WO2015012216A1 - El display device and drive method for el display device - Google Patents

El display device and drive method for el display device Download PDF

Info

Publication number
WO2015012216A1
WO2015012216A1 PCT/JP2014/069170 JP2014069170W WO2015012216A1 WO 2015012216 A1 WO2015012216 A1 WO 2015012216A1 JP 2014069170 W JP2014069170 W JP 2014069170W WO 2015012216 A1 WO2015012216 A1 WO 2015012216A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
light emission
data
row
pixel
Prior art date
Application number
PCT/JP2014/069170
Other languages
French (fr)
Japanese (ja)
Inventor
小倉 潤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015012216A1 publication Critical patent/WO2015012216A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • the technology of the present disclosure relates to an EL display device including an electro-luminescence element (EL element) to which a current is supplied through a drive transistor, and a method for driving the EL display device.
  • EL element electro-luminescence element
  • the EL display device includes a plurality of pixel circuits, and each of the plurality of pixel circuits includes a drive transistor, a sampling transistor, and a storage capacitor.
  • the storage capacitor is connected between the gate and source of the driving transistor, and the sampling transistor writes a voltage of a level corresponding to the gradation data to the storage capacitor.
  • the drive transistor is configured to operate in a saturation region, and supplies a drain current corresponding to a voltage held by the storage capacitor to the EL element.
  • the EL element is driven by the drain current and emits light with luminance corresponding to the gradation data (see, for example, Patent Document 1).
  • the voltage that the sampling transistor writes to the storage capacitor gives a single polarity between the gate and source of the drive transistor.
  • such writing is repeated during a period in which the image is displayed. Since voltage application is repeated with a single polarity between the gate and source of the drive transistor, the threshold voltage shift between the gate and source proceeds in the drive transistor.
  • the voltage applied between the gate and source of the drive transistor is at a level corresponding to the gradation data, and the luminance gradation required for each pixel is usually different. Differs for each pixel. As a result, each of the plurality of pixels constituting one display surface has different luminance with respect to the gradation data.
  • An object of the technology of the present disclosure is to provide an EL display device that suppresses a shift in threshold voltage of a drive transistor from pixel to pixel and a method for driving the EL display device.
  • One aspect of the EL display device of the present disclosure includes a plurality of pixel circuits, and the pixel circuits include a drive transistor, an EL element, and a storage capacitor.
  • the driving transistor has a gate, a source, and a drain, and one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end.
  • the EL element is electrically connected to the connection end, and the storage capacitor is electrically connected to the gate and the source.
  • a voltage corresponding to a light emission voltage is held in the storage capacitor during the light emission period, and a current corresponding to the light emission voltage is supplied to the EL element through the drive transistor, and the hold is performed during the non-light emission period.
  • a voltage corresponding to a non-light-emitting voltage is held in a capacitor, and the voltage at the power feeding end is set so that a current passing through the driving transistor does not flow to the EL element.
  • Another aspect of the EL display device is a method for driving an EL display device including a plurality of pixel circuits, and the pixel circuits include a drive transistor, an EL element, and a storage capacitor.
  • the driving transistor has a gate, a source, and a drain, and one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end.
  • the EL element is electrically connected to the connection end, and the storage capacitor is electrically connected to the gate and the source.
  • a voltage corresponding to a light emission voltage is held in the storage capacitor, and a current corresponding to the light emission voltage is supplied to the EL element through the drive transistor, and the light emission voltage is high.
  • the voltage corresponding to the non-light-emitting voltage set so as to have a low state is held in the holding capacitor, and the voltage at the feeding end is set so that the current passing through the driving transistor does not flow to the EL element. A non-light emitting process.
  • the voltage applied between the gate and the source in each of the plurality of drive transistors is higher when the EL element emits light, and when the EL element is not emitting light. Low. Therefore, it is possible to suppress a shift in threshold voltage of the driving transistor from pixel to pixel.
  • Another aspect of the EL display device is configured to repeat a frame including the light emission period and the non-light emission period, and the non-light emission voltage is lower as the frame has a higher light emission voltage.
  • the shift of the threshold voltage of the driving transistor is different for each pixel, and is suppressed for each frame which is the shortest repetition period in display.
  • the non-light-emitting voltage is an inverted voltage symmetrical to the light-emitting voltage with reference to an intermediate value in a setting range of the light-emitting voltage.
  • an inversion voltage symmetrical to the light emission voltage is used as the non-light emission voltage. Therefore, the voltage applied between the gate and the source through one light emission period and one non-light emission period is uniform in a plurality of pixels. Therefore, the effect of suppressing the shift of the threshold voltage of the driving transistor from being different for each pixel is further enhanced.
  • the pixel circuit has the same polarity as the light emission voltage and the light emission voltage when the light emission voltage in the light emission period is equal to or lower than a switching value.
  • the higher the voltage is the lower the voltage that is set as the non-light emission voltage is held in the holding capacitor, and when the light emission voltage in the light emission period is higher than the switching value, the voltage having a polarity different from the light emission voltage is The non-light emitting voltage is held in the holding capacitor.
  • the threshold voltage shift of the drive transistor progresses as the emission voltage during the emission period increases.
  • the holding capacitor holds a voltage corresponding to a non-light emission voltage having a polarity different from that of the light emission voltage. Therefore, when the threshold voltage shift of the driving transistor proceeds excessively in a specific pixel, the threshold voltage shift is suppressed for the specific pixel. As a result, the range in which the effect of suppressing the shift of the threshold voltage of the drive transistor from pixel to pixel is extended is widened with respect to the degree of shift of the threshold voltage.
  • the pixel circuit is configured to set the non-light-emitting voltage to a constant value when the light-emitting voltage in the light-emitting period is higher than the switching value.
  • the non-light-emitting voltage having a polarity different from that of the light-emitting voltage is a constant value, so that the configuration required for generating the non-light-emitting voltage can be simplified.
  • the pixel circuit includes a detection operation of detecting a threshold voltage of the drive transistor in the non-light emission period, and is based on a previous detection operation in the light emission period. The light emission voltage is corrected in advance using the detection result.
  • the non-light emitting step further includes a detecting step of detecting a threshold voltage of the driving transistor, and the light emitting step is based on the previous detecting step.
  • the light emission voltage is corrected in advance using the detection result.
  • a change in luminance of the EL element due to a change in threshold voltage of the drive transistor can be suppressed.
  • the EL display device and the EL display device driving method of the present disclosure it is possible to suppress the shift of the threshold voltage of the driving transistor from pixel to pixel.
  • FIG. 2 is a block diagram illustrating a configuration of a control unit and a selection driver included in the EL display device of FIG. 1.
  • FIG. 2 is a block diagram illustrating a configuration of a data driver and a pixel circuit included in the EL display device of FIG. 1.
  • 2 is a graph showing a relationship between a light emission voltage applied to a data line and a non-light emission voltage applied to a data line in the EL display device of FIG. 1.
  • FIG. 2 is a circuit diagram showing a pixel circuit included in the EL display device of FIG. 1 and showing a state at the time of writing operation for light emission.
  • FIG. 2 is a circuit diagram showing a pixel circuit included in the EL display device of FIG. 1 and showing a state during a non-light-emission writing operation. It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of FIG. 1 is provided, Comprising: It is a figure which shows the state at the time of non-light emission operation.
  • FIG. 2 is a timing chart showing a transition of a scanning line and a voltage applied to a power supply line and a transition of a control signal input to a data driver in a light emission period of the EL display device of FIG. 2 is a timing chart showing a transition of a voltage applied to a scanning line and a power supply line and a transition of a control signal input to a data driver in a non-light emitting period of the EL display device of FIG. It is a graph which shows the relationship between the forward voltage applied to an EL element, and the drive current which flows into an EL element in the EL display apparatus in 2nd Embodiment.
  • FIG. 9 is a potential correlation diagram showing a relative relationship between voltages applied to scanning lines, power supply lines, and data lines included in an EL display device according to a second embodiment, with a ground voltage as a reference. It is a graph which shows the relationship between the light emission voltage applied to a data line in the EL display device of 2nd Embodiment, and the non-light-emission voltage applied to a data line. It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of 2nd Embodiment is provided, Comprising: It is a figure which shows the state at the time of writing operation for non-light emission.
  • FIG. 10 is a timing chart showing a transition of a level of a control signal in a non-light emitting period in the EL display device according to the third embodiment together with a switch state. It is a graph which shows the dependence of the light emission voltage with respect to the drain current of the drive transistor with which the EL display apparatus of 3rd Embodiment is provided. It is a timing chart which shows the transition of the level of the control signal in the detection operation in the EL display device of 3rd Embodiment with the state of a switch. It is a graph which shows the relationship between the electric potential of the data line in the EL display device of 3rd Embodiment, and relaxation time.
  • FIG. 9 is a timing chart showing a transition of a level of a control signal for each scanning line and power supply line in a period in which one frame is displayed in the EL display device according to the third embodiment. It is a graph which shows the relationship between the light emission voltage applied to a data line, and the non-light emission voltage applied to a data line in the EL display device of a modification. It is a graph which shows the relationship between the light emission voltage applied to a data line, and the non-light emission voltage applied to a data line in the EL display device of a modification. It is a circuit diagram which shows the pixel circuit of the EL display apparatus of a modification.
  • the plurality of pixels Px included in the display panel 10 are positioned in a matrix of m rows ⁇ n columns.
  • m is an integer of 1 or more
  • n is an integer of 1 or more.
  • Each of the plurality of pixels Px has one pixel circuit including one organic EL element.
  • Each of the plurality of pixels Px is located near the intersection of the scanning line Ls and the data line Ld.
  • Each of the n pixels Px arranged in the row direction is connected to one scanning line Ls and one power supply line La.
  • Each of the m pixels Px arranged along the column direction is connected to one data line Ld.
  • Each of the m scanning lines Ls is electrically connected to the selection driver 20.
  • Each of the m power lines La is electrically connected to the power driver 30.
  • Each of the n data lines Ld is electrically connected to the data driver 40.
  • Each of the driving of the selection driver 20, the driving of the power supply driver 30, and the driving of the data driver 40 is controlled by the control unit 50.
  • the control unit 50 is mainly configured by a microcomputer having a central processing unit and a storage unit.
  • the control unit 50 receives an image signal from the outside, and generates display data Din for each pixel Px using the image signal.
  • the display data Din for each pixel Px is, for example, gradation data composed of 8 bits.
  • the control unit 50 inputs display data Din for each pixel Px to the data driver 40.
  • the selection driver 20 includes a shift register and a buffer.
  • the selection driver 20 selects either the selection voltage VgH that is at a high level with respect to the reference voltage or the non-selection voltage VgL that is at a low level with respect to the reference voltage in accordance with a control signal input from the control unit 50. And applied for each scanning line Ls.
  • the selection driver 20 sets the scanning line Ls to which the selection voltage VgH is applied as a selection target.
  • the selection driver 20 sequentially switches the selection target candidates from the first scanning line Ls to the m-th scanning line Ls, which is the last row, and repeats the switching of the selection target candidates.
  • the power supply driver 30 includes a shift register and a buffer. In accordance with a control signal input from the control unit 50, the power supply driver 30 supplies either the drive voltage ELVDD that is at a high level with respect to the reference voltage or the write voltage WDVSS that is at the same level as the reference voltage. Applied for each line La.
  • the power supply driver 30 sets the power supply line La to which the drive voltage ELVDD is applied as a supply target.
  • the power supply driver 30 sequentially switches the supply target from the first power supply line La to the m-th power supply line La, which is the last row, and repeats the switching of the supply target.
  • the power supply driver 30 is configured such that when the supply target of the power supply driver 30 is the k-th row (k is an integer from 1 to m), the selection target of the selection driver 20 is also the k-th row.
  • the data driver 40 generates the light emission voltage VD or the non-light emission voltage VDN using the display data Din.
  • the control unit 50 inputs display data Din for generating the light emission voltage VD to the data driver 40
  • the data driver 40 generates the light emission voltage VD using the display data Din.
  • the control unit 50 inputs display data Din for generating the non-light emitting voltage VDN to the data driver 40
  • the data driver 40 generates the non-light emitting voltage VDN using the display data Din.
  • the data driver 40 generates the light emission voltage VD for each data line Ld during the light emission period.
  • the data driver 40 applies the light emission voltage VD simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
  • the data driver 40 generates a non-light emission voltage VDN for each data line Ld in the non-light emission period.
  • the data driver 40 applies the non-light emitting voltage VDN simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
  • control unit 50 includes an image signal input unit 51, a timing controller 52, a storage unit 53, an image signal processing unit 54, and a display data output unit 55.
  • the image signal input unit 51 holds the image signal input to the control unit 50 and outputs the held image signal to the storage unit 53.
  • the storage unit 53 stores the image signal output from the image signal input unit 51 and outputs the stored image signal to the image signal processing unit 54.
  • the display data output unit 55 outputs the processing result of the image signal processing unit 54 to the data driver 40 as display data Din.
  • the storage unit 53 stores data indicating the relationship between the light emission voltage VD and the non-light emission voltage VDN.
  • the image signal processing unit 54 uses the display data Din for generating the light emission voltage VD and the relationship between the light emission voltage VD and the non-light emission voltage VDN to generate the non-light emission voltage VDN. Display data Din for generation is generated.
  • the timing controller 52 controls the timing of writing the image signal to the storage unit 53 and the timing of reading the image signal to the storage unit 53.
  • the timing controller 52 controls the processing timing by the image signal processing unit 54.
  • the timing controller 52 generates a data shift clock signal Clkd and a display shift clock signal Clks.
  • the timing controller 52 outputs the data shift clock signal Clkd to the data driver 40, and outputs the display shift clock signal Clks to the selection driver 20 and the power supply driver 30.
  • the image signal processing unit 54 uses the image signal read from the storage unit 53 to generate light emission gradation data for each pixel Px.
  • the image signal processing unit 54 performs gamma correction, luminance adjustment, and chromaticity adjustment on the light emission gradation data for each pixel Px.
  • the image signal processing unit 54 uses the lookup table for performing various adjustments and the image signal input to the image signal processing unit 54 to adjust the emission gradation data for each pixel Px.
  • the image signal processing unit 54 outputs the adjusted light emission gradation data to the display data output unit 55 as display data Din.
  • the image signal processing unit 54 separately generates non-emission gradation data for each pixel Px that does not emit EL elements during the non-emission period, as display data Din, and the generated display data Din is output to the display data output unit 55. Output.
  • the data driver 40 uses the display data Din input during the light emission period and generates the light emission voltage VD from the display data Din.
  • the data driver 40 uses the display data Din input during the non-light emission period, and generates the non-light emission voltage VDN from the display data Din.
  • the data shift clock signal Clkd determines the timing at which the display data Din for each pixel Px is input from the display data output unit 55 to the data driver 40. Each time the data shift clock signal Clkd rises, the data driver 40 applies display data Din corresponding to the pixel Px in the first column, display data Din corresponding to the pixel Px in the second column,. Display data Din for each pixel Px is input in the order of corresponding display data Din. The data driver 40 associates the display data Din for each pixel Px with the data line Ld connected to the pixel Px in the clock cycle of the data shift clock signal Clkd.
  • the display shift clock signal Clks determines the cycle of switching the candidate to be selected and the cycle of switching the candidate to be supplied in the light emission period. In addition, the display shift clock signal Clks also determines the period for switching the candidate to be selected and the period for switching the candidate for supply in the non-light emitting period.
  • the selection driver 20 sets one scanning line Ls in the order of the first scanning line Ls, the second scanning line Ls,..., The m-th scanning line Ls. Select one by one.
  • the power driver 30 supplies one power line La in the order of the first power line La, the second power line La,..., The m-th power line La. Select one by one.
  • the display clock cycle which is the clock cycle of the display shift clock signal Clks, is sufficiently longer than the clock cycle of the data shift clock signal Clkd. For example, the display clock cycle is n times the clock cycle of the data shift clock signal Clkd.
  • the timing controller 52 generates a start pulse signal SP1, a start pulse signal SP2, and a latch pulse signal LP.
  • the timing controller 52 inputs the start pulse signal SP1 and the latch pulse signal LP to the data driver 40.
  • the timing controller 52 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
  • the start pulse signal SP1 is a control signal that controls the processing timing of the data driver 40, and controls the timing at which the display data Din for one row is input from the display data output unit 55 to the data driver 40.
  • the data driver 40 For each input of the start pulse signal SP1, the data driver 40 performs the display data Din corresponding to the pixel Px in the mth row and the first column to the display data Din corresponding to the pixel Px in the mth row and the nth column for each pixel Px.
  • the display data Din is fetched for one line.
  • the latch pulse signal LP is a control signal for controlling the processing timing of the data driver 40, and controls the timing at which the data driver 40 holds the display data Din for one row. For each input of the latch pulse signal LP, the data driver 40 displays one row from the display data Din corresponding to the pixel Px in the mth row and the first column to the display data Din corresponding to the pixel Px in the mth row and the nth column. Holds display data Din.
  • the start pulse signal SP2 is a control signal for controlling the processing timing of the selection driver 20, and controls the timing for starting the selection of the selection target candidate every time the selection target candidate is switched m times.
  • the start pulse signal SP2 is a control signal that controls the processing timing of the power supply driver 30, and controls the start timing of the supply target candidate switching every time the supply target candidate is switched m times.
  • the selection driver 20 sequentially switches from the first scanning line Ls to the m-th scanning line Ls as a selection target candidate.
  • the power supply driver 30 sequentially switches from the first power supply line La to the mth power supply line La as candidates for supply.
  • the configuration of the selection driver 20 will be described with reference to FIG.
  • the configuration in which the power supply driver 30 selects the supply target candidate is the same as the configuration in which the selection driver 20 selects the selection target candidate. Therefore, in the following, the configuration of the selection driver 20 will be described in detail, and the configuration of the power supply driver 30 will be omitted.
  • the control unit 50 inputs the start pulse signal SP2 and the display shift clock signal Clks to the shift register circuit 21.
  • the shift register circuit 21 Each time the start pulse signal SP2 is input, the shift register circuit 21 generates an m-bit parallel signal including one selection target bit and outputs the parallel signal as a shift signal.
  • the shift register circuit 21 shifts one selection target bit in the shift signal from the position corresponding to the pixel Px in the first row to the position corresponding to the pixel Px in the mth row. The pixels Px for one row are sequentially shifted.
  • the shift register circuit 21 inputs a shift signal to the level shifter circuit 22.
  • the level shifter circuit 22 is a voltage adjustment circuit that connects the low voltage circuit and the high voltage circuit, and adjusts the voltage of the shift signal to the drive level of the buffer circuit 23.
  • the level shifter circuit 22 inputs a drive level shift signal of the buffer circuit 23 to the buffer circuit 23.
  • the buffer circuit 23 adjusts the voltage of the shift signal to the drive level of the pixel Px.
  • the data driver 40 includes a shift register circuit 41, a data register circuit 42, a data latch circuit 43, a voltage conversion circuit 44, and a buffer circuit 45.
  • the shift register circuit 41, the data register circuit 42, and the data latch circuit 43 are configured as a low withstand voltage circuit, and the logic power supply 60 supplies a high level logic power supply voltage LVDD and a low level logic reference voltage LVSS. Apply to these circuits.
  • the voltage conversion circuit 44 and the buffer circuit 45 are configured as a high voltage circuit, and the analog power supply 70 applies a high level analog power supply voltage DVSS and a low level analog reference voltage VEE to these circuits.
  • Analog power supply voltage DVSS is set to a level equal to write voltage WDVSS and reference voltage ELVSS.
  • the control unit 50 inputs the start pulse signal SP1 and the data shift clock signal Clkd to the shift register circuit 41.
  • the shift register circuit 41 generates an n-bit parallel signal including one selection target bit for each input of the start pulse signal SP1, and outputs the parallel signal as a shift signal. For each input of the data shift clock signal Clkd, the shift register circuit 41 sequentially shifts and outputs one selection target bit in the shift signal.
  • the control unit 50 inputs the display data Din to the data register circuit 42.
  • the display data Din is, for example, gradation data composed of 8 bits.
  • the data register circuit 42 includes n registers associated with each bit of the shift signal, and one register takes in display data Din for each pixel Px.
  • the data register circuit 42 inputs the display data Din for each pixel Px to each register selected by one selection target bit.
  • the data register circuit 42 selects all the registers by shifting one selection target bit, and takes the display data Din for one row into n registers.
  • the control unit 50 inputs the latch pulse signal LP to the data latch circuit 43.
  • the data latch circuit 43 includes n data latches 43a associated with the registers of the data register circuit 42. Each of the n data latches 43a is electrically connected to a register different from the data register circuit 42. Each of the n data latches 43a holds display data Din stored in a register that is a connection destination, and repeats the holding for each latch pulse signal LP. Each of the n data latches 43 a inputs the display data Din held therein to the voltage conversion circuit 44.
  • the data latch circuit 43 holds the display data Din for one row taken into the data register circuit 42 for each input of the latch pulse signal LP, and the display data Din for the held row is stored in the voltage conversion circuit. 44.
  • the voltage conversion circuit 44 includes n display DACs 44a which are linear voltage digital-analog conversion circuits. Each of the n display DACs 44a is electrically connected to different data latches 43a with respect to the data latch circuit 43 through different level shifters 46a. Each of the n display DACs 44a converts the display data Din held in the data latch 43a as a connection destination into an analog voltage. The display DAC 44a has linearity in the output analog voltage with respect to the input digital data. The analog voltage converted by the display DAC 44a is set between the analog power supply voltage DVSS applied from the analog power supply 70 and the analog reference voltage VEE.
  • the buffer circuit 45 includes n buffers 45a. Each of the n buffers 45 a is electrically connected to the display DAC 44 a different from the voltage conversion circuit 44. Each of the n buffers 45a is electrically connected to different data lines Ld. Each of the n buffers 45a amplifies the analog voltage generated by the display DAC 44a that is the connection destination to the drive level of the pixel circuit. Each of the n buffers 45a generates a light emission voltage VD corresponding to the display data Din for each pixel Px in the light emission period. Each of the n buffers 45a generates a non-light emitting voltage VDN corresponding to the display data Din for each pixel Px in the non-light emitting period.
  • the pixel Px includes an EL element 11 and a drive circuit PCC that causes the EL element 11 to emit light.
  • the drive circuit PCC includes three transistors Tr1 to Tr3 and a holding capacitor Cs.
  • the transistors Tr1 to Tr3 are n-channel transistors.
  • the source is electrically connected to the data line Ld
  • the drain is electrically connected to the anode of the EL element 11
  • the gate is electrically connected to the scanning line Ls.
  • the source is electrically connected to the gate of the driving transistor Tr3
  • the drain is electrically connected to the power supply line La
  • the gate is electrically connected to the gate of the sampling transistor Tr1.
  • a source that is an example of a connection end is electrically connected to the anode of the EL element 11
  • a drain that is an example of a power supply end is electrically connected to the drain of the switching transistor Tr2
  • a gate is the switching transistor Tr2. Electrical connection to the source.
  • the holding capacitor Cs is electrically connected between the gate and source of the driving transistor Tr3.
  • the storage capacitor Cs may be a parasitic capacitor formed between the gate and the source of the drive transistor Tr3, or another capacitor element may be connected in parallel to the parasitic capacitor.
  • the cathode of the EL element 11 is electrically connected to a ground voltage line Lb which is an example of a reference voltage line.
  • the ground voltage line Lb is set to the reference voltage ELVSS, and the reference voltage ELVSS is at a high level with respect to the analog reference voltage VEE and is at a level equal to the analog power supply voltage DVSS.
  • the EL element 11 includes the pixel capacitance Ce, and the data line Ld includes the parasitic capacitance Cp.
  • Non-light emission voltage VDN The relationship between the light emission voltage VD and the non-light emission voltage VDN will be described with reference to FIG.
  • FIG. 4 is a graph showing the relationship between the light emission voltage VD and the non-light emission voltage VDN associated with each other by the image signal processing unit 54.
  • the non-light emission voltage VDN is associated with the light emission voltage VD.
  • the reference voltage ELVSS and the write voltage WDVSS are 0 V, and the polarity of the drive voltage ELVDD is positive, the polarity of the light emission voltage VD and the polarity of the non-light emission voltage VDN are both negative.
  • the non-light emission voltage VDN is lower as the light emission voltage VD associated therewith is higher.
  • the light emission voltage VD when the light emission voltage VD is ⁇ 10V, 0V is associated with the non-light emission voltage VDN, and when the light emission voltage VD is ⁇ 8V, ⁇ 2V is associated with the non-light emission voltage VDN. Further, when the light emission voltage VD is ⁇ 2V, ⁇ 8V is associated with the non-light emission voltage VDN, and when the light emission voltage VD is 0V, ⁇ 10V is associated with the non-light emission voltage VDN.
  • -5V is an intermediate value in the range where the light emission voltage VD is set, and the non-light emission voltage VDN is an inverted voltage symmetrical to the light emission voltage VD with the intermediate value as a reference.
  • the range in which the light emission voltage VD is set is appropriately set according to the reference voltage, the write voltage WDVSS, the drive voltage ELVDD, and the drive of the EL element 11, and is other than 0V to ⁇ 10V. Also good.
  • the control unit 50 is configured.
  • the image signal processing unit 54 of the control unit 50 generates a difference value between the display data Din (light emission gradation data) for generating the light emission voltage VD and the maximum gradation value of the display data Din. Is provided.
  • the image signal processing unit 54 of the control unit 50 applies the display data Din to the difference circuit to generate the non-light emission voltage VDN. Display data Din (non-light emitting gradation data) is generated.
  • the drive circuit PCC to which the light emission voltage VD and the non-light emission voltage VDN are applied will be described with reference to FIGS.
  • the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state.
  • the drive transistor Tr3 is driven in a saturation region.
  • the write voltage corresponding to the potential difference between the voltage of the power supply line La and the voltage of the data line Ld is the gate-source voltage Vgs of the drive transistor Tr3. Is held in the holding capacitor Cs.
  • the reverse voltage of the EL element 11 is applied to the EL element 11. Further, since the light emission voltage VD is at a lower level than the write voltage WDVSS, the current Ie flowing through the drive transistor Tr3 does not flow to the EL element 11 but is drawn toward the data line Ld.
  • the sampling transistor Tr1 and the switching transistor Tr2 are It is a non-conducting state.
  • the drive voltage ELVDD is applied to the power supply line La
  • the drive voltage ELVDD is higher than the reference voltage ELVSS
  • the drive transistor Tr3 has a drain current corresponding to the gate-source voltage Vgs. It flows in the EL element 11.
  • the drain current in the drive transistor Tr3 varies in the saturation region according to the difference between the gate-source voltage Vgs and the threshold voltage Vth in the drive transistor Tr3.
  • a drain current corresponding to the difference between the write voltage held in the holding capacitor Cs and the threshold voltage Vth in the drive transistor Tr3 flows in the EL element 11.
  • the non-light-emitting voltage VDN is at a lower level than the reference voltage ELVSS, the reverse voltage of the EL element 11 is applied to the EL element 11. Further, since the non-light emitting voltage VDN is at a lower level than the write voltage WDVSS, the current Iue flowing through the drive transistor Tr3 does not flow to the EL element 11 but is drawn toward the data line Ld.
  • the application of the light emission voltage VD is repeated during the period in which the image is displayed. Since the application of the light emission voltage VD having a single polarity is repeated between the gate and the source of the drive transistor Tr3, the threshold voltage shift between the gate and the source proceeds in the drive transistor Tr3. Since the non-light-emitting voltage VDN has the same polarity as the light-emitting voltage VD, the threshold voltage shift proceeds even when the non-light-emitting voltage VDN is applied. At this time, since the non-light emission voltage VDN is an inverted voltage of the light emission voltage VD, the gate-source voltage Vgs of the drive transistor Tr3 is lower as the previous light emission voltage VD is higher.
  • the larger the shift due to the application of the light emission voltage VD the smaller the shift due to the application of the non-light emission voltage VDN.
  • the shift due to the application of the light emission voltage VDN is increased.
  • the shift of the threshold voltage is made uniform in a plurality of pixels Px having different light emission voltages VD.
  • the control unit 50 inputs a start pulse signal SP1 to the data driver 40.
  • the shift register circuit 41 inputs a shift signal to the data register circuit 42, and the data register circuit 42 takes in the display data Din of the first row.
  • the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, and changes each sampling transistor Tr1 in the first row and each switching transistor Tr2 in the first row to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40, thereby holding the display data Din of the first row in each data latch 43a. The display data Din in the first row held in the n data latches 43a is converted into an analog voltage by the n display DACs 44a through the n level shifters 46a, and applied to each data line Ld as the light emission voltage VD. Is done.
  • the control unit 50 continues to apply the write voltage WDVSS to the power supply line La in the first row.
  • the gate-source voltage Vgs of each drive transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the light emission voltage VD, and is held in the holding capacitor Cs as the write voltage.
  • the control unit 50 holds the gate-source voltage Vgs in the forward direction of the drive transistor Tr3 for each pixel Px in the first row, and drives each drive transistor Tr3 in the first row in the saturation region. In a ready state, the light emission writing operation for each pixel Px in the first row is completed.
  • control unit 50 inputs the start pulse signal SP1 to the data driver 40 again.
  • the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the second row from the control unit 50.
  • the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the first row, and turns off the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row. Change. Further, the control unit 50 applies the drive voltage ELVDD to the power supply line La in the first row. As a result, each driving transistor Tr3 in the first row has a drain corresponding to the difference between the write voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth in the driving transistor Tr3 to which it is connected. A current is supplied to the corresponding EL element 11. Accordingly, the control unit 50 starts a light emission operation for each pixel Px in the first row.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the second row, and applies the write voltage WDVSS to the power supply line La in the second row, thereby performing each sampling in the second row.
  • the transistor Tr1 and each switching transistor Tr2 in the second row are changed to a conductive state.
  • the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and holds the display data Din of the second row in each data latch 43a.
  • the display data Din in the second row held in each data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and input to the data line Ld as the light emission voltage VD.
  • the gate-source voltage Vgs of each drive transistor Tr3 in the second row becomes a value corresponding to the difference between the write voltage WDVSS and the light emission voltage VD, and is held as the write voltage in each holding capacitor Cs in the second row. Is done.
  • the control unit 50 finishes the writing operation for each pixel Px in the second row.
  • the control unit 50 displays the gradation-represented image as one subframe.
  • the control unit 50 inputs a start pulse signal SP1 to the data driver 40 at timing ta1.
  • the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the first row into the data register circuit 42.
  • the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, and changes each sampling transistor Tr1 in the first row and each switching transistor Tr2 in the first row to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 and holds the display data Din of the first row in the data latch 43a. The display data Din held in the data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and applied to the data line Ld as the non-light emitting voltage VDN.
  • the control unit 50 applies the write voltage WDVSS to the power supply line La in the first row.
  • the gate-source voltage Vgs of each drive transistor Tr3 in the first row has a value corresponding to the difference between the write voltage WDVSS and the non-light emission voltage VDN, and is held in the holding capacitor Cs as the write voltage.
  • the control unit 50 causes the storage capacitor Cs to hold the gate-source voltage Vgs corresponding to the inverted voltage of the light emission voltage VD applied immediately before, for each pixel Px in the first row.
  • Each of the driving transistors Tr3 is set in a state where it can be driven in the saturation region, and the non-light-emission writing operation for each pixel Px in the first row is completed.
  • control unit 50 inputs the start pulse signal SP1 to the data driver 40 again.
  • the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the second row to the data register circuit 42.
  • the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the first row, and turns off the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row. Change.
  • the control unit 50 continues to apply the write voltage WDVSS to the power supply line La in the first row.
  • the control unit 50 causes each drive transistor Tr3 in the first row to write to the write voltage held in the holding capacitor Cs in the first row, that is, between the gate and source corresponding to the inverted voltage of the previous light emission voltage VD. Continue to apply voltage Vgs.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the second row, and applies the write voltage WDVSS to the power supply line La in the second row, thereby performing each sampling in the second row.
  • the transistor Tr1 and each switching transistor Tr2 in the second row are changed to a conductive state.
  • the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row.
  • the display data Din in the second row held in the data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and output to the data line Ld as the non-light emission voltage VDN of each column.
  • control unit 50 sets the gate-source voltage Vgs of each driving transistor Tr3 in the second row to a value corresponding to the difference between the write voltage WDVSS and the non-light-emitting voltage VDN, and sets the storage capacitance Cs in the second row. It is held as a write voltage. Thereby, the control unit 50 finishes the non-light-emission writing operation for each pixel Px in the second row.
  • the advantages listed below can be obtained.
  • the gate-source voltage Vgs is higher when the EL element 11 emits light and is lower when the EL element 11 is not emitting light. Therefore, it is possible to suppress the threshold voltage shift of the driving transistor Tr3 from being different for each pixel Px.
  • the threshold voltage Vth of the drive transistor Tr3 is made uniform in the shortest repetition period in display.
  • the write voltage for light emission is set by applying the light emission voltage VD through the sampling transistor Tr1 to the source of the drive transistor Tr3.
  • the non-emission write voltage is set by applying the non-emission voltage VDN through the sampling transistor Tr1 to the source of the drive transistor Tr3.
  • the setting of the light emission voltage VD and the setting of the non-light emission voltage VDN are realized by driving the sampling transistor. Therefore, the configuration required for the write operation for light emission and the configuration required for the write operation for non-light emission can be shared.
  • the relationship between the forward voltage applied to the EL element 11 and the drive current flowing through the EL element 11 will be described.
  • the current that flows along with the light emission operation of the EL element 11 is the drive current of the EL element 11, and the drive voltage applied to the EL element 11 in the direction in which the drive current flows through the EL element 11. Is the forward voltage.
  • the drive current of the EL element 11 hardly flows. And even if the drive current of the EL element 11 flows, the magnitude of the drive current is not enough to cause the EL element 11 to emit light. After all, when the forward voltage of the EL element 11 is equal to or lower than the light emission start voltage Vels, the EL element 11 does not emit light.
  • the forward voltage of the EL element 11 exceeds the light emission start voltage Vels
  • the drive current of the EL element 11 is larger as the forward voltage is higher.
  • the magnitude of the drive current of the EL element 11 is such that the EL element 11 emits light, and the higher the forward voltage, The brightness of the light generated by 11 is high.
  • the EL element 11 does not emit light, and even if the voltage applied to the EL element 11 is a forward voltage, the order is equal to or lower than the light emission start voltage Vels. At the directional voltage, the EL element 11 also does not emit light. When the forward voltage of the EL element 11 exceeds the light emission start voltage Vels, the EL element 11 emits light.
  • the reference voltage ELVSS is set to the ground voltage
  • the reference voltage ELVSS and the write voltage WDVSS are A configuration is shown in which are equal potentials.
  • the write voltage WDVSS applied to the power supply line La is set to the same potential as the reference voltage ELVSS applied to the ground voltage line Lb.
  • the light emission voltage VD applied to the data line Ld is different for each gradation indicated by the gradation data.
  • an intermediate value between the lowest gradation value VDL, which is the level closest to the write voltage WDVSS, and the highest gradation value VDH, which is the level where the potential difference between the write voltage WDVSS is the largest An intermediate value M is set.
  • a switching value Vp is set as a value between the maximum gradation value VDH and the intermediate value M.
  • the non-light emitting voltage applied to the data line Ld is composed of a first non-light emitting voltage VDN1 and a second non-light emitting voltage VDN2.
  • the first non-emission voltage VDN1 is an inverted voltage with respect to a voltage between the lowest gradation value VDL and the switching value Vp in the emission voltage VD.
  • the second non-light emission voltage VDN2 is higher than the reference voltage ELVSS and the write voltage WDVSS, and is set to a constant value.
  • the polarity of the first non-light-emitting voltage VDN1 based on the write voltage WDVSS is the same as the polarity of the light-emitting voltage VD based on the write voltage WDVSS.
  • the polarity of the second non-light emission voltage VDN2 with respect to the write voltage WDVSS is different from the polarity of the light emission voltage VD with respect to the write voltage WDVSS, and these have opposite polarities.
  • the polarity of the light emission voltage VD with respect to the write voltage WDVSS is negative, and the polarity of the first non-light emission voltage VDN1 with respect to the write voltage WDVSS is also negative.
  • the polarity of the second non-emission voltage VDN2 with the write voltage WDVSS as a reference is positive.
  • the polarity of the first non-light-emitting voltage VDN1 with respect to the write voltage WDVSS is negative, as is the polarity of the non-selection voltage VgL with respect to the write voltage WDVSS.
  • the polarity of the second non-light-emitting voltage VDN2 with respect to the write voltage WDVSS is as positive as the polarity of the selection voltage VgH with reference to the write voltage WDVSS.
  • the second non-light emitting voltage VDN2 is lower than the level of the driving voltage ELVDD and the selection voltage VgH, and the polarity of the driving voltage ELVDD with the second non-light emitting voltage VDN2 as a reference is the second non-light emitting voltage VDN2. Is different from the polarity of the write voltage WDVSS.
  • the polarity of the light emission voltage VD with respect to the write voltage WDVSS is negative, as is the polarity of the non-selection voltage VgL with reference to the write voltage WDVSS.
  • the level of the light emission voltage VD is set between the non-selection voltage VgL and the write voltage WDVSS.
  • the reference voltage ELVSS may be higher than the ground voltage or may be lower than the ground voltage. Further, the write voltage WDVSS may be at a lower level than the reference voltage ELVSS.
  • FIG. 13 is a graph showing the relationship between the light emission voltage VD and the first non-light emission voltage VDN1 associated with the image signal processing unit 54 and the relationship between the light emission voltage VD and the second non-light emission voltage VDN2 associated with the image signal processing unit 54. It is.
  • the first non-light emission voltage VDN1 corresponds to the non-light emission voltage when the light emission voltage VD is equal to or lower than the switching value Vp. That is, the first non-light emission voltage VDN1 is associated with a value of the light emission voltage VD that is not less than the switching value Vp and not more than the lowest gradation value VDL. For example, when the light emission voltage VD is 0V of the lowest gradation value VDL, -9.2V is associated as the first non-light emission voltage VDN1, and when the light emission voltage VD is -5V of the intermediate value M, the first non-light emission voltage VDL The light emission voltage VDN1 is associated with ⁇ 4.2V.
  • the light emission voltage VD is the switching value Vp of ⁇ 9.2V
  • 0V is associated with the first non-light emission voltage VDN1.
  • the range in which the light emission voltage VD is set is appropriately set according to the reference voltage, the write voltage WDVSS, the drive voltage ELVDD, and the drive of the EL element 11, and is other than 0V to ⁇ 10V. Also good.
  • display data Din for generating the light emission voltage VD is generated.
  • the control unit 50 is configured. Further, when a light emission voltage VD not less than the switching value Vp and not more than the lowest gradation value VDL is required for each pixel Px in one frame, the first non-light emission voltage VDN1 that is an inverted voltage of the light emission voltage VD is generated.
  • the control unit 50 is configured to generate display data Din for the purpose.
  • the second non-emission voltage VDN2 corresponds to a non-emission voltage when the emission voltage VD is higher than the switching value Vp. That is, the second non-emission voltage VDN2 is associated with the value of the emission voltage VD that is greater than or equal to the maximum gradation value VDH and less than the switching value Vp. For example, when the light emission voltage VD is -10V of the maximum gradation value VDH, 3V is associated as the second non-light emission voltage VDN2, and when the light emission voltage VD is a value closest to the switching value Vp, this is also 3 V is associated as the second non-light-emitting voltage VDN2.
  • the image signal processing unit 54 of the control unit 50 generates a difference value between the display data Din (light emission gradation data) for generating the light emission voltage VD and the maximum gradation value of the display data Din. Is provided. Further, the image signal processing unit 54 of the control unit 50 includes a comparison circuit that compares the display data Din for generating the light emission voltage VD with a switching gradation value that is a gradation value corresponding to the switching value Vp. The image signal processing unit 54 of the control unit 50 compares the display data Din with the switching gradation value every time the display data Din for generating the light emission voltage VD is generated.
  • the image signal processing unit 54 of the control unit 50 applies the display data Din to the difference circuit, and the first data as in the first embodiment.
  • Display data Din (non-light emission gradation data) for generating the non-light emission voltage VDN1 is generated.
  • the image signal processing unit 54 of the control unit 50 displays the display data Din (non-emission gradation data) for generating the second non-emission voltage VDN2. ) Is generated.
  • the second non-light emission voltage VDN2 is at a level equal to or lower than the light emission start voltage Vels. Based on the drive mode of the EL element 11 by the drive circuit PCC in the non-light emission period and the light emission start voltage Vels described below, Is set to
  • the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state.
  • the drive transistor Tr3 is driven in a saturation region.
  • the write voltage corresponding to the potential difference between the voltage of the power supply line La and the voltage of the data line Ld is the gate-source of the drive transistor Tr3.
  • the voltage Vgs is held in the holding capacitor Cs.
  • the second non-light-emitting voltage VDN2 is higher than the write voltage WDVSS, no current flows through the drive transistor Tr3.
  • the second non-light emitting voltage VDN2 is higher than the reference voltage ELVSS, the forward voltage of the EL element 11 is applied to the EL element 11.
  • the second non-light emission voltage VDN2 sets a potential difference equal to or lower than the light emission start voltage Vels between the source of the drive transistor Tr3 and the reference voltage ELVSS at the time of the write operation in the non-light emission write operation. If the potential difference between the source of the driving transistor Tr3 and the reference voltage ELVSS during the writing operation is equal to or lower than the light emission start voltage Vels, even if the voltage applied to the EL element 11 is a forward voltage, the EL The element 11 does not emit light.
  • the sampling transistor Tr1 and the switching transistor Tr2 Is a non-conductive state.
  • the write voltage WDVSS is continuously applied to the power supply line La
  • no current flows through the drive transistor Tr3 as in the above-described write operation.
  • the source of the drive transistor Tr3 after the writing operation is at a level higher than the reference voltage ELVSS
  • the forward voltage is continuously applied to the EL element 11.
  • the storage capacitor Cs is discharged when a current that does not cause the EL element 11 to emit light flows through the EL element 11.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, changes the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row into a conductive state, and generates a non-light emitting voltage. Is applied to the data line Ld.
  • the control unit 50 applies the write voltage WDVSS to the power supply line La in the first row.
  • the gate-source voltage Vgs of each driving transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the non-light-emitting voltage VDN, and is held in the holding capacitor Cs as the write voltage.
  • the control unit 50 performs the light emission voltage in the non-light emission period following the light emission period.
  • the data driver 40 is caused to generate a first non-light-emitting voltage VDN1 that is an inverted voltage of VD.
  • the control unit 50 is constant in the non-light emission period following the light emission period.
  • the data driver 40 generates the second non-light-emitting voltage VDN2 that is a value.
  • the control unit 50 performs gate-- corresponding to the inverted voltage of the immediately preceding light emission voltage VD.
  • the source voltage Vgs is held in the holding capacitor Cs, and the non-light-emission writing operation for each pixel Px in the first row is completed.
  • the control unit 50 performs the second non-reduction regardless of the value of the immediately preceding light emission voltage VD.
  • the gate-source voltage Vgs corresponding to the light emission voltage VDN2 is held in the storage capacitor Cs, and the writing operation for non-light emission for each pixel Px in the first row is completed.
  • the advantages listed below can be obtained. (1)
  • the storage capacitor Cs holds the second non-light emission voltage VDN2 having a polarity different from that of the light emission voltage VD. Therefore, when the shift of the threshold voltage Vth of the driving transistor Tr3 proceeds excessively in the specific pixel Px, the shift of the threshold voltage Vth is suppressed for the specific pixel Px. As a result, the range in which the effect of suppressing the shift of the threshold voltage Vth of the drive transistor Tr3 from being different for each pixel Px is expanded with respect to the degree of shift of the threshold voltage Vth.
  • the storage capacitor Cs is discharged through the EL element 11. Therefore, when the operation of the EL display device is switched from the non-light emitting period to the light emitting period, it is possible to suppress a sudden change in the potential difference held by the storage capacitor Cs.
  • the EL display device of the third embodiment and the driving method of the EL display device are the EL display device of the first embodiment, the driving method of the EL display device, the EL display device of the second embodiment, and A detection operation for detecting the threshold voltage Vth of the drive transistor Tr3 and a detection step are further added to the driving of the EL display device. Therefore, in the following, the detection operation and the detection process will be described in detail, and the configuration similar to the configuration described in the first embodiment and the configuration similar to the configuration described in the second embodiment will be described. Are given the same reference numerals and their detailed description is omitted.
  • the timing controller 52 generates a data shift clock signal Clkd, a display shift clock signal Clks, and a detection shift clock signal Clkr.
  • the timing controller 52 outputs the data shift clock signal Clkd to the data driver 40, outputs the display shift clock signal Clks to the selection driver 20 and the power supply driver 30, and outputs the detection shift clock signal Clkr to the selection driver 20 and the power supply. Output to the driver 30.
  • the detection shift clock signal Clkr determines a cycle in which selection candidates are switched in the detection operation. Each time the detection shift clock signal Clkr rises, the selection driver 20 applies the selection voltage VgH in the order of the first scanning line Ls, the second scanning line Ls,..., The m-th scanning line Ls. Select one candidate at a time. Each time the shift clock signal Clkr for detection rises, the power supply driver 30 supplies one power supply line La in the order of the first power supply line La, the second power supply line La,..., The mth power supply line La. Select one by one.
  • the detection clock cycle that is the clock cycle of the detection shift clock signal Clkm is preferably sufficiently shorter than the display cycle. For example, the detection clock cycle is preferably the same as the clock cycle of the data shift clock signal Clkd.
  • the selection driver 20 scans the selection target candidates in the display clock cycle, and in the non-light emission period, the selection driver 20 scans the selection target candidates in the display clock cycle.
  • the detection operation the selection driver 20 scans the selection target candidates in the detection clock cycle.
  • the power supply driver 30 scans the supply target candidates in the display clock cycle, and also scans the supply target candidates in the display clock cycle in the non-light emission period.
  • the power supply driver 30 scans the supply target candidates at the detection clock cycle.
  • the detection shift clock signal Clkr includes a shift standby portion in which the low level is maintained only during the detection period while the high level and the low level are repeated in the detection clock cycle.
  • the timing at which the shift standby portion is output is shifted every time the detection shift clock signal Clkr is output, that is, every time a detection operation is performed.
  • the detection shift clock signal Clkr repeats the high level and the low level q times (1 ⁇ q ⁇ m) in the clock cycle, and then continues the shift standby part.
  • the detection shift clock signal Clkr repeats the high level and the low level q + 1 times (1 ⁇ q ⁇ m), and then continues the shift standby portion.
  • the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection.
  • the q + 1th scanning line Ls to the mth scanning line Ls are sequentially switched again in the detection clock cycle as selection candidates.
  • the first scanning line Ls to the q + 1th scanning line Ls are sequentially switched in the detection clock cycle as selection candidates. Then, after the detection period has elapsed, from the (q + 2) -th scanning line Ls to the m-th scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection.
  • the timing controller 52 generates a start pulse signal SP1, a start pulse signal SP2, a latch pulse signal LP, and a mask pulse signal MP.
  • the timing controller 52 inputs the start pulse signal SP1 and the latch pulse signal LP to the data driver 40.
  • the timing controller 52 inputs the start pulse signal SP ⁇ b> 2 and the mask pulse signal MP to the selection driver 20, the power supply driver 30, and the image signal processing unit 54.
  • the start pulse signal SP2 is a control signal for controlling the processing timing of the selection driver 20, and switches the shift clock signal used for switching the candidate to be selected between the display clock cycle and the detection clock cycle.
  • the start pulse signal SP2 is a control signal for controlling the processing timing of the power supply driver 30, and switches the shift clock signal used for switching the candidate to be supplied between the display clock cycle and the detection clock cycle.
  • the timing controller 52 switches the shift clock signal used for switching the candidate to be selected from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input a set number of times.
  • the timing controller 52 switches the shift clock signal used for switching the candidate to be supplied from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input a set number of times.
  • the set number of times is set to 3, and the timing controller 52 changes the shift clock signal from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input three times.
  • the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and the light-emission writing operation and the light-emission operation are advanced.
  • the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and the writing operation for non-light emission and the non-light emission operation are advanced.
  • the m scanning lines Ls are sequentially switched in the detection clock cycle as candidates for selection, and the detection operation proceeds.
  • the mask pulse signal MP is a control signal for controlling the processing timing of the selection driver 20, and controls the output of the shift signal generated by the selection driver 20.
  • the selection driver 20 applies the selection voltage VgH to one of the scanning lines Ls based on the shift signal generated by the selection driver 20.
  • the selection driver 20 applies the non-selection voltage VgL to all the scanning lines Ls regardless of the shift signal generated by the selection driver 20.
  • the mask pulse signal MP is normally set to a high level, and every time the start pulse signal SP2 is output a set number of times, the mask pulse signal MP is switched from the high level to the low level, and the high level is maintained for the detection period. Including parts.
  • the output timing of the mask release portion is synchronized with the output of the shift standby portion and is shifted every time a detection operation is performed.
  • the high level and the low level are repeated q times (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then the mask release portion is output.
  • the high level and the low level are repeated q + 1 times (1 ⁇ q ⁇ m) in the detection shift clock signal Clkr, and then the mask release portion is output.
  • the selection voltage VgH is applied to the scanning line Ls in the qth row that is the candidate at that time.
  • the first scanning line Ls to the (q + 1) th scanning line Ls are scanned as detection target candidates in the detection clock cycle. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited.
  • the selection voltage VgH is applied to the scanning line Ls of the q + 1th row that is the candidate at that time.
  • the storage unit 53 includes a storage area of m rows ⁇ n columns associated with each of the plurality of pixels Px.
  • the storage unit 53 takes in the detection data Dout from the data driver 40.
  • the detection data Dout is data related to the threshold voltage Vth for each pixel Px, for example, 8-bit data.
  • the storage unit 53 stores detection data Dout for each pixel Px in a storage area associated with the pixel Px.
  • the storage unit 53 stores each time data in a storage area associated with the pixel Px, and updates the detection data Dout.
  • the image signal processing unit 54 reads the detection data Dout for each pixel Px stored in the storage unit 53.
  • the image signal processing unit 54 performs an addition / subtraction operation on the gradation data for light emission for each pixel Px based on the detection data Dout for each pixel Px, and outputs the result as display data Din for each pixel Px.
  • the image signal processing unit 54 generates non-light emitting gradation data for each pixel Px using the display data Din subjected to the addition / subtraction calculation.
  • the configuration of the selection driver 20 will be described with reference to FIG.
  • the configuration for selecting the supply target candidate in the power supply driver 30 is the same as the configuration for selecting the selection target candidate in the selection driver 20. Therefore, in the following, the configuration of the selection driver 20 will be described in detail, and the configuration of the power supply driver 30 will be omitted.
  • the control unit 50 inputs the detection shift clock signal Clkr to the shift register circuit 21.
  • the shift register circuit 21 sequentially shifts one selection target bit in the shift signal line by line from the first line to the m-th line for every input of the detection shift clock signal Clkr.
  • the control unit 50 inputs the mask pulse signal MP to the shift register circuit 21.
  • the shift register circuit 21 When the mask pulse signal MP is at high level, the shift register circuit 21 outputs a shift signal. On the other hand, when the mask pulse signal MP is at the low level, the shift register circuit 21 outputs a shift signal that does not include the selection target bit.
  • the shift clock signal is the display shift clock signal Clks
  • the shift register circuit 21 outputs a shift signal including the selection target bit based on the mask pulse signal MP being at a high level.
  • the shift clock signal is the detection shift clock signal Clkr
  • the shift register circuit 21 shifts the selection target bit not included based on the fact that the mask pulse signal MP is at a low level in a period other than the detection period. Output a signal.
  • Control of such shift signal output is performed, for example, by connecting m logical product circuits corresponding to each bit of the shift signal to the input terminal of the shift register circuit 21, and mask pulse signal MP to each of the m logical product circuits. This is realized by inputting.
  • the data latch circuit 43 includes n data latches 43a, n input switches SW1 connected to the input terminals of the n data latches 43a, and n data latches 43a. And n output switches SW2 connected to the respective output terminals.
  • the data latch circuit 43 includes an output switch SW2 in the first column and a transfer switch SWtrs connected to the control unit 50.
  • the input switch SW1 is driven based on a control signal from the control unit 50, and the input end of the p-th column data latch 43a is connected to the p-th column register in the data register circuit 42 and the p-th column detection ADC 44b. , Connected to any one of the output ends of the data latches 43a in the (p + 1) th column.
  • the data latch 43a When the input terminal of the data latch 43a and the data register circuit 42 are connected, the data latch 43a holds the display data Din stored in the data register circuit 42 at a timing synchronized with the latch pulse signal LP.
  • the data latch 43a holds the data output from the detection ADC 44b as detection data Dout at a timing synchronized with the latch pulse signal LP.
  • the data latch 43a in the p-th column When the input end of the data latch 43a in the p-th column is connected to the output end of the data latch 43a in the p + 1-th column, the data latch 43a in the p-th column is synchronized with the latch pulse signal LP at the timing of the p + 1-th column. The detection data Dout held by the data latch 43a is held. Note that the data latch 43a in the nth column, which is the last column, is connected to the logic power supply 60, and the logic reference voltage LVSS is applied to the data latch 43a in the nth column.
  • the output switch SW2 is driven based on a control signal from the control unit 50, and the input terminal of the data latch 43a in the (p + 1) th column is connected to the display DAC 44a of the voltage conversion circuit 44 and the input terminal of the data latch 43a in the pth column. Connect to one of these.
  • the display data Din held by the data latch 43a is input to the display DAC 44a at a timing synchronized with the latch pulse signal LP.
  • the detection data Dout held in the data latch 43a in the p + 1 column is synchronized with the latch pulse signal LP. Thus, it is held in the data latch 43a in the p-th column.
  • the transfer switch SWtrs is driven based on a control signal from the control unit 50, and switches between connection and disconnection between the data latch 43a in the first column and the control unit 50.
  • the detection data Dout held by the data latch 43a in the first column is output to the control unit 50.
  • the voltage conversion circuit 44 includes n display DACs 44a and n detection ADCs 44b which are analog-digital conversion circuits.
  • Each of the n detection ADCs 44b converts an analog voltage input from the buffer circuit 45 connected to the detection ADC 44b into, for example, 8-bit detection data Dout, and a data latch connected to the detection ADC 44b.
  • the detection data Dout is output to 43a.
  • the detection ADC 44b has linearity in the output digital data with respect to the input analog voltage.
  • the display DAC 44a and the detection ADC 44b are set to the same bit length, for example, 8 bits, as the bit length of the digital data at the time of voltage conversion.
  • the buffer circuit 45 includes a buffer 45a for each data line Ld, a buffer 45b for each data line Ld, and a display switch SWd for each data line Ld for switching connection and disconnection between the data line Ld and the buffer 45a. Yes.
  • the buffer circuit 45 also includes a detection switch SWm for each data line Ld that switches connection and disconnection between the data line Ld and the buffer 45b, and a data line Ld that switches connection and disconnection between the data line Ld and the analog power supply 70. And a detection voltage switch SWs.
  • the display switch SWd is driven based on a control signal from the control unit 50, connects the buffer 45a and the data line Ld, and applies the light emission voltage VD and the non-light emission voltage VDN from the buffer 45a to the data line Ld. .
  • the buffer 45b takes in the voltage of the data line Ld, amplifies the taken-in voltage to the drive level of the detection ADC 44b, and outputs the amplified voltage to the detection ADC 44b.
  • the detection switch SWm is driven based on a control signal from the control unit 50, connects the buffer 45b and the data line Ld, and takes the voltage of the data line Ld into the buffer 45b.
  • the detection voltage switch SWs controls application of the detection voltage VM from the analog power supply 70 to the data line Ld.
  • Each input terminal of the n data latches 43a is connected to a corresponding register in the data register circuit 42 in the light emission period and the non-light emission period.
  • Each of the n data latches 43a holds the gradation data stored in the corresponding register, and synchronizes the holding with the latch pulse signal LP.
  • Each of the n data latches 43 a outputs the display data Din held in the data latch 43 a to the voltage conversion circuit 44.
  • the data latch circuit 43 holds the display data Din for one row fetched by the data register circuit 42 for each input of the latch pulse signal LP, and converts the held display data Din for one row into a voltage. Output to the circuit 44.
  • Each input terminal of the n data latches 43a is connected to the corresponding detection ADC 44b in the display DAC / ADC 44 in the detection operation.
  • Each of the n data latches 43a holds the data output from the corresponding detection ADC 44b as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
  • the input terminal of the data latch 43a in the p-th column (1 ⁇ p ⁇ n) is connected to the output terminal of the data latch 43a in the p + 1 column in the detection operation.
  • Each of the data latches 43a in the p-th column holds the data held in the data latches 43a in the (p + 1) th column as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
  • the output terminal of the data latch 43a in the first column is connected to the control unit 50 in the detection operation, and outputs the detection data Dout held in the data latch 43a in the first column to the control unit 50.
  • the data latch 43a in the first column holds all data held in the data latch 43a in the p + 1 column in order from the data latch 43a in the second column, and outputs the held data to the control unit 50 in order. To do.
  • Flash duration With reference to FIG. 18, the transition of the drive state of the selection driver 20, the power supply driver 30, and the data driver 40 in the light emission period will be described. In the light emission period, as in the first embodiment and the second embodiment, the light emission writing operation and the light emission operation are performed in this order.
  • the control unit 50 keeps the detection switch SWm, the detection voltage switch SWs, and the transfer switch SWtrs off.
  • the control unit 50 keeps the output switch SW2 in a state where the data latch 43a and the display DAC 44a are connected, and keeps the input switch SW1 in a state where the data latch 43a and the data register circuit 42 are connected.
  • the control part 50 controls the input of start pulse signal SP1, the input of start pulse signal SP2, and the input of latch pulse signal LP similarly to the light emission period in 1st Embodiment.
  • the control unit 50 switches on the display switch SWd to connect the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld in series. Connect to.
  • the control unit 50 inputs the start pulse signal SP1 to the data driver 40, and causes the data register circuit 42 to capture the display data Din of the first row. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
  • the control unit 50 applies the selection voltage VgH to the first scanning line Ls, and applies the writing voltage WDVSS to the first power supply line La.
  • the control unit 50 inputs the latch pulse signal LP to the data driver 40 and causes the data latch 43a to simultaneously hold the display data Din for the first row.
  • the display data Din in the first row held in the data latch 43a is input to the data line Ld as the light emission voltage VD which is an analog voltage.
  • the control unit 50 finishes the light emission writing operation for the pixels Px in the first row.
  • the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again, and causes the data register circuit 42 to capture the display data Din on the second row.
  • the control unit 50 handles the difference between the detection data Dout associated with the pixel Px in the first row and the reference threshold voltage Vth as a correction value. Then, the control unit 50 calculates and corrects the correction value for the adjusted light emission gradation data, and sets the calculation result as the light emission voltage VD applied to each data line Ld.
  • the control unit 50 applies the non-selection voltage VgL to the first scanning line Ls and applies the driving voltage ELVDD to the first power supply line La.
  • Each of the driving transistors Tr3 in the first row has a drain corresponding to the difference between the write voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth in the driving transistor Tr3 to which the driving transistor Tr3 is connected.
  • a current is supplied to the corresponding EL element 11.
  • the control unit 50 ends the light emission period for the pixels Px in the first row.
  • the control unit 50 applies the selection voltage VgH to the second scanning line Ls and applies the write voltage WDVSS to the second power supply line La. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row. The display data Din in the second row held in the data latch 43a is input to the data line Ld as the light emission voltage VD which is an analog voltage. Thus, the control unit 50 finishes the light emission writing operation for the pixels Px in the second row. Thereafter, the write operation for light emission and the light emission operation are performed in this order for each row, and such a light emission period is repeated in order from the first row to the nth row in the display clock cycle.
  • Non-light emission period The transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 during the non-light emission period of the EL display device will be described with reference to FIGS.
  • FIG. 19 shows transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 in the non-light emission writing operation and the non-light emission operation
  • FIG. 21 shows the selection driver in the detection operation. 20, the transition of the drive state of the power supply driver 30 and the data driver 40 is shown.
  • the control unit 50 follows the light emission period, and includes a detection switch SWm, a detection voltage switch SWs, and The transfer switch SWtrs is kept off.
  • the control unit 50 keeps the output switch SW2 in a state where the data latch 43a and the display DAC 44a are connected, and keeps the input switch SW1 in a state where the data latch 43a and the data register circuit 42 are connected. Further, the control unit 50 keeps the display switch SWd on, and continues to connect the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld in series.
  • the control unit 50 receives the start pulse signal SP1, the start pulse signal SP2, and the latch pulse signal LP as in the non-light emission writing operation and the non-light emission operation in the first embodiment.
  • the control unit 50 inputs the start pulse signal SP1 to the data driver 40, and causes the data register circuit 42 to take in the display data Din of the first row. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
  • the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row and applies the writing voltage WDVSS to the power supply line La in the first row.
  • the control unit 50 inputs the latch pulse signal LP to the data driver 40 and causes the data latch 43a to simultaneously hold the display data Din for the first row.
  • the display data Din in the first row held in the data latch 43a is input to the data line Ld as a non-light emission voltage VDN that is an analog voltage.
  • the control unit 50 holds, for each pixel Px in the first row, a lower gate-source voltage Vgs as the pixel Px with the immediately higher light emission voltage VD causes non-light emission to the pixel Px in the first row. Finish the writing operation.
  • the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again, and causes the data register circuit 42 to capture the display data Din on the second row.
  • the control unit 50 handles the difference between the detection data Dout associated with the pixel Px in the first row and the reference threshold voltage Vth as a correction value. Then, the control unit 50 applies the non-light emission voltage VDN to which the correction value is added to each data line Ld.
  • the control unit 50 continues to apply the non-selection voltage VgL to the scanning line Ls of the first row and the writing voltage WDVSS to the power supply line La of the first row.
  • the control unit 50 applies a lower gate-source to each driving transistor Tr3 in the first row, as the writing voltage held in the holding capacitor Cs in the first row, that is, the pixel Px having the immediately higher light emission voltage VD.
  • the voltage Vgs is continuously applied.
  • the control unit 50 finishes the non-light emission operation for the pixels Px in the first row.
  • the control unit 50 applies the selection voltage VgH to the second scanning line Ls and applies the write voltage WDVSS to the second power supply line La. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row. The display data Din in the second row held in the data latch 43a is input to the data line Ld as the non-light emission voltage VDN that is an analog voltage. Thereby, the control unit 50 finishes the non-light emission writing operation for the pixels Px in the second row. Thereafter, the non-emission writing operation and the non-emission operation are performed in this order for each row, and the non-emission writing operation and the non-emission operation are sequentially displayed from the first line to the nth line. Repeated with clock period.
  • FIG. 20 illustrates the above dependency on two drive transistors Tr3 having different threshold voltages Vth of the drive transistor Tr3.
  • a curve L1 indicated by a solid line in FIG. 20 shows the dependence of the light emission voltage VD on the drain current Id of the drive transistor Tr3, and the threshold voltage Vth of the drive transistor Tr3 and the current amplification factor ⁇ in the drive circuit PCC are Indicates the dependency when it is the initial value. Assuming that the initial value of the threshold voltage Vth is Vth 0 , the drain current Id flowing through the drive circuit PCC in the initial state is expressed by the following formula (1). V 0 is the write voltage WDVSS.
  • a curve L2 indicated by a broken line in FIG. 20 shows the dependency of the light emission voltage VD on the drain current Id of the driving transistor Tr3, and shows the time when the drain current Id of the driving transistor Tr3 changes from the initial state over time.
  • Vth 1 Vth 0 + ⁇ Vth
  • the drain current Id flowing through the drive circuit PCC in this state is expressed by the following formula (2).
  • the curve L2 shows a shape in which the curve L1 is translated by the shift amount ⁇ Vth, and before and after the fluctuation of the threshold voltage Vth, The shapes of the curve L1 and the curve L2 are not substantially changed. This is because the fluctuation of the current amplification factor ⁇ is negligible compared to the fluctuation of the threshold voltage Vth, and the light emission voltage VD is corrected using the shift amount ⁇ Vth in the driving transistor Tr3. This suggests that the drain current Id of the driving transistor Tr3 is corrected.
  • the EL display device of the second embodiment detects the threshold voltage Vth of the drive transistor Tr3 and corrects the light emission voltage VD applied to the drive circuit PCC.
  • the transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 in the detection operation will be described.
  • a voltage holding operation, a voltage saturation operation, a voltage measurement operation, and a voltage output operation are performed in this order.
  • the detection operation of the threshold voltage Vth is equal to each other for each row where the pixels Px are arranged. Therefore, hereinafter, a case where the row to be detected is the q-th row will be described as an example.
  • the control unit 50 continues to apply the write voltage WDVSS to the q-th power supply line La during the period in which the detection operation of the pixel Px in the q-th row is performed. Further, the control unit 50 keeps the display switch SWd off, and keeps disconnecting the driving circuit PCC in the q-th row from the shift register circuit 41 and the data register circuit 42. Further, the control unit 50 continues to connect the output switch SW2 to another adjacent data latch 43a.
  • the control unit 50 connects the input switch SW1 to the detection ADC 44b and keeps the transfer switch SWtrs off. In this state, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the q-th row so that the switching transistor Tr2 in the q-th row and the sampling transistor Tr1 in the q-th row are in a conductive state. The eye driving transistor Tr3 is changed to a state of driving in the saturation region. Further, the control unit 50 switches on the detection voltage switch SWs to apply the detection voltage VM to the data lines Ld from the analog power supply 70 at the same time.
  • the detection voltage VM is set in advance so that a voltage higher than the assumed threshold voltage Vth is applied as the gate-source voltage Vgs. That is, the control unit 50 causes the detection voltage VM between the gate and the source of the drive transistor Tr3 so that the difference between the write voltage WDVSS and the detection voltage VM is larger than the assumed threshold voltage Vth. Apply. Note that the potential of each data line Ld to which the detection voltage VM is applied is lower than the write voltage WDVSS and lower than the cathode of the EL element 11.
  • the current for each pixel Px corresponding to the difference between the detection voltage VM and the write voltage WDVSS is supplied to the q-th drive transistor Tr3 and the q-th row. It flows to the analog power supply 70 through the sampling transistor Tr1. Accordingly, the gate-source voltage Vgs of the driving transistor Tr3 is held in the holding capacitor Cs in the q-th row, and thus the voltage holding operation is finished. Note that the EL element 11 does not emit light because the potential of the anode of the EL element 11 is lower than the potential of the cathode of the EL element 11.
  • the control unit 50 switches off only the detection voltage switch SWs while maintaining the application of the selection voltage VgH to the scanning line Ls in the q-th row and keeping the detection switch SWm off. As a result, a portion of each data line Ld that is closer to the data driver 40 than a portion that is connected to the sampling transistor Tr1 is switched to a high impedance state.
  • the holding capacitor Cs in the q-th row holds the gate-source voltage Vgs of the driving transistor Tr3 in the q-th row
  • the potential of the source of the driving transistor Tr3 in the q-th row becomes the q-th row.
  • the drain current flows in the driving transistor Tr3 in the q-th row so as to approach the drain potential of the driving transistor Tr3.
  • the relaxation time t which is the time elapsed from the timing t2
  • the q-th storage capacitor Cs discharges, and the voltage between both ends of the q-th storage capacitor Cs is, that is, the q-th storage capacitor Cs.
  • the gate-source voltage Vgs in the drive transistor Tr3 decreases to the threshold voltage Vth at which the drain current does not flow.
  • the holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of the driving transistor Tr3 in the q-th row, and the voltage saturation operation ends.
  • the control unit 50 keeps the detection switch SWm for applying the detection voltage VM to each data line Ld off after the timing t2.
  • the control unit 50 keeps applying the selection voltage VgH to the q-th scanning line Ls, and turns on only the detection switch SWm. As a result, the data line Ld and the detection ADC 44b are connected, and the potential of the data line Ld in the high impedance state is taken into the detection ADC 44b.
  • the holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of the driving transistor Tr3 in the q-th row. Therefore, from the potential difference between the potential taken in the detection ADC 44b and the write voltage WDVSS, the gate-source voltage Vgs in the q-th drive transistor Tr3, that is, the threshold voltage of the q-th drive transistor Tr3. A voltage corresponding to Vth is detected.
  • the potential of the data line Ld taken into the detection ADC 44b is converted into detection data Dout which is digital data by the detection ADC 44b, and is output to the data latch 43a through the level shifter 46b.
  • the data latch 43a holds the detection data Dout, thereby ending the voltage measurement operation.
  • the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the qth row, and switches the switching transistor Tr2 in the qth row and the sampling transistor Tr1 in the qth row to a non-conductive state. In this state, the control unit 50 switches the detection switch SWm off and switches the transfer switch SWtrs on. Further, the control unit 50 connects the input switch SW1 to the adjacent data latch 43a and connects the data latches 43a in series.
  • the control unit 50 inputs the latch pulse signal LP to the data driver 40, and sequentially transfers the detection data Dout held in each data latch 43a in synchronization with the timing of the latch pulse signal LP.
  • the control unit 50 causes the data driver 40 to sequentially transfer data regarding the threshold voltage Vth of each of the driving transistors Tr3 in the q-th row.
  • the number of times the latch pulse signal LP is repeated is omitted for convenience of explaining the transition of the driving state.
  • the control unit 50 keeps applying the non-selection voltage VgL to the q-th scanning line Ls and switches off the transfer switch SWtrs.
  • the control unit 50 connects the input end of the data latch 43 a to the register of the data register circuit 42. As a result, the voltage output operation ends, and the detection operation for the driving transistor Tr3 in the q-th row ends.
  • the transition of the data line potential VLd which is the potential of the data line Ld in the period from the timing t2 to the timing t3 will be described.
  • the relaxation time t which is the time elapsed from the timing t2
  • the data line potential VLd becomes the detection voltage VM according to the discharge of the charge in the storage capacitor Cs connected to the data line Ld.
  • the relaxation time t advances to the saturation time ts
  • the data line potential VLd is saturated at the saturation voltage VLds and the drain current does not flow.
  • the difference between the write voltage WDVSS and the saturation voltage VLds is set as the threshold voltage Vth.
  • the saturation time ts is, for example, 3 nsec to 10 nsec, and the period from timing t2 to timing t3 is set to be equal to or longer than the saturation time ts.
  • FIG. 23 shows the timing of the detection operation in the non-light emission period of the first frame
  • FIG. 24 shows the timing of the detection operation in the non-light emission period of the second frame
  • FIG. 25 shows the timing in the non-light emission period of the 540 frame.
  • the timing of detection operation is shown. Note that the number of rows in the arrangement of the pixels Px may be other than 540. When the number of rows in the arrangement of the pixels Px is m rows, the timing of the detection operation of the m-th frame corresponds to the content shown in FIG.
  • the light emission writing operation starts in the pixel Px in the first row.
  • the write operation for light emission ends at the pixel Px in the first row
  • the light emission operation starts at the pixel Px in the first row
  • the write operation for light emission starts at the pixel Px in the second row.
  • the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed.
  • the write operation for light emission proceeds in the pixel Px on the 540th row, and the write operation for non-light emission starts on the pixel Px on the first row.
  • the non-emission writing operation ends at the pixel Px in the first row
  • the non-emission operation starts at the pixel Px in the first row
  • the non-emission writing operation starts at the pixel Px in the second row.
  • the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
  • the non-light emission operation proceeds in the pixel Px on the 540th row, and then the candidate for selection is sequentially scanned in the detection clock cycle from the pixel Px on the first row to the pixel Px on the 540th row. .
  • the pixel Px in the first row is set as a detection target from which the threshold voltage Vth is detected, and the detection operation for the pixel Px in the first row proceeds.
  • the detection data Dout for the driving transistor Tr3 in the first row is stored in the storage unit 53.
  • the selection target candidates are sequentially scanned from the pixel Px in the second row to the pixel Px in the 540 row in the detection clock cycle.
  • the non-selection voltage VgL is applied to all the scanning lines Ls, and all the pixels Px maintain a state in which the EL elements 11 are not caused to emit light.
  • the light emission writing operation for the pixel Px in the first row starts again.
  • the writing operation for light emission starts in the pixels Px in the first row.
  • the write operation for light emission ends at the pixel Px in the first row
  • the light emission operation starts at the pixel Px in the first row
  • the write operation for light emission starts at the pixel Px in the second row.
  • the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed. .
  • the write operation for light emission proceeds in the pixel Px in the 540th row, and the write operation for non-light emission starts in the pixel Px in the first row.
  • the non-emission writing operation ends at the pixel Px in the first row
  • the non-emission operation starts at the pixel Px in the first row
  • the non-emission writing operation starts at the pixel Px in the second row.
  • the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
  • the non-light emission operation proceeds at the pixel Px in the 540th row, and then the candidate for selection is sequentially scanned in the detection clock cycle from the pixel Px in the first row to the pixel Px in the 540th row.
  • the pixel Px in the second row is set as the detection target from which the threshold voltage Vth is detected, and the shift of the selection target bit in the detection clock cycle proceeds to the pixel Px in the second row.
  • the selection target candidate is the pixel Px in the first row
  • the non-selection voltage VgL is applied to the scanning line Ls.
  • the detection operation proceeds for the pixel Px in the second row.
  • the detection data Dout related to the driving transistor Tr3 in the second row is stored in the storage unit 53 of the control unit 50.
  • the selection candidate is sequentially scanned from the pixel Px in the third row to the pixel Px in the 540 row in the detection clock cycle.
  • the non-selection voltage VgL is applied to all the scanning lines Ls, and all the pixels Px maintain a state in which the EL elements 11 are not caused to emit light.
  • the light emission writing operation for the pixel Px in the first row starts again.
  • the light emission writing operation starts in the pixels Px in the first row.
  • the write operation for light emission ends at the pixel Px in the first row
  • the light emission operation starts at the pixel Px in the first row
  • the write operation for light emission starts at the pixel Px in the second row.
  • the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed. .
  • the light emission write operation proceeds in the pixel Px in the 540th row, and the non-light emission write operation starts in the pixel Px in the first row.
  • the non-emission writing operation ends at the pixel Px in the first row
  • the non-emission operation starts at the pixel Px in the first row
  • the non-emission writing operation starts at the pixel Px in the second row.
  • the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
  • the non-light emission operation proceeds in the pixel Px on the 540th row, and then the candidate to be selected is sequentially scanned from the pixel Px on the first row to the pixel Px on the 540th row in the detection clock cycle. .
  • the pixel Px in the 540th row is set as the detection target for which the threshold voltage Vth is detected, and the shift of the selection target bit in the detection clock cycle proceeds to the pixel Px in the 539th row.
  • the non-selection voltage VgL is applied to the scanning line Ls.
  • the detection operation proceeds for the pixel Px in the 540th row.
  • the detection data Dout regarding the drive transistor Tr3 in the 540th row is stored in the storage unit 53 of the control unit 50.
  • the detection operation for the pixel Px in the 540th row is finished, and the write operation for light emission is started again for the pixel Px in the first row.
  • the non-light emission operation proceeds to the pixel Px in the 540th row, and thereafter, the detection operation for the pixel Px in a specific row is performed.
  • the detection target of the threshold voltage Vth is shifted from the pixel Px in the first row one by one along the scanning direction for each frame. That is, when the detection operation for the pixel Px in the q-th row (1 ⁇ q ⁇ 539) is performed in the k-th frame (k is an integer equal to or greater than 1), the detection operation for the pixel Px in the q + 1-th row is performed in the k + 1-th frame. Is done.
  • the detection target advances to the pixel Px in the last row, the detection target returns to the pixel Px in the first row again.
  • the detection data Dout obtained when the detection target is the q-th row is stored and updated in the storage area in the control unit 50 in which the pixel Px in the q-th row is associated. Is done.
  • the control unit 50 uses the latest detection data Dout as the detection data Dout in the q-th row when generating the display data Din in the (k + 1) th frame. Note that the control unit 50 uses again the detection data Dout used in the k-th frame as the detection data Dout other than the q-th row. Thus, the detection data Dout of each row is updated every time the frame display is repeated 540 times.
  • the transition of the control signal during the period in which one frame is displayed will be described in detail. Since the transition of the control signal during the period in which one frame is displayed is the same for each detection target, hereinafter, the transition of the control signal when the detection target in the k-th frame is the pixel Px in the q-th row. Will be described as an example.
  • the selection driver 20 generates a shift signal at a display clock period in accordance with the input of the start pulse signal SP2, and applies the selection voltage VgH to each scanning line Ls in order at a timing based on the shift signal. At this time, the selection driver 20 applies the selection voltage VgH in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls.
  • the power supply driver 30 generates a shift signal at a display clock cycle in accordance with the input of the start pulse signal SP2, and sequentially selects candidates for supply at a timing based on the shift signal. At this time, the power supply driver 30 applies the write voltage WDVSS in order from the power supply line La of the first row to the power supply line La of the 540th row in the display clock cycle.
  • the selection voltage VgH is applied to the scanning line Ls of the q-th row (q is an integer from 1 to 540) and the write voltage WDVSS is applied to the power line La of the q-th row
  • the non-selection voltage VgL is applied to the scanning line Ls, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied. .
  • the selection driver 20 starts scanning for applying the selection voltage VgH again in response to the input of the start pulse signal SP2.
  • the power supply driver 30 starts scanning for the application of the write voltage WDVSS again in response to the input of the start pulse signal SP2.
  • the non-light-emitting voltage VDN based on the display data Din is the data Applied to line Ld.
  • the gate-source voltage Vgs in the reverse direction of the drive transistor Tr3 is applied to the drive transistor Tr3.
  • the input of the start pulse signal SP2 reaches the set number of times, and the shift clock signal used for scanning the scanning line Ls changes from the display clock cycle to the detection clock cycle.
  • Switch. The selection driver 20 shifts the selection target candidates in the detection clock cycle, and the power supply driver 30 shifts the supply target candidates in the detection clock cycle. Since the mask pulse signal MP is at a low level during this period, the selection driver 20 does not apply the selection voltage VgH to the selection target candidate. During this period, the power supply driver 30 continues to apply the write voltage WDVSS to the candidate to be supplied.
  • the mask pulse signal MP is switched to the high level, and the selection driver 20 applies the selection voltage VgH to the scanning line Ls of the q-th row. Then, the control unit 50 detects the threshold voltage Vth of the pixel Px in the q-th row.
  • the mask pulse signal MP is switched to the low level again.
  • the selection driver 20 shifts the selection target candidate to the 540th row in the detection clock cycle, and the power supply driver 30 also shifts the supply target candidate to the 540th row in the detection clock cycle. Since the mask pulse signal MP is at a low level during this period, the selection driver 20 does not apply the selection voltage VgH to the selection target candidate. During this period, the power supply driver 30 continues to apply the write voltage WDVSS to the candidate to be supplied.
  • the mask pulse signal MP is switched to the high level again. Then, the light emission writing operation and the light emission operation are started again in order from the first scanning line Ls to the 540th scanning line Ls.
  • the advantages listed below can be obtained.
  • the threshold voltage Vth of the drive transistor Tr3 is detected, and the display data Din is corrected by the threshold voltage Vth. Therefore, image quality deterioration due to fluctuations in the threshold voltage Vth can be suppressed.
  • the detection target of the threshold voltage Vth is n pixels Px connected to one scanning line Ls in one detection operation. Therefore, the detection time of the threshold voltage Vth in one detection operation is shorter than the time required for one detection operation as compared with the configuration of all the pixels Px. As a result, when the detection operation is incorporated in one non-emission period, it is possible to suppress a reduction in image quality due to the longer non-emission period.
  • the selection driver 20 also functions as a configuration that changes the detection target every time one frame is displayed.
  • the detection target candidate switching period is a detection clock period shorter than the display clock period. Therefore, for example, the time required for the detection operation is shorter than that in the configuration in which the detection target candidate switching cycle is the display clock cycle.
  • the detection target of the threshold voltage Vth is shifted by one row from the pixel Px in the first row along the scanning direction. Therefore, the correction of the display data Din based on the threshold voltage Vth is finer in the scanning direction than in the configuration in which the detection target of the threshold voltage Vth is intermittently set along the scanning direction.
  • the level of the non-light emission voltage VDN may be two different levels.
  • the light emission voltage VD is equal to or higher than the switching value Vp
  • the light emission voltage VD is associated with the low-level non-light emission voltage VDN among two different levels.
  • a high level non-light emission voltage VDN of two different levels is associated with the light emission voltage VD. That is, the light emission voltage VD corresponding to the gradation value lower than the gradation value corresponding to the switching value Vp is associated with the non-light emission voltage VDN having a large potential difference from the write voltage WDVSS among two different levels. It is done.
  • the light emission voltage VD corresponding to a gradation value equal to or higher than the gradation value corresponding to the switching value Vp is associated with a non-light emission voltage VDN that is close to the write voltage WDVSS among two different levels. Even if the light emission voltage VD and the non-light emission voltage VDN are associated with each other, the higher the light emission voltage VD is, the lower the non-light emission voltage VDN is in the vicinity of the switching value Vp.
  • the high level non-light-emitting voltage VDN of the two different levels is the same level as the second non-light-emitting voltage VDN2 of the second embodiment.
  • Good that is, when the level of the non-light emitting voltage VDN is two different levels, at least one level is a level in the reverse direction between the gate and the source of the driving transistor Tr3 in the non-light emitting writing operation. There may be. Note that all of the levels of the non-light emitting voltage VDN may be levels in the reverse direction between the gate and the source of the driving transistor Tr3 in the non-light emitting writing operation.
  • the non-light-emitting voltage VDN may have three different levels, or four or more different levels.
  • a configuration including a state in which the non-light emission voltage VDN is lower as the light emission voltage VD is higher may be used.
  • the non-light emission voltage VDN may continuously change over the entire range of the light emission voltage VD. That is, in all the ranges of the light emission voltage VD, the non-light emission voltage VDN may be associated with a lower value as the light emission voltage VD is higher.
  • the non-light emission voltage VDN having the same level as the second non-light emission voltage VDN2 of the second embodiment with respect to the light emission voltage VD corresponding to the highest gradation value. May be associated.
  • the change in the non-light emission voltage VDN with respect to the change in the light emission voltage VD may be different for each light emission voltage VD.
  • association in which the non-light emission voltage VDN does not change with respect to the change in the light emission voltage VD may be included.
  • the non-light-emitting voltage VDN (for example, ⁇ 5V) when the light-emitting voltage VD is low becomes higher than the minimum value (for example ⁇ 10V) of the light-emitting voltage VD.
  • the non-light emission voltage VDN may be associated.
  • a configuration including a state in which the non-light emission voltage VDN is lower as the light emission voltage VD is higher may be used.
  • the light emission voltage VD and the non-light emission voltage VDN associated with the light emission voltage VD may be applied to the data line Ld in different frames. In short, it is most important that the non-light emission voltage VDN has a lower state as the light emission voltage VD is higher.
  • the time when the light emission voltage VD is high may be a frame that is a predetermined number of times before the frame in which the non-light emission voltage VDN is applied to the data line Ld, or may be a frame that is a predetermined number of times. .
  • the control unit 50 stores the average value of the gradation data for light emission in a plurality of light emission periods, and updates the average value of the light emission gradation data for each of the plurality of light emission periods. Then, the control unit 50 uses the latest value of the average value of the light emission gradation data in a plurality of light emission periods, and generates the same non-light emission gradation data in a plurality of non-light emission periods immediately thereafter. That is, the non-light-emitting voltage VDN may be updated every multiple non-light-emission periods, using the same value in multiple non-light-emission periods. Even in such a configuration, the higher the light emission voltage VD, the lower the non-light emission voltage VDN is included.
  • the three transistors Tr1 to Tr3 included in the drive circuit PCC are not limited to n-type transistors but may be p-type transistors.
  • the anode of the EL element 11 is electrically connected to the power supply line La which is an example of the reference voltage line
  • the source Ns of the driving transistor Tr3 is electrically connected to the cathode of the EL element 11, and the drain of the driving transistor Tr3.
  • Nd is electrically connected to the ground voltage line Lb.
  • the driving transistor Tr3 has a gate, a source, and a drain, and one of the source and the drain may be a connection end, and the other of the source and the drain may be a power feeding end.
  • the drive circuit PCC includes a reference voltage line having a reference voltage, a drive transistor Tr3, an EL element 11 that is electrically connected to the ground voltage line Lb and the connection end, and a storage capacitor that connects the gate and the source. It is most important to prepare. In such a drive circuit PCC, at least one of the sampling transistor Tr1 and the switching transistor Tr2 may be omitted.
  • the sampling transistor Tr1 and the switching transistor Tr2 are omitted, the scanning line Ls is electrically connected to the gate of the driving transistor Tr3, and the data line Ld is electrically connected to the source of the driving transistor Tr3.
  • the drive circuit PCC and hence the EL display device, holds a voltage corresponding to the light emission voltage VD in the storage capacitor Cs during the light emission period, and passes a current corresponding to the light emission voltage VD to the EL element 11 through the drive transistor Tr3. .
  • the EL display device holds the voltage corresponding to the non-light emitting voltage in the holding capacitor Cs, and sets the voltage at the power feeding end so that the current passing through the driving transistor Tr3 does not flow to the EL element 11. As long as the light emission voltage VD is higher, the non-light emission voltage VDN may be lower.
  • the m scanning lines may be partitioned into a plurality of scanning line groups each including 10 scanning lines adjacent to each other, and the detection target of the threshold voltage Vth for each frame may be set for each scanning line group. .
  • the pixel Px in the first row is set as the detection target from the first scanning line group.
  • the pixel Px in the eleventh row is set as a detection target from the second scanning line group.
  • the detection target is shifted every ten rows from the pixel Px in the first row to the pixel Px in the 531 row.
  • the pixel Px in the second row is set as a detection target from the first scanning line group.
  • the pixel Px in the 12th row is set as the detection target from the second scanning line group.
  • the detection target is shifted every ten rows from the pixel Px in the second row to the pixel Px in the 532 row.
  • the pixel Px in the 10th row is set as the detection target from the first scanning line group.
  • the pixel Px on the 20th row is set as the detection target from the second scanning line group.
  • the correction of the display data Din based on the detection data Dout is performed in the following manner. May be.
  • the storage unit 53 in the control unit 50 includes a storage area of m / 10 rows ⁇ n columns, and associates each of the ten pixels Px arranged in the column direction with one storage area.
  • the storage unit 53 associates the pixel Px in the first column in the first scanning line group with the storage area in the first row and first column, and sets the pixel Px in the second column in the second scanning line group, The storage area is associated with the second row and the second column.
  • the storage unit 53 associates the 959th column pixel Px in the 54th scanning line group with the storage region in the 54th row 959 column, and the 960th column pixel Px in the 54th scanning line group. It is associated with the storage area in the 54th row and the 960th column.
  • the image signal processing unit 54 of the control unit 50 reads the gradation data for each pixel Px and the detection data Dout associated with the pixel Px from the storage unit 53 when generating the display data Din. Then, the image signal processing unit 54 performs addition / subtraction operation on the gradation data for each pixel Px based on the detection data Dout associated with the pixel Px to generate display data Din for each pixel Px.
  • the detection data Dout obtained in the period in which the current frame is displayed may be handled as the detection data Dout for all rows in the period in which the next frame is displayed.
  • the detection target may be set in the same row for each frame. Further, the detection target may be set irregularly for each frame.
  • the control unit 50 uses a random function that generates a random number for each frame between 1 and m.
  • the timing at which the shift standby portion is output by the detection shift clock signal Clkr and the timing at which the mask release portion is output by the mask pulse signal MP are synchronized, and only the time corresponding to the generated random number. It is sufficient if these are delayed from the start pulse signal SP2.
  • Two or more detection targets may be set for each frame.
  • the detection shift clock signal Clkr outputs two shift standby portions at different timings
  • the mask pulse signal MP outputs two mask release portions at different timings.
  • the timing at which each of the two shift standby portions is output is synchronized with the timing at which each of the two mask release portions is output.
  • a detection operation may be performed on the PCC.
  • the detection voltage VM applied in one detection operation may have a different configuration for each data line Ld.
  • each of the plurality of data lines Ld may be connected to the analog power supply 70 through different wirings.
  • the detection voltage VM may be supplied from the data driver 40 to the data line Ld as digital data.
  • the data line Ld to which the detection voltage VM is applied in one detection operation may be a part of all the data lines Ld. At this time, in one detection operation, only some data lines Ld to which the detection voltage VM is applied are connected to the analog power supply 70 via the detection voltage switch SWs.
  • the threshold voltage Vth is detected as a characteristic of the drive transistor Tr3, and the light emission voltage VD is corrected based on the detected threshold voltage Vth.
  • the current amplification factor ⁇ may be detected as a characteristic of the drive transistor Tr3, and the light emission voltage VD may be corrected based on the detected current amplification factor ⁇ .
  • both the threshold voltage Vth and the current amplification factor ⁇ may be detected as the characteristics of the drive transistor Tr3.
  • the detection target in the detection operation may be a parameter that affects the drive current supplied to the EL element 11 among the element characteristics of the drive transistor Tr3.
  • the light emission characteristics of the EL element 11 such as light emission luminance may be used in addition to the element characteristics of the drive transistor Tr3.
  • -An organic EL element may be sufficient as a light emitting element, and an inorganic EL element may be sufficient as it.

Abstract

An EL display device that, during a light-emission period, holds a voltage corresponding to a light-emission voltage in a storage capacitor (Cs) and causes a current corresponding to the light-emission voltage to flow to an EL element (11) via a drive transistor (Tr3). During a non-light-emission period, the EL display device holds a voltage corresponding to a non-light-emission voltage in the storage capacitor (Cs) and sets the voltage for a power supply end such that the current that has flowed through the drive transistor (Tr3) does not flow to the EL element (11). The EL display device has a state in which the non-light-emission voltage is lower the higher the light-emission voltage.

Description

EL表示装置、および、EL表示装置の駆動方法EL display device and driving method of EL display device
 本開示の技術は、駆動トランジスタを通して電流が供給されるElectro-Luminesence素子(EL素子)を備えるEL表示装置、および、EL表示装置の駆動方法に関する。 The technology of the present disclosure relates to an EL display device including an electro-luminescence element (EL element) to which a current is supplied through a drive transistor, and a method for driving the EL display device.
 EL表示装置は、複数の画素回路を備え、複数の画素回路の各々は、駆動トランジスタ、サンプリングトランジスタ、および、保持容量を備えている。保持容量は、駆動トランジスタのゲート・ソース間に接続し、サンプリングトランジスタは、階調データに応じたレベルの電圧を保持容量に書き込む。駆動トランジスタは、飽和領域にて動作するように構成され、保持容量の保持する電圧に応じたドレイン電流をEL素子に供給する。EL素子は、ドレイン電流によって駆動されて、階調データに応じた輝度で発光する(例えば、特許文献1参照)。 The EL display device includes a plurality of pixel circuits, and each of the plurality of pixel circuits includes a drive transistor, a sampling transistor, and a storage capacitor. The storage capacitor is connected between the gate and source of the driving transistor, and the sampling transistor writes a voltage of a level corresponding to the gradation data to the storage capacitor. The drive transistor is configured to operate in a saturation region, and supplies a drain current corresponding to a voltage held by the storage capacitor to the EL element. The EL element is driven by the drain current and emits light with luminance corresponding to the gradation data (see, for example, Patent Document 1).
特開2010-128397号公報JP 2010-128397 A
 サンプリングトランジスタが保持容量に書き込む電圧は、駆動トランジスタのゲート・ソース間に単一の極性を与える。画像を表示するEL表示装置では、画像が表示される期間に、こうした書き込みが繰り返される。そして、駆動トランジスタのゲート・ソース間に、単一の極性で電圧の印加が繰り返されるので、駆動トランジスタでは、ゲート・ソース間のしきい値電圧のシフトが進行する。 The voltage that the sampling transistor writes to the storage capacitor gives a single polarity between the gate and source of the drive transistor. In an EL display device that displays an image, such writing is repeated during a period in which the image is displayed. Since voltage application is repeated with a single polarity between the gate and source of the drive transistor, the threshold voltage shift between the gate and source proceeds in the drive transistor.
 この際に、駆動トランジスタのゲート・ソース間に印加される電圧は、階調データに応じたレベルであり、画素ごとに求められる輝度の階調は通常異なるので、しきい値電圧のシフトする度合いも画素ごとに異なる。結果として、1つの表示面を構成する複数の画素の各々は、階調データに対する輝度が互いに異なってしまう。 At this time, the voltage applied between the gate and source of the drive transistor is at a level corresponding to the gradation data, and the luminance gradation required for each pixel is usually different. Differs for each pixel. As a result, each of the plurality of pixels constituting one display surface has different luminance with respect to the gradation data.
 本開示の技術の目的は、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることを抑えるEL表示装置、および、EL表示装置の駆動方法を提供することである。 An object of the technology of the present disclosure is to provide an EL display device that suppresses a shift in threshold voltage of a drive transistor from pixel to pixel and a method for driving the EL display device.
 本開示のEL表示装置における一態様は、複数の画素回路を備え、前記画素回路は、駆動トランジスタ、EL素子、および保持容量を備える。前記駆動トランジスタは、ゲート、ソース、および、ドレインを有し、前記ソースと前記ドレインのいずれか一方が接続端であり、前記ソースと前記ドレインのうち他方が給電端である。前記EL素子は、前記接続端に電気的接続し、前記保持容量は、前記ゲートと前記ソースとに電気的接続する。このEL表示装置は、発光期間において、前記保持容量に発光電圧に相当する電圧を保持し、前記発光電圧に応じた電流を、前記駆動トランジスタを通じて前記EL素子に流し、非発光期間において、前記保持容量に非発光電圧に相当する電圧を保持し、前記駆動トランジスタを通した電流が前記EL素子に流れないように前記給電端の電圧を設定し、前記発光電圧が高いときほど前記非発光電圧が低い状態を有するように構成されている。 One aspect of the EL display device of the present disclosure includes a plurality of pixel circuits, and the pixel circuits include a drive transistor, an EL element, and a storage capacitor. The driving transistor has a gate, a source, and a drain, and one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end. The EL element is electrically connected to the connection end, and the storage capacitor is electrically connected to the gate and the source. In the EL display device, a voltage corresponding to a light emission voltage is held in the storage capacitor during the light emission period, and a current corresponding to the light emission voltage is supplied to the EL element through the drive transistor, and the hold is performed during the non-light emission period. A voltage corresponding to a non-light-emitting voltage is held in a capacitor, and the voltage at the power feeding end is set so that a current passing through the driving transistor does not flow to the EL element. The higher the light-emitting voltage, the more the non-light-emitting voltage becomes It is configured to have a low state.
 本開示のEL表示装置における他の態様は、複数の画素回路を備えるEL表示装置の駆動方法であって、前記画素回路は、駆動トランジスタ、EL素子、および保持容量を備える。前記駆動トランジスタは、ゲート、ソース、および、ドレインを有し、前記ソースと前記ドレインのいずれか一方が接続端であり、前記ソースと前記ドレインのうち他方が給電端である。前記EL素子は、前記接続端に電気的接続し、前記保持容量は、前記ゲートと前記ソースとに電気的接続する。このEL表示装置の駆動方法は、前記保持容量に発光電圧に相当する電圧を保持し、前記発光電圧に応じた電流を、前記駆動トランジスタを通じて前記EL素子に流す発光工程と、前記発光電圧が高いときほど低い状態を有するように設定されている非発光電圧に相当する電圧を前記保持容量に保持し、前記駆動トランジスタを通した電流が前記EL素子に流れないように前記給電端の電圧を設定する非発光工程とを備える。 Another aspect of the EL display device according to the present disclosure is a method for driving an EL display device including a plurality of pixel circuits, and the pixel circuits include a drive transistor, an EL element, and a storage capacitor. The driving transistor has a gate, a source, and a drain, and one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end. The EL element is electrically connected to the connection end, and the storage capacitor is electrically connected to the gate and the source. In this EL display device driving method, a voltage corresponding to a light emission voltage is held in the storage capacitor, and a current corresponding to the light emission voltage is supplied to the EL element through the drive transistor, and the light emission voltage is high. The voltage corresponding to the non-light-emitting voltage set so as to have a low state is held in the holding capacitor, and the voltage at the feeding end is set so that the current passing through the driving transistor does not flow to the EL element. A non-light emitting process.
 本開示のEL表示装置の一態様によれば、複数の駆動トランジスタの各々にて、ゲートとソースとの間に印加される電圧は、EL素子の発光時に高いときほど、EL素子の非発光時に低い。それゆえに、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることが抑えられる。 According to one aspect of the EL display device of the present disclosure, the voltage applied between the gate and the source in each of the plurality of drive transistors is higher when the EL element emits light, and when the EL element is not emitting light. Low. Therefore, it is possible to suppress a shift in threshold voltage of the driving transistor from pixel to pixel.
 本開示のEL表示装置の他の態様は、前記発光期間と前記非発光期間とから構成されるフレームを繰り返すように構成されており、前記発光電圧が高い前記フレームほど前記非発光電圧が低い状態を有する。 Another aspect of the EL display device according to the present disclosure is configured to repeat a frame including the light emission period and the non-light emission period, and the non-light emission voltage is lower as the frame has a higher light emission voltage. Have
 本開示のEL表示装置の他の態様によれば、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることが、表示における繰り返しの最短期間であるフレームごとに抑えられる。 According to another aspect of the EL display device of the present disclosure, the shift of the threshold voltage of the driving transistor is different for each pixel, and is suppressed for each frame which is the shortest repetition period in display.
 本開示のEL表示装置における他の態様にて、前記非発光電圧は、前記発光電圧の設定範囲における中間値を基準として、前記発光電圧と対称な反転電圧である。
 本開示のEL表示装置の他の態様によれば、発光電圧と対称な反転電圧が、非発光電圧として用いられる。そのため、1回の発光期間と1回の非発光期間を通じてゲートとソースとの間に印加される電圧は、複数の画素において均一である。それゆえに、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることを抑える効果は、さらに高められる。
In another aspect of the EL display device according to the present disclosure, the non-light-emitting voltage is an inverted voltage symmetrical to the light-emitting voltage with reference to an intermediate value in a setting range of the light-emitting voltage.
According to another aspect of the EL display device of the present disclosure, an inversion voltage symmetrical to the light emission voltage is used as the non-light emission voltage. Therefore, the voltage applied between the gate and the source through one light emission period and one non-light emission period is uniform in a plurality of pixels. Therefore, the effect of suppressing the shift of the threshold voltage of the driving transistor from being different for each pixel is further enhanced.
 本開示のEL表示装置における他の態様にて、前記画素回路は、前記発光期間での前記発光電圧が切替値と同じかそれよりも低いとき、前記発光電圧と同じ極性であり且つ前記発光電圧が高いときほど低く設定されている電圧を前記非発光電圧として前記保持容量に保持し、前記発光期間での前記発光電圧が前記切替値より高いとき、前記発光電圧とは異なる極性の電圧を前記非発光電圧として前記保持容量に保持するように構成されている。 In another aspect of the EL display device of the present disclosure, the pixel circuit has the same polarity as the light emission voltage and the light emission voltage when the light emission voltage in the light emission period is equal to or lower than a switching value. The higher the voltage is, the lower the voltage that is set as the non-light emission voltage is held in the holding capacitor, and when the light emission voltage in the light emission period is higher than the switching value, the voltage having a polarity different from the light emission voltage is The non-light emitting voltage is held in the holding capacitor.
 発光期間での発光電圧が高くなるほど、駆動トランジスタのしきい値電圧のシフトは進行する。本開示のEL表示装置の他の態様によれば、発光電圧が切替値より高いとき、発光電圧とは極性が異なる非発光電圧に相当する電圧を保持容量は保持する。それゆえに、駆動トランジスタのしきい値電圧のシフトが、特定の画素にて過度に進行する場合には、その特定の画素に対して、しきい値電圧のシフトが抑えられる。結果として、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることを抑える効果の及ぶ範囲は、しきい値電圧のシフトの度合いに対して広げられる。 The threshold voltage shift of the drive transistor progresses as the emission voltage during the emission period increases. According to another aspect of the EL display device of the present disclosure, when the light emission voltage is higher than the switching value, the holding capacitor holds a voltage corresponding to a non-light emission voltage having a polarity different from that of the light emission voltage. Therefore, when the threshold voltage shift of the driving transistor proceeds excessively in a specific pixel, the threshold voltage shift is suppressed for the specific pixel. As a result, the range in which the effect of suppressing the shift of the threshold voltage of the drive transistor from pixel to pixel is extended is widened with respect to the degree of shift of the threshold voltage.
 本開示のEL表示装置における他の態様にて、前記画素回路は、前記発光期間での前記発光電圧が前記切替値より高いとき、前記非発光電圧を一定値とするように構成されている。 In another aspect of the EL display device according to the present disclosure, the pixel circuit is configured to set the non-light-emitting voltage to a constant value when the light-emitting voltage in the light-emitting period is higher than the switching value.
 本開示のEL表示装置の他の態様によれば、発光電圧とは極性が異なる非発光電圧が一定値であるため、非発光電圧の生成に要する構成の簡素化が図られる。
 本開示のEL表示装置における他の態様にて、前記画素回路は、前記非発光期間において、前記駆動トランジスタのしきい値電圧を検出する検出動作を含み、前記発光期間において、前回の検出動作による検出結果を用いて前記発光電圧を予め補正するように構成されている。
According to another aspect of the EL display device of the present disclosure, the non-light-emitting voltage having a polarity different from that of the light-emitting voltage is a constant value, so that the configuration required for generating the non-light-emitting voltage can be simplified.
In another aspect of the EL display device according to the present disclosure, the pixel circuit includes a detection operation of detecting a threshold voltage of the drive transistor in the non-light emission period, and is based on a previous detection operation in the light emission period. The light emission voltage is corrected in advance using the detection result.
 本開示のEL表示装置の駆動方法における他の態様にて、前記非発光工程は、前記駆動トランジスタのしきい値電圧を検出する検出工程をさらに含み、前記発光工程において、前回の前記検出工程による検出結果を用いて前記発光電圧を予め補正する。 In another aspect of the driving method of the EL display device according to the present disclosure, the non-light emitting step further includes a detecting step of detecting a threshold voltage of the driving transistor, and the light emitting step is based on the previous detecting step. The light emission voltage is corrected in advance using the detection result.
 本開示の技術による他の態様によれば、駆動トランジスタのしきい値電圧の変化に起因したEL素子の輝度の変化が抑えられる。 According to another aspect of the technology of the present disclosure, a change in luminance of the EL element due to a change in threshold voltage of the drive transistor can be suppressed.
 本開示のEL表示装置、および、EL表示装置の駆動方法によれば、駆動トランジスタのしきい値電圧のシフトが画素ごとに異なることが抑えられる。 According to the EL display device and the EL display device driving method of the present disclosure, it is possible to suppress the shift of the threshold voltage of the driving transistor from pixel to pixel.
第1実施形態におけるEL表示装置の全体的な構成を示すブロック図である。It is a block diagram which shows the whole structure of the EL display apparatus in 1st Embodiment. 図1のEL表示装置が備える制御部、および、選択ドライバの構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a control unit and a selection driver included in the EL display device of FIG. 1. 図1のEL表示装置が備えるデータドライバ、および、画素回路の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a data driver and a pixel circuit included in the EL display device of FIG. 1. 図1のEL表示装置にてデータ線に印加される発光電圧とデータ線に印加される非発光電圧との関係を示すグラフである。2 is a graph showing a relationship between a light emission voltage applied to a data line and a non-light emission voltage applied to a data line in the EL display device of FIG. 1. 図1のEL表示装置が備える画素回路を示す回路図であって、発光用の書込操作時の状態を示す図である。FIG. 2 is a circuit diagram showing a pixel circuit included in the EL display device of FIG. 1 and showing a state at the time of writing operation for light emission. 図1のEL表示装置が備える画素回路を示す回路図であって、発光操作時の状態を示す図である。It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of FIG. 1 is provided, Comprising: It is a figure which shows the state at the time of light emission operation. 図1のEL表示装置が備える画素回路を示す回路図であって、非発光用の書込操作時の状態を示す図である。FIG. 2 is a circuit diagram showing a pixel circuit included in the EL display device of FIG. 1 and showing a state during a non-light-emission writing operation. 図1のEL表示装置が備える画素回路を示す回路図であって、非発光操作時の状態を示す図である。It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of FIG. 1 is provided, Comprising: It is a figure which shows the state at the time of non-light emission operation. 図1のEL表示装置の発光期間における走査線、および、電源線に印加される電圧の推移とデータドライバに入力される制御信号の推移とを示すタイミングチャートである。2 is a timing chart showing a transition of a scanning line and a voltage applied to a power supply line and a transition of a control signal input to a data driver in a light emission period of the EL display device of FIG. 図1のEL表示装置の非発光期間における走査線、および、電源線に印加される電圧の推移とデータドライバに入力される制御信号の推移とを示すタイミングチャートである。2 is a timing chart showing a transition of a voltage applied to a scanning line and a power supply line and a transition of a control signal input to a data driver in a non-light emitting period of the EL display device of FIG. 第2実施形態におけるEL表示装置にて、EL素子に印加される順方向電圧と、EL素子に流れる駆動電流との関係を示すグラフである。It is a graph which shows the relationship between the forward voltage applied to an EL element, and the drive current which flows into an EL element in the EL display apparatus in 2nd Embodiment. 第2実施形態のEL表示装置が備える走査線、電源線、および、データ線に印加される電圧の相対的な関係を、接地電圧を基準として示す電位相関図である。FIG. 9 is a potential correlation diagram showing a relative relationship between voltages applied to scanning lines, power supply lines, and data lines included in an EL display device according to a second embodiment, with a ground voltage as a reference. 第2実施形態のEL表示装置にてデータ線に印加される発光電圧とデータ線に印加される非発光電圧との関係を示すグラフである。It is a graph which shows the relationship between the light emission voltage applied to a data line in the EL display device of 2nd Embodiment, and the non-light-emission voltage applied to a data line. 第2の実施形態のEL表示装置が備える画素回路を示す回路図であって、非発光用の書込操作時の状態を示す図である。It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of 2nd Embodiment is provided, Comprising: It is a figure which shows the state at the time of writing operation for non-light emission. 第2の実施形態のEL表示装置が備える画素回路を示す回路図であって、非発光操作時の状態を示す図である。It is a circuit diagram which shows the pixel circuit with which the EL display apparatus of 2nd Embodiment is provided, Comprising: It is a figure which shows the state at the time of non-light emission operation. 第3実施形態におけるEL表示装置が備える制御部、および、選択ドライバの構成を示すブロック図である。It is a block diagram which shows the structure of the control part with which the EL display apparatus in 3rd Embodiment is provided, and a selection driver. 第3実施形態のEL表示装置が備えるデータドライバ、および、画素回路の構成を示すブロック図である。It is a block diagram which shows the structure of the data driver with which the EL display apparatus of 3rd Embodiment is provided, and a pixel circuit. 第3の実施形態のEL表示装置における発光期間での制御信号のレベルの推移をスイッチの状態と共に示すタイミングチャートである。It is a timing chart which shows transition of the level of the control signal in the light emission period in the EL display device of 3rd Embodiment with the state of a switch. 第3の実施形態のEL表示装置における非発光期間での制御信号のレベルの推移をスイッチの状態と共に示すタイミングチャート。10 is a timing chart showing a transition of a level of a control signal in a non-light emitting period in the EL display device according to the third embodiment together with a switch state. 第3実施形態のEL表示装置が備える駆動トランジスタのドレイン電流に対する発光電圧の依存性を示すグラフである。It is a graph which shows the dependence of the light emission voltage with respect to the drain current of the drive transistor with which the EL display apparatus of 3rd Embodiment is provided. 第3実施形態のEL表示装置における検出動作での制御信号のレベルの推移をスイッチの状態と共に示すタイミングチャートである。It is a timing chart which shows the transition of the level of the control signal in the detection operation in the EL display device of 3rd Embodiment with the state of a switch. 第3実施形態のEL表示装置におけるデータ線の電位と緩和時間との関係を示すグラフである。It is a graph which shows the relationship between the electric potential of the data line in the EL display device of 3rd Embodiment, and relaxation time. 第3実施形態のEL表示装置における第1フレームにて行われる各動作のタイミングを1行目の画素から540行目の画素の各々について示す模式図である。It is a schematic diagram which shows the timing of each operation | movement performed in the 1st flame | frame in the EL display apparatus of 3rd Embodiment about each of the 540th line pixel from the 1st line pixel. 第3実施形態のEL表示装置における第2フレームにて行われる各動作のタイミングを1行目の画素から540行目の画素の各々について示す模式図である。It is a schematic diagram which shows the timing of each operation | movement performed in the 2nd frame in the EL display apparatus of 3rd Embodiment about each of the pixel of the 540th line from the 1st line of pixels. 第3実施形態のEL表示装置における第540フレームにて行われる各動作のタイミングを1行目の画素から540行目の画素の各々について示す模式図である。It is a schematic diagram which shows the timing of each operation | movement performed by the 540th frame in the EL display apparatus of 3rd Embodiment about each of the pixel of the 540th line from the pixel of the 1st line. 第3実施形態のEL表示装置において1つのフレームが表示される期間での制御信号のレベルの推移を走査線、および、電源線ごとに示すタイミングチャート。9 is a timing chart showing a transition of a level of a control signal for each scanning line and power supply line in a period in which one frame is displayed in the EL display device according to the third embodiment. 変形例のEL表示装置にてデータ線に印加される発光電圧とデータ線に印加される非発光電圧との関係を示すグラフである。It is a graph which shows the relationship between the light emission voltage applied to a data line, and the non-light emission voltage applied to a data line in the EL display device of a modification. 変形例のEL表示装置にてデータ線に印加される発光電圧とデータ線に印加される非発光電圧との関係を示すグラフである。It is a graph which shows the relationship between the light emission voltage applied to a data line, and the non-light emission voltage applied to a data line in the EL display device of a modification. 変形例のEL表示装置の画素回路を示す回路図である。It is a circuit diagram which shows the pixel circuit of the EL display apparatus of a modification. 変形例のEL表示装置におけるフレームごとのしきい値検出動作の検出対象の推移を模式的に示す図である。It is a figure which shows typically transition of the detection target of the threshold value detection operation | movement for every flame | frame in the EL display apparatus of a modification. 変形例のEL表示装置におけるフレームごとのしきい値検出動作の検出対象の推移を模式的に示す図である。It is a figure which shows typically transition of the detection target of the threshold value detection operation | movement for every flame | frame in the EL display apparatus of a modification. 変形例のEL表示装置におけるフレームごとのしきい値検出動作の検出対象の推移を模式的に示す図である。It is a figure which shows typically transition of the detection target of the threshold value detection operation | movement for every flame | frame in the EL display apparatus of a modification.
 図1~図10を参照して、本開示におけるEL表示装置置、および、EL表示装置の駆動方法を具体化した第1実施形態を説明する。
 [第1実施形態]
 図1を参照して、EL表示装置の全体構成を説明する。
With reference to FIG. 1 to FIG. 10, a first embodiment in which an EL display device apparatus and a driving method of the EL display device according to the present disclosure are embodied will be described.
[First Embodiment]
The overall configuration of the EL display device will be described with reference to FIG.
 図1に示されるように、表示パネル10の有する複数の画素Pxは、m行×n列のマトリクス状に位置している。mは1以上の整数であり、また、nも1以上の整数である。複数の画素Pxの各々は、1つの有機EL素子を含む1つの画素回路を有している。 As shown in FIG. 1, the plurality of pixels Px included in the display panel 10 are positioned in a matrix of m rows × n columns. m is an integer of 1 or more, and n is an integer of 1 or more. Each of the plurality of pixels Px has one pixel circuit including one organic EL element.
 行方向に沿って延びるm本の走査線Lsと、列方向に沿って延びるn本のデータ線Ldとは、表示面に対する平面視にて互いに交差している。複数の画素Pxの各々は、走査線Lsとデータ線Ldとの交点付近に位置している。行方向に沿って並ぶn個の画素Pxの各々は、1本の走査線Lsと1本の電源線Laとに接続されている。列方向に沿って並ぶm個の画素Pxの各々は、1本のデータ線Ldに接続されている。 The m scanning lines Ls extending along the row direction and the n data lines Ld extending along the column direction intersect with each other in plan view with respect to the display surface. Each of the plurality of pixels Px is located near the intersection of the scanning line Ls and the data line Ld. Each of the n pixels Px arranged in the row direction is connected to one scanning line Ls and one power supply line La. Each of the m pixels Px arranged along the column direction is connected to one data line Ld.
 m本の走査線Lsの各々は、選択ドライバ20に電気的接続している。m本の電源線Laの各々は、電源ドライバ30に電気的接続している。n本のデータ線Ldの各々は、データドライバ40に電気的接続している。選択ドライバ20の駆動、電源ドライバ30の駆動、および、データドライバ40の駆動の各々は、制御部50によって制御される。 Each of the m scanning lines Ls is electrically connected to the selection driver 20. Each of the m power lines La is electrically connected to the power driver 30. Each of the n data lines Ld is electrically connected to the data driver 40. Each of the driving of the selection driver 20, the driving of the power supply driver 30, and the driving of the data driver 40 is controlled by the control unit 50.
 制御部50は、中央処理装置や記憶部を有するマイクロコンピューターを中心として構成されている。制御部50は、外部から画像信号を受けて、その画像信号を用いて画素Pxごとの表示データDinを生成する。画素Pxごとの表示データDinは、例えば、8ビットから構成される階調データである。制御部50は、画素Pxごとの表示データDinをデータドライバ40に入力する。 The control unit 50 is mainly configured by a microcomputer having a central processing unit and a storage unit. The control unit 50 receives an image signal from the outside, and generates display data Din for each pixel Px using the image signal. The display data Din for each pixel Px is, for example, gradation data composed of 8 bits. The control unit 50 inputs display data Din for each pixel Px to the data driver 40.
 選択ドライバ20は、シフトレジスタやバッファなどを備えている。選択ドライバ20は、制御部50から入力される制御信号に応じて、基準電圧に対してハイレベルである選択電圧VgHと、基準電圧に対してローレベルである非選択電圧VgLとのいずれかを、走査線Lsごとに印加する。選択ドライバ20は、選択電圧VgHの印加される走査線Lsを選択対象に設定する。選択ドライバ20は、選択対象の候補を、1行目の走査線Lsから最終行であるm行目の走査線Lsまで順に切替え、こうした選択対象の候補の切替えを繰り返す。 The selection driver 20 includes a shift register and a buffer. The selection driver 20 selects either the selection voltage VgH that is at a high level with respect to the reference voltage or the non-selection voltage VgL that is at a low level with respect to the reference voltage in accordance with a control signal input from the control unit 50. And applied for each scanning line Ls. The selection driver 20 sets the scanning line Ls to which the selection voltage VgH is applied as a selection target. The selection driver 20 sequentially switches the selection target candidates from the first scanning line Ls to the m-th scanning line Ls, which is the last row, and repeats the switching of the selection target candidates.
 電源ドライバ30は、シフトレジスタやバッファなどを備えている。電源ドライバ30は、制御部50から入力される制御信号に応じて、基準電圧に対してハイレベルである駆動電圧ELVDDと、基準電圧と等しいレベルである書込電圧WDVSSとのいずれかを、電源線Laごとに印加する。電源ドライバ30は、駆動電圧ELVDDの印加される電源線Laを供給対象に設定する。電源ドライバ30は、供給対象を、1行目の電源線Laから最終行であるm行目の電源線Laまで順に切替え、こうした供給対象の切替えを繰り返す。なお、電源ドライバ30の供給対象がk行目(kは1からmの整数)であるときに、選択ドライバ20の選択対象もk行目であるように、電源ドライバ30は構成されている。 The power supply driver 30 includes a shift register and a buffer. In accordance with a control signal input from the control unit 50, the power supply driver 30 supplies either the drive voltage ELVDD that is at a high level with respect to the reference voltage or the write voltage WDVSS that is at the same level as the reference voltage. Applied for each line La. The power supply driver 30 sets the power supply line La to which the drive voltage ELVDD is applied as a supply target. The power supply driver 30 sequentially switches the supply target from the first power supply line La to the m-th power supply line La, which is the last row, and repeats the switching of the supply target. The power supply driver 30 is configured such that when the supply target of the power supply driver 30 is the k-th row (k is an integer from 1 to m), the selection target of the selection driver 20 is also the k-th row.
 データドライバ40は、表示データDinを用いて、発光電圧VD、あるいは、非発光電圧VDNを生成する。発光電圧VDを生成するための表示データDinを、制御部50がデータドライバ40に入力するとき、データドライバ40は、その表示データDinを用いて、発光電圧VDを生成する。非発光電圧VDNを生成するための表示データDinを、制御部50がデータドライバ40に入力するとき、データドライバ40は、その表示データDinを用いて、非発光電圧VDNを生成する。 The data driver 40 generates the light emission voltage VD or the non-light emission voltage VDN using the display data Din. When the control unit 50 inputs display data Din for generating the light emission voltage VD to the data driver 40, the data driver 40 generates the light emission voltage VD using the display data Din. When the control unit 50 inputs display data Din for generating the non-light emitting voltage VDN to the data driver 40, the data driver 40 generates the non-light emitting voltage VDN using the display data Din.
 データドライバ40は、発光期間において、発光電圧VDをデータ線Ldごとに生成する。データドライバ40は、制御部50から入力される制御信号に応じて、n本のデータ線Ldの各々に対し、一斉に、発光電圧VDを印加する。 The data driver 40 generates the light emission voltage VD for each data line Ld during the light emission period. The data driver 40 applies the light emission voltage VD simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
 データドライバ40は、非発光期間において、非発光電圧VDNをデータ線Ldごとに生成する。データドライバ40は、制御部50から入力される制御信号に応じて、n本のデータ線Ldの各々に対し、一斉に、非発光電圧VDNを印加する。 The data driver 40 generates a non-light emission voltage VDN for each data line Ld in the non-light emission period. The data driver 40 applies the non-light emitting voltage VDN simultaneously to each of the n data lines Ld according to a control signal input from the control unit 50.
 [制御部50の構成]
 図2を参照して、制御部50の構成について説明する。図2に示されるように、制御部50は、画像信号入力部51、タイミングコントローラ52、記憶部53、画像信号処理部54、表示データ出力部55を備えている。
[Configuration of Control Unit 50]
With reference to FIG. 2, the structure of the control part 50 is demonstrated. As shown in FIG. 2, the control unit 50 includes an image signal input unit 51, a timing controller 52, a storage unit 53, an image signal processing unit 54, and a display data output unit 55.
 画像信号入力部51は、制御部50に入力される画像信号を保持し、保持された画像信号を記憶部53に出力する。記憶部53は、画像信号入力部51の出力した画像信号を記憶し、記憶された画像信号を画像信号処理部54に出力する。表示データ出力部55は、画像信号処理部54の処理の結果を表示データDinとしてデータドライバ40に出力する。 The image signal input unit 51 holds the image signal input to the control unit 50 and outputs the held image signal to the storage unit 53. The storage unit 53 stores the image signal output from the image signal input unit 51 and outputs the stored image signal to the image signal processing unit 54. The display data output unit 55 outputs the processing result of the image signal processing unit 54 to the data driver 40 as display data Din.
 記憶部53は、発光電圧VDと非発光電圧VDNとの関係を示すデータを記憶する。画像信号処理部54は、1つのフレームにおける画素Pxごとに、発光電圧VDを生成するための表示データDinと、発光電圧VDと非発光電圧VDNとの関係とを用いて、非発光電圧VDNを生成するための表示データDinを生成する。 The storage unit 53 stores data indicating the relationship between the light emission voltage VD and the non-light emission voltage VDN. For each pixel Px in one frame, the image signal processing unit 54 uses the display data Din for generating the light emission voltage VD and the relationship between the light emission voltage VD and the non-light emission voltage VDN to generate the non-light emission voltage VDN. Display data Din for generation is generated.
 タイミングコントローラ52は、記憶部53に対する画像信号の書込のタイミング、および、記憶部53に対する画像信号の読出しのタイミングを制御する。タイミングコントローラ52は、画像信号処理部54による処理のタイミングを制御する。タイミングコントローラ52は、データシフトクロック信号Clkd、および、表示用シフトクロック信号Clksを生成する。タイミングコントローラ52は、データシフトクロック信号Clkdをデータドライバ40へ出力し、表示用シフトクロック信号Clksを、選択ドライバ20、および、電源ドライバ30へ出力する。 The timing controller 52 controls the timing of writing the image signal to the storage unit 53 and the timing of reading the image signal to the storage unit 53. The timing controller 52 controls the processing timing by the image signal processing unit 54. The timing controller 52 generates a data shift clock signal Clkd and a display shift clock signal Clks. The timing controller 52 outputs the data shift clock signal Clkd to the data driver 40, and outputs the display shift clock signal Clks to the selection driver 20 and the power supply driver 30.
 画像信号処理部54は、記憶部53から読出された画像信号を用いて、画素Pxごとの発光用階調データを生成する。画像信号処理部54は、画素Pxごとの発光用階調データに、ガンマ補正、輝度調整、色度調整を施す。画像信号処理部54は、例えば、各種の調整を行うためのルックアップテーブルと、画像信号処理部54に入力される画像信号とを用いて、画素Pxごとの発光用階調データを調整する。画像信号処理部54は、発光期間において、調整後の発光用階調データを表示データDinとして、表示データ出力部55に出力する。画像信号処理部54は、非発光期間において、EL素子を発光させない画素Pxごとの非発光用階調データを、表示データDinとして別途生成し、生成された表示データDinを表示データ出力部55に出力する。 The image signal processing unit 54 uses the image signal read from the storage unit 53 to generate light emission gradation data for each pixel Px. The image signal processing unit 54 performs gamma correction, luminance adjustment, and chromaticity adjustment on the light emission gradation data for each pixel Px. For example, the image signal processing unit 54 uses the lookup table for performing various adjustments and the image signal input to the image signal processing unit 54 to adjust the emission gradation data for each pixel Px. In the light emission period, the image signal processing unit 54 outputs the adjusted light emission gradation data to the display data output unit 55 as display data Din. The image signal processing unit 54 separately generates non-emission gradation data for each pixel Px that does not emit EL elements during the non-emission period, as display data Din, and the generated display data Din is output to the display data output unit 55. Output.
 データドライバ40は、発光期間に入力された表示データDinを用い、その表示データDinから発光電圧VDを生成する。データドライバ40は、非発光期間に入力された表示データDinを用い、その表示データDinから非発光電圧VDNを生成する。 The data driver 40 uses the display data Din input during the light emission period and generates the light emission voltage VD from the display data Din. The data driver 40 uses the display data Din input during the non-light emission period, and generates the non-light emission voltage VDN from the display data Din.
 データシフトクロック信号Clkdは、画素Pxごとの表示データDinを表示データ出力部55からデータドライバ40に入力するタイミングを定める。データドライバ40は、データシフトクロック信号Clkdが立ち上がるごとに、1列目の画素Pxに対応する表示データDin、2列目の画素Pxに対応する表示データDin、…、n列目の画素Pxに対応する表示データDinの順に、画素Pxごとの表示データDinを入力する。データドライバ40は、データシフトクロック信号Clkdのクロック周期で、画素Pxごとの表示データDinを、その画素Pxに接続するデータ線Ldに対応づける。 The data shift clock signal Clkd determines the timing at which the display data Din for each pixel Px is input from the display data output unit 55 to the data driver 40. Each time the data shift clock signal Clkd rises, the data driver 40 applies display data Din corresponding to the pixel Px in the first column, display data Din corresponding to the pixel Px in the second column,. Display data Din for each pixel Px is input in the order of corresponding display data Din. The data driver 40 associates the display data Din for each pixel Px with the data line Ld connected to the pixel Px in the clock cycle of the data shift clock signal Clkd.
 表示用シフトクロック信号Clksは、発光期間において、選択対象の候補の切替わる周期、および、供給対象の候補の切替わる周期を定める。また、表示用シフトクロック信号Clksは、非発光期間において、これもまた選択対象の候補の切替わる周期、および、供給対象の候補の切替わる周期を定める。選択ドライバ20は、表示用シフトクロック信号Clksが立ち上がるごとに、1行目の走査線Ls、2行目の走査線Ls、…、m行目の走査線Lsの順に、走査線Lsを1本ずつ選択する。電源ドライバ30は、表示用シフトクロック信号Clksが立ち上がるごとに、1行目の電源線La、2行目の電源線La、…、m行目の電源線Laの順に、電源線Laを1本ずつ選択する。表示用シフトクロック信号Clksのクロック周期である表示用クロック周期は、データシフトクロック信号Clkdのクロック周期よりも十分に長い。例えば、表示用クロック周期は、データシフトクロック信号Clkdのクロック周期のn倍である。 The display shift clock signal Clks determines the cycle of switching the candidate to be selected and the cycle of switching the candidate to be supplied in the light emission period. In addition, the display shift clock signal Clks also determines the period for switching the candidate to be selected and the period for switching the candidate for supply in the non-light emitting period. Each time the display shift clock signal Clks rises, the selection driver 20 sets one scanning line Ls in the order of the first scanning line Ls, the second scanning line Ls,..., The m-th scanning line Ls. Select one by one. Each time the display shift clock signal Clks rises, the power driver 30 supplies one power line La in the order of the first power line La, the second power line La,..., The m-th power line La. Select one by one. The display clock cycle, which is the clock cycle of the display shift clock signal Clks, is sufficiently longer than the clock cycle of the data shift clock signal Clkd. For example, the display clock cycle is n times the clock cycle of the data shift clock signal Clkd.
 タイミングコントローラ52は、スタートパルス信号SP1、スタートパルス信号SP2、および、ラッチパルス信号LPを生成する。タイミングコントローラ52は、スタートパルス信号SP1、および、ラッチパルス信号LPをデータドライバ40に入力する。タイミングコントローラ52は、スタートパルス信号SP2を、選択ドライバ20、および、電源ドライバ30に入力する。 The timing controller 52 generates a start pulse signal SP1, a start pulse signal SP2, and a latch pulse signal LP. The timing controller 52 inputs the start pulse signal SP1 and the latch pulse signal LP to the data driver 40. The timing controller 52 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
 スタートパルス信号SP1は、データドライバ40の処理のタイミングを制御する制御信号であり、1行分の表示データDinを表示データ出力部55からデータドライバ40に入力するタイミングを制御する。データドライバ40は、スタートパルス信号SP1の入力ごとに、m行1列目の画素Pxに対応する表示データDinから、m行n列目の画素Pxに対応する表示データDinまで、画素Pxごとの表示データDinを1行分だけ取込む。 The start pulse signal SP1 is a control signal that controls the processing timing of the data driver 40, and controls the timing at which the display data Din for one row is input from the display data output unit 55 to the data driver 40. For each input of the start pulse signal SP1, the data driver 40 performs the display data Din corresponding to the pixel Px in the mth row and the first column to the display data Din corresponding to the pixel Px in the mth row and the nth column for each pixel Px. The display data Din is fetched for one line.
 ラッチパルス信号LPは、データドライバ40の処理のタイミングを制御する制御信号であり、1行分の表示データDinをデータドライバ40に保持させるタイミングを制御する。データドライバ40は、ラッチパルス信号LPの入力ごとに、m行1列目の画素Pxに対応する表示データDinから、m行n列目の画素Pxに対応する表示データDinまで、1行分の表示データDinを保持する。 The latch pulse signal LP is a control signal for controlling the processing timing of the data driver 40, and controls the timing at which the data driver 40 holds the display data Din for one row. For each input of the latch pulse signal LP, the data driver 40 displays one row from the display data Din corresponding to the pixel Px in the mth row and the first column to the display data Din corresponding to the pixel Px in the mth row and the nth column. Holds display data Din.
 スタートパルス信号SP2は、選択ドライバ20の処理のタイミングを制御する制御信号であり、選択対象の候補がm回切替るごとに、選択対象の候補の切替えの始まるタイミングを制御する。スタートパルス信号SP2は、電源ドライバ30の処理のタイミングを制御する制御信号であり、供給対象の候補がm回切替るごとに、供給対象の候補の切替えの始まるタイミングを制御する。選択ドライバ20は、スタートパルス信号SP2の入力ごとに、選択対象の候補として、1行目の走査線Lsからm行目の走査線Lsまでを順に切替える。電源ドライバ30は、スタートパルス信号SP2の入力ごとに、供給対象の候補として、1行目の電源線Laからm行目の電源線Laまでを順に切替える。 The start pulse signal SP2 is a control signal for controlling the processing timing of the selection driver 20, and controls the timing for starting the selection of the selection target candidate every time the selection target candidate is switched m times. The start pulse signal SP2 is a control signal that controls the processing timing of the power supply driver 30, and controls the start timing of the supply target candidate switching every time the supply target candidate is switched m times. Each time the start pulse signal SP2 is input, the selection driver 20 sequentially switches from the first scanning line Ls to the m-th scanning line Ls as a selection target candidate. Each time the start pulse signal SP2 is input, the power supply driver 30 sequentially switches from the first power supply line La to the mth power supply line La as candidates for supply.
 [選択ドライバ20の構成]
 図2を参照して、選択ドライバ20の構成を説明する。なお、電源ドライバ30にて供給対象の候補を選択する構成は、選択ドライバ20にて選択対象の候補を選択する構成と同様である。そのため、以下では、選択ドライバ20の構成について詳細に説明し、電源ドライバ30の構成について省略する。
[Configuration of Selected Driver 20]
The configuration of the selection driver 20 will be described with reference to FIG. The configuration in which the power supply driver 30 selects the supply target candidate is the same as the configuration in which the selection driver 20 selects the selection target candidate. Therefore, in the following, the configuration of the selection driver 20 will be described in detail, and the configuration of the power supply driver 30 will be omitted.
 図2に示されるように、制御部50は、シフトレジスタ回路21に、スタートパルス信号SP2、および、表示用シフトクロック信号Clksを入力する。シフトレジスタ回路21は、スタートパルス信号SP2の入力ごとに、1つの選択対象ビットが含まれるmビットのパラレル信号を生成し、そのパラレル信号をシフト信号として出力する。シフトレジスタ回路21は、表示用シフトクロック信号Clksの入力ごとに、シフト信号における1つの選択対象ビットを、1行目の画素Pxに対応する位置から、m行目の画素Pxに対応する位置まで、1行分の画素Pxずつ順にシフトさせる。 As shown in FIG. 2, the control unit 50 inputs the start pulse signal SP2 and the display shift clock signal Clks to the shift register circuit 21. Each time the start pulse signal SP2 is input, the shift register circuit 21 generates an m-bit parallel signal including one selection target bit and outputs the parallel signal as a shift signal. For each input of the display shift clock signal Clks, the shift register circuit 21 shifts one selection target bit in the shift signal from the position corresponding to the pixel Px in the first row to the position corresponding to the pixel Px in the mth row. The pixels Px for one row are sequentially shifted.
 シフトレジスタ回路21は、レベルシフタ回路22にシフト信号を入力する。レベルシフタ回路22は、低耐圧回路と高耐圧回路とを接続する電圧調整回路であり、シフト信号の電圧をバッファ回路23の駆動レベルに調整する。レベルシフタ回路22は、バッファ回路23の駆動レベルのシフト信号を、バッファ回路23に入力する。バッファ回路23は、シフト信号の電圧を画素Pxの駆動レベルに調整する。 The shift register circuit 21 inputs a shift signal to the level shifter circuit 22. The level shifter circuit 22 is a voltage adjustment circuit that connects the low voltage circuit and the high voltage circuit, and adjusts the voltage of the shift signal to the drive level of the buffer circuit 23. The level shifter circuit 22 inputs a drive level shift signal of the buffer circuit 23 to the buffer circuit 23. The buffer circuit 23 adjusts the voltage of the shift signal to the drive level of the pixel Px.
 [データドライバ40の構成]
 図3を参照して、データドライバ40の構成を説明する。
 図3に示されるように、データドライバ40は、シフトレジスタ回路41、データレジスタ回路42、データラッチ回路43、電圧変換回路44、および、バッファ回路45を備えている。シフトレジスタ回路41と、データレジスタ回路42、および、データラッチ回路43は、低耐圧回路として構成され、ロジック電源60は、ハイレベルのロジック電源電圧LVDD、および、ローレベルのロジック基準電圧LVSSを、これらの回路に印加する。電圧変換回路44、および、バッファ回路45は、高耐圧回路として構成され、アナログ電源70は、ハイレベルのアナログ電源電圧DVSS、および、ローレベルのアナログ基準電圧VEEを、これらの回路に印加する。アナログ電源電圧DVSSは、書込電圧WDVSS、および、基準電圧ELVSSと等しいレベルに設定されている。
[Configuration of Data Driver 40]
The configuration of the data driver 40 will be described with reference to FIG.
As shown in FIG. 3, the data driver 40 includes a shift register circuit 41, a data register circuit 42, a data latch circuit 43, a voltage conversion circuit 44, and a buffer circuit 45. The shift register circuit 41, the data register circuit 42, and the data latch circuit 43 are configured as a low withstand voltage circuit, and the logic power supply 60 supplies a high level logic power supply voltage LVDD and a low level logic reference voltage LVSS. Apply to these circuits. The voltage conversion circuit 44 and the buffer circuit 45 are configured as a high voltage circuit, and the analog power supply 70 applies a high level analog power supply voltage DVSS and a low level analog reference voltage VEE to these circuits. Analog power supply voltage DVSS is set to a level equal to write voltage WDVSS and reference voltage ELVSS.
 制御部50は、シフトレジスタ回路41にスタートパルス信号SP1とデータシフトクロック信号Clkdとを入力する。シフトレジスタ回路41は、スタートパルス信号SP1の入力ごとに、1つの選択対象ビットが含まれるnビットのパラレル信号を生成し、そのパラレル信号をシフト信号として出力する。シフトレジスタ回路41は、データシフトクロック信号Clkdの入力ごとに、シフト信号における1つの選択対象ビットを順にシフトさせて出力する。 The control unit 50 inputs the start pulse signal SP1 and the data shift clock signal Clkd to the shift register circuit 41. The shift register circuit 41 generates an n-bit parallel signal including one selection target bit for each input of the start pulse signal SP1, and outputs the parallel signal as a shift signal. For each input of the data shift clock signal Clkd, the shift register circuit 41 sequentially shifts and outputs one selection target bit in the shift signal.
 制御部50は、データレジスタ回路42に表示データDinを入力する。表示データDinは、例えば、8ビットから構成される階調データである。データレジスタ回路42は、シフト信号の各ビットに対応づけられたn個のレジスタを備え、1つのレジスタは、画素Pxごとの表示データDinを取込む。データレジスタ回路42は、1つの選択対象ビットによって選択される1つのレジスタに、その都度、画素Pxごと表示データDinを入力する。データレジスタ回路42は、1つの選択対象ビットのシフトによって全てのレジスタを選択し、1行分の表示データDinをn個のレジスタに取込む。 The control unit 50 inputs the display data Din to the data register circuit 42. The display data Din is, for example, gradation data composed of 8 bits. The data register circuit 42 includes n registers associated with each bit of the shift signal, and one register takes in display data Din for each pixel Px. The data register circuit 42 inputs the display data Din for each pixel Px to each register selected by one selection target bit. The data register circuit 42 selects all the registers by shifting one selection target bit, and takes the display data Din for one row into n registers.
 制御部50は、データラッチ回路43にラッチパルス信号LPを入力する。データラッチ回路43は、データレジスタ回路42の各レジスタに対応づけられたn個のデータラッチ43aを備えている。n個のデータラッチ43aの各々は、データレジスタ回路42に対して、互いに異なるレジスタに電気的接続している。n個のデータラッチ43aの各々は、接続先であるレジスタに記憶された表示データDinを保持し、その保持をラッチパルス信号LPごとに繰り返す。n個のデータラッチ43aの各々は、保持される表示データDinを電圧変換回路44に入力する。データラッチ回路43は、データレジスタ回路42に取込まれた1行分の表示データDinを、ラッチパルス信号LPの入力ごとに保持し、保持された1行分の表示データDinを、電圧変換回路44に入力する。 The control unit 50 inputs the latch pulse signal LP to the data latch circuit 43. The data latch circuit 43 includes n data latches 43a associated with the registers of the data register circuit 42. Each of the n data latches 43a is electrically connected to a register different from the data register circuit 42. Each of the n data latches 43a holds display data Din stored in a register that is a connection destination, and repeats the holding for each latch pulse signal LP. Each of the n data latches 43 a inputs the display data Din held therein to the voltage conversion circuit 44. The data latch circuit 43 holds the display data Din for one row taken into the data register circuit 42 for each input of the latch pulse signal LP, and the display data Din for the held row is stored in the voltage conversion circuit. 44.
 電圧変換回路44は、リニア電圧デジタル-アナログ変換回路であるn個の表示用DAC44aを備えている。n個の表示用DAC44aの各々は、データラッチ回路43に対し、別々のレベルシフタ46aを通じて、互いに異なるデータラッチ43aに電気的接続している。n個の表示用DAC44aの各々は、接続先であるデータラッチ43aに保持された表示データDinをアナログ電圧に変換する。表示用DAC44aは、入力されるデジタルデータに対して、出力されるアナログ電圧に線形性を有している。表示用DAC44aによって変換されるアナログ電圧は、アナログ電源70から印加されるアナログ電源電圧DVSSと、アナログ基準電圧VEEとの間に設定されている。 The voltage conversion circuit 44 includes n display DACs 44a which are linear voltage digital-analog conversion circuits. Each of the n display DACs 44a is electrically connected to different data latches 43a with respect to the data latch circuit 43 through different level shifters 46a. Each of the n display DACs 44a converts the display data Din held in the data latch 43a as a connection destination into an analog voltage. The display DAC 44a has linearity in the output analog voltage with respect to the input digital data. The analog voltage converted by the display DAC 44a is set between the analog power supply voltage DVSS applied from the analog power supply 70 and the analog reference voltage VEE.
 バッファ回路45は、n個のバッファ45aを備えている。n個のバッファ45aの各々は、電圧変換回路44に対し、互いに異なる表示用DAC44aに電気的接続している。また、n個のバッファ45aの各々は、互いに異なるデータ線Ldに電気的接続している。n個のバッファ45aの各々は、接続先である表示用DAC44aにて生成されたアナログ電圧を、画素回路の駆動レベルに増幅する。n個のバッファ45aの各々は、発光期間において、画素Pxごとの表示データDinに対応する発光電圧VDを生成する。また、n個のバッファ45aの各々は、非発光期間において、画素Pxごとの表示データDinに対応する非発光電圧VDNを生成する。 The buffer circuit 45 includes n buffers 45a. Each of the n buffers 45 a is electrically connected to the display DAC 44 a different from the voltage conversion circuit 44. Each of the n buffers 45a is electrically connected to different data lines Ld. Each of the n buffers 45a amplifies the analog voltage generated by the display DAC 44a that is the connection destination to the drive level of the pixel circuit. Each of the n buffers 45a generates a light emission voltage VD corresponding to the display data Din for each pixel Px in the light emission period. Each of the n buffers 45a generates a non-light emitting voltage VDN corresponding to the display data Din for each pixel Px in the non-light emitting period.
 [駆動回路PCCの構成]
 図3を参照して、駆動回路PCCの構成を説明する。
 図3に示されるように、画素Pxは、EL素子11と、EL素子11を発光させる駆動回路PCCとを備えている。駆動回路PCCは、3つのトランジスタTr1~Tr3と保持容量Csとを備えている。トランジスタTr1~Tr3は、nチャネル型のトランジスタである。
[Configuration of Drive Circuit PCC]
The configuration of the drive circuit PCC will be described with reference to FIG.
As illustrated in FIG. 3, the pixel Px includes an EL element 11 and a drive circuit PCC that causes the EL element 11 to emit light. The drive circuit PCC includes three transistors Tr1 to Tr3 and a holding capacitor Cs. The transistors Tr1 to Tr3 are n-channel transistors.
 サンプリングトランジスタTr1にて、ソースはデータ線Ldに電気的接続し、ドレインはEL素子11のアノードに電気的接続し、ゲートは走査線Lsに電気的接続している。選択電圧VgHが走査線Lsに印加されるとき、サンプリングトランジスタTr1は導通状態になる。一方で、非選択電圧VgLが走査線Lsに印加されるとき、サンプリングトランジスタTr1は非導通状態になる。 In the sampling transistor Tr1, the source is electrically connected to the data line Ld, the drain is electrically connected to the anode of the EL element 11, and the gate is electrically connected to the scanning line Ls. When the selection voltage VgH is applied to the scanning line Ls, the sampling transistor Tr1 becomes conductive. On the other hand, when the non-selection voltage VgL is applied to the scanning line Ls, the sampling transistor Tr1 is turned off.
 スイッチングトランジスタTr2にて、ソースは駆動トランジスタTr3のゲートに電気的接続し、ドレインは電源線Laに電気的接続し、ゲートはサンプリングトランジスタTr1のゲートに電気的接続している。選択電圧VgHが走査線Lsに印加されるとき、スイッチングトランジスタTr2は導通状態になる。一方で、非選択電圧VgLが走査線Lsに印加されるとき、スイッチングトランジスタTr2は非導通状態になる。 In the switching transistor Tr2, the source is electrically connected to the gate of the driving transistor Tr3, the drain is electrically connected to the power supply line La, and the gate is electrically connected to the gate of the sampling transistor Tr1. When the selection voltage VgH is applied to the scanning line Ls, the switching transistor Tr2 becomes conductive. On the other hand, when the non-selection voltage VgL is applied to the scanning line Ls, the switching transistor Tr2 is turned off.
 駆動トランジスタTr3にて、接続端の一例であるソースはEL素子11のアノードに電気的接続し、給電端の一例であるドレインはスイッチングトランジスタTr2のドレインに電気的接続し、ゲートはスイッチングトランジスタTr2のソースに電気的接続している。 In the driving transistor Tr3, a source that is an example of a connection end is electrically connected to the anode of the EL element 11, a drain that is an example of a power supply end is electrically connected to the drain of the switching transistor Tr2, and a gate is the switching transistor Tr2. Electrical connection to the source.
 保持容量Csは、駆動トランジスタTr3のゲートとソースとの間を電気的接続している。保持容量Csは、駆動トランジスタTr3のゲートとソースとの間に形成される寄生容量であってもよいし、寄生容量に対して他の容量素子が並列に接続してもよい。 The holding capacitor Cs is electrically connected between the gate and source of the driving transistor Tr3. The storage capacitor Cs may be a parasitic capacitor formed between the gate and the source of the drive transistor Tr3, or another capacitor element may be connected in parallel to the parasitic capacitor.
 EL素子11のカソードは、基準電圧線の一例である接地電圧線Lbに電気的接続している。接地電圧線Lbは、基準電圧ELVSSに設定され、基準電圧ELVSSは、アナログ基準電圧VEEに対してハイレベルであり、アナログ電源電圧DVSSと等しいレベルである。なお、画素Pxでは、EL素子11に画素容量Ceが含まれ、データ線Ldに寄生容量Cpが含まれている。 The cathode of the EL element 11 is electrically connected to a ground voltage line Lb which is an example of a reference voltage line. The ground voltage line Lb is set to the reference voltage ELVSS, and the reference voltage ELVSS is at a high level with respect to the analog reference voltage VEE and is at a level equal to the analog power supply voltage DVSS. In the pixel Px, the EL element 11 includes the pixel capacitance Ce, and the data line Ld includes the parasitic capacitance Cp.
 [非発光電圧VDN]
 図4を参照して、発光電圧VDと非発光電圧VDNとの関係を説明する。図4は、画像信号処理部54が対応付ける発光電圧VDと非発光電圧VDNとの関係を示すグラフである。
[Non-light emission voltage VDN]
The relationship between the light emission voltage VD and the non-light emission voltage VDN will be described with reference to FIG. FIG. 4 is a graph showing the relationship between the light emission voltage VD and the non-light emission voltage VDN associated with each other by the image signal processing unit 54.
 図4に示されるように、非発光電圧VDNは、発光電圧VDに対応付けられている。基準電圧ELVSS、および、書込電圧WDVSSを0Vとし、駆動電圧ELVDDの極性を正とするとき、発光電圧VDの極性、および、非発光電圧VDNの極性は、いずれも負である。非発光電圧VDNは、それに対応付けられる発光電圧VDが高いほど低い。 As shown in FIG. 4, the non-light emission voltage VDN is associated with the light emission voltage VD. When the reference voltage ELVSS and the write voltage WDVSS are 0 V, and the polarity of the drive voltage ELVDD is positive, the polarity of the light emission voltage VD and the polarity of the non-light emission voltage VDN are both negative. The non-light emission voltage VDN is lower as the light emission voltage VD associated therewith is higher.
 例えば、発光電圧VDが-10Vであるとき、非発光電圧VDNとして0Vが対応付けられ、発光電圧VDが-8Vであるとき、非発光電圧VDNとして-2Vが対応付けられている。また、発光電圧VDが-2Vであるとき、非発光電圧VDNとして-8Vが対応付けられ、発光電圧VDが0Vであるとき、非発光電圧VDNとして-10Vが対応付けられている。 For example, when the light emission voltage VD is −10V, 0V is associated with the non-light emission voltage VDN, and when the light emission voltage VD is −8V, −2V is associated with the non-light emission voltage VDN. Further, when the light emission voltage VD is −2V, −8V is associated with the non-light emission voltage VDN, and when the light emission voltage VD is 0V, −10V is associated with the non-light emission voltage VDN.
 発光電圧VDの設定される範囲において、-5Vは中間値であり、非発光電圧VDNは、中間値を基準として、発光電圧VDと対称な反転電圧である。なお、発光電圧VDの設定される範囲は、基準電圧、書込電圧WDVSS、駆動電圧ELVDD、および、EL素子11の駆動にあわせて適宜設定されるものであり、0Vから-10V以外であってもよい。 -5V is an intermediate value in the range where the light emission voltage VD is set, and the non-light emission voltage VDN is an inverted voltage symmetrical to the light emission voltage VD with the intermediate value as a reference. The range in which the light emission voltage VD is set is appropriately set according to the reference voltage, the write voltage WDVSS, the drive voltage ELVDD, and the drive of the EL element 11, and is other than 0V to −10V. Also good.
 そして、1つのフレームにおける画素Pxごとに、発光電圧VDを生成するための表示データDinと、その発光電圧VDの反転電圧となる非発光電圧VDNを生成するための表示データDinとが生成されるように、制御部50は構成されている。例えば、制御部50の画像信号処理部54は、発光電圧VDを生成するための表示データDin(発光用階調データ)と、表示データDinの最高階調値との差分値を生成する差分回路を備える。そして、制御部50の画像信号処理部54は、発光電圧VDを生成するための表示データDinを生成するごとに、その表示データDinを差分回路に適用して、非発光電圧VDNを生成するための表示データDin(非発光用階調データ)を生成する。 Then, for each pixel Px in one frame, display data Din for generating the light emission voltage VD and display data Din for generating a non-light emission voltage VDN that is an inverted voltage of the light emission voltage VD are generated. Thus, the control unit 50 is configured. For example, the image signal processing unit 54 of the control unit 50 generates a difference value between the display data Din (light emission gradation data) for generating the light emission voltage VD and the maximum gradation value of the display data Din. Is provided. Then, every time the display signal Din for generating the light emission voltage VD is generated, the image signal processing unit 54 of the control unit 50 applies the display data Din to the difference circuit to generate the non-light emission voltage VDN. Display data Din (non-light emitting gradation data) is generated.
 図5から図8を参照して、発光電圧VD、および、非発光電圧VDNの印加される駆動回路PCCの作用を説明する。
 図5に示されるように、電源線Laに書込電圧WDVSSが印加され、走査線Lsに選択電圧VgHが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、導通状態である。サンプリングトランジスタTr1、および、スイッチングトランジスタTr2が導通状態であるとき、駆動トランジスタTr3は、飽和領域で駆動する。この状態にて、データ線Ldに発光電圧VDが印加されるとき、電源線Laの電圧とデータ線Ldの電圧との電位差に応じた書込電圧が、駆動トランジスタTr3のゲート-ソース間電圧Vgsとして、保持容量Csに保持される。
The operation of the drive circuit PCC to which the light emission voltage VD and the non-light emission voltage VDN are applied will be described with reference to FIGS.
As shown in FIG. 5, when the write voltage WDVSS is applied to the power supply line La and the selection voltage VgH is applied to the scanning line Ls, the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state. When the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state, the drive transistor Tr3 is driven in a saturation region. In this state, when the light emission voltage VD is applied to the data line Ld, the write voltage corresponding to the potential difference between the voltage of the power supply line La and the voltage of the data line Ld is the gate-source voltage Vgs of the drive transistor Tr3. Is held in the holding capacitor Cs.
 この際に、発光電圧VDが基準電圧ELVSSよりもローレベルであるため、EL素子11には、EL素子11の逆方向電圧が印加される。また、発光電圧VDが書込電圧WDVSSよりもローレベルであるため、駆動トランジスタTr3を流れる電流Ieは、EL素子11へは流れず、データ線Ldに向けて引込まれる。 At this time, since the light emission voltage VD is lower than the reference voltage ELVSS, the reverse voltage of the EL element 11 is applied to the EL element 11. Further, since the light emission voltage VD is at a lower level than the write voltage WDVSS, the current Ie flowing through the drive transistor Tr3 does not flow to the EL element 11 but is drawn toward the data line Ld.
 図6に示されるように、発光用の書込電圧が保持容量Csに保持された状態にて、走査線Lsに非選択電圧VgLが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、非導通状態である。この状態にて、電源線Laに駆動電圧ELVDDが印加されるとき、駆動電圧ELVDDが基準電圧ELVSSよりもハイレベルであるため、駆動トランジスタTr3は、ゲート-ソース間電圧Vgsに応じたドレイン電流をEL素子11に流す。この際に、駆動トランジスタTr3におけるドレイン電流は、その飽和領域において、ゲート-ソース間電圧Vgsと、駆動トランジスタTr3におけるしきい値電圧Vthとの差に応じて変る。結果として、保持容量Csに保持された書込電圧と、駆動トランジスタTr3におけるしきい値電圧Vthとの差に応じたドレイン電流が、EL素子11に流れる。 As shown in FIG. 6, when the non-selection voltage VgL is applied to the scanning line Ls while the write voltage for light emission is held in the holding capacitor Cs, the sampling transistor Tr1 and the switching transistor Tr2 are It is a non-conducting state. In this state, when the drive voltage ELVDD is applied to the power supply line La, the drive voltage ELVDD is higher than the reference voltage ELVSS, so that the drive transistor Tr3 has a drain current corresponding to the gate-source voltage Vgs. It flows in the EL element 11. At this time, the drain current in the drive transistor Tr3 varies in the saturation region according to the difference between the gate-source voltage Vgs and the threshold voltage Vth in the drive transistor Tr3. As a result, a drain current corresponding to the difference between the write voltage held in the holding capacitor Cs and the threshold voltage Vth in the drive transistor Tr3 flows in the EL element 11.
 図7に示されるように、電源線Laに書込電圧WDVSSが印加され、走査線Lsに選択電圧VgHが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、導通状態である。サンプリングトランジスタTr1、および、スイッチングトランジスタTr2が導通状態であるとき、駆動トランジスタTr3は、飽和領域で駆動する。この状態にて、データ線Ldに非発光電圧VDNが印加されるとき、電源線Laの電圧とデータ線Ldの電圧との電位差に応じた書込電圧が、駆動トランジスタTr3のゲート-ソース間電圧Vgsとして、保持容量Csに保持される。 As shown in FIG. 7, when the write voltage WDVSS is applied to the power supply line La and the selection voltage VgH is applied to the scanning line Ls, the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state. When the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state, the drive transistor Tr3 is driven in a saturation region. In this state, when the non-light emission voltage VDN is applied to the data line Ld, the write voltage corresponding to the potential difference between the voltage of the power supply line La and the voltage of the data line Ld is the gate-source voltage of the drive transistor Tr3. Vgs is held in the holding capacitor Cs.
 この際に、非発光電圧VDNが基準電圧ELVSSよりもローレベルであるため、EL素子11には、EL素子11の逆方向電圧が印加される。また、非発光電圧VDNが書込電圧WDVSSよりもローレベルであるため、駆動トランジスタTr3を流れる電流Iueは、EL素子11へは流れず、データ線Ldに向けて引込まれる。 At this time, since the non-light-emitting voltage VDN is at a lower level than the reference voltage ELVSS, the reverse voltage of the EL element 11 is applied to the EL element 11. Further, since the non-light emitting voltage VDN is at a lower level than the write voltage WDVSS, the current Iue flowing through the drive transistor Tr3 does not flow to the EL element 11 but is drawn toward the data line Ld.
 ここで、EL表示装置の備える複数の画素Pxの各々では、画像が表示される期間に、発光電圧VDの印加が繰り返される。そして、単一の極性を有する発光電圧VDの印加が、駆動トランジスタTr3のゲート・ソース間にて繰り返されるので、駆動トランジスタTr3では、ゲート・ソース間のしきい値電圧のシフトが進行する。そして、非発光電圧VDNも、発光電圧VDと同じ極性を有するため、こうした非発光電圧VDNの印加によっても、しきい値電圧のシフトは進行する。この際に、非発光電圧VDNが、発光電圧VDの反転電圧であるので、駆動トランジスタTr3のゲート-ソース間電圧Vgsは、先の発光電圧VDが高いほど低い。それゆえに、複数の画素Pxの各々では、発光電圧VDの印加によるシフトが大きいときほど、非発光電圧VDNの印加によるシフトが小さく、反対に、発光電圧VDの印加によるシフトが小さいときほど、非発光電圧VDNの印加によるシフトが大きくなる。結果として、発光電圧VDが互いに異なる複数の画素Pxにおいて、しきい値電圧のシフトの均一化が図られる。 Here, in each of the plurality of pixels Px included in the EL display device, the application of the light emission voltage VD is repeated during the period in which the image is displayed. Since the application of the light emission voltage VD having a single polarity is repeated between the gate and the source of the drive transistor Tr3, the threshold voltage shift between the gate and the source proceeds in the drive transistor Tr3. Since the non-light-emitting voltage VDN has the same polarity as the light-emitting voltage VD, the threshold voltage shift proceeds even when the non-light-emitting voltage VDN is applied. At this time, since the non-light emission voltage VDN is an inverted voltage of the light emission voltage VD, the gate-source voltage Vgs of the drive transistor Tr3 is lower as the previous light emission voltage VD is higher. Therefore, in each of the plurality of pixels Px, the larger the shift due to the application of the light emission voltage VD, the smaller the shift due to the application of the non-light emission voltage VDN. The shift due to the application of the light emission voltage VDN is increased. As a result, the shift of the threshold voltage is made uniform in a plurality of pixels Px having different light emission voltages VD.
 図8に示されるように、非発光用の書込電圧が保持容量Csに保持された状態にて、走査線Lsに非選択電圧VgLが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、非導通状態である。この状態にて、電源線Laに書込電圧WDVSSが印加され続けるとき、上述の書込と同様に、駆動トランジスタTr3に電流は流れない。また、書込操作後における駆動トランジスタTr3のソースは、基準電圧ELVSSよりもローレベルであるため、EL素子11には逆方向電圧が印加され続ける。 As shown in FIG. 8, when the non-selection voltage VgL is applied to the scanning line Ls in a state where the non-emission write voltage is held in the holding capacitor Cs, the sampling transistor Tr1 and the switching transistor Tr2 Is a non-conductive state. In this state, when the write voltage WDVSS is continuously applied to the power supply line La, no current flows through the drive transistor Tr3 as in the above-described write. Further, since the source of the driving transistor Tr3 after the writing operation is at a lower level than the reference voltage ELVSS, the reverse voltage is continuously applied to the EL element 11.
 [EL表示装置の作用]
 図9、および、図10を参照して、EL表示装置の発光期間の動作、および、EL表示装置の非発光期間の動作を説明する。まず、EL表示装置の発光期間の動作を説明する。
[Operation of EL display device]
With reference to FIG. 9 and FIG. 10, the operation during the light emission period of the EL display device and the operation during the non-light emission period of the EL display device will be described. First, the operation during the light emission period of the EL display device will be described.
 図9に示されるように、タイミングtd1にて、制御部50は、スタートパルス信号SP1をデータドライバ40に入力する。これによって、シフトレジスタ回路41がデータレジスタ回路42にシフト信号を入力し、データレジスタ回路42が1行目の表示データDinを取込む。そして、制御部50は、スタートパルス信号SP2を、選択ドライバ20、および、電源ドライバ30に入力する。 As shown in FIG. 9, at timing td1, the control unit 50 inputs a start pulse signal SP1 to the data driver 40. Thereby, the shift register circuit 41 inputs a shift signal to the data register circuit 42, and the data register circuit 42 takes in the display data Din of the first row. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
 タイミングtd2にて、制御部50は、1行目の走査線Lsに選択電圧VgHを印加して、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とを導通状態に変える。また、制御部50は、ラッチパルス信号LPをデータドライバ40に入力し、これによって、1行目の表示データDinを各データラッチ43aに保持させる。n個のデータラッチ43aに保持された1行目の表示データDinは、n個のレベルシフタ46aを介してn個の表示用DAC44aによってアナログ電圧に変換され、発光電圧VDとして各データ線Ldに印加される。 At timing td2, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, and changes each sampling transistor Tr1 in the first row and each switching transistor Tr2 in the first row to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40, thereby holding the display data Din of the first row in each data latch 43a. The display data Din in the first row held in the n data latches 43a is converted into an analog voltage by the n display DACs 44a through the n level shifters 46a, and applied to each data line Ld as the light emission voltage VD. Is done.
 一方で、制御部50は、1行目の電源線Laに、書込電圧WDVSSを印加し続ける。結果として、1行目の各駆動トランジスタTr3のゲート-ソース間電圧Vgsは、書込電圧WDVSSと発光電圧VDとの差に応じた値となり、書込電圧として保持容量Csに保持される。これによって、制御部50は、1行目の各画素Pxに対して、駆動トランジスタTr3の順方向となるゲート-ソース間電圧Vgsを保持させ、1行目の各駆動トランジスタTr3を飽和領域で駆動できる状態とし、1行目の各画素Pxに対する発光用の書込操作を終える。 On the other hand, the control unit 50 continues to apply the write voltage WDVSS to the power supply line La in the first row. As a result, the gate-source voltage Vgs of each drive transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the light emission voltage VD, and is held in the holding capacitor Cs as the write voltage. As a result, the control unit 50 holds the gate-source voltage Vgs in the forward direction of the drive transistor Tr3 for each pixel Px in the first row, and drives each drive transistor Tr3 in the first row in the saturation region. In a ready state, the light emission writing operation for each pixel Px in the first row is completed.
 なお、この間に、制御部50は、スタートパルス信号SP1を再びデータドライバ40に入力する。これによって、シフトレジスタ回路41が、シフト信号をデータレジスタ回路42に入力して、2行目の表示データDinを制御部50から取込む。 During this time, the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again. As a result, the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the second row from the control unit 50.
 タイミングtd3にて、制御部50は、1行目の走査線Lsに非選択電圧VgLを印加して、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とを非導通状態に変える。また、制御部50は、1行目の電源線Laに、駆動電圧ELVDDを印加する。結果として、1行目の各駆動トランジスタTr3は、1行目の保持容量Csに保持された書込電圧と、それが接続された駆動トランジスタTr3におけるしきい値電圧Vthとの差に応じたドレイン電流を、対応するEL素子11に供給する。これによって、制御部50は、1行目の各画素Pxに対する発光操作を始める。 At timing td3, the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the first row, and turns off the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row. Change. Further, the control unit 50 applies the drive voltage ELVDD to the power supply line La in the first row. As a result, each driving transistor Tr3 in the first row has a drain corresponding to the difference between the write voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth in the driving transistor Tr3 to which it is connected. A current is supplied to the corresponding EL element 11. Accordingly, the control unit 50 starts a light emission operation for each pixel Px in the first row.
 なお、この間に、制御部50は、2行目の走査線Lsに選択電圧VgHを印加し、かつ、2行目の電源線Laに書込電圧WDVSSを印加して、2行目の各サンプリングトランジスタTr1と2行目の各スイッチングトランジスタTr2とを導通状態に変える。また、制御部50は、ラッチパルス信号LPを再びデータドライバ40に入力して、2行目の表示データDinを各データラッチ43aに保持させる。各データラッチ43aに保持された2行目の表示データDinは、レベルシフタ46aを通じて表示用DAC44aによってアナログ電圧に変換されて、発光電圧VDとしてデータ線Ldに入力される。そして、2行目の各駆動トランジスタTr3のゲート-ソース間電圧Vgsは、書込電圧WDVSSと発光電圧VDとの差に応じた値となり、2行目の各保持容量Csに書込電圧として保持される。これによって、制御部50は、2行目の各画素Pxに対する書込操作を終える。 During this time, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the second row, and applies the write voltage WDVSS to the power supply line La in the second row, thereby performing each sampling in the second row. The transistor Tr1 and each switching transistor Tr2 in the second row are changed to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and holds the display data Din of the second row in each data latch 43a. The display data Din in the second row held in each data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and input to the data line Ld as the light emission voltage VD. The gate-source voltage Vgs of each drive transistor Tr3 in the second row becomes a value corresponding to the difference between the write voltage WDVSS and the light emission voltage VD, and is held as the write voltage in each holding capacitor Cs in the second row. Is done. Thus, the control unit 50 finishes the writing operation for each pixel Px in the second row.
 以後、発光用の書込操作と発光操作とを含む発光工程が、画素Pxの行ごとにこの順で進められ、こうした発光工程が1行目からn行目まで順に表示用クロック周期で繰り返される。これによって、制御部50は、階調表現された画像を、1つのサブフレームとして表示させる。 Thereafter, the light emission process including the light emission write operation and the light emission operation is performed in this order for each row of the pixels Px, and the light emission process is sequentially repeated from the first line to the nth line in the display clock cycle. . As a result, the control unit 50 displays the gradation-represented image as one subframe.
 次に、EL表示装置の非発光期間の動作を説明する。
 図10に示されるように、タイミングta1にて、制御部50は、スタートパルス信号SP1をデータドライバ40に入力する。これによって、シフトレジスタ回路41は、シフト信号をデータレジスタ回路42に入力し、1行目の表示データDinをデータレジスタ回路42に取込む。そして、制御部50は、スタートパルス信号SP2を、選択ドライバ20、および、電源ドライバ30に入力する。
Next, an operation during a non-light emitting period of the EL display device will be described.
As illustrated in FIG. 10, the control unit 50 inputs a start pulse signal SP1 to the data driver 40 at timing ta1. Thereby, the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the first row into the data register circuit 42. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
 タイミングta2にて、制御部50は、1行目の走査線Lsに選択電圧VgHを印加して、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とを導通状態に変える。また、制御部50は、ラッチパルス信号LPをデータドライバ40に入力して、1行目の表示データDinをデータラッチ43aに保持させる。データラッチ43aに保持された表示データDinは、レベルシフタ46aを通じて表示用DAC44aによってアナログ電圧に変換され、非発光電圧VDNとしてデータ線Ldに印加される。 At timing ta2, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, and changes each sampling transistor Tr1 in the first row and each switching transistor Tr2 in the first row to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 and holds the display data Din of the first row in the data latch 43a. The display data Din held in the data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and applied to the data line Ld as the non-light emitting voltage VDN.
 このとき、制御部50は、1行目の電源線Laに書込電圧WDVSSを印加する。1行目の各駆動トランジスタTr3のゲート-ソース間電圧Vgsは、書込電圧WDVSSと非発光電圧VDNとの差に応じた値となり、書込電圧として保持容量Csに保持される。これによって、制御部50は、1行目の各画素Pxに対して、直前に印加された発光電圧VDの反転電圧に相当するゲート-ソース間電圧Vgsを保持容量Csに保持させ、1行目の各駆動トランジスタTr3の各々を飽和領域で駆動できる状態とし、1行目の各画素Pxに対する非発光用の書込操作を終える。 At this time, the control unit 50 applies the write voltage WDVSS to the power supply line La in the first row. The gate-source voltage Vgs of each drive transistor Tr3 in the first row has a value corresponding to the difference between the write voltage WDVSS and the non-light emission voltage VDN, and is held in the holding capacitor Cs as the write voltage. Thus, the control unit 50 causes the storage capacitor Cs to hold the gate-source voltage Vgs corresponding to the inverted voltage of the light emission voltage VD applied immediately before, for each pixel Px in the first row. Each of the driving transistors Tr3 is set in a state where it can be driven in the saturation region, and the non-light-emission writing operation for each pixel Px in the first row is completed.
 なお、この間に、制御部50は、スタートパルス信号SP1を再びデータドライバ40に入力する。これによって、シフトレジスタ回路41は、シフト信号をデータレジスタ回路42に入力して、2行目の表示データDinをデータレジスタ回路42に取込む。 During this time, the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again. As a result, the shift register circuit 41 inputs the shift signal to the data register circuit 42 and takes in the display data Din of the second row to the data register circuit 42.
 タイミングtd3にて、制御部50は、1行目の走査線Lsに非選択電圧VgLを印加して、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とを非導通状態に変える。また、制御部50は、1行目の電源線Laに、書込電圧WDVSSを印加し続ける。これによって、制御部50は、1行目の各駆動トランジスタTr3に、1行目の保持容量Csに保持された書込電圧、すなわち、先の発光電圧VDの反転電圧に相当するゲート-ソース間電圧Vgsを印加し続ける。 At timing td3, the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the first row, and turns off the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row. Change. The control unit 50 continues to apply the write voltage WDVSS to the power supply line La in the first row. As a result, the control unit 50 causes each drive transistor Tr3 in the first row to write to the write voltage held in the holding capacitor Cs in the first row, that is, between the gate and source corresponding to the inverted voltage of the previous light emission voltage VD. Continue to apply voltage Vgs.
 なお、この間に、制御部50は、2行目の走査線Lsに選択電圧VgHを印加し、かつ、2行目の電源線Laに書込電圧WDVSSを印加して、2行目の各サンプリングトランジスタTr1と2行目の各スイッチングトランジスタTr2とを導通状態に変える。また、制御部50は、ラッチパルス信号LPを再びデータドライバ40に入力して、各データラッチ43aに2行目の表示データDinを保持させる。データラッチ43aに保持された2行目の表示データDinは、レベルシフタ46aを通じて表示用DAC44aによってアナログ電圧に変換されて、各列の非発光電圧VDNとしてデータ線Ldへ出力される。そして、制御部50は、2行目の各駆動トランジスタTr3のゲート-ソース間電圧Vgsを、書込電圧WDVSSと非発光電圧VDNとの差に応じた値とし、2行目の保持容量Csに書込電圧として保持させる。これによって、制御部50は、2行目の各画素Pxに対する非発光用の書込操作を終える。 During this time, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the second row, and applies the write voltage WDVSS to the power supply line La in the second row, thereby performing each sampling in the second row. The transistor Tr1 and each switching transistor Tr2 in the second row are changed to a conductive state. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row. The display data Din in the second row held in the data latch 43a is converted into an analog voltage by the display DAC 44a through the level shifter 46a and output to the data line Ld as the non-light emission voltage VDN of each column. Then, the control unit 50 sets the gate-source voltage Vgs of each driving transistor Tr3 in the second row to a value corresponding to the difference between the write voltage WDVSS and the non-light-emitting voltage VDN, and sets the storage capacitance Cs in the second row. It is held as a write voltage. Thereby, the control unit 50 finishes the non-light-emission writing operation for each pixel Px in the second row.
 以後、非発光用の書込操作と非発光操作とが行われる非発光工程が、画素Pxの行ごとにこの順で行われ、こうした非発光期間が1行目からn行目まで順に表示用クロック周期で繰り返される。これによって、黒色で表現された画像が、1つのサブフレームとして表示される。 Thereafter, a non-emission process in which a non-emission writing operation and a non-emission operation are performed is performed in this order for each row of the pixels Px, and such non-emission period is displayed in order from the first row to the n-th row. Repeated with clock period. Thereby, an image expressed in black is displayed as one subframe.
 上記第1実施形態によれば、以下に列挙する利点が得られる。
 (1)複数の駆動トランジスタTr3の各々にて、ゲート-ソース間電圧Vgsは、EL素子11の発光時に高いときほど、EL素子11の非発光時に低い。それゆえに、駆動トランジスタTr3のしきい値電圧のシフトが画素Pxごとに異なることが抑えられる。
According to the first embodiment, the advantages listed below can be obtained.
(1) In each of the plurality of drive transistors Tr3, the gate-source voltage Vgs is higher when the EL element 11 emits light and is lower when the EL element 11 is not emitting light. Therefore, it is possible to suppress the threshold voltage shift of the driving transistor Tr3 from being different for each pixel Px.
 (2)発光期間と非発光期間とから構成されるフレームごとに、発光電圧VDが高いほど非発光電圧VDNが低い。それゆえに、駆動トランジスタTr3のしきい値電圧Vthのシフトが画素Pxごとに異なることが、表示における繰り返しの最短期間であるフレームごとに抑えられる。結果として、複数の画素Pxにおいて、駆動トランジスタTr3のしきい値電圧Vthの均一化が、表示における繰り返しの最短期間で図られる。 (2) For each frame composed of a light emission period and a non-light emission period, the higher the light emission voltage VD, the lower the non-light emission voltage VDN. Therefore, the shift of the threshold voltage Vth of the drive transistor Tr3 differs for each pixel Px can be suppressed for each frame which is the shortest repetition period in display. As a result, in the plurality of pixels Px, the threshold voltage Vth of the drive transistor Tr3 is made uniform in the shortest repetition period in display.
 (3)発光電圧VDと対称な反転電圧が、非発光電圧VDNとして用いられる。そのため、駆動トランジスタTr3のゲート-ソース間に印加される電圧は、1回の発光期間と1回の非発光期間を通じて、複数の画素Pxにおいて均一である。それゆえに、駆動トランジスタTr3のしきい値電圧のシフトが画素Pxごとに異なることを抑える効果は、さらに高められる。 (3) An inversion voltage symmetrical to the light emission voltage VD is used as the non-light emission voltage VDN. Therefore, the voltage applied between the gate and source of the drive transistor Tr3 is uniform in the plurality of pixels Px through one light emission period and one non-light emission period. Therefore, the effect of suppressing the threshold voltage shift of the drive transistor Tr3 from being different for each pixel Px is further enhanced.
 (4)発光用の書込電圧は、駆動トランジスタTr3のソースに対するサンプリングトランジスタTr1を通じた発光電圧VDの印加によって設定される。また、非発光用の書込電圧は、これもまた、駆動トランジスタTr3のソースに対するサンプリングトランジスタTr1を通じた非発光電圧VDNの印加によって設定される。そして、発光電圧VDの設定と、非発光電圧VDNの設定とが、サンプリングトランジスタの駆動によって実現される。そのため、発光用の書込操作に必要とされる構成と、非発光用の書込操作に必要とされる構成との共通化が図られる。 (4) The write voltage for light emission is set by applying the light emission voltage VD through the sampling transistor Tr1 to the source of the drive transistor Tr3. Also, the non-emission write voltage is set by applying the non-emission voltage VDN through the sampling transistor Tr1 to the source of the drive transistor Tr3. The setting of the light emission voltage VD and the setting of the non-light emission voltage VDN are realized by driving the sampling transistor. Therefore, the configuration required for the write operation for light emission and the configuration required for the write operation for non-light emission can be shared.
 (5)サンプリングトランジスタTr1の導通と、スイッチングトランジスタTr2の導通とが同期し、かつ、サンプリングトランジスタTr1の非導通と、スイッチングトランジスタTr2の非導通とが同期する。それゆえに、発光用の書込操作、発光操作、非発光用の書込操作、および、非発光操作の各々において、駆動トランジスタTr3のゲート、ソース、および、ドレインでは、電圧の変更が円滑に進む。 (5) The conduction of the sampling transistor Tr1 and the conduction of the switching transistor Tr2 are synchronized, and the non-conduction of the sampling transistor Tr1 and the non-conduction of the switching transistor Tr2 are synchronized. Therefore, in each of the write operation for light emission, the light emission operation, the write operation for non-light emission, and the non-light emission operation, the voltage change smoothly proceeds at the gate, source, and drain of the drive transistor Tr3. .
 [第2実施形態]
 図11~図15を参照して、本開示におけるEL表示装置、および、EL表示装置の駆動方法を具体化した第2実施形態を説明する。なお、第2実施形態のEL表示装置、および、EL表示装置の駆動方法は、制御部50において対応付けられる発光電圧VDと非発光電圧VDNとの関係にて、第1実施形態のEL表示装置、および、EL表示装置の駆動方法とは異なる。そのため、以下では、発光電圧VDと非発光電圧VDNとの関係について詳細に説明し、第1実施形態にて説明した構成と同様の構成に対しては、同一の符号を付してその詳細な説明を省略する。
[Second Embodiment]
With reference to FIGS. 11 to 15, a second embodiment in which the EL display device and the driving method of the EL display device according to the present disclosure are embodied will be described. Note that the EL display device of the second embodiment and the driving method of the EL display device are based on the relationship between the light emission voltage VD and the non-light emission voltage VDN associated with each other in the control unit 50, and the EL display device of the first embodiment. This is different from the driving method of the EL display device. Therefore, in the following, the relationship between the light emission voltage VD and the non-light emission voltage VDN will be described in detail, and the same components as those described in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be given. Description is omitted.
 まず、EL素子11が有する特性の1つとして、EL素子11に印加される順方向電圧と、EL素子11に流れる駆動電流との関係を説明する。なお、図11にて、EL素子11の発光操作に伴って流れる電流は、EL素子11の駆動電流であり、EL素子11に駆動電流が流れる方向に向けてEL素子11に印加される駆動電圧は、順方向電圧である。 First, as one of the characteristics of the EL element 11, the relationship between the forward voltage applied to the EL element 11 and the drive current flowing through the EL element 11 will be described. In FIG. 11, the current that flows along with the light emission operation of the EL element 11 is the drive current of the EL element 11, and the drive voltage applied to the EL element 11 in the direction in which the drive current flows through the EL element 11. Is the forward voltage.
 図11に示されるように、EL素子11の順方向電圧が、発光開始電圧Vels以下であるとき、EL素子11の駆動電流は殆ど流れない。そして、EL素子11の駆動電流が流れるとしても、その駆動電流の大きさは、EL素子11を発光させる程度には満たない。結局のところ、EL素子11の順方向電圧が、発光開始電圧Vels以下であるとき、EL素子11は発光しない。 As shown in FIG. 11, when the forward voltage of the EL element 11 is equal to or lower than the light emission start voltage Vels, the drive current of the EL element 11 hardly flows. And even if the drive current of the EL element 11 flows, the magnitude of the drive current is not enough to cause the EL element 11 to emit light. After all, when the forward voltage of the EL element 11 is equal to or lower than the light emission start voltage Vels, the EL element 11 does not emit light.
 これに対して、EL素子11の順方向電圧が、発光開始電圧Velsを越えるとき、順方向電圧が高いほど、EL素子11の駆動電流は大きい。そして、EL素子11の順方向電圧が、発光開始電圧Velsを越えるとき、EL素子11の駆動電流の大きさは、EL素子11を発光させる程度であって、順方向電圧が高いほど、EL素子11の生成する光の輝度は高い。 On the other hand, when the forward voltage of the EL element 11 exceeds the light emission start voltage Vels, the drive current of the EL element 11 is larger as the forward voltage is higher. When the forward voltage of the EL element 11 exceeds the light emission start voltage Vels, the magnitude of the drive current of the EL element 11 is such that the EL element 11 emits light, and the higher the forward voltage, The brightness of the light generated by 11 is high.
 要するに、EL素子11に印加される電圧が逆方向電圧であれば、EL素子11は発光せず、EL素子11に印加される電圧が順方向電圧であっても、発光開始電圧Vels以下の順方向電圧では、これもまたEL素子11は発光しない。そして、EL素子11の順方向電圧が発光開始電圧Velsを越えるとき、EL素子11は発光する。 In short, if the voltage applied to the EL element 11 is a reverse voltage, the EL element 11 does not emit light, and even if the voltage applied to the EL element 11 is a forward voltage, the order is equal to or lower than the light emission start voltage Vels. At the directional voltage, the EL element 11 also does not emit light. When the forward voltage of the EL element 11 exceeds the light emission start voltage Vels, the EL element 11 emits light.
 次に、走査線Ls、電源線La、および、データ線Ldに印加される電圧の相関関係を、接地電圧を基準にして上記発光開始電圧Velsを用いて説明する。なお、図12には、走査線Ls、電源線La、および、データ線Ldに印加される電圧の一例として、基準電圧ELVSSが接地電圧に設定され、かつ、基準電圧ELVSSと書込電圧WDVSSとが等しい電位である構成が示されている。 Next, a correlation between voltages applied to the scanning line Ls, the power supply line La, and the data line Ld will be described using the light emission start voltage Vels with reference to the ground voltage. In FIG. 12, as an example of voltages applied to the scanning line Ls, the power supply line La, and the data line Ld, the reference voltage ELVSS is set to the ground voltage, and the reference voltage ELVSS and the write voltage WDVSS are A configuration is shown in which are equal potentials.
 図12に示されるように、電源線Laに印加される書込電圧WDVSSは、接地電圧線Lbに印加される基準電圧ELVSSと、互いに等しい電位に設定されている。データ線Ldに印加される発光電圧VDは、階調データの示す階調ごとに異なる電圧である。発光電圧VDの範囲には、最も書込電圧WDVSSに近いレベルである最低階調値VDLと、書込電圧WDVSSとの電位差が最も大きいレベルである最高階調値VDHとの中間の値として、中間値Mが設定されている。また、発光電圧VDの範囲には、最高階調値VDHと中間値Mとの間の値として、切替値Vpが設定されている。 As shown in FIG. 12, the write voltage WDVSS applied to the power supply line La is set to the same potential as the reference voltage ELVSS applied to the ground voltage line Lb. The light emission voltage VD applied to the data line Ld is different for each gradation indicated by the gradation data. In the range of the light emission voltage VD, an intermediate value between the lowest gradation value VDL, which is the level closest to the write voltage WDVSS, and the highest gradation value VDH, which is the level where the potential difference between the write voltage WDVSS is the largest, An intermediate value M is set. In the range of the light emission voltage VD, a switching value Vp is set as a value between the maximum gradation value VDH and the intermediate value M.
 データ線Ldに印加される非発光電圧は、第1非発光電圧VDN1、および、第2非発光電圧VDN2から構成されている。第1非発光電圧VDN1は、発光電圧VDのうち最低階調値VDLと切替値Vpとの間の電圧に対する反転電圧である。第2非発光電圧VDN2は、基準電圧ELVSS、および、書込電圧WDVSSよりもハイレベルであって、一定の値に設定されている。 The non-light emitting voltage applied to the data line Ld is composed of a first non-light emitting voltage VDN1 and a second non-light emitting voltage VDN2. The first non-emission voltage VDN1 is an inverted voltage with respect to a voltage between the lowest gradation value VDL and the switching value Vp in the emission voltage VD. The second non-light emission voltage VDN2 is higher than the reference voltage ELVSS and the write voltage WDVSS, and is set to a constant value.
 書込電圧WDVSSを基準とする第1非発光電圧VDN1の極性は、書込電圧WDVSSを基準とする発光電圧VDの極性と同じである。書込電圧WDVSSを基準とする第2非発光電圧VDN2の極性は、書込電圧WDVSSを基準とする発光電圧VDの極性と異なり、これらは互いに逆極性を有している。書込電圧WDVSSを基準とする発光電圧VDの極性は負であり、書込電圧WDVSSを基準とする第1非発光電圧VDN1の極性も負である。一方で、書込電圧WDVSSを基準とする第2非発光電圧VDN2の極性は正である。 The polarity of the first non-light-emitting voltage VDN1 based on the write voltage WDVSS is the same as the polarity of the light-emitting voltage VD based on the write voltage WDVSS. The polarity of the second non-light emission voltage VDN2 with respect to the write voltage WDVSS is different from the polarity of the light emission voltage VD with respect to the write voltage WDVSS, and these have opposite polarities. The polarity of the light emission voltage VD with respect to the write voltage WDVSS is negative, and the polarity of the first non-light emission voltage VDN1 with respect to the write voltage WDVSS is also negative. On the other hand, the polarity of the second non-emission voltage VDN2 with the write voltage WDVSS as a reference is positive.
 なお、書込電圧WDVSSを基準とする第1非発光電圧VDN1の極性は、書込電圧WDVSSを基準とする非選択電圧VgLの極性と同じく負である。書込電圧WDVSSを基準とする第2非発光電圧VDN2の極性は、書込電圧WDVSSを基準とする選択電圧VgHの極性と同じく正である。また、第2非発光電圧VDN2は、駆動電圧ELVDDのレベル、および、選択電圧VgHのレベルよりも低く、第2非発光電圧VDN2を基準とする駆動電圧ELVDDの極性は、第2非発光電圧VDN2を基準とする書込電圧WDVSSの極性と異なる。 Note that the polarity of the first non-light-emitting voltage VDN1 with respect to the write voltage WDVSS is negative, as is the polarity of the non-selection voltage VgL with respect to the write voltage WDVSS. The polarity of the second non-light-emitting voltage VDN2 with respect to the write voltage WDVSS is as positive as the polarity of the selection voltage VgH with reference to the write voltage WDVSS. The second non-light emitting voltage VDN2 is lower than the level of the driving voltage ELVDD and the selection voltage VgH, and the polarity of the driving voltage ELVDD with the second non-light emitting voltage VDN2 as a reference is the second non-light emitting voltage VDN2. Is different from the polarity of the write voltage WDVSS.
 また、書込電圧WDVSSを基準とする発光電圧VDの極性は、書込電圧WDVSSを基準とする非選択電圧VgLの極性と同じく負である。発光電圧VDのレベルは、非選択電圧VgLと書込電圧WDVSSとの間に設定されている。 The polarity of the light emission voltage VD with respect to the write voltage WDVSS is negative, as is the polarity of the non-selection voltage VgL with reference to the write voltage WDVSS. The level of the light emission voltage VD is set between the non-selection voltage VgL and the write voltage WDVSS.
 ちなみに、基準電圧ELVSSは、接地電圧よりもハイレベルであってもよいし、接地電圧よりもローレベルであってもよい。また、書込電圧WDVSSは、基準電圧ELVSSよりもローレベルであってもよい。 Incidentally, the reference voltage ELVSS may be higher than the ground voltage or may be lower than the ground voltage. Further, the write voltage WDVSS may be at a lower level than the reference voltage ELVSS.
 図13を参照して、発光電圧VDと第1非発光電圧VDN1との関係、および、発光電圧VDと第2非発光電圧VDN2との関係を説明する。図13は、画像信号処理部54が対応付ける発光電圧VDと第1非発光電圧VDN1との関係、および、画像信号処理部54が対応付ける発光電圧VDと第2非発光電圧VDN2との関係を示すグラフである。 Referring to FIG. 13, the relationship between the light emission voltage VD and the first non-light emission voltage VDN1 and the relationship between the light emission voltage VD and the second non-light emission voltage VDN2 will be described. FIG. 13 is a graph showing the relationship between the light emission voltage VD and the first non-light emission voltage VDN1 associated with the image signal processing unit 54 and the relationship between the light emission voltage VD and the second non-light emission voltage VDN2 associated with the image signal processing unit 54. It is.
 図13に示されるように、第1非発光電圧VDN1は、発光電圧VDが切替値Vpと同じかそれよりも低いときの非発光電圧に相当する。すなわち、第1非発光電圧VDN1は、切替値Vp以上最低階調値VDL以下の発光電圧VDの値に対応付けられている。例えば、発光電圧VDが最低階調値VDLの0Vであるとき、第1非発光電圧VDN1として-9.2Vが対応付けられ、発光電圧VDが中間値Mの-5Vであるとき、第1非発光電圧VDN1として-4.2Vが対応付けられている。そして、発光電圧VDが切替値Vpの-9.2Vであるとき、第1非発光電圧VDN1として0Vが対応付けられている。なお、発光電圧VDの設定される範囲は、基準電圧、書込電圧WDVSS、駆動電圧ELVDD、および、EL素子11の駆動にあわせて適宜設定されるものであり、0Vから-10V以外であってもよい。 As shown in FIG. 13, the first non-light emission voltage VDN1 corresponds to the non-light emission voltage when the light emission voltage VD is equal to or lower than the switching value Vp. That is, the first non-light emission voltage VDN1 is associated with a value of the light emission voltage VD that is not less than the switching value Vp and not more than the lowest gradation value VDL. For example, when the light emission voltage VD is 0V of the lowest gradation value VDL, -9.2V is associated as the first non-light emission voltage VDN1, and when the light emission voltage VD is -5V of the intermediate value M, the first non-light emission voltage VDL The light emission voltage VDN1 is associated with −4.2V. When the light emission voltage VD is the switching value Vp of −9.2V, 0V is associated with the first non-light emission voltage VDN1. The range in which the light emission voltage VD is set is appropriately set according to the reference voltage, the write voltage WDVSS, the drive voltage ELVDD, and the drive of the EL element 11, and is other than 0V to −10V. Also good.
 そして、1つのフレームにおける画素Pxごとに、切替値Vp以上最低階調値VDL以下の発光電圧VDが必要とされるとき、その発光電圧VDを生成するための表示データDinが生成されるように、制御部50は構成されている。また、1つのフレームにおける画素Pxごとに、切替値Vp以上最低階調値VDL以下の発光電圧VDが必要とされるとき、その発光電圧VDの反転電圧となる第1非発光電圧VDN1を生成するための表示データDinが生成されるように、制御部50は構成されている。 When a light emission voltage VD that is not less than the switching value Vp and not more than the lowest gradation value VDL is required for each pixel Px in one frame, display data Din for generating the light emission voltage VD is generated. The control unit 50 is configured. Further, when a light emission voltage VD not less than the switching value Vp and not more than the lowest gradation value VDL is required for each pixel Px in one frame, the first non-light emission voltage VDN1 that is an inverted voltage of the light emission voltage VD is generated. The control unit 50 is configured to generate display data Din for the purpose.
 第2非発光電圧VDN2は、発光電圧VDが切替値Vpより高いときの非発光電圧に相当する。すなわち、第2非発光電圧VDN2は、最高階調値VDH以上切替値Vp未満の発光電圧VDの値に対応付けられている。例えば、発光電圧VDが最高階調値VDHの-10Vであるとき、第2非発光電圧VDN2として3Vが対応付けられ、発光電圧VDが切替値Vpに最も近い値であるとき、これもまた、第2非発光電圧VDN2として3Vが対応付けられている。 The second non-emission voltage VDN2 corresponds to a non-emission voltage when the emission voltage VD is higher than the switching value Vp. That is, the second non-emission voltage VDN2 is associated with the value of the emission voltage VD that is greater than or equal to the maximum gradation value VDH and less than the switching value Vp. For example, when the light emission voltage VD is -10V of the maximum gradation value VDH, 3V is associated as the second non-light emission voltage VDN2, and when the light emission voltage VD is a value closest to the switching value Vp, this is also 3 V is associated as the second non-light-emitting voltage VDN2.
 そして、1つのフレームにおける画素Pxごとに、最高階調値VDH以上切替値Vp未満の発光電圧VDが必要とされるとき、その発光電圧VDを生成するための表示データDinが生成されるように、制御部50は構成されている。また、1つのフレームにおける画素Pxごとに、最高階調値VDH以上切替値Vp未満の発光電圧VDが必要とされるとき、一定値である3Vの第2非発光電圧VDN2を生成するための表示データDinが生成されるように、制御部50は構成されている。 When a light emission voltage VD that is greater than or equal to the maximum gradation value VDH and less than the switching value Vp is required for each pixel Px in one frame, display data Din for generating the light emission voltage VD is generated. The control unit 50 is configured. Further, when a light emission voltage VD that is greater than or equal to the maximum gradation value VDH and less than the switching value Vp is required for each pixel Px in one frame, a display for generating a second non-light emission voltage VDN2 of 3V that is a constant value. The control unit 50 is configured so that the data Din is generated.
 例えば、制御部50の画像信号処理部54は、発光電圧VDを生成するための表示データDin(発光用階調データ)と、表示データDinの最高階調値との差分値を生成する差分回路を備える。また、制御部50の画像信号処理部54は、発光電圧VDを生成するための表示データDinと、切替値Vpに相当する階調値である切替階調値とを比較する比較回路を備える。そして、制御部50の画像信号処理部54は、発光電圧VDを生成するための表示データDinを生成するごとに、その表示データDinと切替階調値とを比較する。表示データDinが切替階調値と同じかそれよりも低いとき、制御部50の画像信号処理部54は、その表示データDinを差分回路に適用して、第1実施形態と同様に、第1非発光電圧VDN1を生成するための表示データDin(非発光用階調データ)を生成する。これに対して、表示データDinが切替階調値よりも高いとき、制御部50の画像信号処理部54は、第2非発光電圧VDN2を生成するための表示データDin(非発光用階調データ)を生成する。 For example, the image signal processing unit 54 of the control unit 50 generates a difference value between the display data Din (light emission gradation data) for generating the light emission voltage VD and the maximum gradation value of the display data Din. Is provided. Further, the image signal processing unit 54 of the control unit 50 includes a comparison circuit that compares the display data Din for generating the light emission voltage VD with a switching gradation value that is a gradation value corresponding to the switching value Vp. The image signal processing unit 54 of the control unit 50 compares the display data Din with the switching gradation value every time the display data Din for generating the light emission voltage VD is generated. When the display data Din is equal to or lower than the switching gradation value, the image signal processing unit 54 of the control unit 50 applies the display data Din to the difference circuit, and the first data as in the first embodiment. Display data Din (non-light emission gradation data) for generating the non-light emission voltage VDN1 is generated. On the other hand, when the display data Din is higher than the switching gradation value, the image signal processing unit 54 of the control unit 50 displays the display data Din (non-emission gradation data) for generating the second non-emission voltage VDN2. ) Is generated.
 こうした第2非発光電圧VDN2は、発光開始電圧Vels以下のレベルであり、非発光期間での駆動回路PCCによるEL素子11の駆動の形態と、上述した発光開始電圧Velsとに基づいて、以下のように設定されている。 The second non-light emission voltage VDN2 is at a level equal to or lower than the light emission start voltage Vels. Based on the drive mode of the EL element 11 by the drive circuit PCC in the non-light emission period and the light emission start voltage Vels described below, Is set to
 図14に示されるように、電源線Laに書込電圧WDVSSが印加され、走査線Lsに選択電圧VgHが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、導通状態である。サンプリングトランジスタTr1、および、スイッチングトランジスタTr2が導通状態であるとき、駆動トランジスタTr3は、飽和領域で駆動する。この状態にて、データ線Ldに第2非発光電圧VDN2が印加されるとき、電源線Laの電圧とデータ線Ldの電圧との電位差に応じた書込電圧が、駆動トランジスタTr3のゲート-ソース間電圧Vgsとして、保持容量Csに保持される。 As shown in FIG. 14, when the write voltage WDVSS is applied to the power supply line La and the selection voltage VgH is applied to the scanning line Ls, the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state. When the sampling transistor Tr1 and the switching transistor Tr2 are in a conductive state, the drive transistor Tr3 is driven in a saturation region. In this state, when the second non-light-emitting voltage VDN2 is applied to the data line Ld, the write voltage corresponding to the potential difference between the voltage of the power supply line La and the voltage of the data line Ld is the gate-source of the drive transistor Tr3. The voltage Vgs is held in the holding capacitor Cs.
 この際に、第2非発光電圧VDN2が書込電圧WDVSSよりもハイレベルであるため、駆動トランジスタTr3に電流は流れない。一方で、第2非発光電圧VDN2が基準電圧ELVSSよりもハイレベルであるため、EL素子11には、EL素子11の順方向電圧が印加される。 At this time, since the second non-light-emitting voltage VDN2 is higher than the write voltage WDVSS, no current flows through the drive transistor Tr3. On the other hand, since the second non-light emitting voltage VDN2 is higher than the reference voltage ELVSS, the forward voltage of the EL element 11 is applied to the EL element 11.
 ここで、第2非発光電圧VDN2は、非発光用の書込操作に際して、書込操作時における駆動トランジスタTr3のソースと基準電圧ELVSSとの間に、発光開始電圧Vels以下の電位差を設定する。そして、書込操作時における駆動トランジスタTr3のソースと基準電圧ELVSSとの間の電位差が、発光開始電圧Vels以下であれば、EL素子11に印加される電圧が順方向電圧であっても、EL素子11は発光しない。 Here, the second non-light emission voltage VDN2 sets a potential difference equal to or lower than the light emission start voltage Vels between the source of the drive transistor Tr3 and the reference voltage ELVSS at the time of the write operation in the non-light emission write operation. If the potential difference between the source of the driving transistor Tr3 and the reference voltage ELVSS during the writing operation is equal to or lower than the light emission start voltage Vels, even if the voltage applied to the EL element 11 is a forward voltage, the EL The element 11 does not emit light.
 図15に示されるように、非発光用の書込電圧が保持容量Csに保持された状態にて、走査線Lsに非選択電圧VgLが印加されるとき、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2は、非導通状態である。この状態にて、電源線Laに書込電圧WDVSSが印加され続けるとき、上述の書込操作と同様に、駆動トランジスタTr3に電流は流れない。一方で、書込操作後における駆動トランジスタTr3のソースは、少なからず基準電圧ELVSSよりもハイレベルであるため、EL素子11には順方向電圧が印加され続ける。そして、EL素子11が発光しない程度の電流がEL素子11を流れることによって、保持容量Csが放電される。 As shown in FIG. 15, when the non-selection voltage VgL is applied to the scanning line Ls with the non-emission write voltage held in the holding capacitor Cs, the sampling transistor Tr1 and the switching transistor Tr2 Is a non-conductive state. In this state, when the write voltage WDVSS is continuously applied to the power supply line La, no current flows through the drive transistor Tr3 as in the above-described write operation. On the other hand, since the source of the drive transistor Tr3 after the writing operation is at a level higher than the reference voltage ELVSS, the forward voltage is continuously applied to the EL element 11. The storage capacitor Cs is discharged when a current that does not cause the EL element 11 to emit light flows through the EL element 11.
 [EL表示装置の作用]
 次に、EL表示装置の非発光期間の動作を説明する。
 制御部50は、まず、1行目の走査線Lsに選択電圧VgHを印加して、1行目の各サンプリングトランジスタTr1と1行目の各スイッチングトランジスタTr2とを導通状態に変え、非発光電圧をデータ線Ldに印加する。このとき、制御部50は、1行目の電源線Laに書込電圧WDVSSを印加する。そして、1行目の各駆動トランジスタTr3のゲート-ソース間電圧Vgsは、書込電圧WDVSSと非発光電圧VDNとの差に応じた値となり、書込電圧として保持容量Csに保持される。
[Operation of EL display device]
Next, an operation during a non-light emitting period of the EL display device will be described.
First, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row, changes the sampling transistors Tr1 in the first row and the switching transistors Tr2 in the first row into a conductive state, and generates a non-light emitting voltage. Is applied to the data line Ld. At this time, the control unit 50 applies the write voltage WDVSS to the power supply line La in the first row. The gate-source voltage Vgs of each driving transistor Tr3 in the first row becomes a value corresponding to the difference between the write voltage WDVSS and the non-light-emitting voltage VDN, and is held in the holding capacitor Cs as the write voltage.
 この際に、1つの画素Pxにおける発光期間での発光電圧VDが、切替値Vp以上最低階調値VDL以下であるとき、制御部50は、その発光期間に続く非発光期間にて、発光電圧VDの反転電圧である第1非発光電圧VDN1をデータドライバ40に生成させる。これに対して、1つの画素Pxにおける発光期間での発光電圧VDが、最高階調値VDH以上切替値Vp未満であるとき、制御部50は、その発光期間に続く非発光期間にて、一定値である第2非発光電圧VDN2をデータドライバ40に生成させる。 At this time, when the light emission voltage VD in the light emission period in one pixel Px is not less than the switching value Vp and not more than the minimum gradation value VDL, the control unit 50 performs the light emission voltage in the non-light emission period following the light emission period. The data driver 40 is caused to generate a first non-light-emitting voltage VDN1 that is an inverted voltage of VD. On the other hand, when the light emission voltage VD in the light emission period in one pixel Px is equal to or higher than the maximum gradation value VDH and lower than the switching value Vp, the control unit 50 is constant in the non-light emission period following the light emission period. The data driver 40 generates the second non-light-emitting voltage VDN2 that is a value.
 これによって、1行目の各画素Pxに対して、発光電圧VDが切替値Vp以上最低階調値VDL以下であるとき、制御部50は、直前の発光電圧VDの反転電圧に相当するゲート-ソース間電圧Vgsを保持容量Csに保持させて、1行目の各画素Pxに対する非発光用の書込操作を終える。また、1行目の各画素Pxに対して、発光電圧VDが最高階調値VDH以上切替値Vp未満であるとき、制御部50は、直前の発光電圧VDの値に関わらず、第2非発光電圧VDN2に相当するゲート-ソース間電圧Vgsを保持容量Csに保持させて、1行目の各画素Pxに対する非発光用の書込操作を終える。 As a result, when the light emission voltage VD is not less than the switching value Vp and not more than the minimum gradation value VDL for each pixel Px in the first row, the control unit 50 performs gate-- corresponding to the inverted voltage of the immediately preceding light emission voltage VD. The source voltage Vgs is held in the holding capacitor Cs, and the non-light-emission writing operation for each pixel Px in the first row is completed. Further, when the light emission voltage VD is greater than or equal to the maximum gradation value VDH and less than the switching value Vp for each pixel Px in the first row, the control unit 50 performs the second non-reduction regardless of the value of the immediately preceding light emission voltage VD. The gate-source voltage Vgs corresponding to the light emission voltage VDN2 is held in the storage capacitor Cs, and the writing operation for non-light emission for each pixel Px in the first row is completed.
 以降、非発光用の書込操作と非発光操作とが行われる非発光工程が、画素Pxの行ごとにこの順で行われ、こうした非発光期間が1行目からn行目まで順に表示用クロック周期で繰り返される。これによって、黒色で表現された画像が、1つのサブフレームとして表示される。 Thereafter, a non-emission process in which a non-emission writing operation and a non-emission operation are performed is performed in this order for each row of the pixels Px, and such non-emission period is displayed in order from the first row to the n-th row. Repeated with clock period. Thereby, an image expressed in black is displayed as one subframe.
 上記第2実施形態によれば、以下に列挙する利点が得られる。
 (1)発光電圧VDが切替値Vpよりも高いとき、発光電圧VDとは極性が異なる第2非発光電圧VDN2を、保持容量Csは保持する。それゆえに、駆動トランジスタTr3のしきい値電圧Vthのシフトが、特定の画素Pxにて過度に進行する場合には、その特定の画素Pxに対して、しきい値電圧Vthのシフトが抑えられる。結果として、駆動トランジスタTr3のしきい値電圧Vthのシフトが画素Pxごとに異なることを抑える効果の及ぶ範囲は、しきい値電圧Vthのシフトの度合いに対して広げられる。
According to the second embodiment, the advantages listed below can be obtained.
(1) When the light emission voltage VD is higher than the switching value Vp, the storage capacitor Cs holds the second non-light emission voltage VDN2 having a polarity different from that of the light emission voltage VD. Therefore, when the shift of the threshold voltage Vth of the driving transistor Tr3 proceeds excessively in the specific pixel Px, the shift of the threshold voltage Vth is suppressed for the specific pixel Px. As a result, the range in which the effect of suppressing the shift of the threshold voltage Vth of the drive transistor Tr3 from being different for each pixel Px is expanded with respect to the degree of shift of the threshold voltage Vth.
 (2)第2非発光電圧VDN2の印加された駆動回路PCCでは、EL素子11を通して保持容量Csが放電する。そのため、EL表示装置の動作が、非発光期間から発光期間へ切替わる際に、保持容量Csの保持する電位差が急激に変わることが抑えられる。 (2) In the drive circuit PCC to which the second non-emission voltage VDN2 is applied, the storage capacitor Cs is discharged through the EL element 11. Therefore, when the operation of the EL display device is switched from the non-light emitting period to the light emitting period, it is possible to suppress a sudden change in the potential difference held by the storage capacitor Cs.
 [第3実施形態]
 図16~図26を参照して、本開示におけるEL表示装置、および、EL表示装置の駆動方法を具体化した第3実施形態を説明する。なお、第3実施形態のEL表示装置、および、EL表示装置の駆動方法は、第1実施形態のEL表示装置、および、EL表示装置の駆動方法、第2実施形態のEL表示装置、および、EL表示装置の駆動に対し、さらに、駆動トランジスタTr3のしきい値電圧Vthを検出する検出動作、および、検出工程が加わる。そのため、以下では、検出動作、および、検出工程について詳細に説明し、第1実施形態にて説明した構成と同様の構成、また、第2実施形態にて説明した構成と同様の構成に対しては、同一の符号を付してその詳細な説明を省略する。
[Third Embodiment]
With reference to FIGS. 16 to 26, a third embodiment in which the EL display device and the driving method of the EL display device according to the present disclosure are embodied will be described. The EL display device of the third embodiment and the driving method of the EL display device are the EL display device of the first embodiment, the driving method of the EL display device, the EL display device of the second embodiment, and A detection operation for detecting the threshold voltage Vth of the drive transistor Tr3 and a detection step are further added to the driving of the EL display device. Therefore, in the following, the detection operation and the detection process will be described in detail, and the configuration similar to the configuration described in the first embodiment and the configuration similar to the configuration described in the second embodiment will be described. Are given the same reference numerals and their detailed description is omitted.
 [制御部50の構成]
 図16に示されるように、タイミングコントローラ52は、データシフトクロック信号Clkd、表示用シフトクロック信号Clks、および、検出用シフトクロック信号Clkrを生成する。タイミングコントローラ52は、データシフトクロック信号Clkdをデータドライバ40へ出力し、表示用シフトクロック信号Clksを、選択ドライバ20および電源ドライバ30へ出力し、検出用シフトクロック信号Clkrを、選択ドライバ20および電源ドライバ30へ出力する。
[Configuration of Control Unit 50]
As shown in FIG. 16, the timing controller 52 generates a data shift clock signal Clkd, a display shift clock signal Clks, and a detection shift clock signal Clkr. The timing controller 52 outputs the data shift clock signal Clkd to the data driver 40, outputs the display shift clock signal Clks to the selection driver 20 and the power supply driver 30, and outputs the detection shift clock signal Clkr to the selection driver 20 and the power supply. Output to the driver 30.
 検出用シフトクロック信号Clkrは、検出動作において、選択対象の候補の切替わる周期を定める。選択ドライバ20は、検出用シフトクロック信号Clkrが立ち上がるごとに、1行目の走査線Ls、2行目の走査線Ls、…、m行目の走査線Lsの順に、選択電圧VgHの印加される候補を1本ずつ選択する。電源ドライバ30は、検出用シフトクロック信号Clkrが立ち上がるごとに、1行目の電源線La、2行目の電源線La、…、m行目の電源線Laの順に、電源線Laを1本ずつ選択する。検出用シフトクロック信号Clkmのクロック周期である検出用クロック周期は、表示用周期よりも十分に短いことが好ましい。例えば、検出用クロック周期は、データシフトクロック信号Clkdのクロック周期と同じであることが好ましい。 The detection shift clock signal Clkr determines a cycle in which selection candidates are switched in the detection operation. Each time the detection shift clock signal Clkr rises, the selection driver 20 applies the selection voltage VgH in the order of the first scanning line Ls, the second scanning line Ls,..., The m-th scanning line Ls. Select one candidate at a time. Each time the shift clock signal Clkr for detection rises, the power supply driver 30 supplies one power supply line La in the order of the first power supply line La, the second power supply line La,..., The mth power supply line La. Select one by one. The detection clock cycle that is the clock cycle of the detection shift clock signal Clkm is preferably sufficiently shorter than the display cycle. For example, the detection clock cycle is preferably the same as the clock cycle of the data shift clock signal Clkd.
 そして、発光期間において、選択ドライバ20は、選択対象の候補を表示用クロック周期で走査し、非発光期間においても、選択対象の候補を表示用クロック周期で走査する。一方で、検出動作において、選択ドライバ20は、選択対象の候補を検出用クロック周期で走査する。また、発光期間において、電源ドライバ30は、供給対象の候補を表示用クロック周期で走査し、非発光期間においても、供給対象の候補を表示用クロック周期で走査する。一方で、検出動作において、電源ドライバ30は、供給対象の候補を検出用クロック周期で走査する。 In the light emission period, the selection driver 20 scans the selection target candidates in the display clock cycle, and in the non-light emission period, the selection driver 20 scans the selection target candidates in the display clock cycle. On the other hand, in the detection operation, the selection driver 20 scans the selection target candidates in the detection clock cycle. In the light emission period, the power supply driver 30 scans the supply target candidates in the display clock cycle, and also scans the supply target candidates in the display clock cycle in the non-light emission period. On the other hand, in the detection operation, the power supply driver 30 scans the supply target candidates at the detection clock cycle.
 検出用シフトクロック信号Clkrは、ハイレベルとローレベルとが検出用クロック周期で繰り返されるなかに、ローレベルが検出期間だけ維持されるシフト待機部分を含む。シフト待機部分の出力されるタイミングは、検出用シフトクロック信号Clkrの出力される機会ごとに、すなわち、検出動作が行われるごとにシフトする。 The detection shift clock signal Clkr includes a shift standby portion in which the low level is maintained only during the detection period while the high level and the low level are repeated in the detection clock cycle. The timing at which the shift standby portion is output is shifted every time the detection shift clock signal Clkr is output, that is, every time a detection operation is performed.
 例えば、今回の検出動作において、検出用シフトクロック信号Clkrは、ハイレベルとローレベルとをクロック周期でq回繰り返し(1≦q≦m)、その後に、シフト待機部分を続ける。一方で、次回の検出動作において、検出用シフトクロック信号Clkrは、ハイレベルとローレベルとをq+1回繰り返し(1≦q≦m)、その後に、シフト待機部分を続ける。これによって、今回の検出動作において、1本目の走査線Lsからq本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に切替わる。そして、検出期間が経過した後に、q+1本目の走査線Lsからm本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に再び切替わる。また、次回の検出動作において、1本目の走査線Lsからq+1本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に切替わる。そして、検出期間が経過した後に、q+2本目の走査線Lsからm本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に切替わる。 For example, in this detection operation, the detection shift clock signal Clkr repeats the high level and the low level q times (1 ≦ q ≦ m) in the clock cycle, and then continues the shift standby part. On the other hand, in the next detection operation, the detection shift clock signal Clkr repeats the high level and the low level q + 1 times (1 ≦ q ≦ m), and then continues the shift standby portion. Thus, in the current detection operation, the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection. After the detection period elapses, the q + 1th scanning line Ls to the mth scanning line Ls are sequentially switched again in the detection clock cycle as selection candidates. In the next detection operation, the first scanning line Ls to the q + 1th scanning line Ls are sequentially switched in the detection clock cycle as selection candidates. Then, after the detection period has elapsed, from the (q + 2) -th scanning line Ls to the m-th scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection.
 タイミングコントローラ52は、スタートパルス信号SP1、スタートパルス信号SP2、ラッチパルス信号LP、および、マスクパルス信号MPを生成する。タイミングコントローラ52は、スタートパルス信号SP1、および、ラッチパルス信号LPをデータドライバ40に入力する。タイミングコントローラ52は、スタートパルス信号SP2、および、マスクパルス信号MPを、選択ドライバ20、電源ドライバ30、および、画像信号処理部54に入力する。 The timing controller 52 generates a start pulse signal SP1, a start pulse signal SP2, a latch pulse signal LP, and a mask pulse signal MP. The timing controller 52 inputs the start pulse signal SP1 and the latch pulse signal LP to the data driver 40. The timing controller 52 inputs the start pulse signal SP <b> 2 and the mask pulse signal MP to the selection driver 20, the power supply driver 30, and the image signal processing unit 54.
 スタートパルス信号SP2は、選択ドライバ20の処理のタイミングを制御する制御信号であり、選択対象の候補の切替えに用いられるシフトクロック信号を、表示用クロック周期と検出用クロック周期とに切替える。スタートパルス信号SP2は、電源ドライバ30の処理のタイミングを制御する制御信号であり、供給対象の候補の切替えに用いられるシフトクロック信号を、表示用クロック周期と検出用クロック周期とに切替える。タイミングコントローラ52は、スタートパルス信号SP2を設定回数だけ入力するごとに、選択対象の候補の切替えに用いられるシフトクロック信号を、表示用クロック周期から検出用クロック周期へ切替える。タイミングコントローラ52は、スタートパルス信号SP2を設定回数だけ入力するごとに、供給対象の候補の切替えに用いられるシフトクロック信号を、表示用クロック周期から検出用クロック周期へ切替える。 The start pulse signal SP2 is a control signal for controlling the processing timing of the selection driver 20, and switches the shift clock signal used for switching the candidate to be selected between the display clock cycle and the detection clock cycle. The start pulse signal SP2 is a control signal for controlling the processing timing of the power supply driver 30, and switches the shift clock signal used for switching the candidate to be supplied between the display clock cycle and the detection clock cycle. The timing controller 52 switches the shift clock signal used for switching the candidate to be selected from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input a set number of times. The timing controller 52 switches the shift clock signal used for switching the candidate to be supplied from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input a set number of times.
 なお、第3実施形態では、設定回数が3回に設定され、タイミングコントローラ52は、スタートパルス信号SP2を3回入力するごとに、シフトクロック信号を表示用クロック周期から検出用クロック周期へ変更する。そして、例えば、3n回目のスタートパルス信号SP2の入力によって、m本の走査線Lsが選択対象の候補として表示用クロック周期で順に切替えて、発光用の書込操作と発光操作とが進められる。次いで、3n+1回目のスタートパルス信号SP2の入力によって、m本の走査線Lsが選択対象の候補として表示用クロック周期で順に切替えられて、非発光用の書込操作と非発光操作とが進められる。そして、3n+2回目のスタートパルス信号SP2の入力によって、m本の走査線Lsが選択対象の候補として検出用クロック周期で順に切替えられて、検出動作が進められる。 In the third embodiment, the set number of times is set to 3, and the timing controller 52 changes the shift clock signal from the display clock cycle to the detection clock cycle every time the start pulse signal SP2 is input three times. . For example, when the 3n-th start pulse signal SP2 is input, the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and the light-emission writing operation and the light-emission operation are advanced. Next, in response to the input of the 3n + 1th start pulse signal SP2, the m scanning lines Ls are sequentially switched in the display clock cycle as candidates for selection, and the writing operation for non-light emission and the non-light emission operation are advanced. . In response to the input of the 3n + 2th start pulse signal SP2, the m scanning lines Ls are sequentially switched in the detection clock cycle as candidates for selection, and the detection operation proceeds.
 マスクパルス信号MPは、選択ドライバ20の処理のタイミングを制御する制御信号であり、選択ドライバ20にて生成されるシフト信号の出力を制御する。マスクパルス信号MPがハイレベルであるとき、選択ドライバ20では、選択ドライバ20にて生成されるシフト信号に基づき、走査線Lsのいずれかに選択電圧VgHが印加される。一方で、マスクパルス信号MPがローレベルであるとき、選択ドライバ20では、選択ドライバ20にて生成されるシフト信号にかかわらず、全ての走査線Lsに非選択電圧VgLが印加される。 The mask pulse signal MP is a control signal for controlling the processing timing of the selection driver 20, and controls the output of the shift signal generated by the selection driver 20. When the mask pulse signal MP is at a high level, the selection driver 20 applies the selection voltage VgH to one of the scanning lines Ls based on the shift signal generated by the selection driver 20. On the other hand, when the mask pulse signal MP is at the low level, the selection driver 20 applies the non-selection voltage VgL to all the scanning lines Ls regardless of the shift signal generated by the selection driver 20.
 マスクパルス信号MPは、通常はハイレベルに設定され、スタートパルス信号SP2が設定回数だけ出力されるごとに、ハイレベルからローレベルに切替わり、かつ、ハイレベルが検出期間だけ維持されるマスク解除部分を含む。マスク解除部分の出力されるタイミングは、上記シフト待機部分の出力と同期し、検出動作が行われるごとにシフトする。 The mask pulse signal MP is normally set to a high level, and every time the start pulse signal SP2 is output a set number of times, the mask pulse signal MP is switched from the high level to the low level, and the high level is maintained for the detection period. Including parts. The output timing of the mask release portion is synchronized with the output of the shift standby portion and is shifted every time a detection operation is performed.
 例えば、今回の検出動作では、検出用シフトクロック信号Clkrにて、ハイレベルとローレベルとがq回繰り返され(1≦q≦m)、その後にマスク解除部分が出力される。一方で、次回の検出動作では、検出用シフトクロック信号Clkrにて、ハイレベルとローレベルとがq+1回繰り返され(1≦q≦m)、その後にマスク解除部分が出力される。これによって、今回の検出動作では、まず、1本目の走査線Lsからq本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で順に切替えられる。そして、この期間では、走査線Lsに対する選択電圧VgHの印加が禁止される。次いで、選択対象の候補の切替えが止められる検出期間にて、そのときの候補であるq行目の走査線Lsに対し、選択電圧VgHが印加される。一方で、次回の検出動作では、まず、1本目の走査線Lsからq+1本目の走査線Lsまでが、選択対象の候補として、検出用クロック周期で走査される。そして、この期間では、走査線Lsに対する選択電圧VgHの印加が禁止される。次いで、選択対象の候補の切替えが止められる検出期間にて、そのときの候補であるq+1行目の走査線Lsに対し、選択電圧VgHが印加される。 For example, in this detection operation, the high level and the low level are repeated q times (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then the mask release portion is output. On the other hand, in the next detection operation, the high level and the low level are repeated q + 1 times (1 ≦ q ≦ m) in the detection shift clock signal Clkr, and then the mask release portion is output. Thus, in the current detection operation, first, the first scanning line Ls to the qth scanning line Ls are sequentially switched in the detection clock cycle as candidates for selection. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited. Next, in the detection period in which switching of the candidate for selection is stopped, the selection voltage VgH is applied to the scanning line Ls in the qth row that is the candidate at that time. On the other hand, in the next detection operation, first, the first scanning line Ls to the (q + 1) th scanning line Ls are scanned as detection target candidates in the detection clock cycle. During this period, application of the selection voltage VgH to the scanning line Ls is prohibited. Next, in the detection period in which the selection of the candidate to be selected is stopped, the selection voltage VgH is applied to the scanning line Ls of the q + 1th row that is the candidate at that time.
 記憶部53は、複数の画素Pxの各々に対応づけられたm行×n列の記憶領域を備えている。記憶部53は、検出データDoutをデータドライバ40から取込む。検出データDoutは、画素Pxごとのしきい値電圧Vthに関するデータであり、例えば、8ビットのデータである。記憶部53は、画素Pxごとの検出データDoutを、その画素Pxに対応づけられた記憶領域に記憶する。記憶部53は、画素Pxに対応づけられた記憶領域にその都度のデータを記憶して、検出データDoutを更新する。 The storage unit 53 includes a storage area of m rows × n columns associated with each of the plurality of pixels Px. The storage unit 53 takes in the detection data Dout from the data driver 40. The detection data Dout is data related to the threshold voltage Vth for each pixel Px, for example, 8-bit data. The storage unit 53 stores detection data Dout for each pixel Px in a storage area associated with the pixel Px. The storage unit 53 stores each time data in a storage area associated with the pixel Px, and updates the detection data Dout.
 画像信号処理部54は、記憶部53に記憶された画素Pxごとの検出データDoutを読込む。画像信号処理部54は、画素Pxごとの発光用階調データに対し、画素Pxごとの検出データDoutに基づく加減演算を施して、画素Pxごとの表示データDinとして出力する。画像信号処理部54は、加減演算の施された表示データDinを用いて、画素Pxごとの非発光用階調データを生成する。 The image signal processing unit 54 reads the detection data Dout for each pixel Px stored in the storage unit 53. The image signal processing unit 54 performs an addition / subtraction operation on the gradation data for light emission for each pixel Px based on the detection data Dout for each pixel Px, and outputs the result as display data Din for each pixel Px. The image signal processing unit 54 generates non-light emitting gradation data for each pixel Px using the display data Din subjected to the addition / subtraction calculation.
 [選択ドライバ20の構成]
 図16を参照して、選択ドライバ20の構成を説明する。なお、電源ドライバ30での供給対象の候補を選択する構成は、選択ドライバ20での選択対象の候補を選択する構成と同様である。そのため、以下では、選択ドライバ20の構成について詳細に説明し、電源ドライバ30の構成について省略する。
[Configuration of Selected Driver 20]
The configuration of the selection driver 20 will be described with reference to FIG. The configuration for selecting the supply target candidate in the power supply driver 30 is the same as the configuration for selecting the selection target candidate in the selection driver 20. Therefore, in the following, the configuration of the selection driver 20 will be described in detail, and the configuration of the power supply driver 30 will be omitted.
 図16に示されるように、制御部50は、シフトレジスタ回路21に検出用シフトクロック信号Clkrを入力する。シフトレジスタ回路21は、検出用シフトクロック信号Clkrの入力ごとに、シフト信号における1つの選択対象ビットを、1行目からm行目まで1行ずつ順にシフトさせる。 As shown in FIG. 16, the control unit 50 inputs the detection shift clock signal Clkr to the shift register circuit 21. The shift register circuit 21 sequentially shifts one selection target bit in the shift signal line by line from the first line to the m-th line for every input of the detection shift clock signal Clkr.
 制御部50は、シフトレジスタ回路21にマスクパルス信号MPを入力する。マスクパルス信号MPがハイレベルであるとき、シフトレジスタ回路21はシフト信号を出力する。一方で、マスクパルス信号MPがローレベルであるとき、シフトレジスタ回路21は選択対象ビットが含まれないシフト信号を出力する。そして、シフトクロック信号が表示用シフトクロック信号Clksであるとき、シフトレジスタ回路21は、マスクパルス信号MPがハイレベルであることに基づいて、選択対象ビットが含まれるシフト信号を出力する。一方で、シフトクロック信号が検出用シフトクロック信号Clkrであるとき、シフトレジスタ回路21は、検出期間以外において、マスクパルス信号MPがローレベルであることに基づいて、選択対象ビットが含まれないシフト信号を出力する。 The control unit 50 inputs the mask pulse signal MP to the shift register circuit 21. When the mask pulse signal MP is at high level, the shift register circuit 21 outputs a shift signal. On the other hand, when the mask pulse signal MP is at the low level, the shift register circuit 21 outputs a shift signal that does not include the selection target bit. When the shift clock signal is the display shift clock signal Clks, the shift register circuit 21 outputs a shift signal including the selection target bit based on the mask pulse signal MP being at a high level. On the other hand, when the shift clock signal is the detection shift clock signal Clkr, the shift register circuit 21 shifts the selection target bit not included based on the fact that the mask pulse signal MP is at a low level in a period other than the detection period. Output a signal.
 こうしたシフト信号の出力の制御は、例えば、シフトレジスタ回路21の入力端にシフト信号の各ビットに対応するm個の論理積回路が接続し、m個の論理積回路の各々にマスクパルス信号MPが入力されることによって実現される。 Control of such shift signal output is performed, for example, by connecting m logical product circuits corresponding to each bit of the shift signal to the input terminal of the shift register circuit 21, and mask pulse signal MP to each of the m logical product circuits. This is realized by inputting.
 [データドライバ40の構成]
 図17を参照して、データドライバ40の構成を説明する。
 図17に示されるように、データラッチ回路43は、n個のデータラッチ43aと、n個のデータラッチ43aの各々の入力端に接続するn個の入力スイッチSW1と、n個のデータラッチ43aの各々の出力端に接続するn個の出力スイッチSW2とを備えている。また、データラッチ回路43は、1列目の出力スイッチSW2と制御部50とに接続された転送スイッチSWtrsとを備えている。
[Configuration of Data Driver 40]
The configuration of the data driver 40 will be described with reference to FIG.
As shown in FIG. 17, the data latch circuit 43 includes n data latches 43a, n input switches SW1 connected to the input terminals of the n data latches 43a, and n data latches 43a. And n output switches SW2 connected to the respective output terminals. The data latch circuit 43 includes an output switch SW2 in the first column and a transfer switch SWtrs connected to the control unit 50.
 入力スイッチSW1は、制御部50からの制御信号に基づいて駆動され、p列目のデータラッチ43aの入力端を、データレジスタ回路42におけるp列目のレジスタと、p列目の検出用ADC44bと、p+1列目のデータラッチ43aの出力端とのいずれか1つに接続する。 The input switch SW1 is driven based on a control signal from the control unit 50, and the input end of the p-th column data latch 43a is connected to the p-th column register in the data register circuit 42 and the p-th column detection ADC 44b. , Connected to any one of the output ends of the data latches 43a in the (p + 1) th column.
 データラッチ43aの入力端とデータレジスタ回路42とが接続されるとき、データラッチ43aは、ラッチパルス信号LPに同期したタイミングで、データレジスタ回路42に記憶される表示データDinを保持する。 When the input terminal of the data latch 43a and the data register circuit 42 are connected, the data latch 43a holds the display data Din stored in the data register circuit 42 at a timing synchronized with the latch pulse signal LP.
 データラッチ43aの入力端と検出用ADC44bとが接続されるとき、データラッチ43aは、ラッチパルス信号LPに同期したタイミングで、検出用ADC44bから出力されるデータを検出データDoutとして保持する。 When the input terminal of the data latch 43a and the detection ADC 44b are connected, the data latch 43a holds the data output from the detection ADC 44b as detection data Dout at a timing synchronized with the latch pulse signal LP.
 p列目のデータラッチ43aの入力端とp+1列目のデータラッチ43aの出力端とが接続するとき、p列目のデータラッチ43aは、ラッチパルス信号LPに同期したタイミングで、p+1列目のデータラッチ43aが保持する検出データDoutを保持する。なお、最後列であるn列目のデータラッチ43aは、ロジック電源60に接続され、n列目のデータラッチ43aにはロジック基準電圧LVSSが印加される。 When the input end of the data latch 43a in the p-th column is connected to the output end of the data latch 43a in the p + 1-th column, the data latch 43a in the p-th column is synchronized with the latch pulse signal LP at the timing of the p + 1-th column. The detection data Dout held by the data latch 43a is held. Note that the data latch 43a in the nth column, which is the last column, is connected to the logic power supply 60, and the logic reference voltage LVSS is applied to the data latch 43a in the nth column.
 出力スイッチSW2は、制御部50からの制御信号に基づいて駆動され、p+1列目のデータラッチ43aの入力端を、電圧変換回路44の表示用DAC44aと、p列目のデータラッチ43aの入力端とのいずれか1つに接続する。 The output switch SW2 is driven based on a control signal from the control unit 50, and the input terminal of the data latch 43a in the (p + 1) th column is connected to the display DAC 44a of the voltage conversion circuit 44 and the input terminal of the data latch 43a in the pth column. Connect to one of these.
 データラッチ43aの入力端と電圧変換回路44の表示用DAC44aとが接続するとき、データラッチ43aの保持する表示データDinは、ラッチパルス信号LPに同期したタイミングで、表示用DAC44aに入力される。 When the input terminal of the data latch 43a and the display DAC 44a of the voltage conversion circuit 44 are connected, the display data Din held by the data latch 43a is input to the display DAC 44a at a timing synchronized with the latch pulse signal LP.
 p+1列目のデータラッチ43aの出力端とp列目のデータラッチ43aの入力端とが接続するとき、p+1列目のデータラッチ43aの保持する検出データDoutは、ラッチパルス信号LPに同期したタイミングで、p列目のデータラッチ43aに保持される。 When the output terminal of the data latch 43a in the p + 1 column and the input terminal of the data latch 43a in the p column are connected, the detection data Dout held in the data latch 43a in the p + 1 column is synchronized with the latch pulse signal LP. Thus, it is held in the data latch 43a in the p-th column.
 転送スイッチSWtrsは、制御部50からの制御信号に基づいて駆動され、1列目のデータラッチ43aと制御部50との接続と切断とを切替える。1列目のデータラッチ43aと制御部50とが接続するとき、1列目のデータラッチ43aの保持する検出データDoutは制御部50へ出力される。 The transfer switch SWtrs is driven based on a control signal from the control unit 50, and switches between connection and disconnection between the data latch 43a in the first column and the control unit 50. When the data latch 43a in the first column is connected to the control unit 50, the detection data Dout held by the data latch 43a in the first column is output to the control unit 50.
 電圧変換回路44は、n個の表示用DAC44aと、アナログ-デジタル変換回路であるn個の検出用ADC44bとを備えている。n個の検出用ADC44bの各々は、その検出用ADC44bに接続するバッファ回路45から入力されるアナログ電圧を、例えば、8ビットの検出データDoutに変換し、その検出用ADC44bに接続されるデータラッチ43aに検出データDoutを出力する。検出用ADC44bは、入力されるアナログ電圧に対して、出力されるデジタルデータに線形性を有している。表示用DAC44aと検出用ADC44bとには、電圧変換時のデジタルデータのビット長として、同一のビット長である、例えば、8ビットが設定されている。 The voltage conversion circuit 44 includes n display DACs 44a and n detection ADCs 44b which are analog-digital conversion circuits. Each of the n detection ADCs 44b converts an analog voltage input from the buffer circuit 45 connected to the detection ADC 44b into, for example, 8-bit detection data Dout, and a data latch connected to the detection ADC 44b. The detection data Dout is output to 43a. The detection ADC 44b has linearity in the output digital data with respect to the input analog voltage. The display DAC 44a and the detection ADC 44b are set to the same bit length, for example, 8 bits, as the bit length of the digital data at the time of voltage conversion.
 バッファ回路45は、データ線Ldごとのバッファ45aと、データ線Ldごとのバッファ45bと、データ線Ldとバッファ45aとの接続と切断とを切替えるデータ線Ldごとの表示用スイッチSWdとを備えている。また、バッファ回路45は、データ線Ldとバッファ45bとの接続と切断とを切替えるデータ線Ldごとの検出用スイッチSWmと、データ線Ldとアナログ電源70との接続と切断とを切替えるデータ線Ldごとの検出用電圧スイッチSWsとを備えている。 The buffer circuit 45 includes a buffer 45a for each data line Ld, a buffer 45b for each data line Ld, and a display switch SWd for each data line Ld for switching connection and disconnection between the data line Ld and the buffer 45a. Yes. The buffer circuit 45 also includes a detection switch SWm for each data line Ld that switches connection and disconnection between the data line Ld and the buffer 45b, and a data line Ld that switches connection and disconnection between the data line Ld and the analog power supply 70. And a detection voltage switch SWs.
 表示用スイッチSWdは、制御部50からの制御信号に基づいて駆動され、バッファ45aとデータ線Ldとを接続し、バッファ45aからデータ線Ldに発光電圧VD、および、非発光電圧VDNを印加する。バッファ45bは、データ線Ldの電圧を取込み、取込まれた電圧を検出用ADC44bの駆動レベルに増幅して検出用ADC44bへ出力する。検出用スイッチSWmは、制御部50からの制御信号に基づいて駆動され、バッファ45bとデータ線Ldとを接続して、データ線Ldの電圧をバッファ45bに取込む。検出用電圧スイッチSWsは、アナログ電源70からデータ線Ldへの検出用電圧VMの印加を制御する。 The display switch SWd is driven based on a control signal from the control unit 50, connects the buffer 45a and the data line Ld, and applies the light emission voltage VD and the non-light emission voltage VDN from the buffer 45a to the data line Ld. . The buffer 45b takes in the voltage of the data line Ld, amplifies the taken-in voltage to the drive level of the detection ADC 44b, and outputs the amplified voltage to the detection ADC 44b. The detection switch SWm is driven based on a control signal from the control unit 50, connects the buffer 45b and the data line Ld, and takes the voltage of the data line Ld into the buffer 45b. The detection voltage switch SWs controls application of the detection voltage VM from the analog power supply 70 to the data line Ld.
 n個のデータラッチ43aの各々の入力端は、発光期間、および、非発光期間において、データレジスタ回路42における対応するレジスタに接続する。n個のデータラッチ43aの各々は、対応するレジスタに記憶された階調データを保持し、その保持をラッチパルス信号LPに同期させる。n個のデータラッチ43aの各々は、そのデータラッチ43aに保持される表示データDinを電圧変換回路44へ出力する。これによって、データラッチ回路43は、データレジスタ回路42に取込まれた1行分の表示データDinをラッチパルス信号LPの入力ごとに保持し、保持された1行分の表示データDinを電圧変換回路44へ出力する。 Each input terminal of the n data latches 43a is connected to a corresponding register in the data register circuit 42 in the light emission period and the non-light emission period. Each of the n data latches 43a holds the gradation data stored in the corresponding register, and synchronizes the holding with the latch pulse signal LP. Each of the n data latches 43 a outputs the display data Din held in the data latch 43 a to the voltage conversion circuit 44. As a result, the data latch circuit 43 holds the display data Din for one row fetched by the data register circuit 42 for each input of the latch pulse signal LP, and converts the held display data Din for one row into a voltage. Output to the circuit 44.
 n個のデータラッチ43aの各々の入力端は、検出動作において、表示用DAC/ADC44における対応する検出用ADC44bに接続する。n個のデータラッチ43aの各々は、対応する検出用ADC44bから出力されるデータを検出データDoutとして保持し、その保持をラッチパルス信号LPに同期させる。 Each input terminal of the n data latches 43a is connected to the corresponding detection ADC 44b in the display DAC / ADC 44 in the detection operation. Each of the n data latches 43a holds the data output from the corresponding detection ADC 44b as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
 p列目(1≦p≦n)のデータラッチ43aの入力端は、検出動作において、p+1列目のデータラッチ43aの出力端に接続する。p列目のデータラッチ43aの各々は、p+1列目のデータラッチ43aに保持されるデータを検出データDoutとして保持し、その保持をラッチパルス信号LPに同期させる。 The input terminal of the data latch 43a in the p-th column (1 ≦ p ≦ n) is connected to the output terminal of the data latch 43a in the p + 1 column in the detection operation. Each of the data latches 43a in the p-th column holds the data held in the data latches 43a in the (p + 1) th column as detection data Dout, and synchronizes the holding with the latch pulse signal LP.
 1列目のデータラッチ43aの出力端は、検出動作において、制御部50に接続され、1列目のデータラッチ43aに保持される検出データDoutを制御部50へ出力する。これによって、1列目のデータラッチ43aは、p+1列目のデータラッチ43aに保持される全てデータを2列目のデータラッチ43aから順に保持し、その保持されたデータを順に制御部50へ出力する。 The output terminal of the data latch 43a in the first column is connected to the control unit 50 in the detection operation, and outputs the detection data Dout held in the data latch 43a in the first column to the control unit 50. As a result, the data latch 43a in the first column holds all data held in the data latch 43a in the p + 1 column in order from the data latch 43a in the second column, and outputs the held data to the control unit 50 in order. To do.
 [EL表示装置の作用]
 図18~図25を参照して、EL表示装置の発光期間の動作、および、検出動作を含むEL表示装置の非発光期間の動作を説明する。まず、EL表示装置の発光期間の動作を説明する。
[Operation of EL display device]
With reference to FIGS. 18 to 25, the operation during the light emission period of the EL display device and the operation during the non-light emission period of the EL display device including the detection operation will be described. First, the operation during the light emission period of the EL display device will be described.
 [発光期間]
 図18を参照して、発光期間における選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を説明する。発光期間では、第1実施形態、および、第2実施形態と同様に、発光用の書込操作と発光操作とがこの順に行われる。
[Flash duration]
With reference to FIG. 18, the transition of the drive state of the selection driver 20, the power supply driver 30, and the data driver 40 in the light emission period will be described. In the light emission period, as in the first embodiment and the second embodiment, the light emission writing operation and the light emission operation are performed in this order.
 図18に示されるように、発光期間において、制御部50は、検出用スイッチSWm、検出用電圧スイッチSWs、および、転送スイッチSWtrsを、オフに保つ。また、制御部50は、データラッチ43aと表示用DAC44aとが接続する状態に、出力スイッチSW2を保ち、データラッチ43aとデータレジスタ回路42とが接続する状態に、入力スイッチSW1を保つ。そして、制御部50は、第1実施形態での発光期間と同様に、スタートパルス信号SP1の入力、スタートパルス信号SP2の入力、および、ラッチパルス信号LPの入力を制御する。 As shown in FIG. 18, in the light emission period, the control unit 50 keeps the detection switch SWm, the detection voltage switch SWs, and the transfer switch SWtrs off. The control unit 50 keeps the output switch SW2 in a state where the data latch 43a and the display DAC 44a are connected, and keeps the input switch SW1 in a state where the data latch 43a and the data register circuit 42 are connected. And the control part 50 controls the input of start pulse signal SP1, the input of start pulse signal SP2, and the input of latch pulse signal LP similarly to the light emission period in 1st Embodiment.
 すなわち、タイミングtk1にて、制御部50は、表示用スイッチSWdをオンに切替えて、シフトレジスタ回路41、データレジスタ回路42、データラッチ43a、表示用DAC44a、バッファ45a、および、データ線Ldを直列に接続する。 That is, at the timing tk1, the control unit 50 switches on the display switch SWd to connect the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld in series. Connect to.
 タイミングtk2にて、制御部50は、スタートパルス信号SP1をデータドライバ40に入力して、1行目の表示データDinをデータレジスタ回路42に取込ませる。そして、制御部50は、選択ドライバ20、および、電源ドライバ30にスタートパルス信号SP2を入力する。 At timing tk2, the control unit 50 inputs the start pulse signal SP1 to the data driver 40, and causes the data register circuit 42 to capture the display data Din of the first row. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
 タイミングtk3にて、制御部50は、1行目の走査線Lsに選択電圧VgHを印加し、かつ、1行目の電源線Laに書込電圧WDVSSを印加する。この際に、制御部50は、ラッチパルス信号LPをデータドライバ40に入力して、1行目の表示データDinを一斉にデータラッチ43aに保持させる。データラッチ43aに保持された1行目の表示データDinは、アナログ電圧である発光電圧VDとして、データ線Ldに入力される。これによって、制御部50は、1行目の画素Pxに対する発光用の書込操作を終える。この際に、制御部50は、スタートパルス信号SP1をデータドライバ40に再び入力して、2行目の表示データDinをデータレジスタ回路42に取込ませる。 At timing tk3, the control unit 50 applies the selection voltage VgH to the first scanning line Ls, and applies the writing voltage WDVSS to the first power supply line La. At this time, the control unit 50 inputs the latch pulse signal LP to the data driver 40 and causes the data latch 43a to simultaneously hold the display data Din for the first row. The display data Din in the first row held in the data latch 43a is input to the data line Ld as the light emission voltage VD which is an analog voltage. Thus, the control unit 50 finishes the light emission writing operation for the pixels Px in the first row. At this time, the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again, and causes the data register circuit 42 to capture the display data Din on the second row.
 なお、制御部50は、1行目の画素Pxに対応づけられた検出データDoutと、基準となるしきい値電圧Vthとの差分を、補正値として取扱う。そして、制御部50は、調整後の発光用階調データに対して補正値を加減演算し、その演算結果を、各データ線Ldに印加される発光電圧VDとする。 The control unit 50 handles the difference between the detection data Dout associated with the pixel Px in the first row and the reference threshold voltage Vth as a correction value. Then, the control unit 50 calculates and corrects the correction value for the adjusted light emission gradation data, and sets the calculation result as the light emission voltage VD applied to each data line Ld.
 タイミングtd4にて、制御部50は、1行目の走査線Lsに非選択電圧VgLを印加し、かつ、1行目の電源線Laに駆動電圧ELVDDを印加する。そして、1行目の駆動トランジスタTr3の各々は、1行目の保持容量Csに保持された書込電圧と、それが接続された駆動トランジスタTr3におけるしきい値電圧Vthとの差に応じたドレイン電流を、対応するEL素子11に供給する。この際に、各データ線Ldに印加される発光電圧VDでは、しきい値電圧Vthの変動分が補正されているため、EL素子11に供給されるドレイン電流も、しきい値電圧Vthの変動分が補正されたものとなる。これによって、制御部50は、1行目の画素Pxに対する発光期間を終える。 At timing td4, the control unit 50 applies the non-selection voltage VgL to the first scanning line Ls and applies the driving voltage ELVDD to the first power supply line La. Each of the driving transistors Tr3 in the first row has a drain corresponding to the difference between the write voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth in the driving transistor Tr3 to which the driving transistor Tr3 is connected. A current is supplied to the corresponding EL element 11. At this time, in the light emission voltage VD applied to each data line Ld, the fluctuation amount of the threshold voltage Vth is corrected. Therefore, the drain current supplied to the EL element 11 is also changed in the threshold voltage Vth. The minutes are corrected. Accordingly, the control unit 50 ends the light emission period for the pixels Px in the first row.
 なお、この際に、制御部50は、2行目の走査線Lsに選択電圧VgHを印加し、かつ、2行目の電源線Laに書込電圧WDVSSを印加する。また、制御部50は、ラッチパルス信号LPをデータドライバ40に再び入力して、各データラッチ43aに2行目の表示データDinを保持させる。データラッチ43aに保持された2行目の表示データDinは、アナログ電圧である発光電圧VDとして、データ線Ldに入力される。これによって、制御部50は、2行目の画素Pxに対する発光用の書込操作を終える。以降、発光用の書込操作と発光操作とが行ごとにこの順で行われ、こうした発光期間が1行目からn行目まで順に表示用クロック周期で繰り返される。 At this time, the control unit 50 applies the selection voltage VgH to the second scanning line Ls and applies the write voltage WDVSS to the second power supply line La. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row. The display data Din in the second row held in the data latch 43a is input to the data line Ld as the light emission voltage VD which is an analog voltage. Thus, the control unit 50 finishes the light emission writing operation for the pixels Px in the second row. Thereafter, the write operation for light emission and the light emission operation are performed in this order for each row, and such a light emission period is repeated in order from the first row to the nth row in the display clock cycle.
 [非発光期間]
 図19から図22を参照して、EL表示装置の非発光期間における選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を説明する。非発光期間では、非発光用の書込操作、非発光操作、および、検出動作がこの順に行われる。なお、図19は、非発光用の書込操作、および、非発光操作における選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を示し、図21は、検出動作における選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を示す。
[Non-light emission period]
The transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 during the non-light emission period of the EL display device will be described with reference to FIGS. In the non-emission period, non-emission writing operation, non-emission operation, and detection operation are performed in this order. FIG. 19 shows transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 in the non-light emission writing operation and the non-light emission operation, and FIG. 21 shows the selection driver in the detection operation. 20, the transition of the drive state of the power supply driver 30 and the data driver 40 is shown.
 図19に示されるように、非発光用の書込操作、および、非発光操作が行われる期間にて、制御部50は、発光期間に続き、検出用スイッチSWm、検出用電圧スイッチSWs、および、転送スイッチSWtrsを、オフに保つ。また、制御部50は、データラッチ43aと表示用DAC44aとが接続する状態に、出力スイッチSW2を保ち、データラッチ43aとデータレジスタ回路42とが接続する状態に、入力スイッチSW1を保つ。また、制御部50は、表示用スイッチSWdをオンに保ち、シフトレジスタ回路41、データレジスタ回路42、データラッチ43a、表示用DAC44a、バッファ45a、および、データ線Ldを直列に接続し続ける。そして、制御部50は、第1実施形態での非発光用の書込操作、および、非発光操作と同様に、スタートパルス信号SP1、スタートパルス信号SP2、および、ラッチパルス信号LPを入力する。 As shown in FIG. 19, in the period in which the non-light emission writing operation and the non-light emission operation are performed, the control unit 50 follows the light emission period, and includes a detection switch SWm, a detection voltage switch SWs, and The transfer switch SWtrs is kept off. The control unit 50 keeps the output switch SW2 in a state where the data latch 43a and the display DAC 44a are connected, and keeps the input switch SW1 in a state where the data latch 43a and the data register circuit 42 are connected. Further, the control unit 50 keeps the display switch SWd on, and continues to connect the shift register circuit 41, the data register circuit 42, the data latch 43a, the display DAC 44a, the buffer 45a, and the data line Ld in series. The control unit 50 receives the start pulse signal SP1, the start pulse signal SP2, and the latch pulse signal LP as in the non-light emission writing operation and the non-light emission operation in the first embodiment.
 すなわち、タイミングtj1にて、制御部50は、スタートパルス信号SP1をデータドライバ40に入力して、1行目の表示データDinをデータレジスタ回路42に取込ませる。そして、制御部50は、選択ドライバ20、および、電源ドライバ30にスタートパルス信号SP2を入力する。 That is, at timing tj1, the control unit 50 inputs the start pulse signal SP1 to the data driver 40, and causes the data register circuit 42 to take in the display data Din of the first row. Then, the control unit 50 inputs the start pulse signal SP2 to the selection driver 20 and the power supply driver 30.
 タイミングtj2にて、制御部50は、1行目の走査線Lsに選択電圧VgHを印加し、かつ、1行目の電源線Laに書込電圧WDVSSを印加する。この際に、制御部50は、ラッチパルス信号LPをデータドライバ40に入力して、1行目の表示データDinを一斉にデータラッチ43aに保持させる。データラッチ43aに保持された1行目の表示データDinは、アナログ電圧である非発光電圧VDNとして、データ線Ldに入力される。これによって、制御部50は、1行目の各画素Pxに対して、直前の発光電圧VDの高い画素Pxほど低いゲート-ソース間電圧Vgsを保持させ、1行目の画素Pxに対する非発光用の書込操作を終える。この際に、制御部50は、スタートパルス信号SP1をデータドライバ40に再び入力して、2行目の表示データDinをデータレジスタ回路42に取込ませる。 At timing tj2, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the first row and applies the writing voltage WDVSS to the power supply line La in the first row. At this time, the control unit 50 inputs the latch pulse signal LP to the data driver 40 and causes the data latch 43a to simultaneously hold the display data Din for the first row. The display data Din in the first row held in the data latch 43a is input to the data line Ld as a non-light emission voltage VDN that is an analog voltage. As a result, the control unit 50 holds, for each pixel Px in the first row, a lower gate-source voltage Vgs as the pixel Px with the immediately higher light emission voltage VD causes non-light emission to the pixel Px in the first row. Finish the writing operation. At this time, the control unit 50 inputs the start pulse signal SP1 to the data driver 40 again, and causes the data register circuit 42 to capture the display data Din on the second row.
 なお、制御部50は、1行目の画素Pxに対応づけられた検出データDoutと、基準となるしきい値電圧Vthとの差分を、補正値として取扱う。そして、制御部50は、補正値の加味された非発光電圧VDNを、各データ線Ldに印加する。 The control unit 50 handles the difference between the detection data Dout associated with the pixel Px in the first row and the reference threshold voltage Vth as a correction value. Then, the control unit 50 applies the non-light emission voltage VDN to which the correction value is added to each data line Ld.
 タイミングtj3にて、制御部50は、1行目の走査線Lsに非選択電圧VgLを印加し、かつ、1行目の電源線Laに書込電圧WDVSSを印加し続ける。これによって、制御部50は、1行目の各駆動トランジスタTr3に、1行目の保持容量Csに保持された書込電圧、すなわち、直前の発光電圧VDの高い画素Pxほど、低いゲート-ソース間電圧Vgsを印加し続ける。これによって、制御部50は、1行目の画素Pxに対する非発光操作を終える。 At timing tj3, the control unit 50 continues to apply the non-selection voltage VgL to the scanning line Ls of the first row and the writing voltage WDVSS to the power supply line La of the first row. As a result, the control unit 50 applies a lower gate-source to each driving transistor Tr3 in the first row, as the writing voltage held in the holding capacitor Cs in the first row, that is, the pixel Px having the immediately higher light emission voltage VD. The voltage Vgs is continuously applied. Thus, the control unit 50 finishes the non-light emission operation for the pixels Px in the first row.
 なお、この際に、制御部50は、2行目の走査線Lsに選択電圧VgHを印加し、かつ、2行目の電源線Laに書込電圧WDVSSを印加する。また、制御部50は、ラッチパルス信号LPをデータドライバ40に再び入力して、各データラッチ43aに2行目の表示データDinを保持させる。データラッチ43aに保持された2行目の表示データDinは、アナログ電圧である非発光電圧VDNとして、データ線Ldに入力される。これによって、制御部50は、2行目の画素Pxに対する非発光用の書込操作を終える。以降、非発光用の書込操作と非発光操作とが行ごとにこの順で進められ、こうした非発光用の書込操作と非発光操作とが、1行目からn行目まで順に表示用クロック周期で繰り返される。 At this time, the control unit 50 applies the selection voltage VgH to the second scanning line Ls and applies the write voltage WDVSS to the second power supply line La. Further, the control unit 50 inputs the latch pulse signal LP to the data driver 40 again, and causes each data latch 43a to hold the display data Din on the second row. The display data Din in the second row held in the data latch 43a is input to the data line Ld as the non-light emission voltage VDN that is an analog voltage. Thereby, the control unit 50 finishes the non-light emission writing operation for the pixels Px in the second row. Thereafter, the non-emission writing operation and the non-emission operation are performed in this order for each row, and the non-emission writing operation and the non-emission operation are sequentially displayed from the first line to the nth line. Repeated with clock period.
 次に、検出動作での選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を説明する。まず、図20を参照して、駆動トランジスタTr3のドレイン電流に対する発光電圧VDの依存性を説明する。なお、図20では、駆動トランジスタTr3のしきい値電圧Vthが互いに異なる2つの駆動トランジスタTr3における上記依存性を例示する。 Next, the transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 in the detection operation will be described. First, the dependence of the light emission voltage VD on the drain current of the drive transistor Tr3 will be described with reference to FIG. FIG. 20 illustrates the above dependency on two drive transistors Tr3 having different threshold voltages Vth of the drive transistor Tr3.
 図20にて実線で示される曲線L1は、駆動トランジスタTr3のドレイン電流Idに対する発光電圧VDの依存性を示し、駆動トランジスタTr3のしきい値電圧Vthと、駆動回路PCCにおける電流増幅率βとが初期値であるときの依存性を示す。しきい値電圧Vthの初期値をVthとすると、初期状態での駆動回路PCCを流れるドレイン電流Idは、下記式(1)で示される。なお、Vは、書込電圧WDVSSである。 A curve L1 indicated by a solid line in FIG. 20 shows the dependence of the light emission voltage VD on the drain current Id of the drive transistor Tr3, and the threshold voltage Vth of the drive transistor Tr3 and the current amplification factor β in the drive circuit PCC are Indicates the dependency when it is the initial value. Assuming that the initial value of the threshold voltage Vth is Vth 0 , the drain current Id flowing through the drive circuit PCC in the initial state is expressed by the following formula (1). V 0 is the write voltage WDVSS.
 Id=β(V-Vd-Vth ・・・(1)
 図20にて破線で示される曲線L2は、駆動トランジスタTr3のドレイン電流Idに対する発光電圧VDの依存性を示し、駆動トランジスタTr3のドレイン電流Idが経時によって初期状態から変わったときを示す。しきい値電圧VthをVth(=Vth+ΔVth)とすると、この状態での駆動回路PCCを流れるドレイン電流Idは、下記式(2)で示される。
Id = β (V 0 −Vd−Vth 0 ) 2 (1)
A curve L2 indicated by a broken line in FIG. 20 shows the dependency of the light emission voltage VD on the drain current Id of the driving transistor Tr3, and shows the time when the drain current Id of the driving transistor Tr3 changes from the initial state over time. When the threshold voltage Vth is Vth 1 (= Vth 0 + ΔVth), the drain current Id flowing through the drive circuit PCC in this state is expressed by the following formula (2).
 Id=β(V-Vd-Vth ・・・(2)
 図20、および、上記式(1),(2)に示されるように、曲線L2は、曲線L1がシフト量ΔVthだけ並進された形状を示し、しきい値電圧Vthの変動の前後では、これら曲線L1と曲線L2との形状はほぼ変わらない。これは、しきい値電圧Vthの変動に比べて電流増幅率βの変動が無視される程度であること、そして、駆動トランジスタTr3におけるシフト量ΔVthを用いて発光電圧VDが補正されることによって、駆動トランジスタTr3のドレイン電流Idが補正されることを示唆する。第2実施形態のEL表示装置は、しきい値電圧Vthの検出動作において、こうした駆動トランジスタTr3のしきい値電圧Vthを検出し、駆動回路PCCに印加される発光電圧VDを補正する。
Id = β (V 0 −Vd−Vth 1 ) 2 (2)
As shown in FIG. 20 and the above equations (1) and (2), the curve L2 shows a shape in which the curve L1 is translated by the shift amount ΔVth, and before and after the fluctuation of the threshold voltage Vth, The shapes of the curve L1 and the curve L2 are not substantially changed. This is because the fluctuation of the current amplification factor β is negligible compared to the fluctuation of the threshold voltage Vth, and the light emission voltage VD is corrected using the shift amount ΔVth in the driving transistor Tr3. This suggests that the drain current Id of the driving transistor Tr3 is corrected. In the detection operation of the threshold voltage Vth, the EL display device of the second embodiment detects the threshold voltage Vth of the drive transistor Tr3 and corrects the light emission voltage VD applied to the drive circuit PCC.
 図21を参照して、検出動作での選択ドライバ20、電源ドライバ30、および、データドライバ40の駆動状態の推移を説明する。検出動作では、電圧保持動作、電圧飽和動作、電圧測定動作、および、電圧出力動作がこの順に行われる。なお、しきい値電圧Vthの検出動作は、画素Pxの並ぶ行ごとに互いに等しいため、以下では、検出対象となる行がq行目である場合を一例として説明する。 Referring to FIG. 21, the transition of the driving state of the selection driver 20, the power supply driver 30, and the data driver 40 in the detection operation will be described. In the detection operation, a voltage holding operation, a voltage saturation operation, a voltage measurement operation, and a voltage output operation are performed in this order. Note that the detection operation of the threshold voltage Vth is equal to each other for each row where the pixels Px are arranged. Therefore, hereinafter, a case where the row to be detected is the q-th row will be described as an example.
 図21の下側に示されるように、q行目の画素Pxの検出動作が行われる期間にて、制御部50は、q行目の電源線Laに書込電圧WDVSSを印加し続ける。また、制御部50は、表示用スイッチSWdをオフに保ち、q行目の駆動回路PCCを、シフトレジスタ回路41、および、データレジスタ回路42から切断し続ける。また、制御部50は、出力スイッチSW2を、隣接する他のデータラッチ43aに接続し続ける。 As shown in the lower side of FIG. 21, the control unit 50 continues to apply the write voltage WDVSS to the q-th power supply line La during the period in which the detection operation of the pixel Px in the q-th row is performed. Further, the control unit 50 keeps the display switch SWd off, and keeps disconnecting the driving circuit PCC in the q-th row from the shift register circuit 41 and the data register circuit 42. Further, the control unit 50 continues to connect the output switch SW2 to another adjacent data latch 43a.
 タイミングt1にて、制御部50は、入力スイッチSW1を検出用ADC44bに接続し、かつ、転送スイッチSWtrsをオフに維持する。この状態にて、制御部50は、q行目の走査線Lsに選択電圧VgHを印加して、q行目のスイッチングトランジスタTr2と、q行目のサンプリングトランジスタTr1とを導通状態とし、q行目の駆動トランジスタTr3を飽和領域で駆動する状態に変える。また、制御部50は、検出用電圧スイッチSWsをオンに切替えて、アナログ電源70から各データ線Ldに対し、一斉に、検出用電圧VMを印加する。 At timing t1, the control unit 50 connects the input switch SW1 to the detection ADC 44b and keeps the transfer switch SWtrs off. In this state, the control unit 50 applies the selection voltage VgH to the scanning line Ls in the q-th row so that the switching transistor Tr2 in the q-th row and the sampling transistor Tr1 in the q-th row are in a conductive state. The eye driving transistor Tr3 is changed to a state of driving in the saturation region. Further, the control unit 50 switches on the detection voltage switch SWs to apply the detection voltage VM to the data lines Ld from the analog power supply 70 at the same time.
 この際に、想定されるしきい値電圧Vthよりも高い電圧がゲート-ソース間電圧Vgsとして印加されるように、検出用電圧VMは予め設定されている。すなわち、書込電圧WDVSSと検出用電圧VMとの差が、想定されるしきい値電圧Vthよりも大きくなるように、制御部50は、駆動トランジスタTr3のゲート-ソース間に、検出用電圧VMを印加する。なお、検出用電圧VMの印加される各データ線Ldの電位は、書込電圧WDVSSよりもローレベルであり、かつ、EL素子11のカソードよりもローレベルである。 At this time, the detection voltage VM is set in advance so that a voltage higher than the assumed threshold voltage Vth is applied as the gate-source voltage Vgs. That is, the control unit 50 causes the detection voltage VM between the gate and the source of the drive transistor Tr3 so that the difference between the write voltage WDVSS and the detection voltage VM is larger than the assumed threshold voltage Vth. Apply. Note that the potential of each data line Ld to which the detection voltage VM is applied is lower than the write voltage WDVSS and lower than the cathode of the EL element 11.
 検出用電圧VMが各データ線Ldに印加されると、検出用電圧VMと書込電圧WDVSSとの差に応じた画素Pxごとの電流が、q行目の駆動トランジスタTr3と、q行目のサンプリングトランジスタTr1とを介して、アナログ電源70へ流れる。これに伴い、q行目の保持容量Csには、駆動トランジスタTr3のゲート-ソース間電圧Vgsが保持され、これによって、電圧保持動作が終わる。なお、EL素子11のアノードの電位が、EL素子11のカソードの電位よりもローレベルであるため、EL素子11は発光しない。 When the detection voltage VM is applied to each data line Ld, the current for each pixel Px corresponding to the difference between the detection voltage VM and the write voltage WDVSS is supplied to the q-th drive transistor Tr3 and the q-th row. It flows to the analog power supply 70 through the sampling transistor Tr1. Accordingly, the gate-source voltage Vgs of the driving transistor Tr3 is held in the holding capacitor Cs in the q-th row, and thus the voltage holding operation is finished. Note that the EL element 11 does not emit light because the potential of the anode of the EL element 11 is lower than the potential of the cathode of the EL element 11.
 タイミングt2では、制御部50は、q行目の走査線Lsに対して選択電圧VgHの印加を保ち、また、検出用スイッチSWmのオフを保ちながら、検出用電圧スイッチSWsのみをオフに切替える。これによって、各データ線Ldのうち、サンプリングトランジスタTr1と接続する部位よりもデータドライバ40に近い部位は、ハイインピーダンス状態に切替わる。 At timing t2, the control unit 50 switches off only the detection voltage switch SWs while maintaining the application of the selection voltage VgH to the scanning line Ls in the q-th row and keeping the detection switch SWm off. As a result, a portion of each data line Ld that is closer to the data driver 40 than a portion that is connected to the sampling transistor Tr1 is switched to a high impedance state.
 この際に、q行目の保持容量Csが、q行目の駆動トランジスタTr3のゲート-ソース間電圧Vgsを保持しているため、q行目の駆動トランジスタTr3のソースの電位が、q行目の駆動トランジスタTr3のドレインの電位に近づくように、q行目の駆動トランジスタTr3にて、ドレイン電流は流れる。そして、タイミングt2から経過した時間である緩和時間tが進むほど、q行目の保持容量Csは電荷を放電し、q行目の保持容量Csの両端間の電圧は、すなわち、q行目の駆動トランジスタTr3におけるゲート-ソース間電圧Vgsは、ドレイン電流が流れなくなるしきい値電圧Vthまで低下する。 At this time, since the holding capacitor Cs in the q-th row holds the gate-source voltage Vgs of the driving transistor Tr3 in the q-th row, the potential of the source of the driving transistor Tr3 in the q-th row becomes the q-th row. The drain current flows in the driving transistor Tr3 in the q-th row so as to approach the drain potential of the driving transistor Tr3. As the relaxation time t, which is the time elapsed from the timing t2, advances, the q-th storage capacitor Cs discharges, and the voltage between both ends of the q-th storage capacitor Cs is, that is, the q-th storage capacitor Cs. The gate-source voltage Vgs in the drive transistor Tr3 decreases to the threshold voltage Vth at which the drain current does not flow.
 結果として、q行目の保持容量Csは、q行目の駆動トランジスタTr3のしきい値電圧Vthに相当する電圧を保持して、電圧飽和動作が終わる。なお、制御部50は、各データ線Ldに検出用電圧VMを印加するための検出用スイッチSWmを、タイミングt2以降においてオフに保つ。 As a result, the holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of the driving transistor Tr3 in the q-th row, and the voltage saturation operation ends. The control unit 50 keeps the detection switch SWm for applying the detection voltage VM to each data line Ld off after the timing t2.
 タイミングt3にて、制御部50は、q行目の走査線Lsに対して選択電圧VgHの印加を保ち、また、検出用スイッチSWmのみをオンに切替える。これによって、データ線Ldと検出用ADC44bとが接続し、ハイインピーダンス状態であったデータ線Ldの電位は、検出用ADC44bに取込まれる。 At timing t3, the control unit 50 keeps applying the selection voltage VgH to the q-th scanning line Ls, and turns on only the detection switch SWm. As a result, the data line Ld and the detection ADC 44b are connected, and the potential of the data line Ld in the high impedance state is taken into the detection ADC 44b.
 この際に、q行目の保持容量Csは、q行目の駆動トランジスタTr3のしきい値電圧Vthに相当する電圧を保持している。それゆえに、検出用ADC44bに取込まれる電位と書込電圧WDVSSとの電位差から、q行目の駆動トランジスタTr3におけるゲート-ソース間電圧Vgs、すなわち、q行目の駆動トランジスタTr3のしきい値電圧Vthに対応する電圧が検出される。検出用ADC44bに取込まれたデータ線Ldの電位は、検出用ADC44bによってデジタルデータである検出データDoutに変換されて、レベルシフタ46bを通じてデータラッチ43aへ出力される。そして、データラッチ43aは、検出データDoutを保持し、これによって、電圧測定動作が終わる。 At this time, the holding capacitor Cs in the q-th row holds a voltage corresponding to the threshold voltage Vth of the driving transistor Tr3 in the q-th row. Therefore, from the potential difference between the potential taken in the detection ADC 44b and the write voltage WDVSS, the gate-source voltage Vgs in the q-th drive transistor Tr3, that is, the threshold voltage of the q-th drive transistor Tr3. A voltage corresponding to Vth is detected. The potential of the data line Ld taken into the detection ADC 44b is converted into detection data Dout which is digital data by the detection ADC 44b, and is output to the data latch 43a through the level shifter 46b. The data latch 43a holds the detection data Dout, thereby ending the voltage measurement operation.
 タイミングt4にて、制御部50は、q行目の走査線Lsに非選択電圧VgLを印加し、q行目のスイッチングトランジスタTr2と、q行目のサンプリングトランジスタTr1とを非導通状態に切替える。この状態にて、制御部50は、検出用スイッチSWmをオフに切替え、かつ、転送スイッチSWtrsをオンに切替える。さらに、制御部50は、入力スイッチSW1を隣接するデータラッチ43aに接続して、各データラッチ43aを直列に接続する。 At timing t4, the control unit 50 applies the non-selection voltage VgL to the scanning line Ls in the qth row, and switches the switching transistor Tr2 in the qth row and the sampling transistor Tr1 in the qth row to a non-conductive state. In this state, the control unit 50 switches the detection switch SWm off and switches the transfer switch SWtrs on. Further, the control unit 50 connects the input switch SW1 to the adjacent data latch 43a and connects the data latches 43a in series.
 この際に、制御部50は、データドライバ40にラッチパルス信号LPを入力し、各データラッチ43aに保持されている検出データDoutを、ラッチパルス信号LPのタイミングに同期させて順に転送させる。これによって、制御部50は、q行目の駆動トランジスタTr3の各々のしきい値電圧Vthに関するデータを、データドライバ40に順に転送させる。なお、図21では、駆動状態の推移を説明する便宜上、ラッチパルス信号LPの繰り返される回数が省略して示されている。 At this time, the control unit 50 inputs the latch pulse signal LP to the data driver 40, and sequentially transfers the detection data Dout held in each data latch 43a in synchronization with the timing of the latch pulse signal LP. As a result, the control unit 50 causes the data driver 40 to sequentially transfer data regarding the threshold voltage Vth of each of the driving transistors Tr3 in the q-th row. In FIG. 21, the number of times the latch pulse signal LP is repeated is omitted for convenience of explaining the transition of the driving state.
 タイミングt5にて、制御部50は、q行目の走査線Lsに対して非選択電圧VgLの印加を保ち、かつ、転送スイッチSWtrsをオフに切替える。また、制御部50は、データラッチ43aの入力端をデータレジスタ回路42のレジスタに接続する。これによって、電圧出力動作が終了し、q行目の駆動トランジスタTr3に対する検出動作が終わる。 At timing t5, the control unit 50 keeps applying the non-selection voltage VgL to the q-th scanning line Ls and switches off the transfer switch SWtrs. The control unit 50 connects the input end of the data latch 43 a to the register of the data register circuit 42. As a result, the voltage output operation ends, and the detection operation for the driving transistor Tr3 in the q-th row ends.
 図22を参照して、タイミングt2からタイミングt3までの期間におけるデータ線Ldの電位であるデータ線電位VLdの推移を説明する。
 図22に示されるように、タイミングt2から経過した時間である緩和時間tが進むと、データ線電位VLdは、そのデータ線Ldに接続した保持容量Csでの電荷の放電に従って、検出用電圧VMから書込電圧WDVSSに近づく。そして、緩和時間tが飽和時間tsまで進むと、データ線電位VLdは、飽和電圧VLdsにて飽和し、ドレイン電流は流れなくなる。この際に、書込電圧WDVSSと飽和電圧VLdsとの差がしきい値電圧Vthとして設定される。なお、飽和時間tsは、例えば、3nsecから10nsecであって、タイミングt2からタイミングt3までの期間は、こうした飽和時間ts以上に設定されている。
With reference to FIG. 22, the transition of the data line potential VLd which is the potential of the data line Ld in the period from the timing t2 to the timing t3 will be described.
As shown in FIG. 22, when the relaxation time t, which is the time elapsed from the timing t2, progresses, the data line potential VLd becomes the detection voltage VM according to the discharge of the charge in the storage capacitor Cs connected to the data line Ld. Approaches the write voltage WDVSS. When the relaxation time t advances to the saturation time ts, the data line potential VLd is saturated at the saturation voltage VLds and the drain current does not flow. At this time, the difference between the write voltage WDVSS and the saturation voltage VLds is set as the threshold voltage Vth. The saturation time ts is, for example, 3 nsec to 10 nsec, and the period from timing t2 to timing t3 is set to be equal to or longer than the saturation time ts.
 [検出動作タイミング]
 図23~図25を参照して、非発光期間に含まれる検出動作のタイミングを説明する。なお、以下では、画素Pxの配置における行の数とフレームの数とを用いて検出動作のタイミングを説明する便宜上、画素Pxが540行×960列に位置し、フレームレートが60fpsである構成を一例として説明する。図23は、第1フレームの非発光期間における検出動作のタイミングを示し、図24は、第2フレームの非発光期間における検出動作のタイミングを示し、図25は、第540フレームの非発光期間における検出動作のタイミングを示す。なお、画素Pxの配置における行の数は、540以外であってもよい。画素Pxの配置における行の数がm行であるときには、第mフレームの検出動作のタイミングが、図25に示される内容に相当する。
[Detection operation timing]
The timing of the detection operation included in the non-light emission period will be described with reference to FIGS. In the following, for the sake of convenience in explaining the timing of the detection operation using the number of rows and the number of frames in the arrangement of the pixels Px, a configuration in which the pixels Px are located in 540 rows × 960 columns and the frame rate is 60 fps. This will be described as an example. FIG. 23 shows the timing of the detection operation in the non-light emission period of the first frame, FIG. 24 shows the timing of the detection operation in the non-light emission period of the second frame, and FIG. 25 shows the timing in the non-light emission period of the 540 frame. The timing of detection operation is shown. Note that the number of rows in the arrangement of the pixels Px may be other than 540. When the number of rows in the arrangement of the pixels Px is m rows, the timing of the detection operation of the m-th frame corresponds to the content shown in FIG.
 図23に示されるように、タイミングTf1aにて、1行目の画素Pxにおいて発光用の書込操作が始まる。発光用の書込操作が1行目の画素Pxにて終わると、発光操作が1行目の画素Pxにて始まり、かつ、発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、発光用の書込操作が順に繰り返され、発光用の書込操作が終わった行から順に発光操作が始まる。 As shown in FIG. 23, at timing Tf1a, the light emission writing operation starts in the pixel Px in the first row. When the write operation for light emission ends at the pixel Px in the first row, the light emission operation starts at the pixel Px in the first row, and the write operation for light emission starts at the pixel Px in the second row. Thus, the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed. .
 タイミングTf1bにて、540行目の画素Pxにおいて発光用の書込操作が進み、かつ、1行目の画素Pxにおいて非発光用の書込操作が始まる。非発光用の書込操作が1行目の画素Pxにて終わると、非発光操作が1行目の画素Pxにて始まり、非発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、非発光用の書込操作が順に繰り返され、非発光用の書込操作が終わった行から順に非発光操作が始まる。 At timing Tf1b, the write operation for light emission proceeds in the pixel Px on the 540th row, and the write operation for non-light emission starts on the pixel Px on the first row. When the non-emission writing operation ends at the pixel Px in the first row, the non-emission operation starts at the pixel Px in the first row, and the non-emission writing operation starts at the pixel Px in the second row. . Thus, the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
 タイミングTf1cにて、540行目の画素Pxにおいて非発光操作が進み、次いで、選択対象の候補が、1行目の画素Pxから540行目の画素Pxまで、検出用クロック周期で順に走査される。この際に、まず、しきい値電圧Vthの検出される検出対象に1行目の画素Pxが設定され、1行目の画素Pxに対する検出動作が進む。そして、1行目の駆動トランジスタTr3に対する検出データDoutは、記憶部53に記憶される。 At timing Tf1c, the non-light emission operation proceeds in the pixel Px on the 540th row, and then the candidate for selection is sequentially scanned in the detection clock cycle from the pixel Px on the first row to the pixel Px on the 540th row. . At this time, first, the pixel Px in the first row is set as a detection target from which the threshold voltage Vth is detected, and the detection operation for the pixel Px in the first row proceeds. The detection data Dout for the driving transistor Tr3 in the first row is stored in the storage unit 53.
 1行目の画素Pxにおいて検出動作が終わると、選択対象の候補は、2行目の画素Pxから540行目の画素Pxまで、検出用クロック周期で順に走査される。この走査の間は、全ての走査線Lsに非選択電圧VgLが印加されて、全ての画素Pxは、EL素子11を発光させない状態を保つ。 When the detection operation is completed at the pixel Px in the first row, the selection target candidates are sequentially scanned from the pixel Px in the second row to the pixel Px in the 540 row in the detection clock cycle. During this scanning, the non-selection voltage VgL is applied to all the scanning lines Ls, and all the pixels Px maintain a state in which the EL elements 11 are not caused to emit light.
 タイミングTf2aにて、選択対象の候補が540行目の画素Pxまで走査されると、1行目の画素Pxに対する発光用の書込操作が再び始まる。
 図24に示されるように、タイミングTf2aにて、1行目の画素Pxにおいて発光用の書込操作が始まる。発光用の書込操作が1行目の画素Pxにて終わると、発光操作が1行目の画素Pxにて始まり、かつ、発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、発光用の書込操作が順に繰り返され、発光用の書込操作が終わった行から順に発光操作が始まる。
When the candidate for selection is scanned up to the pixel Px in the 540th row at the timing Tf2a, the light emission writing operation for the pixel Px in the first row starts again.
As shown in FIG. 24, at the timing Tf2a, the writing operation for light emission starts in the pixels Px in the first row. When the write operation for light emission ends at the pixel Px in the first row, the light emission operation starts at the pixel Px in the first row, and the write operation for light emission starts at the pixel Px in the second row. Thus, the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed. .
 タイミングTf2bにて、540行目の画素Pxにおいて発光用の書込操作が進み、かつ、1行目の画素Pxにおいて非発光用の書込操作が始まる。非発光用の書込操作が1行目の画素Pxにて終わると、非発光操作が1行目の画素Pxにて始まり、非発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、非発光用の書込操作が順に繰り返され、非発光用の書込操作が終わった行から順に非発光操作が始まる。 At timing Tf2b, the write operation for light emission proceeds in the pixel Px in the 540th row, and the write operation for non-light emission starts in the pixel Px in the first row. When the non-emission writing operation ends at the pixel Px in the first row, the non-emission operation starts at the pixel Px in the first row, and the non-emission writing operation starts at the pixel Px in the second row. . Thus, the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
 タイミングTf2cにて、540行目の画素Pxにおいて非発光操作が進み、次いで、選択対象の候補が、1行目の画素Pxから540行目の画素Pxまで、検出用クロック周期で順に走査される。この際に、まず、しきい値電圧Vthの検出される検出対象に2行目の画素Pxが設定され、検出用クロック周期での選択対象ビットのシフトが、2行目の画素Pxまで進む。ここで、選択対象の候補が1行目の画素Pxであるとき、走査線Lsに対しては、非選択電圧VgLが印加される。そして、選択対象の候補が2行目の画素Pxであるとき、2行目の画素Pxに対して検出動作が進む。 At timing Tf2c, the non-light emission operation proceeds at the pixel Px in the 540th row, and then the candidate for selection is sequentially scanned in the detection clock cycle from the pixel Px in the first row to the pixel Px in the 540th row. . At this time, first, the pixel Px in the second row is set as the detection target from which the threshold voltage Vth is detected, and the shift of the selection target bit in the detection clock cycle proceeds to the pixel Px in the second row. Here, when the selection target candidate is the pixel Px in the first row, the non-selection voltage VgL is applied to the scanning line Ls. When the candidate for selection is the pixel Px in the second row, the detection operation proceeds for the pixel Px in the second row.
 これによって、2行目の駆動トランジスタTr3に関する検出データDoutが、制御部50の記憶部53に記憶される。そして、2行目の画素Pxに対する検出動作が終わると、選択対象の候補は、3行目の画素Pxから540行目の画素Pxまで、検出用クロック周期で順に走査される。この走査の間は、全ての走査線Lsに非選択電圧VgLが印加されて、全ての画素Pxは、EL素子11を発光させない状態を保つ。 Thereby, the detection data Dout related to the driving transistor Tr3 in the second row is stored in the storage unit 53 of the control unit 50. When the detection operation for the pixel Px in the second row is completed, the selection candidate is sequentially scanned from the pixel Px in the third row to the pixel Px in the 540 row in the detection clock cycle. During this scanning, the non-selection voltage VgL is applied to all the scanning lines Ls, and all the pixels Px maintain a state in which the EL elements 11 are not caused to emit light.
 タイミングTf3aにて、選択対象の候補が540行目の画素Pxまで走査されると、1行目の画素Pxに対する発光用の書込操作が再び始まる。
 図25に示されるように、タイミングTfmaにて、1行目の画素Pxにおいて発光用の書込操作が始まる。発光用の書込操作が1行目の画素Pxにて終わると、発光操作が1行目の画素Pxにて始まり、かつ、発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、発光用の書込操作が順に繰り返され、発光用の書込操作が終わった行から順に発光操作が始まる。
When the candidate for selection is scanned up to the pixel Px in the 540th row at the timing Tf3a, the light emission writing operation for the pixel Px in the first row starts again.
As shown in FIG. 25, at the timing Tfma, the light emission writing operation starts in the pixels Px in the first row. When the write operation for light emission ends at the pixel Px in the first row, the light emission operation starts at the pixel Px in the first row, and the write operation for light emission starts at the pixel Px in the second row. Thus, the light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row at the display clock cycle, and the light-emission operation starts in order from the row where the light-emission writing operation is completed. .
 タイミングTfmbにて、540行目の画素Pxにおいて発光用の書込操作が進み、かつ、1行目の画素Pxにおいて非発光用の書込操作が始まる。非発光用の書込操作が1行目の画素Pxにて終わると、非発光操作が1行目の画素Pxにて始まり、非発光用の書込操作が2行目の画素Pxにて始まる。こうして、1行目の画素Pxから540行目の画素Pxまで、表示用クロック周期で、非発光用の書込操作が順に繰り返され、非発光用の書込操作が終わった行から順に非発光操作が始まる。 At timing Tfmb, the light emission write operation proceeds in the pixel Px in the 540th row, and the non-light emission write operation starts in the pixel Px in the first row. When the non-emission writing operation ends at the pixel Px in the first row, the non-emission operation starts at the pixel Px in the first row, and the non-emission writing operation starts at the pixel Px in the second row. . Thus, the non-light-emission writing operation is sequentially repeated from the pixel Px in the first row to the pixel Px in the 540-th row in the display clock cycle, and the non-light emission is sequentially performed from the row where the non-emission writing operation is completed. The operation starts.
 タイミングTfmcにて、540行目の画素Pxにおいて非発光操作が進み、次いで、選択対象の候補が、1行目の画素Pxから540行目の画素Pxまで、検出用クロック周期で順に走査される。この際に、まず、しきい値電圧Vthの検出される検出対象に540行目の画素Pxが設定され、検出用クロック周期での選択対象ビットのシフトが、539行目の画素Pxまで進む。ここで、選択対象の候補が1行目の画素Pxから539行目の画素Pxであるとき、走査線Lsに対しては、非選択電圧VgLが印加される。そして、選択対象の候補が540行目の画素Pxであるとき、540行目の画素Pxに対して検出動作が進む。これによって、540行目の駆動トランジスタTr3に関する検出データDoutが、制御部50の記憶部53に記憶される。タイミングTfmdにて、540行目の画素Pxに対する検出動作が終わり、1行目の画素Pxに対して、発光用の書込操作が再び始まる。 At timing Tfmc, the non-light emission operation proceeds in the pixel Px on the 540th row, and then the candidate to be selected is sequentially scanned from the pixel Px on the first row to the pixel Px on the 540th row in the detection clock cycle. . At this time, first, the pixel Px in the 540th row is set as the detection target for which the threshold voltage Vth is detected, and the shift of the selection target bit in the detection clock cycle proceeds to the pixel Px in the 539th row. Here, when the candidate to be selected is the pixel Px in the first row from the pixel Px in the first row, the non-selection voltage VgL is applied to the scanning line Ls. When the candidate for selection is the pixel Px in the 540th row, the detection operation proceeds for the pixel Px in the 540th row. As a result, the detection data Dout regarding the drive transistor Tr3 in the 540th row is stored in the storage unit 53 of the control unit 50. At the timing Tfmd, the detection operation for the pixel Px in the 540th row is finished, and the write operation for light emission is started again for the pixel Px in the first row.
 このように、1つのフレームが表示されるごとに、540行目の画素Pxまで非発光操作が進み、その後に、特定の行の画素Pxに対する検出動作が行われる。しきい値電圧Vthの検出対象は、1行目の画素Pxから走査方向に沿って1行ずつ、フレームごとに順にずれる。すなわち、第kフレーム(kは1以上の整数)において、q行目(1≦q≦539)の画素Pxに対する検出動作が行われると、第k+1フレームでは、q+1行目の画素Pxに対する検出動作が行われる。検出対象が最終行の画素Pxまで進むと、検出対象は再び1行目の画素Pxに戻る。 As described above, every time one frame is displayed, the non-light emission operation proceeds to the pixel Px in the 540th row, and thereafter, the detection operation for the pixel Px in a specific row is performed. The detection target of the threshold voltage Vth is shifted from the pixel Px in the first row one by one along the scanning direction for each frame. That is, when the detection operation for the pixel Px in the q-th row (1 ≦ q ≦ 539) is performed in the k-th frame (k is an integer equal to or greater than 1), the detection operation for the pixel Px in the q + 1-th row is performed in the k + 1-th frame. Is done. When the detection target advances to the pixel Px in the last row, the detection target returns to the pixel Px in the first row again.
 この際に、検出対象がq行目であるときに得られた検出データDoutは、制御部50における記憶部53にて、q行目の画素Pxが対応づけられた記憶領域に記憶されて更新される。そして、制御部50は、第k+1フレームにおいて表示データDinを生成する際に、q行目の検出データDoutとして最新の検出データDoutを用いる。なお、制御部50は、q行目以外の検出データDoutとして第kフレームで用いられた検出データDoutを再び用いる。これによって、各行の検出データDoutは、フレームの表示が540回繰り返されるごとに更新される。 At this time, the detection data Dout obtained when the detection target is the q-th row is stored and updated in the storage area in the control unit 50 in which the pixel Px in the q-th row is associated. Is done. The control unit 50 uses the latest detection data Dout as the detection data Dout in the q-th row when generating the display data Din in the (k + 1) th frame. Note that the control unit 50 uses again the detection data Dout used in the k-th frame as the detection data Dout other than the q-th row. Thus, the detection data Dout of each row is updated every time the frame display is repeated 540 times.
 図26を参照して、1つのフレームが表示される期間における制御信号の推移について詳しく説明する。なお、1つのフレームが表示される期間における制御信号の推移は、検出対象ごとに同様であるため、以下では、第kフレームにおける検出対象がq行目の画素Pxであるときの制御信号の推移を一例として説明する。 Referring to FIG. 26, the transition of the control signal during the period in which one frame is displayed will be described in detail. Since the transition of the control signal during the period in which one frame is displayed is the same for each detection target, hereinafter, the transition of the control signal when the detection target in the k-th frame is the pixel Px in the q-th row. Will be described as an example.
 選択ドライバ20は、スタートパルス信号SP2の入力に応じ、表示用クロック周期でシフト信号を生成し、シフト信号に基づくタイミングで、各走査線Lsに順に選択電圧VgHを印加する。この際に、選択ドライバ20は、1行目の走査線Lsから540行目の走査線Lsまで順に、表示用クロック周期で、選択電圧VgHを印加する。 The selection driver 20 generates a shift signal at a display clock period in accordance with the input of the start pulse signal SP2, and applies the selection voltage VgH to each scanning line Ls in order at a timing based on the shift signal. At this time, the selection driver 20 applies the selection voltage VgH in the display clock cycle in order from the first scanning line Ls to the 540th scanning line Ls.
 電源ドライバ30は、スタートパルス信号SP2の入力に応じ、表示用クロック周期でシフト信号を生成し、シフト信号に基づくタイミングで、供給対象の候補を順に選択する。この際に、電源ドライバ30は、1行目の電源線Laから540行目の電源線Laまで順に、これもまた表示用クロック周期で、書込電圧WDVSSを印加する。 The power supply driver 30 generates a shift signal at a display clock cycle in accordance with the input of the start pulse signal SP2, and sequentially selects candidates for supply at a timing based on the shift signal. At this time, the power supply driver 30 applies the write voltage WDVSS in order from the power supply line La of the first row to the power supply line La of the 540th row in the display clock cycle.
 そして、q行目(qは1から540の整数)の走査線Lsに選択電圧VgHが印加され、かつ、q行目の電源線Laに書込電圧WDVSSが印加されているとき、表示データDinに基づく発光電圧VDが、データ線Ldに印加される。また、選択電圧VgHが印加された行から順に、走査線Lsに非選択電圧VgLが印加され、かつ、書込電圧WDVSSが印加された行から順に、電源線Laに駆動電圧ELVDDが印加される。そして、q行目の走査線Lsに非選択電圧VgLが印加され、かつ、q行目の電源線Laに駆動電圧ELVDDが印加されているとき、表示データDinに基づくドレイン電流がEL素子11に供給される。 When the selection voltage VgH is applied to the scanning line Ls of the q-th row (q is an integer from 1 to 540) and the write voltage WDVSS is applied to the power line La of the q-th row, the display data Din Is applied to the data line Ld. Further, in order from the row to which the selection voltage VgH is applied, the non-selection voltage VgL is applied to the scanning line Ls, and the driving voltage ELVDD is applied to the power supply line La in order from the row to which the write voltage WDVSS is applied. . When the non-selection voltage VgL is applied to the q-th scanning line Ls and the driving voltage ELVDD is applied to the q-th power line La, a drain current based on the display data Din is applied to the EL element 11. Supplied.
 540行目の画素Pxまで発光操作が進むと、選択ドライバ20は、スタートパルス信号SP2の入力に応じ、再び、選択電圧VgHの印加の走査を始める。また、駆動電圧ELVDDの印加が540行目の画素Pxまで進むと、電源ドライバ30は、スタートパルス信号SP2の入力に応じ、再び、書込電圧WDVSSの印加の走査を始める。 When the light emission operation proceeds to the pixel Px in the 540th row, the selection driver 20 starts scanning for applying the selection voltage VgH again in response to the input of the start pulse signal SP2. When the application of the drive voltage ELVDD proceeds to the pixel Px in the 540th row, the power supply driver 30 starts scanning for the application of the write voltage WDVSS again in response to the input of the start pulse signal SP2.
 そして、q行目の走査線Lsに選択電圧VgHが印加され、かつ、q行目の電源線Laに書込電圧WDVSSが印加されているとき、表示データDinに基づく非発光電圧VDNが、データ線Ldに印加される。これによって、駆動トランジスタTr3の逆方向となるゲート-ソース間電圧Vgsが、駆動トランジスタTr3に印加される。 When the selection voltage VgH is applied to the q-th scanning line Ls and the write voltage WDVSS is applied to the q-th power line La, the non-light-emitting voltage VDN based on the display data Din is the data Applied to line Ld. As a result, the gate-source voltage Vgs in the reverse direction of the drive transistor Tr3 is applied to the drive transistor Tr3.
 540行目の画素Pxまで非発光操作が進むと、スタートパルス信号SP2の入力が設定回数に到達し、走査線Lsの走査に用いられるシフトクロック信号は、表示用クロック周期から検出用クロック周期に切替わる。そして、選択ドライバ20は、検出用クロック周期で、選択対象の候補をシフトさせ、電源ドライバ30は、検出用クロック周期で、供給対象の候補をシフトさせる。この期間にて、マスクパルス信号MPはローレベルであるから、選択ドライバ20は、選択対象の候補に選択電圧VgHを印加しない。なお、この期間にて、電源ドライバ30は、供給対象の候補に書込電圧WDVSSを印加し続ける。 When the non-light emission operation proceeds to the pixel Px in the 540th row, the input of the start pulse signal SP2 reaches the set number of times, and the shift clock signal used for scanning the scanning line Ls changes from the display clock cycle to the detection clock cycle. Switch. The selection driver 20 shifts the selection target candidates in the detection clock cycle, and the power supply driver 30 shifts the supply target candidates in the detection clock cycle. Since the mask pulse signal MP is at a low level during this period, the selection driver 20 does not apply the selection voltage VgH to the selection target candidate. During this period, the power supply driver 30 continues to apply the write voltage WDVSS to the candidate to be supplied.
 選択対象の候補がq行目までシフトすると、マスクパルス信号MPがハイレベルに切替わり、選択ドライバ20はq行目の走査線Lsに選択電圧VgHを印加する。そして、制御部50は、q行目の画素Pxのしきい値電圧Vthを検出する。 When the candidate to be selected is shifted to the q-th row, the mask pulse signal MP is switched to the high level, and the selection driver 20 applies the selection voltage VgH to the scanning line Ls of the q-th row. Then, the control unit 50 detects the threshold voltage Vth of the pixel Px in the q-th row.
 q行目の画素Pxに対する検出データDoutを制御部50が取得すると、マスクパルス信号MPは、再び、ローレベルに切替わる。そして、選択ドライバ20は、検出用クロック周期で、選択対象の候補を540行目までシフトさせ、電源ドライバ30も、検出用クロック周期で、供給対象の候補を540行目までシフトさせる。この期間にて、マスクパルス信号MPはローレベルであるから、選択ドライバ20は、選択対象の候補に選択電圧VgHを印加しない。なお、この期間にて、電源ドライバ30は、供給対象の候補に書込電圧WDVSSを印加し続ける。 When the control unit 50 acquires the detection data Dout for the pixel Px in the q-th row, the mask pulse signal MP is switched to the low level again. The selection driver 20 shifts the selection target candidate to the 540th row in the detection clock cycle, and the power supply driver 30 also shifts the supply target candidate to the 540th row in the detection clock cycle. Since the mask pulse signal MP is at a low level during this period, the selection driver 20 does not apply the selection voltage VgH to the selection target candidate. During this period, the power supply driver 30 continues to apply the write voltage WDVSS to the candidate to be supplied.
 選択対象の候補が540行目までシフトすると、マスクパルス信号MPは、再びハイレベルに切替わる。そして、1行目の走査線Lsから540行目の走査線Lsまで順に、発光用の書込操作と発光操作とが再び始まる。 When the candidate for selection is shifted to the 540th line, the mask pulse signal MP is switched to the high level again. Then, the light emission writing operation and the light emission operation are started again in order from the first scanning line Ls to the 540th scanning line Ls.
 上記第3実施形態によれば、以下に列挙する利点が得られる。
 (1)駆動トランジスタTr3のしきい値電圧Vthが検出され、しきい値電圧Vthによって表示データDinが補正される。それゆえに、しきい値電圧Vthの変動による画質の劣化が抑えられる。
According to the third embodiment, the advantages listed below can be obtained.
(1) The threshold voltage Vth of the drive transistor Tr3 is detected, and the display data Din is corrected by the threshold voltage Vth. Therefore, image quality deterioration due to fluctuations in the threshold voltage Vth can be suppressed.
 (2)1つのフレームが表示される期間に検出動作が行われるので、しきい値電圧Vthの変動が短い期間で大きくなる場合であっても、表示される画質の劣化が抑えられる。
 (3)しきい値電圧Vthの検出の対象は、1回の検出動作にて、1本の走査線Lsに接続されているn個の画素Pxである。それゆえに、1回の検出動作におけるしきい値電圧Vthの検出が、全ての画素Pxである構成と比べて、1度の検出動作に要する時間が短くなる。結果として、1つの非発光期間に検出動作を組み込むことに際し、非発光期間が長くなることに起因して画像の質が低下することが抑えられる。
(2) Since the detection operation is performed during a period in which one frame is displayed, deterioration of the displayed image quality can be suppressed even when the variation of the threshold voltage Vth increases in a short period.
(3) The detection target of the threshold voltage Vth is n pixels Px connected to one scanning line Ls in one detection operation. Therefore, the detection time of the threshold voltage Vth in one detection operation is shorter than the time required for one detection operation as compared with the configuration of all the pixels Px. As a result, when the detection operation is incorporated in one non-emission period, it is possible to suppress a reduction in image quality due to the longer non-emission period.
 (4)特に、動画の表示を鮮明にするために挿入される非発光期間に検出動作が行われるので、検出動作が画像の表示性能に与える影響は効果的に抑えられる。
 (5)選択対象の候補の切替えは、発光用の書込操作、発光操作、非発光用の書込操作、および、非発光操作と同様に、検出動作において進められる。そのため、選択ドライバ20は、1つのフレームが表示されるごとに検出対象を変える構成としても機能する。
(4) In particular, since the detection operation is performed during a non-light emitting period inserted in order to display a moving image clearly, the influence of the detection operation on the image display performance can be effectively suppressed.
(5) The selection of candidates to be selected is advanced in the detection operation in the same manner as the write operation for light emission, the light emission operation, the write operation for non-light emission, and the non-light emission operation. Therefore, the selection driver 20 also functions as a configuration that changes the detection target every time one frame is displayed.
 (6)検出動作において、検出対象の候補の切替わる周期は、表示用クロック周期よりも短い検出用クロック周期である。それゆえに、例えば、検出対象の候補の切替わる周期が、表示用クロック周期である構成と比べて、検出動作に要する時間は短くなる。 (6) In the detection operation, the detection target candidate switching period is a detection clock period shorter than the display clock period. Therefore, for example, the time required for the detection operation is shorter than that in the configuration in which the detection target candidate switching cycle is the display clock cycle.
 (7)1つのフレームが表示されるごとに、しきい値電圧Vthの検出対象は、1行目の画素Pxから走査方向に沿って、1行ずつずれる。したがって、しきい値電圧Vthの検出対象が走査方向に沿って間欠的に設定される構成と比べて、しきい値電圧Vthに基づく表示データDinの補正は、走査方向においてきめ細やかとなる。 (7) Every time one frame is displayed, the detection target of the threshold voltage Vth is shifted by one row from the pixel Px in the first row along the scanning direction. Therefore, the correction of the display data Din based on the threshold voltage Vth is finer in the scanning direction than in the configuration in which the detection target of the threshold voltage Vth is intermittently set along the scanning direction.
 [変形例]
 上記実施形態は、以下のように変更して実施することが可能である。
 [非発光電圧VDN]
 ・制御部50にて対応付けられる発光電圧VDと非発光電圧VDNとの関係は、以下のように変更することが可能である。
[Modification]
The above embodiment can be implemented with the following modifications.
[Non-light emission voltage VDN]
The relationship between the light emission voltage VD and the non-light emission voltage VDN associated with each other by the control unit 50 can be changed as follows.
 図27の折線LC1に示されるように、非発光電圧VDNの有するレベルは、互いに異なる2つのレベルであってもよい。そして、発光電圧VDが切替値Vp以上であるとき、その発光電圧VDに対して、互いに異なる2つのレベルのうち、ローレベルの非発光電圧VDNが対応付けられる。また、発光電圧VDが切替値Vp未満であるとき、その発光電圧VDに対して、互いに異なる2つのレベルのうち、ハイレベルの非発光電圧VDNが対応付けられる。すなわち、切替値Vpに対応する階調値よりも低い階調値に対応する発光電圧VDには、互いに異なる2つのレベルのうち、書込電圧WDVSSとの電位差が大きい非発光電圧VDNが対応付けられる。また、切替値Vpに対応する階調値以上の階調値に対応する発光電圧VDには、互いに異なる2つのレベルのうち、書込電圧WDVSSに近い非発光電圧VDNが対応付けられる。こうした発光電圧VDと非発光電圧VDNとの対応付けであっても、切替値Vpの近傍では、発光電圧VDが高いときほど非発光電圧VDNが低い状態である。 As shown by the broken line LC1 in FIG. 27, the level of the non-light emission voltage VDN may be two different levels. When the light emission voltage VD is equal to or higher than the switching value Vp, the light emission voltage VD is associated with the low-level non-light emission voltage VDN among two different levels. Further, when the light emission voltage VD is less than the switching value Vp, a high level non-light emission voltage VDN of two different levels is associated with the light emission voltage VD. That is, the light emission voltage VD corresponding to the gradation value lower than the gradation value corresponding to the switching value Vp is associated with the non-light emission voltage VDN having a large potential difference from the write voltage WDVSS among two different levels. It is done. In addition, the light emission voltage VD corresponding to a gradation value equal to or higher than the gradation value corresponding to the switching value Vp is associated with a non-light emission voltage VDN that is close to the write voltage WDVSS among two different levels. Even if the light emission voltage VD and the non-light emission voltage VDN are associated with each other, the higher the light emission voltage VD is, the lower the non-light emission voltage VDN is in the vicinity of the switching value Vp.
 この際に、図27の破線LC2に示されるように、互いに異なる2つのレベルのうち、ハイレベルの非発光電圧VDNは、第2実施形態の第2非発光電圧VDN2と同じレベルであってもよい。すなわち、非発光電圧VDNの有するレベルが、互いに異なる2つのレベルであるとき、少なくとも一方のレベルは、非発光用の書込操作において、駆動トランジスタTr3のゲート-ソース間に逆方向となるレベルであってもよい。なお、非発光電圧VDNの有するレベルの全てが、非発光用の書込操作において、駆動トランジスタTr3のゲート-ソース間に逆方向となるレベルであってもよい。 At this time, as indicated by a broken line LC2 in FIG. 27, the high level non-light-emitting voltage VDN of the two different levels is the same level as the second non-light-emitting voltage VDN2 of the second embodiment. Good. That is, when the level of the non-light emitting voltage VDN is two different levels, at least one level is a level in the reverse direction between the gate and the source of the driving transistor Tr3 in the non-light emitting writing operation. There may be. Note that all of the levels of the non-light emitting voltage VDN may be levels in the reverse direction between the gate and the source of the driving transistor Tr3 in the non-light emitting writing operation.
 なお、図27の一点鎖線LC3に示されるように、非発光電圧VDNの有するレベルは、互いに異なる3つのレベルであってもよいし、互いに異なる4つ以上のレベルであってもよい。要するに、発光電圧VDと非発光電圧VDNとの対応付けとして、発光電圧VDが高いときほど非発光電圧VDNが低い状態を含む構成であればよい。 Note that, as indicated by a one-dot chain line LC3 in FIG. 27, the non-light-emitting voltage VDN may have three different levels, or four or more different levels. In short, as a correspondence between the light emission voltage VD and the non-light emission voltage VDN, a configuration including a state in which the non-light emission voltage VDN is lower as the light emission voltage VD is higher may be used.
 図28の曲線LC4に示されるように、発光電圧VDの全ての範囲にわたり、非発光電圧VDNは、連続的に変わってもよい。すなわち、発光電圧VDの全ての範囲において、発光電圧VDが高いときほど非発光電圧VDNが低い対応付けであってもよい。 As shown by a curve LC4 in FIG. 28, the non-light emission voltage VDN may continuously change over the entire range of the light emission voltage VD. That is, in all the ranges of the light emission voltage VD, the non-light emission voltage VDN may be associated with a lower value as the light emission voltage VD is higher.
 この際に、図28の一点鎖線LC5に示されるように、最も高い階調値に対応する発光電圧VDに対して、第2実施形態の第2非発光電圧VDN2と同じレベルの非発光電圧VDNが対応付けられてもよい。 At this time, as indicated by a one-dot chain line LC5 in FIG. 28, the non-light emission voltage VDN having the same level as the second non-light emission voltage VDN2 of the second embodiment with respect to the light emission voltage VD corresponding to the highest gradation value. May be associated.
 なお、図28の破線LC6に示されるように、発光電圧VDの変化に対する非発光電圧VDNの変化は、発光電圧VDごとに異なる構成であってもよい。また、発光電圧VDの変化に対して非発光電圧VDNが変わらない対応付けが含まれてもよい。さらに、実線LC7に示されるように、発光電圧VDが低いときの非発光電圧VDN(例えば-5V)が、発光電圧VDの最小値(例えば-10V)よりも高くなるように、発光電圧VDと非発光電圧VDNとを対応付けてもよい。要するに、発光電圧VDと非発光電圧VDNとの対応付けとして、発光電圧VDが高いときほど非発光電圧VDNが低い状態を含む構成であればよい。 Note that, as indicated by a broken line LC6 in FIG. 28, the change in the non-light emission voltage VDN with respect to the change in the light emission voltage VD may be different for each light emission voltage VD. In addition, association in which the non-light emission voltage VDN does not change with respect to the change in the light emission voltage VD may be included. Further, as shown by the solid line LC7, the non-light-emitting voltage VDN (for example, −5V) when the light-emitting voltage VD is low becomes higher than the minimum value (for example −10V) of the light-emitting voltage VD. The non-light emission voltage VDN may be associated. In short, as a correspondence between the light emission voltage VD and the non-light emission voltage VDN, a configuration including a state in which the non-light emission voltage VDN is lower as the light emission voltage VD is higher may be used.
 ・発光電圧VDと、その発光電圧VDに対応付けられた非発光電圧VDNとは、互いに異なるフレームにおいてデータ線Ldに印加されてもよい。要するに、発光電圧VDが高いときほど非発光電圧VDNが低い状態を有することが最も重要である。この発光電圧VDが高いときとは、非発光電圧VDNがデータ線Ldに印加されるフレームに対し、所定の回数前のフレームであってもよいし、所定の回数分のフレームであってもよい。 The light emission voltage VD and the non-light emission voltage VDN associated with the light emission voltage VD may be applied to the data line Ld in different frames. In short, it is most important that the non-light emission voltage VDN has a lower state as the light emission voltage VD is higher. The time when the light emission voltage VD is high may be a frame that is a predetermined number of times before the frame in which the non-light emission voltage VDN is applied to the data line Ld, or may be a frame that is a predetermined number of times. .
 例えば、制御部50は、複数回分の発光期間における発光用階調データの平均値を記憶し、複数回の発光期間ごとに、発光用階調データの平均値を更新する。そして、制御部50は、複数回の発光期間における発光用階調データの平均値の最新値を用い、その直後の複数回の非発光期間において、同じ非発光用階調データを生成する。すなわち、非発光電圧VDNは、複数回の非発光期間にて同じ値が用いられ、複数回の非発光期間ごとに更新されてもよい。こうした構成であっても、発光電圧VDが高いときほど非発光電圧VDNが低い状態は含まれる。 For example, the control unit 50 stores the average value of the gradation data for light emission in a plurality of light emission periods, and updates the average value of the light emission gradation data for each of the plurality of light emission periods. Then, the control unit 50 uses the latest value of the average value of the light emission gradation data in a plurality of light emission periods, and generates the same non-light emission gradation data in a plurality of non-light emission periods immediately thereafter. That is, the non-light-emitting voltage VDN may be updated every multiple non-light-emission periods, using the same value in multiple non-light-emission periods. Even in such a configuration, the higher the light emission voltage VD, the lower the non-light emission voltage VDN is included.
 [駆動回路PCC]
 ・図29に示されるように、駆動回路PCCの備える3つのトランジスタTr1~Tr3は、n型トランジスタに限らず、p型トランジスタであってもよい。この際に、EL素子11のアノードが、基準電圧線の一例である電源線Laに電気的接続し、駆動トランジスタTr3のソースNsがEL素子11のカソードに電気的接続し、駆動トランジスタTr3のドレインNdが接地電圧線Lbに電気的接続する。このような構成であっても、第1実施形態の(1)から(5)、第2実施形態の(1)、(2)、および、第3実施形態の(1)から(7)に準じた利点は得られる。
[Drive circuit PCC]
As shown in FIG. 29, the three transistors Tr1 to Tr3 included in the drive circuit PCC are not limited to n-type transistors but may be p-type transistors. At this time, the anode of the EL element 11 is electrically connected to the power supply line La which is an example of the reference voltage line, the source Ns of the driving transistor Tr3 is electrically connected to the cathode of the EL element 11, and the drain of the driving transistor Tr3. Nd is electrically connected to the ground voltage line Lb. Even in such a configuration, (1) to (5) of the first embodiment, (1) and (2) of the second embodiment, and (1) to (7) of the third embodiment. Similar advantages are obtained.
 ・駆動トランジスタTr3は、ゲート、ソース、および、ドレインを有し、ソースとドレインのいずれか一方が接続端であり、ソースとドレインのうち他方が給電端であればよい。そして、駆動回路PCCは、基準電圧を有する基準電圧線と、駆動トランジスタTr3と、接地電圧線Lbと接続端とに電気的接続するEL素子11と、ゲートとソースとを接続する保持容量とを備えることが最も重要である。こうした駆動回路PCCにて、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2の少なくとも1つが省略されてもよい。 The driving transistor Tr3 has a gate, a source, and a drain, and one of the source and the drain may be a connection end, and the other of the source and the drain may be a power feeding end. The drive circuit PCC includes a reference voltage line having a reference voltage, a drive transistor Tr3, an EL element 11 that is electrically connected to the ground voltage line Lb and the connection end, and a storage capacitor that connects the gate and the source. It is most important to prepare. In such a drive circuit PCC, at least one of the sampling transistor Tr1 and the switching transistor Tr2 may be omitted.
 例えば、EL表示装置において、サンプリングトランジスタTr1、および、スイッチングトランジスタTr2が省略され、駆動トランジスタTr3のゲートに走査線Lsが電気的接続し、かつ、駆動トランジスタTr3のソースにデータ線Ldが電気的接続してもよい。要するに、駆動回路PCC、ひいては、EL表示装置は、発光期間において、保持容量Csに発光電圧VDに相当する電圧を保持し、発光電圧VDに応じた電流を、駆動トランジスタTr3を通じてEL素子11に流す。そして、EL表示装置は、非発光期間において、保持容量Csに非発光電圧に相当する電圧を保持し、駆動トランジスタTr3を通した電流がEL素子11に流れないように給電端の電圧を設定し、発光電圧VDが高いときほど非発光電圧VDNが低い状態を有する構成であればよい。 For example, in the EL display device, the sampling transistor Tr1 and the switching transistor Tr2 are omitted, the scanning line Ls is electrically connected to the gate of the driving transistor Tr3, and the data line Ld is electrically connected to the source of the driving transistor Tr3. May be. In short, the drive circuit PCC, and hence the EL display device, holds a voltage corresponding to the light emission voltage VD in the storage capacitor Cs during the light emission period, and passes a current corresponding to the light emission voltage VD to the EL element 11 through the drive transistor Tr3. . In the non-light emitting period, the EL display device holds the voltage corresponding to the non-light emitting voltage in the holding capacitor Cs, and sets the voltage at the power feeding end so that the current passing through the driving transistor Tr3 does not flow to the EL element 11. As long as the light emission voltage VD is higher, the non-light emission voltage VDN may be lower.
 [検出動作]
 ・m行の走査線が、互いに隣り合う10行の走査線からなる複数の走査線群に区画され、フレームごとのしきい値電圧Vthの検出対象が、走査線群ごとに設定されてもよい。
[Detection operation]
The m scanning lines may be partitioned into a plurality of scanning line groups each including 10 scanning lines adjacent to each other, and the detection target of the threshold voltage Vth for each frame may be set for each scanning line group. .
 図30に示されるように、第1フレームの検出動作において、1番目の走査線群から、1行目の画素Pxが検出対象に設定される。第2フレームの検出動作において、2番目の走査線群から、11行目の画素Pxが検出対象に設定される。このように、1つのフレームが表示されるごとに、1行目の画素Pxから531行目の画素Pxまで、10行おきに検出対象はシフトする。 As shown in FIG. 30, in the first frame detection operation, the pixel Px in the first row is set as the detection target from the first scanning line group. In the detection operation of the second frame, the pixel Px in the eleventh row is set as a detection target from the second scanning line group. As described above, every time one frame is displayed, the detection target is shifted every ten rows from the pixel Px in the first row to the pixel Px in the 531 row.
 図31に示されるように、第55フレームでは、1番目の走査線群から、2行目の画素Pxが検出対象に設定される。第56フレームでは、2番目の走査線群から、12行目の画素Pxが検出対象に設定される。このように、1つのフレームが表示されるごとに、2行目の画素Pxから532行目の画素Pxまで、10行おきに検出対象はシフトする。 As shown in FIG. 31, in the 55th frame, the pixel Px in the second row is set as a detection target from the first scanning line group. In the 56th frame, the pixel Px in the 12th row is set as the detection target from the second scanning line group. As described above, every time one frame is displayed, the detection target is shifted every ten rows from the pixel Px in the second row to the pixel Px in the 532 row.
 図32に示されるように、第487フレームでは、1番目の走査線群から、10行目の画素Pxが検出対象に設定される。第488フレームでは、2番目の走査線群から、20行目の画素Pxが検出対象に設定される。このように、1つのフレームが表示されるごとに、10行目の画素Pxから540行目の画素Pxまで、10行おきに検出対象はシフトする。これによって、各行の検出データDoutは、フレームがm回表示されるごとに1回更新される。 As shown in FIG. 32, in the 487th frame, the pixel Px in the 10th row is set as the detection target from the first scanning line group. In the 488th frame, the pixel Px on the 20th row is set as the detection target from the second scanning line group. Thus, every time one frame is displayed, the detection target is shifted every ten rows from the pixel Px on the tenth row to the pixel Px on the 540th row. Thereby, the detection data Dout of each row is updated once every time the frame is displayed m times.
 ・なお、m行の走査線が、互いに隣り合う10行の走査線からなる複数の走査線群に区画されるとき、検出データDoutに基づく表示データDinの補正は、以下のような態様で実施されてもよい。 In addition, when the m scanning lines are divided into a plurality of scanning line groups including 10 scanning lines adjacent to each other, the correction of the display data Din based on the detection data Dout is performed in the following manner. May be.
 すなわち、制御部50における記憶部53は、m/10行×n列の記憶領域を備え、列方向に沿って並ぶ10個の画素Pxの各々を、1つの記憶領域に対応づける。例えば、記憶部53は、1番目の走査線群における1列目の画素Pxを、1行目1列目の記憶領域に対応づけ、2番目の走査線群における2列目の画素Pxを、2行目2列目の記憶領域に対応づけている。また、記憶部53は、54番目の走査線群における959列目の画素Pxを、54行目959列目の記憶領域に対応づけ、54番目の走査線群における960列目の画素Pxを、54行目960列目の記憶領域に対応づける。 That is, the storage unit 53 in the control unit 50 includes a storage area of m / 10 rows × n columns, and associates each of the ten pixels Px arranged in the column direction with one storage area. For example, the storage unit 53 associates the pixel Px in the first column in the first scanning line group with the storage area in the first row and first column, and sets the pixel Px in the second column in the second scanning line group, The storage area is associated with the second row and the second column. Further, the storage unit 53 associates the 959th column pixel Px in the 54th scanning line group with the storage region in the 54th row 959 column, and the 960th column pixel Px in the 54th scanning line group. It is associated with the storage area in the 54th row and the 960th column.
 制御部50の画像信号処理部54は、表示データDinの生成に際し、画素Pxごとの階調データと、その画素Pxが対応づけられた検出データDoutとを、記憶部53から読出す。そして、画像信号処理部54は、画素Pxごとの階調データに対し、その画素Pxが対応づけられた検出データDoutに基づく加減演算を施して、画素Pxごとの表示データDinを生成する。 The image signal processing unit 54 of the control unit 50 reads the gradation data for each pixel Px and the detection data Dout associated with the pixel Px from the storage unit 53 when generating the display data Din. Then, the image signal processing unit 54 performs addition / subtraction operation on the gradation data for each pixel Px based on the detection data Dout associated with the pixel Px to generate display data Din for each pixel Px.
 ・今回のフレームが表示される期間にて得られた検出データDoutが、次回のフレームが表示される期間において、全ての行の検出データDoutとして取り扱われてもよい。 The detection data Dout obtained in the period in which the current frame is displayed may be handled as the detection data Dout for all rows in the period in which the next frame is displayed.
 ・検出対象は、フレームごとに同一行に設定されてもよい。また、検出対象は、フレームごとに不規則に設定されてもよい。なお、検出対象がフレームごとに不規則に設定される場合には、例えば、1からmまでの間でフレームごとに乱数を発生させるランダム関数が制御部50にて用いられる。そして、検出用シフトクロック信号Clkrにてシフト待機部分の出力されるタイミングと、マスクパルス信号MPにてマスク解除部分の出力されるタイミングとが同期し、かつ、発生された乱数に応じた時間だけこれらがスタートパルス信号SP2から遅れる構成であればよい。 · The detection target may be set in the same row for each frame. Further, the detection target may be set irregularly for each frame. When the detection target is irregularly set for each frame, for example, the control unit 50 uses a random function that generates a random number for each frame between 1 and m. The timing at which the shift standby portion is output by the detection shift clock signal Clkr and the timing at which the mask release portion is output by the mask pulse signal MP are synchronized, and only the time corresponding to the generated random number. It is sufficient if these are delayed from the start pulse signal SP2.
 ・検出対象は、フレームごとに2以上設定されてもよい。この際に、検出用シフトクロック信号Clkrでは、相互に異なるタイミングで2つのシフト待機部分が出力され、マスクパルス信号MPでも、相互に異なるタイミングで2つのマスク解除部分が出力される。そして、2つのシフト待機部分の各々が出力されるタイミングと、2つのマスク解除部分の各々が出力されるタイミングとが同期する。 · Two or more detection targets may be set for each frame. At this time, the detection shift clock signal Clkr outputs two shift standby portions at different timings, and the mask pulse signal MP outputs two mask release portions at different timings. The timing at which each of the two shift standby portions is output is synchronized with the timing at which each of the two mask release portions is output.
 ・例えば、EL表示装置が起動されるとき、EL表示装置が休止してから復帰するとき等、1つのフレームが表示される期間以外において、全ての行、もしくは、一部の行の各駆動回路PCCに対して、検出動作が行われてもよい。 -For example, when the EL display device is activated or when the EL display device is paused and then returned, the drive circuits for all rows or some rows other than the period in which one frame is displayed A detection operation may be performed on the PCC.
 ・1回の検出動作において印加される検出用電圧VMは、データ線Ldごとに相互に異なる構成であってもよい。この際に、検出動作では、複数のデータ線Ldの各々は、相互に異なる配線を通じてアナログ電源70に接続されてもよい。あるいは、検出用電圧VMは、デジタルデータとしてデータドライバ40からデータ線Ldに供給されてもよい。 The detection voltage VM applied in one detection operation may have a different configuration for each data line Ld. At this time, in the detection operation, each of the plurality of data lines Ld may be connected to the analog power supply 70 through different wirings. Alternatively, the detection voltage VM may be supplied from the data driver 40 to the data line Ld as digital data.
 ・1回の検出動作において検出用電圧VMの印加されるデータ線Ldは、全てのデータ線Ldにおける一部であってもよい。この際に、1回の検出動作では、検出用電圧VMの印加の対象となる一部のデータ線Ldのみが、検出用電圧スイッチSWsを介してアナログ電源70と接続される。 The data line Ld to which the detection voltage VM is applied in one detection operation may be a part of all the data lines Ld. At this time, in one detection operation, only some data lines Ld to which the detection voltage VM is applied are connected to the analog power supply 70 via the detection voltage switch SWs.
 ・上記実施形態では、駆動トランジスタTr3の特性としてしきい値電圧Vthが検出され、検出されたしきい値電圧Vthに基づいて発光電圧VDが補正される。これに限らず、駆動トランジスタTr3の特性として電流増幅率βが検出され、検出された電流増幅率βに基づいて発光電圧VDが補正されてもよい。また、駆動トランジスタTr3の特性としてしきい値電圧Vthと電流増幅率βとの両方が検出されてもよい。要するに、検出動作における検出対象は、駆動トランジスタTr3の素子特性のうち、EL素子11に供給される駆動電流に対し影響を与えるパラメータであれよい。 In the above embodiment, the threshold voltage Vth is detected as a characteristic of the drive transistor Tr3, and the light emission voltage VD is corrected based on the detected threshold voltage Vth. However, the current amplification factor β may be detected as a characteristic of the drive transistor Tr3, and the light emission voltage VD may be corrected based on the detected current amplification factor β. Further, both the threshold voltage Vth and the current amplification factor β may be detected as the characteristics of the drive transistor Tr3. In short, the detection target in the detection operation may be a parameter that affects the drive current supplied to the EL element 11 among the element characteristics of the drive transistor Tr3.
 ・発光電圧VDの補正に際しては、駆動トランジスタTr3の素子特性に加えて、発光輝度などのEL素子11の発光特性が用いられてもよい。
 ・発光素子は、有機EL素子であってもよいし、無機EL素子であってもよい。
In the correction of the light emission voltage VD, the light emission characteristics of the EL element 11 such as light emission luminance may be used in addition to the element characteristics of the drive transistor Tr3.
-An organic EL element may be sufficient as a light emitting element, and an inorganic EL element may be sufficient as it.
 β…電流増幅率、t…緩和時間、Ce…画素容量、Cp…寄生容量、Cs…保持容量、Id…ドレイン電流、L1,L2…曲線、La…電源線、Lb…接地電圧線、Ld…データ線、LP…ラッチパルス信号、Ls…走査線、MP…マスクパルス信号、Px…画素、ts…飽和時間、VD…発光電圧、VDN…非発光電圧、VDN1…第1非発光電圧、VDN2…第2非発光電圧、VM…検出用電圧、Din…表示データ、11…有機EL素子、PCC…駆動回路、SP1,SP2…スタートパルス信号、SW1…入力スイッチ、SW2…出力スイッチ、SWd…表示用スイッチ、SWm…検出用スイッチ、SWs…検出用電圧スイッチ、Tr1…サンプリングトランジスタ、Tr2…スイッチングトランジスタ、Tr3…駆動トランジスタ、VEE…アナログ基準電圧、VgH…選択電圧、VgL…非選択電圧、Vgs…ゲート-ソース間電圧、VLd…データ線電位、Vth…しきい値電圧、ΔVth…シフト量、Clkd…データシフトクロック信号、Clks…表示用シフトクロック信号、Clkr…検出用シフトクロック信号、Dout…検出データ、DVSS…アナログ電源電圧、LVDD…ロジック電源電圧、LVSS…ロジック基準電圧、VLds…飽和電圧、ELVDD…駆動電圧、ELVSS…基準電圧、SWtrs…転送スイッチ、WDVSS…書込電圧、10…表示パネル、20…選択ドライバ、21…シフトレジスタ回路、22…レベルシフタ回路、23…バッファ回路、30…電源ドライバ、40…データドライバ、41…シフトレジスタ回路、42…データレジスタ回路、43…データラッチ回路、43a…データラッチ、44…電圧変換回路、45…バッファ回路、46…レベルシフタ、50…制御部、51…画像信号入力部、52…タイミングコントローラ、53…記憶部、54…画像信号処理部、55…表示データ出力部、60…ロジック電源、70…アナログ電源。 β ... current amplification factor, t ... relaxation time, Ce ... pixel capacitance, Cp ... parasitic capacitance, Cs ... holding capacitance, Id ... drain current, L1, L2 ... curve, La ... power supply line, Lb ... ground voltage line, Ld ... Data line, LP ... Latch pulse signal, Ls ... Scan line, MP ... Mask pulse signal, Px ... Pixel, ts ... Saturation time, VD ... Light emission voltage, VDN ... Non-light emission voltage, VDN1 ... First non-light emission voltage, VDN2 ... Second non-emission voltage, VM ... detection voltage, Din ... display data, 11 ... organic EL element, PCC ... drive circuit, SP1, SP2 ... start pulse signal, SW1 ... input switch, SW2 ... output switch, SWd ... for display Switch, SWm: Detection switch, SWs: Detection voltage switch, Tr1: Sampling transistor, Tr2: Switching transistor, Tr3: Drive transistor , VEE ... analog reference voltage, VgH ... selection voltage, VgL ... non-selection voltage, Vgs ... gate-source voltage, VLd ... data line potential, Vth ... threshold voltage, ΔVth ... shift amount, Clkd ... data shift clock signal , Clks ... display shift clock signal, Clkr ... detection shift clock signal, Dout ... detection data, DVSS ... analog power supply voltage, LVDD ... logic power supply voltage, LVSS ... logic reference voltage, VLds ... saturation voltage, ELVDD ... drive voltage, ELVSS ... reference voltage, SWtrs ... transfer switch, WDVSS ... write voltage, 10 ... display panel, 20 ... select driver, 21 ... shift register circuit, 22 ... level shifter circuit, 23 ... buffer circuit, 30 ... power supply driver, 40 ... data Driver 41... Shift register circuit 42 Data register circuit, 43 ... Data latch circuit, 43a ... Data latch, 44 ... Voltage conversion circuit, 45 ... Buffer circuit, 46 ... Level shifter, 50 ... Control unit, 51 ... Image signal input unit, 52 ... Timing controller, 53 ... Memory 54, an image signal processing unit, 55, a display data output unit, 60, a logic power supply, and 70, an analog power supply.

Claims (8)

  1.  複数の画素回路を備え、
     前記画素回路は、
     ゲート、ソース、および、ドレインを有し、前記ソースと前記ドレインのいずれか一方が接続端であり、前記ソースと前記ドレインのうち他方が給電端である駆動トランジスタと、
     前記接続端に電気的接続するEL素子と、
     前記ゲートと前記ソースとに電気的接続する保持容量と、を備え、
     発光期間において、前記保持容量に発光電圧に相当する電圧を保持し、前記発光電圧に応じた電流を、前記駆動トランジスタを通じて前記EL素子に流し、
     非発光期間において、前記保持容量に非発光電圧に相当する電圧を保持し、前記駆動トランジスタを通した電流が前記EL素子に流れないように前記給電端の電圧を設定し、
     前記発光電圧が高いときほど前記非発光電圧が低い状態を有するように構成されている
     EL表示装置。
    A plurality of pixel circuits,
    The pixel circuit includes:
    A drive transistor having a gate, a source, and a drain, wherein one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end;
    An EL element electrically connected to the connection end;
    A storage capacitor electrically connected to the gate and the source,
    In the light emission period, a voltage corresponding to a light emission voltage is held in the storage capacitor, and a current corresponding to the light emission voltage is supplied to the EL element through the drive transistor,
    In the non-light emitting period, the voltage corresponding to the non-light emitting voltage is held in the holding capacitor, and the voltage at the feeding end is set so that the current passing through the driving transistor does not flow to the EL element,
    An EL display device configured such that the higher the light emission voltage is, the lower the non-light emission voltage is.
  2.  前記発光期間と前記非発光期間とから構成されるフレームを繰り返すように構成されており、
     前記発光電圧が高い前記フレームほど前記非発光電圧が低い状態を有する
     請求項1に記載のEL表示装置。
    It is configured to repeat a frame composed of the light emission period and the non-light emission period,
    The EL display device according to claim 1, wherein the frame having a higher light emission voltage has a lower state of the non-light emission voltage.
  3.  前記非発光電圧は、前記発光電圧の設定範囲における中間値を基準として、前記発光電圧と対称な反転電圧である
     請求項1または2に記載のEL表示装置。
    The EL display device according to claim 1, wherein the non-light emitting voltage is an inversion voltage symmetrical to the light emitting voltage with reference to an intermediate value in a setting range of the light emitting voltage.
  4.  前記画素回路は、
     前記発光期間での前記発光電圧が切替値と同じかそれより低いとき、前記発光電圧と同じ極性であり且つ前記発光電圧が高いときほど低く設定されている電圧を前記非発光電圧として前記保持容量に保持し、
     前記発光期間での前記発光電圧が前記切替値より高いとき、前記発光電圧とは異なる極性の電圧を前記非発光電圧として前記保持容量に保持するように構成されている
     請求項1から3のいずれか1項に記載のEL表示装置。
    The pixel circuit includes:
    When the light emission voltage in the light emission period is equal to or lower than a switching value, the holding capacitor is set to a voltage that has the same polarity as the light emission voltage and is set lower as the light emission voltage is higher as the non-light emission voltage. Hold on to
    4. The device according to claim 1, wherein when the light emission voltage in the light emission period is higher than the switching value, a voltage having a polarity different from the light emission voltage is held in the storage capacitor as the non-light emission voltage. 2. An EL display device according to item 1.
  5.  前記画素回路は、
     前記発光期間での前記発光電圧が前記切替値よりも高いとき、前記非発光電圧を一定値とするように構成されている
     請求項4に記載のEL表示装置。
    The pixel circuit includes:
    The EL display device according to claim 4, wherein the non-light emission voltage is set to a constant value when the light emission voltage in the light emission period is higher than the switching value.
  6.  前記非発光期間において、前記駆動トランジスタのしきい値電圧を検出する検出動作を含み、
     前記発光期間において、前回の検出動作による検出結果を用いて前記発光電圧を予め補正するように構成されている
     請求項1から5のいずれか1項に記載のEL表示装置。
    A detection operation for detecting a threshold voltage of the drive transistor in the non-light-emitting period;
    The EL display device according to claim 1, wherein the light emission voltage is corrected in advance using a detection result obtained by a previous detection operation in the light emission period.
  7.  複数の画素回路を備えるEL表示装置の駆動方法であって、
     前記画素回路は、
     ゲート、ソース、および、ドレインを有し、前記ソースと前記ドレインのいずれか一方が接続端であり、前記ソースと前記ドレインのうち他方が給電端である駆動トランジスタと、
     前記接続端に電気的接続するEL素子と、
     前記ゲートと前記ソースとに電気的接続する保持容量と、を備え、
     前記保持容量に発光電圧に相当する電圧を保持し、前記発光電圧に応じた電流を、前記駆動トランジスタを通じて前記EL素子に流す発光工程と、
     前記発光電圧が高いときほど低い状態を有するように設定されている非発光電圧に相当する電圧を前記保持容量に保持し、前記駆動トランジスタを通した電流が前記EL素子に流れないように前記給電端の電圧を設定する非発光工程と、
     を備えるEL表示装置の駆動方法。
    A method for driving an EL display device including a plurality of pixel circuits,
    The pixel circuit includes:
    A drive transistor having a gate, a source, and a drain, wherein one of the source and the drain is a connection end, and the other of the source and the drain is a feeding end;
    An EL element electrically connected to the connection end;
    A storage capacitor electrically connected to the gate and the source,
    A light emission step of holding a voltage corresponding to a light emission voltage in the storage capacitor and flowing a current corresponding to the light emission voltage to the EL element through the drive transistor;
    A voltage corresponding to a non-light-emitting voltage set so as to have a lower state as the light-emitting voltage is higher is held in the holding capacitor, and the power supply is performed so that a current passing through the driving transistor does not flow to the EL element. A non-light emitting process for setting the voltage at the end;
    A method for driving an EL display device comprising:
  8.  前記非発光工程は、前記駆動トランジスタのしきい値電圧を検出する検出工程をさらに含み、
     前記発光工程において、前回の前記検出工程による検出結果を用いて前記発光電圧を予め補正する
     請求項7に記載のEL表示装置の駆動方法。
    The non-light emitting step further includes a detecting step of detecting a threshold voltage of the driving transistor,
    The method for driving an EL display device according to claim 7, wherein, in the light emission step, the light emission voltage is corrected in advance using a detection result obtained in the previous detection step.
PCT/JP2014/069170 2013-07-23 2014-07-18 El display device and drive method for el display device WO2015012216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013152968 2013-07-23
JP2013-152968 2013-07-23

Publications (1)

Publication Number Publication Date
WO2015012216A1 true WO2015012216A1 (en) 2015-01-29

Family

ID=52393257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069170 WO2015012216A1 (en) 2013-07-23 2014-07-18 El display device and drive method for el display device

Country Status (2)

Country Link
TW (1) TW201508722A (en)
WO (1) WO2015012216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079423A1 (en) * 2019-10-23 2021-04-29 シャープ株式会社 Display device and method for driving same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119179A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Electro-optic device, driving method therefor, and electronic equipment
WO2006070833A1 (en) * 2004-12-27 2006-07-06 Kyocera Corporation Image display and its driving method, and driving method of electronic apparatus
JP2006301250A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Display drive device, its drive controll method, display apparatus, and its drive control method
JP2009204887A (en) * 2008-02-28 2009-09-10 Sony Corp El display panel, electronic device, and drive method of el display panel
JP2010025967A (en) * 2008-07-15 2010-02-04 Fujifilm Corp Display apparatus
JP2011018051A (en) * 2005-05-11 2011-01-27 Pioneer Electronic Corp Active matrix type display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119179A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Electro-optic device, driving method therefor, and electronic equipment
WO2006070833A1 (en) * 2004-12-27 2006-07-06 Kyocera Corporation Image display and its driving method, and driving method of electronic apparatus
JP2006301250A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Display drive device, its drive controll method, display apparatus, and its drive control method
JP2011018051A (en) * 2005-05-11 2011-01-27 Pioneer Electronic Corp Active matrix type display device
JP2009204887A (en) * 2008-02-28 2009-09-10 Sony Corp El display panel, electronic device, and drive method of el display panel
JP2010025967A (en) * 2008-07-15 2010-02-04 Fujifilm Corp Display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079423A1 (en) * 2019-10-23 2021-04-29 シャープ株式会社 Display device and method for driving same
CN114450742A (en) * 2019-10-23 2022-05-06 夏普株式会社 Display device and driving method thereof

Also Published As

Publication number Publication date
TW201508722A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
CN108122539B (en) Display device and controller for display panel
CN108074528B (en) Display device and controller thereof
JP6089656B2 (en) Display device and display method
KR100854857B1 (en) Light emission drive circuit and its drive control method and display unit and its display drive method
JP5230806B2 (en) Image display device and driving method thereof
JP4852866B2 (en) Display device and drive control method thereof
JP5456901B2 (en) Display device and driving method thereof
KR101291433B1 (en) Display device and method for driving the same
WO2015029336A1 (en) Display device and display method
US10937373B2 (en) Display device for external compensation and method of driving the same
JP4400438B2 (en) LIGHT EMITTING DRIVE CIRCUIT, ITS DRIVE CONTROL METHOD, DISPLAY DEVICE, AND ITS DISPLAY DRIVE METHOD
JP4400443B2 (en) LIGHT EMITTING DRIVE CIRCUIT, ITS DRIVE CONTROL METHOD, DISPLAY DEVICE, AND ITS DISPLAY DRIVE METHOD
WO2015012216A1 (en) El display device and drive method for el display device
JP5182382B2 (en) Display device
KR20150100997A (en) Organic light emitting display device
WO2015012215A1 (en) El device and drive method for el device
JP2006177988A (en) Emission driving circuit and driving control method for the same, and display apparatus and display driving method for the same
JP5182383B2 (en) Display device
JP5365931B2 (en) LIGHT EMITTING DRIVE DEVICE, LIGHT EMITTING DEVICE, ITS DRIVE CONTROL METHOD, AND ELECTRONIC DEVICE
CN116343677A (en) Electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14829676

Country of ref document: EP

Kind code of ref document: A1