JP2011017262A - Drain pump - Google Patents

Drain pump Download PDF

Info

Publication number
JP2011017262A
JP2011017262A JP2009161143A JP2009161143A JP2011017262A JP 2011017262 A JP2011017262 A JP 2011017262A JP 2009161143 A JP2009161143 A JP 2009161143A JP 2009161143 A JP2009161143 A JP 2009161143A JP 2011017262 A JP2011017262 A JP 2011017262A
Authority
JP
Japan
Prior art keywords
blade
blades
auxiliary
shaft portion
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009161143A
Other languages
Japanese (ja)
Other versions
JP5422277B2 (en
Inventor
Tomoya Kato
友也 加藤
Shinichi Nemoto
伸一 根本
Kenji Yamakai
健治 山開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2009161143A priority Critical patent/JP5422277B2/en
Priority to US12/828,483 priority patent/US8747071B2/en
Priority to KR1020100064176A priority patent/KR101685205B1/en
Priority to EP10006934.3A priority patent/EP2287470B1/en
Priority to TW099122224A priority patent/TWI499724B/en
Priority to CN201010231637.3A priority patent/CN101943181B/en
Publication of JP2011017262A publication Critical patent/JP2011017262A/en
Application granted granted Critical
Publication of JP5422277B2 publication Critical patent/JP5422277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drain pump that maintains pump performance such as lifting amount and discharge amount, and reduces noise and vibration accompanying water scooping of a rotary impeller.SOLUTION: A large-diameter blade 101 is divided into an inner blade 102 extending outward from a shaft part 52 and an outer blade 103 extending inward from a cylindrical wall member 64. A radius of an impeller scooping up water, that is a sum of a radius length of the inner blade 102 and a radius length of the outer blade 103 is made substantially equal to a radius length of the large-diameter blade of a conventional one. Therefore, pump performance equal to the conventional one is secured. As an opening area and flow passage area of a suction port is made substantially equal to the conventional one, the discharge amount of the pump can be equal to the conventional one. The large-diameter blade 101 is divided at a position where an amount of generated air bubbles increases, and the inner blade 102 and outer blade 103 are alternately disposed. Accordingly, air bubbles are escaped to a downstream side in a rotational direction, so that intensity of collision with the blades and air bubbles is reduced, and noise caused by burst of air bubbles and vibration caused by a collision load of the flow of a gas-liquid mixture are reduced.

Description

本発明は、特に空調機に装備される排水ポンプに関する。   The present invention particularly relates to a drainage pump installed in an air conditioner.

空調機の室内ユニットにおいては、冷房運転時に空気中の水分が凝縮して熱交換器に付着し、水滴が熱交換器の下方に設けられるドレンパン内に滴下する。このドレンパン内に溜ったドレン水を排水するために排水ポンプが室内ユニットに装備される。この排水ポンプの一例として、下端部に吸込口が設けられると共に側部に吐出口が設けられたハウジング内に回転羽根を回転自在に設け、ハウジングの上部開口にカバーを介して固定したモータにより回転羽根を回転させるものがある。モータを駆動して回転羽根を回転させると、ドレンパン内に貯溜したドレン水は吸込口の下端から吸い込まれ、ハウジング内面に沿って揚水され、ハウジングの吐出口から外部に吐出される。   In the indoor unit of the air conditioner, moisture in the air condenses and adheres to the heat exchanger during cooling operation, and water droplets drip into a drain pan provided below the heat exchanger. In order to drain the drain water accumulated in the drain pan, a drain pump is installed in the indoor unit. As an example of this drainage pump, a rotary blade is rotatably provided in a housing having a suction port at the lower end and a discharge port at the side, and is rotated by a motor fixed to the upper opening of the housing through a cover. Some rotate the blades. When the motor is driven to rotate the rotating blade, the drain water stored in the drain pan is sucked from the lower end of the suction port, pumped up along the inner surface of the housing, and discharged from the discharge port of the housing to the outside.

この種の排水ポンプの先行技術例として、特許文献1に開示されているものがある。図15は、特許文献1に開示された排水ポンプの全体構成を示す一部破断正面図、図16はその回転羽根の上面図及び側面図である。全体を符号1で示す排水ポンプは、モータ10と、モータ10に対して下方にブラケット20を介して取り付けられたポンプ本体30とを有する。ブラケット20は、ハウジング40の上部開口を覆うカバー32と一体に形成されており、カバー32はシール部材34を介してハウジング40に連結されている。ハウジング40は、プラスチック製であって、下方に向かって開口するパイプ状の吸込口42、内部に形成されているポンプ室44、及び側方に向かって開口する吐出口46を有している。吸込口42の吸込端部43は、開口端に向かって内径寸法が絞られるテーパ面に形成されている。   As a prior art example of this type of drainage pump, there is one disclosed in Patent Document 1. FIG. 15 is a partially broken front view showing the entire configuration of the drainage pump disclosed in Patent Document 1, and FIG. 16 is a top view and a side view of the rotary blade. The drainage pump indicated by reference numeral 1 as a whole has a motor 10 and a pump body 30 attached to the motor 10 below via a bracket 20. The bracket 20 is formed integrally with a cover 32 that covers an upper opening of the housing 40, and the cover 32 is connected to the housing 40 via a seal member 34. The housing 40 is made of plastic, and has a pipe-like suction port 42 that opens downward, a pump chamber 44 formed inside, and a discharge port 46 that opens toward the side. The suction end portion 43 of the suction port 42 is formed in a tapered surface whose inner diameter dimension is narrowed toward the opening end.

ハウジング40内には、モータ10の出力によって回転される回転羽根50がポンプ室44内に収容される状態で装備されている。回転羽根50は、軸部52と、軸部52の上部において外周部から放射方向に延びる複数の平板状の大径羽根60と、各大径羽根60の下縁部に連結されるとともに吸込口42に収容される複数の平板状の小径羽根54とを有している。軸部52は、カバー32の中央に形成された貫通孔36を貫通してモータ10側へ突出しており、軸部52の上端中心に設けた穴53にモータ10の駆動軸12が挿入されて固定されている。軸部52の上面には、水切円板14が取り付けられており、この水切円板14は、カバー32の貫通孔36から噴出するドレン水がモータ10側へ飛散するのを防止している。   In the housing 40, a rotary blade 50 that is rotated by the output of the motor 10 is installed in a state of being accommodated in the pump chamber 44. The rotary blade 50 is connected to the shaft portion 52, a plurality of plate-shaped large-diameter blades 60 extending in the radial direction from the outer periphery at the upper portion of the shaft portion 52, and the lower edge portion of each large-diameter blade 60 and a suction port And a plurality of flat plate-shaped small-diameter blades 54 accommodated in 42. The shaft portion 52 passes through a through hole 36 formed at the center of the cover 32 and protrudes toward the motor 10. The drive shaft 12 of the motor 10 is inserted into a hole 53 provided at the center of the upper end of the shaft portion 52. It is fixed. A draining disc 14 is attached to the upper surface of the shaft portion 52, and the draining disc 14 prevents the drain water ejected from the through hole 36 of the cover 32 from scattering toward the motor 10.

大径羽根60の下縁部はテーパ状に形成されており、この下縁部は開口部63を有する円盤状の環状部材62で連結されている。小径羽根54は、大径羽根60と樹脂により一体的に構成されており、大径羽根60の下方に配置されている。隣り合う大径羽根60,60の間には補助羽根68が設けられており、この補助羽根68と大径羽根60とによりポンプの揚程を確保することができる。   The lower edge portion of the large-diameter blade 60 is formed in a tapered shape, and the lower edge portion is connected by a disk-shaped annular member 62 having an opening 63. The small-diameter blades 54 are formed integrally with the large-diameter blades 60 and the resin, and are disposed below the large-diameter blades 60. An auxiliary blade 68 is provided between the adjacent large-diameter blades 60, 60, and the pump head can be secured by the auxiliary blade 68 and the large-diameter blade 60.

大径羽根60と補助羽根68の外周端は円筒状壁部材64によって連結されている。円筒状壁部材64の上縁部の位置は、大径羽根60と補助羽根68の上縁部の位置より低くされている。大径羽根60の回転により液体内から発生した気泡の流れは、円筒状壁部材64によって吐出口46へスムーズに流れ、気泡のカバー32の底面35への衝突が緩和され、騒音が減少する。また、排水ポンプ1が停止したときに、吐出口46からハウジング40のポンプ室44へ戻る水が円筒状壁部材64に突き当たり、円筒状壁部材64の緩衝により徐々に拡散され、戻り水に起因する騒音も低減される。なお、円筒状壁部材64の上縁部の位置は、ポンプ能力(使用する揚程)に応じて、大径羽根60及び補助羽根68の上縁部の位置よりも高くしたり、あるいは同じ位置にしたりすることで、騒音を減少させることができる。   The outer peripheral ends of the large-diameter blade 60 and the auxiliary blade 68 are connected by a cylindrical wall member 64. The position of the upper edge portion of the cylindrical wall member 64 is set lower than the positions of the upper edge portions of the large-diameter blade 60 and the auxiliary blade 68. The flow of bubbles generated from the liquid by the rotation of the large-diameter blades 60 smoothly flows to the discharge port 46 by the cylindrical wall member 64, and the collision of the bubbles with the bottom surface 35 of the cover 32 is alleviated and noise is reduced. Further, when the drainage pump 1 is stopped, water returning from the discharge port 46 to the pump chamber 44 of the housing 40 hits the cylindrical wall member 64 and is gradually diffused by the buffering of the cylindrical wall member 64, and is caused by the return water. Noise is also reduced. In addition, the position of the upper edge part of the cylindrical wall member 64 is made higher than the position of the upper edge part of the large diameter blade | wing 60 and the auxiliary blade | wing 68 according to pump capability (the head to be used), or is made into the same position. Noise can be reduced.

円筒状壁部材64の下端部は、大径羽根60と補助羽根68の下縁部を連結する環状部材62に環状連結される。この環状部材62により、吸込口42から上昇してくるドレン水の液面がほぼ上下に分断され、大径羽根60に接する水の量が減少し、気泡の発生が減少することとなる。この環状部材62の内周部側は軸部52との間に開口部63を有する。大径羽根60と補助羽根68の下縁部は小径羽根64に向かって傾斜する形状に形成され、環状部材62もこの傾斜に合わせて皿状に形成されている。   The lower end portion of the cylindrical wall member 64 is annularly connected to an annular member 62 that connects the lower edge portion of the large-diameter blade 60 and the auxiliary blade 68. The annular member 62 divides the level of the drain water rising from the suction port 42 substantially vertically, reducing the amount of water in contact with the large-diameter blade 60 and reducing the generation of bubbles. The annular member 62 has an opening 63 between the inner peripheral portion side and the shaft portion 52. The lower edge portion of the large-diameter blade 60 and the auxiliary blade 68 is formed in a shape inclined toward the small-diameter blade 64, and the annular member 62 is also formed in a dish shape in accordance with this inclination.

特開平09−68185号公報JP 09-68185 A

上記のような排水ポンプ1においては、空調機の電源を入れて排水ポンプ1が運転を開始すると、ドレン水が小径羽根54に掛かり、回転力が加わって吸込みが始まり、水が徐々にポンプ室44内に導入される。ポンプ室44内では、水と空気が混在した状態となり、回転羽根50にはそれらの気液混合流体が衝突する。この衝突が水掻き騒音や振動に繋がる。   In the drainage pump 1 as described above, when the air conditioning machine is turned on and the drainage pump 1 starts operation, drain water is applied to the small-diameter blade 54, suction is started by applying rotational force, and the water gradually flows into the pump chamber. 44. In the pump chamber 44, water and air are mixed, and the gas-liquid mixed fluid collides with the rotary blade 50. This collision leads to water scraping noise and vibration.

回転羽根50では、気液境界に多量に発生する気泡が直接大径羽根60の前面に衝突して破裂し、大径羽根60の下流側では気泡が発生するため、キャビテーション音と振動が大きくなる。円筒状壁部材64の上縁部の位置が大径羽根60の上縁部の位置より低く形成されていることにより騒音をある程度低減することが可能となるが、騒音をより効果的に低減させることについては、格別の配慮がなされていなかった。   In the rotary blade 50, a large amount of bubbles generated at the gas-liquid boundary directly collide with the front surface of the large-diameter blade 60 and burst, and bubbles are generated downstream of the large-diameter blade 60, so that cavitation noise and vibration increase. . Although the position of the upper edge of the cylindrical wall member 64 is formed lower than the position of the upper edge of the large-diameter blade 60, the noise can be reduced to some extent, but the noise is more effectively reduced. No special consideration was given to this.

そこで、本発明の目的は、揚程、吐出し量などのポンプ性能を維持しつつ、回転羽根の水掻きに伴う騒音と振動を低減可能な排水ポンプを提供することにある。   Accordingly, an object of the present invention is to provide a drainage pump capable of reducing noise and vibration associated with scrubbing of rotating blades while maintaining pump performance such as a head and discharge amount.

上記課題を解決するため、本発明による排水ポンプは、モータと、前記モータの出力軸に連結される回転羽根と、下端部に吸込口が設けられるとともに側部に吐出口が設けられており、前記回転羽根を回転自在に収容するハウジングとを備え、前記回転羽根は、前記モータの出力軸に連結される軸部と、前記軸部から放射方向に延びる複数の板状の大径羽根と、前記大径羽根の下縁部に連結されるとともに前記吸込口に収容される複数の板状の小径羽根と、前記大径羽根の外周部を連結する円筒状壁部材とを有している排水ポンプであって、前記大径羽根は、前記軸部から外方へ延びる内側羽根と、前記円筒状壁部材から内方へ延びる外側羽根とに分割されており、前記内側羽根と前記外側羽根は前記軸部の周りに交互に配置されていることを特徴としている。   In order to solve the above problems, the drainage pump according to the present invention includes a motor, a rotary blade connected to the output shaft of the motor, a suction port at the lower end, and a discharge port at the side. A housing that rotatably accommodates the rotating blade, and the rotating blade includes a shaft portion coupled to the output shaft of the motor, and a plurality of plate-shaped large-diameter blades extending radially from the shaft portion; Drainage having a plurality of plate-shaped small-diameter blades connected to the lower edge portion of the large-diameter blade and accommodated in the suction port, and a cylindrical wall member connecting the outer peripheral portion of the large-diameter blade. The large-diameter blade is divided into an inner blade that extends outward from the shaft portion and an outer blade that extends inward from the cylindrical wall member, and the inner blade and the outer blade are Alternatingly arranged around the shaft It is characterized.

本発明の排水ポンプによれば、大径羽根が内側羽根と外側羽根に分割されているとともに、内側羽根と外側羽根が軸部の周りに交互に配置されていることで、内側羽根と外側羽根の間、内側羽根と円筒状壁部材の間、及び外側羽根と軸部との間から気泡を回転方向下流側へ逃がすことができるため、大径羽根に衝突する気泡の量が低減し、気泡の潰れによる騒音を低減することができる。また、大径羽根に作用する回転方向と逆向きの力が低減するので、負荷が低減して振動が低減する。なお、軸部の中心から内側羽根の径方向外側端部までの距離R1と軸部の中心から外側羽根の径方向内側端部までの距離R2とを実質的に同じにすることにより、水を掻き揚げる大径羽根の径方向長さが従来品の大径羽根の径方向長さと実質的に同じになるため、従来品と同等のポンプ性能を確保することができる。また、吸込口の開口面積と流路面積を従来品と実質的に同じにすることにより、ポンプの吐出し量についても、従来品と同等の量を確保することができる。   According to the drainage pump of the present invention, the large-diameter blade is divided into the inner blade and the outer blade, and the inner blade and the outer blade are alternately arranged around the shaft portion. , Between the inner blade and the cylindrical wall member, and between the outer blade and the shaft portion, the bubbles can escape to the downstream side in the rotation direction. Noise due to crushing can be reduced. Moreover, since the force opposite to the rotational direction acting on the large-diameter blade is reduced, the load is reduced and the vibration is reduced. By making the distance R1 from the center of the shaft part to the radially outer end of the inner blade and the distance R2 from the center of the shaft part to the radially inner end of the outer blade substantially the same, Since the radial length of the large-diameter blade to be lifted is substantially the same as the radial length of the conventional large-diameter blade, the pump performance equivalent to that of the conventional product can be ensured. Further, by making the opening area of the suction port and the flow path area substantially the same as those of the conventional product, it is possible to secure the same amount of pump discharge as that of the conventional product.

本発明の排水ポンプによれば、内側羽根と外側羽根の間、内側羽根と円筒状壁部材の間、及び外側羽根と軸部との間から気泡を回転方向下流側へ逃がすことができるため、円筒状壁部材の形状やその上縁部の位置にかかわらず、大径羽根に衝突する気泡の量が低減し、気泡の潰れによる騒音を低減することができる。また、大径羽根に作用する回転方向と逆向きの力が低減するので、負荷が低減して振動が低減する。よって、空調機の静穏化に寄与することができる。   According to the drainage pump of the present invention, air bubbles can escape from the inner blade and the outer blade, between the inner blade and the cylindrical wall member, and between the outer blade and the shaft portion to the downstream side in the rotation direction. Regardless of the shape of the cylindrical wall member and the position of its upper edge, the amount of bubbles that collide with the large-diameter blades can be reduced, and noise caused by the collapse of the bubbles can be reduced. Moreover, since the force opposite to the rotational direction acting on the large-diameter blade is reduced, the load is reduced and the vibration is reduced. Therefore, it can contribute to the calming of the air conditioner.

本発明による排水ポンプの一例を示す一部破断正面図である。It is a partially broken front view which shows an example of the drainage pump by this invention. 本発明による排水ポンプに用いる回転羽根の一実施例を示す図である。It is a figure which shows one Example of the rotary blade used for the drainage pump by this invention. 図2の回転羽根の変形例を示す図である。It is a figure which shows the modification of the rotary blade | wing of FIG. 図2に示す回転羽根の低揚程運転時の気液境界の様子を従来の回転羽根の場合と比較して示す説明図である。It is explanatory drawing which shows the mode of the gas-liquid boundary at the time of the low head operation of the rotary blade shown in FIG. 2 compared with the case of the conventional rotary blade. 図2に示す回転羽根の高揚程運転時の気液境界の様子を従来の回転羽根の場合と比較して示す説明図である。It is explanatory drawing which shows the mode of the gas-liquid boundary at the time of the high head operation of the rotary blade shown in FIG. 2 compared with the case of the conventional rotary blade. 本発明による排水ポンプに用いる回転羽根の別の実施例を示す図である。It is a figure which shows another Example of the rotary blade used for the drainage pump by this invention. 本発明による排水ポンプに用いる回転羽根の更に別の実施例を示す図である。It is a figure which shows another Example of the rotary blade used for the drainage pump by this invention. 本発明による排水ポンプに用いる回転羽根の更に別の実施例を示す図である。It is a figure which shows another Example of the rotary blade used for the drainage pump by this invention. 本発明による排水ポンプに用いる回転羽根の実施例の部分断面図である。It is a fragmentary sectional view of the Example of the rotary blade used for the drainage pump by this invention. 本発明による排水ポンプに用いる回転羽根の小径羽根の変形例の下面図である。It is a bottom view of the modification of the small diameter blade | wing of a rotary blade used for the drainage pump by this invention. 本発明による排水ポンプの揚程とそれに応じたラジアル方向の振動の大きさとの関係を従来の排水ポンプの場合と並べて示したグラフである。It is the graph which showed the relationship between the head of the drainage pump by this invention, and the magnitude | size of the vibration of the radial direction according to it along with the case of the conventional drainage pump. 本発明による排水ポンプの揚程とそれに応じたアキシャル方向の振動の大きさとの関係を従来の排水ポンプの場合と並べて示したグラフである。It is the graph which showed the relationship between the head of the drainage pump by this invention, and the magnitude | size of the vibration of the axial direction according to it along with the case of the conventional drainage pump. 本発明による排水ポンプの揚程能力を従来の排水ポンプの場合と並べて示した表である。It is the table | surface which showed the head capacity of the drainage pump by this invention along with the case of the conventional drainage pump. ACモータ及びDCモータの回転数とトルクの関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of an AC motor and a DC motor, and torque. 従来の排水ポンプの一例を示す一部破断正面図である。It is a partially broken front view which shows an example of the conventional drainage pump. 図15に示す排水ポンプの回転羽根の上面図及び側面図である。It is the upper side figure and side view of a rotary blade of the drainage pump shown in FIG.

以下、図面を参照して本発明による排水ポンプの実施例を説明する。図1には、本発明による排水ポンプの一例の一部破断正面図、図2には、図1に示す排水ポンプに用いる回転羽根の一実施例が示されている。図2(a)は回転羽根の上面図、図2(b)は図2(a)に示す回転羽根のA−A断面図、図2(c)は図2(a)に示す回転羽根の下面図である。この回転羽根が組み込まれる排水ポンプの構造は、図15、図16に示すものと同等のものには同じ符号を用いることで再度の説明を省略する。また、回転羽根についても、本発明の特徴となる部分以外の構造については、図15、図16で示したものと同等のものには同じ符号を用いることで再度の説明を省略する。   Embodiments of the drainage pump according to the present invention will be described below with reference to the drawings. FIG. 1 is a partially cutaway front view of an example of a drainage pump according to the present invention, and FIG. 2 shows an embodiment of a rotary blade used in the drainage pump shown in FIG. 2A is a top view of the rotary blade, FIG. 2B is a cross-sectional view taken along the line AA of the rotary blade shown in FIG. 2A, and FIG. 2C is a view of the rotary blade shown in FIG. It is a bottom view. The structure of the drainage pump in which the rotating blades are incorporated is not described again by using the same reference numerals for those equivalent to those shown in FIGS. 15 and 16. Also, with respect to the rotating blades, the same reference numerals are used for the structures other than the parts that characterize the present invention, and the same components as those shown in FIGS.

図2に示す回転羽根100においては、大径羽根101は、軸部52から径方向外側へ延びる内側羽根102と、円筒状壁部材64から径方向内側へ延びる外側羽根103とに分割されており、内側羽根102と外側羽根103は軸部52の周りに交互に配置されている。   In the rotary blade 100 shown in FIG. 2, the large-diameter blade 101 is divided into an inner blade 102 that extends radially outward from the shaft portion 52 and an outer blade 103 that extends radially inward from the cylindrical wall member 64. The inner blades 102 and the outer blades 103 are alternately arranged around the shaft portion 52.

図4及び図5には、本発明による排水ポンプの低揚程運転時(図4)と高揚程運転時(図5)について、気液境界の様子が従来の排水ポンプの場合と比較して模式的に示されている。低揚程運転時(図4)には、大径羽根101が内側羽根102と外側羽根103とに分割されている位置の近傍(一点鎖線の円で示す位置)が、実質的に気液境界となる。気液境界の内側が空気層の領域であり、気液境界の外側が水層の領域である。即ち、気泡の発生量が多くなる位置で大径羽根101が内側羽根102と外側羽根103とに分割されている。大径羽根101の分割位置は、騒音を低減しようとする揚程に応じて設定される。すなわち、騒音を低減しようとする揚程の時に回転羽根100内に生じる気液境界の近傍において大径羽根101を内側羽根102と外側羽根103に分割するのが効果的である。   4 and 5, the state of the gas-liquid boundary in the low head operation (FIG. 4) and the high head operation (FIG. 5) of the drainage pump according to the present invention is compared with that of the conventional drainage pump. Has been shown. During the low head operation (FIG. 4), the vicinity of the position where the large-diameter blade 101 is divided into the inner blade 102 and the outer blade 103 (the position indicated by the one-dot chain line circle) is substantially the gas-liquid boundary. Become. The inside of the gas-liquid boundary is the air layer region, and the outside of the gas-liquid boundary is the water layer region. That is, the large-diameter blade 101 is divided into the inner blade 102 and the outer blade 103 at a position where the amount of generated bubbles increases. The division position of the large-diameter blade 101 is set according to the head for reducing noise. That is, it is effective to divide the large-diameter blade 101 into the inner blade 102 and the outer blade 103 in the vicinity of the gas-liquid boundary generated in the rotary blade 100 at the head for reducing noise.

回転羽根100が図示された矢印の方向に回転すると、気泡と水とは回転羽根100内において矢印で示すように流れ、気泡が内側羽根102と外側羽根103とに衝突することなくこれらの間を通過し、且つ下流側の気泡発生量を抑制することが可能になる。このように、内側羽根102と外側羽根103の間、内側羽根102と円筒状壁部分64との間、及び外側羽根103と軸部52との間から気泡を逃がす構造とすることで、気泡が羽根に衝突する量が減少するので、気泡の潰れによるキャビテーションが減少し、これにより、騒音と振動を低減することができる。また、気泡が羽根に衝突することで、羽根に回転方向と逆向きの力が作用するが、水の逃げ道を設けておくことで、各羽根に作用する逆向きの力が低減するので、負荷が低減する。   When the rotary blade 100 rotates in the direction of the arrow shown in the figure, the bubbles and water flow in the rotary blade 100 as indicated by the arrows, and the bubbles pass between them without colliding with the inner blade 102 and the outer blade 103. It is possible to suppress the amount of bubbles that pass through and downstream. As described above, the air bubbles are allowed to escape from between the inner blade 102 and the outer blade 103, between the inner blade 102 and the cylindrical wall portion 64, and between the outer blade 103 and the shaft portion 52. Since the amount of collision with the blades is reduced, cavitation due to bubble collapse is reduced, thereby reducing noise and vibration. In addition, when the air bubbles collide with the blades, a force in the direction opposite to the rotation direction acts on the blades, but by providing a water escape path, the reverse force acting on each blade is reduced. Is reduced.

揚程が上昇するに連れて、高揚程運転時(図5)に示すように、気液境界の径は縮小して、内側羽根102と外側羽根103の水を掻く量が多くなり、気泡は内側羽根102のみに当たるようになる。水を掻く量が多くなると負荷が大きくなるので、回転羽根50の回転数は起動時と比べて低下する。気液境界の径が縮小し、且つ回転羽根50の回転数が低下することにより、回転羽根100への気泡の衝突量が少なくなるため、キャビテーション音は低下する。また、水は、内側羽根102と円筒状壁部材64の間、及び内側羽根102と外側羽根103の間にある隙間から下流へ逃がすようになるので、羽根一枚当たりの負荷を減らすことができ、従来と比べて振動を低減することができる。   As the head rises, as shown in the high head operation (FIG. 5), the diameter of the gas-liquid boundary decreases, and the amount of water scraped by the inner blade 102 and the outer blade 103 increases. It hits only the blade 102. Since the load increases as the amount of water scraping increases, the rotational speed of the rotary blade 50 decreases compared to that at the time of activation. Since the diameter of the gas-liquid boundary is reduced and the rotational speed of the rotary blade 50 is reduced, the amount of bubbles colliding with the rotary blade 100 is reduced, so that the cavitation noise is reduced. Further, since water escapes downstream from the gap between the inner blade 102 and the cylindrical wall member 64 and between the inner blade 102 and the outer blade 103, the load per blade can be reduced. The vibration can be reduced as compared with the conventional case.

図11のグラフには本発明による排水ポンプの揚程とそれに応じたラジアル方向の振動の大きさとの関係が、また図12のグラフには、揚程とアキシャル方向の振動の大きさとの関係が、従来品の場合と並べて示されている。図11及び図12に示すように、本発明品では、特に、ラジアル方向の振動が低揚程運転において大きく改善されている。また、総じて、どの揚程でも、本発明品の方が従来品と比較して、振動が低減している。   The graph of FIG. 11 shows the relationship between the head of the drainage pump according to the present invention and the magnitude of vibration in the radial direction, and the graph of FIG. 12 shows the relationship between the head and the magnitude of vibration in the axial direction. It is shown side by side with the product. As shown in FIGS. 11 and 12, in the product of the present invention, the vibration in the radial direction is greatly improved particularly in the low head operation. In general, the vibration of the product of the present invention is lower than that of the conventional product at any head.

内側羽根102と外側羽根103の各径方向長さは、実使用揚程に応じて定めることができる。即ち、羽根半径をrとしたとき、揚程H=r^2×ω^2÷(2×g)の関係がある。内側羽根102と外側羽根103の各径方向長さの和を従来の大径羽根の径方向長さと等しくすることで、水を掻き揚げる羽根半径rが変わらないようにすることができ、それによって、従来品と同等のポンプ性能を確保することができる。   The radial lengths of the inner blade 102 and the outer blade 103 can be determined according to the actual lift. That is, when the blade radius is r, there is a relationship of lift H = r ^ 2 × ω ^ 2 ÷ (2 × g). By making the sum of the radial lengths of the inner blade 102 and the outer blade 103 equal to the radial length of the conventional large blade, it is possible to keep the blade radius r that rakes water from changing, thereby The pump performance equivalent to that of the conventional product can be ensured.

すなわち、図2に示す例では、軸部52の中心から外側羽根103の径方向内側端部103aまでの距離R2は、軸部52の中心から内側羽根102の径方向外側端部102aまでの距離R1と実質的に同じにしてある。このようなR1とR2との関係を保つことによって、従来品と同等のポンプ性能を確保することができるのに加えて、外側羽根103の径方向内側端部103aと内側羽根102の径方向外側端部102aとの間を気泡と水の混合物の流れFが流れ易くなる。すなわち、気泡については逃げ道が確保されることになり、気泡の内側羽根102や外側羽根103との衝突が少なくなり、気泡の潰れに起因するキャビテーションによる騒音・振動が低減する。なお、R2はR1より大きくても構わない。逆に、R2をR1より十分に小さくすると、気液混合流と回転羽根100との衝突の状態が従来と変わらなくなるので、騒音・振動低減の作用・効果が薄れる。   That is, in the example shown in FIG. 2, the distance R2 from the center of the shaft portion 52 to the radially inner end portion 103a of the outer blade 103 is the distance from the center of the shaft portion 52 to the radially outer end portion 102a of the inner blade 102. It is substantially the same as R1. By maintaining such a relationship between R1 and R2, the pump performance equivalent to that of the conventional product can be secured, and the radially inner end 103a of the outer blade 103 and the radially outer end of the inner blade 102 can be secured. A flow F of a mixture of air bubbles and water easily flows between the end portions 102a. That is, an escape path is secured for the bubbles, collision of the bubbles with the inner blades 102 and the outer blades 103 is reduced, and noise and vibration due to cavitation due to bubble collapse are reduced. R2 may be larger than R1. Conversely, if R2 is made sufficiently smaller than R1, the state of collision between the gas-liquid mixed flow and the rotary blade 100 becomes the same as in the prior art, and therefore the noise / vibration reducing action / effect is reduced.

図3は図2の回転羽根の変形例を示す図であり、図3(a)は上面図、図3(b)は図3(a)のA’―A’断面図、図3(c)は図3(a)の下面図である。図2では円筒状壁部材64が段付き形状となっているが、図3に示すように、円筒状壁部材64をストレートの薄肉形状とすることで、回転羽根100’内の流路が広がり、気液混合物がより流れ易くなるため、さらに騒音・振動低減効果が高くなる。   3 is a view showing a modification of the rotary blade of FIG. 2, FIG. 3 (a) is a top view, FIG. 3 (b) is a cross-sectional view taken along line A′-A ′ of FIG. 3 (a), and FIG. ) Is a bottom view of FIG. In FIG. 2, the cylindrical wall member 64 has a stepped shape. However, as shown in FIG. 3, the flow path in the rotary blade 100 ′ is widened by making the cylindrical wall member 64 a straight thin shape. Since the gas-liquid mixture flows more easily, the noise / vibration reduction effect is further enhanced.

また、吐出し量を確保するため、吸込口42の開口面積と流路面積については、従来品と変更していない。ポンプ性能の確保については、図13に示すように、吐出し量と締切揚程について、従来品と同等の能力を確保することができることが確認されている。   Moreover, in order to ensure the discharge amount, the opening area and the flow path area of the suction port 42 are not changed from the conventional product. As for ensuring the pump performance, as shown in FIG. 13, it has been confirmed that the same capacity as that of the conventional product can be ensured with respect to the discharge amount and the deadline lifting height.

図2に示す回転羽根100は、軸部52の周方向に隣り合う大径羽根101,101間に放射方向に延びる板状の補助羽根104を備えている。なお、図面を見易くするために、符号104は一つの補助羽根についてのみ付してある。補助羽根104は、軸部52と円筒状壁部材64から離間する位置において径方向に延びる内側補助羽根105と、円筒状壁部材64から径方向内側へ延びる外側補助羽根106とに分割されている。大径羽根101の内側羽根102と補助羽根104の内側補助羽根105、及び大径羽根101の外側羽根103と補助羽根104の外側補助羽根106は、軸部52の周りに交互に配置されている。このように、補助羽根104を両側の大径羽根101,101間の中間に設けることにより、大きな揚程を確保することができる。   A rotary blade 100 shown in FIG. 2 includes a plate-like auxiliary blade 104 extending in the radial direction between large-diameter blades 101 and 101 adjacent to each other in the circumferential direction of the shaft portion 52. In order to make the drawing easy to see, the reference numeral 104 is attached to only one auxiliary blade. The auxiliary blade 104 is divided into an inner auxiliary blade 105 extending in the radial direction at a position spaced from the shaft portion 52 and the cylindrical wall member 64, and an outer auxiliary blade 106 extending inward in the radial direction from the cylindrical wall member 64. . The inner blade 102 of the large blade 101 and the inner blade 105 of the auxiliary blade 104, and the outer blade 103 of the large blade 101 and the outer blade 106 of the auxiliary blade 104 are alternately arranged around the shaft portion 52. . Thus, a large head can be secured by providing the auxiliary blade 104 in the middle between the large-diameter blades 101 on both sides.

図6には、本発明による排水ポンプに用いる回転羽根の別の実施例が示されている。この回転羽根110においては、円筒状壁部材164の上縁部の位置を大径羽根101と補助羽根104の上縁部の位置よりも低くしてある。円筒状壁部材164の上縁部の内側には、円弧状の面取り部(図示せず)を形成することができる。円筒状壁部材164をこのように形成することで、大径羽根101の周囲の液体内から発生した気泡の流れが、吐出口46へスムーズに流れ、気泡のカバー32の底面35への衝突が緩和されて騒音が減少する。   FIG. 6 shows another embodiment of the rotary blade used in the drainage pump according to the present invention. In the rotary blade 110, the position of the upper edge portion of the cylindrical wall member 164 is set lower than the positions of the upper edge portions of the large-diameter blade 101 and the auxiliary blade 104. An arc-shaped chamfered portion (not shown) can be formed inside the upper edge portion of the cylindrical wall member 164. By forming the cylindrical wall member 164 in this manner, the flow of bubbles generated from the liquid around the large-diameter blade 101 flows smoothly to the discharge port 46, and the bubbles collide with the bottom surface 35 of the cover 32. Alleviated and reduced noise.

また、排水ポンプが停止したときに、吐出口46からケーシング内のポンプ室44へ戻る戻り水が円筒状壁部材164に突き当たり、円筒状壁部材164の緩衝により徐々に拡散され、戻り水に起因する騒音も低減する。しかも、円弧状の面取り部は、例えば円筒状壁部材164の板厚寸法にほぼ等しい曲率半径を有することによって、大径羽根101や補助羽根104の回転によって半径方向に流れるエネルギーを付与されたドレン水は、円筒状壁部材164の上縁部をスムーズに乗り越えて、つまり気泡の流れがスムーズになって吐出口46側へ向かうこととなり、低騒音化が実現できる。   Further, when the drainage pump is stopped, the return water returning from the discharge port 46 to the pump chamber 44 in the casing hits the cylindrical wall member 164 and is gradually diffused by the buffering of the cylindrical wall member 164, resulting from the return water. Reducing noise. Moreover, the arc-shaped chamfered portion has, for example, a radius of curvature approximately equal to the plate thickness dimension of the cylindrical wall member 164, thereby providing a drain to which energy flowing in the radial direction is imparted by the rotation of the large-diameter blade 101 or the auxiliary blade 104. The water smoothly moves over the upper edge of the cylindrical wall member 164, that is, the flow of bubbles is smoothed toward the discharge port 46, and noise can be reduced.

円筒状壁部材164の下端部は、大径羽根101と補助羽根104の下縁部を連結する環状部材62に環状連結される。なお、図では、円筒状壁部材164と環状部材62とが一体的に構成されている場合を示しているが、それらを別体で構成してよいのは勿論である。環状部材62により、吸込口42から上昇してくるドレン水の液面がほぼ上下に分断され、大径羽根101に接する水の量が減少し、気泡の発生が減少する。環状部材62の内周部側は回転羽根110の中心部との間に開口部63を有する。大径羽根101と補助羽根105の下縁部は小径羽根54に向かって傾斜する形状に形成され、環状部材62もこの傾斜に合わせて皿状に形成される。   The lower end portion of the cylindrical wall member 164 is annularly connected to an annular member 62 that connects the lower edge portion of the large-diameter blade 101 and the auxiliary blade 104. In addition, although the figure shows the case where the cylindrical wall member 164 and the annular member 62 are integrally configured, it is needless to say that they may be configured separately. The liquid level of the drain water rising from the suction port 42 is substantially vertically divided by the annular member 62, the amount of water in contact with the large-diameter blade 101 is reduced, and the generation of bubbles is reduced. The inner peripheral side of the annular member 62 has an opening 63 between the center of the rotary blade 110. The lower edge portions of the large-diameter blade 101 and the auxiliary blade 105 are formed in a shape inclined toward the small-diameter blade 54, and the annular member 62 is also formed in a dish shape in accordance with this inclination.

図9には、本発明による排水ポンプの回転羽根の部分断面図を示している。図9(a)は図2の部分断面図であり、それ以外は図2とは異なる形状の実施例の部分断面図である。これらの実施例に示す通り、円筒状壁部材64の形状やその上縁部の位置にかかわらず、大径羽根101が内側羽根102と外側羽根103に分割されていることにより、気泡の潰れによるキャビテーションが減少し、騒音と振動を低減させることができる。   In FIG. 9, the fragmentary sectional view of the rotary blade of the drainage pump by this invention is shown. FIG. 9A is a partial cross-sectional view of FIG. 2, and other than that, it is a partial cross-sectional view of an embodiment having a shape different from that of FIG. As shown in these embodiments, the large-diameter blade 101 is divided into the inner blade 102 and the outer blade 103 regardless of the shape of the cylindrical wall member 64 and the position of the upper edge portion thereof. Cavitation is reduced and noise and vibration can be reduced.

図10は、本発明による排水ポンプに用いる回転羽根の小径羽根の変形例の下面図を示している。図2に示す例では、揚程、吐出し量等のポンプ性能を従来品と同等に維持するため、吸込口の開口面積と流路面積を従来品と同等にしているが、必要なポンプ性能に応じて小径羽根を例えば図10に示すような形状にして吸込口の開口面積と流路面積を調整することも可能である。   FIG. 10 shows a bottom view of a modified example of a small-diameter blade of a rotary blade used in the drainage pump according to the present invention. In the example shown in FIG. 2, in order to maintain the pump performance such as the head and the discharge amount equivalent to that of the conventional product, the opening area of the suction port and the flow path area are made equivalent to those of the conventional product. Accordingly, it is also possible to adjust the opening area and the flow path area of the suction port by making the small-diameter blade into a shape as shown in FIG. 10, for example.

図7には、本発明による排水ポンプに用いる回転羽根の更に別の実施例が示されている。この回転羽根120においては、隣り合う大径羽根101,101間に複数の補助羽根104,104が配置されている。この例では、補助羽根104は二つであるが、これに限らず3つ又はそれ以上であってもよい。複数の補助羽根104,104は、隣り合う大径羽根101,101間を軸部52の周りに等間隔に分割する位置に配置されている。即ち、この実施例では、大径羽根101は軸部52の周りに90度毎に配置されており、隣り合う大径羽根101,101間に補助羽根104は二つあるので、内側羽根102と内側補助羽根105は軸部52の周りに30度間隔をおいて配置され、外側羽根103と外側補助羽根106も軸部52の周りに30度間隔をおいて配置されている。外側と内側の羽根を併せると、各羽根は15度ずつずれて配置されていることになる。   FIG. 7 shows still another embodiment of the rotary blade used in the drainage pump according to the present invention. In this rotary blade 120, a plurality of auxiliary blades 104, 104 are arranged between adjacent large-diameter blades 101, 101. In this example, the number of auxiliary blades 104 is two, but the number is not limited to this, and may be three or more. The plurality of auxiliary blades 104 and 104 are arranged at positions that divide the adjacent large-diameter blades 101 and 101 around the shaft portion 52 at equal intervals. That is, in this embodiment, the large-diameter blades 101 are arranged every 90 degrees around the shaft portion 52, and there are two auxiliary blades 104 between the adjacent large-diameter blades 101, 101. The inner auxiliary blades 105 are arranged around the shaft portion 52 with an interval of 30 degrees, and the outer blades 103 and the outer auxiliary blades 106 are also arranged around the shaft portion 52 with an interval of 30 degrees. When the outer and inner blades are combined, the blades are displaced by 15 degrees.

図8には、本発明による排水ポンプに用いる回転羽根の更に別の実施例が示されている。この回転羽根130においては、大径羽根101及び補助羽根104が、それぞれ軸部52の径方向に三分割されている。即ち、大径羽根101は、内側羽根102と外側羽根103と中間羽根107とに分割され、補助羽根104は、内側補助羽根105と外側補助羽根106と中間補助羽根108に分割されている。内側羽根102と中間羽根107、及び内側補助羽根105と中間補助羽根108は、軸部52の周りに順次ずらして配置されている。中間羽根107及び中間補助羽根108、外側羽根103及び外側補助羽根106は、軸部52の回りに交互に配置され、かつ中間羽根107は、内側補助羽根105及び外側補助羽根106と軸部52の周りにずらして配置され、中間補助羽根108は、内側羽根102及び外側羽根103と軸部52の周りにずらして配置されており、先の実施例の場合と同様に、各羽根の端部間が繋がっておらず、気液境界部付近での気体の逃げ道を提供している。   FIG. 8 shows still another embodiment of the rotary blade used in the drainage pump according to the present invention. In the rotary blade 130, the large-diameter blade 101 and the auxiliary blade 104 are each divided into three in the radial direction of the shaft portion 52. That is, the large-diameter blade 101 is divided into an inner blade 102, an outer blade 103, and an intermediate blade 107, and the auxiliary blade 104 is divided into an inner auxiliary blade 105, an outer auxiliary blade 106, and an intermediate auxiliary blade 108. The inner blade 102 and the intermediate blade 107, and the inner auxiliary blade 105 and the intermediate auxiliary blade 108 are sequentially shifted around the shaft portion 52. The intermediate blades 107 and the intermediate auxiliary blades 108, the outer blades 103 and the outer auxiliary blades 106 are alternately arranged around the shaft portion 52, and the intermediate blades 107 are arranged between the inner auxiliary blade 105, the outer auxiliary blade 106 and the shaft portion 52. The intermediate auxiliary blades 108 are arranged to be shifted around the inner blade 102 and the outer blade 103 and the shaft portion 52, and between the end portions of each blade, as in the previous embodiment. Are not connected, providing a gas escape route near the gas-liquid boundary.

なお、本発明の排水ポンプのモータとしては、ACモータ又はDCモータのいずれでも採用することができる。低揚程の場合には負荷が低く、且つ高回転なほど気液境界面が広がって水掻き時の気泡の衝突によるキャビテーション音の増大、振動の悪化が起こり易いが、モータの特性上の違いから、図14に示す如く、DCモータの方が低負荷時の回転数が高くなる傾向があるため、DCポンプに本発明を適用した方がより大きな効果を得ることができる。   In addition, as a motor of the drainage pump of the present invention, either an AC motor or a DC motor can be adopted. In the case of a low head, the lower the load and the higher the rotation, the wider the gas-liquid boundary surface, and the cavitation noise increases due to the collision of bubbles during water scraping, and the vibration tends to deteriorate, but due to the difference in motor characteristics, As shown in FIG. 14, the DC motor tends to have a higher rotational speed at a low load, and therefore, the effect of applying the present invention to the DC pump can be greater.

10 モータ 12 出力軸
14 水切円板 20 ブラケット
30 ポンプ本体 32 カバー
34 シール部材 35 底面
40 ハウジング 42 吸込口
43 吸込端部 44 ポンプ室
46 吐出口 52 軸部
54 小径羽根 62 環状部材
63 開口部 64,164 円筒状壁部材
100,110,120,130 回転羽根
101 大径羽根
102 内側羽根 102a 径方向外側端部
103 外側羽根 103a 径方向内側端部
104 補助羽根 105 内側補助羽根
106 外側補助羽根 107 中間羽根
108 中間補助羽根
DESCRIPTION OF SYMBOLS 10 Motor 12 Output shaft 14 Drained disk 20 Bracket 30 Pump main body 32 Cover 34 Seal member 35 Bottom surface 40 Housing 42 Suction port 43 Suction end 44 Pump chamber 46 Ejection port 52 Shaft unit 54 Small diameter blade 62 Ring member 63 Opening unit 64, 164 Cylindrical wall member 100, 110, 120, 130 Rotary blade 101 Large diameter blade 102 Inner blade 102a Radial outer end 103 Outer blade 103a Radial inner end 104 Auxiliary blade 105 Inner auxiliary blade 106 Outer auxiliary blade 107 Intermediate blade 108 Intermediate auxiliary blade

Claims (7)

モータと、前記モータの出力軸に連結される回転羽根と、下端部に吸込口が設けられるとともに側部に吐出口が設けられており、前記回転羽根を回転自在に収容するハウジングとを備え、前記回転羽根は、前記モータの出力軸に連結される軸部と、前記軸部から放射方向に延びる複数の板状の大径羽根と、前記大径羽根の下縁部に連結されるとともに前記吸込口に収容される複数の板状の小径羽根と、前記大径羽根の外周部を連結する円筒状壁部材とを有している排水ポンプであって、前記大径羽根は、前記軸部から外方へ延びる内側羽根と、前記円筒状壁部材から内方へ延びる外側羽根とに分割されており、前記内側羽根と前記外側羽根は前記軸部の周りに交互に配置されていることを特徴とする排水ポンプ。   A motor, a rotary blade connected to the output shaft of the motor, a suction port at the lower end and a discharge port at the side, and a housing for rotatably housing the rotary blade, The rotary blade is connected to a shaft portion connected to the output shaft of the motor, a plurality of plate-shaped large-diameter blades extending radially from the shaft portion, and a lower edge portion of the large-diameter blade, and A drainage pump having a plurality of plate-shaped small-diameter blades accommodated in a suction port and a cylindrical wall member that connects outer peripheral portions of the large-diameter blades, wherein the large-diameter blade includes the shaft portion. An inner blade extending outward from the outer wall and an outer blade extending inward from the cylindrical wall member, and the inner blade and the outer blade are alternately arranged around the shaft portion. Drainage pump characterized. 前記軸部の中心から前記内側羽根の径方向外側端部までの距離R1と、前記軸部の中心から前記外側羽根の径方向内側端部までの距離R2との関係がR1≦R2であることを特徴とする請求項1に記載の排水ポンプ。   The relationship between the distance R1 from the center of the shaft portion to the radially outer end of the inner blade and the distance R2 from the center of the shaft portion to the radially inner end of the outer blade is R1 ≦ R2. The drainage pump according to claim 1. 前記内側羽根と前記外側羽根が気液境界の近傍で分割されていることを特徴とする請求項1又は2に記載の排水ポンプ。   The drainage pump according to claim 1 or 2, wherein the inner blade and the outer blade are divided in the vicinity of a gas-liquid boundary. 前記回転羽根は、前記軸部の周方向に隣り合う前記大径羽根間において放射方向に延びる板状の補助羽根を備えており、前記補助羽根は、前記軸部と前記円筒状壁部材の間において径方向に延びる内側補助羽根と、前記円筒状壁部材から内方へ延びる外側補助羽根とに分割されており、前記内側羽根及び前記内側補助羽根と、前記外側羽根及び前記外側補助羽根とが前記軸部の周りに交互に配置されていることを特徴とする請求項1〜3のいずれか一項に記載の排水ポンプ。   The rotary blade includes a plate-like auxiliary blade extending in a radial direction between the large-diameter blades adjacent in the circumferential direction of the shaft portion, and the auxiliary blade is between the shaft portion and the cylindrical wall member. Are divided into an inner auxiliary blade extending in the radial direction and an outer auxiliary blade extending inwardly from the cylindrical wall member, and the inner blade and the inner auxiliary blade, and the outer blade and the outer auxiliary blade. The drainage pump according to any one of claims 1 to 3, wherein the drainage pump is alternately arranged around the shaft portion. 前記隣り合う大径羽根間に複数の前記補助羽根が配置されていることを特徴とする請求項4に記載の排水ポンプ。   The drainage pump according to claim 4, wherein a plurality of the auxiliary blades are disposed between the adjacent large-diameter blades. 前記補助羽根は、前記隣り合う大径羽根間を前記軸部の回りに等間隔に分割する位置に配置されていることを特徴とする請求項4又は5に記載の排水ポンプ。   6. The drainage pump according to claim 4, wherein the auxiliary blade is disposed at a position that divides the adjacent large-diameter blades at equal intervals around the shaft portion. 前記大径羽根が、前記内側羽根と前記外側羽根と中間羽根とに分割されるとともにこれらが前記軸部の周方向に順次ずらして配置され、前記補助羽根が、前記内側補助羽根と前記外側補助羽根と中間補助羽根とに分割されるとともにこれらが前記軸部の周方向に順次ずらして配置され、前記中間羽根と前記中間補助羽根、前記外側羽根と前記外側補助羽根は前記軸部の回りに交互に配置され、かつ前記中間羽根は前記内側補助羽根及び前記外側補助羽根に対して前記軸部の周りにずらして配置され、前記中間補助羽根は前記内側羽根及び前記外側羽根に対して前記軸部の周りにずらして配置されていることを特徴とする請求項4〜6のいずれか一項に記載の排水ポンプ。   The large-diameter blade is divided into the inner blade, the outer blade, and the intermediate blade, which are sequentially shifted in the circumferential direction of the shaft portion, and the auxiliary blade is configured to be the inner auxiliary blade and the outer auxiliary blade. The blades are divided into blades and intermediate auxiliary blades, which are sequentially shifted in the circumferential direction of the shaft portion, and the intermediate blades, the intermediate auxiliary blades, the outer blades, and the outer auxiliary blades are arranged around the shaft portion. The intermediate blades are arranged alternately with respect to the inner auxiliary blades and the outer auxiliary blades and shifted around the shaft portion, and the intermediate auxiliary blades are arranged with respect to the inner blades and the outer blades. The drainage pump according to any one of claims 4 to 6, wherein the drainage pump is arranged around the portion.
JP2009161143A 2009-07-07 2009-07-07 Drainage pump Active JP5422277B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009161143A JP5422277B2 (en) 2009-07-07 2009-07-07 Drainage pump
US12/828,483 US8747071B2 (en) 2009-07-07 2010-07-01 Drain pump
KR1020100064176A KR101685205B1 (en) 2009-07-07 2010-07-05 Drain pump
EP10006934.3A EP2287470B1 (en) 2009-07-07 2010-07-06 Drain pump
TW099122224A TWI499724B (en) 2009-07-07 2010-07-06 Drainage pump
CN201010231637.3A CN101943181B (en) 2009-07-07 2010-07-07 Drain pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161143A JP5422277B2 (en) 2009-07-07 2009-07-07 Drainage pump

Publications (2)

Publication Number Publication Date
JP2011017262A true JP2011017262A (en) 2011-01-27
JP5422277B2 JP5422277B2 (en) 2014-02-19

Family

ID=43595226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161143A Active JP5422277B2 (en) 2009-07-07 2009-07-07 Drainage pump

Country Status (1)

Country Link
JP (1) JP5422277B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110400A (en) * 2013-04-17 2014-10-22 株式会社不二工机 Drain pump
WO2015136833A1 (en) * 2014-03-11 2015-09-17 株式会社鷺宮製作所 Drainage pump
JP2018119430A (en) * 2017-01-24 2018-08-02 合利美股▲分▼有限公司 Drain impeller
KR102128892B1 (en) * 2019-03-22 2020-07-01 캐비트론 주식회사 High pressure centrifugal pump
CN113417885A (en) * 2021-05-26 2021-09-21 夏秋月 High-cavitation vortex pump impeller treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188518A (en) 2020-05-26 2021-12-13 株式会社不二工機 Drain pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968185A (en) * 1995-08-29 1997-03-11 Fuji Koki:Kk Drainage pump
JP2005233192A (en) * 2003-12-05 2005-09-02 Daikin Ind Ltd Drain pump and air conditioning system equipped therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968185A (en) * 1995-08-29 1997-03-11 Fuji Koki:Kk Drainage pump
JP2005233192A (en) * 2003-12-05 2005-09-02 Daikin Ind Ltd Drain pump and air conditioning system equipped therewith

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110400A (en) * 2013-04-17 2014-10-22 株式会社不二工机 Drain pump
KR20140124719A (en) * 2013-04-17 2014-10-27 가부시기가이샤 후지고오키 Drain pump
JP2014211098A (en) * 2013-04-17 2014-11-13 株式会社不二工機 Drainage pump
KR102195428B1 (en) 2013-04-17 2020-12-29 가부시기가이샤 후지고오키 Drain pump
WO2015136833A1 (en) * 2014-03-11 2015-09-17 株式会社鷺宮製作所 Drainage pump
CN105849413A (en) * 2014-03-11 2016-08-10 株式会社鹭宫制作所 Drainage pump
JPWO2015136833A1 (en) * 2014-03-11 2017-04-06 株式会社鷺宮製作所 Drainage pump
JP2018119430A (en) * 2017-01-24 2018-08-02 合利美股▲分▼有限公司 Drain impeller
KR102128892B1 (en) * 2019-03-22 2020-07-01 캐비트론 주식회사 High pressure centrifugal pump
CN113417885A (en) * 2021-05-26 2021-09-21 夏秋月 High-cavitation vortex pump impeller treatment method

Also Published As

Publication number Publication date
JP5422277B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101685205B1 (en) Drain pump
JP5422277B2 (en) Drainage pump
TWI394895B (en) Centrifugal fans and air fluid machinery using the centrifugal fan
WO2015100704A1 (en) Impeller of open-type water pump
JP5889051B2 (en) Drainage pump
JP3580329B2 (en) Drainage pump
WO2015100703A1 (en) Open water pump
WO2009070599A1 (en) Bi-directional cooling fan
JP4680922B2 (en) Vertical shaft centrifugal pump and its rotor and air conditioner
KR20130024729A (en) Drain pump
KR102195428B1 (en) Drain pump
JP6602008B2 (en) Drainage pump
KR100937927B1 (en) Impeller for draining pump
JP2004353492A (en) Vertical-shaft centrifugal pump and impeller for pump
JP6375285B2 (en) Drainage pump
JP5300508B2 (en) Pump impeller and pump
JP5222248B2 (en) Pump and fine bubble generator equipped with the pump
WO2005054678A1 (en) Drain pump and air conditioner with the same
KR20060081223A (en) Turbo-fan in an air harmonizing system
JP3996121B2 (en) Drainage pump
JP5227370B2 (en) Drain pump
JP4459706B2 (en) Drainage pump
JP7403792B2 (en) drain pump
JP7497967B2 (en) Air Conditioning Equipment
JP3317808B2 (en) Drainage pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250