JP5300508B2 - Pump impeller and pump - Google Patents

Pump impeller and pump Download PDF

Info

Publication number
JP5300508B2
JP5300508B2 JP2009014839A JP2009014839A JP5300508B2 JP 5300508 B2 JP5300508 B2 JP 5300508B2 JP 2009014839 A JP2009014839 A JP 2009014839A JP 2009014839 A JP2009014839 A JP 2009014839A JP 5300508 B2 JP5300508 B2 JP 5300508B2
Authority
JP
Japan
Prior art keywords
impeller
maximum
passage
pump
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009014839A
Other languages
Japanese (ja)
Other versions
JP2010174630A (en
Inventor
慎一郎 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2009014839A priority Critical patent/JP5300508B2/en
Publication of JP2010174630A publication Critical patent/JP2010174630A/en
Application granted granted Critical
Publication of JP5300508B2 publication Critical patent/JP5300508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump impeller optimally designing a discharge capacity without being influenced by the maximum passing particle diameter and promoting passage of solid material having the maximum passing particle diameter. <P>SOLUTION: This impeller 52 rotates around a rotating axis M in the vortex chamber 53a of a casing 53 and includes a single blade 60 having shrouds 61 at both sides in the direction of the rotating axis M. In the impeller 52, an outer flow passage 68 formed in an outer surface between the shrouds 61 of the impeller 52 keeps the same maximum passing particle diameter as that of an inner flow passage 67 in a portion having the maximum flow passage width leading to the impeller outlet 66 of the inner flow passage 67 inside of the impeller 52 and is smaller than the maximum passing particle diameter by gradually reducing flow passage depth, and an interval between the shrouds is enlarged toward radially outward of the impeller 52 in at least a portion corresponding to the maximum flow passage width of the outer flow passage 68. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はポンプの羽根車およびポンプに関し、羽根車の流路における異物の詰まりを防止する技術に係るものである。   The present invention relates to a pump impeller and a pump, and relates to a technique for preventing clogging of foreign matters in a flow path of the impeller.

従来、この種のポンプには下水等の流体を扱うものがあり、図9に示すように、ポンプ1は羽根車2がポンプケーシング3の所定形状をなす渦室3aに配置してある。ポンプケーシング3は、下部に設けたケーシング吸込口4が羽根車2の回転軸心方向に向けて開口しており、渦室3aに連通して側部に設けたケーシング吐出口5が羽根車2の回転軸の接線方向と同方向に向けて開口している。   Conventionally, there are pumps of this type that handle fluids such as sewage. As shown in FIG. 9, the pump 1 is arranged in a vortex chamber 3 a in which an impeller 2 forms a predetermined shape of a pump casing 3. In the pump casing 3, a casing suction port 4 provided in the lower part opens toward the rotational axis direction of the impeller 2, and a casing discharge port 5 provided in a side portion communicating with the vortex chamber 3 a is provided in the impeller 2. It opens toward the same direction as the tangential direction of the rotation axis.

羽根車2は回転軸心側から径方向外側へ渦巻き状に延びる一枚羽根6を有し、回転軸心方向における一枚羽根6の両側にシュラウド7が形成してある。一枚羽根6は、回転軸心側に近接する端縁が羽根入口部8をなし、周縁側に位置する端縁が羽根出口部9をなし、羽根入口部8から羽根出口部9へ向けて螺旋状の内側流路10を形成している。内側流路10はケーシング吸込口4に連通し、かつ羽根出口部9において渦室3aに連通している。   The impeller 2 has a single blade 6 that spirally extends from the rotational axis side to the radially outer side, and shrouds 7 are formed on both sides of the single blade 6 in the rotational axis direction. In the single blade 6, an edge close to the rotation axis side forms a blade inlet portion 8, and an edge located on the peripheral edge forms a blade outlet portion 9, from the blade inlet portion 8 toward the blade outlet portion 9. A spiral inner flow path 10 is formed. The inner flow path 10 communicates with the casing suction port 4 and communicates with the vortex chamber 3 a at the blade outlet portion 9.

この種のポンプにおける羽根車には、特許文献1に記載するものがあり、図6〜図8に示す。ここでは、先に図9において説明した構成要件と同様のものには同符号を付して説明する。図6は羽根車の軸心と直交する断面図、図7(a)〜(d)は羽根車の軸心を通り、軸心回りの各角度における断面図、図8は羽根車の開口部の展開図である。   There exists what is described in patent document 1 in the impeller in this kind of pump, and it shows in FIGS. 6-8. Here, the same components as those previously described with reference to FIG. 6 is a cross-sectional view orthogonal to the impeller shaft center, FIGS. 7A to 7D are cross-sectional views at various angles around the shaft center, and FIG. 8 is an opening of the impeller. FIG.

図6に示すように、羽根車2は渦巻き状に延びる一枚羽根6を有しており、図7に示すように、羽根6の内側流路10は断面径を一定にして汚物の引っかかりを防止している。そして、図8に示すように、羽根車2の外側面には内側流路10に連通する外側流路をなす流出口11を形成しており、流出口11の流路幅は、流速に反比例して半径方向の分速度が遅い部分を大幅11aに形成し、半径方向の分速度の速い部分を小幅にしており、羽根車2に及ぼす排水の運動の反力を全周にわたって一定として羽根車2の振動を防止し、高揚程の排水を可能としている。   As shown in FIG. 6, the impeller 2 has a single blade 6 extending in a spiral shape, and as shown in FIG. 7, the inner flow path 10 of the blade 6 keeps the cross-sectional diameter constant to catch dirt. It is preventing. As shown in FIG. 8, an outflow port 11 that forms an outer flow path communicating with the inner flow path 10 is formed on the outer surface of the impeller 2, and the flow path width of the outflow port 11 is inversely proportional to the flow velocity. Thus, a portion having a slow radial partial velocity is formed as a large portion 11a, a portion having a high radial partial velocity is made narrow, and the reaction force of the drainage movement exerted on the impeller 2 is made constant over the entire circumference. This prevents the vibration of No. 2 and enables high-head drainage.

特公昭49−13522号公報Japanese Patent Publication No.49-13522

ところで、固形物を含む液体の搬送に使用するポンプでは、ポンプ内部に固形物が詰まることを避けるために、羽根車としてその流路断面に大きな通過粒径を設定したものを使用する場合がある。しかし、羽根車の外側面に形成する外側流路の最大流路幅、つまりシュラウド間の幅を広げると排出容量が大きくなり、ポンプを使用する設備にとっては必要以上の容量の液体を吐き出す事態が生じることがある。   By the way, in a pump used for transporting a liquid containing solid matter, in order to avoid clogging the solid matter inside the pump, there may be used an impeller having a large passage particle size set in the flow passage cross section. . However, if the maximum flow path width of the outer flow path formed on the outer surface of the impeller, that is, the width between the shrouds is increased, the discharge capacity increases, and there is a situation in which liquid with a capacity more than necessary for the equipment using the pump is discharged. May occur.

このため、羽根車のシュラウド間の外側面に形成する外側流路が内側流路の羽根出口部に続く最大流路幅の部位において最大通過粒径を保ち、徐々に流路幅もしくは流路深さを減少させて最大通過粒径より小さくすることで、最大通過粒径の固形物を通過させつつ、最大通過粒径に影響されることなく排出容量を最適に設計することができる。   For this reason, the outer passage formed on the outer surface between the shrouds of the impeller keeps the maximum passage particle size at the portion of the largest passage width that continues to the blade outlet portion of the inner passage, and gradually increases the passage width or passage depth. By reducing the size to be smaller than the maximum passing particle size, it is possible to optimally design the discharge capacity without being influenced by the maximum passing particle size while allowing the solid material having the maximum passing particle size to pass through.

しかし、この構成では、固形物が最大通過粒径またはそれに近い大きさを有する場合には内側流路の羽根出口部から外側流路へ続く最大流路幅の部位においてシュラウド間に固形物が詰まり易くなる。   However, in this configuration, when the solid matter has a maximum passage particle size or a size close thereto, the solid matter is clogged between the shrouds at the portion of the maximum passage width that extends from the blade outlet portion of the inner passage to the outer passage. It becomes easy.

本発明は、上記した課題を解決するものであり、最大通過粒径に影響されることなく排出容量を最適に設計することができ、かつ固形物が通過し易いポンプの羽根車を提供することを目的とする。   The present invention solves the above-described problems, and provides an impeller of a pump that can optimally design a discharge capacity without being affected by the maximum passing particle diameter and that allows solids to easily pass therethrough. With the goal.

上記課題を解決するために、本発明のポンプの羽根車は、ケーシングの渦室内で回転軸心廻りに回転し、回転軸心方向の両側にシュラウドを有する一枚羽根からなる羽根車において、羽根車のシュラウド間の外側面に形成する外側流路が羽根車内部の内側流路の羽根出口部に続く最大流路幅の部位において内側流路と同等の最大通過粒径を保ち、流路幅と流路深さを徐々に減少させて最大通過粒径より小さくし、シュラウドは、少なくとも外側流路の最大流路幅に対応する部分において、相互の間隔が羽根車の径方向外側へ向けて広がり、かつ双方の対向面が平面の傾斜面をなすことを特徴とする。 In order to solve the above problems, an impeller of a pump according to the present invention is an impeller comprising a single blade that rotates around a rotation axis in a vortex chamber of a casing and has shrouds on both sides in the direction of the rotation axis. The outer passage formed on the outer surface between the shrouds of the car maintains the maximum passage particle size equivalent to that of the inner passage at the portion of the largest passage width that follows the blade outlet portion of the inner passage inside the impeller, and the passage width The flow path depth is gradually decreased to make it smaller than the maximum passage particle size, and the shroud is spaced at least in the portion corresponding to the maximum flow path width of the outer flow path so that the mutual distance is directed radially outward of the impeller. It spreads, and both opposing surfaces make a flat inclined surface, It is characterized by the above-mentioned.

本発明のポンプは、吸込口および吐出口を有し、かつ内部に羽根車を配置する渦室を有したケーシングを備え、前記羽根車が上記の何れかの羽根車からなることを特徴とする。   The pump according to the present invention includes a casing having a suction port and a discharge port, and having a vortex chamber in which an impeller is disposed, and the impeller includes any one of the impellers described above. .

以上の構成において、羽根車の回転により内側流路から外側流路へ噴出する流体および固形物はケーシングの渦室を通ってケーシングの外部へ流れ出る。この際に、内側流路の羽根出口部から外側流路へ続く最大流路幅の部位では固形物の最大粒径部分をシュラウド間に含んでいるが、シュラウド間は少なくとも外側流路の最大流路幅に対応する部分において羽根車の径方向外側へ向けて広がっているので、最大通過粒径の固形物の通過を促進してシュラウド間の固形物の詰まりを防止する。また、当然に最大通過粒径より小さい固形物がシュラウド間に詰まるおそれも低減できる。よって、最大通過粒径に影響されることなく排出容量を最適にしたポンプの羽根車およびポンプを実現することができる。   In the above configuration, the fluid and solids ejected from the inner channel to the outer channel due to the rotation of the impeller flow out of the casing through the vortex chamber of the casing. At this time, the portion of the maximum flow width that extends from the blade outlet portion of the inner flow passage to the outer flow passage contains the maximum particle size portion of the solid matter between the shrouds, but at least the maximum flow of the outer flow passage is between the shrouds. Since the portion corresponding to the road width spreads outward in the radial direction of the impeller, the passage of the solid material having the maximum passing particle diameter is promoted to prevent clogging of the solid material between the shrouds. Naturally, it is possible to reduce the possibility of clogging between the shrouds with solids smaller than the maximum passing particle diameter. Therefore, it is possible to realize a pump impeller and a pump that optimize the discharge capacity without being affected by the maximum passing particle diameter.

本発明の実施の形態におけるポンプを示す模式図The schematic diagram which shows the pump in embodiment of this invention 同実施の形態における羽根車の外観図External view of impeller in same embodiment 同実施の形態における羽根車の外観図External view of impeller in same embodiment 同実施の形態における羽根車の軸心廻りの各角度における断面図Sectional drawing in each angle around the shaft center of the impeller in the same embodiment 同実施の形態におけるポンプを示す模式図Schematic showing the pump in the same embodiment 従来の羽根車の軸心と直交する断面図Sectional view orthogonal to the axis of a conventional impeller 従来の羽根車における軸心廻りの各角度における断面図Cross-sectional view at various angles around the axis of a conventional impeller 従来の羽根車の開口部の展開図Development view of the opening of a conventional impeller 従来のポンプを示す模式図Schematic diagram showing a conventional pump

以下、本発明の実施の形態を図面に基づいて説明する。図1〜図5において、ポンプ51は下水等の流体を扱うものであり、羽根車52がポンプケーシング53の所定形状をなす渦室53aの内部に配置してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5, a pump 51 handles fluid such as sewage, and an impeller 52 is disposed inside a vortex chamber 53 a having a predetermined shape of a pump casing 53.

ポンプケーシング53は、下部に設けたケーシング吸込口54が羽根車52の回転軸心方向に向けて開口しており、渦室53aに連通して側部に設けたケーシング吐出口55が羽根車52の回転軸の接線方向と同方向に向けて開口している。羽根車52はモータ等の駆動機(図示省略)によって回転軸心Mを中心として回転駆動される。   In the pump casing 53, a casing suction port 54 provided in the lower part opens toward the rotational axis direction of the impeller 52, and a casing discharge port 55 provided in a side portion communicating with the vortex chamber 53 a has an impeller 52. It opens toward the same direction as the tangential direction of the rotation axis. The impeller 52 is rotationally driven around the rotational axis M by a drive machine (not shown) such as a motor.

羽根車52は回転軸心側から径方向外側へ渦巻き状に延びる一枚羽根60を有し、回転軸心方向における一枚羽根60の両側にシュラウド61が形成してある。上側のシュラウド61の上部には駆動軸(図示省略)を連結する孔62を有したボス部63が形成してあり、ボス部63の周囲にはポンプケーシング53と摺動するリム部64が形成してある。   The impeller 52 has a single blade 60 that spirally extends from the rotational axis side to the radially outer side, and shrouds 61 are formed on both sides of the single blade 60 in the rotational axis direction. A boss 63 having a hole 62 for connecting a drive shaft (not shown) is formed on the upper shroud 61, and a rim 64 that slides with the pump casing 53 is formed around the boss 63. It is.

一枚羽根60は、回転軸心側に近接する端縁が羽根入口部65をなし、周縁側に位置する端縁が羽根出口部66をなし、羽根入口部65から羽根出口部66に向って螺旋状の内側流路67を形成している。内側流路67はケーシング吸込口54に連通し、かつ羽根出口部66において渦室53aに連通している。   In the single blade 60, an edge close to the rotation axis side forms a blade inlet portion 65, and an edge located on the peripheral side forms a blade outlet portion 66, from the blade inlet portion 65 toward the blade outlet portion 66. A spiral inner flow path 67 is formed. The inner flow path 67 communicates with the casing suction port 54, and communicates with the vortex chamber 53 a at the blade outlet portion 66.

羽根車52のシュラウド61の間において一枚羽根60の外側面には外側流路68が形
成してある。外側流路68は羽根車52の回転方向と反対方向に延びており、内側流路67の羽根出口部66に続く部位が最大流路幅を有して内側流路67と同等の最大通過粒径を保っており、回転方向と反対方向に延びるにしたがって流路幅と流路深さを徐々に減少させて最大通過粒径より小さくなっている。
An outer flow path 68 is formed on the outer surface of the single blade 60 between the shrouds 61 of the impeller 52. The outer flow path 68 extends in a direction opposite to the rotation direction of the impeller 52, and a portion following the blade outlet portion 66 of the inner flow path 67 has a maximum flow path width and is the maximum passage particle equivalent to the inner flow path 67. The diameter is maintained, and the flow path width and the flow path depth are gradually reduced as it extends in the direction opposite to the rotation direction, so that it is smaller than the maximum passing particle diameter .

そして、図1に示すように、両側のシュラウド61の間隔は羽根車52の径方向外側へ向けて広がっており、両シュラウド61の対向面が傾斜面61aをなす。このシュラウド61の傾斜面61aは全周に設けてもよいが、少なくとも外側流路68の最大流路幅に対応する範囲に設ければよく、また少なくとも一方のシュラウド61の対向面に形成すればよい。さらに、傾斜面61aの形状は平面に限定されるものではなく、曲面であってもよい。   And as shown in FIG. 1, the space | interval of the shroud 61 of both sides has spread toward the radial direction outer side of the impeller 52, and the opposing surface of both the shrouds 61 makes the inclined surface 61a. The inclined surface 61a of the shroud 61 may be provided on the entire circumference, but it may be provided in a range corresponding to at least the maximum flow path width of the outer flow path 68, and may be provided on the facing surface of at least one shroud 61. Good. Furthermore, the shape of the inclined surface 61a is not limited to a flat surface, and may be a curved surface.

以下、上記した構成における作用を説明する。ポンプケーシング53の室内で羽根車52が回転軸心Mの廻りに回転する状態において、ケーシング吸込口54から吸い込む流体および固形物は内側流路67に流入し、羽根車52の回転により与える遠心力を受けて流体および固形物は羽根60の羽根出口部66から渦室53aへ流出し、ケーシング53の内側面に沿って渦室53aを旋回し、ケーシング吐出口55から吐き出される。   Hereinafter, the operation of the above-described configuration will be described. In a state where the impeller 52 rotates around the rotation axis M in the chamber of the pump casing 53, the fluid and solid matter sucked from the casing suction port 54 flows into the inner flow path 67, and centrifugal force applied by the rotation of the impeller 52. In response, the fluid and the solid matter flow out from the blade outlet 66 of the blade 60 to the vortex chamber 53 a, swirl along the inner surface of the casing 53, and are discharged from the casing discharge port 55.

この際に、外側流路68の流路幅と流路深さが減少するほどに固形物の外側流路68からみ出す部分が多くなり、内側流路67の羽根出口部66から外側流路68へ続く最大流路幅の部位では固形物の最大粒径部分をシュラウド61の間に含んでいるが、シュラウド61の間隔は少なくとも外側流路68の最大流路幅に対応する部分において羽根車52の径方向外側へ向けて広がっているので、最大通過粒径またはそれに近い大きさの固形物の通過を促進してシュラウド61の間に固形物が詰まることを防止する。よって、最大通過粒径に影響されることなく排出容量を最適に設計することができる。   At this time, as the channel width and the channel depth of the outer channel 68 decrease, the portion of the solid material protruding from the outer channel 68 increases, and the outer channel 68 from the blade outlet 66 of the inner channel 67 increases. In the portion of the maximum flow path width that follows, the maximum particle size portion of the solid is included between the shrouds 61, but the distance between the shrouds 61 is at least the impeller 52 in the portion corresponding to the maximum flow width of the outer flow path 68. Therefore, it is possible to prevent the solid matter from being clogged between the shrouds 61 by promoting the passage of the solid matter having the maximum passing particle diameter or a size close thereto. Therefore, the discharge capacity can be optimally designed without being affected by the maximum passing particle diameter.

51 ポンプ
52 羽根車
53 ポンプケーシング
53a 渦室内
54 ケーシング吸込口
55 ケーシング吐出口
60 一枚羽根
61 シュラウド
61a 傾斜面
62 孔
63 ボス部
64 リム部
65 羽根入口部
66 羽根出口部
67 内側流路
68 外側流路
M 回転軸心
51 pump 52 impeller 53 pump casing 53a vortex chamber 54 casing suction port 55 casing discharge port 60 single blade 61 shroud 61a inclined surface 62 hole 63 boss part 64 rim part 65 blade inlet part 66 blade outlet part 67 inner flow path 68 outer side Flow path M Rotation axis

Claims (2)

ケーシングの渦室内で回転軸心廻りに回転し、回転軸心方向の両側にシュラウドを有する一枚羽根からなる羽根車において、羽根車のシュラウド間の外側面に形成する外側流路が、羽根車内部の内側流路の羽根出口部に続く最大流路幅の部位において内側流路と同等の最大通過粒径を保ち、流路幅と流路深さを徐々に減少させて最大通過粒径より小さくし、シュラウドは、少なくとも外側流路の最大流路幅に対応する部分において、相互の間隔が羽根車の径方向外側へ向けて広がり、かつ双方の対向面が平面の傾斜面をなすことを特徴とするポンプの羽根車。 An impeller comprising a single blade having a shroud rotating around a rotation axis in a vortex chamber of the casing and having shrouds on both sides in the direction of the rotation axis. Maintain the maximum passage particle size equivalent to the inner passage at the portion of the maximum passage width that follows the blade outlet of the inner inner passage, and gradually reduce the passage width and passage depth from the maximum passage particle size. The shroud is configured such that, at least in the portion corresponding to the maximum flow path width of the outer flow path, the distance between each other extends outward in the radial direction of the impeller, and both opposing surfaces form a flat inclined surface. A pump impeller characterized. 吸込口および吐出口を有し、かつ内部に羽車を配置する渦室を有したケーシングを備え、前記羽根車が請求項1に記載の羽根車からなることを特徴とするポンプ。   A pump comprising a casing having a suction port and a discharge port, and having a vortex chamber in which an impeller is disposed, wherein the impeller comprises the impeller according to claim 1.
JP2009014839A 2009-01-27 2009-01-27 Pump impeller and pump Active JP5300508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014839A JP5300508B2 (en) 2009-01-27 2009-01-27 Pump impeller and pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014839A JP5300508B2 (en) 2009-01-27 2009-01-27 Pump impeller and pump

Publications (2)

Publication Number Publication Date
JP2010174630A JP2010174630A (en) 2010-08-12
JP5300508B2 true JP5300508B2 (en) 2013-09-25

Family

ID=42705845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014839A Active JP5300508B2 (en) 2009-01-27 2009-01-27 Pump impeller and pump

Country Status (1)

Country Link
JP (1) JP5300508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253721B2 (en) * 2016-06-30 2017-12-27 株式会社川本製作所 Impeller and submersible pump
KR101737420B1 (en) * 2016-10-12 2017-05-18 고일영 Impeller for submerged pump
JP2023161750A (en) * 2022-04-26 2023-11-08 株式会社荏原製作所 pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713066B2 (en) * 2003-07-18 2011-06-29 新明和工業株式会社 Impeller and sewage treatment pump equipped therewith
JP2009221976A (en) * 2008-03-17 2009-10-01 Shinmaywa Industries Ltd Impeller for centrifugal pump and centrifugal pump

Also Published As

Publication number Publication date
JP2010174630A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
KR101148852B1 (en) Centrifugal pump
JP4724610B2 (en) Gas separation device, its front wall and separation rotor
JP2006291917A (en) Impeller for centrifugal pump and centrifugal pump having the same
RU2705785C2 (en) Free-vortex pump
JP6051056B2 (en) Centrifugal pump
JP5300508B2 (en) Pump impeller and pump
CA2961066A1 (en) Slurry pump impeller
US7153097B2 (en) Centrifugal impeller and pump apparatus
JP2009221976A (en) Impeller for centrifugal pump and centrifugal pump
JP2023090843A (en) Non-block pump
JP2007092565A (en) Centrifugal pump, mixed flow pump, axial flow pump
WO2010007780A1 (en) Centrifugal pump impeller and centrifugal pump
KR101933342B1 (en) Impeller for water pump with curved wing structure and water pump applied with the same
JP2010523867A (en) Air diffuser system for industrial pumps
JP5118951B2 (en) Centrifugal pump impeller and centrifugal pump
CN111201378B (en) Impeller for sewage pump
JP5222248B2 (en) Pump and fine bubble generator equipped with the pump
KR200440266Y1 (en) Casing for pump
JP5957243B2 (en) underwater pump
JP6861623B2 (en) Impeller and pump equipped with it
JP5699172B2 (en) Centrifugal pump
KR102524836B1 (en) Balanced impeller with auxiliary blades
KR102431914B1 (en) Impeller and pump comprising the same
JP6078303B2 (en) Centrifugal fluid machine
JP5207928B2 (en) Centrifugal pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150