WO2015029336A1 - Display device and display method - Google Patents

Display device and display method Download PDF

Info

Publication number
WO2015029336A1
WO2015029336A1 PCT/JP2014/004051 JP2014004051W WO2015029336A1 WO 2015029336 A1 WO2015029336 A1 WO 2015029336A1 JP 2014004051 W JP2014004051 W JP 2014004051W WO 2015029336 A1 WO2015029336 A1 WO 2015029336A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
data
voltage
detection
row
Prior art date
Application number
PCT/JP2014/004051
Other languages
French (fr)
Japanese (ja)
Inventor
小倉 潤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015029336A1 publication Critical patent/WO2015029336A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the technology of the present disclosure relates to a display device including a light emitting element to which a driving current is supplied through a transistor, and a display method.
  • a light emitting element such as an organic EL display device has a problem in that characteristic deterioration of the organic EL element is accelerated by an increase in display panel temperature accompanied by environmental temperature and heat generation due to its own light emission.
  • active matrix driving there is a problem in that deterioration of transistor characteristics due to temperature rise is also accelerated.
  • the technology of the present disclosure provides a display device and a display method capable of suppressing a change in image quality due to a change in characteristics of a light emitting element and a transistor element due to a panel temperature rise in a pixel circuit that supplies a driving current to the light emitting element. For the purpose.
  • One aspect of the present invention for solving the above problems is a plurality of pixel circuits including a transistor that supplies a driving current to the light-emitting element, and a plurality of pixel circuits that have the same configuration as the pixel circuit and do not perform a driving current supply operation to the light-emitting element.
  • a selection driver that selects one of the plurality of scanning lines as a selection target, and a control unit that controls driving of the selection driver. The control unit applies each scanning line to the pixel circuit.
  • a grayscale display operation that applies a grayscale display voltage to the pixel circuit connected to each selection target through the data line to place the light emitting element in a grayscale display state, and each scanning line is selected in turn.
  • a non-grayscale display operation in which a non-grayscale display voltage is applied to a pixel circuit connected to each selection target through a data line to place the light emitting element in a non-grayscale display state, and a plurality of scans in the non-grayscale display state
  • a gray scale is displayed using the detection result obtained by the detection operation by repeating a detection operation in which a part of the line is selected and the pixel circuit connected to the selection target detects the characteristics of the transistor through the data line in this order.
  • the voltage is corrected, the dummy pixel circuit is made to select a part of the plurality of scanning lines, and the dummy pixel circuit connected to the selection target performs a detection operation for detecting the characteristics of the transistor through the data line.
  • a display device that corrects temperature characteristics.
  • Another aspect of the present invention for solving the above problems is to sequentially select any one of a plurality of scanning lines connected to a pixel circuit including a transistor that supplies a driving current to a light emitting element as a selection target, and select A gradation display operation in which a gradation display voltage is applied to a pixel circuit connected to a target through a data line to bring the light emitting element into a gradation display state, and a non-scale is applied to the pixel circuit connected to a target through a data line.
  • a non-grayscale display operation in which a light-emitting element is applied to a non-grayscale display state by applying a grayscale display voltage, and a pixel circuit connected to a selection target by selecting a part of a plurality of scanning lines in the non-grayscale display state
  • the detection operation of detecting the characteristics of the transistor through the data line is repeated in this order, and the gradation display voltage is corrected using the detection result obtained by the detection operation.
  • the display device of the present disclosure it is possible to suppress a change in image quality due to a change in element characteristics in the pixel circuit that supplies the driving current to the light emitting element, and to display the panel temperature in the pixel circuit that supplies the driving current to the light emitting element.
  • a change in image quality due to a change in the characteristics of the light emitting element and the transistor element due to the rise can be suppressed.
  • FIG. 1 is a block diagram showing the overall configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram functionally showing the configuration of the control unit in one embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing the configuration of the pixel circuit and the configuration of the data driver in one embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the display voltage applied to the pixel circuit and the drain current in the current control transistor in one embodiment of the present invention.
  • FIG. 5 is a diagram showing the temperature dependence (high temperature and room temperature) of the relationship between the display voltage applied to the pixel circuit and the drain current in the current control transistor in one embodiment of the present invention.
  • FIG. 6 is a timing chart showing the transition of the level of each control signal together with the state of each switch in the threshold detection operation according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the potential of the data line and the relaxation time in one embodiment of the present invention.
  • FIG. 8 is a diagram showing the temperature dependence of the threshold voltage measurement of the dummy pixel circuit in one embodiment of the present invention.
  • FIG. 9 is a diagram showing the temperature dependence of the measurement result at t0 in FIG. 8 (linear correlation with temperature) in one embodiment of the present invention.
  • FIG. 10 is a diagram showing a flow of data calculation correction output in one embodiment of the present invention (temperature control is multiplication correction, and threshold voltage correction is addition correction).
  • FIG. 10 is a diagram showing a flow of data calculation correction output in one embodiment of the present invention (temperature control is multiplication correction, and threshold voltage correction is addition correction).
  • FIG. 11 is a timing chart showing the transition of the level of each control signal along with the state of each switch during the display operation period in one embodiment of the present invention.
  • FIG. 12 is a diagram schematically illustrating the timing of various operations performed in the first frame according to the embodiment of the present invention for each of the pixels from the first row to the 540th row.
  • FIG. 13 is a diagram schematically illustrating the timing of various operations performed in the second frame in one embodiment of the present invention for each of the pixels from the first row to the 540th row.
  • FIG. 14 is a diagram schematically illustrating the timing of various operations performed in the 540th frame for each of the pixels from the first row to the 540th row in the embodiment of the present invention.
  • FIG. 12 is a diagram schematically illustrating the timing of various operations performed in the first frame according to the embodiment of the present invention for each of the pixels from the first row to the 540th row.
  • FIG. 13 is a diagram schematically illustrating the timing of various operations performed in the second frame in one embodiment of the
  • FIG. 15 is a diagram schematically illustrating the timing of various operations performed in the dummy row before the first frame in each of the pixels of the 540th row from the pixels in the dummy row in the embodiment of the present invention.
  • FIG. 16 is a diagram schematically illustrating the timing of various operations performed in the dummy row after the 540th frame for each of the pixels from the first row to the dummy row in the embodiment of the present invention.
  • FIG. 17 shows the timing of various operations performed in the dummy row after the 540th frame in the configuration in which the dummy row is provided before the first frame and after the 540th frame in one embodiment of the present invention.
  • FIG. 18 is a timing chart showing changes in the levels of various control signals for each scanning line and power supply line during a period in which one frame is displayed in one embodiment of the present invention.
  • FIG. 19 is a timing chart showing the transition of the levels of various control signals for each scanning line and power supply line during a period in which one frame is displayed in one embodiment of the present invention.
  • FIG. 20 is a diagram showing an example of luminance control means when the display panel temperature becomes high in one embodiment of the present invention (for example, the luminance is lowered at 50 ° C. or more, and deterioration of the organic EL and TFT is caused). Suppress).
  • the display device of the present embodiment uses an active matrix driving method to cause an organic EL element as a light emitting element to emit light.
  • the display operation of one frame in the display device includes a gradation display operation in which an image based on display data is displayed and a non-gradation display operation in which a black image is displayed.
  • a voltage related to the threshold voltage of the current control transistor included in the pixel circuit is detected for each of the plurality of pixels connected to the specific scanning line.
  • the display voltage applied to the pixel circuit based on the display data is corrected using the detection result relating to the threshold voltage and its temperature dependency.
  • a period during which one frame is displayed includes a display operation in which a grayscale display operation and a non-grayscale display operation are alternately repeated, and a threshold detection operation for detecting a voltage related to the threshold voltage. It is. Below, these display operations and threshold value detection operations will be mainly described.
  • FIG. 1 is a block diagram illustrating an overall configuration of a display device according to the present embodiment.
  • the display panel 10 has a plurality of pixels Px arranged in a matrix of m rows ⁇ n columns. m is an integer of 1 or more, and n is an integer of 1 or more.
  • m is an integer of 1 or more
  • n is an integer of 1 or more.
  • one organic EL element and one pixel circuit for supplying a driving current to the organic EL element are arranged.
  • Each of the plurality of pixels Px is arranged near a point (intersection) where the m scanning lines Ls extending along the row direction and the n data lines Ld extending along the column direction intersect in plan view. Yes.
  • Each of the n pixels Px arranged in the row direction is connected to a common scanning line Ls and a common power supply line La.
  • Each of the m pixels Px arranged in the column direction is connected to a common data line Ld.
  • Each of the m scanning lines Ls is connected to the selection driver circuit 20, each of the m power lines La is connected to the power driver 30, and each of the n data lines Ld is connected to the data driver circuit 40. Yes.
  • Each of the selection driver circuit 20, the power supply driver 30, and the data driver circuit 40 is driven by the control unit 50.
  • the control unit 50 is configured mainly with a microcomputer having a central processing unit and a storage unit, and generates display data using image data input to the control unit 50.
  • the selection driver circuit 20 is composed of, for example, a shift register and a buffer.
  • the selection driver circuit 20 applies either the high level selection voltage VgH or the low level non-selection voltage VgL to each scanning line Ls in accordance with a control signal from the control unit 50.
  • the selection driver circuit 20 sets the scanning line Ls to which the selection voltage VgH is applied as a selection target, and sequentially switches the selection target candidates from the first scanning line Ls to the m-th scanning line Ls as the final row. .
  • the power supply driver 30 is composed of, for example, a shift register and a buffer.
  • the power supply driver 30 applies either the high level drive voltage ELVDD or the low level write voltage WDVSS to each power supply line La in accordance with a control signal from the control unit 50.
  • the power supply driver 30 switches the target row to which the drive voltage ELVDD is applied from the first power supply line La to the mth power supply line La, which is the final row, in accordance with the selection of the scanning line Ls.
  • the data driver circuit 40 In the gradation display operation, the data driver circuit 40 generates a display voltage Vd based on gradation display display data for each data line Ld as a gradation display voltage in accordance with a control signal input from the control unit 50. . The data driver circuit 40 applies the display voltage Vd for gradation display all at once to each of the n data lines Ld in accordance with a control signal input from the control unit 50.
  • the data driver circuit 40 In the non-gradation display operation, the data driver circuit 40 generates the display voltage Vd as the non-gradation display voltage for each data line Ld according to the control signal input from the control unit 50. The data driver circuit 40 applies the display voltage Vd for non-gradation display simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
  • the data driver circuit 40 applies a common detection voltage Vm to each of the n data lines Ld in response to a control signal input from the control unit 50.
  • the data driver circuit 40 outputs the detection result of the voltage of each of the n data lines Ld to the control unit 50 in order from the first data line Ld according to the control signal input from the control unit 50.
  • FIG. 2 is a block diagram functionally showing the configuration of the control unit 50 in the present embodiment.
  • the adjustment unit 51 handles the image data input to the adjustment unit 51 as gradation data for each pixel Px.
  • the adjustment unit 51 uses a lookup table for performing various adjustments on the gradation data for each pixel Px and the image data input to the adjustment unit 51, and performs gamma correction on the gradation data for each pixel Px.
  • Various adjustments such as initial luminance adjustment and chromaticity adjustment are performed.
  • the data storage unit 52 includes m rows ⁇ n columns of storage areas associated with each of the plurality of pixels Px.
  • the data storage unit 52 inputs detection data Dout, which is data related to the threshold voltage Vth for each pixel Px, from the data driver circuit 40.
  • the data storage unit 52 stores the detection data Dout for each pixel Px input to the data storage unit 52 in a storage area associated with the pixel Px.
  • the data storage unit 52 updates the detection data Dout associated with the pixel Px.
  • the correction unit 53 reads the detection data Dout for each pixel Px stored in the data storage unit 52 and the gradation data for each pixel Px input from the adjustment unit 51.
  • the correction unit 53 performs an addition / subtraction operation on the gradation data for each pixel Px based on the detection data Dout for each pixel Px to generate an output as display data Din for each pixel Px, and uses the display data Din as a data driver circuit. Output to 40.
  • the clock generator 54 generates a data shift clock signal Clkd, a display shift clock signal Clks, and a detection shift clock signal Clkr.
  • the clock generation unit 54 outputs the data shift clock signal Clkd to the data driver circuit 40, and outputs the display shift clock signal Clks and the detection shift clock signal Clkr to the selection driver circuit 20 at different timings.
  • the data shift clock signal Clkd determines the timing at which the display data Din for each pixel Px is input from the correction unit 53 to the data driver circuit 40. Each time the data shift clock signal Clkd rises, the data driver circuit 40 displays the display data Din corresponding to the pixel Px in the first column, the display data Din corresponding to the pixel Px in the second column,. Display data Din for each pixel Px is input in the order of display data Din corresponding to. The data driver circuit 40 associates the display data Din for each pixel Px with the data line Ld to which the pixel Px is connected in the clock cycle of the data shift clock signal Clkd.
  • the display shift clock signal Clks determines a cycle in which candidates for selection are switched in the gradation display operation. In addition, the display shift clock signal Clks determines a cycle in which candidates for selection are switched in the non-gradation display operation.
  • the selection driver circuit 20 sets the scanning line Ls to 1 in the order of the first scanning line Ls, the second scanning line Ls,..., The mth scanning line Ls. Select books one by one.
  • the display clock cycle which is the clock cycle of the display shift clock signal Clks, is sufficiently longer than the clock cycle of the data shift clock signal Clkd. For example, the display clock cycle is n times the clock cycle of the data shift clock signal Clkd.
  • the detection shift clock signal Clkr determines a cycle in which a candidate to be selected is switched in the threshold detection operation. Each time the detection shift clock signal Clkr rises, the selection driver circuit 20 applies the selection voltage VgH in order of the first scanning line Ls, the second scanning line Ls,. The candidate to be switched is switched one by one.
  • the detection clock cycle that is the clock cycle of the detection shift clock signal Clkr is sufficiently shorter than the display clock cycle.
  • the detection clock cycle is the same as the clock cycle of the data shift clock signal Clkd.
  • the selection driver circuit 20 scans the candidate to which the selection voltage VgH is applied in the display clock cycle in the gradation display operation, and displays the candidate to which the selection voltage VgH is applied in the display clock cycle even in the non-gradation display operation. Scan with a period.
  • the threshold detection operation the candidate to which the selection voltage VgH is applied is scanned with a detection clock cycle shorter than the display clock cycle.
  • the detection shift clock signal Clkr includes a shift standby portion in which the low level is maintained only during the threshold detection period while the high level and the low level are repeated in the detection clock cycle.
  • the timing at which the shift standby portion is output is shifted every time the detection shift clock signal Clkr is output, that is, every time a threshold detection operation is performed.
  • the high level and the low level are repeated q times in the detection clock cycle (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then the shift standby part Is output.
  • the high level and the low level are repeated q + 1 times (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then the shift standby portion is output.
  • the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection.
  • the switching from the q + 1th scanning line Ls to the mth scanning line Ls is sequentially switched in the detection clock cycle as candidates for selection.
  • the first scanning line Ls to the (q + 1) th scanning line Ls are switched as selection candidates at the detection clock cycle.
  • the scan from the (q + 2) th scanning line Ls to the mth scanning line Ls is again scanned with a detection clock cycle as a candidate for selection.
  • the pulse generator 55 generates a start pulse signal SP1, a latch pulse signal LP, a start pulse signal SP2, and a mask pulse signal MP.
  • the pulse generator 55 outputs the start pulse signal SP1 and the latch pulse signal LP to the data driver circuit 40.
  • the pulse generator 55 outputs the start pulse signal SP2 and the mask pulse signal MP to the selection driver circuit 20 and the clock generator 54, respectively.
  • the start pulse signal SP1 is a control signal for controlling the timing at which the display data Din for one row is input from the correction unit 53 to the data driver circuit 40.
  • the data driver circuit 40 displays the display data for each pixel Px from the display data Din corresponding to the pixel Px in the first column to the display data Din corresponding to the pixel Px in the nth column. Enter Din for one line.
  • the latch pulse signal LP is a control signal for controlling the timing at which the display data Din for one row is held in the data driver circuit 40. Each time the latch pulse signal LP is input, the data driver circuit 40 displays one row of display data from the display data Din corresponding to the pixel Px in the first column to the display data Din corresponding to the pixel Px in the nth column. Hold Din.
  • the start pulse signal SP2 is a control signal for controlling the timing for starting the selection of candidate candidates. Each time the start pulse signal SP2 is input, the selection driver circuit 20 sequentially switches from the first scanning line Ls to the m-th scanning line Ls as a selection target candidate.
  • the start pulse signal SP2 is a control signal for switching a shift clock signal used for switching a candidate to be selected between a display clock cycle and a detection clock cycle.
  • the clock generation unit 54 switches the shift clock signal used for switching the selection target candidate from the display clock cycle to the detection clock cycle each time the start pulse signal SP2 is input for the number of times to be switched.
  • the number of times of switching is set to 3 times, and the clock generator 54 changes the clock cycle of the shift clock signal from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input 3 times. Change to Thereby, in the gradation display operation, the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection. In the non-gradation display operation, first, m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and then, in the threshold detection operation, m scanning lines Ls are selected. Candidates are sequentially switched in the detection clock cycle.
  • the mask pulse signal MP is a control signal for controlling the output of the shift signal generated by the selection driver circuit 20.
  • the selection driver circuit 20 applies the selection voltage VgH to one of the scanning lines Ls based on the shift signal generated by the selection driver circuit 20.
  • the selection driver circuit 20 applies the non-selection voltage VgL to all the scanning lines Ls regardless of the shift signal generated by the selection driver circuit 20.
  • the mask pulse signal MP is normally set to a high level, and is switched from a high level to a low level each time the start pulse signal SP2 is output for the number of times of switching, and the high level is maintained for the threshold detection period. Including an unmasking part.
  • the timing at which the mask release portion is output is synchronized with the output of the shift standby portion, and is shifted each time a threshold detection operation is performed.
  • a high level and a low level are repeated q times (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then a mask release portion is output.
  • the high level and the low level are repeated q + 1 times (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then the mask release portion is output.
  • the selection voltage VgH is applied to the q-th scanning line Ls that is the candidate at that time.
  • the scanning line from the first scanning line Ls to the q + 1th scanning line Ls is scanned as a selection target candidate in a detection clock cycle. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited.
  • the selection voltage VgH is applied to the q + 1-th scanning line Ls that is the candidate at that time.
  • the shift register circuit 21 receives a start pulse signal SP2, a display shift clock signal Clks, and a detection shift clock signal Clkr from the control unit 50. Each time the start pulse signal SP2 is input, the shift register circuit 21 generates an m-bit parallel signal including one selection target bit as a shift signal. Each time the shift register circuit 21 receives the display shift clock signal Clks, the shift register circuit 21 sequentially shifts one selection target bit in the shift signal line by line from the first line to the m-th line. Each time the shift register circuit 21 receives the shift clock signal Clkr for detection, it also shifts one selection target bit in the shift signal one row at a time from the first row to the m-th row.
  • the shift register circuit 21 outputs a shift signal generated by the shift register circuit 21 when the mask pulse signal MP input to the shift register circuit 21 is at a high level. On the other hand, when the mask pulse signal MP input to the shift register circuit 21 is at a low level, the shift register circuit 21 does not include a selection target bit regardless of the shift signal generated by the shift register circuit 21. Output a signal.
  • the shift clock signal is the display shift clock signal Clks
  • the shift register circuit 21 outputs a shift signal including a selection target bit based on the input of the high level mask pulse signal MP.
  • the shift clock signal is the detection shift clock signal Clkr
  • the shift register circuit 21 includes the selection target bit based on the input of the low-level mask pulse signal MP outside the threshold detection period.
  • No shift signal is output. Control of such shift signal output is performed, for example, by providing m logical product circuits corresponding to each bit of the shift signal at the output end of the shift register circuit 21, and each of the m logical product circuits has a mask pulse signal MP. This is realized by inputting.
  • the level shifter circuit 22 is a voltage adjustment circuit from the low withstand voltage circuit to the high withstand voltage circuit, and receives the shift signal from the shift register circuit 21 to adjust the voltage of the shift signal to the drive level of the buffer circuit 23.
  • the buffer circuit 23 receives the shift signal with the adjusted voltage from the level shifter circuit 22 and adjusts the voltage of the shift signal to the drive level of the pixel Px.
  • FIG. 3 is a circuit diagram showing the configuration of the pixel circuit and the configuration of the data driver circuit 40 in the present embodiment.
  • the shift register circuit 41, the data register circuit 42, and the data latch circuit 43 are configured as low withstand voltage circuits. These circuits include a logic power source voltage LVDD from a logic power source 60. And a low level logic reference voltage LVSS is applied.
  • the DAC / ADC circuit 44 and the buffer circuit 45 are configured as high withstand voltage circuits, and a high level analog power supply voltage DVSS and a low level analog reference voltage VEE are applied to these circuits from the analog power supply 70.
  • the analog power supply voltage DVSS is set to the same potential as the write voltage WDVSS and the reference voltage ELVSS.
  • the shift register circuit 41 receives the start pulse signal SP1 and the data shift clock signal Clkd from the control unit 50. Each time the start pulse signal SP1 is input, the shift register circuit 41 outputs a shift signal as an n-bit parallel signal including one selection target bit. Each time the data shift clock signal Clkd is input, the shift register circuit 41 sequentially shifts and outputs one selection target bit in the shift signal.
  • the data register circuit 42 includes n registers associated with each bit of the shift signal, and one register inputs, for example, 8-bit gradation data from the control unit 50.
  • the data register circuit 42 inputs gradation data to one register selected by one selection target bit. In the data register circuit 42, all the registers are selected by shifting one selection target bit, and display data Din for one row is fetched from the control unit 50.
  • the data latch circuit 43 includes n data latches 43a associated with the registers of the data register circuit 42, and inputs a common latch pulse signal LP to each of the n data latches 43a from the control unit 50. .
  • Each input terminal of the n data latches 43a is connected to a corresponding register in the data register circuit 42 in the gradation display operation and the non-gradation display operation.
  • Each of the n data latches 43a holds the gradation data stored in the corresponding register, and synchronizes the holding with the latch pulse signal LP.
  • Each of the n data latches 43 a outputs the gradation data held in the data latch 43 a to the DAC / ADC circuit 44.
  • the data latch circuit 43 holds the display data Din for one row fetched by the data register circuit 42 for each input of the latch pulse signal LP, and the held display data Din for one row is DAC / ADC. Output to the circuit 44.
  • Each input terminal of the n data latches 43a is connected to a corresponding detection ADC 44b in the display DAC / ADC 44 in the threshold detection operation.
  • Each of the n data latches 43a holds the data output from the corresponding detection ADC 44b as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
  • the input terminal of the data latch 43a in the p-th column (1 ⁇ p ⁇ n) is connected to the output terminal of the data latch 43a in the p + 1 column in the threshold detection operation.
  • Each of the data latches 43a in the p-th column holds the data held in the data latches 43a in the (p + 1) th column as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
  • the output terminal of the data latch 43a in the first column is connected to the control unit 50 and outputs the detection data Dout held in the data latch 43a in the first column to the control unit 50 in the threshold detection operation.
  • the data latch 43a in the first column holds all the data held in the data latch 43a in the (p + 1) th column in order from the data latch 43a in the second column, and sequentially holds the held data to the control unit 50. Output.
  • the data latch circuit 43 is connected to n data latches 43a, n input switches SW1 connected to the input terminals of the n data latches 43a, and output terminals of the n data latches 43a. N output switches SW2 are provided.
  • the data latch circuit 43 includes an output switch SW2 in the first column and a transfer switch SWtrs connected to the control unit 50.
  • the input switch SW1 is driven based on a control signal from the control unit 50, and the input end of the p-th column data latch 43a is connected to the p-th column register in the data register circuit 42 and the p-th column detection ADC 44b. , Connected to any one of the output ends of the data latches 43a in the (p + 1) th column.
  • the data latch 43a When the input terminal of the data latch 43a and the data register circuit 42 are connected, the data latch 43a holds the display data Din stored in the data register circuit 42 at a timing synchronized with the latch pulse signal LP.
  • the data latch 43a holds the data output from the detection ADC 44b as detection data Dout at a timing synchronized with the latch pulse signal LP.
  • the data latch 43a in the p-th column is synchronized with the latch pulse signal LP at the timing of the p + 1th column.
  • the detection data Dout held by the data latch 43a is held.
  • the data latch 43a in the nth column which is the last column, is connected to the logic power supply 60, and the logic reference voltage LVSS is applied to the data latch 43a in the nth column.
  • the output switch SW2 is driven based on a control signal from the control unit 50, and the output terminal of the data latch 43a in the (p + 1) th column is connected to the display DAC 44a of the DAC / ADC circuit 44 and the input of the data latch 43a in the pth column. Connect to one of the ends.
  • the display data Din held in the data latch 43a is input to the display DAC 44a at a timing synchronized with the latch pulse signal LP. Is done.
  • the detection data Dout held by the data latch 43a in the (p + 1) th column is synchronized with the latch pulse signal LP. At the timing, it is held in the data latch 43a in the p-th column.
  • the transfer switch SWtrs is driven based on a control signal from the control unit 50 and switches between connection and disconnection between the data latch 43a in the first column and the control unit 50.
  • the detection data Dout held in the data latch 43a in the first column is output to the control unit 50.
  • the DAC / ADC circuit 44 includes n display DACs 44a that are linear voltage digital-analog conversion circuits and n detection ADCs 44b that are analog-digital conversion circuits.
  • Each of the n display DACs 44a converts the display data Din held in the data latch 43a connected to the display DAC 44a into an analog signal voltage, and outputs the analog signal voltage to the buffer circuit 45 connected to the display DAC 44a.
  • Each of the n detection ADCs 44b converts an analog signal voltage output from the buffer circuit 45 connected to the detection ADC 44b into, for example, 8-bit detection data Dout, and a data latch connected to the detection ADC 44b. The detection data Dout is output to 43a.
  • the input / output characteristics of the analog signal voltage output with respect to the input digital data have linearity.
  • the analog signal voltage to be converted is set within the range from the analog power supply voltage DVSS applied from the analog power supply 70 to the analog reference voltage VEE.
  • the detection ADC 44b the input / output characteristics of the digital data output with respect to the input analog signal voltage have linearity.
  • the bit length of the digital data at the time of voltage conversion is set to the same bit length, for example, 8 bits.
  • a level shifter 46a that is a voltage adjusting circuit from the low withstand voltage circuit to the high withstand voltage circuit is provided. Further, a level shifter 46b, which is a voltage adjustment circuit from the high withstand voltage circuit to the low withstand voltage circuit, is provided between the detection ADC 44b and the input switch SW1.
  • the buffer circuit 45 includes a buffer 45a for each data line Ld that applies the display voltage Vd to the data line Ld, a buffer 45b for each data line Ld that takes in the voltage of the data line Ld, and a connection between the data line Ld and the buffer 45a. And a display switch SWd for each data line Ld for switching between cutting and cutting.
  • the buffer circuit 45 also includes a detection switch SWm for each data line Ld that switches connection and disconnection between the data line Ld and the buffer 45b, and a data line Ld that switches connection and disconnection between the data line Ld and the analog power supply 70. And a detection voltage switch SWs.
  • the buffer 45a amplifies the analog signal voltage input from the display DAC 44a to the drive level of the pixel circuit, and generates the display voltage Vd.
  • the display switch SWd is driven based on a control signal from the control unit 50, connects the buffer 45a and the data line Ld, and applies the display voltage Vd from the buffer 45a to the data line Ld.
  • the buffer 45b captures the voltage of the data line Ld, amplifies the captured voltage to the drive level of the detection ADC 44b, and outputs the amplified voltage to the detection ADC 44b.
  • the detection switch SWm is driven based on a control signal from the control unit 50, connects the buffer 45b and the data line Ld, and takes the voltage of the data line Ld into the buffer 45b.
  • the detection voltage switch SWs controls application of the detection voltage Vm from the analog power supply 70 to the data line Ld.
  • the pixel Px includes an organic EL element OEL and a pixel circuit PCC that causes the organic EL element OEL to emit light.
  • the pixel circuit PCC includes three transistors Tr1 to Tr3, which are thin film transistors, and a storage capacitor Cs.
  • the transistors Tr1 to Tr3 may be amorphous thin film transistors or polysilicon thin film transistors. In this embodiment, the transistors Tr1 to Tr3 are n-channel amorphous thin film transistors.
  • the source terminal is connected to the data line Ld
  • the drain terminal is connected to the anode of the organic EL element OEL
  • the gate terminal is connected to the scanning line Ls.
  • the sampling transistor Tr1 becomes conductive when the high-level selection voltage VgH is applied to the scanning line Ls, and becomes non-conductive when the low-level non-selection voltage VgL is applied to the scanning line Ls.
  • the source terminal is connected to the gate terminal of the current control transistor Tr3, the drain terminal is connected to the power supply line La, and the gate terminal is connected to the gate terminal of the sampling transistor Tr1.
  • the switching transistor Tr2 becomes conductive when the high-level selection voltage VgH is applied to the scanning line Ls, and becomes non-conductive when the low-level non-selection voltage VgL is applied to the scanning line Ls.
  • the source terminal is connected to the anode of the organic EL element OEL
  • the drain terminal is connected to the drain terminal of the switching transistor Tr2
  • the gate terminal is connected to the source terminal of the switching transistor Tr2.
  • the threshold voltage Vth of the drain current Id in the current control transistor Tr3 is a detection target in the threshold detection operation.
  • the holding capacitor Cs is connected between the gate terminal and the source terminal of the current control transistor Tr3.
  • the holding capacitor Cs may be a parasitic capacitor formed between the gate terminal and the source terminal of the current control transistor Tr3, and other capacitor elements may be connected in parallel to the parasitic capacitor.
  • the reference voltage ELVSS is applied to the cathode terminal of the organic EL element OEL, and the reference voltage ELVSS is, for example, a ground potential that is higher than the analog reference voltage VEE.
  • the organic EL element OEL includes a pixel capacitance Cd, and the data line Ld includes a parasitic capacitance Cp.
  • the q-th sampling transistor Tr1 and the q-th switching transistor Tr2 Becomes non-conductive. If the driving voltage ELVDD is applied to the q-th power supply line La when the q-th sampling transistor Tr1 and the q-th switching transistor Tr2 are non-conductive, the q-th current control transistor Tr3 is Based on the gate-source voltage Vgs, the drain current Id is passed through the organic EL element OEL.
  • the drain current Id in the current control transistor Tr3 in the q-th row changes in the saturation region according to the difference between the gate-source voltage Vgs and the threshold voltage Vth in the current control transistor Tr3. That is, the drain current Id corresponding to the difference between the write voltage held in the holding capacitor Cs and the threshold voltage Vth in the current control transistor Tr3 flows in the organic EL element OEL.
  • the drain current Id corresponding to the display voltage Vd flows to the organic EL element OEL, and the organic EL element OEL enters the gradation display state. Further, when the display voltage Vd based on the display data for non-gradation display is applied to the data line Ld, the flow of the drain current Id is suppressed by the organic EL element OEL, and the organic EL element OEL Key is displayed.
  • the threshold voltage Vth of the current control transistor Tr3 indicates the gate-source voltage Vgs in the current control transistor Tr3 when the drain current Id of the current control transistor Tr3 starts to flow.
  • FIG. 4 is a diagram showing the relationship between the display voltage Vd applied to the pixel circuit PCC and the drain current Id in the current control transistor Tr3 in this embodiment.
  • FIG. 4 illustrates two cases in which the threshold voltage Vth of the current control transistor Tr3 is different from each other.
  • a curve L2 indicated by a broken line in FIG. 4 shows the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3, and shows when the drain current Id of the current control transistor Tr3 fluctuates from the initial state over time. .
  • Vth 1 Vth 0 + ⁇ Vth
  • the curve L2 shows a shape in which the curve L1 is translated by the shift amount ⁇ Vth, and before and after the fluctuation of the threshold voltage Vth, these curves L1 And the shape of the curve L2 are almost the same.
  • the fluctuation caused by the bias load of the current amplification factor ⁇ is negligible compared to the fluctuation of the threshold voltage Vth
  • the display voltage Vd is determined using the shift amount ⁇ Vth in the current control transistor Tr3. This suggests that the drain current Id of the current control transistor Tr3 is corrected.
  • the threshold voltage Vth of the current control transistor Tr3 is detected in the threshold voltage Vth detection operation, and the display voltage Vd applied to the pixel circuit PCC via the data line Ld is corrected.
  • FIG. 5 is a diagram showing the temperature dependence (high temperature and room temperature) of the relationship between the display voltage Vd applied to the pixel circuit PCC in this embodiment and the drain current Id in the current control transistor Tr3.
  • a curve L3 indicated by a solid line in FIG. 5 indicates the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3 when the pixel circuit temperature is higher than the curve L1.
  • the threshold voltage Vth (T) of the current control transistor Tr3 and the current amplification factor ⁇ (T) in the pixel circuit PCC are initial values at the temperature T.
  • the drain current Id flowing through the pixel circuit PCC in the initial state of the threshold voltage Vth (T) is expressed by the following formula (3).
  • V 0 is the write voltage WDVSS.
  • Id ⁇ (T) (V 0 ⁇ Vd ⁇ Vth (T)) 2 (3)
  • the curve L3 is obtained by correcting the display voltage Vd according to the temperature change of the current amplification factor ⁇ with respect to the curve L1, so that the drain current Id of the current control transistor Tr3 is It is suggested that the correction is made according to the temperature change. Since the temperature change of the current amplification factor ⁇ is almost linear, it can be expressed by Expression (5).
  • ⁇ (T) ⁇ 0 + K ⁇ (T ⁇ T0) (5)
  • T0 is a reference temperature
  • T is a pixel circuit temperature in the display panel 10
  • ⁇ 0 is a current amplification factor at the reference temperature.
  • K ⁇ is a constant that characterizes the temperature change. Equation (5) can be further described as Equation (6) below.
  • the voltage correction of the temperature correction parameter using this ⁇ is V 0 -Vd (V 0 -Vd) / ( ⁇ ) 0.5 (7)
  • a threshold of a dummy pixel a pixel that is disposed in a frame region around the display panel 10 and has the same structure as the pixel Px and does not perform a drive current supply operation to the light emitting element (OEL)).
  • the pixel circuit PCC is connected via the data line Ld.
  • the temperature dependence of the current amplification factor ⁇ of the pixel circuit PCC in the display panel 10 is corrected by multiplying the display voltage Vd applied to the pixel circuit PCd.
  • FIG. 6 is a timing chart showing a driving state of each driver circuit 20, 30, 40 when each pixel Px in the q-th row is a detection target row for the threshold voltage Vth.
  • the write voltage WDVSS is continuously applied to the q-th power line La during the period in which the threshold detection operation is performed for each pixel Px in the q-th row. Further, the display switch SWd is kept off, and each pixel circuit PCC in the q-th row is disconnected from the shift register circuit 41 and the data register circuit 42 in the data driver circuit 40. Further, the output switch SW2 continues to be connected to another adjacent data latch 43a.
  • the input switch SW1 is connected to the detection ADC 44b, and the transfer switch SWtrs is kept off.
  • the selection voltage VgH is applied to the scanning line Ls in the q-th row
  • each switching transistor Tr2 in the q-th row and each sampling transistor Tr1 in the q-th row become conductive, and the q-th row
  • Each current control transistor Tr3 is driven in the saturation region.
  • the detection voltage switch SWs is turned on, the detection voltage Vm is applied from the analog power supply 70 to the data lines Ld all at once.
  • the detection voltage Vm is set so that a voltage larger than the threshold voltage Vth assumed between the gate and the source of the current control transistor Tr3 is applied. That is, the detection voltage Vm is set between the gate and source of the current control transistor Tr3 so that the difference between the write voltage WDVSS and the detection voltage Vm is larger than the assumed threshold voltage Vth. Note that the potential of each data line Ld to which the detection voltage Vm is applied is lower than the potential of the power supply line La to which the write voltage WDVSS is applied and lower than the cathode terminal of the organic EL element OEL.
  • each current control transistor Tr3 in the qth row When the detection voltage Vm is applied to each data line Ld, the current for each pixel Px corresponding to the difference between the detection voltage Vm and the write voltage WDVSS is changed between each current control transistor Tr3 in the qth row and each qth row. It flows to the analog power supply 70 via each sampling transistor Tr1. Accordingly, each holding capacitor Cs in the q-th row holds the gate-source voltage Vgs of the current control transistor Tr3 to which the holding capacitor Cs is connected, and thus the voltage holding operation ends. Note that the organic EL element OEL does not emit light because the anode potential of the organic EL element OEL is equal to or lower than the cathode side potential.
  • each current control transistor Tr3 in the q-th row is held in each holding capacitor Cs in the q-th row. Therefore, the drain current in each current control transistor Tr3 in the q row is adjusted so that the potential of the source terminal in each current control transistor Tr3 in the q row approaches the potential of the drain terminal in each current control transistor Tr3 in the q row. Id continues to flow. Then, as the relaxation time t, which is the time elapsed from the timing t2, progresses, the charge accumulated in each storage capacitor Cs in the qth row is discharged, and the voltage between both terminals of each storage capacitor Cs is q rows.
  • the gate-source voltage Vgs in each eye current control transistor Tr3 drops to the threshold voltage Vth at which the drain current Id does not flow. Then, a voltage corresponding to the threshold voltage Vth of each current control transistor Tr3 in the q-th row is held in each holding capacitor Cs in the q-th row, and the voltage saturation operation ends. Note that the detection voltage switch SWs for applying the detection voltage Vm to each data line Ld is kept off after the timing t2.
  • each data line Ld and each detection ADC 44b are connected, and the potential of each data line Ld in the high impedance state is taken into each detection ADC 44b.
  • each holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of each current control transistor Tr3 in the q-th row. Therefore, the gate-source voltage Vgs in each current control transistor Tr3 in the q-th row, that is, the current control transistor Tr3 in the q-th row is determined from the potential difference between the potential taken in each detection ADC 44b and the write voltage WDVSS. A voltage corresponding to the threshold voltage Vth is detected.
  • the detected potential of each data line Ld is converted into detection data Dout which is digital data by each detection ADC 44b, and is output to each data latch 43a via the level shifter 46b.
  • Each data latch 43a holds the output detection data Dout, thereby ending the voltage measurement operation.
  • the non-selection voltage VgL is applied to the q-th scanning line Ls, and each switching transistor Tr2 in the q-th row and each sampling transistor Tr1 in the q-th row are switched to a non-conductive state.
  • each detection switch SWm is turned off, and the transfer switch SWtrs is turned on.
  • the input switch SW1 is connected to the adjacent data latch 43a, and the data latches 43a are connected in series.
  • the latch pulse signal LP is output from the control unit 50 to the data driver circuit 40, and the detection data Dout held in each data latch 43a is sequentially transmitted to the control unit 50 in synchronization with the timing of the latch pulse signal LP. Transferred. As a result, data regarding the threshold voltage Vth of each of the n current control transistors Tr3 arranged in the q-th row is sequentially transferred to the control unit 50. In FIG. 6, the number of times the latch pulse signal LP is repeated is omitted for convenience of explanation.
  • FIG. 7 is a diagram showing the relationship between the data line potential VLd and the relaxation time t in the present embodiment.
  • the relaxation time t which is the time elapsed from the timing t2
  • the data line potential VLd is detected according to the discharge of the accumulated charge in the storage capacitor Cs connected to the data line Ld.
  • the voltage Vm approaches the write voltage WDVSS.
  • the relaxation time t advances to the saturation time ts
  • the data line potential VLd is saturated at the saturation voltage VLds, and the drain current Id does not flow.
  • the difference between the write voltage WDVSS and the saturation voltage VLds is set as the threshold voltage Vth.
  • the saturation time ts is, for example, 3 nsec to 10 nsec, and the period from timing t2 to timing t3 is set to be equal to or longer than the saturation time ts.
  • FIG. 8 shows the temperature dependence of the data line potential VLd in the measurement sequence described in FIG.
  • the data line potential VLd after the relaxation time t which is the time elapsed from the timing t2
  • FIG. 9 is a diagram showing the temperature dependence of the measurement result of the data line potential VLd at t0 in FIG. 8 in the present embodiment.
  • the relaxation time t is set to t0
  • the temperature dependence of the data voltage VLd at this time becomes linear as shown in FIG.
  • the temperature change of the current amplification factor ⁇ can be expressed linearly as expressed by the equation (5) and the threshold voltage Vth measurement value can be expressed linearly
  • the reference temperature is expressed as T0
  • ⁇ (T) / ⁇ (T0) 1 + K ⁇ '(Vth (T) -Vth (T0))
  • K ⁇ ′ is a constant. That is, the pixel circuit temperature in the display panel 10 can be measured by measuring the threshold voltage Vth, and the temperature dependence of the current amplification factor ⁇ of the pixel circuit PCC can be corrected based on the data.
  • FIG. 10 shows the flow of the threshold voltage Vth correction for each pixel Px and the temperature fluctuation correction for the current amplification factor ⁇ of the pixel circuit PCC.
  • a multiplication correction value of the current amplification factor ⁇ is calculated from the measured value of the threshold voltage Vth measured using the dummy pixel circuit. The correction value is multiplied by the image data to correct the temperature dependence of the current amplification factor ⁇ . Thereafter, the threshold voltage Vth measured in each pixel Px is added. Since this threshold voltage Vth has already been measured including temperature dependence, threshold shift and correction of temperature change of the current amplification factor ⁇ are performed.
  • FIG. 11 is a timing chart showing the transition of the level of each control signal along with the state of each switch during the display operation period in the present embodiment.
  • the writing operation and the light emitting operation are performed in this order.
  • the transition of the driving state of each of the driver circuits 20, 30, and 40 in the non-gradation display operation is the same as that in the gradation display operation in the period from the start to the threshold detection operation.
  • each detection switch SWm, each detection voltage switch SWs, and the transfer switch SWtrs are kept off during the period in which the gradation display operation is performed.
  • Each output switch SW2 is maintained in a state of connecting the data latch 43a and the display DAC 44a, and each of the input switches SW1 is maintained in a state of connecting the data latch 43a and the data register circuit 42.
  • each display switch SWd is turned on, so that the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld are connected in series.
  • the shift signal is input from the shift register circuit 41 to the data register circuit 42, whereby the display data Din in the first row is transferred from the control unit 50 to the data register circuit 42.
  • the data is taken into the register circuit 42.
  • the selection voltage VgH is applied to the scanning line Ls of the first row, and the writing voltage WDVSS is applied to the power supply line La of the first row, so that each sampling transistor Tr1 in the first row and the first row Each switching transistor Tr2 becomes conductive.
  • each current control transistor Tr3 in the first row can be driven in the saturation region.
  • the latch pulse signal LP is output to the data driver circuit 40, whereby the display data Din of the first row is simultaneously held in the data latches 43a.
  • the display data Din in the first row held in the n data latches 43a is converted into an analog signal voltage by the n display DACs 44a via the n level shifters 46a, and used as the display voltage Vd for each column.
  • the gate-source voltage Vgs of each current control transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the display voltage Vd, and is held in the storage capacitor Cs as the write voltage.
  • the display voltage Vd applied to each data line Ld is such that the difference between the detection data Dout associated with each pixel Px in the first row and the reference threshold voltage Vth is an adjusted gradation. This is a voltage value obtained by adding or subtracting data.
  • the start pulse signal SP1 is output to the data driver circuit 40 again, whereby the shift signal is output from the shift register circuit 41 to the data register circuit 42.
  • the display data Din on the second line is taken into the data register circuit 42 from the control unit 50.
  • the non-selection voltage VgL is applied to the scanning line Ls of the first row, and the driving voltage ELVDD is applied to the power supply line La of the first row, so that each sampling transistor Tr1 in the first row and the first row Each of the switching transistors Tr2 becomes non-conductive.
  • Each current control transistor Tr3 in the first row has a difference between the write voltage held in each holding capacitor Cs in the first row and the threshold voltage Vth in the current control transistor Tr3 to which it is connected.
  • the corresponding drain current Id is supplied to the corresponding organic EL element OEL.
  • the fluctuation amount of the threshold voltage Vth is corrected. Therefore, the drain current Id supplied to the organic EL element OEL is also the threshold voltage.
  • the variation of Vth is corrected. As a result, a light emission operation is performed on each pixel Px in the first row.
  • the selection voltage VgH is applied to the scanning line Ls of the second row, and the write voltage WDVSS is applied to the power supply line La of the second row.
  • the switching transistors Tr2 in the eye are brought into conduction.
  • Each current control transistor Tr3 in the second row is in a state where it can be driven in the saturation region.
  • the latch pulse signal LP is output again to the data driver circuit 40, whereby the display data Din of the second row is held in each data latch 43a.
  • the display data Din in the second row held in each data latch 43a is converted into an analog signal voltage by each display DAC 44a via each level shifter 46a, and output to each data line Ld as a display voltage Vd for each column. Is done.
  • the gate-source voltage Vgs of each current control transistor Tr3 in the second row becomes a value corresponding to the difference between the write voltage WDVSS and the display voltage Vd, and is held as the write voltage in each storage capacitor Cs in the second row. Is done. Thus, the writing operation for each pixel Px in the second row is completed.
  • the writing operation and the light emitting operation are performed in this order for each row, and such gradation display operation is performed in order from the first row to the nth row in the display clock cycle. As a result, an image is displayed as one frame.
  • the voltage applied by the power supply driver 30 is set to the WDVSS state.
  • FIG. 12 shows the timing of the threshold detection operation in the non-gradation display operation in the first frame
  • FIG. 13 shows the timing of the threshold detection operation in the non-gradation display operation in the second frame
  • FIG. 14 shows the timing of the threshold detection operation in the non-gradation display operation in the 540th frame.
  • the writing operation in the gradation display operation is started at each pixel Px in the first row.
  • the light emission operation in the gradation display operation is started at each pixel Px in the first row, and the writing operation in the gradation display operation is performed. It starts at each pixel Px in the second row.
  • the writing operation in the gradation display operation is started in the display clock cycle in order from the first row to the 540th row, and the light emission operation in the gradation display operation is started in order from the row in which the writing operation in the gradation display operation is completed. Is done.
  • the writing operation in the gradation display operation is completed up to the 540th row, which is the last row, and the writing operation in the non-gradation display operation is started at each pixel Px in the first row.
  • the non-light emission operation in the non-grayscale display operation starts at each pixel Px in the first row and the non-grayscale display operation Is started at each pixel Px in the second row.
  • the writing operation in the non-grayscale display operation is started in the display clock cycle in order from the first row to the 540th row, and the non-grayscale display operation is sequentially performed from the row in which the writing operation in the non-grayscale display operation is completed.
  • the light emission operation is started.
  • the start of the non-light emission operation in the non-gradation display operation is completed until the last row 540, and the candidates to which the selection voltage VgH is applied are sequentially detected in the detection clock cycle from the first row to the 540th row. Scanned.
  • the first row is set as a candidate to which the selection voltage VgH is applied, that is, the detection target row from which the threshold voltage Vth is detected, and the threshold detection operation for each pixel Px in the first row. Is performed during the threshold detection period.
  • the detection data Dout regarding each current control transistor Tr3 in the first row is stored in the data storage unit 52 of the control unit 50.
  • the threshold detection operation for each pixel Px in the first row is completed, the shift of the selection target bit in the detection clock cycle is repeated in order from the second row to the 540th row, while all the scanning lines are A non-selection voltage VgL is applied to Ls.
  • all the pixels Px stand by in a non-gradation display state.
  • the shift of the selection target bit in the detection clock cycle proceeds to the last row 540 by the input of the detection shift clock signal Clkr, and the gradation is again applied to each pixel Px in the first row.
  • the writing operation in the display operation is started.
  • the writing operation in the gradation display operation is started again from the first row to the 540th row, and the gradation display is performed in order from the row where the writing operation in the gradation display operation is completed.
  • the light emission operation in the operation is started.
  • the writing operation in the gradation display operation is advanced in the display clock cycle up to the 540th row, which is the last row, and the light emission operation in the gradation display operation is sequentially performed from the row where the writing operation in the gradation display operation is completed. Be started.
  • the writing operation in the non-grayscale display operation proceeds again in the display clock cycle in order from the first row to the 540th row, and in the non-grayscale display operation in order from the row where the writing operation in the non-grayscale display operation is completed.
  • Non-light emitting operation is started.
  • the start of the non-light emission operation in the non-grayscale display operation is completed up to the 540th row, which is the last row, and the candidates to which the selection voltage VgH is applied are sequentially detected from the first row to the 540th row. Is scanned.
  • the second row is set as the detection target row from which the threshold voltage Vth is detected.
  • the selection target bit is shifted to the second row in the detection clock cycle.
  • the candidate to which the selection voltage VgH is applied is the first row
  • the non-selection voltage VgL is applied to the scanning line Ls.
  • the threshold detection operation for each pixel Px in the second row is performed during the threshold detection period.
  • the detection data Dout regarding each current control transistor Tr3 in the second row is stored in the data storage unit 52 of the control unit 50.
  • the threshold detection operation for each pixel Px in the second row is completed, the shift of the selection target bit in the detection clock cycle is repeated in order from the third row to the 540th row, while all the scanning lines are A non-selection voltage VgL is applied to Ls.
  • all the pixels Px stand by in a non-gradation display state.
  • the shift of the selection target bit in the detection clock cycle proceeds to the last row 540 by the input of the detection shift clock signal Clkr, and the gradation is again applied to each pixel Px in the first row.
  • the writing operation in the display operation is started.
  • the writing operation in the gradation display operation is started again from the first row to the 540th row, and the gradation display is performed in order from the row where the writing operation in the gradation display operation is completed.
  • the light emission operation in the operation is started.
  • the writing operation in the gradation display operation is advanced in the display clock cycle up to the 540th row, which is the final row, and the light emission operation in the gradation display operation is sequentially performed from the row where the writing operation in the gradation display operation is completed.
  • the writing operation in the non-grayscale display operation proceeds again in the display clock cycle in order from the first row to the 540th row, and in the non-grayscale display operation in order from the row where the writing operation in the non-grayscale display operation is completed.
  • Non-light emitting operation is started.
  • the start of the non-light emission operation in the non-grayscale display operation ends to the 540th row, which is the last row, and the candidates to which the selection voltage VgH is applied are sequentially detected from the 1st row to the 540th row. Is scanned.
  • the detection target row from which the threshold voltage Vth is detected is set as the detection target row, and the candidates to which the selection voltage VgH is applied are from the first row to the 539th row, with respect to the scanning line Ls.
  • the non-selection voltage VgL is applied.
  • the threshold detection operation for each pixel Px in the 540th row is performed during the threshold detection period.
  • the detection data Dout regarding each current control transistor Tr3 in the 540th row is stored in the data storage unit 52 of the control unit 50.
  • the threshold detection operation for each pixel Px in the 540th row is completed, and the writing operation in the gradation display operation is started again for each pixel Px in the first row.
  • the threshold detection operation is performed on the pixels Px in a specific row after the non-light emission operation in the non-gradation display operation is started up to the 540th row.
  • the detection target row of the threshold voltage Vth is shifted by one row in order along the scanning direction from the pixel Px in the first row for each frame. That is, when the threshold detection operation is performed on the pixel Px in the q-th row (1 ⁇ q ⁇ 539) in the k-th frame (k is an integer equal to or greater than 1), the pixel Px in the q + 1-th row is performed in the k + 1-th frame.
  • a threshold value detection operation is performed for. When the detection target line reaches the last line, the detection target line returns to the first line.
  • the detection data Dout obtained when the detection target row is the q-th row is stored in a storage area associated with each pixel Px in the q-row by the data storage unit 52 in the control unit 50. Has been updated. Therefore, in the (k + 1) th frame, when the control unit 50 generates the display data Din in the display operation, the latest detection data Dout is used as the detection data Dout in the q-th row. Then, the control unit 50 uses the previous detection data Dout used in the kth frame for the detection data Dout other than the q-th row. Thus, the detection data Dout of each row is updated every time the frame display is repeated 540 times.
  • temperature change measurement data can also be acquired by the sequence shown in FIGS.
  • black display data is applied to the dummy data (data input to the dummy pixel circuit) so that no bias load is generated in the pixel circuit PCC.
  • the dummy pixel circuit means a TFT pixel circuit portion that does not include the organic EL element OEL among the dummy pixels.
  • 15 to 17 show an embodiment in which a scanning line for dummy pixels (hereinafter referred to as a dummy row) is provided separately from the display pixel Px for measuring the threshold voltage Vth.
  • a scanning line for dummy pixels hereinafter referred to as a dummy row
  • 15 shows a case where a dummy row is provided before the first row of the scanning line Ls for the display pixel Px
  • FIG. 16 shows a case where a dummy row is provided after the last row of the scanning line Ls
  • FIG. The timing of the threshold voltage detection operation when dummy rows are provided both before the main and after the last row is shown. Since the threshold voltage Vth is measured as a value representative of the display panel temperature, the average value of the measured values of each dummy pixel is used as a correction data calculation parameter.
  • FIGS. 18 and 19 are timing charts showing the transition of the level of various control signals for each scanning line Ls and power supply line La during the period in which one frame is displayed in the present embodiment.
  • the detection target row in the k-th frame is each pixel Px in the q-th row.
  • a shift signal is generated at a display clock cycle in accordance with the input of the start pulse signal SP2, and the selection voltage VgH is sequentially applied to each scanning line Ls at a timing based on the shift signal.
  • the selection voltage VgH is applied in order from the first scanning line Ls to the 540th scanning line Ls in the display clock cycle.
  • the write voltage WDVSS is applied to each power supply line La in order from the power supply line La of the first row to the power supply line La of the 540th row in the display clock cycle.
  • each pixel circuit PCC in the q-th row has a gradation display.
  • a display voltage Vd based on the display data Din is applied via each data line Ld, and a voltage Vd based on black display data having no bias load is applied to the dummy pixel circuit.
  • the non-selection voltage VgL is applied to the scanning line Ls in order from the row to which the selection voltage VgH is applied, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied.
  • each pixel circuit PCC in the q-th row is used for gradation display.
  • the drain current Id based on the display data Din is supplied to the organic EL element OEL.
  • the selection voltage is again displayed in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls again in response to the input of the start pulse signal SP2.
  • VgH is applied to each scanning line Ls.
  • the write voltage WDVSS is also applied to each power supply line La in order from the first power supply line La to the 540th power supply line La in the display clock cycle. Then, when the selection voltage VgH is applied to the q-th scanning line Ls and the write voltage WDVSS is applied to the q-th power line La, each pixel circuit PCC in the q-th row displays a non-gradation display.
  • a display voltage Vd based on the display data Din is applied via each data line Ld. Further, the non-selection voltage VgL is applied to the scanning line Ls in order from the row to which the selection voltage VgH is applied, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied.
  • the non-selection voltage VgL is applied to the q-th scanning line Ls and the driving voltage ELVDD is applied to the q-th power line La
  • the non-grayscale display is performed in each pixel circuit PCC in the q-th row.
  • the supply of the drain current Id to the organic EL element OEL is suppressed based on the display data Din for use.
  • the write voltage WDVSS is applied to each power supply line La. Further, the input of the start pulse signal SP2 is the number of times of switching, and the shift clock signal used for scanning the scanning line Ls is switched from the display clock cycle to the detection clock cycle. Then, in the shift register circuit 21 of the selection driver circuit 20, a shift signal is generated at the detection clock cycle, and the selection target bits in the shift signal are shifted to the q ⁇ 1th row. During this period, the mask pulse signal MP is maintained at a low level, and the shift register circuit 21 of the selection driver circuit 20 continues to output a shift signal that does not include the selection target bit regardless of the generated shift signal.
  • the mask pulse signal MP is switched to the high level, and the selection voltage VgH is applied to the scanning line Ls of the q-th row. Then, detection of the threshold voltage Vth is started for each pixel Px in the q-th row.
  • the detection data Dout for each pixel Px in the q-th row is output from the data driver circuit 40 and the threshold detection period elapses after the mask pulse signal MP is switched to the high level, the mask pulse signal MP is again set to the low level. Can be switched to.
  • the shift register circuit 21 of the selection driver circuit 20 a shift signal is generated at the detection clock cycle, and the selection target bits in the shift signal are shifted to the 540th row. During this period, since the mask pulse signal MP is maintained at a low level, the shift register circuit 21 of the selection driver circuit 20 continues to output a shift signal that does not include the selection target bit regardless of the generated shift signal. .
  • the mask pulse signal MP is switched to the high level again in response to the input of the start pulse signal SP2. Then, the selection voltage VgH is applied to each scanning line Ls in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls. The writing operation in the tone display operation is started.
  • FIG. 19 shows a control sequence when a dummy row is arranged after the last row.
  • the VgH setting of the scanning line Ls may be performed only when the threshold detection operation is performed, and the power supply line La may also remain at WDVSS. According to this embodiment, the effects listed below can be obtained.
  • the threshold voltage Vth of the current control transistor Tr3 and its temperature dependence in the pixel circuit PCC and the dummy pixel circuit are measured. Then, the image data is corrected using the detection data Dout based on the measured threshold voltage Vth, and display data Din is generated. A display voltage Vd based on the display data Din is applied to the pixel circuit PCC. Therefore, even if the threshold voltage Vth of the current control transistor Tr3 fluctuates, the image data is corrected in accordance with the threshold voltage Vth after the fluctuation, so that it is possible to suppress deterioration in the displayed image quality. .
  • the update period of the detection data Dout is shortened. That is, the time difference between when the detection data Dout is acquired and when the display data Din, which is corrected data, is output is shortened. Therefore, even when an image with a high contrast is displayed, even when the variation of the threshold voltage Vth of the current control transistor Tr3 changes in a short period (for example, an environmental temperature change in a mobile display), it is displayed. Degradation of image quality is suppressed.
  • the threshold detection operation is performed during the period in which the non-gradation display operation inserted to make the moving image display clear is performed, and thus the threshold detection operation has an effect on the image display performance. The impact is effectively suppressed.
  • the selection driver circuit 20 also functions as a configuration in which the detection target row is changed every time one frame is displayed.
  • the detection cycle of the detection target row candidate is a detection clock cycle shorter than the display clock cycle. Therefore, the time required for the threshold detection operation is shortened as compared with the case where the detection target line candidate switching period is the display clock period.
  • the detection target row of the threshold voltage Vth is shifted one row at a time in the scanning direction from the pixel Px of the first row every time one frame is displayed. Therefore, the correction of the display data Din based on the threshold voltage Vth is finer in the scanning direction than in the configuration in which the detection target row of the threshold voltage Vth is intermittently set along the scanning direction. .
  • the above embodiment can be implemented with the following modifications.
  • the detection target line may be shifted by two or more lines along the scanning direction every time one frame is displayed.
  • the data storage unit 52 includes a storage area of m / Sf rows ⁇ n columns along the column direction.
  • Each of the Sf pixels Px arranged in parallel is associated with one storage area.
  • Sf pixels Px arranged in the column direction may be set as one group, and only the first row of each group may be set as a detection target row. That is, the configuration may be such that the detection target rows are repeatedly shifted for each frame in the order of the first row, the eleventh row, the twenty-first row,..., The 511th row, the 521st row, and the 531st row. Further, not only the first row of each group but also a specific row in each group is set as a detection target row, and the detection data Dout of each row in the group is always represented by the detection data Dout of the specific row. There may be.
  • the detection data Dout obtained in the period in which the current frame is displayed may be handled as the detection data Dout for all rows in the period in which the next frame is displayed.
  • the data storage unit 52 includes a storage area of 1 row ⁇ n columns, and each of the m pixels Px arranged in the column direction is associated with one storage area.
  • the detection data Dout for one row is also used as the detection data Dout for the other row, so the effect according to the above (7) becomes remarkable.
  • the detection target line may be set to the same line for each frame.
  • the detection target line may be set irregularly for each frame.
  • the control unit 50 uses a random function that generates a random number for each frame between 1 and m.
  • the timing at which the shift standby portion is output by the detection shift clock signal Clkr and the timing at which the mask release portion is output by the mask pulse signal MP are synchronized, and only the time corresponding to the generated random number. It is sufficient if these are delayed from the start pulse signal SP2.
  • Two or more detection target rows may be set for each frame.
  • the detection shift clock signal Clkr outputs two shift standby portions at different timings
  • the mask pulse signal MP outputs two mask release portions at different timings.
  • the timing at which each of the two shift standby portions is output is synchronized with the timing at which each of the two mask release portions is output.
  • a threshold detection operation may be performed.
  • the detection voltage Vm applied in one threshold detection operation may have a different configuration for each data line Ld.
  • each of the plurality of data lines Ld may be connected to the analog power supply 70 through different wirings.
  • the detection voltage Vm may be supplied as digital data from the data driver circuit 40 to the data line Ld.
  • the data line Ld to which the detection voltage Vm is applied in one threshold detection operation may be a part of all the data lines Ld. At this time, in one threshold value detection operation, only a part of the data lines Ld to which the detection voltage Vm is applied is connected to the analog power supply 70 via the detection voltage switch SWs.
  • the threshold voltage Vth is detected as a characteristic of the current control transistor Tr3, and the display voltage Vd is corrected based on the detected threshold voltage Vth.
  • the current amplification factor ⁇ may be detected as a characteristic of the current control transistor Tr3, and the display voltage Vd may be corrected based on the detected current amplification factor ⁇ .
  • both the threshold voltage Vth and the current amplification factor ⁇ may be detected as the characteristics of the current control transistor Tr3.
  • the detection target in the threshold detection operation may be any parameter that affects the drive current supplied to the organic EL element OEL among the element characteristics of the current control transistor Tr3.
  • the light emission characteristics of the organic EL element OEL such as light emission luminance may be used.
  • the configuration of the pixel circuit PCC is not limited to the above configuration. As long as the driving current is supplied to the organic EL element OEL through the current control transistor Tr3, the type of elements provided in the pixel circuit PCC and the circuit configuration are arbitrary.
  • the light emitting element is not limited to an organic EL element, and may be an inorganic EL element, an LED, or the like, and may be any element that emits light by supplying a driving current through the current control transistor Tr3.
  • is a constant smaller than 1 and is one of the brightness control parameters.
  • the transistor characteristics are detected by the threshold detection operation, and the gradation display voltage supplied to the pixel circuit PCC is the threshold detection. Correction is made based on the result. Therefore, when the characteristics of the transistor fluctuate, the gradation display voltage is corrected in accordance with the fluctuation of the transistor characteristics. As a result, it is possible to prevent the image quality from being changed due to the change in the transistor characteristics, and hence the image quality from being deteriorated due to the change in the transistor characteristics, and the temperature characteristics of the transistor in the pixel circuit PCC for temperature control. Since measurement is performed, a data voltage correction operation as temperature control can be performed from the measured value.
  • the arrangement of the scanning lines Ls for the dummy pixels may be added as the scanning lines for measurement above and below the scanning lines Ls for the display pixels Px, for example, Except that no display data is applied to the data line Ld, the same driving as the display pixel Px may be performed. Furthermore, the EL element OEL may or may not be formed on the dummy pixel.
  • the degree of the variation may be close between a plurality of different pixel circuits PCC. For this reason, when the gradation display voltage of one pixel circuit PCC is corrected, the detection result in another pixel circuit PCC may be used. In this respect, with the above-described configuration, since the range of the detection target is widened, when the gradation display voltage is corrected for one pixel circuit PCC, the threshold value detection used for the correction is detected. More candidate results.
  • the control unit 50 sets the number of selection targets in one threshold detection operation to one.
  • the selection driver circuit 20 sequentially switches the selection target candidates among the plurality of scanning lines Ls. Then, the control unit 50 shortens the switching cycle in the threshold detection operation than the switching cycle in the gradation display operation and the switching cycle in the non-gradation display operation.
  • the selection target candidates are sequentially switched among the plurality of scanning lines Ls.
  • the switching cycle in the threshold detection operation is shorter than the switching cycle in other operations, the time required until a specific selection target is selected is compared with other operations. Become shorter.
  • the time required for one threshold detection operation is shortened, it is further suppressed that the non-display state becomes longer than necessary due to the time required for the threshold detection operation.
  • the present invention it is possible to suppress a change in image quality due to a change in element characteristics in a pixel circuit that supplies a drive current to a light emitting element, and the present invention can be used for a display device, a display method, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

Provided are a display device and display method that can suppress changes in image quality caused by changing of organic EL device and transistor element characteristics because of increases in the temperature of a display panel caused by the generation of heat by pixel circuits providing drive current to light-emitting elements. The display device is provided with: a plurality of pixel circuits that include transistors for supplying drive current to light-emitting elements; a plurality of dummy pixel circuits that have constitutions identical with the pixel circuits and do not carry out operations providing drive current to light-emitting elements; a selection driver that selects any one of a plurality of scanning lines as a target of selection; and a control unit that controls the driving of the selection driver. Gradient display operations, non-gradient display operations, and detection operations for detecting the characteristics of transistors are repeated in this order, and gradient display voltage is corrected using the results of detection obtained by the detection operations. Detection operations for detecting the characteristics of the transistors are carried out through data lines for the dummy pixel circuits and the temperature characteristics of the pixel circuits are corrected.

Description

表示装置、および、表示方法Display device and display method
 本開示の技術は、トランジスタを通じて駆動電流が供給される発光素子を備える表示装置、および、表示方法に関する。 The technology of the present disclosure relates to a display device including a light emitting element to which a driving current is supplied through a transistor, and a display method.
 マトリクス状に配置された複数のエレクトロルミネッセンス素子(EL素子)を走査線の走査によって順次駆動する表示装置が知られている(例えば、特許文献1、2参照)。特許文献1に記載の表示装置では、1つの走査線に接続される複数の有機EL素子への駆動電流の供給が、有機EL素子ごとの2つのトランジスタである電流制御トランジスタとサンプリングトランジスタとによって制御される。そして、サンプリングトランジスタが導通状態に切り替わるごとに、電流制御トランジスタのゲート‐ソース間には、表示データに応じたレベルで電圧が印加される。これによって、電流制御トランジスタのゲート‐ソース間電圧に基づくドレイン電流が駆動電流として有機EL素子に供給され、発光輝度の階調が有機EL素子ごとに制御される。 2. Description of the Related Art Display devices that sequentially drive a plurality of electroluminescent elements (EL elements) arranged in a matrix by scanning line scanning are known (see, for example, Patent Documents 1 and 2). In the display device described in Patent Document 1, supply of drive current to a plurality of organic EL elements connected to one scanning line is controlled by a current control transistor and a sampling transistor, which are two transistors for each organic EL element. Is done. Each time the sampling transistor is switched to a conductive state, a voltage is applied between the gate and the source of the current control transistor at a level corresponding to the display data. As a result, a drain current based on the gate-source voltage of the current control transistor is supplied as a drive current to the organic EL element, and the gradation of light emission luminance is controlled for each organic EL element.
特開平8-330600号公報JP-A-8-330600 特開2010-128397号公報JP 2010-128397 A
 しかしながら、有機EL表示装置のような発光素子は環境温度および自らの発光による発熱も伴い表示パネル温度が上昇することで有機EL素子の特性劣化が加速されてしまうという問題が生じる。またアクティブマトリクス駆動をおこなう場合は、この温度上昇によるトランジスタの特性劣化も加速されてしまうという問題がある。
 本開示の技術は、発光素子に駆動電流を供給する画素回路でのパネル温度上昇による発光素子およびトランジスタ素子特性の変化によって画質が変化することを抑えることが可能な表示装置および表示方法を提供することを目的とする。
However, a light emitting element such as an organic EL display device has a problem in that characteristic deterioration of the organic EL element is accelerated by an increase in display panel temperature accompanied by environmental temperature and heat generation due to its own light emission. In addition, when active matrix driving is performed, there is a problem in that deterioration of transistor characteristics due to temperature rise is also accelerated.
The technology of the present disclosure provides a display device and a display method capable of suppressing a change in image quality due to a change in characteristics of a light emitting element and a transistor element due to a panel temperature rise in a pixel circuit that supplies a driving current to the light emitting element. For the purpose.
 上記課題を解決するための本発明の一局面は、発光素子に駆動電流を供給するトランジスタを含む複数の画素回路と、画素回路と同一構成でかつ発光素子に駆動電流供給動作を行わない複数のダミー画素回路と、複数の画素回路および複数のダミー画素のそれぞれに、いずれかが接続する複数の走査線と、複数の画素回路および複数のダミー画素のそれぞれに、いずれかが接続する複数のデータ線と、複数の走査線のいずれか1つを選択対象として選択する選択ドライバと、選択ドライバの駆動を制御する制御部と、を備え、制御部は、画素回路に対して、各走査線を順に選択させ、各選択対象に接続される画素回路に対しデータ線を通じて階調表示電圧を印加して発光素子を階調表示状態にする階調表示動作と、各走査線を順に選択させ、各選択対象に接続される画素回路に対しデータ線を通じて非階調表示電圧を印加して発光素子を非階調表示状態にする非階調表示動作と、非階調表示状態にて複数の走査線の一部を選択させ、選択対象に接続された画素回路に対しデータ線を通じてトランジスタの特性を検出する検出動作と、をこの順に繰り返し、検出動作によって得られた検出結果を用いて階調表示電圧を補正し、ダミー画素回路に対して、複数の走査線の一部を選択させ、選択対象に接続されたダミー画素回路に対しデータ線を通じてトランジスタの特性を検出する検出動作を行い画素回路の温度特性を補正する、表示装置である。 One aspect of the present invention for solving the above problems is a plurality of pixel circuits including a transistor that supplies a driving current to the light-emitting element, and a plurality of pixel circuits that have the same configuration as the pixel circuit and do not perform a driving current supply operation to the light-emitting element. A dummy pixel circuit, a plurality of scanning circuits connected to each of the plurality of pixel circuits and the plurality of dummy pixels, and a plurality of data connected to each of the plurality of pixel circuits and the plurality of dummy pixels. A selection driver that selects one of the plurality of scanning lines as a selection target, and a control unit that controls driving of the selection driver. The control unit applies each scanning line to the pixel circuit. A grayscale display operation that applies a grayscale display voltage to the pixel circuit connected to each selection target through the data line to place the light emitting element in a grayscale display state, and each scanning line is selected in turn. A non-grayscale display operation in which a non-grayscale display voltage is applied to a pixel circuit connected to each selection target through a data line to place the light emitting element in a non-grayscale display state, and a plurality of scans in the non-grayscale display state A gray scale is displayed using the detection result obtained by the detection operation by repeating a detection operation in which a part of the line is selected and the pixel circuit connected to the selection target detects the characteristics of the transistor through the data line in this order. The voltage is corrected, the dummy pixel circuit is made to select a part of the plurality of scanning lines, and the dummy pixel circuit connected to the selection target performs a detection operation for detecting the characteristics of the transistor through the data line. A display device that corrects temperature characteristics.
 上記課題を解決するための本発明の他の局面は、発光素子に駆動電流を供給するトランジスタを含む画素回路が接続された複数の走査線のいずれか1つを選択対象として順に選択し、選択対象に接続される画素回路に対しデータ線を通じて階調表示電圧を印加して発光素子を階調表示状態にする階調表示動作と、選択対象に接続される画素回路に対しデータ線を通じて非階調表示電圧を印加して発光素子を非階調表示状態にする非階調表示動作と、非階調表示状態にて複数の走査線の一部を選択させ、選択対象に接続された画素回路に対しデータ線を通じてトランジスタの特性を検出する検出動作と、をこの順に繰り返し、検出動作によって得られた検出結果を用いて階調表示電圧を補正する、表示方法である。 Another aspect of the present invention for solving the above problems is to sequentially select any one of a plurality of scanning lines connected to a pixel circuit including a transistor that supplies a driving current to a light emitting element as a selection target, and select A gradation display operation in which a gradation display voltage is applied to a pixel circuit connected to a target through a data line to bring the light emitting element into a gradation display state, and a non-scale is applied to the pixel circuit connected to a target through a data line. A non-grayscale display operation in which a light-emitting element is applied to a non-grayscale display state by applying a grayscale display voltage, and a pixel circuit connected to a selection target by selecting a part of a plurality of scanning lines in the non-grayscale display state On the other hand, the detection operation of detecting the characteristics of the transistor through the data line is repeated in this order, and the gradation display voltage is corrected using the detection result obtained by the detection operation.
 本開示の表示装置によれば、発光素子に駆動電流を供給する画素回路での素子特性の変化によって画質が変化することが抑えられるとともに発光素子に駆動電流を供給する画素回路での表示パネル温度上昇による発光素子およびトランジスタ素子特性の変化によって画質が変化することを抑えることができる。 According to the display device of the present disclosure, it is possible to suppress a change in image quality due to a change in element characteristics in the pixel circuit that supplies the driving current to the light emitting element, and to display the panel temperature in the pixel circuit that supplies the driving current to the light emitting element. A change in image quality due to a change in the characteristics of the light emitting element and the transistor element due to the rise can be suppressed.
図1は、本発明の一実施形態における表示装置の全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a display device according to an embodiment of the present invention. 図2は、本発明の一実施形態における制御部の構成を機能的に示すブロック図である。FIG. 2 is a block diagram functionally showing the configuration of the control unit in one embodiment of the present invention. 図3は、本発明の一実施形態における画素回路の構成とデータドライバの構成とを示す回路図である。FIG. 3 is a circuit diagram showing the configuration of the pixel circuit and the configuration of the data driver in one embodiment of the present invention. 図4は、本発明の一実施形態における画素回路に印加される表示用電圧と電流制御トランジスタにおけるドレイン電流との関係を示す図である。FIG. 4 is a diagram showing the relationship between the display voltage applied to the pixel circuit and the drain current in the current control transistor in one embodiment of the present invention. 図5は、本発明の一実施形態における画素回路に印加される表示用電圧と電流制御トランジスタにおけるドレイン電流との関係の温度依存性(高温および室温)を示す図である。FIG. 5 is a diagram showing the temperature dependence (high temperature and room temperature) of the relationship between the display voltage applied to the pixel circuit and the drain current in the current control transistor in one embodiment of the present invention. 図6は、本発明の一実施形態におけるしきい値検出動作での各制御信号のレベルの推移を各スイッチの状態と共に示すタイミングチャートである。FIG. 6 is a timing chart showing the transition of the level of each control signal together with the state of each switch in the threshold detection operation according to the embodiment of the present invention. 図7は、本発明の一実施形態におけるデータ線の電位と緩和時間との関係を示す図である。FIG. 7 is a diagram showing the relationship between the potential of the data line and the relaxation time in one embodiment of the present invention. 図8は、本発明の一実施形態において、ダミー画素回路のしきい値電圧測定の温度依存性を示す図である。FIG. 8 is a diagram showing the temperature dependence of the threshold voltage measurement of the dummy pixel circuit in one embodiment of the present invention. 図9は、本発明の一実施形態において、図8におけるt0での測定結果の温度依存性を示す図である(温度に対して線形相関になる)。FIG. 9 is a diagram showing the temperature dependence of the measurement result at t0 in FIG. 8 (linear correlation with temperature) in one embodiment of the present invention. 図10は、本発明の一実施形態におけるデータ演算補正出力の流れを示した図である(温度制御は乗算補正、しきい値電圧補正は加算補正となる)。FIG. 10 is a diagram showing a flow of data calculation correction output in one embodiment of the present invention (temperature control is multiplication correction, and threshold voltage correction is addition correction). 図11は、本発明の一実施形態における表示動作期間での各制御信号のレベルの推移を各スイッチの状態と共に示すタイミングチャートである。FIG. 11 is a timing chart showing the transition of the level of each control signal along with the state of each switch during the display operation period in one embodiment of the present invention. 図12は、本発明の一実施形態における第1フレームにて行われる各種動作のタイミングを1行目の画素から540行目の画素の各々について模式的に示す図である。FIG. 12 is a diagram schematically illustrating the timing of various operations performed in the first frame according to the embodiment of the present invention for each of the pixels from the first row to the 540th row. 図13は、本発明の一実施形態における第2フレームにて行われる各種動作のタイミングを1行目の画素から540行目の画素の各々について模式的に示す図である。FIG. 13 is a diagram schematically illustrating the timing of various operations performed in the second frame in one embodiment of the present invention for each of the pixels from the first row to the 540th row. 図14は、本発明の一実施形態における第540フレームにて行われる各種動作のタイミングを1行目の画素から540行目の画素の各々について模式的に示す図である。FIG. 14 is a diagram schematically illustrating the timing of various operations performed in the 540th frame for each of the pixels from the first row to the 540th row in the embodiment of the present invention. 図15は、本発明の一実施形態における第1フレーム前のダミー行にて行われる各種動作のタイミングを、ダミー行目の画素から540行目の画素の各々について模式的に示す図である。FIG. 15 is a diagram schematically illustrating the timing of various operations performed in the dummy row before the first frame in each of the pixels of the 540th row from the pixels in the dummy row in the embodiment of the present invention. 図16は、本発明の一実施形態における第540フレーム後のダミー行にて行われる各種動作のタイミングを、1行目の画素からダミー行目の画素の各々について模式的に示す図である。FIG. 16 is a diagram schematically illustrating the timing of various operations performed in the dummy row after the 540th frame for each of the pixels from the first row to the dummy row in the embodiment of the present invention. 図17は、本発明の一実施形態における第1フレーム前および第540フレーム後にダミー行を設けた構成における第540フレーム後のダミー行にて行われる各種動作のタイミングを、ダミー行(1行目)の画素からダミー行(2行目)の画素の各々について模式的に示す図である。FIG. 17 shows the timing of various operations performed in the dummy row after the 540th frame in the configuration in which the dummy row is provided before the first frame and after the 540th frame in one embodiment of the present invention. ) To a dummy row (second row) of pixels. 図18は、本発明の一実施形態において1つのフレームが表示される期間での各種制御信号のレベルの推移を走査線および電源線ごとに示すタイミングチャートである。FIG. 18 is a timing chart showing changes in the levels of various control signals for each scanning line and power supply line during a period in which one frame is displayed in one embodiment of the present invention. 図19は、本発明の一実施形態において1つのフレームが表示される期間での各種制御信号のレベルの推移を走査線および電源線ごとに示すタイミングチャートである。FIG. 19 is a timing chart showing the transition of the levels of various control signals for each scanning line and power supply line during a period in which one frame is displayed in one embodiment of the present invention. 図20は、本発明の一実施形態において、表示パネル温度が高温になった場合の輝度制御手段例を示す図である(例えば50℃以上で輝度を低下させ、有機ELとTFTとの劣化を抑制する)。FIG. 20 is a diagram showing an example of luminance control means when the display panel temperature becomes high in one embodiment of the present invention (for example, the luminance is lowered at 50 ° C. or more, and deterioration of the organic EL and TFT is caused). Suppress).
 (実施形態)
 図1~図20を参照して本実施形態における表示装置について説明する。
(Embodiment)
The display device according to this embodiment will be described with reference to FIGS.
 本実施形態の表示装置は、アクティブマトリクス駆動方式を用い、発光素子としての有機EL素子を発光させる。表示装置における1つのフレームの表示動作は、表示データに基づく画像が表示される階調表示動作と、黒色の画像が表示される非階調表示動作とから構成される。この際に、非階調表示動作が行われる期間では、特定の走査線に接続される複数の画素の各々に対し、画素回路に含まれる電流制御トランジスタのしきい値電圧に関する電圧が検出され、表示データに基づいて印加される画素回路への表示用電圧は、しきい値電圧およびその温度依存性に関する検出結果を用いて補正される。すなわち、1つのフレームが表示される期間には、階調表示動作と非階調表示動作とが交互に繰り返される表示動作と、しきい値電圧に関する電圧を検出するしきい値検出動作とが含まれる。以下では、これらの表示動作としきい値検出動作とを中心に説明する。 The display device of the present embodiment uses an active matrix driving method to cause an organic EL element as a light emitting element to emit light. The display operation of one frame in the display device includes a gradation display operation in which an image based on display data is displayed and a non-gradation display operation in which a black image is displayed. At this time, in the period in which the non-gradation display operation is performed, a voltage related to the threshold voltage of the current control transistor included in the pixel circuit is detected for each of the plurality of pixels connected to the specific scanning line. The display voltage applied to the pixel circuit based on the display data is corrected using the detection result relating to the threshold voltage and its temperature dependency. That is, a period during which one frame is displayed includes a display operation in which a grayscale display operation and a non-grayscale display operation are alternately repeated, and a threshold detection operation for detecting a voltage related to the threshold voltage. It is. Below, these display operations and threshold value detection operations will be mainly described.
 [表示装置の構成]
 図1を参照して、表示装置の全体構成について説明する。図1は、本実施形態における表示装置の全体構成を示すブロック図である。
 図1に示されるように、表示パネル10には、複数の画素Pxがm行×n列のマトリクス状に配置されている。mは1以上の整数であり、また、nも1以上の整数である。複数の画素Pxの各々には、1つの有機EL素子とその有機EL素子に駆動電流を供給する1つの画素回路とが配置されている。
[Configuration of display device]
The overall configuration of the display device will be described with reference to FIG. FIG. 1 is a block diagram illustrating an overall configuration of a display device according to the present embodiment.
As shown in FIG. 1, the display panel 10 has a plurality of pixels Px arranged in a matrix of m rows × n columns. m is an integer of 1 or more, and n is an integer of 1 or more. In each of the plurality of pixels Px, one organic EL element and one pixel circuit for supplying a driving current to the organic EL element are arranged.
 複数の画素Pxの各々は、行方向に沿って延びるm本の走査線Lsと、列方向に沿って延びるn本のデータ線Ldとが平面視にて交わる点(交点)付近に配置されている。行方向に沿って並ぶn個の画素Pxの各々は、共通する1本の走査線Lsと、共通する1本の電源線Laとに接続されている。列方向に沿って並ぶm個の画素Pxの各々は、共通する1本のデータ線Ldに接続されている。 Each of the plurality of pixels Px is arranged near a point (intersection) where the m scanning lines Ls extending along the row direction and the n data lines Ld extending along the column direction intersect in plan view. Yes. Each of the n pixels Px arranged in the row direction is connected to a common scanning line Ls and a common power supply line La. Each of the m pixels Px arranged in the column direction is connected to a common data line Ld.
 m本の走査線Lsの各々は選択ドライバ回路20に接続され、m本の電源線Laの各々は電源ドライバ30に接続され、n本のデータ線Ldの各々はデータドライバ回路40に接続されている。選択ドライバ回路20、電源ドライバ30、および、データドライバ回路40の各々は、制御部50によって駆動される。制御部50は、中央処理装置や記憶部を有するマイクロコンピューターを中心に構成され、制御部50に入力される画像データを用いて表示データを生成する。 Each of the m scanning lines Ls is connected to the selection driver circuit 20, each of the m power lines La is connected to the power driver 30, and each of the n data lines Ld is connected to the data driver circuit 40. Yes. Each of the selection driver circuit 20, the power supply driver 30, and the data driver circuit 40 is driven by the control unit 50. The control unit 50 is configured mainly with a microcomputer having a central processing unit and a storage unit, and generates display data using image data input to the control unit 50.
 選択ドライバ回路20は、例えば、シフトレジスタやバッファ等から構成される。選択ドライバ回路20は、制御部50からの制御信号に応じ、ハイレベルである選択電圧VgHとローレベルである非選択電圧VgLとのいずれかを走査線Lsごとに印加する。選択ドライバ回路20は、選択電圧VgHの印加される走査線Lsを選択対象として設定し、選択対象の候補を1行目の走査線Lsから最終行であるm行目の走査線Lsまで順に切り替える。 The selection driver circuit 20 is composed of, for example, a shift register and a buffer. The selection driver circuit 20 applies either the high level selection voltage VgH or the low level non-selection voltage VgL to each scanning line Ls in accordance with a control signal from the control unit 50. The selection driver circuit 20 sets the scanning line Ls to which the selection voltage VgH is applied as a selection target, and sequentially switches the selection target candidates from the first scanning line Ls to the m-th scanning line Ls as the final row. .
 電源ドライバ30は、例えば、シフトレジスタやバッファ等から構成される。電源ドライバ30は、制御部50からの制御信号に応じ、ハイレベルである駆動電圧ELVDDとローレベルである書き込み電圧WDVSSとのいずれかを各電源線Laに印加する。電源ドライバ30は、駆動電圧ELVDDの印加の対象行を1行目の電源線Laから最終行であるm行目の電源線Laまで走査線Lsの選択に合わせて切り替える。 The power supply driver 30 is composed of, for example, a shift register and a buffer. The power supply driver 30 applies either the high level drive voltage ELVDD or the low level write voltage WDVSS to each power supply line La in accordance with a control signal from the control unit 50. The power supply driver 30 switches the target row to which the drive voltage ELVDD is applied from the first power supply line La to the mth power supply line La, which is the final row, in accordance with the selection of the scanning line Ls.
 データドライバ回路40は、階調表示動作において、制御部50から入力される制御信号に応じ、階調表示用の表示データに基づく表示用電圧Vdを階調表示電圧としてデータ線Ldごとに生成する。データドライバ回路40は、制御部50から入力される制御信号に応じ、n本のデータ線Ldの各々に対し一斉に階調表示用の表示用電圧Vdを印加する。 In the gradation display operation, the data driver circuit 40 generates a display voltage Vd based on gradation display display data for each data line Ld as a gradation display voltage in accordance with a control signal input from the control unit 50. . The data driver circuit 40 applies the display voltage Vd for gradation display all at once to each of the n data lines Ld in accordance with a control signal input from the control unit 50.
 データドライバ回路40は、非階調表示動作において、制御部50から入力される制御信号に応じ、表示用電圧Vdを非階調表示電圧としてデータ線Ldごとに生成する。データドライバ回路40は、制御部50から入力される制御信号に応じ、n本のデータ線Ldの各々に対し一斉に非階調表示用の表示用電圧Vdを印加する。 In the non-gradation display operation, the data driver circuit 40 generates the display voltage Vd as the non-gradation display voltage for each data line Ld according to the control signal input from the control unit 50. The data driver circuit 40 applies the display voltage Vd for non-gradation display simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
 データドライバ回路40は、しきい値検出動作において、制御部50から入力される制御信号に応じ、n本のデータ線Ldの各々に対し一斉に共通する検出用電圧Vmを印加する。データドライバ回路40は、制御部50から入力される制御信号に応じ、n本のデータ線Ldの各々の電圧の検出結果を1本目のデータ線Ldから順に制御部50へ出力する。 In the threshold detection operation, the data driver circuit 40 applies a common detection voltage Vm to each of the n data lines Ld in response to a control signal input from the control unit 50. The data driver circuit 40 outputs the detection result of the voltage of each of the n data lines Ld to the control unit 50 in order from the first data line Ld according to the control signal input from the control unit 50.
 [制御部50の構成]
 図2を参照して制御部50の構成について説明する。図2は、本実施形態における制御部50の構成を機能的に示すブロック図である。
 図2に示されるように、調整部51は、調整部51に入力される画像データを画素Pxごとの階調データとして取り扱う。調整部51は、画素Pxごとの階調データに各種の調整を行うためのルックアップテーブルと、調整部51に入力される画像データとを用い、画素Pxごとの階調データに対し、ガンマ補正、初期輝度調整、色度調整等の各種の調整を行う。
[Configuration of Control Unit 50]
The configuration of the control unit 50 will be described with reference to FIG. FIG. 2 is a block diagram functionally showing the configuration of the control unit 50 in the present embodiment.
As shown in FIG. 2, the adjustment unit 51 handles the image data input to the adjustment unit 51 as gradation data for each pixel Px. The adjustment unit 51 uses a lookup table for performing various adjustments on the gradation data for each pixel Px and the image data input to the adjustment unit 51, and performs gamma correction on the gradation data for each pixel Px. Various adjustments such as initial luminance adjustment and chromaticity adjustment are performed.
 データ記憶部52は、複数の画素Pxの各々に対応づけられたm行×n列の記憶領域を備えている。データ記憶部52は、画素Pxごとのしきい値電圧Vthに関するデータである検出データDoutをデータドライバ回路40から入力する。データ記憶部52は、データ記憶部52に入力された画素Pxごとの検出データDoutをその画素Pxが対応づけられた記憶領域に記憶する。データ記憶部52は、画素Pxごとの検出データDoutが入力されるごとに、その画素Pxに対応づけられた検出データDoutを更新する。 The data storage unit 52 includes m rows × n columns of storage areas associated with each of the plurality of pixels Px. The data storage unit 52 inputs detection data Dout, which is data related to the threshold voltage Vth for each pixel Px, from the data driver circuit 40. The data storage unit 52 stores the detection data Dout for each pixel Px input to the data storage unit 52 in a storage area associated with the pixel Px. Each time the detection data Dout for each pixel Px is input, the data storage unit 52 updates the detection data Dout associated with the pixel Px.
 補正部53は、データ記憶部52に記憶された画素Pxごとの検出データDoutと、調整部51から入力される画素Pxごとの階調データとを読み込む。補正部53は、画素Pxごとの階調データに対し、画素Pxごとの検出データDoutに基づく加減演算を施して画素Pxごとの表示データDinとしての出力を生成し、表示データDinをデータドライバ回路40へ出力する。 The correction unit 53 reads the detection data Dout for each pixel Px stored in the data storage unit 52 and the gradation data for each pixel Px input from the adjustment unit 51. The correction unit 53 performs an addition / subtraction operation on the gradation data for each pixel Px based on the detection data Dout for each pixel Px to generate an output as display data Din for each pixel Px, and uses the display data Din as a data driver circuit. Output to 40.
 クロック生成部54は、データシフトクロック信号Clkd、表示用シフトクロック信号Clks、および、検出用シフトクロック信号Clkrを生成する。クロック生成部54は、データシフトクロック信号Clkdをデータドライバ回路40へ出力し、表示用シフトクロック信号Clksと検出用シフトクロック信号Clkrとを相互に異なるタイミングで選択ドライバ回路20へ出力する。 The clock generator 54 generates a data shift clock signal Clkd, a display shift clock signal Clks, and a detection shift clock signal Clkr. The clock generation unit 54 outputs the data shift clock signal Clkd to the data driver circuit 40, and outputs the display shift clock signal Clks and the detection shift clock signal Clkr to the selection driver circuit 20 at different timings.
 データシフトクロック信号Clkdは、画素Pxごとの表示データDinが補正部53からデータドライバ回路40に入力されるタイミングを定める。データドライバ回路40は、データシフトクロック信号Clkdが立ち上がるごとに、1列目の画素Pxに対応する表示データDin、2列目の画素Pxに対応する表示データDin、…、n列面の画素Pxに対応する表示データDinの順に、画素Pxごとの表示データDinを入力する。データドライバ回路40は、データシフトクロック信号Clkdのクロック周期で、画素Pxごとの表示データDinをその画素Pxの接続されたデータ線Ldに対応づける。 The data shift clock signal Clkd determines the timing at which the display data Din for each pixel Px is input from the correction unit 53 to the data driver circuit 40. Each time the data shift clock signal Clkd rises, the data driver circuit 40 displays the display data Din corresponding to the pixel Px in the first column, the display data Din corresponding to the pixel Px in the second column,. Display data Din for each pixel Px is input in the order of display data Din corresponding to. The data driver circuit 40 associates the display data Din for each pixel Px with the data line Ld to which the pixel Px is connected in the clock cycle of the data shift clock signal Clkd.
 表示用シフトクロック信号Clksは、階調表示動作において、選択対象の候補の切り替わる周期を定める。また、表示用シフトクロック信号Clksは、非階調表示動作において、これもまた選択対象の候補の切り替わる周期を定める。選択ドライバ回路20は、表示用シフトクロック信号Clksが立ち上がるごとに、1行目の走査線Ls、2行目の走査線Ls、…、m行目の走査線Lsの順に、走査線Lsを1本ずつ選択する。表示用シフトクロック信号Clksのクロック周期である表示用クロック周期は、データシフトクロック信号Clkdのクロック周期よりも十分に長い。例えば、表示用クロック周期は、データシフトクロック信号Clkdのクロック周期のn倍である。 The display shift clock signal Clks determines a cycle in which candidates for selection are switched in the gradation display operation. In addition, the display shift clock signal Clks determines a cycle in which candidates for selection are switched in the non-gradation display operation. Each time the display shift clock signal Clks rises, the selection driver circuit 20 sets the scanning line Ls to 1 in the order of the first scanning line Ls, the second scanning line Ls,..., The mth scanning line Ls. Select books one by one. The display clock cycle, which is the clock cycle of the display shift clock signal Clks, is sufficiently longer than the clock cycle of the data shift clock signal Clkd. For example, the display clock cycle is n times the clock cycle of the data shift clock signal Clkd.
 検出用シフトクロック信号Clkrは、しきい値検出動作において、選択対象の候補の切り替わる周期を定める。選択ドライバ回路20は、検出用シフトクロック信号Clkrが立ち上がるごとに、1行目の走査線Ls、2行目の走査線Ls、…、m行目の走査線Lsの順に、選択電圧VgHの印加される候補を1本ずつ切り替える。検出用シフトクロック信号Clkrのクロック周期である検出用クロック周期は、表示用クロック周期よりも十分に短い。 The detection shift clock signal Clkr determines a cycle in which a candidate to be selected is switched in the threshold detection operation. Each time the detection shift clock signal Clkr rises, the selection driver circuit 20 applies the selection voltage VgH in order of the first scanning line Ls, the second scanning line Ls,. The candidate to be switched is switched one by one. The detection clock cycle that is the clock cycle of the detection shift clock signal Clkr is sufficiently shorter than the display clock cycle.
 例えば、検出用クロック周期は、データシフトクロック信号Clkdのクロック周期と同じである。そして、選択ドライバ回路20は、階調表示動作では、選択電圧VgHの印加される候補を表示用クロック周期で走査し、非階調表示動作でも、選択電圧VgHの印加される候補を表示用クロック周期で走査する。一方で、しきい値検出動作では、表示用クロック周期よりも短い検出用クロック周期で、選択電圧VgHの印加される候補を走査する。 For example, the detection clock cycle is the same as the clock cycle of the data shift clock signal Clkd. Then, the selection driver circuit 20 scans the candidate to which the selection voltage VgH is applied in the display clock cycle in the gradation display operation, and displays the candidate to which the selection voltage VgH is applied in the display clock cycle even in the non-gradation display operation. Scan with a period. On the other hand, in the threshold detection operation, the candidate to which the selection voltage VgH is applied is scanned with a detection clock cycle shorter than the display clock cycle.
 検出用シフトクロック信号Clkrは、ハイレベルとローレベルとが検出用クロック周期で繰り返されるなかに、ローレベルがしきい値検出期間だけ維持されるシフト待機部分を含む。シフト待機部分の出力されるタイミングは、検出用シフトクロック信号Clkrの出力される機会ごとに、すなわち、しきい値検出動作が行われるごとにシフトする。 The detection shift clock signal Clkr includes a shift standby portion in which the low level is maintained only during the threshold detection period while the high level and the low level are repeated in the detection clock cycle. The timing at which the shift standby portion is output is shifted every time the detection shift clock signal Clkr is output, that is, every time a threshold detection operation is performed.
 例えば、今回のしきい値検出動作では、検出用シフトクロック信号Clkrにて、ハイレベルとローレベルとが検出用クロック周期でq回繰り返され(1≦q≦m)、その後に、シフト待機部分が出力される。一方で、次回のしきい値検出動作では、検出用シフトクロック信号Clkrにて、ハイレベルとローレベルとがq+1回繰り返され(1≦q≦m)、その後に、シフト待機部分が出力される。これによって、今回のしきい値検出動作では、1本目の走査線Lsからq本目の走査線Lsまでが、選択対象の候補として検出用クロック周期で順に切り替わる。そして、しきい値検出期間が経過した後に、再び、q+1本目の走査線Lsからm本目の走査線Lsまでが、選択対象の候補として検出用クロック周期で順に切り替わる。また、次回のしきい値検出動作では、1本目の走査線Lsからq+1本目の走査線Lsまでが、選択対象の候補として検出用クロック周期で切り替わる。そして、しきい値検出期間が経過した後に、再び、q+2本目の走査線Lsからm本目の走査線Lsまでが、選択対象の候補として検出用クロック周期で走査される。 For example, in this threshold value detection operation, the high level and the low level are repeated q times in the detection clock cycle (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then the shift standby part Is output. On the other hand, in the next threshold detection operation, the high level and the low level are repeated q + 1 times (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then the shift standby portion is output. . As a result, in the current threshold detection operation, the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection. Then, after the threshold detection period elapses, the switching from the q + 1th scanning line Ls to the mth scanning line Ls is sequentially switched in the detection clock cycle as candidates for selection. In the next threshold value detection operation, the first scanning line Ls to the (q + 1) th scanning line Ls are switched as selection candidates at the detection clock cycle. Then, after the threshold detection period elapses, the scan from the (q + 2) th scanning line Ls to the mth scanning line Ls is again scanned with a detection clock cycle as a candidate for selection.
 パルス生成部55は、スタートパルス信号SP1、ラッチパルス信号LP、スタートパルス信号SP2、および、マスクパルス信号MPを生成する。パルス生成部55は、スタートパルス信号SP1とラッチパルス信号LPとをデータドライバ回路40へ出力する。パルス生成部55は、スタートパルス信号SP2とマスクパルス信号MPとの各々を選択ドライバ回路20とクロック生成部54とへ出力する。 The pulse generator 55 generates a start pulse signal SP1, a latch pulse signal LP, a start pulse signal SP2, and a mask pulse signal MP. The pulse generator 55 outputs the start pulse signal SP1 and the latch pulse signal LP to the data driver circuit 40. The pulse generator 55 outputs the start pulse signal SP2 and the mask pulse signal MP to the selection driver circuit 20 and the clock generator 54, respectively.
 スタートパルス信号SP1は、1行分の表示データDinが補正部53からデータドライバ回路40に入力されるタイミングを制御する制御信号である。データドライバ回路40は、スタートパルス信号SP1が入力されるごとに、1列目の画素Pxに対応する表示データDinからn列目の画素Pxに対応する表示データDinまで、画素Pxごとの表示データDinを1行分だけ入力する。 The start pulse signal SP1 is a control signal for controlling the timing at which the display data Din for one row is input from the correction unit 53 to the data driver circuit 40. Each time the start pulse signal SP1 is input, the data driver circuit 40 displays the display data for each pixel Px from the display data Din corresponding to the pixel Px in the first column to the display data Din corresponding to the pixel Px in the nth column. Enter Din for one line.
 ラッチパルス信号LPは、1行分の表示データDinがデータドライバ回路40に保持されるタイミングを制御する制御信号である。データドライバ回路40は、ラッチパルス信号LPが入力されるごとに、1列目の画素Pxに対応する表示データDinからn列目の画素Pxに対応する表示データDinまで、1行分の表示データDinを保持する。 The latch pulse signal LP is a control signal for controlling the timing at which the display data Din for one row is held in the data driver circuit 40. Each time the latch pulse signal LP is input, the data driver circuit 40 displays one row of display data from the display data Din corresponding to the pixel Px in the first column to the display data Din corresponding to the pixel Px in the nth column. Hold Din.
 スタートパルス信号SP2は、選択対象の候補の切り替えを開始するタイミングを制御する制御信号である。選択ドライバ回路20は、スタートパルス信号SP2が入力されるごとに、選択対象の候補として、1行目の走査線Lsからm行目の走査線Lsまでを順に切り替える。 The start pulse signal SP2 is a control signal for controlling the timing for starting the selection of candidate candidates. Each time the start pulse signal SP2 is input, the selection driver circuit 20 sequentially switches from the first scanning line Ls to the m-th scanning line Ls as a selection target candidate.
 スタートパルス信号SP2は、選択対象の候補の切り替えに用いられるシフトクロック信号を表示用クロック周期と検出用クロック周期とに切り替える制御信号である。クロック生成部54は、スタートパルス信号SP2を切り替え対象回数だけ入力するごとに、選択対象の候補の切り替えに用いられるシフトクロック信号を表示用クロック周期から検出用クロック周期へ切り替える。 The start pulse signal SP2 is a control signal for switching a shift clock signal used for switching a candidate to be selected between a display clock cycle and a detection clock cycle. The clock generation unit 54 switches the shift clock signal used for switching the selection target candidate from the display clock cycle to the detection clock cycle each time the start pulse signal SP2 is input for the number of times to be switched.
 本実施形態では、切り替え対象回数が3回に設定され、クロック生成部54は、スタートパルス信号SP2が3回入力されるごとに、シフトクロック信号のクロック周期を表示用クロック周期から検出用クロック周期へ変更する。これによって、階調表示動作では、m本の走査線Lsが選択対象の候補として表示用クロック周期で順に切り替えられる。非階調表示動作では、まず、m本の走査線Lsが選択対象の候補として表示用クロック周期で順に切り替えられ、その後に、しきい値検出動作では、m本の走査線Lsが選択対象の候補として検出用クロック周期で順に切り替えられる。 In this embodiment, the number of times of switching is set to 3 times, and the clock generator 54 changes the clock cycle of the shift clock signal from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input 3 times. Change to Thereby, in the gradation display operation, the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection. In the non-gradation display operation, first, m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and then, in the threshold detection operation, m scanning lines Ls are selected. Candidates are sequentially switched in the detection clock cycle.
 マスクパルス信号MPは、選択ドライバ回路20にて生成されるシフト信号の出力を制御する制御信号である。マスクパルス信号MPがハイレベルであるとき、選択ドライバ回路20では、選択ドライバ回路20にて生成されるシフト信号に基づき、走査線Lsのいずれかに選択電圧VgHが印加される。一方で、マスクパルス信号MPがローレベルであるとき、選択ドライバ回路20では、選択ドライバ回路20にて生成されるシフト信号にかかわらず、全ての走査線Lsに非選択電圧VgLが印加される。 The mask pulse signal MP is a control signal for controlling the output of the shift signal generated by the selection driver circuit 20. When the mask pulse signal MP is at the high level, the selection driver circuit 20 applies the selection voltage VgH to one of the scanning lines Ls based on the shift signal generated by the selection driver circuit 20. On the other hand, when the mask pulse signal MP is at the low level, the selection driver circuit 20 applies the non-selection voltage VgL to all the scanning lines Ls regardless of the shift signal generated by the selection driver circuit 20.
 マスクパルス信号MPは、通常はハイレベルに設定され、スタートパルス信号SP2が切り替え対象回数だけ出力されるごとに、ハイレベルからローレベルに切り替わり、且つ、ハイレベルがしきい値検出期間だけ維持されるマスク解除部分を含む。マスク解除部分の出力されるタイミングは、上記シフト待機部分の出力と同期され、しきい値検出動作が行われるごとにシフトする。 The mask pulse signal MP is normally set to a high level, and is switched from a high level to a low level each time the start pulse signal SP2 is output for the number of times of switching, and the high level is maintained for the threshold detection period. Including an unmasking part. The timing at which the mask release portion is output is synchronized with the output of the shift standby portion, and is shifted each time a threshold detection operation is performed.
 例えば、今回のしきい値検出動作では、検出用シフトクロック信号Clkrにてハイレベルとローレベルとがq回繰り返され(1≦q≦m)、その後にマスク解除部分が出力される。一方で、次回のしきい値検出動作では、検出用シフトクロック信号Clkrにてハイレベルとローレベルとがq+1回繰り返され(1≦q≦m)、その後にマスク解除部分が出力される。これによって、今回のしきい値検出動作では、まず、1本目の走査線Lsからq本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に切り替えられる。そして、この期間では、走査線Lsに対する選択電圧VgHの印加が禁止される。次いで、選択対象の候補の切り替えが止められるしきい値検出期間にて、そのときの候補であるq行目の走査線Lsに対し、選択電圧VgHが印加される。一方で、次回のしきい値検出動作では、まず、1本目の走査線Lsからq+1本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で走査される。そして、この期間では、走査線Lsに対する選択電圧VgHの印加が禁止される。次いで、選択対象の候補の切り替えが止められるしきい値検出期間にて、そのときの候補であるq+1行目の走査線Lsに対し、選択電圧VgHが印加される。 For example, in this threshold value detection operation, a high level and a low level are repeated q times (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then a mask release portion is output. On the other hand, in the next threshold detection operation, the high level and the low level are repeated q + 1 times (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then the mask release portion is output. Thus, in the current threshold detection operation, first, the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited. Next, in the threshold detection period in which the selection of the candidate to be selected is stopped, the selection voltage VgH is applied to the q-th scanning line Ls that is the candidate at that time. On the other hand, in the next threshold value detection operation, first, the scanning line from the first scanning line Ls to the q + 1th scanning line Ls is scanned as a selection target candidate in a detection clock cycle. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited. Next, in the threshold detection period in which the selection of the candidate to be selected is stopped, the selection voltage VgH is applied to the q + 1-th scanning line Ls that is the candidate at that time.
 [選択ドライバ回路20の構成]
 図2を参照して選択ドライバ回路20の構成について説明する。
 図2に示されるように、シフトレジスタ回路21は、制御部50からスタートパルス信号SP2、表示用シフトクロック信号Clks、および、検出用シフトクロック信号Clkrを入力する。シフトレジスタ回路21は、スタートパルス信号SP2を入力するごとに、1つの選択対象ビットが含まれるmビットのパラレル信号をシフト信号として生成する。シフトレジスタ回路21は、表示用シフトクロック信号Clksを入力するごとに、シフト信号における1つの選択対象ビットを1行目からm行目まで1行ずつ順にシフトさせる。シフトレジスタ回路21は、検出用シフトクロック信号Clkrを入力するごとに、これもまた、シフト信号における1つの選択対象ビットを1行目からm行目まで1行ずつ順にシフトさせる。
[Configuration of Selected Driver Circuit 20]
The configuration of the selection driver circuit 20 will be described with reference to FIG.
As shown in FIG. 2, the shift register circuit 21 receives a start pulse signal SP2, a display shift clock signal Clks, and a detection shift clock signal Clkr from the control unit 50. Each time the start pulse signal SP2 is input, the shift register circuit 21 generates an m-bit parallel signal including one selection target bit as a shift signal. Each time the shift register circuit 21 receives the display shift clock signal Clks, the shift register circuit 21 sequentially shifts one selection target bit in the shift signal line by line from the first line to the m-th line. Each time the shift register circuit 21 receives the shift clock signal Clkr for detection, it also shifts one selection target bit in the shift signal one row at a time from the first row to the m-th row.
 シフトレジスタ回路21は、シフトレジスタ回路21に入力されるマスクパルス信号MPがハイレベルであるとき、シフトレジスタ回路21で生成されるシフト信号を出力する。一方で、シフトレジスタ回路21は、シフトレジスタ回路21に入力されるマスクパルス信号MPがローレベルであるとき、シフトレジスタ回路21で生成されたシフト信号にかかわらず、選択対象ビットが含まれないシフト信号を出力する。そして、シフトクロック信号が表示用シフトクロック信号Clksであるとき、シフトレジスタ回路21は、ハイレベルのマスクパルス信号MPの入力に基づいて、選択対象ビットが含まれるシフト信号を出力する。一方で、シフトクロック信号が検出用シフトクロック信号Clkrであるとき、シフトレジスタ回路21は、しきい値検出期間以外において、ローレベルのマスクパルス信号MPの入力に基づいて、選択対象ビットが含まれないシフト信号を出力する。こうしたシフト信号の出力の制御は、例えば、シフトレジスタ回路21の出力端にシフト信号の各ビットに対応するm個の論理積回路が備えられ、m個の論理積回路の各々にマスクパルス信号MPが入力されることによって実現される。 The shift register circuit 21 outputs a shift signal generated by the shift register circuit 21 when the mask pulse signal MP input to the shift register circuit 21 is at a high level. On the other hand, when the mask pulse signal MP input to the shift register circuit 21 is at a low level, the shift register circuit 21 does not include a selection target bit regardless of the shift signal generated by the shift register circuit 21. Output a signal. When the shift clock signal is the display shift clock signal Clks, the shift register circuit 21 outputs a shift signal including a selection target bit based on the input of the high level mask pulse signal MP. On the other hand, when the shift clock signal is the detection shift clock signal Clkr, the shift register circuit 21 includes the selection target bit based on the input of the low-level mask pulse signal MP outside the threshold detection period. No shift signal is output. Control of such shift signal output is performed, for example, by providing m logical product circuits corresponding to each bit of the shift signal at the output end of the shift register circuit 21, and each of the m logical product circuits has a mask pulse signal MP. This is realized by inputting.
 レベルシフタ回路22は、低耐圧回路から高耐圧回路への電圧調整回路であり、シフトレジスタ回路21からシフト信号を入力してシフト信号の電圧をバッファ回路23の駆動レベルに調整する。バッファ回路23は、電圧の調整されたシフト信号をレベルシフタ回路22から入力してシフト信号の電圧を画素Pxの駆動レベルに調整する。 The level shifter circuit 22 is a voltage adjustment circuit from the low withstand voltage circuit to the high withstand voltage circuit, and receives the shift signal from the shift register circuit 21 to adjust the voltage of the shift signal to the drive level of the buffer circuit 23. The buffer circuit 23 receives the shift signal with the adjusted voltage from the level shifter circuit 22 and adjusts the voltage of the shift signal to the drive level of the pixel Px.
 [データドライバ回路40の構成]
 図3を参照して、データドライバ回路40の構成について説明する。図3は、本実施形態における画素回路の構成とデータドライバ回路40の構成とを示す回路図である。
 図3に示されるように、シフトレジスタ回路41と、データレジスタ回路42およびデータラッチ回路43は、低耐圧回路として構成され、これらの回路には、ロジック電源60から、ハイレベルのロジック電源電圧LVDDおよびローレベルのロジック基準電圧LVSSが印加される。DAC/ADC回路44およびバッファ回路45は、高耐圧回路として構成され、これらの回路には、アナログ電源70から、ハイレベルのアナログ電源電圧DVSSおよびローレベルのアナログ基準電圧VEEが印加される。アナログ電源電圧DVSSは、書き込み電圧WDVSSおよび基準電圧ELVSSと等電位に設定される。
[Configuration of Data Driver Circuit 40]
The configuration of the data driver circuit 40 will be described with reference to FIG. FIG. 3 is a circuit diagram showing the configuration of the pixel circuit and the configuration of the data driver circuit 40 in the present embodiment.
As shown in FIG. 3, the shift register circuit 41, the data register circuit 42, and the data latch circuit 43 are configured as low withstand voltage circuits. These circuits include a logic power source voltage LVDD from a logic power source 60. And a low level logic reference voltage LVSS is applied. The DAC / ADC circuit 44 and the buffer circuit 45 are configured as high withstand voltage circuits, and a high level analog power supply voltage DVSS and a low level analog reference voltage VEE are applied to these circuits from the analog power supply 70. The analog power supply voltage DVSS is set to the same potential as the write voltage WDVSS and the reference voltage ELVSS.
 シフトレジスタ回路41は、制御部50からスタートパルス信号SP1とデータシフトクロック信号Clkdとを入力する。シフトレジスタ回路41は、スタートパルス信号SP1を入力するごとに、1つの選択対象ビットが含まれるnビットのパラレル信号としてシフト信号を出力する。シフトレジスタ回路41は、データシフトクロック信号Clkdを入力するごとに、シフト信号における1つの選択対象ビットを順にシフトさせて出力する。 The shift register circuit 41 receives the start pulse signal SP1 and the data shift clock signal Clkd from the control unit 50. Each time the start pulse signal SP1 is input, the shift register circuit 41 outputs a shift signal as an n-bit parallel signal including one selection target bit. Each time the data shift clock signal Clkd is input, the shift register circuit 41 sequentially shifts and outputs one selection target bit in the shift signal.
 データレジスタ回路42は、シフト信号の各ビットに対応づけられたn個のレジスタを備え、1つのレジスタは、例えば8ビットの階調データを制御部50から入力する。データレジスタ回路42は、1つの選択対象ビットによって選択される1つのレジスタに階調データを入力する。データレジスタ回路42では、1つの選択対象ビットのシフトにより全てのレジスタが選択されて、1行分の表示データDinが制御部50から取り込まれる。 The data register circuit 42 includes n registers associated with each bit of the shift signal, and one register inputs, for example, 8-bit gradation data from the control unit 50. The data register circuit 42 inputs gradation data to one register selected by one selection target bit. In the data register circuit 42, all the registers are selected by shifting one selection target bit, and display data Din for one row is fetched from the control unit 50.
 データラッチ回路43は、データレジスタ回路42の各レジスタに対応づけられたn個のデータラッチ43aを備え、n個のデータラッチ43aの各々に対し共通するラッチパルス信号LPを制御部50から入力する。 The data latch circuit 43 includes n data latches 43a associated with the registers of the data register circuit 42, and inputs a common latch pulse signal LP to each of the n data latches 43a from the control unit 50. .
 n個のデータラッチ43aの各々の入力端は、階調表示動作および非階調表示動作において、データレジスタ回路42における対応するレジスタに接続される。n個のデータラッチ43aの各々は、対応するレジスタに記憶された階調データを保持し、その保持をラッチパルス信号LPに同期させる。n個のデータラッチ43aの各々は、そのデータラッチ43aに保持される階調データをDAC/ADC回路44へ出力する。これによって、データラッチ回路43は、データレジスタ回路42に取り込まれた1行分の表示データDinをラッチパルス信号LPの入力ごとに保持し、保持された1行分の表示データDinをDAC/ADC回路44へ出力する。 Each input terminal of the n data latches 43a is connected to a corresponding register in the data register circuit 42 in the gradation display operation and the non-gradation display operation. Each of the n data latches 43a holds the gradation data stored in the corresponding register, and synchronizes the holding with the latch pulse signal LP. Each of the n data latches 43 a outputs the gradation data held in the data latch 43 a to the DAC / ADC circuit 44. Thus, the data latch circuit 43 holds the display data Din for one row fetched by the data register circuit 42 for each input of the latch pulse signal LP, and the held display data Din for one row is DAC / ADC. Output to the circuit 44.
 n個のデータラッチ43aの各々の入力端は、しきい値検出動作において、表示用DAC/ADC44における対応する検出用ADC44bに接続される。n個のデータラッチ43aの各々は、対応する検出用ADC44bから出力されるデータを検出データDoutとして保持し、その保持をラッチパルス信号LPに同期させる。 Each input terminal of the n data latches 43a is connected to a corresponding detection ADC 44b in the display DAC / ADC 44 in the threshold detection operation. Each of the n data latches 43a holds the data output from the corresponding detection ADC 44b as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
 p列目(1≦p≦n)のデータラッチ43aの入力端は、しきい値検出動作において、p+1列目のデータラッチ43aの出力端に接続される。p列目のデータラッチ43aの各々は、p+1列目のデータラッチ43aに保持されるデータを検出データDoutとして保持し、その保持をラッチパルス信号LPに同期させる。 The input terminal of the data latch 43a in the p-th column (1 ≦ p ≦ n) is connected to the output terminal of the data latch 43a in the p + 1 column in the threshold detection operation. Each of the data latches 43a in the p-th column holds the data held in the data latches 43a in the (p + 1) th column as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
 1列目のデータラッチ43aの出力端は、しきい値検出動作において、制御部50に接続され、1列目のデータラッチ43aに保持される検出データDoutを制御部50へ出力する。これによって、1列目のデータラッチ43aは、p+1列目のデータラッチ43aに保持される全てのデータを2列目のデータラッチ43aから順に保持し、その保持されたデータを順に制御部50へ出力する。 The output terminal of the data latch 43a in the first column is connected to the control unit 50 and outputs the detection data Dout held in the data latch 43a in the first column to the control unit 50 in the threshold detection operation. As a result, the data latch 43a in the first column holds all the data held in the data latch 43a in the (p + 1) th column in order from the data latch 43a in the second column, and sequentially holds the held data to the control unit 50. Output.
 データラッチ回路43は、n個のデータラッチ43aと、n個のデータラッチ43aの各々の入力端に接続されたn個の入力スイッチSW1と、n個のデータラッチ43aの各々の出力端に接続されたn個の出力スイッチSW2とを備えている。また、データラッチ回路43は、1列目の出力スイッチSW2と制御部50とに接続された転送スイッチSWtrsとを備えている。 The data latch circuit 43 is connected to n data latches 43a, n input switches SW1 connected to the input terminals of the n data latches 43a, and output terminals of the n data latches 43a. N output switches SW2 are provided. The data latch circuit 43 includes an output switch SW2 in the first column and a transfer switch SWtrs connected to the control unit 50.
 入力スイッチSW1は、制御部50からの制御信号に基づいて駆動され、p列目のデータラッチ43aの入力端を、データレジスタ回路42におけるp列目のレジスタと、p列目の検出用ADC44bと、p+1列目のデータラッチ43aの出力端とのいずれか1つに接続する。 The input switch SW1 is driven based on a control signal from the control unit 50, and the input end of the p-th column data latch 43a is connected to the p-th column register in the data register circuit 42 and the p-th column detection ADC 44b. , Connected to any one of the output ends of the data latches 43a in the (p + 1) th column.
 データラッチ43aの入力端とデータレジスタ回路42とが接続されるとき、データラッチ43aは、ラッチパルス信号LPに同期したタイミングで、データレジスタ回路42に記憶される表示データDinを保持する。 When the input terminal of the data latch 43a and the data register circuit 42 are connected, the data latch 43a holds the display data Din stored in the data register circuit 42 at a timing synchronized with the latch pulse signal LP.
 データラッチ43aの入力端と検出用ADC44bとが接続されるとき、データラッチ43aは、ラッチパルス信号LPに同期したタイミングで、検出用ADC44bから出力されるデータを検出データDoutとして保持する。 When the input terminal of the data latch 43a and the detection ADC 44b are connected, the data latch 43a holds the data output from the detection ADC 44b as detection data Dout at a timing synchronized with the latch pulse signal LP.
 p列目のデータラッチ43aの入力端とp+1列目のデータラッチ43aの出力端とが接続されるとき、p列目のデータラッチ43aは、ラッチパルス信号LPに同期したタイミングで、p+1列目のデータラッチ43aが保持する検出データDoutを保持する。なお、最後列であるn列目のデータラッチ43aは、ロジック電源60に接続され、n列目のデータラッチ43aにはロジック基準電圧LVSSが印加される。 When the input terminal of the data latch 43a in the p-th column and the output terminal of the data latch 43a in the p + 1-th column are connected, the data latch 43a in the p-th column is synchronized with the latch pulse signal LP at the timing of the p + 1th column. The detection data Dout held by the data latch 43a is held. Note that the data latch 43a in the nth column, which is the last column, is connected to the logic power supply 60, and the logic reference voltage LVSS is applied to the data latch 43a in the nth column.
 出力スイッチSW2は、制御部50からの制御信号に基づいて駆動され、p+1列目のデータラッチ43aの出力端を、DAC/ADC回路44の表示用DAC44aと、p列目のデータラッチ43aの入力端とのいずれか1つに接続する。 The output switch SW2 is driven based on a control signal from the control unit 50, and the output terminal of the data latch 43a in the (p + 1) th column is connected to the display DAC 44a of the DAC / ADC circuit 44 and the input of the data latch 43a in the pth column. Connect to one of the ends.
 データラッチ43aの出力端とDAC/ADC回路44の表示用DAC44aとが接続されるとき、データラッチ43aに保持された表示データDinは、ラッチパルス信号LPに同期したタイミングで、表示用DAC44aに入力される。 When the output terminal of the data latch 43a is connected to the display DAC 44a of the DAC / ADC circuit 44, the display data Din held in the data latch 43a is input to the display DAC 44a at a timing synchronized with the latch pulse signal LP. Is done.
 p+1列目のデータラッチ43aの出力端とp列目のデータラッチ43aの入力端とが接続されるとき、p+1列目のデータラッチ43aの保持する検出データDoutは、ラッチパルス信号LPに同期したタイミングで、p列目のデータラッチ43aに保持される。 When the output terminal of the data latch 43a in the (p + 1) th column and the input terminal of the data latch 43a in the pth column are connected, the detection data Dout held by the data latch 43a in the (p + 1) th column is synchronized with the latch pulse signal LP. At the timing, it is held in the data latch 43a in the p-th column.
 転送スイッチSWtrsは、制御部50からの制御信号に基づいて駆動され、1列目のデータラッチ43aと制御部50との接続と切断とを切り替える。1列目のデータラッチ43aと制御部50とが接続されるとき、1列目のデータラッチ43aに保持された検出データDoutは制御部50へ出力される。 The transfer switch SWtrs is driven based on a control signal from the control unit 50 and switches between connection and disconnection between the data latch 43a in the first column and the control unit 50. When the data latch 43a in the first column and the control unit 50 are connected, the detection data Dout held in the data latch 43a in the first column is output to the control unit 50.
 DAC/ADC回路44は、リニア電圧デジタル-アナログ変換回路であるn個の表示用DAC44aと、アナログ-デジタル変換回路であるn個の検出用ADC44bとを備えている。n個の表示用DAC44aの各々は、その表示用DAC44aに接続されるデータラッチ43aに保持された表示データDinをアナログ信号電圧に変換し、その表示用DAC44aに接続されるバッファ回路45へ出力する。n個の検出用ADC44bの各々は、その検出用ADC44bに接続されるバッファ回路45から出力されるアナログ信号電圧を例えば8ビットの検出データDoutに変換し、その検出用ADC44bに接続されるデータラッチ43aに検出データDoutを出力する。 The DAC / ADC circuit 44 includes n display DACs 44a that are linear voltage digital-analog conversion circuits and n detection ADCs 44b that are analog-digital conversion circuits. Each of the n display DACs 44a converts the display data Din held in the data latch 43a connected to the display DAC 44a into an analog signal voltage, and outputs the analog signal voltage to the buffer circuit 45 connected to the display DAC 44a. . Each of the n detection ADCs 44b converts an analog signal voltage output from the buffer circuit 45 connected to the detection ADC 44b into, for example, 8-bit detection data Dout, and a data latch connected to the detection ADC 44b. The detection data Dout is output to 43a.
 表示用DAC44aにおいては、入力されるデジタルデータに対して出力されるアナログ信号電圧の入出力特性が線形性を有している。変換されるアナログ信号電圧は、アナログ電源70から印加されるアナログ電源電圧DVSSからアナログ基準電圧VEEの範囲内で設定される。また、検出用ADC44bにおいても、入力されるアナログ信号電圧に対して出力されるデジタルデータの入出力特性が線形性を有している。表示用DAC44aと検出用ADC44bとでは、電圧変換時のデジタルデータのビット長が同一のビット長である例えば8ビットに設定されている。 In the display DAC 44a, the input / output characteristics of the analog signal voltage output with respect to the input digital data have linearity. The analog signal voltage to be converted is set within the range from the analog power supply voltage DVSS applied from the analog power supply 70 to the analog reference voltage VEE. Also in the detection ADC 44b, the input / output characteristics of the digital data output with respect to the input analog signal voltage have linearity. In the display DAC 44a and the detection ADC 44b, the bit length of the digital data at the time of voltage conversion is set to the same bit length, for example, 8 bits.
 出力スイッチSW2と表示用DAC44aとの間には、低耐圧回路から高耐圧回路への電圧調整回路であるレベルシフタ46aが設けられている。また、検出用ADC44bと入力スイッチSW1との間には、高耐圧回路から低耐圧回路への電圧調整回路であるレベルシフタ46bが設けられている。 Between the output switch SW2 and the display DAC 44a, a level shifter 46a that is a voltage adjusting circuit from the low withstand voltage circuit to the high withstand voltage circuit is provided. Further, a level shifter 46b, which is a voltage adjustment circuit from the high withstand voltage circuit to the low withstand voltage circuit, is provided between the detection ADC 44b and the input switch SW1.
 バッファ回路45は、データ線Ldに表示用電圧Vdを印加するデータ線Ldごとのバッファ45aと、データ線Ldの電圧を取り込むデータ線Ldごとのバッファ45bと、データ線Ldとバッファ45aとの接続と切断とを切り替えるデータ線Ldごとの表示用スイッチSWdとを備えている。また、バッファ回路45は、データ線Ldとバッファ45bとの接続と切断とを切り替えるデータ線Ldごとの検出用スイッチSWmと、データ線Ldとアナログ電源70との接続と切断とを切り替えるデータ線Ldごとの検出用電圧スイッチSWsとを備えている。 The buffer circuit 45 includes a buffer 45a for each data line Ld that applies the display voltage Vd to the data line Ld, a buffer 45b for each data line Ld that takes in the voltage of the data line Ld, and a connection between the data line Ld and the buffer 45a. And a display switch SWd for each data line Ld for switching between cutting and cutting. The buffer circuit 45 also includes a detection switch SWm for each data line Ld that switches connection and disconnection between the data line Ld and the buffer 45b, and a data line Ld that switches connection and disconnection between the data line Ld and the analog power supply 70. And a detection voltage switch SWs.
 バッファ45aは、表示用DAC44aから入力されたアナログ信号電圧を画素回路の駆動レベルに増幅して表示用電圧Vdを生成する。表示用スイッチSWdは、制御部50からの制御信号に基づいて駆動され、バッファ45aとデータ線Ldとを接続してバッファ45aからデータ線Ldへ表示用電圧Vdを印加する。 The buffer 45a amplifies the analog signal voltage input from the display DAC 44a to the drive level of the pixel circuit, and generates the display voltage Vd. The display switch SWd is driven based on a control signal from the control unit 50, connects the buffer 45a and the data line Ld, and applies the display voltage Vd from the buffer 45a to the data line Ld.
 バッファ45bは、データ線Ldの電圧を取り込み、取り込まれた電圧を検出用ADC44bの駆動レベルに増幅して検出用ADC44bへ出力する。検出用スイッチSWmは、制御部50からの制御信号に基づいて駆動され、バッファ45bとデータ線Ldとを接続してデータ線Ldの電圧をバッファ45bへ取り込む。
 検出用電圧スイッチSWsは、アナログ電源70からデータ線Ldへの検出用電圧Vmの印加を制御する。
The buffer 45b captures the voltage of the data line Ld, amplifies the captured voltage to the drive level of the detection ADC 44b, and outputs the amplified voltage to the detection ADC 44b. The detection switch SWm is driven based on a control signal from the control unit 50, connects the buffer 45b and the data line Ld, and takes the voltage of the data line Ld into the buffer 45b.
The detection voltage switch SWs controls application of the detection voltage Vm from the analog power supply 70 to the data line Ld.
 [画素回路PCCの構成]
 図3を参照して、画素回路PCCの構成について説明する。
 図3に示されるように、画素Pxは、有機EL素子OELと、有機EL素子OELを発光させる画素回路PCCとを備えている。画素回路PCCは、薄膜トランジスタである3つのトランジスタTr1~Tr3と保持容量Csとを備えている。トランジスタTr1~Tr3は、アモルファス薄膜トランジスタでもよく、ポリシリコン薄膜トランジスタでもよい。本実施形態では、トランジスタTr1~Tr3は、nチャネル型のアモルファス薄膜トランジスタである。
[Configuration of Pixel Circuit PCC]
The configuration of the pixel circuit PCC will be described with reference to FIG.
As shown in FIG. 3, the pixel Px includes an organic EL element OEL and a pixel circuit PCC that causes the organic EL element OEL to emit light. The pixel circuit PCC includes three transistors Tr1 to Tr3, which are thin film transistors, and a storage capacitor Cs. The transistors Tr1 to Tr3 may be amorphous thin film transistors or polysilicon thin film transistors. In this embodiment, the transistors Tr1 to Tr3 are n-channel amorphous thin film transistors.
 サンプリングトランジスタTr1では、ソース端子がデータ線Ldに接続され、ドレイン端子が有機EL素子OELのアノードに接続され、ゲート端子が走査線Lsに接続されている。サンプリングトランジスタTr1は、走査線Lsにハイレベルの選択電圧VgHが印加されるときに導通状態になり、走査線Lsにローレベルの非選択電圧VgLが印加されるときに非導通状態になる。 In the sampling transistor Tr1, the source terminal is connected to the data line Ld, the drain terminal is connected to the anode of the organic EL element OEL, and the gate terminal is connected to the scanning line Ls. The sampling transistor Tr1 becomes conductive when the high-level selection voltage VgH is applied to the scanning line Ls, and becomes non-conductive when the low-level non-selection voltage VgL is applied to the scanning line Ls.
 スイッチングトランジスタTr2では、ソース端子が電流制御トランジスタTr3のゲート端子に接続され、ドレイン端子が電源線Laに接続され、ゲート端子がサンプリングトランジスタTr1のゲート端子に接続されている。スイッチングトランジスタTr2は、走査線Lsにハイレベルの選択電圧VgHが印加されるときに導通状態になり、走査線Lsにローレベルの非選択電圧VgLが印加されるときに非導通状態になる。 In the switching transistor Tr2, the source terminal is connected to the gate terminal of the current control transistor Tr3, the drain terminal is connected to the power supply line La, and the gate terminal is connected to the gate terminal of the sampling transistor Tr1. The switching transistor Tr2 becomes conductive when the high-level selection voltage VgH is applied to the scanning line Ls, and becomes non-conductive when the low-level non-selection voltage VgL is applied to the scanning line Ls.
 電流制御トランジスタTr3では、ソース端子が有機EL素子OELのアノードに接続され、ドレイン端子がスイッチングトランジスタTr2のドレイン端子に接続され、ゲート端子がスイッチングトランジスタTr2のソース端子に接続されている。本実施形態では、電流制御トランジスタTr3におけるドレイン電流Idのしきい値電圧Vthが、しきい値検出動作における検出の対象となる。 In the current control transistor Tr3, the source terminal is connected to the anode of the organic EL element OEL, the drain terminal is connected to the drain terminal of the switching transistor Tr2, and the gate terminal is connected to the source terminal of the switching transistor Tr2. In the present embodiment, the threshold voltage Vth of the drain current Id in the current control transistor Tr3 is a detection target in the threshold detection operation.
 保持容量Csは、電流制御トランジスタTr3のゲート端子とソース端子との間に接続されている。保持容量Csは、電流制御トランジスタTr3のゲート端子とソース端子との間に形成される寄生容量であってもよく、寄生容量に加えて他の容量素子が並列に接続されてもよい。 The holding capacitor Cs is connected between the gate terminal and the source terminal of the current control transistor Tr3. The holding capacitor Cs may be a parasitic capacitor formed between the gate terminal and the source terminal of the current control transistor Tr3, and other capacitor elements may be connected in parallel to the parasitic capacitor.
 有機EL素子OELのカソード端子には、基準電圧ELVSSが印加され、基準電圧ELVSSは、アナログ基準電圧VEEよりも高電位である例えば接地電位である。なお、画素Pxでは、有機EL素子OELに画素容量Cdが含まれ、データ線Ldに寄生容量Cpが含まれている。 The reference voltage ELVSS is applied to the cathode terminal of the organic EL element OEL, and the reference voltage ELVSS is, for example, a ground potential that is higher than the analog reference voltage VEE. In the pixel Px, the organic EL element OEL includes a pixel capacitance Cd, and the data line Ld includes a parasitic capacitance Cp.
 表示動作において、q行目の電源線Laに書き込み電圧WDVSSが印加され、q行目の走査線Lsにハイレベルの選択信号が供給されるとき、q行目のサンプリングトランジスタTr1とq行目のスイッチングトランジスタTr2とが導通状態になる。q行目のサンプリングトランジスタTr1とq行目のスイッチングトランジスタTr2とが導通状態であるとき、q行目の電流制御トランジスタTr3は飽和領域で駆動する。この状態にてn本のデータ線Ldの各々に表示用電圧Vdが印加されると、書き込み電圧WDVSSと表示用電圧Vdとの差に応じ、q行目の電流制御トランジスタTr3の各々のゲート‐ソース間電圧Vgsは、書き込み電圧として保持容量Csに保持される。 In the display operation, when the write voltage WDVSS is applied to the q-th power line La and a high-level selection signal is supplied to the q-th scanning line Ls, the q-th sampling transistor Tr1 and the q-th sampling transistor Tr1 are supplied. The switching transistor Tr2 becomes conductive. When the sampling transistor Tr1 in the q row and the switching transistor Tr2 in the q row are in a conductive state, the current control transistor Tr3 in the q row is driven in a saturation region. In this state, when the display voltage Vd is applied to each of the n data lines Ld, each gate − of the current control transistor Tr3 in the q-th row is set according to the difference between the write voltage WDVSS and the display voltage Vd. The inter-source voltage Vgs is held in the holding capacitor Cs as a write voltage.
 q行目の保持容量Csに書き込み電圧が保持された後に、q行目の走査線Lsに非選択電圧VgLが印加されるとき、q行目のサンプリングトランジスタTr1とq行目のスイッチングトランジスタTr2とが非導通状態になる。q行目のサンプリングトランジスタTr1とq行目のスイッチングトランジスタTr2とが非導通状態であるとき、q行目の電源線Laに駆動電圧ELVDDが印加されると、q行目の電流制御トランジスタTr3は、そのゲート‐ソース間電圧Vgsに基づいて、ドレイン電流Idを有機EL素子OELに流す。この際に、q行目の電流制御トランジスタTr3におけるドレイン電流Idは、その飽和領域において、ゲート‐ソース間電圧Vgsと、電流制御トランジスタTr3におけるしきい値電圧Vthとの差に応じて変る。すなわち、保持容量Csに保持された書き込み電圧と、電流制御トランジスタTr3におけるしきい値電圧Vthとの差に応じたドレイン電流Idが、有機EL素子OELに流れる。 When the non-selection voltage VgL is applied to the q-th scanning line Ls after the write voltage is held in the q-th holding capacitor Cs, the q-th sampling transistor Tr1 and the q-th switching transistor Tr2 Becomes non-conductive. If the driving voltage ELVDD is applied to the q-th power supply line La when the q-th sampling transistor Tr1 and the q-th switching transistor Tr2 are non-conductive, the q-th current control transistor Tr3 is Based on the gate-source voltage Vgs, the drain current Id is passed through the organic EL element OEL. At this time, the drain current Id in the current control transistor Tr3 in the q-th row changes in the saturation region according to the difference between the gate-source voltage Vgs and the threshold voltage Vth in the current control transistor Tr3. That is, the drain current Id corresponding to the difference between the write voltage held in the holding capacitor Cs and the threshold voltage Vth in the current control transistor Tr3 flows in the organic EL element OEL.
 そして、階調表示用の表示データに基づく表示用電圧Vdがデータ線Ldに印加された場合には、その表示用電圧Vdに相当するドレイン電流Idが有機EL素子OELに流れて、有機EL素子OELが階調表示状態になる。また、非階調表示用の表示データに基づく表示用電圧Vdがデータ線Ldに印加された場合には、ドレイン電流Idの流れが有機EL素子OELにて抑えられ、有機EL素子OELが非階調表示状態になる。なお、電流制御トランジスタTr3のしきい値電圧Vthとは、電流制御トランジスタTr3のドレイン電流Idが流れ始めるときの電流制御トランジスタTr3におけるゲート‐ソース間電圧Vgsを示す。 When the display voltage Vd based on the display data for gradation display is applied to the data line Ld, the drain current Id corresponding to the display voltage Vd flows to the organic EL element OEL, and the organic EL element OEL enters the gradation display state. Further, when the display voltage Vd based on the display data for non-gradation display is applied to the data line Ld, the flow of the drain current Id is suppressed by the organic EL element OEL, and the organic EL element OEL Key is displayed. Note that the threshold voltage Vth of the current control transistor Tr3 indicates the gate-source voltage Vgs in the current control transistor Tr3 when the drain current Id of the current control transistor Tr3 starts to flow.
 [表示装置の作用]
 図4~図8を参照して、しきい値検出動作と表示動作とについて説明する。
 まず、図4を参照して、電流制御トランジスタTr3のドレイン電流Idに対する表示用電圧Vdの依存性について説明する。図4は、本実施形態における画素回路PCCに印加される表示用電圧Vdと電流制御トランジスタTr3におけるドレイン電流Idとの関係を示す図である。なお、図4では、電流制御トランジスタTr3のしきい値電圧Vthが相互に異なる2つの場合を例示する。
[Operation of display device]
The threshold value detection operation and the display operation will be described with reference to FIGS.
First, the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3 will be described with reference to FIG. FIG. 4 is a diagram showing the relationship between the display voltage Vd applied to the pixel circuit PCC and the drain current Id in the current control transistor Tr3 in this embodiment. FIG. 4 illustrates two cases in which the threshold voltage Vth of the current control transistor Tr3 is different from each other.
 図4にて実線で示される曲線L1は、電流制御トランジスタTr3のドレイン電流Idに対する表示用電圧Vdの依存性を示し、電流制御トランジスタTr3のしきい値電圧Vthと、画素回路PCCにおける電流増幅率βとが初期値であるときを示す。しきい値電圧Vthの初期値をVthとすると、初期状態での画素回路PCCを流れるドレイン電流Idは、下記式(1)で示される。なお、Vは、書き込み電圧WDVSSである。
 Id=β(V-Vd-Vth ・・・(1)
A curve L1 indicated by a solid line in FIG. 4 shows the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3, and the threshold voltage Vth of the current control transistor Tr3 and the current amplification factor in the pixel circuit PCC. It shows when β is an initial value. Assuming that the initial value of the threshold voltage Vth is Vth 0 , the drain current Id flowing through the pixel circuit PCC in the initial state is expressed by the following formula (1). In addition, V 0 is a write voltage WDVSS.
Id = β (V 0 −Vd−Vth 0 ) 2 (1)
 図4にて破線で示される曲線L2は、電流制御トランジスタTr3のドレイン電流Idに対する表示用電圧Vdの依存性を示し、電流制御トランジスタTr3のドレイン電流Idが経時によって初期状態から変動したときを示す。しきい値電圧VthをVth(=Vth+ΔVth)とすると、この状態での画素回路PCCを流れるドレイン電流Idは、下記式(2)で示される。
 Id=β(V-Vd-Vth ・・・(2)
A curve L2 indicated by a broken line in FIG. 4 shows the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3, and shows when the drain current Id of the current control transistor Tr3 fluctuates from the initial state over time. . When the threshold voltage Vth is Vth 1 (= Vth 0 + ΔVth), the drain current Id flowing through the pixel circuit PCC in this state is expressed by the following equation (2).
Id = β (V 0 −Vd−Vth 1 ) 2 (2)
 図4および上記式(1),(2)に示されるように、曲線L2は、曲線L1がシフト量ΔVthだけ並進された形状を示し、しきい値電圧Vthの変動の前後では、これら曲線L1と曲線L2との形状はほぼ変わらない。これは、しきい値電圧Vthの変動に比べて電流増幅率βのバイアス負荷に起因する変動が無視される程度であること、そして、電流制御トランジスタTr3におけるシフト量ΔVthを用いて表示用電圧Vdが補正されることによって、電流制御トランジスタTr3のドレイン電流Idが補正されることを示唆する。本実施形態では、しきい値電圧Vth検出動作においてこうした電流制御トランジスタTr3のしきい値電圧Vthを検出し、データ線Ldを介して画素回路PCCに印加される表示用電圧Vdの補正を行う。 As shown in FIG. 4 and the above formulas (1) and (2), the curve L2 shows a shape in which the curve L1 is translated by the shift amount ΔVth, and before and after the fluctuation of the threshold voltage Vth, these curves L1 And the shape of the curve L2 are almost the same. This is because the fluctuation caused by the bias load of the current amplification factor β is negligible compared to the fluctuation of the threshold voltage Vth, and the display voltage Vd is determined using the shift amount ΔVth in the current control transistor Tr3. This suggests that the drain current Id of the current control transistor Tr3 is corrected. In the present embodiment, the threshold voltage Vth of the current control transistor Tr3 is detected in the threshold voltage Vth detection operation, and the display voltage Vd applied to the pixel circuit PCC via the data line Ld is corrected.
 図5は、本実施形態における画素回路PCCに印加される表示用電圧Vdと電流制御トランジスタTr3におけるドレイン電流Idとの関係の温度依存性(高温および室温)を示す図である。図5にて実線で示される曲線L3は、曲線L1に対して画素回路温度が高い場合の電流制御トランジスタTr3のドレイン電流Idに対する表示用電圧Vdの依存性を示している。図5において、電流制御トランジスタTr3のしきい値電圧Vth(T)と、画素回路PCCにおける電流増幅率β(T)とが温度Tにおける初期値であるとする。しきい値電圧Vth(T)の初期状態での画素回路PCCを流れるドレイン電流Idは、下記式(3)で示される。なお、Vは、書き込み電圧WDVSSである。
 Id=β(T)(V-Vd-Vth(T)) ・・・(3)
FIG. 5 is a diagram showing the temperature dependence (high temperature and room temperature) of the relationship between the display voltage Vd applied to the pixel circuit PCC in this embodiment and the drain current Id in the current control transistor Tr3. A curve L3 indicated by a solid line in FIG. 5 indicates the dependency of the display voltage Vd on the drain current Id of the current control transistor Tr3 when the pixel circuit temperature is higher than the curve L1. In FIG. 5, it is assumed that the threshold voltage Vth (T) of the current control transistor Tr3 and the current amplification factor β (T) in the pixel circuit PCC are initial values at the temperature T. The drain current Id flowing through the pixel circuit PCC in the initial state of the threshold voltage Vth (T) is expressed by the following formula (3). V 0 is the write voltage WDVSS.
Id = β (T) (V 0 −Vd−Vth (T)) 2 (3)
 電流制御トランジスタTr3のドレイン電流Idが経時によって初期状態から変動したときのしきい値電圧Vthを、温度依存性を考慮してVth(T)とすると、この状態での画素回路PCCを流れるドレイン電流Idは、下記式(4)で示される。
 Id=β(T)(V-Vd-Vth(T)) ・・・(4)
 ここでも、しきい値電圧Vthの変動に比べて電流増幅率βのバイアス負荷に起因する変動が無視される程度であることを利用している。
When the threshold voltage Vth when the drain current Id of the current control transistor Tr3 fluctuates from the initial state with time is Vth 1 (T) in consideration of temperature dependence, the drain flowing through the pixel circuit PCC in this state The current Id is expressed by the following formula (4).
Id = β (T) (V 0 −Vd−Vth 1 (T)) 2 (4)
Here again, the fact that the fluctuation due to the bias load of the current amplification factor β is negligible compared to the fluctuation of the threshold voltage Vth is utilized.
 図5および上記式(3)に示されるように、曲線L3は、曲線L1に対する電流増幅率βの温度変化に応じて表示用電圧Vdを補正することによって、電流制御トランジスタTr3のドレイン電流Idが温度変化に応じて補正されることを示唆する。
電流増幅率βの温度変化はほぼ線形なので式(5)で表せる。
 β(T)=β0+Kβ(T-T0)・・・(5)
 T0は基準温度、Tが表示パネル10内の画素回路温度、β0は基準温度における電流増幅率である。Kβが温度変化を特徴付ける定数である。式(5)はさらに以下の式(6)のように記述できる。
 β(T)=β0・Δβ,ここで Δβ=1+Kβ(T-T0)/β0・・・(6)
 このΔβを使って温度補正パラメータの電圧補正は、V-Vdを
 (V-Vd)/(Δβ)0.5・・・(7)
に置き換えれば、結果として電流増幅率βの温度依存性を補正できる。
 本実施形態では、ダミー画素(表示パネル10の周囲にあるフレーム領域に配置した、画素Pxと同一の構造を有してかつ発光素子(OEL)に駆動電流供給動作を行わない画素)のしきい値検出動作においてこうした電流制御トランジスタTr3のしきい値電圧Vthを検出し、このしきい値電圧Vthの温度依存性データから算出された乗算補正パラメータを用いて、データ線Ldを介して画素回路PCCに印加される表示用電圧Vdに乗算補正を行うことによって、表示パネル10内の画素回路PCCの電流増幅率βの温度依存性を補正する。
As shown in FIG. 5 and the above equation (3), the curve L3 is obtained by correcting the display voltage Vd according to the temperature change of the current amplification factor β with respect to the curve L1, so that the drain current Id of the current control transistor Tr3 is It is suggested that the correction is made according to the temperature change.
Since the temperature change of the current amplification factor β is almost linear, it can be expressed by Expression (5).
β (T) = β0 + K β (T−T0) (5)
T0 is a reference temperature, T is a pixel circuit temperature in the display panel 10, and β0 is a current amplification factor at the reference temperature. K β is a constant that characterizes the temperature change. Equation (5) can be further described as Equation (6) below.
β (T) = β0 · Δβ, where Δβ = 1 + K β (T−T0) / β0 (6)
The voltage correction of the temperature correction parameter using this Δβ is V 0 -Vd (V 0 -Vd) / (Δβ) 0.5 (7)
As a result, the temperature dependence of the current amplification factor β can be corrected.
In the present embodiment, a threshold of a dummy pixel (a pixel that is disposed in a frame region around the display panel 10 and has the same structure as the pixel Px and does not perform a drive current supply operation to the light emitting element (OEL)). In the value detection operation, such a threshold voltage Vth of the current control transistor Tr3 is detected, and using the multiplication correction parameter calculated from the temperature dependence data of the threshold voltage Vth, the pixel circuit PCC is connected via the data line Ld. The temperature dependence of the current amplification factor β of the pixel circuit PCC in the display panel 10 is corrected by multiplying the display voltage Vd applied to the pixel circuit PCd.
 [しきい値検出動作]
 図6を参照して、しきい値検出動作のうち上記しきい値検出期間での各ドライバ回路20,30,40の駆動状態の推移について説明する。しきい値検出動作では、電圧保持動作と、電圧飽和動作と、電圧測定動作と、電圧出力動作とがこの順に行われる。なお、図6は、q行目の各画素Pxがしきい値電圧Vthの検出対象行であるときの各ドライバ回路20,30,40の駆動の状態を示すタイミングチャートである。
[Threshold detection operation]
With reference to FIG. 6, the transition of the driving state of each of the driver circuits 20, 30, 40 during the threshold detection period in the threshold detection operation will be described. In the threshold detection operation, a voltage holding operation, a voltage saturation operation, a voltage measurement operation, and a voltage output operation are performed in this order. FIG. 6 is a timing chart showing a driving state of each driver circuit 20, 30, 40 when each pixel Px in the q-th row is a detection target row for the threshold voltage Vth.
 図6の下側に示されるように、しきい値検出動作がq行目の各画素Pxに対して行われる期間では、q行目の電源線Laには書き込み電圧WDVSSが印加され続ける。また、表示用スイッチSWdはオフに維持され、q行目の各画素回路PCCは、データドライバ回路40におけるシフトレジスタ回路41およびデータレジスタ回路42から切断される。また、出力スイッチSW2は隣接する他のデータラッチ43aに接続され続ける。 As shown in the lower side of FIG. 6, the write voltage WDVSS is continuously applied to the q-th power line La during the period in which the threshold detection operation is performed for each pixel Px in the q-th row. Further, the display switch SWd is kept off, and each pixel circuit PCC in the q-th row is disconnected from the shift register circuit 41 and the data register circuit 42 in the data driver circuit 40. Further, the output switch SW2 continues to be connected to another adjacent data latch 43a.
 まず、タイミングt1では、入力スイッチSW1は検出用ADC44bに接続され、転送スイッチSWtrsはオフに維持される。この状態にて、q行目の走査線Lsに選択電圧VgHが印加されることによって、q行目の各スイッチングトランジスタTr2とq行目の各サンプリングトランジスタTr1とが導通状態になり、q行目の各電流制御トランジスタTr3が飽和領域で駆動する。また、検出用電圧スイッチSWsがオンに切り替えられることによって、アナログ電源70から各データ線Ldに対し一斉に検出用電圧Vmが印加される。 First, at timing t1, the input switch SW1 is connected to the detection ADC 44b, and the transfer switch SWtrs is kept off. In this state, when the selection voltage VgH is applied to the scanning line Ls in the q-th row, each switching transistor Tr2 in the q-th row and each sampling transistor Tr1 in the q-th row become conductive, and the q-th row Each current control transistor Tr3 is driven in the saturation region. Further, when the detection voltage switch SWs is turned on, the detection voltage Vm is applied from the analog power supply 70 to the data lines Ld all at once.
 この際に、電流制御トランジスタTr3のゲート‐ソース間に想定されるしきい値電圧Vthよりも大きい電圧が印加されるように、検出用電圧Vmは設定される。すなわち、電流制御トランジスタTr3のゲート‐ソース間には、書き込み電圧WDVSSと検出用電圧Vmとの差が想定されるしきい値電圧Vthよりも大きくなるように、検出用電圧Vmは設定される。なお、検出用電圧Vmの印加される各データ線Ldの電位は、書き込み電圧WDVSSの印加される電源線Laの電位よりも低く、且つ、有機EL素子OELのカソード端子よりも低い。 At this time, the detection voltage Vm is set so that a voltage larger than the threshold voltage Vth assumed between the gate and the source of the current control transistor Tr3 is applied. That is, the detection voltage Vm is set between the gate and source of the current control transistor Tr3 so that the difference between the write voltage WDVSS and the detection voltage Vm is larger than the assumed threshold voltage Vth. Note that the potential of each data line Ld to which the detection voltage Vm is applied is lower than the potential of the power supply line La to which the write voltage WDVSS is applied and lower than the cathode terminal of the organic EL element OEL.
 検出用電圧Vmが各データ線Ldに印加されると、検出用電圧Vmと書き込み電圧WDVSSとの差に応じた画素Pxごとの電流が、q行目の各電流制御トランジスタTr3とq行目の各サンプリングトランジスタTr1とを介してアナログ電源70へ流れる。これに伴い、q行目の各保持容量Csには、それが接続される電流制御トランジスタTr3のゲート‐ソース間電圧Vgsが保持され、これによって電圧保持動作が終了する。なお、有機EL素子OELのアノードの電位がカソード側の電位以下であるため、有機EL素子OELは発光しない。 When the detection voltage Vm is applied to each data line Ld, the current for each pixel Px corresponding to the difference between the detection voltage Vm and the write voltage WDVSS is changed between each current control transistor Tr3 in the qth row and each qth row. It flows to the analog power supply 70 via each sampling transistor Tr1. Accordingly, each holding capacitor Cs in the q-th row holds the gate-source voltage Vgs of the current control transistor Tr3 to which the holding capacitor Cs is connected, and thus the voltage holding operation ends. Note that the organic EL element OEL does not emit light because the anode potential of the organic EL element OEL is equal to or lower than the cathode side potential.
 タイミングt2では、q行目の走査線Lsに対する選択電圧VgHの印加が維持され、また、検出用スイッチSWmがオフに維持された状態で、検出用電圧スイッチSWsのみがオフに切り替えられる。これによって、各データ線Ldでは、サンプリングトランジスタTr1と接続される部位よりもデータドライバ回路40側の部位がハイインピーダンス状態に切り替えられる。 At timing t2, application of the selection voltage VgH to the scanning line Ls in the q-th row is maintained, and only the detection voltage switch SWs is switched off while the detection switch SWm is maintained off. As a result, in each data line Ld, the part closer to the data driver circuit 40 than the part connected to the sampling transistor Tr1 is switched to the high impedance state.
 この際に、q行目の各電流制御トランジスタTr3のゲート‐ソース間電圧Vgsが、q行目の各保持容量Csに保持されている。そのため、q行目の各電流制御トランジスタTr3におけるソース端子の電位が、q行目の各電流制御トランジスタTr3のドレイン端子の電位に近づくように、q行目の各電流制御トランジスタTr3にてドレイン電流Idは流れ続ける。そして、タイミングt2から経過した時間である緩和時間tが進むほど、q行目の各保持容量Csに蓄積された電荷は放電され、各保持容量Csの両端子間の電圧は、すなわち、q行目の各電流制御トランジスタTr3におけるゲート‐ソース間電圧Vgsは、ドレイン電流Idが流れなくなるしきい値電圧Vthまで低下する。そして、q行目の各電流制御トランジスタTr3のしきい値電圧Vthに相当する電圧がq行目の各保持容量Csに保持されて、電圧飽和動作が終了する。なお、各データ線Ldに検出用電圧Vmを印加するための検出用電圧スイッチSWsは、タイミングt2以降においてオフに維持される。 At this time, the gate-source voltage Vgs of each current control transistor Tr3 in the q-th row is held in each holding capacitor Cs in the q-th row. Therefore, the drain current in each current control transistor Tr3 in the q row is adjusted so that the potential of the source terminal in each current control transistor Tr3 in the q row approaches the potential of the drain terminal in each current control transistor Tr3 in the q row. Id continues to flow. Then, as the relaxation time t, which is the time elapsed from the timing t2, progresses, the charge accumulated in each storage capacitor Cs in the qth row is discharged, and the voltage between both terminals of each storage capacitor Cs is q rows. The gate-source voltage Vgs in each eye current control transistor Tr3 drops to the threshold voltage Vth at which the drain current Id does not flow. Then, a voltage corresponding to the threshold voltage Vth of each current control transistor Tr3 in the q-th row is held in each holding capacitor Cs in the q-th row, and the voltage saturation operation ends. Note that the detection voltage switch SWs for applying the detection voltage Vm to each data line Ld is kept off after the timing t2.
 タイミングt3では、q行目の走査線Lsに対する選択電圧VgHの印加が維持され、また、検出用スイッチSWmのみがオンに切り替えられる。これによって、各データ線Ldと各検出用ADC44bとが接続され、ハイインピーダンス状態であった各データ線Ldの電位が各検出用ADC44bに取り込まれる。 At timing t3, the application of the selection voltage VgH to the q-th scanning line Ls is maintained, and only the detection switch SWm is turned on. Thus, each data line Ld and each detection ADC 44b are connected, and the potential of each data line Ld in the high impedance state is taken into each detection ADC 44b.
 この際に、q行目の各保持容量Csには、q行目の各電流制御トランジスタTr3のしきい値電圧Vthに相当する電圧が保持されている。それゆえに、各検出用ADC44bに取り込まれる電位と書き込み電圧WDVSSとの電位差から、q行目の各電流制御トランジスタTr3におけるゲート‐ソース間電圧Vgs、すなわち、q行目の各電流制御トランジスタTr3のしきい値電圧Vthに対応する電圧が検出される。検出された各データ線Ldの電位は、各検出用ADC44bによってデジタルデータである検出データDoutに変換されて、レベルシフタ46bを介して各データラッチ43aへ出力される。そして、各データラッチ43aは、出力された検出データDoutを保持し、これによって、電圧測定動作が終了する。 At this time, each holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of each current control transistor Tr3 in the q-th row. Therefore, the gate-source voltage Vgs in each current control transistor Tr3 in the q-th row, that is, the current control transistor Tr3 in the q-th row is determined from the potential difference between the potential taken in each detection ADC 44b and the write voltage WDVSS. A voltage corresponding to the threshold voltage Vth is detected. The detected potential of each data line Ld is converted into detection data Dout which is digital data by each detection ADC 44b, and is output to each data latch 43a via the level shifter 46b. Each data latch 43a holds the output detection data Dout, thereby ending the voltage measurement operation.
 タイミングt4では、q行目の走査線Lsに非選択電圧VgLが印加され、q行目の各スイッチングトランジスタTr2とq行目の各サンプリングトランジスタTr1とが非導通状態に切り替わる。この状態で、各検出用スイッチSWmがオフに切り替えられ、転送スイッチSWtrsがオンに切り替えられる。さらに、入力スイッチSW1は隣接するデータラッチ43aに接続されて各データラッチ43aが直列に接続される。 At timing t4, the non-selection voltage VgL is applied to the q-th scanning line Ls, and each switching transistor Tr2 in the q-th row and each sampling transistor Tr1 in the q-th row are switched to a non-conductive state. In this state, each detection switch SWm is turned off, and the transfer switch SWtrs is turned on. Further, the input switch SW1 is connected to the adjacent data latch 43a, and the data latches 43a are connected in series.
 この際に、制御部50からデータドライバ回路40にラッチパルス信号LPが出力され、各データラッチ43aに保持されている検出データDoutは、ラッチパルス信号LPのタイミングに同期して制御部50に順に転送される。これによって、q行目に並ぶn個の電流制御トランジスタTr3の各々のしきい値電圧Vthに関するデータが制御部50に順に転送される。なお、図6では、説明の便宜上、ラッチパルス信号LPの繰り返される回数が省略されている。 At this time, the latch pulse signal LP is output from the control unit 50 to the data driver circuit 40, and the detection data Dout held in each data latch 43a is sequentially transmitted to the control unit 50 in synchronization with the timing of the latch pulse signal LP. Transferred. As a result, data regarding the threshold voltage Vth of each of the n current control transistors Tr3 arranged in the q-th row is sequentially transferred to the control unit 50. In FIG. 6, the number of times the latch pulse signal LP is repeated is omitted for convenience of explanation.
 タイミングt5では、q行目の走査線Lsに対する非選択電圧VgLの印加が維持され、且つ、転送スイッチSWtrsがオフに切り替えられ、また、入力スイッチSW1は、データラッチ43aの入力端をデータレジスタ回路42におけるレジスタに接続する。これによって、電圧出力動作が終了し、q行目に並んだn個の電流制御トランジスタTr3に対し、しきい値検出動作が終了する。
 図7を参照して、上記タイミングt2から上記タイミングt3までの期間におけるデータ線Ldの電位であるデータ線電位VLdの推移について説明する。図7は、本実施形態におけるデータ線電位VLdと緩和時間tとの関係を示す図である。
At timing t5, application of the non-selection voltage VgL to the q-th scanning line Ls is maintained, and the transfer switch SWtrs is turned off. The input switch SW1 connects the input terminal of the data latch 43a to the data register circuit. Connect to the register at 42. As a result, the voltage output operation ends, and the threshold value detection operation ends for the n current control transistors Tr3 arranged in the q-th row.
With reference to FIG. 7, the transition of the data line potential VLd which is the potential of the data line Ld in the period from the timing t2 to the timing t3 will be described. FIG. 7 is a diagram showing the relationship between the data line potential VLd and the relaxation time t in the present embodiment.
 図7に示されるように、タイミングt2から経過した時間である緩和時間tが進むと、データ線電位VLdは、そのデータ線Ldに接続された保持容量Csでの蓄積電荷の放電に従って、検出用電圧Vmから書き込み電圧WDVSSに近づく。そして、緩和時間tが飽和時間tsまで進むと、データ線電位VLdは、飽和電圧VLdsにて飽和し、ドレイン電流Idが流れなくなる。この際に、書き込み電圧WDVSSと飽和電圧VLdsとの差がしきい値電圧Vthとして設定される。なお、飽和時間tsは、例えば、3nsecから10nsecであって、タイミングt2からタイミングt3までの期間は、こうした飽和時間ts以上に設定されている。 As shown in FIG. 7, when the relaxation time t, which is the time elapsed from the timing t2, progresses, the data line potential VLd is detected according to the discharge of the accumulated charge in the storage capacitor Cs connected to the data line Ld. The voltage Vm approaches the write voltage WDVSS. When the relaxation time t advances to the saturation time ts, the data line potential VLd is saturated at the saturation voltage VLds, and the drain current Id does not flow. At this time, the difference between the write voltage WDVSS and the saturation voltage VLds is set as the threshold voltage Vth. The saturation time ts is, for example, 3 nsec to 10 nsec, and the period from timing t2 to timing t3 is set to be equal to or longer than the saturation time ts.
 図8は図7で説明した測定シーケンスのデータ線電位VLdの温度依存性を示している。図8に示されるように、温度が高くなるとタイミングt2から経過した時間である緩和時間tが経過した後のデータ線電位VLdがより短期間にWDVSSに近づく。図9は、本実施形態において、図8におけるt0でのデータ線電位VLdの測定結果の温度依存性を示す図である。緩和時間tをt0に設定すると、この時間におけるデータ電圧VLdの温度依存性は図9のように線形になる。式(5)で表せるように電流増幅率βの温度変化が線形で表せると同時に、しきい値電圧Vth測定値が線形で表せることから、基準温度をT0として表すと、β(T)/β(T0)=1+Kβ’(Vth(T)-Vth(T0))となり、しきい値電圧Vth測定結果から電流増幅率βの温度依存性が算出できる。ここでKβ’は定数である。すなわち、しきい値電圧Vth測定によって表示パネル10内の画素回路温度が測定でき、そのデータに基づき画素回路PCCの電流増幅率βの温度依存性を補正することができる。 FIG. 8 shows the temperature dependence of the data line potential VLd in the measurement sequence described in FIG. As shown in FIG. 8, when the temperature increases, the data line potential VLd after the relaxation time t, which is the time elapsed from the timing t2, approaches WDVSS in a shorter time. FIG. 9 is a diagram showing the temperature dependence of the measurement result of the data line potential VLd at t0 in FIG. 8 in the present embodiment. When the relaxation time t is set to t0, the temperature dependence of the data voltage VLd at this time becomes linear as shown in FIG. Since the temperature change of the current amplification factor β can be expressed linearly as expressed by the equation (5) and the threshold voltage Vth measurement value can be expressed linearly, when the reference temperature is expressed as T0, β (T) / β (T0) = 1 + K β '(Vth (T) -Vth (T0)) , and the temperature dependency of the current amplification factor beta from the threshold voltage Vth measurement results can be calculated. Here, K β ′ is a constant. That is, the pixel circuit temperature in the display panel 10 can be measured by measuring the threshold voltage Vth, and the temperature dependence of the current amplification factor β of the pixel circuit PCC can be corrected based on the data.
 図10に、毎画素Pxのしきい値電圧Vth補正および画素回路PCCの電流増幅率βの温度変動補正の流れを示す。ダミー画素回路を使って測定されたしきい値電圧Vth測定値から電流増幅率βの乗算補正値が算出される。この補正値を画像データに乗算して、電流増幅率βの温度依存性を補正する。その後、各画素Pxにおいて測定されたしきい値電圧Vthを加算する。このしきい値電圧Vthは既に温度依存性を含めて測定されているので、しきい値シフトと電流増幅率βの温度変化の補正とを行うことになる。 FIG. 10 shows the flow of the threshold voltage Vth correction for each pixel Px and the temperature fluctuation correction for the current amplification factor β of the pixel circuit PCC. A multiplication correction value of the current amplification factor β is calculated from the measured value of the threshold voltage Vth measured using the dummy pixel circuit. The correction value is multiplied by the image data to correct the temperature dependence of the current amplification factor β. Thereafter, the threshold voltage Vth measured in each pixel Px is added. Since this threshold voltage Vth has already been measured including temperature dependence, threshold shift and correction of temperature change of the current amplification factor β are performed.
 [表示動作]
 図11を参照して、階調表示動作における各ドライバ回路20,30,40の駆動状態の推移について説明する。図11は、本実施形態における表示動作期間での各制御信号のレベルの推移を各スイッチの状態と共に示すタイミングチャートである。階調表示動作では、書き込み動作と発光動作とがこの順に行われる。なお、非階調表示動作における各ドライバ回路20,30,40の駆動状態の推移は、その開始からしきい値検出動作が行われるまでの期間において階調表示動作と同様である。
[Display operation]
With reference to FIG. 11, the transition of the driving state of each of the driver circuits 20, 30, 40 in the gradation display operation will be described. FIG. 11 is a timing chart showing the transition of the level of each control signal along with the state of each switch during the display operation period in the present embodiment. In the gradation display operation, the writing operation and the light emitting operation are performed in this order. Note that the transition of the driving state of each of the driver circuits 20, 30, and 40 in the non-gradation display operation is the same as that in the gradation display operation in the period from the start to the threshold detection operation.
 図11の下側に示されるように、階調表示動作が行われる期間では、各検出用スイッチSWm、各検出用電圧スイッチSWs、および、転送スイッチSWtrsは、オフに維持される。また、各出力スイッチSW2の各々は、データラッチ43aと表示用DAC44aとを接続する状態に維持され、各入力スイッチSW1の各々は、データラッチ43aとデータレジスタ回路42とを接続する状態に維持される。 As shown in the lower side of FIG. 11, each detection switch SWm, each detection voltage switch SWs, and the transfer switch SWtrs are kept off during the period in which the gradation display operation is performed. Each output switch SW2 is maintained in a state of connecting the data latch 43a and the display DAC 44a, and each of the input switches SW1 is maintained in a state of connecting the data latch 43a and the data register circuit 42. The
 まず、タイミングtd1では、各表示用スイッチSWdがオンに切り替えられることによって、シフトレジスタ回路41、データレジスタ回路42、データラッチ43a、表示用DAC44a、バッファ45a、および、データ線Ldが直列に接続される。次いで、スタートパルス信号SP1がデータドライバ回路40に入力されることによって、シフト信号がシフトレジスタ回路41からデータレジスタ回路42に入力され、これによって、1行目の表示データDinが制御部50からデータレジスタ回路42へ取り込まれる。 First, at timing td1, each display switch SWd is turned on, so that the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld are connected in series. The Next, when the start pulse signal SP1 is input to the data driver circuit 40, the shift signal is input from the shift register circuit 41 to the data register circuit 42, whereby the display data Din in the first row is transferred from the control unit 50 to the data register circuit 42. The data is taken into the register circuit 42.
 タイミングtd2では、1行目の走査線Lsに選択電圧VgHが印加され、且つ、1行目の電源線Laに書き込み電圧WDVSSが印加されて、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とが導通状態になる。また、1行目の各電流制御トランジスタTr3の各々が飽和領域で駆動できる状態となる。 At timing td2, the selection voltage VgH is applied to the scanning line Ls of the first row, and the writing voltage WDVSS is applied to the power supply line La of the first row, so that each sampling transistor Tr1 in the first row and the first row Each switching transistor Tr2 becomes conductive. In addition, each current control transistor Tr3 in the first row can be driven in the saturation region.
 この際に、ラッチパルス信号LPがデータドライバ回路40へ出力されることによって、各データラッチ43aに1行目の表示データDinが一斉に保持される。n個のデータラッチ43aに保持された1行目の表示データDinは、n個のレベルシフタ46aを介してn個の表示用DAC44aによりアナログ信号電圧に変換されて、各列の表示用電圧Vdとして各データ線Ldへ出力される。そして、1行目の各電流制御トランジスタTr3のゲート‐ソース間電圧Vgsは、書き込み電圧WDVSSと表示用電圧Vdとの差に応じた値となり、書き込み電圧として保持容量Csに保持される。これによって、1行目の各画素Pxに対する書き込み動作が終了する。なお、各データ線Ldに印加される表示用電圧Vdは、1行目の各画素Pxに対応づけられた検出データDoutと基準となるしきい値電圧Vthとの差分が、調整後の階調データに加減演算されることによって得られる電圧値である。 At this time, the latch pulse signal LP is output to the data driver circuit 40, whereby the display data Din of the first row is simultaneously held in the data latches 43a. The display data Din in the first row held in the n data latches 43a is converted into an analog signal voltage by the n display DACs 44a via the n level shifters 46a, and used as the display voltage Vd for each column. Output to each data line Ld. The gate-source voltage Vgs of each current control transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the display voltage Vd, and is held in the storage capacitor Cs as the write voltage. Thus, the writing operation for each pixel Px in the first row is completed. It should be noted that the display voltage Vd applied to each data line Ld is such that the difference between the detection data Dout associated with each pixel Px in the first row and the reference threshold voltage Vth is an adjusted gradation. This is a voltage value obtained by adding or subtracting data.
 なお、この際に、スタートパルス信号SP1が再びデータドライバ回路40へ出力されることによって、シフト信号がシフトレジスタ回路41からデータレジスタ回路42へ出力される。これによって、2行目の表示データDinが制御部50からデータレジスタ回路42へ取り込まれる。 At this time, the start pulse signal SP1 is output to the data driver circuit 40 again, whereby the shift signal is output from the shift register circuit 41 to the data register circuit 42. As a result, the display data Din on the second line is taken into the data register circuit 42 from the control unit 50.
 タイミングtd3では、1行目の走査線Lsに非選択電圧VgLが印加され、且つ、1行目の電源線Laに駆動電圧ELVDDが印加されて、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とが非導通状態となる。そして、1行目の各電流制御トランジスタTr3の各々は、1行目の各保持容量Csに保持された書き込み電圧と、それが接続された電流制御トランジスタTr3におけるしきい値電圧Vthとの差に応じたドレイン電流Idを、対応する有機EL素子OELに供給する。この際に、各データ線Ldに印加される表示用電圧Vdでは、しきい値電圧Vthの変動分が補正されているため、有機EL素子OELに供給されるドレイン電流Idも、しきい値電圧Vthの変動分が補正されたものとなる。これによって、1行目の各画素Pxに対する発光動作が行われる。 At timing td3, the non-selection voltage VgL is applied to the scanning line Ls of the first row, and the driving voltage ELVDD is applied to the power supply line La of the first row, so that each sampling transistor Tr1 in the first row and the first row Each of the switching transistors Tr2 becomes non-conductive. Each current control transistor Tr3 in the first row has a difference between the write voltage held in each holding capacitor Cs in the first row and the threshold voltage Vth in the current control transistor Tr3 to which it is connected. The corresponding drain current Id is supplied to the corresponding organic EL element OEL. At this time, in the display voltage Vd applied to each data line Ld, the fluctuation amount of the threshold voltage Vth is corrected. Therefore, the drain current Id supplied to the organic EL element OEL is also the threshold voltage. The variation of Vth is corrected. As a result, a light emission operation is performed on each pixel Px in the first row.
 なお、この際に、2行目の走査線Lsに選択電圧VgHが印加され、且つ、2行目の電源線Laに書き込み電圧WDVSSが印加されて、2行目の各サンプリングトランジスタTr1と2行目の各スイッチングトランジスタTr2とが導通状態になる。また、2行目の各電流制御トランジスタTr3は、飽和領域で駆動できる状態となる。また、ラッチパルス信号LPが再びデータドライバ回路40へ出力されることによって、各データラッチ43aに2行目の表示データDinが保持される。各データラッチ43aに保持された2行目の表示データDinは、各レベルシフタ46aを介して各表示用DAC44aによりアナログ信号電圧に変換されて、各列の表示用電圧Vdとして各データ線Ldへ出力される。そして、2行目の各電流制御トランジスタTr3のゲート‐ソース間電圧Vgsは、書き込み電圧WDVSSと表示用電圧Vdとの差に応じた値となり、2行目の各保持容量Csに書き込み電圧として保持される。これによって、2行目の各画素Pxに対する書き込み動作が終了する。 At this time, the selection voltage VgH is applied to the scanning line Ls of the second row, and the write voltage WDVSS is applied to the power supply line La of the second row. The switching transistors Tr2 in the eye are brought into conduction. Each current control transistor Tr3 in the second row is in a state where it can be driven in the saturation region. Further, the latch pulse signal LP is output again to the data driver circuit 40, whereby the display data Din of the second row is held in each data latch 43a. The display data Din in the second row held in each data latch 43a is converted into an analog signal voltage by each display DAC 44a via each level shifter 46a, and output to each data line Ld as a display voltage Vd for each column. Is done. The gate-source voltage Vgs of each current control transistor Tr3 in the second row becomes a value corresponding to the difference between the write voltage WDVSS and the display voltage Vd, and is held as the write voltage in each storage capacitor Cs in the second row. Is done. Thus, the writing operation for each pixel Px in the second row is completed.
 書き込み動作と発光動作とが行ごとにこの順で行われ、こうした階調表示動作が1行目からn行目まで順に表示用クロック周期で行われる。これによって、1つのフレームとして画像が表示される。なお、表示動作として、黒色の画像を表示する非階調表示が行われる場合には、電源ドライバ30による印加電圧をWDVSSの状態にする。 The writing operation and the light emitting operation are performed in this order for each row, and such gradation display operation is performed in order from the first row to the nth row in the display clock cycle. As a result, an image is displayed as one frame. When non-gradation display for displaying a black image is performed as the display operation, the voltage applied by the power supply driver 30 is set to the WDVSS state.
 [検出動作タイミング]
 図12~図14を参照して、非階調表示動作のなかで行われるしきい値検出動作のタイミングについて説明する。なお、以下では、1つの例として、ダミー画素がデータ線Ld上に配置され、画素Pxが540行×960列に配置され、フレームレートが60fpsである場合について説明する。また、図12は、第1フレームでの非階調表示動作におけるしきい値検出動作のタイミングを示し、図13は、第2フレームでの非階調表示動作におけるしきい値検出動作のタイミングを示し、図14は、第540フレームでの非階調表示動作におけるしきい値検出動作のタイミングを示す。
[Detection operation timing]
With reference to FIG. 12 to FIG. 14, the timing of the threshold detection operation performed in the non-gradation display operation will be described. In the following, a case where dummy pixels are arranged on the data line Ld, the pixels Px are arranged in 540 rows × 960 columns, and the frame rate is 60 fps will be described as an example. FIG. 12 shows the timing of the threshold detection operation in the non-gradation display operation in the first frame, and FIG. 13 shows the timing of the threshold detection operation in the non-gradation display operation in the second frame. FIG. 14 shows the timing of the threshold detection operation in the non-gradation display operation in the 540th frame.
 図12に示されるように、まず、タイミングTf1aでは、階調表示動作における書き込み動作が1行目の各画素Pxにて開始される。階調表示動作における書き込み動作が1行目の各画素Pxにて終了すると、階調表示動作における発光動作が1行目の各画素Pxにて開始されるとともに、階調表示動作における書き込み動作が2行目の各画素Pxにて開始される。こうして、階調表示動作における書き込み動作が1行目から540行目まで順に表示用クロック周期で開始され、階調表示動作における書き込み動作が終了した行から順に、階調表示動作における発光動作が開始される。 As shown in FIG. 12, first, at the timing Tf1a, the writing operation in the gradation display operation is started at each pixel Px in the first row. When the writing operation in the gradation display operation is completed at each pixel Px in the first row, the light emission operation in the gradation display operation is started at each pixel Px in the first row, and the writing operation in the gradation display operation is performed. It starts at each pixel Px in the second row. Thus, the writing operation in the gradation display operation is started in the display clock cycle in order from the first row to the 540th row, and the light emission operation in the gradation display operation is started in order from the row in which the writing operation in the gradation display operation is completed. Is done.
 タイミングTf1bでは、階調表示動作における書き込み動作が最終行である540行目まで終了して、非階調表示動作における書き込み動作が1行目の各画素Pxにて開始される。非階調表示動作における書き込み動作が1行目の各画素Pxにて終了すると、非階調表示動作における非発光動作が1行目の各画素Pxにて開始されるとともに、非階調表示動作における書き込み動作が2行目の各画素Pxにて開始される。こうして、非階調表示動作における書き込み動作が1行目から540行目まで順に表示用クロック周期で開始され、非階調表示動作における書き込み動作が終了した行から順に、非階調表示動作における非発光動作が開始される。 At timing Tf1b, the writing operation in the gradation display operation is completed up to the 540th row, which is the last row, and the writing operation in the non-gradation display operation is started at each pixel Px in the first row. When the writing operation in the non-grayscale display operation ends at each pixel Px in the first row, the non-light emission operation in the non-grayscale display operation starts at each pixel Px in the first row and the non-grayscale display operation Is started at each pixel Px in the second row. Thus, the writing operation in the non-grayscale display operation is started in the display clock cycle in order from the first row to the 540th row, and the non-grayscale display operation is sequentially performed from the row in which the writing operation in the non-grayscale display operation is completed. The light emission operation is started.
 タイミングTf1cでは、非階調表示動作における非発光動作の開始が最終行である540行目まで終了し、選択電圧VgHの印加される候補が1行目から540行目まで順に検出用クロック周期で走査される。この際に、まず、選択電圧VgHの印加される候補、すなわち、しきい値電圧Vthの検出される検出対象行として1行目が設定され、1行目の各画素Pxに対するしきい値検出動作がしきい値検出期間に行われる。 At the timing Tf1c, the start of the non-light emission operation in the non-gradation display operation is completed until the last row 540, and the candidates to which the selection voltage VgH is applied are sequentially detected in the detection clock cycle from the first row to the 540th row. Scanned. In this case, first, the first row is set as a candidate to which the selection voltage VgH is applied, that is, the detection target row from which the threshold voltage Vth is detected, and the threshold detection operation for each pixel Px in the first row. Is performed during the threshold detection period.
 これによって、1行目の各電流制御トランジスタTr3に関する検出データDoutが制御部50のデータ記憶部52に記憶される。そして、1行目の各画素Pxに対するしきい値検出動作が終了すると、検出用クロック周期での選択対象ビットのシフトが、2行目から540行目まで順に繰り返される一方で、全ての走査線Lsに対しては非選択電圧VgLが印加される。結果として、全ての画素Pxは非階調表示の状態で待機する。 Thus, the detection data Dout regarding each current control transistor Tr3 in the first row is stored in the data storage unit 52 of the control unit 50. When the threshold detection operation for each pixel Px in the first row is completed, the shift of the selection target bit in the detection clock cycle is repeated in order from the second row to the 540th row, while all the scanning lines are A non-selection voltage VgL is applied to Ls. As a result, all the pixels Px stand by in a non-gradation display state.
 タイミングTf2aでは、検出用クロック周期での選択対象ビットのシフトが検出用シフトクロック信号Clkrの入力によって最終行である540行目まで進み、1行目の各画素Pxに対して、再び、階調表示動作における書き込み動作が開始される。 At timing Tf2a, the shift of the selection target bit in the detection clock cycle proceeds to the last row 540 by the input of the detection shift clock signal Clkr, and the gradation is again applied to each pixel Px in the first row. The writing operation in the display operation is started.
 図13に示されるように、タイミングTf2aでは、階調表示動作における書き込み動作が1行目から540行目まで順に再び開始され、階調表示動作における書き込み動作が終了した行から順に、階調表示動作における発光動作が開始される。 As shown in FIG. 13, at the timing Tf2a, the writing operation in the gradation display operation is started again from the first row to the 540th row, and the gradation display is performed in order from the row where the writing operation in the gradation display operation is completed. The light emission operation in the operation is started.
 タイミングTf2bでは、階調表示動作における書き込み動作が最終行である540行目まで表示用クロック周期で進められ、階調表示動作における書き込み動作が終了した行から順に、階調表示動作における発光動作が開始される。次いで、非階調表示動作における書き込み動作が1行目から540行目まで順に表示用クロック周期で再び進められ、非階調表示動作における書き込み動作が終了した行から順に、非階調表示動作における非発光動作が開始される。 At the timing Tf2b, the writing operation in the gradation display operation is advanced in the display clock cycle up to the 540th row, which is the last row, and the light emission operation in the gradation display operation is sequentially performed from the row where the writing operation in the gradation display operation is completed. Be started. Next, the writing operation in the non-grayscale display operation proceeds again in the display clock cycle in order from the first row to the 540th row, and in the non-grayscale display operation in order from the row where the writing operation in the non-grayscale display operation is completed. Non-light emitting operation is started.
 タイミングTf2cでは、非階調表示動作における非発光動作の開始が最終行である540行目まで終了して、選択電圧VgHの印加される候補が1行目から540行目まで順に検出用クロック周期で走査される。この際に、しきい値電圧Vthの検出される検出対象行として2行目が設定され、まず、検出用クロック周期での選択対象ビットのシフトが、2行目まで進められる。なお、選択電圧VgHの印加される候補が1行目であるとき、走査線Lsに対しては非選択電圧VgLが印加される。そして、選択電圧VgHの印加される候補が2行目であるとき、2行目の各画素Pxに対するしきい値検出動作がしきい値検出期間に行われる。 At timing Tf2c, the start of the non-light emission operation in the non-grayscale display operation is completed up to the 540th row, which is the last row, and the candidates to which the selection voltage VgH is applied are sequentially detected from the first row to the 540th row. Is scanned. At this time, the second row is set as the detection target row from which the threshold voltage Vth is detected. First, the selection target bit is shifted to the second row in the detection clock cycle. When the candidate to which the selection voltage VgH is applied is the first row, the non-selection voltage VgL is applied to the scanning line Ls. When the candidate to which the selection voltage VgH is applied is the second row, the threshold detection operation for each pixel Px in the second row is performed during the threshold detection period.
 これによって、2行目の各電流制御トランジスタTr3に関する検出データDoutが制御部50のデータ記憶部52に記憶される。そして、2行目の各画素Pxに対するしきい値検出動作が終了すると、検出用クロック周期での選択対象ビットのシフトが、3行目から540行目まで順に繰り返される一方で、全ての走査線Lsに対しては非選択電圧VgLが印加される。結果として、全ての画素Pxは非階調表示の状態で待機する。 Thus, the detection data Dout regarding each current control transistor Tr3 in the second row is stored in the data storage unit 52 of the control unit 50. When the threshold detection operation for each pixel Px in the second row is completed, the shift of the selection target bit in the detection clock cycle is repeated in order from the third row to the 540th row, while all the scanning lines are A non-selection voltage VgL is applied to Ls. As a result, all the pixels Px stand by in a non-gradation display state.
 タイミングTf3aでは、検出用クロック周期での選択対象ビットのシフトが検出用シフトクロック信号Clkrの入力によって最終行である540行目まで進み、1行目の各画素Pxに対して、再び、階調表示動作における書き込み動作が開始される。 At timing Tf3a, the shift of the selection target bit in the detection clock cycle proceeds to the last row 540 by the input of the detection shift clock signal Clkr, and the gradation is again applied to each pixel Px in the first row. The writing operation in the display operation is started.
 図14に示されるように、タイミングTf540aでは、階調表示動作における書き込み動作が1行目から540行目まで順に再び開始され、階調表示動作における書き込み動作が終了した行から順に、階調表示動作における発光動作が開始される。 As shown in FIG. 14, at the timing Tf540a, the writing operation in the gradation display operation is started again from the first row to the 540th row, and the gradation display is performed in order from the row where the writing operation in the gradation display operation is completed. The light emission operation in the operation is started.
 タイミングTf540bでは、階調表示動作における書き込み動作が最終行である540行目まで表示用クロック周期で進められ、階調表示動作における書き込み動作が終了した行から順に、階調表示動作における発光動作が開始される。次いで、非階調表示動作における書き込み動作が1行目から540行目まで順に表示用クロック周期で再び進められ、非階調表示動作における書き込み動作が終了した行から順に、非階調表示動作における非発光動作が開始される。 At the timing Tf540b, the writing operation in the gradation display operation is advanced in the display clock cycle up to the 540th row, which is the final row, and the light emission operation in the gradation display operation is sequentially performed from the row where the writing operation in the gradation display operation is completed. Be started. Next, the writing operation in the non-grayscale display operation proceeds again in the display clock cycle in order from the first row to the 540th row, and in the non-grayscale display operation in order from the row where the writing operation in the non-grayscale display operation is completed. Non-light emitting operation is started.
 タイミングTf540cでは、非階調表示動作における非発光動作の開始が最終行である540行目まで終了して、選択電圧VgHの印加される候補が1行目から540行目まで順に検出用クロック周期で走査される。この際に、しきい値電圧Vthの検出される検出対象行として540行目が設定され、選択電圧VgHの印加される候補が1行目から539行目であるとき、走査線Lsに対しては非選択電圧VgLが印加される。そして、選択電圧VgHの印加される候補が540行目であるとき、540行目の各画素Pxに対するしきい値検出動作がしきい値検出期間に行われる。これによって、540行目の各電流制御トランジスタTr3に関する検出データDoutが制御部50のデータ記憶部52に記憶される。 At timing Tf540c, the start of the non-light emission operation in the non-grayscale display operation ends to the 540th row, which is the last row, and the candidates to which the selection voltage VgH is applied are sequentially detected from the 1st row to the 540th row. Is scanned. At this time, when the detection target row from which the threshold voltage Vth is detected is set as the detection target row, and the candidates to which the selection voltage VgH is applied are from the first row to the 539th row, with respect to the scanning line Ls. The non-selection voltage VgL is applied. When the candidate to which the selection voltage VgH is applied is the 540th row, the threshold detection operation for each pixel Px in the 540th row is performed during the threshold detection period. As a result, the detection data Dout regarding each current control transistor Tr3 in the 540th row is stored in the data storage unit 52 of the control unit 50.
 タイミングTf540eでは、540行目の各画素Pxに対するしきい値検出動作が終了し、1行目の各画素Pxに対して、再び、階調表示動作における書き込み動作が開始される。 At timing Tf540e, the threshold detection operation for each pixel Px in the 540th row is completed, and the writing operation in the gradation display operation is started again for each pixel Px in the first row.
 このように、1つのフレームが表示される期間では、540行目まで非階調表示動作における非発光動作が開始された後に、特定の行の画素Pxに対してしきい値検出動作が行われる。しきい値電圧Vthの検出対象行は、フレームごとに、1行目の画素Pxから走査方向に沿って順に1行ずつずらされる。すなわち、第kフレーム(kは1以上の整数)において、q行目(1≦q≦539)の画素Pxに対するしきい値検出動作が行われると、第k+1フレームでは、q+1行目の画素Pxに対するしきい値検出動作が行われる。検出対象行が最終行まで到達すると、検出対象行は1行目に戻る。 As described above, in the period in which one frame is displayed, the threshold detection operation is performed on the pixels Px in a specific row after the non-light emission operation in the non-gradation display operation is started up to the 540th row. . The detection target row of the threshold voltage Vth is shifted by one row in order along the scanning direction from the pixel Px in the first row for each frame. That is, when the threshold detection operation is performed on the pixel Px in the q-th row (1 ≦ q ≦ 539) in the k-th frame (k is an integer equal to or greater than 1), the pixel Px in the q + 1-th row is performed in the k + 1-th frame. A threshold value detection operation is performed for. When the detection target line reaches the last line, the detection target line returns to the first line.
 この際に、検出対象行がq行目であるときに得られた検出データDoutは、制御部50におけるデータ記憶部52にて、q行目の各画素Pxが対応づけられた記憶領域に記憶されて更新される。それゆえに、第k+1フレームでは、制御部50は、表示動作において表示データDinを生成する際に、q行目の検出データDoutとして最新の検出データDoutが用いられる。そして、制御部50は、q行目以外の検出データDoutについては第kフレームで用いられた以前の検出データDoutを用いる。これによって、各行の検出データDoutは、フレームの表示が540回繰り返されるごとに更新される。
 ダミー画素を実表示するデータ線Ld以外に設ける場合は図12~図14のシーケンスで温度変化測定データも取得できる。この際ダミーデータ(ダミー画素回路に入力されるデータ)は画素回路PCCにバイアス負荷が生じないように黒表示データを印加する。ここで、ダミー画素回路とは、ダミー画素のうち有機EL素子OELを含まないTFT画素回路部分を意味する。
At this time, the detection data Dout obtained when the detection target row is the q-th row is stored in a storage area associated with each pixel Px in the q-row by the data storage unit 52 in the control unit 50. Has been updated. Therefore, in the (k + 1) th frame, when the control unit 50 generates the display data Din in the display operation, the latest detection data Dout is used as the detection data Dout in the q-th row. Then, the control unit 50 uses the previous detection data Dout used in the kth frame for the detection data Dout other than the q-th row. Thus, the detection data Dout of each row is updated every time the frame display is repeated 540 times.
When dummy pixels are provided other than the data line Ld for actual display, temperature change measurement data can also be acquired by the sequence shown in FIGS. At this time, black display data is applied to the dummy data (data input to the dummy pixel circuit) so that no bias load is generated in the pixel circuit PCC. Here, the dummy pixel circuit means a TFT pixel circuit portion that does not include the organic EL element OEL among the dummy pixels.
 しきい値電圧Vth測定用に表示画素Px用とは別にダミー画素用の走査線(以下、ダミー行という)を設ける場合の実施形態を図15~図17に示す。図15は、表示画素Px用の走査線Lsの1行目の前にダミー行を設ける場合、図16は走査線Lsの最終行の後にダミー行を設ける場合、図17は走査線Lsの1本目の前および最終行の後の両方にダミー行を設ける場合のしきい値電圧検出動作のタイミングを示す。しきい値電圧Vthは、表示パネル温度を代表する値として測定するので、各ダミー画素の測定値の平均値を補正データ算出パラメータとして用いる。 15 to 17 show an embodiment in which a scanning line for dummy pixels (hereinafter referred to as a dummy row) is provided separately from the display pixel Px for measuring the threshold voltage Vth. 15 shows a case where a dummy row is provided before the first row of the scanning line Ls for the display pixel Px, FIG. 16 shows a case where a dummy row is provided after the last row of the scanning line Ls, and FIG. The timing of the threshold voltage detection operation when dummy rows are provided both before the main and after the last row is shown. Since the threshold voltage Vth is measured as a value representative of the display panel temperature, the average value of the measured values of each dummy pixel is used as a correction data calculation parameter.
 図18、19を参照して、1つのフレームが表示される期間における各制御信号の推移について詳しく説明する。図18、19は、本実施形態において1つのフレームが表示される期間での各種制御信号のレベルの推移を走査線Lsおよび電源線Laごとに示すタイミングチャートである。なお、以下では、第kフレームにおける検出対象行がq行目の各画素Pxである場合について説明する。 Referring to FIGS. 18 and 19, the transition of each control signal during a period in which one frame is displayed will be described in detail. 18 and 19 are timing charts showing the transition of the level of various control signals for each scanning line Ls and power supply line La during the period in which one frame is displayed in the present embodiment. Hereinafter, a case where the detection target row in the k-th frame is each pixel Px in the q-th row will be described.
 選択ドライバ回路20では、まず、スタートパルス信号SP2の入力に応じ、表示用クロック周期でシフト信号が生成され、シフト信号に基づくタイミングで各走査線Lsに順に選択電圧VgHが印加される。この際に、1行目の走査線Lsから540行目の走査線Lsまで順に、表示用クロック周期で選択電圧VgHが印加される。また、1行目の電源線Laから540行目の電源線Laまで順に、これもまた表示用クロック周期で、書き込み電圧WDVSSが各電源線Laに印加される。そして、q行目の走査線Lsに選択電圧VgHが印加され、q行目の電源線Laに書き込み電圧WDVSSが印加されているとき、q行目の各画素回路PCCには、階調表示用の表示データDinに基づく表示用電圧Vdが、各データ線Ldを介して印加され、ダミー画素回路にはバイアス負荷がない黒表示データに基づく電圧Vdが印加される。また、選択電圧VgHが印加された行から順に、走査線Lsに非選択電圧VgLが印加され、書き込み電圧WDVSSが印加された行から順に、電源線Laに駆動電圧ELVDDが印加される。そして、q行目の走査線Lsに非選択電圧VgLが印加され、q行目の電源線Laに駆動電圧ELVDDが印加されているとき、q行目の各画素回路PCCでは、階調表示用の表示データDinに基づくドレイン電流Idが有機EL素子OELに供給される。 In the selection driver circuit 20, first, a shift signal is generated at a display clock cycle in accordance with the input of the start pulse signal SP2, and the selection voltage VgH is sequentially applied to each scanning line Ls at a timing based on the shift signal. At this time, the selection voltage VgH is applied in order from the first scanning line Ls to the 540th scanning line Ls in the display clock cycle. In addition, the write voltage WDVSS is applied to each power supply line La in order from the power supply line La of the first row to the power supply line La of the 540th row in the display clock cycle. Then, when the selection voltage VgH is applied to the q-th scanning line Ls and the write voltage WDVSS is applied to the q-th power line La, each pixel circuit PCC in the q-th row has a gradation display. A display voltage Vd based on the display data Din is applied via each data line Ld, and a voltage Vd based on black display data having no bias load is applied to the dummy pixel circuit. Further, the non-selection voltage VgL is applied to the scanning line Ls in order from the row to which the selection voltage VgH is applied, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied. Then, when the non-selection voltage VgL is applied to the q-th scanning line Ls and the driving voltage ELVDD is applied to the q-th power supply line La, each pixel circuit PCC in the q-th row is used for gradation display. The drain current Id based on the display data Din is supplied to the organic EL element OEL.
 最終行である540行目まで書き込み動作が終了すると、スタートパルス信号SP2の入力に応じ、再び、1行目の走査線Lsから540行目の走査線Lsまで順に、表示用クロック周期で選択電圧VgHが各走査線Lsに印加される。また、1行目の電源線Laから540行目の電源線Laまで順に、これもまた表示用クロック周期で書き込み電圧WDVSSが各電源線Laに印加される。そして、q行目の走査線Lsに選択電圧VgHが印加され、q行目の電源線Laに書き込み電圧WDVSSが印加されているとき、q行目の各画素回路PCCには、非階調表示用の表示データDinに基づく表示用電圧Vdが各データ線Ldを介して印加される。また、選択電圧VgHが印加された行から順に、走査線Lsに非選択電圧VgLが印加され、書き込み電圧WDVSSが印加された行から順に、電源線Laに駆動電圧ELVDDが印加される。そして、q行目の走査線Lsに非選択電圧VgLが印加され、q行目の電源線Laに駆動電圧ELVDDが印加されているとき、q行目の各画素回路PCCでは、非階調表示用の表示データDinに基づき、有機EL素子OELに対しドレイン電流Idの供給が抑えられる。 When the writing operation is completed up to the 540th row, which is the last row, the selection voltage is again displayed in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls again in response to the input of the start pulse signal SP2. VgH is applied to each scanning line Ls. Further, the write voltage WDVSS is also applied to each power supply line La in order from the first power supply line La to the 540th power supply line La in the display clock cycle. Then, when the selection voltage VgH is applied to the q-th scanning line Ls and the write voltage WDVSS is applied to the q-th power line La, each pixel circuit PCC in the q-th row displays a non-gradation display. A display voltage Vd based on the display data Din is applied via each data line Ld. Further, the non-selection voltage VgL is applied to the scanning line Ls in order from the row to which the selection voltage VgH is applied, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied. When the non-selection voltage VgL is applied to the q-th scanning line Ls and the driving voltage ELVDD is applied to the q-th power line La, the non-grayscale display is performed in each pixel circuit PCC in the q-th row. The supply of the drain current Id to the organic EL element OEL is suppressed based on the display data Din for use.
 最終行である540行目まで非階調表示動作の開始が進められると、各電源線Laに書き込み電圧WDVSSが印加される。また、スタートパルス信号SP2の入力が切り替え対象回数になり、走査線Lsの走査に用いられるシフトクロック信号が表示用クロック周期から検出用クロック周期へ切り替えられる。そして、選択ドライバ回路20のシフトレジスタ回路21では、検出用クロック周期でシフト信号が生成され、シフト信号における選択対象ビットがq-1行目までシフトされる。この期間では、マスクパルス信号MPがローレベルに維持されて、選択ドライバ回路20のシフトレジスタ回路21では、生成されたシフト信号にかかわらず、選択対象ビットの含まれないシフト信号が出力され続ける。 When the start of the non-gradation display operation is advanced to the 540th row which is the last row, the write voltage WDVSS is applied to each power supply line La. Further, the input of the start pulse signal SP2 is the number of times of switching, and the shift clock signal used for scanning the scanning line Ls is switched from the display clock cycle to the detection clock cycle. Then, in the shift register circuit 21 of the selection driver circuit 20, a shift signal is generated at the detection clock cycle, and the selection target bits in the shift signal are shifted to the q−1th row. During this period, the mask pulse signal MP is maintained at a low level, and the shift register circuit 21 of the selection driver circuit 20 continues to output a shift signal that does not include the selection target bit regardless of the generated shift signal.
 選択対象ビットがq行目までシフトされるタイミングで、マスクパルス信号MPがハイレベルに切り替えられて、q行目の走査線Lsに選択電圧VgHが印加される。そして、q行目の各画素Pxに対し、しきい値電圧Vthの検出が開始される。q行目の各画素Pxに対する検出データDoutがデータドライバ回路40から出力され、マスクパルス信号MPのハイレベルへの切り替わりからしきい値検出期間が経過すると、マスクパルス信号MPが、再び、ローレベルに切り替えられる。そして、選択ドライバ回路20のシフトレジスタ回路21では、検出用クロック周期でシフト信号が生成され、シフト信号における選択対象ビットが540行目までシフトされる。この期間では、マスクパルス信号MPがローレベルに維持されるため、選択ドライバ回路20のシフトレジスタ回路21では、生成されたシフト信号にかかわらず、選択対象ビットの含まれないシフト信号が出力され続ける。 At the timing when the selection target bit is shifted to the q-th row, the mask pulse signal MP is switched to the high level, and the selection voltage VgH is applied to the scanning line Ls of the q-th row. Then, detection of the threshold voltage Vth is started for each pixel Px in the q-th row. When the detection data Dout for each pixel Px in the q-th row is output from the data driver circuit 40 and the threshold detection period elapses after the mask pulse signal MP is switched to the high level, the mask pulse signal MP is again set to the low level. Can be switched to. Then, in the shift register circuit 21 of the selection driver circuit 20, a shift signal is generated at the detection clock cycle, and the selection target bits in the shift signal are shifted to the 540th row. During this period, since the mask pulse signal MP is maintained at a low level, the shift register circuit 21 of the selection driver circuit 20 continues to output a shift signal that does not include the selection target bit regardless of the generated shift signal. .
 シフト信号における選択対象ビットが540行目までシフトされると、スタートパルス信号SP2の入力に応じ、再び、マスクパルス信号MPがハイレベルに切り替えられる。そして、1行目の走査線Lsから540行目の走査線Lsまで順に、表示用クロック周期で選択電圧VgHが各走査線Lsに印加されて、1行目の画素Pxから順に、再び、階調表示動作における書き込み動作が開始される。 When the selection target bits in the shift signal are shifted to the 540th row, the mask pulse signal MP is switched to the high level again in response to the input of the start pulse signal SP2. Then, the selection voltage VgH is applied to each scanning line Ls in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls. The writing operation in the tone display operation is started.
 図19は、最終行の後にダミー行を配置した場合の制御シーケンスを表す。この場合、ダミー行に関してはしきい値検出動作以外は行う必要がないため走査線LsのVgH設定はしきい値検出動作を行うときのみでよく、電源線LaもWDVSSのままでよい。本実施形態によれば、以下に列挙する効果が得られる。 FIG. 19 shows a control sequence when a dummy row is arranged after the last row. In this case, since it is not necessary to perform a dummy row other than the threshold detection operation, the VgH setting of the scanning line Ls may be performed only when the threshold detection operation is performed, and the power supply line La may also remain at WDVSS. According to this embodiment, the effects listed below can be obtained.
 (1)しきい値検出動作によって、画素回路PCCおよびダミー画素回路における電流制御トランジスタTr3のしきい値電圧Vthとその温度依存性とが測定される。そして、測定されたしきい値電圧Vthに基づく検出データDoutを用いて画像データが補正されて、表示データDinが生成される。画素回路PCCには、表示データDinに基づく表示用電圧Vdが印加される。したがって、電流制御トランジスタTr3のしきい値電圧Vthが変動するとしても、変動後のしきい値電圧Vthに応じて画像データが補正されるため、表示される画質の劣化を抑えることが可能となる。 (1) Through the threshold detection operation, the threshold voltage Vth of the current control transistor Tr3 and its temperature dependence in the pixel circuit PCC and the dummy pixel circuit are measured. Then, the image data is corrected using the detection data Dout based on the measured threshold voltage Vth, and display data Din is generated. A display voltage Vd based on the display data Din is applied to the pixel circuit PCC. Therefore, even if the threshold voltage Vth of the current control transistor Tr3 fluctuates, the image data is corrected in accordance with the threshold voltage Vth after the fluctuation, so that it is possible to suppress deterioration in the displayed image quality. .
 (2)1つのフレームが表示される期間にしきい値検出動作が行われるため、しきい値検出動作が表示装置の起動時や休止状態からの復帰時等にのみ行われる場合と比較して、検出データDoutの更新される周期が短くなる。すなわち、検出データDoutの取得時と、補正されたデータである表示データDinの出力時との時間差が短くなる。したがって、コントラストの高い画像を表示する場合等、電流制御トランジスタTr3のしきい値電圧Vthの変動が短い期間で変化する場合(例えば移動体向けディスプレイにおける環境温度変化)であっても、表示される画質の劣化が抑えられる。 (2) Since the threshold value detection operation is performed during a period in which one frame is displayed, compared to the case where the threshold value detection operation is performed only when the display device is started up or returned from the hibernation state, The update period of the detection data Dout is shortened. That is, the time difference between when the detection data Dout is acquired and when the display data Din, which is corrected data, is output is shortened. Therefore, even when an image with a high contrast is displayed, even when the variation of the threshold voltage Vth of the current control transistor Tr3 changes in a short period (for example, an environmental temperature change in a mobile display), it is displayed. Degradation of image quality is suppressed.
 (3)1回のしきい値検出動作では、しきい値電圧Vthに関するデータの検出が、1本の走査線Lsに接続されているn個の画素Pxに対してのみ行われる。したがって、しきい値電圧Vthに関するデータの検出が、全ての画素Px、あるいは、複数行の画素Pxに対して1度に行われる場合と比較して、1度のしきい値検出動作に要する時間が短くなる。そのため、1つのフレームが表示される期間にしきい値検出動作が組み込まれたとしても、しきい値検出動作が表示装置としての画像の表示性能に影響を与えることが抑えられる。 (3) In one threshold detection operation, detection of data related to the threshold voltage Vth is performed only for n pixels Px connected to one scanning line Ls. Therefore, the time required for one threshold detection operation is compared with the case where the detection of the data related to the threshold voltage Vth is performed once for all the pixels Px or the pixels Px in a plurality of rows. Becomes shorter. Therefore, even if the threshold detection operation is incorporated in a period during which one frame is displayed, it is possible to suppress the threshold detection operation from affecting the image display performance as the display device.
 (4)特に、動画の表示を鮮明にするために挿入される非階調表示動作が行われている期間にしきい値検出動作が行われるため、しきい値検出動作が画像の表示性能に与える影響が効果的に抑えられる。 (4) In particular, the threshold detection operation is performed during the period in which the non-gradation display operation inserted to make the moving image display clear is performed, and thus the threshold detection operation has an effect on the image display performance. The impact is effectively suppressed.
 (5)また、しきい値検出動作では、検出対象行の候補が、1行目から最終行まで順に切り替えられる。すなわち、しきい値検出動作においても、階調表示動作や非階調表示動作と同様に、選択対象の候補の切り替えは進められる。そのため、選択ドライバ回路20は、1つのフレームが表示されるごとに検出対象行を変える構成としても機能する。 (5) In the threshold value detection operation, detection target row candidates are sequentially switched from the first row to the last row. That is, in the threshold detection operation, the selection target candidates are switched similarly to the gradation display operation and the non-gradation display operation. Therefore, the selection driver circuit 20 also functions as a configuration in which the detection target row is changed every time one frame is displayed.
 (6)また、しきい値検出動作では、検出対象行の候補の切り替わる周期が、表示用クロック周期よりも短い検出用クロック周期である。それゆえに、検出対象行の候補の切り替わる周期が表示用クロック周期である場合と比較して、しきい値検出動作に要する時間が短くなる。 (6) Further, in the threshold value detection operation, the detection cycle of the detection target row candidate is a detection clock cycle shorter than the display clock cycle. Therefore, the time required for the threshold detection operation is shortened as compared with the case where the detection target line candidate switching period is the display clock period.
 (7)しきい値電圧Vthの検出対象行は、1つのフレームが表示されるごとに、1行目の画素Pxから走査方向に順に1行ずつずらされる。したがって、しきい値電圧Vthの検出対象行が走査方向に沿って間欠的に設定される構成と比較して、しきい値電圧Vthに基づく表示データDinの補正が、走査方向においてきめ細やかとなる。 (7) The detection target row of the threshold voltage Vth is shifted one row at a time in the scanning direction from the pixel Px of the first row every time one frame is displayed. Therefore, the correction of the display data Din based on the threshold voltage Vth is finer in the scanning direction than in the configuration in which the detection target row of the threshold voltage Vth is intermittently set along the scanning direction. .
 (変形例)
 上記実施形態は、以下のように変更して実施することが可能である。
 ・検出対象行は、1つのフレームが表示されるごとに走査方向に沿って2行以上ずれていてもよい。この場合に、1つのフレームが表示されるごとの検出対象行のシフト量がSfとして設定されるとき、データ記憶部52は、m/Sf行×n列の記憶領域を備え、列方向に沿って並ぶSf個の画素Pxの各々が1つの記憶領域に対応づけられる。
(Modification)
The above embodiment can be implemented with the following modifications.
The detection target line may be shifted by two or more lines along the scanning direction every time one frame is displayed. In this case, when the shift amount of the detection target row every time one frame is displayed is set as Sf, the data storage unit 52 includes a storage area of m / Sf rows × n columns along the column direction. Each of the Sf pixels Px arranged in parallel is associated with one storage area.
 ・列方向に沿って並ぶSf個の画素Pxが1つのグループとして設定され、各グループの最初の行のみが検出対象行として設定されてもよい。すなわち、検出対象行は、1行目、11行目、21行目、…、511行目、521行目、531行目の順にフレームごとに繰り返しシフトする構成であってもよい。また、各グループの最初の行に限らず、各グループ内の特定の行が検出対象行として設定され、グループ内の各行の検出データDoutが、常に特定の行の検出データDoutによって代表する構成であってもよい。 Sf pixels Px arranged in the column direction may be set as one group, and only the first row of each group may be set as a detection target row. That is, the configuration may be such that the detection target rows are repeatedly shifted for each frame in the order of the first row, the eleventh row, the twenty-first row,..., The 511th row, the 521st row, and the 531st row. Further, not only the first row of each group but also a specific row in each group is set as a detection target row, and the detection data Dout of each row in the group is always represented by the detection data Dout of the specific row. There may be.
 ・今回のフレームが表示される期間にて得られる検出データDoutが、次回のフレームが表示される期間にて、全ての行の検出データDoutとして取り扱われてもよい。この場合に、データ記憶部52は、1行×n列の記憶領域を備え、列方向に沿って並ぶm個の画素Pxの各々を1つの記憶領域に対応づけている。例えば、電流制御トランジスタTr3の動作温度がしきい値電圧Vthの変動量を支配するときには、全ての電流制御トランジスタTr3においてしきい値電圧Vthの変動量が近くなる。この点で、上述の構成によれば、1つの行に対する検出データDoutが、他の行に対する検出データDoutとしても用いられるため、上記(7)に準ずる効果が顕著になる。 The detection data Dout obtained in the period in which the current frame is displayed may be handled as the detection data Dout for all rows in the period in which the next frame is displayed. In this case, the data storage unit 52 includes a storage area of 1 row × n columns, and each of the m pixels Px arranged in the column direction is associated with one storage area. For example, when the operating temperature of the current control transistor Tr3 dominates the fluctuation amount of the threshold voltage Vth, the fluctuation amount of the threshold voltage Vth becomes close in all the current control transistors Tr3. In this regard, according to the above-described configuration, the detection data Dout for one row is also used as the detection data Dout for the other row, so the effect according to the above (7) becomes remarkable.
 ・検出対象行は、フレームごとに同一行に設定されてもよい。また、検出対象行は、フレームごとに不規則に設定されてもよい。なお、検出対象行がフレームごとに不規則に設定される場合には、例えば、1からmまでの間でフレームごとに乱数を発生させるランダム関数が制御部50にて用いられる。そして、検出用シフトクロック信号Clkrにてシフト待機部分の出力されるタイミングと、マスクパルス信号MPにてマスク解除部分の出力されるタイミングとが同期し、且つ、発生された乱数に応じた時間だけこれらがスタートパルス信号SP2から遅れる構成であればよい。 · The detection target line may be set to the same line for each frame. The detection target line may be set irregularly for each frame. When the detection target row is set irregularly for each frame, for example, the control unit 50 uses a random function that generates a random number for each frame between 1 and m. The timing at which the shift standby portion is output by the detection shift clock signal Clkr and the timing at which the mask release portion is output by the mask pulse signal MP are synchronized, and only the time corresponding to the generated random number. It is sufficient if these are delayed from the start pulse signal SP2.
 ・検出対象行は、フレームごとに2以上設定されてもよい。この際に、検出用シフトクロック信号Clkrでは、相互に異なるタイミングで2つのシフト待機部分が出力され、マスクパルス信号MPでも、相互に異なるタイミングで2つのマスク解除部分が出力される。そして、2つのシフト待機部分の各々が出力されるタイミングと、2つのマスク解除部分の各々が出力されるタイミングとが同期する。 · Two or more detection target rows may be set for each frame. At this time, the detection shift clock signal Clkr outputs two shift standby portions at different timings, and the mask pulse signal MP outputs two mask release portions at different timings. The timing at which each of the two shift standby portions is output is synchronized with the timing at which each of the two mask release portions is output.
 ・例えば、表示装置が起動されるとき、表示装置が休止してから復帰するとき等、1つのフレームが表示される期間以外において、全ての行、もしくは、一部の行の各画素回路PCCに対して、しきい値検出動作が行われてもよい。 -For example, when the display device is activated, when the display device is paused and then returned, the pixel circuits PCC in all rows or some rows are not included in a period other than one frame is displayed. On the other hand, a threshold detection operation may be performed.
 ・1回のしきい値検出動作において印加される検出用電圧Vmは、データ線Ldごとに相互に異なる構成であってもよい。この際に、しきい値検出動作では、複数のデータ線Ldの各々は、相互に異なる配線を通じてアナログ電源70に接続されてもよい。あるいは、検出用電圧Vmは、デジタルデータとしてデータドライバ回路40からデータ線Ldに供給されてもよい。 The detection voltage Vm applied in one threshold detection operation may have a different configuration for each data line Ld. At this time, in the threshold detection operation, each of the plurality of data lines Ld may be connected to the analog power supply 70 through different wirings. Alternatively, the detection voltage Vm may be supplied as digital data from the data driver circuit 40 to the data line Ld.
 ・1回のしきい値検出動作において検出用電圧Vmの印加されるデータ線Ldは、全てのデータ線Ldにおける一部であってもよい。この際に、1回のしきい値検出動作では、検出用電圧Vmの印加の対象となる一部のデータ線Ldのみが、検出用電圧スイッチSWsを介してアナログ電源70と接続される。 The data line Ld to which the detection voltage Vm is applied in one threshold detection operation may be a part of all the data lines Ld. At this time, in one threshold value detection operation, only a part of the data lines Ld to which the detection voltage Vm is applied is connected to the analog power supply 70 via the detection voltage switch SWs.
 ・上述の実施形態では、電流制御トランジスタTr3の特性としてしきい値電圧Vthが検出され、検出されたしきい値電圧Vthに基づいて表示用電圧Vdが補正される。これに限らず、電流制御トランジスタTr3の特性として電流増幅率βが検出され、検出された電流増幅率βに基づいて表示用電圧Vdが補正されてもよい。また、電流制御トランジスタTr3の特性としてしきい値電圧Vthと電流増幅率βとの両方が検出されてもよい。要するに、しきい値検出動作における検出対象は、電流制御トランジスタTr3の素子特性のうち、有機EL素子OELに供給される駆動電流に対し影響を与えるパラメータであればよい。
 ・表示用電圧Vdの補正に際しては、電流制御トランジスタTr3の素子特性に加えて、発光輝度などの有機EL素子OELの発光特性が用いられてもよい。
In the above-described embodiment, the threshold voltage Vth is detected as a characteristic of the current control transistor Tr3, and the display voltage Vd is corrected based on the detected threshold voltage Vth. Not limited to this, the current amplification factor β may be detected as a characteristic of the current control transistor Tr3, and the display voltage Vd may be corrected based on the detected current amplification factor β. Further, both the threshold voltage Vth and the current amplification factor β may be detected as the characteristics of the current control transistor Tr3. In short, the detection target in the threshold detection operation may be any parameter that affects the drive current supplied to the organic EL element OEL among the element characteristics of the current control transistor Tr3.
In the correction of the display voltage Vd, in addition to the element characteristics of the current control transistor Tr3, the light emission characteristics of the organic EL element OEL such as light emission luminance may be used.
 ・画素回路PCCの構成は、上述の構成に限られない。電流制御トランジスタTr3を通じて有機EL素子OELに駆動電流が供給される回路であれば、画素回路PCCに備えられる素子の種類や回路の構成は任意である。また、発光素子は、有機EL素子に限らず、無機EL素子やLED等であってもよく、電流制御トランジスタTr3を通じて駆動電流の供給によって発光する素子であればよい。 The configuration of the pixel circuit PCC is not limited to the above configuration. As long as the driving current is supplied to the organic EL element OEL through the current control transistor Tr3, the type of elements provided in the pixel circuit PCC and the circuit configuration are arbitrary. The light emitting element is not limited to an organic EL element, and may be an inorganic EL element, an LED, or the like, and may be any element that emits light by supplying a driving current through the current control transistor Tr3.
[高温側輝度制御方法]
 駆動電流による表示パネル10の発熱によってトランジスタおよび発光素子が劣化することを防止するために、温度による電流制御をすることが本発明で可能となる。図20にしきい値温度(仮にTc=50℃)以上になった場合に駆動電流を下げるシーケンスを2種類(a)、(b)で示した。それぞれは式(6)のΔβを使って温度補正パラメータの電圧補正V-Vdを次のように変更することで対応できる。
  (V-Vd)/(Δβ)0.5,T<Tc
  (V-Vd)(1-α(T-Tc))/(Δβ)0.5,T≧Tc・・・(8)
  (V-Vd)/(Δβ)0.5,T<Tc
  α(V-Vd)/(Δβ)0.5,T≧Tc・・・(9)
 αは1より小さい定数で輝度制御パラメータのひとつである。このように、しきい値電圧Vth測定結果が温度に対して線形であることを利用すれば表示パネル温度制御として利用が可能となる。
[High temperature side brightness control method]
In order to prevent the transistor and the light emitting element from deteriorating due to heat generation of the display panel 10 due to the drive current, it is possible to control the current according to the temperature in the present invention. FIG. 20 shows two types (a) and (b) of sequences for decreasing the drive current when the temperature exceeds the threshold temperature (Tc = 50 ° C.). Each can be dealt with by changing the voltage correction V 0 -Vd of the temperature correction parameter as follows using Δβ of the equation (6).
(V 0 -Vd) / (Δβ) 0.5 , T <Tc
(V 0 −Vd) (1−α (T−Tc)) / (Δβ) 0.5 , T ≧ Tc (8)
(V 0 -Vd) / (Δβ) 0.5 , T <Tc
α (V 0 −Vd) / (Δβ) 0.5 , T ≧ Tc (9)
α is a constant smaller than 1 and is one of the brightness control parameters. Thus, if the fact that the threshold voltage Vth measurement result is linear with respect to temperature is used, it can be used as display panel temperature control.
 以上で開示した実施形態、変形例によれば、各表示用画素回路PCCにおいてはトランジスタの特性がしきい値検出動作によって検出され、画素回路PCCに供給される階調表示電圧がしきい値検出結果に基づいて補正される。それゆえに、トランジスタの特性が変動したときに、トランジスタの特性の変動に合わせて階調表示電圧が補正される。結果として、トランジスタの特性が変動することによって画質が変動すること、ひいては、トランジスタの特性が変動することによって画質が劣化することが抑えられるとともに、温度制御用の画素回路PCCにおいてトランジスタの温度特性を測定することになるためその測定値から温度制御としてのデータ電圧補正動作も可能となる。 According to the embodiment and the modification disclosed above, in each display pixel circuit PCC, the transistor characteristics are detected by the threshold detection operation, and the gradation display voltage supplied to the pixel circuit PCC is the threshold detection. Correction is made based on the result. Therefore, when the characteristics of the transistor fluctuate, the gradation display voltage is corrected in accordance with the fluctuation of the transistor characteristics. As a result, it is possible to prevent the image quality from being changed due to the change in the transistor characteristics, and hence the image quality from being deteriorated due to the change in the transistor characteristics, and the temperature characteristics of the transistor in the pixel circuit PCC for temperature control. Since measurement is performed, a data voltage correction operation as temperature control can be performed from the measured value.
 また、階調表示動作と非階調表示動作としきい値検出動作とがこの順に繰り返されるため、環境温度変化が大きい移動体に組み込まれるディスプレイなどの場合など階調表示動作のタイミングとしきい値検出動作のタイミングとの時間差が短くなる。したがって、トランジスタの温度特性が短い期間で大きく変るときに、効果的な温度制御が可能となる。 In addition, since gradation display operation, non-gradation display operation, and threshold detection operation are repeated in this order, the timing of gradation display operation and threshold detection, such as in the case of a display incorporated in a moving body having a large environmental temperature change The time difference from the operation timing is shortened. Therefore, effective temperature control is possible when the temperature characteristics of the transistor change greatly in a short period.
 上記構成によれば、ダミー画素の走査線Lsの配置は、例えば表示画素Pxの走査線Lsの上下に測定用走査線として追加してもよいし、表示外のデータ線Ldを配置してそのデータ線Ldには表示データを印加しない以外は全く表示画素Pxと同様の駆動を行ってもよい。さらには、ダミー画素にはEL素子OELを形成していてもよいし形成していなくてもよい。 According to the above configuration, the arrangement of the scanning lines Ls for the dummy pixels may be added as the scanning lines for measurement above and below the scanning lines Ls for the display pixels Px, for example, Except that no display data is applied to the data line Ld, the same driving as the display pixel Px may be performed. Furthermore, the EL element OEL may or may not be formed on the dummy pixel.
 また、トランジスタの特性の変動が、トランジスタの製造過程やトランジスタの動作温度に依存するとき、その変動の程度は、相互に異なる複数の画素回路PCC間において近くなる場合がある。そのため、1つの画素回路PCCに対してそれの階調表示電圧が補正される際には、他の画素回路PCCにおける検出結果が用いられる場合もある。この点で、上述の構成であれば、検出対象の範囲が広がるため、1つの画素回路PCCに対してそれの階調表示電圧が補正される際には、その補正に用いられるしきい値検出結果の候補が増える。結果として、トランジスタの特性の変動が相互に近しいと想定される画素回路PCC間での検出結果の共有が可能にもなるため、階調表示電圧の補正の精度を高めることが可能にもなる。トランジスタの温度特性変化は環境温度によるのでひとつの画素回路PCCに対する測定結果ではなくダミー画素全ての測定結果を平均した値を代表値として検出することができる。また、エリア毎に複数の測定データを検出値とすることもできる。
 本開示における表示装置の他の態様では、制御部50は、1回のしきい値検出動作における選択対象の本数を1本に設定する。
In addition, when the variation in the characteristics of the transistor depends on the manufacturing process of the transistor and the operating temperature of the transistor, the degree of the variation may be close between a plurality of different pixel circuits PCC. For this reason, when the gradation display voltage of one pixel circuit PCC is corrected, the detection result in another pixel circuit PCC may be used. In this respect, with the above-described configuration, since the range of the detection target is widened, when the gradation display voltage is corrected for one pixel circuit PCC, the threshold value detection used for the correction is detected. More candidate results. As a result, it becomes possible to share the detection result between the pixel circuits PCC in which the variation in the characteristics of the transistors is assumed to be close to each other, so that it is possible to improve the accuracy of the gradation display voltage correction. Since the change in the temperature characteristic of the transistor depends on the environmental temperature, a value obtained by averaging the measurement results of all the dummy pixels can be detected as a representative value, not the measurement result for one pixel circuit PCC. In addition, a plurality of measurement data for each area can be used as detection values.
In another aspect of the display device according to the present disclosure, the control unit 50 sets the number of selection targets in one threshold detection operation to one.
 本開示の表示装置における他の態様では、選択ドライバ回路20は、複数の走査線Lsの中で選択対象の候補を順に切り替える。そして、制御部50は、階調表示動作における切り替えの周期、および、非階調表示動作における切り替えの周期よりも、しきい値検出動作における切り替えの周期を短くする。 In another aspect of the display device of the present disclosure, the selection driver circuit 20 sequentially switches the selection target candidates among the plurality of scanning lines Ls. Then, the control unit 50 shortens the switching cycle in the threshold detection operation than the switching cycle in the gradation display operation and the switching cycle in the non-gradation display operation.
 上記構成によれば、1本の走査線Lsが選択対象として選択される際に、選択対象の候補の切り替えが複数の走査線Lsの中で順に進められる。この際に、しきい値検出動作における切り替えの周期は、他の動作における切り替えの周期よりも短いため、特定の選択対象が選択されるまでに必要とされる時間は、他の動作と比較して短くなる。結果として、1回のしきい値検出動作に必要とされる時間が短くなるため、しきい値検出動作に必要とされる時間によって非表示状態が必要以上に長くなることがさらに抑えられる。 According to the above configuration, when one scanning line Ls is selected as a selection target, the selection target candidates are sequentially switched among the plurality of scanning lines Ls. At this time, since the switching cycle in the threshold detection operation is shorter than the switching cycle in other operations, the time required until a specific selection target is selected is compared with other operations. Become shorter. As a result, since the time required for one threshold detection operation is shortened, it is further suppressed that the non-display state becomes longer than necessary due to the time required for the threshold detection operation.
 本発明によれば、発光素子に駆動電流を供給する画素回路での素子特性の変化によって画質が変化するのを抑えることができ、本発明は、表示装置および表示方法等に利用可能である。 According to the present invention, it is possible to suppress a change in image quality due to a change in element characteristics in a pixel circuit that supplies a drive current to a light emitting element, and the present invention can be used for a display device, a display method, and the like.
 β  電流増幅率
 t  緩和時間
 Ce  画素容量
 Cp  寄生容量
 Cs  保持容量
 Id  ドレイン電流
 L1,L2,L3  曲線
 La  電源線
 Ld  データ線
 LP  ラッチパルス信号
 Ls  走査線
 MP  マスクパルス信号
 Px  画素
 t1,t2,t3,t4,t5,td1,td2,td3,td4  タイミング
 ts  飽和時間
 Vd  表示用電圧
 Vm  検出用電圧
 Din  表示データ
 OEL  有機EL素子
 PCC  画素回路
 SP1,SP2  スタートパルス信号
 SW1  入力スイッチ
 SW2  出力スイッチ
 SWd  表示用スイッチ
 SWm  検出用スイッチ
 SWs  検出用電圧スイッチ
 Tr1  サンプリングトランジスタ
 Tr2  スイッチングトランジスタ
 Tr3  電流制御トランジスタ
 VEE  アナログ基準電圧
 VgH  選択電圧
 VgL  非選択電圧
 Vgs  ゲート‐ソース間電圧
 VLd  データ線電位
 Vth  しきい値電圧
 ΔVth  シフト量
 Clkd  データシフトクロック信号
 Clks  表示用シフトクロック信号
 Clkr  検出用シフトクロック信号
 Dout  検出データ
 DVSS  アナログ電源電圧
 LVDD  ロジック電源電圧
 LVSS  ロジック基準電圧
 VLds  飽和電圧
 ELVDD  駆動電圧
 ELVSS  基準電圧
 SWtrs  転送スイッチ
 WDVSS  書き込み電圧
 10  表示パネル
 20  選択ドライバ回路
 21  シフトレジスタ回路
 22  レベルシフタ回路
 23  バッファ回路
 30  電源ドライバ
 40  データドライバ回路
 41  シフトレジスタ回路
 42  データレジスタ回路
 43  データラッチ回路
 43a  データラッチ
 44  DAC/ADC回路
 45  バッファ回路
 46  レベルシフタ
 50  制御部
 51  調整部
 52  データ記憶部
 53  補正部
 54  クロック生成部
 55  パルス生成部
 60  ロジック電源
 70  アナログ電源
β current amplification factor t relaxation time Ce pixel capacitance Cp parasitic capacitance Cs holding capacitance Id drain current L1, L2, L3 curve La power supply line Ld data line LP latch pulse signal Ls scanning line MP mask pulse signal Px pixel t1, t2, t3 t4, t5, td1, td2, td3, td4 timing ts saturation time Vd display voltage Vm detection voltage Din display data OEL organic EL element PCC pixel circuit SP1, SP2 start pulse signal SW1 input switch SW2 output switch SWd display switch SWm Detection switch SWs Detection voltage switch Tr1 Sampling transistor Tr2 Switching transistor Tr3 Current control transistor VEE Analog reference voltage VgH Selection voltage VgL Non-selection voltage gs gate-source voltage VLd data line potential Vth threshold voltage ΔVth shift amount Clkd data shift clock signal Clks display shift clock signal Clkr detection shift clock signal Dout detection data DVSS analog power supply voltage LVDD logic power supply voltage LVSS logic reference voltage VLds Saturation voltage ELVDD Drive voltage ELVSS Reference voltage SWtrs Transfer switch WDVSS Write voltage 10 Display panel 20 Select driver circuit 21 Shift register circuit 22 Level shifter circuit 23 Buffer circuit 30 Power supply driver 40 Data driver circuit 41 Shift register circuit 42 Data register circuit 43 Data latch Circuit 43a Data latch 44 DAC / ADC circuit 45 Buffer circuit 6 level shifter 50 control unit 51 adjusting unit 52 data storage unit 53 correction unit 54 clock generating unit 55 pulse generator 60 logic power 70 Analog Power

Claims (11)

  1.  発光素子に駆動電流を供給するトランジスタを含む複数の画素回路と、
     前記画素回路と同一構成でかつ発光素子に駆動電流供給動作を行わない複数のダミー画素回路と、
     前記複数の画素回路および前記複数のダミー画素のそれぞれに、いずれかが接続する複数の走査線と、
     前記複数の画素回路および前記複数のダミー画素のそれぞれに、いずれかが接続する複数のデータ線と、
     前記複数の走査線のいずれか1つを選択対象として選択する選択ドライバと、
     前記選択ドライバの駆動を制御する制御部と、を備え、
     前記制御部は、
     前記画素回路に対して、
      各走査線を順に選択させ、各選択対象に接続される前記画素回路に対しデータ線を通じて階調表示電圧を印加して前記発光素子を階調表示状態にする階調表示動作と、
      各走査線を順に選択させ、各選択対象に接続される前記画素回路に対しデータ線を通じて非階調表示電圧を印加して前記発光素子を非階調表示状態にする非階調表示動作と、
      前記非階調表示状態にて前記複数の走査線の一部を選択させ、前記選択対象に接続された前記画素回路に対しデータ線を通じて前記トランジスタの特性を検出する検出動作と、をこの順に繰り返し、
      前記検出動作によって得られた検出結果を用いて前記階調表示電圧を補正し、
     前記ダミー画素回路に対して、
     各走査線を順に選択させ、各選択対象に接続される前記ダミー画素回路に対しデータ線を通じて非階調表示電圧を印加し、
      前記選択対象に接続された前記ダミー画素回路に対しデータ線を通じて前記トランジスタの特性を検出する検出動作を行い前記画素回路の温度特性を補正する、表示装置。
    A plurality of pixel circuits including a transistor for supplying a driving current to the light emitting element;
    A plurality of dummy pixel circuits having the same configuration as the pixel circuit and performing no drive current supply operation to the light emitting element;
    A plurality of scanning lines that are connected to each of the plurality of pixel circuits and the plurality of dummy pixels;
    A plurality of data lines that are connected to each of the plurality of pixel circuits and the plurality of dummy pixels;
    A selection driver for selecting any one of the plurality of scanning lines as a selection target;
    A control unit for controlling the driving of the selection driver,
    The controller is
    For the pixel circuit,
    A gray scale display operation for sequentially selecting each scanning line and applying a gray scale display voltage to the pixel circuit connected to each selection target through a data line to bring the light emitting element into a gray scale display state;
    A non-grayscale display operation in which each scanning line is sequentially selected and a non-grayscale display voltage is applied to the pixel circuit connected to each selection target through a data line so that the light emitting element is in a non-grayscale display state;
    A detection operation of selecting a part of the plurality of scanning lines in the non-grayscale display state and detecting the characteristics of the transistor through the data line for the pixel circuit connected to the selection target is repeated in this order. ,
    Using the detection result obtained by the detection operation to correct the gradation display voltage,
    For the dummy pixel circuit,
    Each scanning line is sequentially selected, and a non-gradation display voltage is applied to the dummy pixel circuit connected to each selection target through a data line,
    A display device that corrects temperature characteristics of the pixel circuit by performing a detection operation for detecting characteristics of the transistor through a data line for the dummy pixel circuit connected to the selection target.
  2.  前記複数の走査線のうち、前記画素回路に接続する前記走査線と前記ダミー画素回路に接続する前記走査線とは異なり、
     前記制御部は、
     前記検出動作における前記選択対象を前記検出動作ごとに変える、請求項1に記載の表示装置。
    Among the plurality of scanning lines, the scanning line connected to the pixel circuit and the scanning line connected to the dummy pixel circuit are different,
    The controller is
    The display device according to claim 1, wherein the selection target in the detection operation is changed for each detection operation.
  3.  前記複数のデータ線のうち、前記画素回路に接続する前記データ線と前記ダミー画素回路に接続する前記データ線とは異なり、
     前記制御部は、
     前記検出動作における前記選択対象を前記検出動作ごとに変える、請求項1に記載の表示装置。
    Among the plurality of data lines, the data line connected to the pixel circuit and the data line connected to the dummy pixel circuit are different,
    The controller is
    The display device according to claim 1, wherein the selection target in the detection operation is changed for each detection operation.
  4.  前記制御部は、
     前記検出動作における前記選択対象を前記検出動作ごとに変える、請求項1に記載の表示装置。
    The controller is
    The display device according to claim 1, wherein the selection target in the detection operation is changed for each detection operation.
  5.  前記制御部は、
     1回の前記検出動作における前記選択対象の本数を1本に設定する、請求項1または2に記載の表示装置。
    The controller is
    The display device according to claim 1, wherein the number of selection targets in one detection operation is set to one.
  6.  前記制御部は、
     前記検出動作における前記選択対象を前記検出動作ごとに1本ずつ変位させる、請求項3に記載の表示装置。
    The controller is
    The display device according to claim 3, wherein the selection target in the detection operation is displaced by one for each detection operation.
  7.  前記制御部は、
     前記検出動作における前記選択対象を前記検出動作ごとに複数本ずつ等間隔で変位させる、請求項3に記載の表示装置。
    The controller is
    The display device according to claim 3, wherein a plurality of the selection targets in the detection operation are displaced at equal intervals for each detection operation.
  8.  前記制御部は、
     前記複数の走査線を、相互に隣り合う複数の走査線からなる複数の走査線群に区画し、
     前記検出結果に関するデータを前記選択対象が含まれる前記走査線群に対応づけて記憶する記憶部を備え、
     前記検出動作における前記選択対象を前記検出動作ごとに前記走査線群ずつ変位させ、
     前記走査線群に対応づけられた前記データを用いて該走査線群に接続された前記画素回路への前記階調表示電圧を補正する、請求項5に記載の表示装置。
    The controller is
    Dividing the plurality of scanning lines into a plurality of scanning line groups composed of a plurality of scanning lines adjacent to each other;
    A storage unit that stores data relating to the detection result in association with the scanning line group including the selection target;
    Displacing the selection target in the detection operation by the scanning line group for each detection operation;
    The display device according to claim 5, wherein the gradation display voltage to the pixel circuit connected to the scanning line group is corrected using the data associated with the scanning line group.
  9.  前記選択ドライバは、
     前記複数の走査線の中で前記選択対象の候補を順に切り替え、
     前記制御部は、
     前記階調表示動作における前記切り替えの周期、および、前記非階調表示動作における前記切り替えの周期よりも、前記検出動作における前記切り替えの周期を短くする
     請求項1から6のいずれかに記載の表示装置。
    The selected driver is
    Sequentially switching the candidates for selection among the plurality of scanning lines;
    The controller is
    7. The display according to claim 1, wherein the switching cycle in the detection operation is shorter than the switching cycle in the gradation display operation and the switching cycle in the non-gradation display operation. apparatus.
  10.  発光素子に駆動電流を供給するトランジスタを含む画素回路が接続された複数の走査線のいずれか1つを選択対象として順に選択し、
     選択対象に接続される前記画素回路に対しデータ線を通じて階調表示電圧を印加して前記発光素子を階調表示状態にする階調表示動作と、
     選択対象に接続される前記画素回路に対しデータ線を通じて非階調表示電圧を印加して前記発光素子を非階調表示状態にする非階調表示動作と、
     前記非階調表示状態にて前記複数の走査線の一部を選択させ、前記選択対象に接続された前記画素回路に対しデータ線を通じて前記トランジスタの特性を検出する検出動作と、をこの順に繰り返し、
     前記検出動作によって得られた検出結果を用いて前記階調表示電圧を補正する、表示方法。
    Sequentially selecting one of a plurality of scanning lines connected to a pixel circuit including a transistor that supplies a driving current to the light emitting element as a selection target;
    A gradation display operation in which a gradation display voltage is applied to the pixel circuit connected to a selection target through a data line to place the light emitting element in a gradation display state;
    A non-grayscale display operation in which a non-grayscale display voltage is applied to the pixel circuit connected to a selection target through a data line to bring the light-emitting element into a non-grayscale display state;
    A detection operation of selecting a part of the plurality of scanning lines in the non-grayscale display state and detecting the characteristics of the transistor through the data line for the pixel circuit connected to the selection target is repeated in this order. ,
    A display method in which the gradation display voltage is corrected using a detection result obtained by the detection operation.
  11.  発光素子に駆動電流を供給するトランジスタを含む画素回路と、前記画素回路と同一構成でかつ発光素子に駆動電流供給動作を行わないダミー画素回路とが接続された1本ないし複数の走査線のいずれか1つを選択対象として順に選択し、
     選択対象に接続される前記画素回路に対しデータ線を通じて階調表示電圧を印加して前記発光素子を階調表示状態にする階調表示動作と、
     各選択対象に接続される前記画素回路又は前記ダミー画素回路に対しデータ線を通じて非階調表示電圧を印加して前記発光素子を非階調表示状態にする非階調表示動作と、
     前記非階調表示状態にて前記走査線の一部もしくは全てを選択させ、前記選択対象に接続された前記ダミー画素回路に対しデータ線を通じて前記トランジスタの特性を検出する検出動作と、をフレーム毎に繰り返し、
     前記検出動作によって得られた検出結果を用いて前記階調表示電圧を補正することで画素回路の温度特性変化を制御する表示方法。
    Any of one or more scanning lines in which a pixel circuit including a transistor that supplies a driving current to the light emitting element and a dummy pixel circuit that has the same configuration as the pixel circuit and that does not perform the driving current supply operation to the light emitting element are connected. Select one or the other as a selection target,
    A gradation display operation in which a gradation display voltage is applied to the pixel circuit connected to a selection target through a data line to place the light emitting element in a gradation display state;
    A non-grayscale display operation in which a non-grayscale display voltage is applied to the pixel circuit or the dummy pixel circuit connected to each selection target through a data line to bring the light-emitting element into a non-grayscale display state;
    A detection operation for selecting a part or all of the scanning lines in the non-grayscale display state and detecting the characteristics of the transistors through the data lines for the dummy pixel circuit connected to the selection target; Repeat to
    A display method for controlling a change in temperature characteristics of a pixel circuit by correcting the gradation display voltage using a detection result obtained by the detection operation.
PCT/JP2014/004051 2013-08-26 2014-08-01 Display device and display method WO2015029336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174668 2013-08-26
JP2013174668A JP2015043030A (en) 2013-08-26 2013-08-26 Display device and display method

Publications (1)

Publication Number Publication Date
WO2015029336A1 true WO2015029336A1 (en) 2015-03-05

Family

ID=52585933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004051 WO2015029336A1 (en) 2013-08-26 2014-08-01 Display device and display method

Country Status (3)

Country Link
JP (1) JP2015043030A (en)
TW (1) TW201513080A (en)
WO (1) WO2015029336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240815A1 (en) * 2019-05-31 2020-12-03 シャープ株式会社 Display device and drive method for same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178467A1 (en) * 2014-05-22 2015-11-26 凸版印刷株式会社 Current drive device and method for driving current drive device
JP6572738B2 (en) * 2015-10-30 2019-09-11 セイコーエプソン株式会社 Electro-optical device, electronic apparatus, and driving method of electro-optical device
KR102430466B1 (en) * 2015-11-30 2022-08-09 엘지디스플레이 주식회사 Controller, organic light emitting display panel, organic light emitting display device, and the method for driving the organic light emitting display device
WO2019187101A1 (en) * 2018-03-30 2019-10-03 シャープ株式会社 Display device and manufacturing method therefor
CN109872700B (en) 2019-04-18 2021-03-26 京东方科技集团股份有限公司 Display module, driving method thereof and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091376A (en) * 2000-06-27 2002-03-27 Hitachi Ltd Picture display device and driving method therefor
JP2006301250A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Display drive device, its drive controll method, display apparatus, and its drive control method
JP2011154348A (en) * 2009-12-28 2011-08-11 Casio Computer Co Ltd Pixel drive apparatus, light emitting device, drive control method, and electronic apparatus
JP2012141456A (en) * 2010-12-28 2012-07-26 Casio Comput Co Ltd Light emitting device, method for driving the same, and electronic device
JP2014115392A (en) * 2012-12-07 2014-06-26 Toppan Printing Co Ltd Display device and display method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091376A (en) * 2000-06-27 2002-03-27 Hitachi Ltd Picture display device and driving method therefor
JP2006301250A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Display drive device, its drive controll method, display apparatus, and its drive control method
JP2011154348A (en) * 2009-12-28 2011-08-11 Casio Computer Co Ltd Pixel drive apparatus, light emitting device, drive control method, and electronic apparatus
JP2012141456A (en) * 2010-12-28 2012-07-26 Casio Comput Co Ltd Light emitting device, method for driving the same, and electronic device
JP2014115392A (en) * 2012-12-07 2014-06-26 Toppan Printing Co Ltd Display device and display method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240815A1 (en) * 2019-05-31 2020-12-03 シャープ株式会社 Display device and drive method for same

Also Published As

Publication number Publication date
JP2015043030A (en) 2015-03-05
TW201513080A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
CN108122539B (en) Display device and controller for display panel
CN108074528B (en) Display device and controller thereof
JP6089656B2 (en) Display device and display method
JP4852866B2 (en) Display device and drive control method thereof
KR101142627B1 (en) Display drive apparatus, display apparatus and drive method therefor
KR101069622B1 (en) Display drive apparatus, display apparatus and drive control method thereof
JP5240534B2 (en) Display device and drive control method thereof
JP4470955B2 (en) Display device and driving method thereof
JP5240581B2 (en) Pixel drive device, light emitting device, drive control method thereof, and electronic apparatus
WO2015029336A1 (en) Display device and display method
KR20080012220A (en) Display drive apparatus and display apparatus
KR100842488B1 (en) Display drive apparatus, display apparatus and drive control method thereof
KR20180006531A (en) Organic Light Emitting Display Device and Driving Method Thereof
JP5540556B2 (en) Display device and driving method thereof
US10937373B2 (en) Display device for external compensation and method of driving the same
KR20150073420A (en) Organic light emitting display device
JP4284704B2 (en) Display drive device and drive control method thereof, and display device and drive control method thereof
KR20150077706A (en) Organic light emitting display device
KR20100077431A (en) Organic light emitting diode display
JP5182382B2 (en) Display device
WO2015012215A1 (en) El device and drive method for el device
WO2015012216A1 (en) El display device and drive method for el display device
JP5182383B2 (en) Display device
JP2006177988A (en) Emission driving circuit and driving control method for the same, and display apparatus and display driving method for the same
WO2015190258A1 (en) Current driving device and driving method for current driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840727

Country of ref document: EP

Kind code of ref document: A1