転を反転させることによって、流動性が与えられる方向を制御することができる。即ち、軸方向案内装置16を一方向に回転させることで、消泡効果を促進させることができ、他方向に回転させることで、泡Bを沈降させることができる。 Further, by reversing the rotation of the shaft portion 17 of the axial direction guide device 16, the direction in which the fluidity is given can be controlled. That is, the defoaming effect can be promoted by rotating the axial guide device 16 in one direction, and the bubbles B can be settled by rotating in the other direction.
 また、消泡体3においては、流入口5から流入する泡Bが排出口6に向かって移動する際に、軸方向間隔が径方向外側に向かうに従って漸次小さくなる上ディスク7及び下ディスク8によって圧縮される。消泡装置1は、上ディスク7と下ディスク8の側方辺14同士が接続されて泡の流路の軸方向の間隔がより狭くなるため、圧縮効果をより高めることができる。
 また、消泡羽根4が上ディスク7、下ディスク8、及び仕切板9のみによって形成されるため、消泡羽根4を構成する部品点数を削減することができる。即ち、より容易に消泡羽根4を形成することができる。
Moreover, in the defoaming body 3, when the foam B flowing in from the inflow port 5 moves toward the discharge port 6, the upper disk 7 and the lower disk 8 gradually decrease in the axial interval toward the radially outer side. Compressed. In the defoaming device 1, the side edges 14 of the upper disk 7 and the lower disk 8 are connected to each other, and the interval between the bubbles in the axial direction becomes narrower. Therefore, the compression effect can be further enhanced.
Moreover, since the defoaming blade 4 is formed only by the upper disk 7, the lower disk 8 and the partition plate 9, the number of parts constituting the defoaming blade 4 can be reduced. That is, the defoaming blade 4 can be formed more easily.
 また、流入口5を長方形形状とした場合と比較すると、流入口5の面積を確保しながら、より径方向の長さを長くすることができる。即ち、回転する際の抵抗を増やすことなく、流入口5の径方向の長さを長くすることができる。これにより、消泡羽根4の径方向外側の端部の周速が大きくなる。これにより、せん断破泡効果を大きくすることができる。
 また、長方形形状の流入口5と軸方向長さ及び径方向長さを同じにした場合、開口面積が小さくなるため、低動力化が可能となる。
Moreover, compared with the case where the inflow port 5 is made into a rectangular shape, the length in the radial direction can be made longer while securing the area of the inflow port 5. That is, the radial length of the inflow port 5 can be increased without increasing the resistance when rotating. Thereby, the peripheral speed of the edge part of the radial direction outer side of the defoaming blade | wing 4 becomes large. Thereby, the shear bubble breaking effect can be increased.
In addition, when the rectangular inflow port 5 and the axial length and the radial length are the same, the opening area becomes small, so that the power can be reduced.
 また、流入口5が上方に向けて開口されているため、上方からの泡の飲み込みが可能となる。これにより、より多くの泡Bを処理することができる。 Also, since the inflow port 5 is opened upward, it is possible to swallow the bubbles from above. Thereby, more bubbles B can be processed.
 なお、軸方向案内装置16の形状は、上述したものに限ることはなく、適宜変更することができる。
 例えば、上記実施形態では、螺旋羽根部18を二重螺旋構造としたが、螺旋羽根部18を二重にすることなく単一の螺旋羽根部18を軸部17の外周面に設ける構成としてもよい。あるいは、3つ以上の螺旋羽根部18を設ける構成としてもよい。
 また、螺旋羽根部18の巻きの方向は右巻き(Z巻き)に限らず、左巻き(S巻き)としてもよい。
In addition, the shape of the axial direction guide apparatus 16 is not restricted to what was mentioned above, It can change suitably.
For example, in the above embodiment, the spiral blade portion 18 has a double spiral structure, but the single spiral blade portion 18 may be provided on the outer peripheral surface of the shaft portion 17 without making the spiral blade portion 18 double. Good. Alternatively, three or more spiral blade portions 18 may be provided.
Further, the winding direction of the spiral blade portion 18 is not limited to the right winding (Z winding), and may be the left winding (S winding).
 また、螺旋羽根部18は、板状部材から形成する必要はなく、図8に示すように、断面四角形状の棒材19を螺旋状に巻き付ける構成としてもよい。棒材19の断面形状は、四角形状に限らず、丸形状や、三角形状としてもよい。 Further, the spiral blade portion 18 does not need to be formed from a plate-like member, and as shown in FIG. 8, a rod 19 having a square cross section may be wound in a spiral shape. The cross-sectional shape of the bar 19 is not limited to a rectangular shape, and may be a round shape or a triangular shape.
 さらに、図9に示すように、軸部17に螺旋状の溝20を形成する構成としてもよい。溝20の断面形状は、円弧状でもよいし、矩形状でもよい。 Furthermore, as shown in FIG. 9, it is good also as a structure which forms the helical groove | channel 20 in the axial part 17. As shown in FIG. The cross-sectional shape of the groove 20 may be an arc shape or a rectangular shape.
(第二実施形態)
 本発明に係る第二実施形態の消泡装置を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図10に示すように、本実施形態の軸方向案内装置16Bは、軸部17と、軸部17の外周面に形成された複数の窪部21と、を有している。
(Second embodiment)
The defoaming device of 2nd embodiment which concerns on this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 10, the axial guide device 16 </ b> B of the present embodiment includes a shaft portion 17 and a plurality of recess portions 21 formed on the outer peripheral surface of the shaft portion 17.
 窪部21は、半球形状の凹みであり、軸部17の外周面に規則的に形成されている。具体的には、軸部17の軸方向に直線上に並べられた複数の窪部21による列が軸部17の周方向に複数列形成されている。周方向に隣り合う窪部21は、軸方向にオフセットして形成されている。 The recess 21 is a hemispherical recess and is regularly formed on the outer peripheral surface of the shaft 17. Specifically, a plurality of rows are formed in the circumferential direction of the shaft portion 17 by a plurality of recesses 21 arranged linearly in the axial direction of the shaft portion 17. The recesses 21 adjacent in the circumferential direction are formed offset in the axial direction.
 次に、本実施形態の消泡装置1の作用について説明する。
 図1と同様の位置に軸方向案内装置16Bを配置し軸方向案内装置16Bを回転させると、被処理液Wの粘性などの性状と窪部21の形状などに応じて泡Bに上方に向かう流動性が与えられたり、下方に向かう流動性が与えられたりする。
 上述したように、泡Bの挙動は、窪部21の形状、大きさ、数量、間隔などに応じて変化するため、対象となる被処理液Wの性状に合わせて適宜調整することが好ましい。
Next, the effect | action of the defoaming apparatus 1 of this embodiment is demonstrated.
When the axial guide device 16B is arranged at the same position as in FIG. 1 and the axial guide device 16B is rotated, the bubble B is directed upward depending on the properties such as the viscosity of the liquid W to be processed and the shape of the recess 21. Fluidity is given or downward fluidity is given.
As described above, since the behavior of the bubbles B changes according to the shape, size, quantity, interval, and the like of the recess 21, it is preferable to appropriately adjust according to the properties of the liquid W to be processed.
 なお、窪部21の形状は、上述した半球形状に限らず、例えば、四角形状の凹みとしてもよい。また、半球形状の凹みと四角形状の凹みとが混在するように構成してもよい。
 また、図11に示すように、凹みではなく半球形状の突起22としてもよい。突起22の形状は半球形状に限らず、四角形状の突起でもよい。
 また、窪部21と突起22とを混在させる構成としてもよい。
Note that the shape of the recess 21 is not limited to the above-described hemispherical shape, and may be, for example, a quadrangular recess. Further, a hemispherical dent and a quadrangular dent may be mixed.
Moreover, as shown in FIG. 11, it is good also as the protrusion 22 of hemispherical shape instead of a dent. The shape of the protrusion 22 is not limited to a hemispherical shape, and may be a rectangular protrusion.
Moreover, it is good also as a structure in which the hollow part 21 and the protrusion 22 are mixed.
 窪部21、突起22の構成は、対象となる被処理液Wの性状に合わせて適宜調整することができる。例えば、軸方向案内装置16Bの上方に窪部21を形成し、軸方向案内装置16Bの下方に突起22を形成する構成とすることができる。これにより、軸方向案内装置16Bの下方に向かうに従って、泡Bと軸方向案内装置16との接触面積を大きくなる。 The configuration of the recess 21 and the protrusion 22 can be appropriately adjusted according to the properties of the liquid W to be processed. For example, the recess 21 can be formed above the axial guide device 16B, and the protrusion 22 can be formed below the axial guide device 16B. Thereby, the contact area of the bubble B and the axial direction guide apparatus 16 becomes large as it goes below the axial direction guide apparatus 16B.
(第三実施形態)
 以下、本発明に係る第三実施形態の消泡装置を図面に基づいて説明する。
 図12に示すように、本実施形態の軸方向案内装置16Cは、軸部17と、軸部17の外周面から突出するとともに、軸部17の長手方向に沿って延在する複数の直線羽根部23と、を有している。
 具体的には、直線羽根部23は、軸部17の周方向に等間隔に複数(本実施形態は4つ)設けられている矩形板状の部材である。直線羽根部23は、軸部17の外周面と直交するように取り付けられている。
(Third embodiment)
Hereinafter, the defoaming device of 3rd embodiment which concerns on this invention is demonstrated based on drawing.
As illustrated in FIG. 12, the axial guide device 16 </ b> C of the present embodiment has a plurality of linear blades that protrude from the outer peripheral surface of the shaft portion 17 and the shaft portion 17 and extend along the longitudinal direction of the shaft portion 17. Part 23.
Specifically, the straight blade portion 23 is a rectangular plate-like member provided in plural (four in this embodiment) at equal intervals in the circumferential direction of the shaft portion 17. The straight blade portion 23 is attached so as to be orthogonal to the outer peripheral surface of the shaft portion 17.
 本実施形態の軸方向案内装置16Cも第二実施形態の軸方向案内装置16Bと同様に、図1と同様の位置に軸方向案内装置16Cを配置し、軸方向案内装置16Cを回転させると、被処理液Wの粘性などの性状と直線羽根部23の大きさなどに応じて泡Bに上方に向かう流動性が与えられたり、下方に向かう流動性が与えられたりする。 Similarly to the axial guide device 16B of the second embodiment, the axial guide device 16C of the present embodiment is arranged at the same position as in FIG. 1, and when the axial guide device 16C is rotated, Depending on the properties such as the viscosity of the liquid W to be treated and the size of the straight blade 23, the bubbles B are given fluidity upward or fluidity downwards.
 なお、直線羽根部23の形状、数量は、適宜変更することができる。例えば、図13に示すように、下方に向かうに従って幅広となるような三角形状の三角羽根部24としてもよい。このような形状となることで、泡Bと軸方向案内装置16Cとの接触面積が下方に向かうに従って大きくなる。 In addition, the shape and quantity of the straight blade portion 23 can be changed as appropriate. For example, as shown in FIG. 13, it may be a triangular triangular blade portion 24 that becomes wider as it goes downward. By becoming such a shape, the contact area between the bubble B and the axial guide device 16C increases as it goes downward.
 また、図14に示すように、直線羽根部23の形状は、上述した矩形板状に限らず、例えば断面円形の棒状部材25を用いた形状としてもよい。棒状部材25の断面形状は、円形に限らず、四角形状や、三角形状としてもよい。
 また、図15に示すように、直線羽根部23(又は三角羽根部24)が傾斜して軸部17に取り付けられる構成としてもよい。例えば、直線羽根部23の径方向外周側が回転方向の下流側に向かうように傾斜させた場合、軸方向案内装置16Cが回転する際の抵抗を低減させることができる。
Moreover, as shown in FIG. 14, the shape of the linear blade | wing part 23 is not restricted to the rectangular plate shape mentioned above, For example, it is good also as a shape using the rod-shaped member 25 with a circular cross section. The cross-sectional shape of the rod-like member 25 is not limited to a circle, and may be a square shape or a triangle shape.
Further, as shown in FIG. 15, the linear blade portion 23 (or the triangular blade portion 24) may be inclined and attached to the shaft portion 17. For example, when the radial outer peripheral side of the straight blade portion 23 is inclined so as to go to the downstream side in the rotation direction, the resistance when the axial guide device 16C rotates can be reduced.
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。また、上記複数の実施形態で説明した特徴を任意に組み合わせた構成であってもよい。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. Moreover, the structure which combined the characteristic demonstrated by said several embodiment arbitrarily may be sufficient.
 1 消泡装置
 2 回転軸
 3 消泡体
 4 消泡羽根
 5 流入口
 6 排出口
 7 上ディスク(板部材)
 8 下ディスク(板部材)
 9 仕切板
 11 上前方辺
 12 下前方辺
 16 軸方向案内装置
 17 軸部
 18 螺旋羽根部(凸条部)
 19 棒材
 20 溝
 21 窪部
 22 突起
 23 直線羽根部
 24 三角羽根部
 25 棒状部材
 50 処理槽
 51 給排水装置
 52 側壁
 54 開口部
 57 駆動モータ(駆動部)
 B 泡
 R1,R2 回転方向
 W 被処理液
DESCRIPTION OF SYMBOLS 1 Defoamer 2 Rotating shaft 3 Defoamer 4 Defoam blade 5 Inlet 6 Outlet 7 Upper disk (plate member)
8 Lower disc (plate member)
DESCRIPTION OF SYMBOLS 9 Partition plate 11 Upper front side 12 Lower front side 16 Axial direction guide device 17 Shaft part 18 Spiral blade part (ridge part)
DESCRIPTION OF SYMBOLS 19 Bar 20 Groove 21 Recessed part 22 Protrusion 23 Linear blade part 24 Triangular blade part 25 Bar-shaped member 50 Treatment tank 51 Water supply / drainage device 52 Side wall 54 Opening part 57 Drive motor (drive part)
B Bubble R1, R2 Rotation direction W Processed liquid

Claims (5)

  1.  駆動部と、
     前記駆動部によって回転される回転軸と、
     前記回転軸に取り付けられている中空構造の消泡羽根と、
     前記消泡羽根の下方に取り付けられ、前記消泡羽根に対して前記回転軸の軸方向の流れを作り出す軸方向案内装置と、を有することを特徴とする消泡装置。
    A drive unit;
    A rotating shaft rotated by the driving unit;
    A hollow defoaming blade attached to the rotating shaft;
    An anti-foaming device, comprising: an axial guide device that is attached below the defoaming blade and creates an axial flow of the rotating shaft with respect to the defoaming blade.
  2.  前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面から突出するとともに、前記軸部の外周面に螺旋状に設けられた凸条部と、を有することを特徴とする請求項1に記載の消泡装置。 The axial direction guide device includes: a shaft portion provided concentrically with the rotation shaft; and a protruding portion provided in a spiral shape on the outer peripheral surface of the shaft portion while projecting from the outer peripheral surface of the shaft portion. The defoaming apparatus according to claim 1, comprising:
  3.  前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面に形成された複数の窪部と、を有することを特徴とする請求項1に記載の消泡装置。 The said axial direction guide apparatus has the axial part provided concentrically with the said rotating shaft, and the several recessed part formed in the outer peripheral surface of the said axial part, The eraser of Claim 1 characterized by the above-mentioned. Foam equipment.
  4.  前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面に形成された複数の突起部と、を有することを特徴とする請求項1に記載の消泡装置。 The said axial direction guide apparatus has the axial part provided concentrically with the said rotating shaft, and several protrusion part formed in the outer peripheral surface of the said axial part, The eraser of Claim 1 characterized by the above-mentioned. Foam equipment.
  5.  前記軸方向案内装置は、前記回転軸と同心に設けられた軸部と、前記軸部の外周面から突出するとともに、前記軸部の長手方向に沿って延在する複数の羽根部と、を有することを特徴とする請求項1に記載の消泡装置。 The axial direction guide device includes: a shaft portion provided concentrically with the rotation shaft; and a plurality of blade portions protruding from an outer peripheral surface of the shaft portion and extending along a longitudinal direction of the shaft portion. The defoaming apparatus according to claim 1, comprising:
PCT/JP2014/069714 2013-08-26 2014-07-25 Defoaming device WO2015029662A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167000288A KR101859853B1 (en) 2013-08-26 2014-07-25 Defoaming device
CN201480041186.3A CN105407996B (en) 2013-08-26 2014-07-25 defoaming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175045A JP6148935B2 (en) 2013-08-26 2013-08-26 Defoaming device
JP2013-175045 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029662A1 true WO2015029662A1 (en) 2015-03-05

Family

ID=52586236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069714 WO2015029662A1 (en) 2013-08-26 2014-07-25 Defoaming device

Country Status (4)

Country Link
JP (1) JP6148935B2 (en)
KR (1) KR101859853B1 (en)
CN (1) CN105407996B (en)
WO (1) WO2015029662A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019735A (en) * 2018-07-10 2018-12-18 马鞍山市润启新材料科技有限公司 A kind of defoaming device
CN109595422B (en) * 2018-12-10 2020-11-10 哈尔滨工程大学 Steam condensation induction water hammer eliminating device based on rotary torsion band
CN112811496A (en) * 2020-12-30 2021-05-18 杨远明 Pneumatic water treatment defoaming pond

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059601U (en) * 1991-06-03 1993-02-09 三菱重工業株式会社 Defoaming blade of defoaming device
JPH0957010A (en) * 1995-08-28 1997-03-04 Mitsubishi Heavy Ind Ltd Defoaming device
JP2000254408A (en) * 1999-03-12 2000-09-19 Sharp Corp Treating liquid defoaming device, treating liquid defoaming method, treating liquid circulating device, and treating liquid circulating method
JP2012076029A (en) * 2010-10-01 2012-04-19 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Defoaming machine and defoaming method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921845Y2 (en) * 1981-09-08 1984-06-29 荏原インフイルコ株式会社 Defoaming blade of defoaming device
DE3639690C1 (en) * 1986-11-20 1988-06-09 Leonhard Dipl-Ing Fuchs Foam breaker
US5792246A (en) * 1995-06-30 1998-08-11 Sumitomo Bakelite Company Limited Defoaming apparatus
JP2005052812A (en) * 2003-08-05 2005-03-03 Takeshi Nakajima Defoaming method
JP2006075782A (en) * 2004-09-13 2006-03-23 Shin Meiwa Ind Co Ltd Foam suppressing unit of aeration tank and garbage treatment apparatus having the unit
JP2007216113A (en) 2006-02-15 2007-08-30 Sanshu Densen Kk Defoaming apparatus
JP2008296130A (en) * 2007-05-31 2008-12-11 Mitsubishi Materials Corp Defoaming apparatus, defoaming method, and liquid pooling tank using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059601U (en) * 1991-06-03 1993-02-09 三菱重工業株式会社 Defoaming blade of defoaming device
JPH0957010A (en) * 1995-08-28 1997-03-04 Mitsubishi Heavy Ind Ltd Defoaming device
JP2000254408A (en) * 1999-03-12 2000-09-19 Sharp Corp Treating liquid defoaming device, treating liquid defoaming method, treating liquid circulating device, and treating liquid circulating method
JP2012076029A (en) * 2010-10-01 2012-04-19 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Defoaming machine and defoaming method

Also Published As

Publication number Publication date
KR101859853B1 (en) 2018-05-18
CN105407996B (en) 2017-09-19
KR20160018687A (en) 2016-02-17
JP6148935B2 (en) 2017-06-14
JP2015042400A (en) 2015-03-05
CN105407996A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN101943181B (en) Drain pump
WO2015029662A1 (en) Defoaming device
KR101700544B1 (en) Defoaming part
JP4039430B2 (en) Impeller
JP6393694B2 (en) Stirring blade and stirring device
ES2669051T3 (en) Impeller to disperse molten metal gas
JP6260054B2 (en) Defoaming device
JP6858184B2 (en) Stirrer blade and stirrer
JP2011017262A (en) Drain pump
JP4963836B2 (en) Centrifugal pump device
KR20130107161A (en) Agitator impeller and agitator using the same
JP4974160B2 (en) Continuous degassing deaerator
KR102378637B1 (en) Drain pump
JP2008068161A (en) Wet fuel gas desulfurizer
JP2008101553A (en) Impeller of water pump
CA2663861C (en) Apparatus for distribution of a gas into a body of liquid
JP2009178619A (en) Aeration agitator
JP6159577B2 (en) Gas-liquid stirring blade
JP2013013861A (en) Stirring device
JP6074647B2 (en) Stirring method and stirrer
CN103922464A (en) Submerged aerator with rubbing device
JP2019183604A (en) Drainage vane
KR101437513B1 (en) bubble generating apparatus
WO2017051405A1 (en) Centrifugal aerator
KR101718588B1 (en) Crystallizer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041186.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167000288

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839628

Country of ref document: EP

Kind code of ref document: A1