WO2015190258A1 - Current driving device and driving method for current driving device - Google Patents

Current driving device and driving method for current driving device Download PDF

Info

Publication number
WO2015190258A1
WO2015190258A1 PCT/JP2015/064659 JP2015064659W WO2015190258A1 WO 2015190258 A1 WO2015190258 A1 WO 2015190258A1 JP 2015064659 W JP2015064659 W JP 2015064659W WO 2015190258 A1 WO2015190258 A1 WO 2015190258A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
voltage
current
level
row
Prior art date
Application number
PCT/JP2015/064659
Other languages
French (fr)
Japanese (ja)
Inventor
小林 賢次
小倉 潤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015190258A1 publication Critical patent/WO2015190258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a current driving device including a driving transistor for passing a current to a current driving element, and a driving method of the current driving device.
  • An EL display device which is an example of an electroluminescence (EL) device, includes a plurality of EL elements positioned in a matrix and a plurality of thin film transistors for each EL element.
  • the element is driven line-sequentially.
  • the EL device described in Patent Document 1 switches a selection transistor to an on state by scanning a scanning line, and applies a voltage based on display data between the gate and the source of the driving transistor. Then, the drain-source current based on the gate-source voltage of the driving transistor flows through the EL element, whereby the luminance gradation in the EL element is controlled for each scan of the scanning line.
  • the characteristic values such as the threshold voltage and current amplification factor of the driving transistor vary depending on the accumulated driving time of the driving transistor, so that the gate-source voltage applied to the driving transistor is the same. Even so, the drive current supplied from the drive transistor changes over time. Therefore, in order to correct the change in luminance of the EL element due to the change in the characteristic value of the driving transistor, for example, an EL device as described in Patent Document 2 periodically sets the characteristic value of the driving transistor. Is getting into.
  • An object of the present invention is to provide a current driving device and a driving method of the current driving device that can shorten the time required for measuring the characteristic value of the driving transistor.
  • An EL device that solves the above problem is a pixel group including a plurality of element circuits, and each element circuit drives a current drive element, a data line, and a current based on a voltage set in the data line to the current drive. And a driving transistor having a current path for passing the element, and the data line includes the element circuit group configured to be electrically connectable to the current path.
  • the current driver is a measurement unit configured to measure a convergence voltage for each element circuit, and the measurement unit is configured to measure the threshold value of the drive transistor for each of the plurality of element circuits.
  • the measurement unit in common with a plurality of the reference voltages used in other element circuits is provided.
  • the EL device is a setting unit that sets a reference maximum value, which is the maximum value of all the reference voltages in the current measurement, and includes all the settings in at least one measurement before the current measurement.
  • a setting unit configured to set the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller than the maximum value in the convergence voltage and the maximum value is smaller;
  • a driving method of a current driving device that solves the above problem is an element circuit group including a plurality of element circuits, and the element circuit is based on a current driving element, a data line, and a voltage set for the data line.
  • a drive transistor having a current path for passing a current to the current drive element, the data line is configured to be electrically connectable to the current path, and the driving method is performed for each of the plurality of element circuits.
  • the data line After setting one voltage on the data line that exceeds the threshold voltage of the driving transistor and that is a reverse bias to the current driving element, the data line is switched to a high impedance state, thereby And a step of converging the voltage of the data line to a convergence voltage, and a plurality of reference circuits having different sizes for each of the plurality of element circuits.
  • the maximum value among all the reference voltages in the current measurement is the reference maximum value, which is larger than the maximum value among all the convergence voltages in at least one measurement before the current measurement. And a step of setting the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller.
  • the maximum value among all the reference voltages in the current measurement is set based on the maximum value in the convergence voltage in at least one measurement prior to the current measurement.
  • the maximum value of all reference voltages in the current measurement is smaller as the maximum value of the convergence voltage in at least one measurement prior to the current measurement is smaller. Is shorter as the convergence voltage in at least one measurement prior to the current measurement is smaller. As a result, it is possible to shorten the time required to acquire the characteristic value of the drive transistor, compared to a configuration in which the maximum value among all reference voltages in the measurement is a constant value for each measurement.
  • the setting unit is configured to increase the reference maximum so that the reference maximum value is smaller as the maximum value is larger than the maximum value of all the converged voltages in the previous measurement and the maximum value is smaller.
  • a value may be set.
  • the maximum value of the convergence voltage in the previous measurement is slightly decreased from the maximum value of the convergence voltage in the previous measurement.
  • the current drive device having the above configuration has the maximum value of the previous convergence voltage. Based on this, the reference maximum value in the current measurement is set. Therefore, it is possible to prevent the convergence voltage from being accurately measured when the maximum value of the reference voltage in the current measurement falls below the convergence voltage.
  • the setting unit is configured to increase the reference maximum value so that the reference maximum value is smaller as the maximum value is larger than the maximum value of all the convergence voltages in the previous measurement and the maximum value is smaller. May be set.
  • the threshold voltage of the driving transistor tends to increase monotonously.
  • the reference maximum value in the current measurement is set based on the maximum value of the convergence voltage in the previous measurement. Therefore, since the population for determining the maximum value of the convergence voltage in the measurement before the current measurement is limited to the convergence voltage in the previous measurement, the maximum convergence voltage in the measurement before the current measurement is determined.
  • the structure for determining the value can be simplified.
  • the current driving device sets a gradation voltage based on a driving amount of the current driving element to the data line after the measurement unit performs the current measurement, and then sets the current based on the gradation voltage to the current line.
  • a drive unit for causing the drive transistor to flow is further provided.
  • the setting unit may set a driving period in which the driving unit passes the current to the current driving element as a longer period as the reference maximum value in the current measurement is smaller.
  • the current driving device sets a gradation voltage based on a driving amount of the current driving element to the data line before the measurement unit performs the current measurement, and then sets the current based on the gradation voltage.
  • a driving unit for causing the driving transistor to flow is further provided.
  • the setting unit may set a driving period in which the driving unit passes the current to the current driving element as a longer period as the reference maximum value in the current measurement is smaller.
  • the measurement unit may use, as the reference voltage, a voltage that is increased from a predetermined minimum value by a certain value in the successive comparison.
  • the time required for the current measurement is reduced by the smaller reference maximum value in the current measurement. It will definitely be shorter.
  • the setting unit obtains a value obtained by adding a constant value to a maximum value among all the convergence voltages in at least one measurement before the current measurement, and the reference maximum in the current measurement. It may be set to a value.
  • a voltage that is larger than the convergence voltage in the measurement prior to the current measurement by a certain value is set as the reference maximum value in the current measurement. Therefore, even if the convergence voltage increases from the measurement prior to the current measurement, if the range in which the convergence voltage increases is within a certain value, the reference maximum value in the current measurement is less than the convergence voltage. Therefore, it is possible to prevent the convergence voltage from being accurately measured.
  • the current driving device and the driving method of the current driving device of the present invention it is possible to shorten the time required to acquire the characteristic value of the driving transistor.
  • FIG. 3 is a circuit diagram showing voltage levels of a selection line, a power supply line, and a data line in a write operation according to an embodiment together with a circuit diagram of a pixel circuit.
  • FIG. 3 is a circuit diagram illustrating voltage levels of a selection line, a power supply line, and a data line in a light emitting operation according to an embodiment together with a circuit diagram of a pixel circuit.
  • FIG. 5 is a circuit diagram showing voltage levels of a selection line, a power supply line, and a data line in a measurement operation of an embodiment together with a circuit diagram of a pixel circuit.
  • FIG. 3 is a block circuit diagram showing a configuration of a selection driver together with a pixel circuit in one embodiment. It is a block circuit diagram which shows the structure of the power supply driver in one Embodiment with a pixel circuit.
  • 4 is a graph showing a relationship between a gate-source voltage and a drain-source current in a driving transistor according to an embodiment. It is a graph which shows the relationship between the elapsed time after the data line in one Embodiment was set to the high impedance state, and the voltage level of the source in a drive transistor.
  • 6 is a timing chart showing transitions of voltage levels of signals output from a selection driver, a power supply driver, and a data driver in each of a light emission period and a non-light emission period in an EL display device according to an embodiment. It is a timing chart which shows transition of the voltage level of each signal which a selection driver, a power supply driver, and a data driver output in a measurement period in an EL display device of one embodiment.
  • FIG. 6 is a timing chart showing a transition of voltage levels in each selection line and a transition of voltage levels in each power supply line together with a start pulse signal and a mask pulse signal in one frame period set by the EL display device of one embodiment. . It is a block diagram which shows the pixel row by which the measurement period in the 1st frame to the 54th frame which the EL display apparatus of a modification is set is set. It is a block diagram which shows the pixel row by which the measurement period is set from the 55th frame to the 108th frame which the EL display apparatus of a modification is set. It is a block diagram which shows the pixel row by which the measurement period is set from the 487th frame to the 540th frame which the EL display apparatus of a modification sets.
  • FIGS. 1-10 An embodiment of an EL display device that is an example of an EL device and a driving method of an EL display device that is an example of a driving method of the EL device will be described with reference to FIGS.
  • the EL display device includes a panel 10 including a plurality of pixels PX, a selection driver 20, a power supply driver 30, a data driver 40, and a system controller 50.
  • the plurality of pixels PX are arranged in a matrix of m rows ⁇ n columns. m is an integer of 1 or more, and n is also an integer of 1 or more.
  • Each pixel PX is an example of an element circuit.
  • Each of the m selection lines Ls extending in the row direction intersects each of the n columns of data lines Ld extending in the column direction in a three-dimensional manner in a plan view with respect to the panel 10.
  • Each of the plurality of pixels PX is disposed in the vicinity of a portion where the selection line Ls and the data line Ld intersect three-dimensionally.
  • Each of the n columns of pixels PX arranged in the i-th row (i is an integer of 1 to m) is electrically connected to the i-th selection line Ls and the i-th power line La.
  • Each of the m rows of pixels PX arranged in the j-th column (j is an integer of 1 to n) is electrically connected to the j-th data line Ld.
  • a plurality of pixels PX electrically connected to one common selection line Ls is one pixel row as an example of an element circuit group, and each pixel line PX is electrically connected to one common data line Ld.
  • a plurality of pixels PX connected to is one pixel column.
  • Each of the m selection lines Ls is electrically connected to the selection driver 20 in parallel.
  • Each of the m rows of power supply lines La is electrically connected to the power supply driver 30 in parallel.
  • Each of the n columns of data lines Ld is electrically connected to the data driver 40 in parallel.
  • the system controller 50 controls driving of the selection driver 20, driving of the power supply driver 30, and driving of the data driver 40 by outputting a plurality of control signals.
  • the system controller 50 is configured with a central processing unit and a microcomputer having a storage unit as a center.
  • the system controller 50 has a function of receiving an input signal SIG from the outside to the EL display device and extracting a gradation component included in the input signal SIG from the input signal SIG.
  • the system controller 50 has a function of converting the extracted gradation component into a gradation value Din for controlling the luminance for each pixel PX.
  • the system controller 50 outputs the gradation value Din for each pixel PX to the data driver 40.
  • the gradation value Din for each pixel PX is output in the order of row numbers for each row, and in the data for one row, the columns are output in the order of column numbers.
  • the gradation value Din for each pixel PX is, for example, a digital value having 8 bits as a bit length.
  • the system controller 50 may extract a timing signal such as a system clock for driving the panel 10 from the input signal SIG, or may generate a separate timing signal when the input signal SIG does not include a timing signal component. Good.
  • the input signal SIG includes a timing signal component that defines the display timing of an image, for example, a composite video signal such as a television broadcast signal
  • the system controller 50 performs a timing in addition to a function of extracting a gradation component. It has a function of extracting signal components.
  • the system controller 50 generates a selection control signal SCON1 for controlling the driving of the selection driver 20 based on the timing signal, and inputs the selection control signal SCON1 to the selection driver 20.
  • the system controller 50 generates a power control signal SCON 2 for controlling the driving of the power driver 30 based on the timing signal, and inputs the power control signal SCON 2 to the power driver 30.
  • the system controller 50 generates a data control signal SCON3 for controlling the driving of the data driver 40 based on the timing signal, and inputs the data control signal SCON3 to the data driver 40.
  • the pixel circuit PCC constituting the pixel PX includes three n-channel transistors, which are examples of thin film transistors, and one storage capacitor Cs.
  • the three n-channel transistors may be, for example, thin film transistors having an amorphous silicon film as a semiconductor film, or thin film transistors having a polysilicon film as a semiconductor film.
  • the gate of the driving transistor T1 is electrically connected to the node N1.
  • the source which is the first terminal of the driving transistor T1 is electrically connected to the anode of the EL element OEL which is an example of the current driving element through the node N2, and the drain which is the second terminal of the driving transistor T1 is connected to the power supply line through the node N3. It is electrically connected to La.
  • the drive transistor T1 is a transistor capable of controlling a current in a saturation region, and has a function of causing a current based on the gate-source voltage Vgs of the drive transistor T1 to flow as a drain-source current Ids.
  • the anode of the EL element OEL is electrically connected to the node N2 in the pixel circuit PCC, and a reference level ELVSS such as a ground level is set as the voltage level of the cathode of the EL element OEL.
  • a reference level ELVSS such as a ground level is set as the voltage level of the cathode of the EL element OEL.
  • the EL element OEL includes a pixel capacitance
  • the data line Ld includes a parasitic capacitance.
  • the first electrode is electrically connected to the node N1
  • the second electrode is electrically connected to the node N2.
  • the storage capacitor Cs may be a parasitic capacitor formed between the gate of the driving transistor T1 and the source of the driving transistor T1, or may be a capacitive element provided separately between the node N1 and the node N2. Or a combination thereof.
  • the holding capacitor Cs has a function of holding the gate-source voltage Vgs of the driving transistor T1.
  • the gate of the holding transistor T2 is electrically connected to the selection line Ls through the node N4.
  • the drain of the holding transistor T2 is electrically connected to the power supply line La through the node N3, and the source of the holding transistor T2 is electrically connected to the node N1.
  • the holding transistor T2 controls conduction between the drain of the driving transistor T1 and the gate of the driving transistor T1 based on the voltage level set on the selection line Ls.
  • the holding transistor T2 makes the drain of the driving transistor T1 and the gate of the driving transistor T1 conductive, thereby driving the driving transistor T1. Is diode-connected.
  • the holding transistor T2 electrically insulates the drain of the driving transistor T1 from the gate of the driving transistor T1. This causes the drive transistor T1 to release the diode connection.
  • the gate of the selection transistor T3 is electrically connected to the selection line Ls.
  • the source of the selection transistor T3 is electrically connected to the data line Ld, and the drain of the selection transistor T3 is electrically connected to the node N2.
  • the selection transistor T3 controls conduction between the source of the driving transistor T1 and the data line Ld based on the voltage level of the selection line Ls.
  • the selection transistor T3 makes the source of the driving transistor T1 and the data line Ld conductive, and the first of the storage capacitor Cs. A voltage corresponding to the difference between the voltage level at the electrode and the voltage level of the data signal Vd input to the data line Ld is held in the holding capacitor Cs.
  • the selection transistor T3 electrically insulates the source of the driving transistor T1 from the data line Ld.
  • the writing operation in which the gradation value level Vdata corresponding to the lowest gradation value is set in the data line Ld and the non-light emission operation after the writing operation are performed in m rows.
  • This is a period in which the pixel circuits PCC of xn columns perform one pixel row at a time in the row number order.
  • the writing operation in which the measurement level VM is set to the data line Ld and the measurement operation after the writing operation are performed by the pixel circuit PCC of m rows ⁇ n columns. This is the period for line by line.
  • the selection driver 20 sets the selection signal Vsel to the high level H, and sets the holding transistor T2 and the selection transistor T3 to the on state.
  • the power supply driver 30 sets the write level WDVSS, which is a voltage level substantially equal to the reference level ELVSS, to the power supply signal Va.
  • the data driver 40 sets the gradation value level Vdata generated from the gradation value Din to the data signal Vd.
  • the holding transistor T2 and the selection transistor T3 write a voltage corresponding to the difference between the gradation value level Vdata and the writing level WDVSS in the holding capacitor Cs.
  • the voltage level set in the data signal Vd in the writing operation in the light emission period is a gradation value level Vdata corresponding to the gradation value Din, and is a voltage level lower than the reference level ELVSS and the writing level WDVSS. is there.
  • the source of the drive transistor T1 is set to a voltage level lower than the reference level ELVSS.
  • the gate of the diode-connected driving transistor T1 is set to a voltage level equal to the drain of the driving transistor T1.
  • a forward bias is set to the drain-source voltage Vds of the driving transistor T1, and a drain-source current Ids based on the drain-source voltage Vds flows.
  • the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs. Then, a gate-source voltage Vgs that is forward biased between the gate and source of the driving transistor T1 and reversely biased with respect to the EL element OEL is written into the storage capacitor Cs.
  • the write operation in the non-light emission period differs from the write operation in the light emission period in the voltage level set on the data line Ld.
  • the voltage level set in the data signal Vd in the writing operation in the non-light emitting period is a gradation value level Vdata corresponding to the lowest gradation, and is a voltage level substantially equal to the reference level ELVSS and the writing level WDVSS. is there.
  • the source of the drive transistor T1 is set to a voltage level substantially equal to the reference level ELVSS. Since the gate of the diode-connected driving transistor T1 is set to a voltage level equal to that of the drain of the driving transistor T1, a zero bias that is substantially 0 V is set to the drain-source voltage Vds of the driving transistor T1. The drain-source current Ids does not flow.
  • the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs. Then, the gate-source voltage Vgs that is almost zero bias between the gate and the source of the driving transistor T1 is written in the storage capacitor Cs.
  • the voltage level set to the data line Ld is different from that in the light emission period.
  • the voltage level set for the data signal Vd in the write operation during the measurement period is the measurement level VM, which is lower than the reference level ELVSS and the write level WDVSS, and the write level WDVSS and the measurement level VM. Is a voltage level exceeding the threshold value of the driving transistor T1.
  • the source of the drive transistor T1 is set to a voltage level lower than the reference level ELVSS.
  • the gate of the diode-connected driving transistor T1 is set to a voltage level equal to that of the drain of the driving transistor T1, and a forward bias is set to the drain-source voltage Vds of the driving transistor T1, so that the drain-source voltage is set.
  • a drain-source current Ids based on Vds flows.
  • the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs.
  • the gate-source voltage Vgs that is forward biased between the gate and source of the driving transistor T1 and reversely biased with respect to the EL element OEL exceeds the threshold voltage Vth of the driving transistor T1. And is written to the storage capacitor Cs.
  • the selection driver 20 sets the selection signal Vsel to the low level L, and sets the holding transistor T2 and the selection transistor T3 to the off state.
  • the power supply driver 30 sets the light emission level ELVDD, which is a voltage level higher than the write level WDVSS, such that the drive transistor T1 is driven in the saturation region, as the power supply signal Va.
  • the driving transistor T1 allows a drain-source current Ids to flow based on the gate-source voltage Vgs held by the holding capacitor Cs.
  • the drain-source current Ids in the driving transistor T1 has a magnitude based on the difference between the gate-source voltage Vgs and the threshold voltage Vth in the driving transistor T1, and the gate-source voltage Vgs. And the difference from the threshold voltage Vth. Since the gate-source voltage Vgs held in the holding capacitor Cs in the write operation during the light emission period exceeds the threshold voltage Vth of the drive transistor T1, the drain-source voltage is connected to the current path of the drive transistor T1. The current Ids flows and the EL element OEL emits light.
  • the selection driver 20 sets the selection signal Vsel to the low level L and sets the holding transistor T2 and the selection transistor T3 to the off state, as in the light emission operation.
  • the power supply driver 30 sets the light emission level ELVDD, which is a voltage level higher than the write level WDVSS, such that the drive transistor T1 is driven in the saturation region, as the power supply signal Va.
  • the drain of the driving transistor T1 is set to a higher voltage level than the source of the driving transistor T1, according to the writing operation in the non-light emitting period, the gate-source voltage held in the holding capacitor Cs. Vgs is approximately 0V. Therefore, the drain-source current Ids does not flow in the current path of the driving transistor T1, and the EL element OEL does not emit light.
  • the selection driver 20 sets the selection signal Vsel to the high level H, and sets the holding transistor T2 and the selection transistor T3 to the on state.
  • the power supply driver 30 sets the write level WDVSS to the power supply signal Va, and the data driver 40 disconnects the connection between the output circuit of the data signal Vd and the data line Ld, thereby causing the data line Ld to be in the high impedance state HZ.
  • the data driver 40 maintains the high impedance state HZ of the data line Ld until the elapsed time, which is the time elapsed since the setting of the high impedance state HZ, reaches a predetermined relaxation time ts.
  • the voltage level of the source in the driving transistor T1 gradually approaches the voltage level of the drain of the driving transistor T1 as the elapsed time increases.
  • the drain-source current Ids of the driving transistor T1 also gradually decreases, and accordingly, the charge accumulated in the storage capacitor Cs is gradually discharged.
  • the voltage between both electrodes of the storage capacitor Cs that is, the gate-source voltage Vgs of the drive transistor T1 gradually decreases.
  • the voltage level of the source of the driving transistor T1 gradually increases as the elapsed time passes.
  • the rise in the voltage level of the source of the driving transistor T1 continues to a voltage level at which the drain-source current Ids of the driving transistor T1 almost does not flow.
  • the discharge of the storage capacitor Cs also stops. .
  • the gate-source voltage Vgs of the driving transistor T1 converges to the threshold voltage Vth in the driving transistor T1.
  • the discharge period of the storage capacitor Cs cannot be set to infinity, and the sub-threshold current flows even if the discharge period of the storage capacitor Cs continues indefinitely. Information on the threshold voltage Vth is lost. Therefore, a predetermined discharge period is defined as the predetermined relaxation time ts, and the convergence level Vs, which is the voltage level when the relaxation time ts has elapsed, is held on the data line Ld as a voltage level based on the threshold voltage Vth. Let The difference between the reference voltage level and the convergence level Vs is the convergence voltage, and the convergence voltage increases as the threshold voltage Vth increases.
  • the source voltage level in the drive transistor T1 is lower than the write level WDVSS and the reference level ELVSS, and therefore the drain-source current Ids does not flow through the EL element OEL.
  • the shift register circuit 21 included in the selection driver 20 generates a parallel signal having a bit length of m bits from the selection start pulse signal SP that is one of the selection control signals SCON1.
  • the shift register circuit 21 shifts the selection start pulse signal SP bit by bit for each period of the drive shift clock Clks.
  • the measurement shift clock Clkr is input as a shift clock signal, the shift register circuit 21 shifts the selection start pulse signal SP by one bit for each period of the measurement shift clock Clkr.
  • the m-bit parallel signal generated by the shift register circuit 21 is a signal for selecting one selection line Ls from the m selection lines Ls one by one in the order of row numbers.
  • the shift register circuit 21 synchronizes the generation of a parallel signal for selecting one selection line Ls with the cycle of the shift clock signal.
  • the drive shift clock Clks is a shift clock signal for setting the write operation of the gradation value level Vdata in order of the row numbers one row at a time.
  • the measurement shift clock Clkr is used as one selection line Ls among the plurality of selection lines Ls while the shift register circuit 21 shifts the selection start pulse signal SP from the first bit to the m-th bit using the measurement shift clock Clkr.
  • the period of the measurement shift clock Clkr is sufficiently shorter than the period of the drive shift clock Clks.
  • the shift register circuit 21 initializes the shift of the selection start pulse signal SP when the clear signal RST is input to the shift register circuit 21.
  • the shift register circuit 21 starts the selection of the selection line Ls from the first row again when the selection start pulse signal SP is input again after the clear signal RST is input.
  • the shift register circuit 21 outputs a parallel signal generated by shifting the selection start pulse signal SP only when the selection mask pulse signal MP1 is logically at a high level. When the selection mask pulse signal MP1 is logically at a low level, the shift register circuit 21 outputs a parallel signal in which no selection line Ls is selected regardless of the parallel signal generated by shifting the selection start pulse signal SP. To do.
  • the shift register circuit 21 selects any one selection line among all the selection lines Ls.
  • the generation of the parallel signal for selecting Ls is synchronized with the drive shift clock Clks.
  • the shift register circuit 21 continues to output a parallel signal in which no selection line Ls is selected.
  • the shift register circuit 21 A parallel signal for selecting the selection line Ls is output.
  • the shift register circuit 21 again outputs a parallel signal in which no selection line Ls is selected.
  • the shift register circuit 21 can select the selection lines Ls row by row in the order of the row numbers in the cycle of the drive shift clock Clks, or the specific row up to the q-th row. It is also possible not to select the selection line Ls.
  • the parallel signal output control by the input of the selection mask pulse signal MP1 is realized, for example, by providing an AND circuit to which the selection mask pulse signal MP1 is input at an output stage for each bit of the shift register circuit 21. .
  • the output buffer 22 included in the selection driver 20 converts the voltage level of the parallel signal output from the shift register circuit 21 into a voltage level driven by the holding transistor T2 and the selection transistor T3.
  • the output buffer 22 is connected to the m selection lines Ls, and associates the m selection lines Ls one by one with the bit number of the parallel signal.
  • the output buffer 22 converts the voltage level of the q-th bit into a high level H in the pixel circuit PCC, and the q-th bit.
  • the voltage level of bits other than the number bit is converted to a low level L in the pixel circuit PCC.
  • the output buffer 22 sets the high level H to the selection signal Vsel of the q-th selection line Ls, and sets the low level L to the selection signal Vsel of the selection lines Ls other than the q-th row.
  • the shift register 31 included in the power supply driver 30 has a bit length of m bits from the selection start pulse signal SP that is one of the power supply control signals SCON ⁇ b> 2, similarly to the shift register circuit 21 included in the selection driver 20. A parallel signal is generated.
  • the m-bit parallel signal generated by the shift register 31 is a signal for selecting one power supply line La from the m power supply lines La in order of the row numbers one by one.
  • the shift register 31 generates a parallel signal for selecting one power supply line La according to the cycle of the shift clock.
  • the shift register 31 initializes the shift of the selection start pulse signal SP when the clear signal RST is input to the shift register 31.
  • the shift register 31 starts the selection of the power supply line La from the first row again when the selection start pulse signal SP is input again after the clear signal RST is input.
  • the shift register 31 outputs the parallel signal generated by shifting the selection start pulse signal SP only when the power supply mask pulse signal MP2 is logically at a high level. On the other hand, when the power supply mask pulse signal MP2 is logically at a low level, the shift register 31 selects all the power supply lines La regardless of the parallel signal generated by shifting the selection start pulse signal SP. Output parallel signals.
  • the shift register 31 uses a parallel signal for selecting any one power line La. The generation is synchronized with the period of the drive shift clock Clks.
  • the shift register 31 selects all the bit values in the parallel signal for the power line La. Switch to high level for.
  • the shift register 31 outputs a parallel signal for selecting all the power lines La.
  • the shift register 31 selects the power line La one row at a time in accordance with the cycle of the drive shift clock Clks, or in the cycle of the measurement shift clock Clkr, It is also possible to select the line La at a time.
  • the control of the output of the parallel signal by the input of the power supply mask pulse signal MP2 is realized, for example, by providing an AND circuit to which the power supply mask pulse signal MP2 is input in an output stage for each bit of the shift register 31. .
  • the output buffer 32 provided in the power supply driver 30 converts the voltage level of the parallel signal output from the shift register 31 into either the write level WDVSS or the light emission level ELVDD.
  • the output buffer 32 is connected to m rows of power supply lines La, and associates m rows of power supply lines La one by one with the bit number of the parallel signal.
  • the output buffer 32 converts the voltage level of the q-th bit into the write level WDVSS, and a voltage other than the q-th bit. The level is converted to the light emission level ELVDD. Then, the output buffer 32 receives the power signal Va in which the write level WDVSS is set for the q-th power line La, and the light emission level ELVDD is set for the power lines La other than the q-th line. The power supply signal Va is input.
  • a characteristic curve L1 in FIG. 8 shows the characteristic of the driving transistor T1 in the initial state, which is a state before the characteristic value changes with time.
  • a characteristic curve L2 shows the state of the driving transistor T1 in a shifted state where the characteristic value is shifted with time.
  • 8 indicates the drain-source current Ids of the drive transistor T1 when the power supply signal Va is set to the write level WDVSS.
  • the horizontal axis of FIG. 8 is a voltage corresponding to the gate-source voltage Vgs and is the difference between the gate level V0 corresponding to the write level WDVSS and the gradation value level Vdata set to the data signal Vd.
  • drain-source current Ids in the initial state is expressed by the following formula (1)
  • drain-source current Ids in the shifted state is expressed by the following formula (2).
  • Ids ⁇ (V0 ⁇ Vd ⁇ Vth 0 ) 2
  • Ids ⁇ (V0 ⁇ Vd ⁇ Vth 1 ) 2 (2)
  • the characteristic curve L2 has a shape in which the drive voltage in the characteristic curve L1 is translated by the shift amount ⁇ Vth, and before and after the shift of the threshold voltage Vth.
  • the shape of the characteristic curve L1 is substantially the same as the shape of the characteristic curve L2.
  • the fact that the shape of the characteristic curve L1 and the shape of the characteristic curve L2 are almost the same indicate that the change over time of the current amplification factor ⁇ is a threshold value, as shown in equations (1) and (2). It shows that the voltage Vth is sufficiently smaller than the change with time.
  • the shift amount ⁇ Vth which is the difference between the initial value Vth 0 and the shift value Vth 1 is added to the gradation value level Vdata, whereby the drain-source current Ids in the shift state is corrected. That is, by adding a threshold correction amount k corresponding to the shift amount ⁇ Vth to the reference gradation value Db generated from the input signal SIG described above, the threshold over time of the change in the luminance of the EL element OEL. Changes due to the shift of the value voltage Vth are corrected.
  • FIG. 9 shows the relationship between the voltage level VNs of the data line Ld in the measurement operation, that is, the voltage level based on the voltage level of the source in the driving transistor T1 and the elapsed time t.
  • the voltage level VNs of the data line Ld approaches the write level WDVSS from the measurement level VM according to the discharge in the storage capacitor Cs.
  • the voltage level VNs of the data line Ld converges to the convergence level Vs based on the threshold voltage Vth, and the drain-source current Ids hardly flows.
  • the convergence level Vs which is the voltage level of the data line Ld when the relaxation time ts has elapsed, is a voltage level reflecting the shift amount ⁇ Vth, and is a characteristic value based on the threshold voltage Vth at that time. is there.
  • the threshold voltage Vth of the drive transistor T1 is estimated as a voltage based on the difference between the convergence level Vs and the write level WDVSS.
  • the convergence level Vs held in the data line Ld is taken into the data driver 40, and a convergence voltage that is a difference between the convergence level Vs and a reference voltage level, for example, an analog reference voltage DVSS is obtained. It is converted into measurement data Dout which is a digital value. In the conversion from the convergence level Vs to the measurement data Dout, the reference voltage level is set so that the measurement data Dout increases as the threshold voltage Vth increases.
  • the data driver 40 constituting the measurement unit and the setting unit includes a shift register 41, a data register 42, a data latch circuit 43, a DAC 44, a buffer 45, a level shifter 46, and an up counter 47. ing.
  • the shift register 41, the data register 42, the data latch circuit 43, and the up-counter 47 are configured as a low withstand voltage circuit. These circuits include a logic high voltage LVDD that is logically high from the logic power supply 60, and , A logic low voltage LVSS of a logical low level is applied.
  • the DAC 44 and the buffer 45 are configured as high withstand voltage circuits, and a high level analog reference voltage DVSS and a low level analog power supply voltage VEE are applied to these circuits from the analog power supply 70.
  • Analog reference voltage DVSS is set to a voltage level substantially equal to write level WDVSS and reference level ELVSS.
  • the shift register 41 generates a parallel signal having a bit length of n bits from the data start pulse signal SP1.
  • the shift register 41 shifts the data start pulse signal SP1 bit by bit according to the cycle of the data shift clock Clkd.
  • the n-bit parallel signal generated by the shift register 41 is a signal for selecting one data line Ld from the n columns of data lines Ld one column at a time in the column number order.
  • the shift register 41 synchronizes the generation of the parallel signal for selecting the data line Ld with the cycle of the data shift clock Clkd.
  • the data shift clock Clkd is a shift clock signal that assigns the gradation value Din to all of the pixels PX for one row in a period in which one selection line Ls is selected in the write operation.
  • the period of the data shift clock Clkd is sufficiently shorter than the period of the drive shift clock Clks, and is, for example, 1 / n of the drive shift clock Clks and substantially the same as the period of the measurement shift clock Clkr.
  • the data shift clock Clkd is a clock signal that increases the count value of the up counter 47 in the measurement operation.
  • the number N of transmissions of the data shift clock Clkd in the measurement operation is the maximum count value counted by the up counter 47.
  • the count value counted by the up counter 47 is a digital value for stepping down the reference level, which is a voltage level for measuring the convergence voltage, by one stage for each count value.
  • the voltage level based on the digital value “1” is a voltage level lower than the analog reference voltage DVSS by 1 ⁇ resolution Vcnt [V]. Generated as a level.
  • the voltage level based on the digital value “4” is a voltage level lower than the analog reference voltage DVSS by 4 ⁇ resolution Vcnt [V]. Generated as a level.
  • a new reference level to be compared with the convergence level Vs is generated. The difference between the reference level and the reference voltage level is the reference voltage.
  • the reference voltage level is the same as the reference voltage level in the convergence voltage, and the reference voltage increases as the count value increases.
  • the reference voltage level is set.
  • the data register 42 includes n columns ⁇ k registers, and includes k registers for each bit of the parallel signal output from the shift register 41. For example, when the maximum gradation value in the gradation value Din is 255, the gradation value Din is an 8-bit digital value, and the data register 42 includes n columns ⁇ 8 registers. For the parallel signal output from the shift register 41, k registers are selected from the n columns ⁇ k registers in the order of the column numbers one column at a time. The data register 42 stores the gradation value Din in the selected k registers, and shifts the k registers as the storage destination one column at a time in the order of the column number according to the cycle of the data shift clock Clkd.
  • the data latch circuit 43 includes an n-column data latch 43a, an n-column AND circuit 43b, and an n-column flip-flop 43c.
  • the data latch circuit 43 includes an n-column input switch SW1, an n-column output switch SW2, an n-column measurement switch SW3, and one transfer switch SWtrs.
  • the output terminal of the up counter 47 is connected in parallel to each input terminal of the n-row input switch SW1.
  • the up counter 47 counts up in synchronization with the data shift clock Clkd in the measurement operation, and inputs the count value, which is the number N of transmissions of the data shift clock Clkd, as a digital value to each of the n columns of input switches SW1.
  • the input switch SW1 in the j-th column (1 ⁇ j ⁇ n) is connected to the input terminal of the data latch 43a in the j-th column.
  • the input switch SW1 in the p-th column (1 ⁇ p ⁇ n ⁇ 1) is driven based on the data control signal SCON3 input from the system controller 50, and the input terminal of the data latch 43a in the p-th column is connected to the data register.
  • 42 is connected to any one of the output terminal of the register in the p-th column, the output terminal of the up-counter 47, and the output terminal of the data latch 43a in the p + 1-th column.
  • the output switch SW2 in the j-th column is connected to the output terminal of the data latch 43a in the j-th column.
  • the output switch SW2 in the (p + 1) th column is driven based on the data control signal SCON3 input from the system controller 50, and the output terminal of the data latch 43a in the (p + 1) th column is connected to the input terminal of the level shifter 46 in the (p + 1) th column. Connect to one of the input terminals of the input switch SW1 in the column.
  • the output switch SW2 in the first column is driven based on a control signal from the system controller 50.
  • the output terminal of the data latch 43a in the first column is the input terminal of the level shifter 46 in the first column and the input of the transfer switch SWtrs. Connect to one of the terminals.
  • the measurement switch SW3 in the j-th column is driven based on the data control signal SCON3 input from the system controller 50, and an output terminal that is a Q terminal of the flip-flop 43c in the j-th column and a logical product circuit in the j-th column The connection and disconnection with the input terminal 43b are switched.
  • the transfer switch SWtrs is driven based on the data control signal SCON3 input from the system controller 50, and switches connection and disconnection between the output terminal of the output switch SW2 in the first column and the system controller 50.
  • the input terminal of the data latch 43a in the j-th column (1 ⁇ j ⁇ n) is connected to the register in the j-th column of the data register 42 in the write operation, light emission operation, and non-light emission operation described above.
  • the data latch 43a in the j-th column and the register in the j-th column are connected, every time the output levels of the AND circuits 43b in the n-th column all become logically high, the data in the j-th column
  • the latch 43a holds the gradation value Din stored in the register in the jth column.
  • the data latch 43a in the j-th column outputs the gradation value Din held in the data latch 43a in the j-th column to the DAC 44.
  • the n-column data latch 43a holds the gradation value Din for one row stored in the data register 42 every time the output levels of the n-column AND circuits 43b logically become high. .
  • the n-column data latches 43a output the held gradation values Din for one row to the n-column DACs 44 all at once.
  • each input terminal of the n-row data latch 43a is connected in parallel to the output terminal of the up counter 47 in the above-described measurement operation.
  • the data shift clock Clkd and the latch pulse signal LP are synchronized, and the data shift clock Clkd and the latch pulse signal LP are synchronized.
  • the j-th column data latch 43a holds the count value of the up-counter 47 each time the output level of the j-th AND circuit 43b becomes a logical high level.
  • each of the two data latches 43a holds the same count value. To do.
  • the output level of the AND circuit 43b connected to the two data latches 43a becomes logically high at different timings, each of the two data latches 43a Holds the count value.
  • the input terminal of the data latch 43a in the p-th column is connected to the output terminal of the data latch 43a in the p + 1-th column in the measurement operation described above.
  • the input terminal of the data latch 43a in the p-th column and the output terminal of the data latch 43a in the p + 1-th column are connected, every time the output level of the AND circuit 43b in the p-th column becomes logically high.
  • the data latch 43a in the p-th column holds the data held in the data latch 43a in the p + 1-th column as measurement data Dout.
  • the data latch 43a in the nth column which is the last column, is connected to the logic power supply 60, and the logic low voltage LVSS is applied to the data latch 43a in the nth column.
  • the output terminal of the data latch 43a in the first column is connected to the system controller 50 and outputs the measurement data Dout held in the data latch 43a in the first column to the system controller 50.
  • the data latches 43a in the first column are held in the data latches 43a from the second column to the nth column each time the output level of the AND circuit 43b in the first column becomes a logical high level.
  • Measurement data Dout is held from the data latch 43a in the second column in the order of the column numbers, and the held measurement data Dout is output to the system controller 50.
  • a j-th level shifter 46 that is a voltage adjusting circuit from the low withstand voltage circuit to the high withstand voltage circuit is provided.
  • the level shifter 46 in the j-th column converts the digital value that is the output value of the data latch 43a in the j-th column into the drive level of the DAC 44 in the j-th column.
  • Each of the n columns of DACs 44 is a linear voltage digital-analog conversion circuit in which an analog value output from the DAC 44 has linearity with respect to a digital value input to the DAC 44.
  • Each of the n columns of DACs 44 sets the bit length of the digital value, which is the input range at the time of voltage conversion, to 8 bits, which is equal to the bit length that is the range of the gradation value Din.
  • the jth DAC 44 When the input terminal of the jth DAC 44 and the output terminal of the jth data latch 43a are connected via the level shifter 46, the jth DAC 44 is held in the jth data latch 43a.
  • the converted digital value is converted into an analog value and input to the non-inverting input terminal of the buffer 45.
  • the data latch 43a in the j-th column holds the gradation value Din, which is an example of the drive amount.
  • the DAC 44 in the j-th column converts the gradation value Din, which is a digital value, into an analog value to generate a gradation value level Vdata based on the gradation value Din, and applies it to the non-inverting input terminal of the buffer 45. input.
  • the data latch 43a in the j-th column holds the count value of the up counter 47.
  • the DAC 44 in the j-th column converts the count value, which is a digital value, into a reference level, which is an analog value, and inputs it to the non-inverting input terminal of the buffer 45.
  • the non-inverting input terminal of the buffer 45 in the j-th column is connected to the output terminal of the DAC 44 in the j-th column.
  • the inverting input terminal of the buffer 45 in the j-th column is connected to a portion between the display switch SWd and the pixel circuit PCC in the j-th column on the data line Ld.
  • the output terminal of the buffer 45 in the j-th column is connected to the data line Ld via the display switch SWd in the j-th column.
  • the buffer 45 in the j-th column expresses an output function that suppresses the output impedance of the data driver 40 when the display switch SWd is in the on state, and converts the analog value input from the DAC 44 in the j-th column to the gradation value level. Output as Vdata.
  • the display switch SWd is in the on state, and the DAC 44 in the j-th column sets the analog value that is the converted value of the gradation value Din to j Input to the buffer 45 in the column. Then, the buffer 45 in the jth column inputs the gradation value level Vdata, which is the conversion result of the gradation value Din in the jth column, to the data line Ld in the jth column.
  • the display switch SWd is in the off state, and the buffer 45 in the j-th column outputs the result of comparison between the input level of the non-inverting input terminal and the input level of the inverting input terminal. Functions as a comparator. Then, the buffer 45 in the j-th column compares the reference level that is the output level of the DAC 44 with the convergence level Vs that is the voltage level of the data line Ld in the j-th column, that is, compares the reference voltage with the convergence voltage. Then, the result of the comparison is output.
  • the voltage level output from the buffer 45 is a high level substantially equal to the analog power supply voltage VEE.
  • the voltage level output from the buffer 45 is lower than the analog power supply voltage VEE.
  • the buffer 45 in the j-th column compares the reference level at that time with the convergence level Vs of the data line Ld, and outputs the comparison result.
  • the reference level output from the DAC 44 in the j-th column is a voltage level that drops every time the up-counter 47 counts up, while the reference level is higher than the convergence level Vs, the j-th column
  • the voltage level output from the eye buffer 45 remains high.
  • the voltage level output from the buffer 45 in the j-th column is switched from the high level to the low level.
  • the output terminal of the buffer 45 in the jth column is connected in parallel to the input terminal of the display switch SWd in the jth column and the input terminal of the level shifter 48 in the jth column.
  • the display switch SWd in the j-th column is driven based on the data control signal SCON3 input from the system controller 50, and the connection destination of the output terminal of the buffer 45 in the j-th column is connected to the j-th data line Ld. Switch to the level shifter 48 in the jth column.
  • the j-th column buffer 45 When the display switch SWd in the j-th column connects the output terminal of the buffer 45 in the j-th column and the data line Ld in the j-th column, the j-th column buffer 45 is connected in a negative feedback manner and has a gradation value level. Vdata is generated. In contrast, when the display switch SWd in the j-th column disconnects the buffer 45 and the data line Ld in the j-th column, the voltage level of the data line Ld is set to the inverting input terminal of the buffer 45.
  • An output terminal of the measurement voltage switch SWs is connected to the output side of the display switch SWd in the j-th column and between the connection destination of the inverting input terminal of the buffer 45 in the j-th column and the pixel circuit PCC. Yes.
  • the measurement voltage switch SWs is driven based on the data control signal SCON3 input from the system controller 50 to the measurement voltage switch SWs, and switches between connection and disconnection of the data line Ld and the analog power supply 70.
  • the measurement voltage switch SWs connects the data line Ld and the analog power supply 70 and the display switch SWd is in the off state, the voltage level of the data line Ld is set to the measurement level VM.
  • a level shifter 48 which is a voltage adjusting circuit from the high withstand voltage circuit to the low withstand voltage circuit is provided.
  • the level shifter 48 converts the comparison result output from the buffer 45 into the drive level of the flip-flop 43c.
  • the n-row flip-flops 43c are D-type flip-flops, and the latch pulse signal LP is input from the system controller 50 to the clock terminals of the flip-flops 43c.
  • the input terminal which is the D terminal of the n-row flip-flop 43c is connected to the output terminal of the level shifter 48, and the output terminal which is the Q terminal of the n-row flip-flop 43c is connected to the input terminal of the measurement switch SW3. Yes.
  • the flip-flops 43c in the n column hold the input level from the level shifter 48 as the output level every time the latch pulse signal LP that is a clock signal rises.
  • the AND circuit 43b in the j-th column includes a first input terminal to which the latch pulse signal LP is input and a second input terminal connected to the output terminal of the measurement switch SW3 in the j-th column.
  • the output terminal of the AND circuit 43b in the jth column is connected to the input terminal of the data latch 43a, and the output level of the AND circuit 43b in the jth column is used as a control level for causing the data latch 43a to hold data. .
  • the second input terminal in the AND circuit 43b in the j-th column is set to a high level, and the j-th column logic is input every time the latch pulse signal LP is input.
  • the product circuit 43b logically outputs a high level.
  • the j-th AND circuit 43b performs the j-th column data latch.
  • the gradation value Din is held in 43 a and the data latch 43 a in the j-th column outputs the held gradation value Din to the DAC 44.
  • the AND circuit 43b in the p-th column The data held in the latch 43a is held in the data latch 43a in the p-th column.
  • the AND circuit in the j-th column is input for each input of the latch pulse signal LP. 43b logically outputs a high level.
  • the AND circuit 43b in the j-th column receives every input of the latch pulse signal LP.
  • the count value is held in the data latch 43a.
  • the voltage level output from the DAC 44 in the j-th column drops every time the up-counter 47 counts up. Therefore, the data latch 43a is input every time the latch pulse signal LP is input until the reference level falls below the convergence level Vs. Continue to update the count value.
  • the AND circuit in the j-th column is input every time the latch pulse signal LP is input. 43b logically outputs a low level.
  • the j-th AND circuit 43b receives the latch pulse signal LP. Regardless, the count value is not held in the data latch 43a.
  • the data latch 43a keeps the count held by the data latch 43a until the reference level falls below the convergence level Vs. Continue to update the value.
  • the data latch 43a stops holding the count value for each latch pulse signal LP.
  • the count value finally held by the data latch 43a in one measurement period has a difference from the convergence level Vs in the measurement period within the resolution Vcnt, and generates a reference level exceeding the convergence level Vs. It is a value for.
  • the count value that is finally held by the data latch 43a in one measurement period corresponds to a value that generates a reference level closest to the convergence level Vs among all reference levels.
  • the data latch 43a in the j-th column holds such a count value as the convergence voltage measurement data Dout in the j-th column.
  • the gradation value Din and the count value are digital values held in the data latch 43a common to these, and are digital values having an input range equal to each other.
  • the least significant bit of the gradation value Din is the least significant bit of the count value
  • the most significant bit of the gradation value Din is the most significant bit of the count value.
  • the gradation value level Vdata when the gradation value Din is “1” and the reference level when the count value is “1” are equal to each other, and the gradation value Din is “2”.
  • the gradation value level Vdata at a certain time and the reference level when the count value is “2” are also equal to each other.
  • the system controller 50 includes an input signal processing unit 51, a timing controller 52, a correction processing unit 53, a data processing unit 54, a monitoring unit 55, and a period determination unit 56.
  • the input signal processing unit 51 generates a gradation component Dsig that is a gradation component for each pixel circuit PCC from the video signal that is the input signal SIG, and inputs the gradation component Dsig to the correction processing unit 53.
  • the input signal processing unit 51 generates a reference clock for controlling the driving timing for each pixel circuit PCC from the input signal SIG and inputs the reference clock to the timing controller 52.
  • the timing controller 52 generates a selection start pulse signal SP, a selection mask pulse signal MP1, a power supply mask pulse signal MP2, a data start pulse signal SP1, and a latch pulse signal LP based on the reference clock input from the input signal processing unit 51. .
  • the timing controller 52 inputs the selection start pulse signal SP and the selection mask pulse signal MP1 to the selection driver 20 and inputs the selection start pulse signal SP and the power supply mask pulse signal MP2 to the power supply driver 30.
  • the timing controller 52 inputs the data start pulse signal SP1 and the latch pulse signal LP to the data driver 40.
  • the timing controller 52 generates a drive shift clock Clks, a measurement shift clock Clkr, and a data shift clock Clkd.
  • the timing controller 52 inputs the drive shift clock Clks to the selection driver 20 and the power supply driver 30, inputs the measurement shift clock Clkr to the selection driver 20 and the power supply driver 30, and uses the data shift clock Clkd as the data driver. To enter.
  • the timing controller 52 outputs the data start pulse signal SP1, the data shift clock Clkd, and the latch pulse signal LP to the data driver 40 when the correction processing unit 53 outputs the gradation value Din for one row to the data driver 40. input.
  • the timing controller 52 inputs the data shift clock Clkd and the latch pulse signal LP to the data driver 40 when the data driver 40 generates the measurement data Dout.
  • the timing controller 52 inputs the latch pulse signal LP to the data driver 40 when the correction processing unit 53 inputs the measurement data Dout for one row from the data driver 40.
  • the correction processing unit 53 includes a reference gradation generation unit 53A, a correction amount addition unit 53B that is an adder, and a correction amount calculation unit 53C.
  • the reference gradation generation unit 53A includes a lookup table for performing various adjustments on the gradation component Dsig input to the correction processing unit 53, and performs gamma correction on the gradation component Dsig for each pixel PX. Various adjustments such as initial brightness adjustment and chromaticity adjustment are performed.
  • the reference gradation generation unit 53A inputs the reference gradation value Db for each pixel PX, which is the adjusted gradation, to the correction amount addition unit 53B.
  • the correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column.
  • the correction amount adding unit 53B outputs a new gradation value as a result of the addition as the gradation value Din for the pixel PX located in the i row and j column.
  • the gradation value Din is a new gradation value that takes into account the threshold voltage Vth for each pixel PX as a gradation value, and is a gradation value for each pixel PX.
  • the correction amount calculation unit 53C extracts the measurement data Dout of the pixel PX located in i rows and j columns from the measurement data Dout of the plurality of pixels PX, and the i-th row is extracted from the measurement data Dout extracted by the correction amount calculation unit 53C.
  • a threshold value correction amount k for the pixel PX located in the j column is calculated.
  • the correction amount calculating unit 53C performs the correction for the pixel PX located in the i row and j column.
  • the threshold value correction amount k is input to the correction amount adding unit 53B.
  • the correction amount calculation unit 53C Handles the measurement data Dout extracted by the correction amount calculation unit 53C as the threshold correction amount k.
  • the correction amount calculation unit 53C The measurement data Dout extracted by the correction amount calculation unit 53C is converted into a threshold correction amount k so that the two voltage levels are matched.
  • the data processing unit 54 includes a storage area of m rows ⁇ n columns, which is a storage area for each pixel PX. Each time a new measurement operation is performed in one pixel row, n columns of measurement data Dout obtained by the measurement operation are input from the data driver 40 to the data processing unit 54.
  • the data processing unit 54 stores the n columns of measurement data Dout input from the data driver 40 in a storage area in association with the pixel PX on which the current measurement operation is performed. For example, when the pixel row on which the current measurement operation is performed is the first row, the data processing unit 54 stores the measurement data Dout in each of the n columns of storage areas associated with the pixels PX in the first row.
  • the data processing unit 54 updates the measurement data Dout associated with the i-th row every time the measurement data Dout of the pixel PX located in the i-th row is input.
  • the data processing unit 54 outputs the measurement data Dout to the monitoring unit 55 for each pixel row from the storage area of m rows ⁇ n columns.
  • the monitoring unit 55 includes m storage areas that are storage areas for each pixel row.
  • the monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the i-th pixel row, and handles the measurement data Dout extracted by the monitoring unit 55 as the current maximum value data Dmax in the i-th row.
  • the monitoring unit 55 uses the measurement data Dout of the first row and the first column as one row by the current measurement.
  • the maximum eye value data Dmax is handled.
  • the monitoring unit 55 uses the measurement data Dout of the second row and the fourth column as two rows by the current measurement.
  • the maximum eye value data Dmax is handled.
  • the monitoring unit 55 compares the maximum value data Dmax of the i-th row from the current measurement with the maximum value data Dmax of the i-th row from the previous measurement. Then, when the maximum value data Dmax of the i-th row by the current measurement is equal to or less than the maximum value data Dmax of the i-th row by the previous measurement, the maximum value data Dmax of the i-th row by the previous measurement is changed to the i-th row.
  • the monitoring unit 55 stores the new maximum value data Dmax.
  • the maximum value data Dmax of the i-th row by the current measurement is larger than the maximum value data Dmax of the i-th row by the previous measurement, the maximum value data Dmax of the i-th row by the current measurement is changed to the i-th row.
  • the monitoring unit 55 stores the new maximum value data Dmax.
  • the measurement data Dout obtained from the pixel PX in the first row and the first column is up to the previous time. Is compared with the maximum value data Dmax in the first row.
  • the maximum value data Dmax on the first line obtained by the current measurement is larger than the maximum value data Dmax on the first line obtained by the previous measurement, the maximum value data Dmax on the first line obtained by the current measurement is the first line. Is stored as new maximum value data Dmax.
  • the monitoring unit 55 grasps the pixel row for which the next measurement period is set, and extracts the maximum value data Dmax associated with the pixel row from the storage area. When the next measurement period is set, the monitoring unit 55 inputs the maximum value data Dmax extracted from the storage area to the period determination unit 56.
  • the monitoring unit 55 extracts the maximum value data Dmax in the first row.
  • the monitoring unit 55 inputs the maximum value data Dmax in the first row to the period determining unit 56 which is an example of a setting unit.
  • the period determination unit 56 determines the number N of transmissions of the data shift clock Clkd based on the maximum value data Dmax input from the monitoring unit 55.
  • the number N of transmissions determined by the period determination unit 56 is a value having linearity with respect to the maximum value data Dmax, and increases as the maximum value data Dmax input from the monitoring unit 55 increases.
  • the number N of transmissions determined by the period determination unit 56 is a value that determines the maximum value of the count value in the up-counter 47 for each measurement period, and is a parameter that determines the voltage level that is the lowest among the reference levels described above. is there.
  • the maximum value data Dmax input from the monitoring unit 55 is a count for generating a reference level whose difference from the convergence level Vs by the previous measurement is within the resolution Vcnt and exceeding the convergence level Vs. Value. Further, the maximum value data Dmax input from the monitoring unit 55 is a count value for generating a reference level closest to the minimum value of the convergence level Vs obtained by the previous measurement among all reference levels.
  • the number N of transmissions determined by the period determination unit 56 is a digital value for changing the reference level every time the data shift clock Clkd is transmitted.
  • the period determination unit 56 determines the number N of transmissions this time. Further, it is estimated that the threshold voltage Vth changes by an estimated value between the previous measurement period and the current measurement period, and the period is determined so that the current count value is higher than the previous value by the estimated value. The unit 56 determines the number N of transmissions this time.
  • the period determining unit 56 presets an estimated value of the shift amount ⁇ Vth between the previous measurement period and the current measurement period.
  • the estimated value of the shift amount ⁇ Vth may be a constant value based on, for example, a cumulative driving amount in the driving transistor T1 until the current measurement period, or may be a fluctuation value.
  • the period determination unit 56 presets the association between the maximum value data Dmax and the number of transmissions N. At this time, the period determination unit 56 sets the association between the maximum value data Dmax and the number N of transmissions so that the reference level based on the current number N of transmissions passes the convergence level Vs up to the previous time.
  • the period determining unit 56 adds the estimated value of the shift amount ⁇ Vth to the maximum value data Dmax input from the monitoring unit 55, and uses the result of the addition as the estimated value of the current maximum value data Dmax.
  • the period determination unit 56 applies the estimated value of the current maximum value data Dmax to the relationship between the maximum value data Dmax and the number of transmissions N, and transmits the number of transmissions N corresponding to the estimated value of the current maximum value data Dmax. To decide. As a result, the period determining unit 56 determines the number N of transmissions so that the step-by-step reference level passes through the previous convergence level Vs.
  • the reference level in the current measurement period is stepped down to a range in which the minimum value of the convergence level Vs from the previous measurement can be measured, and the convergence level Vs. It is difficult to step down to a voltage level that is not necessary for the measurement.
  • the period determination unit 56 inputs the current number of transmissions N thus determined to the timing controller 52.
  • the above-described reference level decreases stepwise, and the above-described reference level is maintained until the number of times the data shift clock Clkd is transmitted reaches the number N of transmissions. It keeps falling.
  • the period determination unit 56 further determines the extension period te of this time from the number N of transmissions determined this time.
  • the extension period te determined by the period determination unit 56 is a shorter period as the number of transmissions N is larger, and is a value having linearity with respect to the number of transmissions N.
  • the extension period te determined by the period determination unit 56 is a period for extending the setting of the light emission period, and the closer the convergence voltage in the measurement period is to the analog reference voltage DVSS, that is, the threshold voltage Vth is smaller. In addition, the shorter the period required for measuring the convergence voltage, the longer.
  • the timing controller 52 generates the selection start pulse signal SP when setting the light emission period based on the reference clock input from the input signal processing unit 51.
  • the timing controller 52 inputs the selection start pulse signal SP generated by the timing controller 52 to the selection driver 20 and the power supply driver 30 as the light emission period start signal SPa, and emits light to the selection driver 20 and the power supply driver 30. Start the period.
  • the timing controller 52 counts the time that has elapsed since the input of the selection start pulse signal SP generated at the start of the light emission period.
  • the timing controller 52 generates a selection start pulse signal SP when setting a non-light emission period following the light emission period, and uses the generated selection start pulse signal SP as a non-light emission period start signal SPb. Input to the driver 30. At this time, the timing controller 52 delays the output of the selection start pulse signal SP by the extension period te after the elapse of the reference period tb, which is the reference time during which the light emission period and the non-light emission period are performed. That is, the timing controller 52 sets the period during which the light emission period is performed as the corrected light emission period tp that is longer than the reference period tb by the extension period te.
  • the reference period tb in the timing controller 52 is set so that, for example, the number of drive shift clocks Clks sent in the reference period tb is equal to the number of selection lines Ls. Further, when the light emission period and the non-light emission period are set, the timing controller 52 inputs the drive shift clock Clks to the selection driver 20 and the power supply driver 30.
  • the timing controller 52 generates a selection start pulse signal SP when setting a measurement period subsequent to the non-light emission period, and uses the selection start pulse signal SP generated by the timing controller 52 as the measurement period start signal SPc. , Input to the power supply driver 30. At this time, the timing controller 52 inputs the measurement period start signal SPc and the measurement shift clock Clkr when the reference period tb has elapsed from the non-light emission period start signal SPb.
  • the timing controller 52 changes the period in which the voltage level of the selection mask pulse signal MP1 is logically low for each row number in which the measurement period is set. That is, the timing controller 52 sets the voltage level of the selection mask pulse signal MP1 to the low level for the first non-selection period tma, and then sets the voltage level of the selection mask pulse signal MP1 to the high level for the measurement selection period tmb. Then, the low level is set again for the second non-selection period tmc to the voltage level of the selection mask pulse signal MP1.
  • the period required to send the measurement shift clock Clkr q times is the first non-selection period tma, and the measurement shift clock Clkr is sent mq times.
  • the period required for is the second non-selection period tmc.
  • the period required for setting the measurement level VM to the voltage level of the data line Ld and converging the voltage level of the data line Ld by the relaxation time ts is the measurement selection period tmb, which is set in advance. It is a period of a certain length.
  • the selection mask pulse signal MP1 is input to the selection driver 20 and the power supply driver 30 together with the measurement shift clock Clkr, the selection of the selection line Ls is skipped from the first line to the qth line, and the selection of the power supply line La is selected. Is also skipped from line 1 to line q.
  • the timing controller 52 changes the pixel row to be set for the measurement period one row at a time in the row number order along the column direction at every opportunity for setting the measurement period.
  • the timing controller 52 sets a period during which the voltage level of the power supply mask pulse signal MP2 is logically low. At this time, the timing controller 52 continues to set the voltage level of the power supply mask pulse signal MP2 to a logical low level throughout the first non-selection period tma, the measurement selection period tmb, and the measurement selection period tmb.
  • the timing controller 52 generates a data shift clock Clkd for generating a reference level and a latch pulse signal LP, and inputs them according to the number N of transmissions input from the period determining unit 56. Then, the timing controller 52 sends out the data shift clock Clkd and the latch pulse signal LP as many times as N.
  • the timing controller 52 outputs the light emission period start signal SPa, the non-light emission period start signal SPb, and the measurement period start signal SPc in this order, and every time the selection start pulse signal SP is generated three times, the cycle of the shift clock signal is changed.
  • the drive shift clock cycle is changed to the measurement shift clock cycle.
  • the measurement switch SW3, the measurement voltage switch SWs, and the transfer switch SWtrs are continuously set to the off state. Further, the output switch SW2 continues to be set to a DAC connection state for connecting the j-th column data latch 43a and the j-th column DAC 44, and the input switch SW1 is connected to the j-th column data latch 43a and the j-th column.
  • the data register connection state for connecting the second data register 42 continues to be set.
  • the display switch SWd is turned on, and the buffer 45 starts to function as an amplifier connected with negative feedback.
  • the shift register 41, the data register 42, the data latch 43a, the level shifter 46, the DAC 44, the buffer 45, and the data line Ld are connected in series.
  • the data start pulse signal SP 1 is input to the data driver 40, and the shift signal is input from the shift register 41 to the data register 42.
  • the gradation value Din in the first row is taken into the data register 42 from the system controller 50.
  • the voltage level of the selection line Ls in the first row is set to the high level H, and the write level WDVSS is set as the power supply signal Va of the power supply line La in the first row.
  • the selection transistor T3 in the first row and the holding transistor T2 in the first row shift from the off state to the on state, and the driving transistor T1 in the first row can be driven in the saturation region.
  • the latch pulse signal LP is input to the data driver 40, and the gradation value Din of the first row is held in the n-column data latch 43a all at once.
  • the gradation value Din of the first row held in the n-column data latch 43a is converted into an analog value through the n-column level shifter 46 and the n-column DAC 44, and the converted analog value is converted into the gradation value level Vdata.
  • the gate-source voltage Vgs of the driving transistor T1 in the first row is held in the holding capacitor Cs as a voltage corresponding to the difference between the write level WDVSS and the gradation value level Vdata.
  • the gradation value level Vdata set for the data line Ld in the first row and j column is obtained from the pixel PX in the first row and j column with respect to the reference gradation value Db in the first row and j column.
  • the correction by the threshold value correction amount k is added.
  • the data start pulse signal SP1 is output to the data driver 40 again, and the shift signal is input from the shift register 41 to the data register 42.
  • the gradation value Din in the second row is taken from the system controller 50 into the data register 42.
  • the voltage level of the selection line Ls in the first row is set to the low level L, and the voltage level of the power supply line La in the first row is set to the light emission level ELVDD.
  • the selection transistor T3 in the first row and the holding transistor T2 in the first row transition from the on state to the off state.
  • the driving transistor T1 in the first row generates the drain-source current Ids corresponding to the difference between the voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth of the driving transistor T1 in the EL element OEL. Shed.
  • the gradation value level Vdata set as the data signal Vd of the data line Ld is a voltage level in which the variation of the threshold voltage Vth in the drive transistor T1 is corrected. Therefore, the drain-source current Ids flowing through the EL element OEL is also corrected for the variation of the threshold voltage Vth. As a result, the pixels PX in the first row perform a light emission operation.
  • the voltage level of the selection line Ls in the second row is set to the high level H, and the voltage level of the power supply line La in the second row is set to the write level WDVSS.
  • the selection transistor T3 and the holding transistor T2 in the second row are turned on.
  • the latch pulse signal LP is output again to the data driver 40, whereby the gradation value Din of the second row is held in the n-th column data latch 43a.
  • the gradation value Din of the second row held in the n-column data latch 43a is converted into an analog signal voltage through the level shifter 46 and the DAC 44, and is set as the gradation value level Vdata of the n-column to the data line Ld. .
  • the gate-source voltage Vgs of the driving transistor T1 in the second row is held in the holding capacitor Cs as a voltage corresponding to the difference between the write level WDVSS and the gradation value level Vdata.
  • the driving transistors T1 in the second row can be driven in the saturation region, and the writing operation in the light emission period in the pixels PX in the second row is completed.
  • the gradation value level Vdata set for the data line Ld in the second row and j column is a threshold value correction obtained from the pixel PX in the second row and j column with respect to the reference gradation value Db in the second row and j column. The correction by the amount k is taken into account.
  • Such a writing operation and a light emitting operation are performed in the order of row numbers one row at a time, and these operations are performed from the first row to the nth row by a drive shift clock cycle. As a result, an image is displayed as one frame.
  • the gradation value level Vdata in the writing operation and the light emission operation is changed to a voltage level corresponding to the lowest gradation value.
  • the voltage level of the power line La in the q-th row is set to the write level WDVSS during the writing operation and the measurement operation in the q-th pixel PX. to continue.
  • the display switch SWd continues to be set in the OFF state, and the data line Ld continues to be disconnected from the shift register 41 and the data register 42 in the data driver 40.
  • the non-inverting input terminal of the buffer 45 continues to be set to the output level of the DAC 44, and the inverting input terminal of the buffer 45 continues to be set to the voltage level of the data line Ld. It continues to function as a comparator that compares the voltage level of the data line Ld, that is, compares the reference voltage and the convergence voltage.
  • the transfer switch SWtrs is set to an off state. From this state, the voltage level of the selection line Ls in the q-th row is set to the high level H, and the holding transistor T2 in the q-th row and the selection transistor T3 in the q-th row are turned on. Then, the measurement voltage switch SWs is turned on, and the data signal Vd of each of the n columns of data lines Ld is set to the measurement level VM.
  • the input terminal of the input switch SW1 is a counter connection connected to the output terminal of the up counter 47.
  • the output switch SW2 connects the data latch 43a and the level shifter 46.
  • the measurement level VM is set so that the gate-source voltage Vgs of the drive transistor T1 is larger than the threshold voltage Vth.
  • the drain-source current Ids based on the difference between the measurement level VM and the write level WDVSS becomes the q-th drive transistor T1.
  • the q-th row selection transistor T3 Accordingly, the holding capacitor Cs in the q-th row holds a voltage exceeding the threshold voltage Vth as the gate-source voltage Vgs of the driving transistor T1. Thereby, the pixel PX in the q-th row finishes the writing operation in the measurement period.
  • the voltage level of the selection line Ls in the q-th row continues to be set to the high level H, while the measurement voltage switch SWs is switched to the off state.
  • each of the n columns of data lines Ld is set to a high impedance state.
  • the source level in the driving transistor T1 in the q-th row is the drain level of the driving transistor T1 in the i-th row. So that the drain-source current Ids flows in the driving transistor T1 in the q-th row.
  • the charge accumulated in the storage capacitor Cs in the q-th row is discharged, and the gate-source voltage Vgs in the driving transistor T1 in the q-th row is the drain-source current. It decreases until Ids almost stops flowing.
  • the relaxation time ts has elapsed from the timing t2
  • the voltage level of the data line Ld converges to the convergence level Vs, and the convergence level Vs is taken into the inverting input terminal of the buffer 45.
  • the period determining unit 56 refers to the maximum value data Dmax of the pixel row in which the current measurement period is set, from the maximum value data Dmax stored in the monitoring unit 55, and the data shift clock Clkd, And the number N of times of sending the latch pulse signal LP is determined.
  • the reference level in the current measurement period is stepped down to a range in which the convergence level Vs in the previous measurement period can be measured, and It is difficult to step down to a voltage level that is unnecessary for the measurement of the convergence level Vs.
  • the reference maximum value in the current measurement period increases to a level at which the convergence voltage can be measured in the previous measurement period, but it is difficult to increase the reference maximum value in a size unnecessary for the measurement of the convergence voltage.
  • the period determining unit 56 determines the extension period te of this time from the determined number N of transmissions.
  • the extension period te determined by the period determination unit 56 is a period for extending the setting of the light emission period, and has a small threshold voltage Vth and a period required for measuring the convergence level Vs. The shorter, the longer.
  • the voltage level of the selection line Ls in the q-th row is set to the low level L, and the holding transistor T2 in the q-th row and the selection transistor T3 in the q-th row are switched to the off state. Further, the measurement switch SW3 is turned on.
  • the data shift clock Clkd is input to the up counter 47, and the latch pulse signal LP is input to the data latch 43a and the AND circuit 43b.
  • the count value which is the output value of the up counter 47, is input to the level shifter 46 through the input switch SW1 and the data latch 43a.
  • the level shifter 46 amplifies the voltage level of the count value in the same manner as the amplification with respect to the gradation value Din.
  • the DAC 44 converts the digital value amplified by the level shifter 46 into an analog value, and inputs the reference level as a conversion result to the non-inverting input terminal of the buffer 45.
  • the voltage level output from the buffer 45 when the reference level output from the DAC 44 is higher than the convergence level Vs, the voltage level output from the buffer 45 is high. On the other hand, when the reference level output from the DAC 44 is lower than the convergence level Vs, the voltage level output from the buffer 45 is low. As a result, when the reference level output by the DAC 44 is between the write level WDVSS and the convergence level Vs, the output level of the buffer 45 is high. On the other hand, when the reference level output from the DAC 44 is lower than the convergence level Vs, the output level of the buffer 45 is low.
  • the result of the comparison between the reference level and the convergence level Vs is held in the flip-flop 43c for each input of the latch pulse signal LP and input to the AND circuit 43b.
  • the output level of the AND circuit 43b in the j-th column is logically high, that is, the reference level output from the DAC 44 in the j-th column is between the write level WDVSS and the convergence level Vs.
  • the data latch 43a in the j-th column updates the count value of the up counter 47.
  • the reference level output from the DAC 44 in the j-th column is lower than the convergence level Vs, the data latch 43a in the j-th column does not update the count value of the up counter 47.
  • the data latch 43a in the j-th column finally holds the count value for generating such a reference level.
  • the count value finally held by the data latch 43a in the j-th column is handled as the measurement data Dout in the j-th column during this measurement period.
  • the reference level when the count value is “3” is higher than the convergence level Vs of the first column and closest to the convergence level Vs of the first column, this reference level is generated.
  • the data latch 43a in the first column finally holds “3” that is the count value to be stored.
  • the reference level when the count value is “5” is higher than the convergence level Vs of the second column and is closest to the convergence level Vs of the second column, this reference.
  • the data latch 43a in the second column finally holds “5” which is a count value for generating the level.
  • the data latch 43a in the first column stores “3” as the measurement data Dout in the first column in this measurement period
  • the data latch 43a in the second column stores the measurement data Dout in the second column in this measurement period. Is stored as “5”.
  • the count value for setting such a reference level is the number of times that it is sufficient if the reference level that falls stepwise falls below each of the n columns of convergence levels Vs.
  • the number N of times of transmission is the number of times that the reference level that falls stepwise does not need to be significantly lower than the convergence level Vs of the n columns.
  • the period determination unit 56 described above refers to the maximum value data Dmax of the pixel row in which the current measurement period is set and the estimated value of the shift amount ⁇ Vth, and the data shift clock Clkd and the latch pulse The number N of transmissions of the signal LP is determined.
  • the reference level in the current measurement period is stepped down to a range where the convergence level Vs in the previous measurement period can be measured and converged. It becomes difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
  • the input switch SW1 in the p-th column and the output terminal of the output switch SW2 in the (p + 1) -th column are switched to a data latch series connection.
  • the measurement switch SW3 is switched to an OFF state, and each of the n-column AND circuits 43b is switched to a state in which a logical high level is output for each input of the latch pulse signal LP.
  • the transfer switch SWtrs is turned on.
  • the latch pulse signal LP is input from the timing controller 52 to the data driver 40, and the measurement data Dout for each column held in each of the n column data latches 43a is synchronized with the input of the latch pulse signal LP.
  • the data is transferred to the system controller 50 in the order of the column numbers. In FIG. 14, the number of times the latch pulse signal LP is repeated is omitted for convenience of explanation.
  • the transfer switch SWtrs is switched to the off state.
  • the input switch SW1 connects the input terminal of the data latch 43a to the register in the data register 42, thereby ending the measurement period.
  • FIG. 15 shows the timing of the measurement period in the black display operation executed in the first frame
  • FIG. 16 shows the timing of the measurement period in the black display operation executed in the second frame
  • Reference numeral 17 denotes the timing of the measurement period in the black display operation executed in the 540th frame.
  • a writing operation in which a light emission period is set in each pixel PX in the first row and the gradation value level Vdata is set in the data line Ld is performed in each pixel in the first row.
  • start at PX When the writing operation is finished in each pixel PX in the first row, a display operation based on the gradation value level Vdata is started in each pixel PX in the first row, and the light emission period is set in each pixel PX in the second row.
  • the writing operation for setting the gradation value level Vdata is started in each pixel PX in the second row.
  • the writing operation based on the gradation value Din is started in the order of row numbers from the first row to the 540th row in the selected shift clock cycle, and the display operation is started in order from the row where the writing operation is completed.
  • the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the length of the light emission period in the pixel PX on the first row is the reference level. Reaches the reference period tb. Then, the length of the period elapsed from the reference period tb is counted in order of the row numbers from the pixel PX in the first row, and the length of the period elapsed from the reference period tb reaches the extension period te. The display extension operation to extend the setting is continued.
  • the target row in which the subsequent measurement period is set is the first pixel row
  • the current extended period te common to all the pixel rows is the first pixel row in the current measurement. It is determined from the number of transmissions N set in.
  • the extension period te common to all the pixel rows is a shorter period as the number N of transmissions for the first pixel row is larger.
  • the writing operation for displaying black is started in each pixel PX in the first row.
  • a non-light emission operation is started in each pixel PX in the first row as a display operation for displaying black.
  • a non-emission period is set for each pixel PX, and a writing operation for displaying black is started at each pixel PX in the second row.
  • the writing operation for displaying black is completed up to the 540th line which is the last line, and the selection line Ls set to the high level H is lined up from the first line to the 540th line. Shifted by the measurement shift clock period in numerical order.
  • the first line is set as a candidate for the selection line Ls for which the high level H is set, that is, the target line for measuring the convergence voltage, which is a characteristic value, and is set in each pixel PX in the first line.
  • a measurement period is set.
  • the transmission count N for the first pixel row is a value obtained from the maximum value data Dmax corresponding to the first pixel row for which the current measurement period is set.
  • the reference level set this time for the first pixel row is a range in which the convergence level Vs obtained for the first pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
  • the measurement data Dout relating to each drive transistor T1 in the first row is taken into the data processing unit 54 of the system controller 50 in the order of the column numbers.
  • the selection line Ls candidates for which the high level H is set are shifted from the second row to the 540th row by the measurement shift clock cycle in the row number order.
  • the low level L is continuously set to all the selection lines Ls, and all the pixels PX continue to display black.
  • the candidate shift based on the measurement shift clock cycle proceeds to the 540th row, which is the final row, and the writing operation for setting the gradation value level Vdata is started again for each pixel PX in the first row.
  • the writing operation for setting the gradation value level Vdata is started again in the order of the row numbers from the first row to the 540th row, and the gradation value level Vdata is set to the data line Ld.
  • the light emission period is set in order from the row where the writing operation is completed.
  • the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the display extending operation for extending the setting of the light emission period is started.
  • the target row in which the subsequent measurement period is set is the second pixel row
  • the current extended period te common to all the pixel rows is the second pixel row in the current measurement. It is determined from the number of transmissions N set in.
  • the current extended period te common to all the pixel rows is a shorter period as the number N of times of transmission for the second pixel row is larger.
  • the display extension operation for extending the setting of the light emission period is completed, and then the setting of the non-light emission period for displaying black is advanced from the first line to the 540th line in order of the line number, and black is displayed.
  • the black display operation is started in order from the row in which the writing operation for completing is completed.
  • the writing operation for displaying black is finished up to the 540th line, which is the last line, and the selection line Ls for which the high level H is set is changed from the first line to the 540th line number. It is shifted in turn by the measurement shift clock period.
  • the second row is set as the target row for which the convergence voltage is measured, and the candidate shift based on the measurement shift clock cycle is advanced to the second row.
  • the selection line Ls candidate for which the high level H is set is in the first row
  • the selection line Ls in the first row is set to the low level L by the output of the selection mask pulse signal MP1 and the power supply mask pulse signal MP2. Is applied.
  • the selection line Ls candidate for which the high level H is set is in the second row, a measurement period is set for each pixel PX in the second row.
  • the transmission number N for the second pixel row is a value obtained from the maximum value data Dmax corresponding to the second pixel row for which the current measurement period is set.
  • the reference level set this time for the second pixel row is a range in which the convergence level Vs obtained last time for the second pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
  • the measurement data Dout regarding each driving transistor T1 in the second row is taken into the data processing unit 54 of the system controller 50 in the order of the column numbers.
  • the selection line Ls candidates for which the high level H is set are shifted in order of the row numbers from the third row to the 540th row.
  • the low level L is continuously set to all the selection lines Ls by the output of the selection mask pulse signal MP1 and the power supply mask pulse signal MP2, and all the pixels PX continue to display black.
  • the candidate shift based on the measurement shift clock cycle proceeds to the 540th row, which is the final row, and the writing operation for setting the gradation value level Vdata is started again for each pixel PX in the first row.
  • the writing operation for setting the gradation value level Vdata to the data line Ld is started again in the order of the row numbers from the first row to the 540th row, and the gradation value level Vdata is set to the data line.
  • the light emission period is set in order from the row where the writing operation set to Ld is completed.
  • the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the display extending operation for extending the setting of the light emission period is started.
  • the target row in which the subsequent measurement period is set is the 540th pixel row
  • the current extended period te common to all the pixel rows is the 540th pixel row in the current measurement. It is determined from the number of transmissions N set in.
  • the current extended period te common to all the pixel rows is a shorter period as the number N of times of transmission for the second pixel row is larger.
  • the display extension operation for extending the setting of the light emission period is completed, and then the setting of the non-light emission period for displaying black is advanced from the first line to the 540th line in order of line numbers, and black is displayed.
  • the black display operation is started in order from the row in which the writing operation for completing is completed.
  • the writing operation for displaying black is finished up to the 540th line, which is the last line, and the selection lines Ls set to the high level H are line numbers from the 1st line to the 540th line. It is shifted in turn by the measurement shift clock period.
  • the selection mask pulse signal MP1 when the 540th row is set as the target row for which the convergence voltage is measured, and the selection line Ls candidates for which the high level H is set are from the first row to the 539th row, the selection mask pulse signal MP1, Further, the low level L is set to all the selection lines Ls by the output of the power supply mask pulse signal MP2.
  • the selection line Ls candidate for which the high level H is set is the 540th row
  • the measurement period is set for each pixel PX on the 540th row.
  • the measurement data Dout regarding each drive transistor T1 in the 540th row is taken into the data processing unit 54 of the system controller 50 in the order of the row numbers.
  • the number of transmissions N for the 540th pixel row is also a value obtained from the maximum value data Dmax corresponding to the 540th pixel row for which the current measurement period is set.
  • the reference level set this time for the 540th pixel row is a range in which the convergence level Vs obtained previously for the 540th pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
  • a measurement period is set for a specific pixel line.
  • the pixel rows to be measured are shifted by one row from the first pixel row in the order of row numbers for each frame. That is, when the pixel row in the q-th row (1 ⁇ q ⁇ 539) performs the measurement operation in the k-th frame (k is an integer of 1 or more), the pixel row in the q + 1-th row performs the measurement operation in the k + 1-th frame.
  • the target row for which the measurement period is set reaches the last row, the target row for which the measurement period is set returns to the first pixel row.
  • the data processing unit 54 of the system controller 50 uses the measurement data Dout obtained from each column of the q-th row for each q-th row.
  • the data is stored in the storage area corresponding to the pixel PX. Therefore, the correction processing unit 53 of the system controller 50 calculates the latest measurement data Dout as the measurement data Dout of each pixel PX in the q-th row when calculating the threshold correction amount k in the k + 1 frame, which is the next frame. Can be used.
  • the monitoring unit 55 of the system controller 50 extracts the maximum value data Dmax from the latest measurement data Dout in each pixel PX in the q row, and updates the maximum value data Dmax in the q row.
  • the period determination unit 56 of the system controller 50 determines the number N of transmissions based on the maximum value data Dmax in the q-th row input from the monitoring unit 55 prior to the next measurement for the q-th pixel row. . Each time such a measurement period is repeated 540 times, the system controller 50 updates the measurement data Dout, the maximum value data Dmax, and the number N of transmissions of all the pixel rows.
  • the selection driver 20 generates a shift signal in accordance with the selection shift clock cycle in response to the input of the selection start pulse signal SP, and sets the high level H to each selection line Ls in synchronization with the shift signal.
  • the selection driver 20 sets the low level L to the selection line Ls in order from the row where the high level H is set.
  • the power supply driver 30 generates a shift signal in accordance with the selected shift clock cycle in response to the input of the selection start pulse signal SP, and sets the write level WDVSS to each power supply line La in synchronization with the shift signal. Further, the power supply driver 30 sets the light emission level ELVDD to the power supply line La in order from the row in which the write level WDVSS is set.
  • each pixel circuit PCC in the q-th row When the high level H is set to the q-th selection line Ls and the write level WDVSS is set to the q-th power line La, the data line Ld in each pixel circuit PCC in the q-th row is set. Is set to a gradation value level Vdata based on the gradation value Din. Further, when the low level L is set to the selection line Ls of the qth row and the light emission level ELVDD is set to the power supply line La of the qth row, each pixel circuit PCC of the qth row has a gradation value. A drain-source current Ids based on Din is passed through the EL element OEL.
  • the selection driver 20 sets the low level L to all the selection lines Ls only for the current extension period te determined from the number N of transmissions in the current measurement.
  • the power supply driver 30 continues to set the light emission level ELVDD for all the power supply lines La. By continuing such setting, the drain-source current Ids further flows to the EL element OEL only for the extended period te.
  • the selection driver 20 When the extension period te elapses from the end of the write operation on the 540th row, the selection driver 20 generates a shift signal again in accordance with the selected shift clock period in response to the input of the selection start pulse signal SP, and synchronizes with the shift signal.
  • the high level H is set to the selection line Ls.
  • the selection driver 20 sets the low level L to the selection line Ls in order from the row where the high level H is set.
  • the power supply driver 30 again generates a shift signal in accordance with the selected shift clock cycle in response to the input of the selection start pulse signal SP, and sets the write level WDVSS to the power supply line La in synchronization with the shift signal. Further, the power supply driver 30 sets the light emission level ELVDD to the power supply line La in order from the row in which the write level WDVSS is set.
  • the data line Ld in each pixel circuit PCC in the q-th row is set. Is set to a gradation value level Vdata based on the lowest gradation value.
  • each pixel circuit PCC in the q-th row has the lowest gradation. The supply of the drain-source current Ids is suppressed based on the value.
  • each of the selection driver 20 and the power supply driver 30 starts shifting according to the measurement shift clock cycle according to the input of the measurement shift clock Clkr.
  • the selection driver 20 sets the high level H to the selection line Ls of the q-th row in accordance with the input of the selection mask pulse signal MP1.
  • the power supply driver 30 sets the write level WDVSS for all the power supply lines La in response to the input of the power supply mask pulse signal MP2. Then, the measurement of the convergence voltage is started for each pixel PX in the q-th row.
  • the system controller 50 sends the data shift clock Clkd and the latch pulse signal LP by the number N of times of transmission in the q row according to the number of times N of transmission of the q row based on the previous measurements.
  • the reference level in the current measurement period is stepped down to a range in which the convergence level Vs in the measurement period in the q row up to the previous measurement can be measured by sending pulses in accordance with the number N of transmissions in the q row. And it becomes difficult to step down to a voltage level unnecessary for the measurement of the current convergence level Vs.
  • each of the selection driver 20 and the power supply driver 30 shifts the measurement shift clock cycle from the timing th to the 540th row. Proceed.
  • each of the selection driver 20 and the power supply driver 30 starts from the selection line Ls on the first row in accordance with the input of the selection start pulse signal SP.
  • the writing operation for setting the gradation value level Vdata to the data line Ld is started in the order of the row numbers up to the eye selection line Ls.
  • the maximum value for each pixel row in the measurement data Dout in each pixel row is stored as maximum value data Dmax for each pixel row.
  • the reference maximum value which is the maximum value of the reference voltage in the current measurement, is the maximum value data Dmax associated with the pixel row to be measured this time, that is, in the measurement before the current measurement. It is set based on the maximum value in the convergence voltage. Therefore, the time required for the successive comparison in the current measurement period is shorter as the maximum value data Dmax is smaller.
  • the characteristic value of the drive transistor T1 is compared with the configuration in which the maximum value in the reference voltage is a constant value. It is possible to shorten the time required for obtaining the.
  • the maximum value data Dmax associated with the pixel row to be measured this time is updated every time a measurement period is set for the pixel row to be measured this time.
  • the maximum value of the convergence voltage in the previous measurement is the maximum value of the convergence voltage in the previous measurement. Sometimes it decreases slightly.
  • the maximum value among the reference voltages in this measurement is set. Therefore, it is possible to prevent the convergence level Vs from being accurately measured when the maximum value of the reference voltage in the current measurement falls below the convergence voltage.
  • the data driver 40 increases the reference voltage from the minimum value by a certain value. Therefore, the time required for the successive comparison in the current measurement is surely shortened by the smaller maximum value of the reference voltage in the current measurement.
  • the period determination unit 56 predicts that the threshold voltage Vth changes by the estimated value between the previous measurement period and the current measurement period, and the current count value increases by the estimated value.
  • the number of transmissions N is determined. That is, the period determination unit 56 sets a value obtained by adding a constant value to the maximum value of the convergence voltage in the measurement before the current measurement as the maximum value in the reference voltage in the current measurement. Therefore, even if the convergence voltage increases from the measurement before the current measurement, the maximum value of the reference voltage in the current measurement is less than the convergence voltage if the range in which the convergence voltage increases is within a certain value. Therefore, it is possible to prevent the convergence level Vs from being accurately measured.
  • the correction processing unit 53 extracts the measurement data Dout of the pixel PX located in the i row and j column, and the threshold correction amount k for the pixel PX located in the i row and j column from the extracted measurement data Dout. Is calculated. Then, the correction processing unit 53 adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column. Therefore, even if the threshold voltage Vth of the driving transistor T1 varies, the gradation value Din is corrected according to the threshold voltage Vth after the variation, so that it is possible to suppress degradation of the displayed image quality. It becomes.
  • the black display operation is an operation that is inserted in order to make the display of the moving image clear, and the successive comparison based on the number N of transmissions described above is performed during the period during which the black display operation is performed. Is done. Therefore, the period during which the black display operation is performed is suppressed from being unnecessarily long, and the period during which the black display operation is performed is a period specialized for clearing the video display. It becomes easy to be close to the length.
  • the above embodiment can be implemented with the following modifications.
  • the row number of the pixel row for which the measurement period is set may be the same for each frame, or may be random for each frame. Further, two or more row numbers of pixel rows for which a measurement period is set may be set for each frame.
  • the pixel row in which the measurement period is set includes all the pixels other than the period in which one frame is displayed, such as when the EL display device is activated or when the EL display device suspends display and then returns. It may be a row or a part of pixel rows.
  • the row numbers of the pixel rows for which the measurement period is set may be spaced by a fixed value for each frame.
  • the m selection lines Ls are divided into a plurality of selection line groups including ten selection lines Ls adjacent to each other. Then, one selection line group may be set for each frame in the pixel row in which the measurement period is set.
  • the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row.
  • a measurement period is set in the first pixel row.
  • the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row.
  • a measurement period is set in the eleventh pixel row. In this way, every time one frame is displayed, the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the first pixel row to the 531st pixel row. Set with a gap.
  • the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row.
  • the measurement period is set from the first selection line group to the second pixel row.
  • the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row.
  • the measurement period is set from the second selection line group to the twelfth pixel row. In this way, every time one frame is displayed, the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the second pixel row to the 532th pixel row. Set with a gap.
  • the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row.
  • the measurement period is set from the first selection line group to the tenth pixel row.
  • a writing operation, a display operation, and a display extending operation are performed in the order of the row numbers from the first row.
  • the measurement period is set from the second selection line group to the 20th pixel row.
  • the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the 10th pixel row to the 540th pixel row. Set with a gap.
  • the measurement data Dout for each pixel row is updated once every m frames are displayed.
  • the range of the pixels PX to which the convergence level Vs is measured is 540 pixel rows. It is biased from the 1st line to the 10th line.
  • the range of the pixel PX for which the convergence level Vs is measured is displayed while 10 frames are displayed.
  • the pixel lines from the first line to the 100th line are distributed at equal intervals. Therefore, since the range of the pixels PX whose convergence level Vs is measured is dispersed over a wide range, when the threshold voltage Vth varies over a wide range, degradation of displayed image quality can be effectively suppressed.
  • the m selection lines Ls are partitioned into a plurality of selection line groups each consisting of s selection lines Ls adjacent to each other, and one pixel line for which a measurement period is set is one selection line for each frame. Each group may be set.
  • the system controller 50 may handle the measurement data Dout for each pixel PX for each pixel group as a representative value for each column to which the pixel PX to be measured belongs.
  • the m selection lines Ls are divided into a plurality of selection line groups including ten selection lines Ls adjacent to each other.
  • the data processing unit 54 in the system controller 50 includes a storage area of m / 10 rows ⁇ n columns, and associates each of the ten pixels PX arranged in the column direction with one storage area. . That is, in each of the m / 10 selection line groups, the data processing unit 54 associates each of the ten pixels PX arranged in the column direction with one storage area.
  • the data processing unit 54 stores the measurement data Dout for each pixel PX input to the data processing unit 54 in a storage area associated with the pixel PX. Each time the measurement data Dout for each pixel PX is input, the data processing unit 54 updates the measurement data Dout associated with the pixel PX.
  • the correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column from the measurement data Dout corresponding to the pixel PX located in the i row and j column.
  • the correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column. Then, the correction amount adding unit 53B outputs a new gradation value as a result of the addition as the gradation value Din for the pixel PX located in i row and j column.
  • the monitoring unit 55 includes a storage area of m / 10 rows as a storage area for each pixel group of n columns arranged in the row direction.
  • the monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the i-th pixel row, and uses the extracted measurement data Dout as the maximum value data Dmax of the pixel group to which the i-th pixel row belongs. Treat as.
  • the period determining unit 56 determines the number N of transmissions for each pixel group based on the maximum value data Dmax input from the monitoring unit 55.
  • the number N of transmissions determined by the period determination unit 56 is a value having linearity with respect to the maximum value data Dmax, and increases as the maximum value data Dmax input from the monitoring unit 55 increases.
  • the number N of transmissions determined by the period determination unit 56 is a value that determines the maximum value of the count value in the up counter 47 for each pixel group.
  • the data processing unit 54 associates the ten pixels PX located in the first column in the first selection line group with the storage area in the first row and first column, and 2 in the second selection line group.
  • the ten pixels PX located in the column are associated with the storage area in the second row and the second column.
  • the data processing unit 54 associates the ten pixels PX located in the 959th column in the 54th selection line group with the storage area in the 54th row, the 959th column, and 960 in the 54th selection line group.
  • the ten pixels PX located in the column are associated with the storage area in the 54th row and the 960th column.
  • the monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the first pixel row, and uses the extracted measurement data Dout as the maximum value data Dmax in the first pixel group. Treat as.
  • the monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the eleventh pixel row, and handles the extracted measurement data Dout as the maximum value data Dmax in the second pixel group. .
  • the period determining unit 56 determines the number N of transmissions of the first group of pixels based on the maximum value data Dmax in the first group of pixels, and the determined number N of transmissions is determined by the first group. This is applied to the measurement of each of the pixel rows from the first row to the tenth row belonging to. Further, the period determining unit 56 determines the number N of transmissions of the second group of pixels based on the maximum value data Dmax in the second group of pixels, and the determined number of transmissions N belongs to the second group. This is applied to the measurement of each pixel row from the 11th row to the 20th row.
  • the capacity of the storage area for storing the measurement data Dout is suppressed in the data processing unit 54, and the capacity of the storage area for storing the maximum value data Dmax is suppressed in the monitoring unit 55.
  • the film characteristics of the thin film constituting the driving transistor T1 often dominate the fluctuation amount of the threshold voltage Vth, and the film characteristics of such a thin film are close to each other in adjacent pixel rows. Therefore, in the pixel rows adjacent to each other, the convergence levels Vs are often close to each other.
  • the measurement data Dout of one pixel row is handled as the measurement data Dout of another pixel row. Therefore, when the measurement data Dout is updated for all the pixels PX, the cycle of updating the measurement data Dout is shortened. As a result, when the change in the characteristic value in the drive transistor T1 is large per unit time, the degradation of the displayed image quality is more effectively suppressed.
  • the maximum value data Dmax associated with the pixel row to be measured this time may be the maximum value of the convergence voltage in the previous measurement performed on the pixel row to be measured this time.
  • the monitoring unit 55 stores only the maximum value data Dmax in the current measurement, grasps the pixel row in which the next measurement period is set, and calculates the maximum value data Dmax associated with the pixel row. Extract from the storage area. When the next measurement period is set, the monitoring unit 55 inputs the maximum value data Dmax extracted from the storage area to the period determination unit 56.
  • the threshold voltage Vth of the driving transistor T1 tends to increase monotonously. If the threshold voltage Vth has a tendency to increase monotonically, the population for determining the maximum value of the convergence voltage in the measurement before the current measurement is sufficient for the convergence voltage in the previous measurement. Therefore, if the monitoring unit 55 is configured to store only the maximum value data Dmax in the current measurement, the time required to acquire the characteristic value of the drive transistor T1 can be shortened, and further, before the current measurement. This simplifies the configuration for determining the maximum value of the convergence voltage in the measurement.
  • the maximum value data Dmax associated with the pixel row to be measured this time may be, for example, the maximum value of the convergence voltage in every second measurement of the pixel row to be measured.
  • the measurement for extracting the value may be a measurement every predetermined number of times.
  • the maximum value of the reference voltage in this measurement is larger than the maximum value of the convergence voltage in the measurement before the current measurement, and is smaller as the maximum value in the convergence voltage in the measurement before the current measurement is smaller. Any value is acceptable.
  • the extension period te may be a period for extending the light emission period set immediately after the current measurement.
  • the smaller the maximum value of the reference voltage in the current measurement the longer the light emission period immediately after the current measurement, and the shorter the time required to measure the convergence level Vs, the longer the light emission time of the EL element OEL. May be long immediately after the measurement. Even with such a configuration, a decrease in luminance in one frame can be suppressed.
  • the extension period te may be omitted. That is, regardless of the magnitude of the reference voltage in the current measurement, the length of the light emission period set immediately before the current measurement and immediately after the current measurement may be a constant value.
  • the number N of transmissions determined by the period determining unit 56 is smaller as the maximum value in the convergence voltage in the measurement before the current measurement is larger and the smaller the maximum value in the convergence voltage in the measurement before the current measurement is smaller. Any value may be used as long as the value is the maximum value among the reference voltages in the current measurement.
  • the transmission count N determined by the period determination unit 56 may be a value obtained by multiplying the maximum value among the count values in the previous measurement by a predetermined value greater than 1.
  • the threshold correction amount k may be the measurement data Dout itself, or may be a value calculated separately from the extracted measurement data Dout. In short, the threshold correction amount k is a value based on the measurement data Dout and may be a value that corrects the reference gradation value Db so as to suppress a change in luminance due to a change in the shift amount ⁇ Vth.
  • the convergence level Vs when the relaxation time ts has elapsed may be a voltage level that is regarded as the threshold voltage Vth, or a voltage level that changes linearly with respect to a change in the threshold voltage Vth. It may be.
  • the characteristic value in the driving transistor T1 may be a measurable value that reflects the shift amount ⁇ Vth of the driving transistor T1.
  • the data line Ld to which the measurement level VM is set in one measurement operation may be a part of all the data lines Ld. At this time, in one measurement operation, only a part of the data lines Ld for which the measurement level VM is set is connected to the analog power supply 70 via the measurement voltage switch SWs.
  • the population of the pixels PX for extracting the maximum value data Dmax may be composed of the pixels PX to which the measurement level VM is set in one measurement operation, or the measurement level in two or more measurement operations. You may comprise from the pixel PX to which VM is set. That is, the pixel group is not limited to the pixel row, but may be a part of one pixel row, or a set of measurement objects in each of the plurality of measurement operations, and the reference voltage Any set of pixels having a common maximum value may be used.
  • the characteristic value of the driving transistor T1 is a parameter that contributes to the convergence level Vs, and may be the threshold voltage Vth that the driving transistor T1 has, or the current amplification factor ⁇ that the driving transistor T1 has. Good.
  • the input signal SIG is a digital signal indicating a luminance gradation value for each EL element OEL, as in the case where an EL device is used as a light source of two gradations whether or not to expose an exposure target. Also good.
  • the pixel circuit PCC is not limited to a 3T1C type circuit including three n-channel transistors and one holding capacitor Cs.
  • a 2T1C circuit including two n-channel transistors and one holding capacitor Cs. It may be a circuit composed of four or more transistors.
  • the pixel circuit PCC may have a configuration that does not have a function of holding the gate-source voltage Vgs in the driving transistor T1, or has a function other than the function of holding the gate-source voltage Vgs as an active element or a passive element. It may be a configuration. Note that the pixel circuit PCC preferably has a function of holding the gate-source voltage Vgs in the driving transistor T1 in that the luminance in the pixel PX is stabilized.
  • the driving transistor T1, the holding transistor T2, and the selection transistor T3 are not limited to n-channel transistors but may be p-channel transistors.
  • the source of the driving transistor T1 is electrically connected to the power supply line La, and the drain of the driving transistor T1 is electrically connected to the node N2.
  • the source of the holding transistor T2 is electrically connected to the source of the driving transistor T1, and the drain of the holding transistor T2 is electrically connected to the gate of the driving transistor T1.
  • the drain of the selection transistor T3 is electrically connected to the data line Ld, and the source of the selection transistor T3 is electrically connected to the drain of the driving transistor T1.
  • the gate-source voltage Vgs in the non-light emitting period may be reverse biased in the driving transistor T1.
  • a voltage level lower than the reference level ELVSS may be set in the power supply signal Va.
  • the selection line connected to the gate of the holding transistor T2 and the selection line connected to the gate of the selection transistor T3 are different from each other, and the selection line connected to the holding transistor T2 and the selection transistor Different voltage levels may be set for the selection lines connected to T3.
  • the ON state of the holding transistor T2 and the ON state of the selection transistor T3 at different timings. Further, the off state of the holding transistor T2 and the off state of the selection transistor T3 can also be set at different timings.
  • each of the plurality of pixel circuits PCC is a circuit in which the drive transistor T1 includes a current path for passing a current to the EL element OEL, and the drive transistor T1 controls the current based on the gradation value level Vdata.
  • Any configuration that can set the high impedance state to the data line Ld may be used.
  • the type of circuit elements provided in the pixel circuit PCC and the connection configuration between the circuit elements can be arbitrarily selected within such a range.
  • the EL element OEL may be an organic EL element, an inorganic EL element, or a light emitting diode.
  • the EL element may be an element that emits light when a drain-source current of the driving transistor flows.
  • the EL device can be used in a display unit of various electronic devices such as a digital camera, a mobile personal computer, and a portable device.
  • the pixel arrangement direction in the EL device may be a two-dimensional direction or a one-dimensional direction.
  • a plurality of pixels PX are mounted on a photosensitive drum as a light emitting element array substrate arranged in a one-dimensional direction, and light emitted from the light emitting element array substrate is irradiated onto the photosensitive drum to cause the photosensitive drum to be used.
  • the exposure apparatus which exposes may be sufficient.
  • the current driving element that receives the driving current from the driving transistor T1 is not limited to the EL element OEL or the light emitting diode, but may be various sensor elements.
  • the element circuit including the current driving element is not limited to the combination of the pixel circuit PCC and the EL element OEL, and the driving transistor T1 includes a current path through which current flows to the current driving element, and the driving transistor T1 has a gradation value level. Any circuit that controls the current based on Vdata and can set the high impedance state to the data line Ld may be used.
  • the element circuit may be, for example, a sensor circuit including a sensor element and a driving transistor T1, and a current driving device to which the sensor circuit is applied is not limited to an EL device, but a sensor device including various sensor circuits. There may be.
  • the sensor device is embodied in any one of a biosensor device, a temperature sensor device, an illuminance sensor device, and a concentration sensor device, for example.
  • the sensor element is appropriately selected according to an object to be measured by the sensor device.
  • the sensor element is embodied as any one of a biosensor element, a temperature sensor element, an illuminance sensor element, and a concentration sensor element.
  • the period in which the drive transistor T1 passes current to the sensor element is the measurement period of the detection target in the sensor element.
  • the electric field cell is located between an electrolyte solution containing a substrate for advancing a desired electrochemical reaction, a first working electrode connected to the node N2, and a first working electrode.
  • the first working electrode, the second working electrode, and the reference electrode are all connected to the electrolyte solution.
  • the negative potential side electrode functions as a cathode electrode
  • the positive potential side electrode functions as an anode electrode.
  • the data driver 40 sets a response level voltage corresponding to the driving amount of the sensor element to the data line Ld, and based on the voltage corresponding to the difference between the reaction level and the write level, the drive current based on the reaction level is applied to the electric field. Flow in cell EC. Thereby, the element circuit drives the electric field cell with current. Further, the data driver 40 sets a voltage at a reaction level, which is an example of a measurement level, to the data line Ld, and then measures the voltage level of the data line Ld set to the high impedance state and the voltage level of the reference electrode. Then, the oxidation-reduction potential of the substrate in the electrolyte is measured from the difference between the voltage level of the data line Ld and the voltage level of the reference electrode.
  • a reaction level which is an example of a measurement level
  • the maximum value in the measurement data Dout in the element circuit group composed of a plurality of element circuits is stored as the maximum value data Dmax of the element circuit group.
  • the maximum value in the reference voltage in the current measurement is the maximum value data Dmax associated with the pixel row to be measured this time, that is, the convergence voltage in the measurement before the current measurement. It is set based on the maximum value. Therefore, the time required for the successive comparison in the current measurement period is shorter as the maximum value data Dmax is smaller.
  • the characteristic value of the drive transistor T1 is compared with the configuration in which the maximum value in the reference voltage is a constant value. It is possible to shorten the time required for obtaining the above, and in turn shorten the time required for measuring the oxidation-reduction potential.
  • k ... threshold correction amount, N ... number of transmissions, t ... elapsed time, Cs ... retention capacity, Db ... reference gradation value, HZ ... high impedance state, L1, L2 ... characteristic curve, La ... power supply line, Ld ... Data line, LP ... Latch pulse signal, Ls ... Select line, PX ... Pixel, SP ... Select start pulse signal, T1 ... Drive transistor, T2 ... Hold transistor, T3 ... Select transistor, tb ... Reference period, te ... Extension period, tp ... correction light emission period, ts ... relaxation time, Va ... power supply signal, Vd ... data signal, VM ... measurement level, Vs ... convergence level, Din ...
  • gradation value Ids ... drain-source current, MP1 ... selection mask pulse Signal, MP2 ... Power supply mask pulse signal, OEL ... EL element, PCC ... Pixel circuit, RST ... Clear signal, SIG ... Input signal, SP1 ... Data start pulse SPa ... Light emission period start signal, SPb ... Non-light emission period start signal, SPc ... Measurement period start signal, SW1 ... Input switch, SW2 ... Output switch, SW3 ... Measurement switch, SWd ... Display switch, SWs ...
  • Measurement Voltage switch tma: first non-selection period, tmb: measurement selection period, tmc: second non-selection period, Vds: drain-source voltage, VEE: analog power supply voltage, Vgs: gate-source voltage, Clkd: data Shift clock, Clkr ... Measurement shift clock, Clks ... Drive shift clock, Dmax ... Maximum value data, Dout ... Measurement data, Dsig ... Gradation component, DVSS ... Analog reference voltage, LVDD ... Logic high voltage, LVSS ... Logic low voltage, Vsel ... select signal, ELVDD ... light emission level, ELVSS ...
  • SWtrs transfer switch
  • Vdata gradation value level
  • WDVSS write level
  • 10 panel
  • 20 selection driver
  • 21 shift register circuit
  • 22 output buffer
  • 30 power driver
  • 31 shift register
  • 32 ... Output buffer
  • 40 ... Data driver, 41 ... Shift register, 42 ... Data register, 43 ... Data latch circuit, 43a ... Data latch, 43b ... AND circuit, 43c ... Flip-flop, 44 ... DAC, 45 ... Buffer, 46 ... level shifter, 47 ... up counter, 48 ... level shifter, 50 ... system controller, 51 ... input signal processing unit, 52 ... timing controller, 53 ... correction processing unit, 53A ... reference gradation generation unit, 53B ... correction processing unit, 53C ... correction amount calculation unit, 54 ... data processing unit, 55 ... supervision Visual section, 56... Period determining section, 60... Logic power supply, 70.

Abstract

The present invention is equipped with: a measurement unit which, for all of a plurality of data lines (Ld), sets a voltage exceeding the threshold voltage value of all of a plurality of driving transistors (T1), and then switches all of the data lines to a high-impedance state, thereby causing the voltages of all of the data lines to converge to a convergence voltage for each of the data lines, after which multiple references voltages and the convergence voltage are compared successively for each of a plurality of element circuits; and a setting unit, which sets a maximum reference value so as to be greater than the maximum value among all of the convergence voltages in at least one measurement prior to the present measurement, and such that the maximum reference value is smaller as the maximum convergence voltage value is smaller. Thus, it is possible to reduce the time required to obtain the characteristic values of driving transistors.

Description

電流駆動装置、および、電流駆動装置の駆動方法Current driving device and driving method of current driving device
 本発明は、電流駆動素子に電流を流す駆動トランジスタを備える電流駆動装置、および、電流駆動装置の駆動方法に関する。 The present invention relates to a current driving device including a driving transistor for passing a current to a current driving element, and a driving method of the current driving device.
 エレクトロルミネッセンス(Electro Luminescence :EL)装置の一例であるEL表示装置は、マトリクス状に位置する複数のEL素子と、EL素子ごとの複数の薄膜トランジスタとを備えて、走査線が走査されることによってEL素子を線順次駆動する。例えば、特許文献1に記載されるEL装置は、走査線の走査によって選択トランジスタをオン状態に切り替えて、表示データに基づく電圧を駆動トランジスタのゲート‐ソース間に印加する。そして、駆動トランジスタのゲート‐ソース間電圧に基づくドレイン‐ソース間電流がEL素子に流れることによって、EL素子における輝度の階調が走査線の走査ごとに制御される。 An EL display device, which is an example of an electroluminescence (EL) device, includes a plurality of EL elements positioned in a matrix and a plurality of thin film transistors for each EL element. The element is driven line-sequentially. For example, the EL device described in Patent Document 1 switches a selection transistor to an on state by scanning a scanning line, and applies a voltage based on display data between the gate and the source of the driving transistor. Then, the drain-source current based on the gate-source voltage of the driving transistor flows through the EL element, whereby the luminance gradation in the EL element is controlled for each scan of the scanning line.
 一方で、駆動トランジスタの有するしきい値電圧や電流増幅率などの特性値は駆動トランジスタの駆動された累積の時間によって変わるため、駆動トランジスタに印加されるゲート‐ソース間電圧が同じである場合であっても、駆動トランジスタから供給される駆動電流は経時的に変わってしまう。そこで、駆動トランジスタの特性値が変わることに起因してEL素子の輝度が変わることを補正するために、例えば、特許文献2に記載されるようなEL装置は、駆動トランジスタの特性値を定期的に取得している。 On the other hand, the characteristic values such as the threshold voltage and current amplification factor of the driving transistor vary depending on the accumulated driving time of the driving transistor, so that the gate-source voltage applied to the driving transistor is the same. Even so, the drive current supplied from the drive transistor changes over time. Therefore, in order to correct the change in luminance of the EL element due to the change in the characteristic value of the driving transistor, for example, an EL device as described in Patent Document 2 periodically sets the characteristic value of the driving transistor. Is getting into.
特開平8-330600号公報JP-A-8-330600 特開2010-128397号公報JP 2010-128397 A
 一方で、上述した特性値の測定においてはEL素子の発光が止められるため、こうした特性値の測定に要する時間を低減することが望まれている。
 本発明は、駆動トランジスタの特性値の測定に要する時間を短くすることの可能な電流駆動装置、および、電流駆動装置の駆動方法を提供することを目的とする。
On the other hand, since the light emission of the EL element is stopped in the above-described measurement of the characteristic value, it is desired to reduce the time required for measuring such a characteristic value.
An object of the present invention is to provide a current driving device and a driving method of the current driving device that can shorten the time required for measuring the characteristic value of the driving transistor.
 上記課題を解決するEL装置は、複数の要素回路を含む画素群であって、各要素回路が、電流駆動素子と、データ線と、前記データ線に設定された電圧に基づく電流を前記電流駆動素子に流す電流路を有した駆動トランジスタとを備え、前記データ線が前記電流路に電気的に接続可能に構成された前記要素回路群を備える。また、この電流駆動装置は、前記要素回路ごとの収束電圧を測定するように構成された測定部であって、該測定部は、複数の前記要素回路の各々について、前記駆動トランジスタのしきい値電圧を越える電圧であって、かつ、前記電流駆動素子に対する逆バイアスである1つの電圧を、前記データ線に設定した後に、前記データ線をハイインピーダンス状態へ切り替え、それによって、前記データ線の電圧を収束電圧に収束させ、その後に、互いに異なる大きさを有する複数のリファレンス電圧と前記収束電圧との逐次比較を行うように構成され、各要素回路に対して用いられる複数の前記リファレンス電圧は、他の要素回路で用いられる複数の前記リファレンス電圧と共通する前記測定部を備える。そして、このEL装置は、今回の測定における全ての前記リファレンス電圧の中の最大値であるリファレンス最大値を設定する設定部であって、今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定する設定部を備える。 An EL device that solves the above problem is a pixel group including a plurality of element circuits, and each element circuit drives a current drive element, a data line, and a current based on a voltage set in the data line to the current drive. And a driving transistor having a current path for passing the element, and the data line includes the element circuit group configured to be electrically connectable to the current path. The current driver is a measurement unit configured to measure a convergence voltage for each element circuit, and the measurement unit is configured to measure the threshold value of the drive transistor for each of the plurality of element circuits. After setting one voltage that exceeds the voltage and is reverse-biased to the current drive element to the data line, the data line is switched to a high impedance state, whereby the voltage of the data line Is converged to a convergence voltage, and then, a plurality of reference voltages having different magnitudes and the convergence voltage are sequentially compared, and the plurality of reference voltages used for each element circuit are: The measurement unit in common with a plurality of the reference voltages used in other element circuits is provided. The EL device is a setting unit that sets a reference maximum value, which is the maximum value of all the reference voltages in the current measurement, and includes all the settings in at least one measurement before the current measurement. A setting unit configured to set the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller than the maximum value in the convergence voltage and the maximum value is smaller;
 上記課題を解決する電流駆動装置の駆動方法は、複数の要素回路を含む要素回路群であって、前記要素回路が、電流駆動素子と、データ線と、前記データ線に設定された電圧に基づく電流を前記電流駆動素子に流す電流路を有した駆動トランジスタとを備え、前記データ線が前記電流路に電気的に接続可能に構成され、前記駆動方法は、複数の前記要素回路の各々について、前記駆動トランジスタのしきい値電圧を越える電圧であって、かつ、前記電流駆動素子に対する逆バイアスである1つの電圧を前記データ線に設定した後に、前記データ線をハイインピーダンス状態へ切り替え、それによって、前記データ線の電圧を収束電圧に収束させる工程と、複数の前記要素回路の各々について、互いに異なる大きさを有する複数のリファレンス電圧と前記収束電圧との逐次比較を行い、それによって、前記要素回路ごとの前記収束電圧を測定する工程であって、各要素回路で用いられる複数の前記リファレンス電圧は、他の要素回路で用いられる複数の前記リファレンス電圧と共通する、前記工程と、を含む。そして、今回の測定における全ての前記リファレンス電圧の中の最大値が、リファレンス最大値であり、今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定する工程をさらに含む。 A driving method of a current driving device that solves the above problem is an element circuit group including a plurality of element circuits, and the element circuit is based on a current driving element, a data line, and a voltage set for the data line. A drive transistor having a current path for passing a current to the current drive element, the data line is configured to be electrically connectable to the current path, and the driving method is performed for each of the plurality of element circuits. After setting one voltage on the data line that exceeds the threshold voltage of the driving transistor and that is a reverse bias to the current driving element, the data line is switched to a high impedance state, thereby And a step of converging the voltage of the data line to a convergence voltage, and a plurality of reference circuits having different sizes for each of the plurality of element circuits. A step of performing successive comparison between a voltage and the convergence voltage, thereby measuring the convergence voltage for each element circuit, wherein a plurality of the reference voltages used in each element circuit are used in other element circuits And a step common to a plurality of the reference voltages. The maximum value among all the reference voltages in the current measurement is the reference maximum value, which is larger than the maximum value among all the convergence voltages in at least one measurement before the current measurement. And a step of setting the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller.
 上記構成によれば、今回の測定における全てのリファレンス電圧の中の最大値は、今回の測定よりも前の少なくとも1回の測定における収束電圧の中の最大値に基づいて設定される。そして、今回の測定における全てのリファレンス電圧の中の最大値は、今回の測定よりも前の少なくとも1回の測定における収束電圧の中の最大値が小さいほど小さいため、今回の逐次比較に要する時間は、今回の測定よりも前の少なくとも1回の測定における収束電圧が小さいほど短い。結果として、測定における全てのリファレンス電圧の中の最大値が測定ごとに一定値である構成と比べて、駆動トランジスタの特性値の取得に要する時間を短くすることが可能である。 According to the above configuration, the maximum value among all the reference voltages in the current measurement is set based on the maximum value in the convergence voltage in at least one measurement prior to the current measurement. The maximum value of all reference voltages in the current measurement is smaller as the maximum value of the convergence voltage in at least one measurement prior to the current measurement is smaller. Is shorter as the convergence voltage in at least one measurement prior to the current measurement is smaller. As a result, it is possible to shorten the time required to acquire the characteristic value of the drive transistor, compared to a configuration in which the maximum value among all reference voltages in the measurement is a constant value for each measurement.
 上記電流駆動装置において、前記設定部は、前回までの測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定してもよい。 In the current driver, the setting unit is configured to increase the reference maximum so that the reference maximum value is smaller as the maximum value is larger than the maximum value of all the converged voltages in the previous measurement and the maximum value is smaller. A value may be set.
 例えば、前回の測定における駆動トランジスタの温度が、前々回の測定における駆動トランジスタの温度よりも大幅に低いとき、前回の測定における収束電圧の最大値は、前々回の測定における収束電圧の最大値から若干減少するときもある。このように、要素回路群の中における収束電圧の最大値が測定の機会ごとに単調に増加しない場合であっても、上記構成を備える電流駆動装置であれば、前々回の収束電圧の最大値に基づき、今回の測定におけるリファレンス最大値が設定される。それゆえに、今回の測定におけるリファレンス電圧の最大値が収束電圧を下回ることによって収束電圧が正確に測定されないことが抑えられる。 For example, when the temperature of the driving transistor in the previous measurement is significantly lower than the temperature of the driving transistor in the previous measurement, the maximum value of the convergence voltage in the previous measurement is slightly decreased from the maximum value of the convergence voltage in the previous measurement. Sometimes you do. Thus, even if the maximum value of the convergence voltage in the element circuit group does not increase monotonously for each measurement opportunity, the current drive device having the above configuration has the maximum value of the previous convergence voltage. Based on this, the reference maximum value in the current measurement is set. Therefore, it is possible to prevent the convergence voltage from being accurately measured when the maximum value of the reference voltage in the current measurement falls below the convergence voltage.
 上記電流駆動装置において、前記設定部は、前回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定してもよい。 In the current driver, the setting unit is configured to increase the reference maximum value so that the reference maximum value is smaller as the maximum value is larger than the maximum value of all the convergence voltages in the previous measurement and the maximum value is smaller. May be set.
 例えば、駆動トランジスタが電流駆動素子に電流を流すことを繰り返すとき、駆動トランジスタのしきい値電圧は単調に増加しやすい。この点で、上記構成を有する電流駆動装置であれば、前回の測定における収束電圧の最大値に基づいて、今回の測定におけるリファレンス最大値が設定される。それゆえに、今回の測定よりも前の測定における収束電圧の最大値を決定するための母集団が、前回の測定における収束電圧に絞られるため、今回の測定よりも前の測定における収束電圧の最大値を決定するための構成の簡素化が図られる。 For example, when the driving transistor repeats flowing current through the current driving element, the threshold voltage of the driving transistor tends to increase monotonously. In this regard, in the current driving device having the above configuration, the reference maximum value in the current measurement is set based on the maximum value of the convergence voltage in the previous measurement. Therefore, since the population for determining the maximum value of the convergence voltage in the measurement before the current measurement is limited to the convergence voltage in the previous measurement, the maximum convergence voltage in the measurement before the current measurement is determined. The structure for determining the value can be simplified.
 上記電流駆動装置は、前記測定部が今回の測定を実行した後に、前記電流駆動素子の駆動量に基づく階調電圧を前記データ線に設定し、その後、前記階調電圧に基づく前記電流を前記駆動トランジスタに流させる駆動部をさらに備える。そして、前記設定部は、前記駆動部が前記電流駆動素子に前記電流を流す期間である駆動期間を、今回の測定における前記リファレンス最大値が小さいほど長い期間に設定してもよい。 The current driving device sets a gradation voltage based on a driving amount of the current driving element to the data line after the measurement unit performs the current measurement, and then sets the current based on the gradation voltage to the current line. A drive unit for causing the drive transistor to flow is further provided. The setting unit may set a driving period in which the driving unit passes the current to the current driving element as a longer period as the reference maximum value in the current measurement is smaller.
 上記電流駆動装置は、前記測定部が今回の測定を実行する前に、前記電流駆動素子の駆動量に基づく階調電圧を前記データ線に設定し、その後、前記階調電圧に基づく前記電流を前記駆動トランジスタに流させる駆動部をさらに備える。そして、前記設定部は、前記駆動部が前記電流駆動素子に前記電流を流す期間である駆動期間を、今回の測定における前記リファレンス最大値が小さいほど長い期間に設定してもよい。 The current driving device sets a gradation voltage based on a driving amount of the current driving element to the data line before the measurement unit performs the current measurement, and then sets the current based on the gradation voltage. A driving unit for causing the driving transistor to flow is further provided. The setting unit may set a driving period in which the driving unit passes the current to the current driving element as a longer period as the reference maximum value in the current measurement is smaller.
 上記各電流駆動装置によれば、収束電圧の測定に要する時間が短いほど、電流駆動素子の駆動する時間が長くなるため、収束電圧の測定に要する時間と、電流駆動素子の駆動する時間との総和が大きく変わることを抑えて、電流駆動素子の駆動する時間を長くすることが可能である。
 上記EL装置において、前記測定部は、前記逐次比較において、所定の最小値から一定値ずつ上昇させた電圧を前記リファレンス電圧に用いてもよい。
According to each of the current driving devices described above, the shorter the time required for measuring the convergence voltage, the longer the time for driving the current driving element, so the time required for measuring the convergence voltage and the time for driving the current driving element are It is possible to lengthen the drive time of the current drive element while suppressing the total sum from changing greatly.
In the EL device, the measurement unit may use, as the reference voltage, a voltage that is increased from a predetermined minimum value by a certain value in the successive comparison.
 上記電流駆動装置によれば、収束電圧と逐次比較されるリファレンス電圧が、所定の最小値から一定値ずつ上昇するため、今回の測定におけるリファレンス最大値が小さい分だけ、今回の測定に要する時間は確実に短くなる。 According to the current driver, since the reference voltage that is sequentially compared with the convergence voltage is increased from the predetermined minimum value by a certain value, the time required for the current measurement is reduced by the smaller reference maximum value in the current measurement. It will definitely be shorter.
 上記電流駆動装置において、前記設定部は、今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値に一定値を加えた値を、今回の測定における前記リファレンス最大値に設定してもよい。 In the current driving device, the setting unit obtains a value obtained by adding a constant value to a maximum value among all the convergence voltages in at least one measurement before the current measurement, and the reference maximum in the current measurement. It may be set to a value.
 上記電流駆動装置によれば、今回の測定よりも前の測定における収束電圧よりも一定値だけ大きい電圧が、今回の測定におけるリファレンス最大値に設定される。それゆえに、今回の測定よりも前の測定から収束電圧が大きくなる場合であっても、収束電圧の大きくなる範囲が一定値以内であれば、今回の測定におけるリファレンス最大値が収束電圧を下回ることによって収束電圧が正確に測定されないことが抑えられる。 According to the current drive device, a voltage that is larger than the convergence voltage in the measurement prior to the current measurement by a certain value is set as the reference maximum value in the current measurement. Therefore, even if the convergence voltage increases from the measurement prior to the current measurement, if the range in which the convergence voltage increases is within a certain value, the reference maximum value in the current measurement is less than the convergence voltage. Therefore, it is possible to prevent the convergence voltage from being accurately measured.
 本発明の電流駆動装置、および、電流駆動装置の駆動方法によれば、駆動トランジスタの特性値の取得に要する時間を短くすることが可能である。 According to the current driving device and the driving method of the current driving device of the present invention, it is possible to shorten the time required to acquire the characteristic value of the driving transistor.
一実施形態におけるEL表示装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the EL display apparatus in one Embodiment. 一実施形態における画素回路の構成を周辺回路のブロック回路図と共に示す回路図である。It is a circuit diagram which shows the structure of the pixel circuit in one Embodiment with the block circuit diagram of a peripheral circuit. 一実施形態の書込動作における選択線、電源線、および、データ線の各々の電圧レベルを画素回路の回路図と共に示す回路図である。FIG. 3 is a circuit diagram showing voltage levels of a selection line, a power supply line, and a data line in a write operation according to an embodiment together with a circuit diagram of a pixel circuit. 一実施形態の発光動作における選択線、電源線、および、データ線の各々の電圧レベルを画素回路の回路図と共に示す回路図である。FIG. 3 is a circuit diagram illustrating voltage levels of a selection line, a power supply line, and a data line in a light emitting operation according to an embodiment together with a circuit diagram of a pixel circuit. 一実施形態の測定動作における選択線、電源線、および、データ線の各々の電圧レベルを画素回路の回路図と共に示す回路図である。FIG. 5 is a circuit diagram showing voltage levels of a selection line, a power supply line, and a data line in a measurement operation of an embodiment together with a circuit diagram of a pixel circuit. 一実施形態における選択ドライバの構成を画素回路と共に示すブロック回路図である。FIG. 3 is a block circuit diagram showing a configuration of a selection driver together with a pixel circuit in one embodiment. 一実施形態における電源ドライバの構成を画素回路と共に示すブロック回路図である。It is a block circuit diagram which shows the structure of the power supply driver in one Embodiment with a pixel circuit. 一実施形態の駆動トランジスタにおけるゲート‐ソース間電圧とドレイン‐ソース間電流との関係を示すグラフである。4 is a graph showing a relationship between a gate-source voltage and a drain-source current in a driving transistor according to an embodiment. 一実施形態におけるデータ線がハイインピーダンス状態に設定されてからの経過時間と駆動トランジスタにおけるソースの電圧レベルとの関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after the data line in one Embodiment was set to the high impedance state, and the voltage level of the source in a drive transistor. 一実施形態におけるデータドライバの構成を示すブロック回路図である。It is a block circuit diagram which shows the structure of the data driver in one Embodiment. 一実施形態におけるシステムコントローラーの構成を示すブロック回路図である。It is a block circuit diagram which shows the structure of the system controller in one Embodiment. 一実施形態におけるタイミングコントローラーが選択スタートパルス信号を出力するタイミング、および、タイミングコントローラーが出力するマスクパルス信号の電圧レベルの推移を示すタイミングチャートである。It is a timing chart which shows transition of the voltage level of the mask pulse signal which the timing controller outputs the selection start pulse signal in one embodiment, and the timing controller outputs. 一実施形態のEL表示装置における発光期間、および、非発光期間の各々に選択ドライバ、電源ドライバ、および、データドライバが出力する各信号の電圧レベルの推移を示すタイミングチャートである。6 is a timing chart showing transitions of voltage levels of signals output from a selection driver, a power supply driver, and a data driver in each of a light emission period and a non-light emission period in an EL display device according to an embodiment. 一実施形態のEL表示装置における測定期間に選択ドライバ、電源ドライバ、および、データドライバが出力する各信号の電圧レベルの推移を示すタイミングチャートである。It is a timing chart which shows transition of the voltage level of each signal which a selection driver, a power supply driver, and a data driver output in a measurement period in an EL display device of one embodiment. 一実施形態のEL表示装置が設定する第1フレームにおいて画素行が行う書込動作、表示動作、および、測定動作の推移を示すタイムチャートである。It is a time chart which shows transition of the writing operation which a pixel row performs in the 1st frame which the EL display device of one embodiment sets, display operation, and measurement operation. 一実施形態のEL表示装置が設定する第2フレームにおいて画素行が行う書込動作、表示動作、および、測定動作の推移を示すタイムチャートである。It is a time chart which shows transition of writing operation which a pixel row performs in the 2nd frame which EL display device of one embodiment sets, display operation, and measurement operation. 一実施形態のEL表示装置が設定する第540フレームにおいて画素行が行う書込動作、表示動作、および、測定動作の推移を示すタイムチャートである。It is a time chart which shows transition of a writing operation which a pixel row performs in a 540th frame which an EL display device of one embodiment sets, a display operation, and a measurement operation. 一実施形態のEL表示装置が設定する1つフレーム期間において各選択線における電圧レベルの推移、および、各電源線における電圧レベルの推移をスタートパルス信号、および、マスクパルス信号と共に示すタイミングチャートである。6 is a timing chart showing a transition of voltage levels in each selection line and a transition of voltage levels in each power supply line together with a start pulse signal and a mask pulse signal in one frame period set by the EL display device of one embodiment. . 変形例のEL表示装置が設定する第1フレームから第54フレームまでにおける測定期間の設定される画素行を示す構成図である。It is a block diagram which shows the pixel row by which the measurement period in the 1st frame to the 54th frame which the EL display apparatus of a modification is set is set. 変形例のEL表示装置が設定する第55フレームから第108フレームまでにおける測定期間の設定される画素行を示す構成図である。It is a block diagram which shows the pixel row by which the measurement period is set from the 55th frame to the 108th frame which the EL display apparatus of a modification is set. 変形例のEL表示装置が設定する第487フレームから第540フレームまでにおける測定期間の設定される画素行を示す構成図である。It is a block diagram which shows the pixel row by which the measurement period is set from the 487th frame to the 540th frame which the EL display apparatus of a modification sets.
 図1~図17を参照してEL装置の一例であるEL表示装置、および、EL装置の駆動方法の一例であるEL表示装置の駆動方法の一実施形態を説明する。 An embodiment of an EL display device that is an example of an EL device and a driving method of an EL display device that is an example of a driving method of the EL device will be described with reference to FIGS.
 [EL表示装置の構成]
 図1が示すように、EL表示装置は、複数の画素PXを備えるパネル10と、選択ドライバ20と、電源ドライバ30と、データドライバ40と、システムコントローラー50とを備えている。複数の画素PXは、m行×n列のマトリクス状に配置されている。mは1以上の整数であり、nもまた1以上の整数である。各画素PXは、要素回路の一例である。
[Configuration of EL Display Device]
As shown in FIG. 1, the EL display device includes a panel 10 including a plurality of pixels PX, a selection driver 20, a power supply driver 30, a data driver 40, and a system controller 50. The plurality of pixels PX are arranged in a matrix of m rows × n columns. m is an integer of 1 or more, and n is also an integer of 1 or more. Each pixel PX is an example of an element circuit.
 行方向に沿って延びるm行の選択線Lsの各々は、列方向に沿って延びるn列のデータ線Ldの各々と、パネル10に対する平面視において立体的に交差している。複数の画素PXの各々は、選択線Lsとデータ線Ldとが立体的に交差する部位の付近に配置されている。 Each of the m selection lines Ls extending in the row direction intersects each of the n columns of data lines Ld extending in the column direction in a three-dimensional manner in a plan view with respect to the panel 10. Each of the plurality of pixels PX is disposed in the vicinity of a portion where the selection line Ls and the data line Ld intersect three-dimensionally.
 i行目(iは1以上m以下の整数)に並ぶn列の画素PXの各々は、i行目の選択線Lsとi行目の電源線Laとに電気的接続されている。j列目(jは1以上n以下の整数)に並ぶm行の画素PXの各々は、j列目のデータ線Ldに電気的接続されている。各々が共通する1本の選択線Lsに電気的に接続された複数の画素PXが、要素回路群の一例である1つの画素行であり、各々が共通する1本のデータ線Ldに電気的に接続された複数の画素PXが1つの画素列である。 Each of the n columns of pixels PX arranged in the i-th row (i is an integer of 1 to m) is electrically connected to the i-th selection line Ls and the i-th power line La. Each of the m rows of pixels PX arranged in the j-th column (j is an integer of 1 to n) is electrically connected to the j-th data line Ld. A plurality of pixels PX electrically connected to one common selection line Ls is one pixel row as an example of an element circuit group, and each pixel line PX is electrically connected to one common data line Ld. A plurality of pixels PX connected to is one pixel column.
 m行の選択線Lsの各々は、選択ドライバ20に電気的に並列に接続されている。m行の電源線Laの各々は、電源ドライバ30に電気的に並列に接続されている。n列のデータ線Ldの各々は、データドライバ40に電気的に並列に接続されている。 Each of the m selection lines Ls is electrically connected to the selection driver 20 in parallel. Each of the m rows of power supply lines La is electrically connected to the power supply driver 30 in parallel. Each of the n columns of data lines Ld is electrically connected to the data driver 40 in parallel.
 システムコントローラー50は、選択ドライバ20の駆動、電源ドライバ30の駆動、および、データドライバ40の駆動を、複数の制御信号の出力によって制御する。システムコントローラー50は、中央処理装置や記憶部を有するマイクロコンピューターを中心として構成されている。システムコントローラー50は、EL表示装置に対する外部からの入力信号SIGを受けて、入力信号SIGに含まれる階調成分を入力信号SIGから抽出する機能を有している。また、システムコントローラー50は、抽出された階調成分を、画素PXごとの輝度を制御するための階調値Dinに変換する機能を有する。 The system controller 50 controls driving of the selection driver 20, driving of the power supply driver 30, and driving of the data driver 40 by outputting a plurality of control signals. The system controller 50 is configured with a central processing unit and a microcomputer having a storage unit as a center. The system controller 50 has a function of receiving an input signal SIG from the outside to the EL display device and extracting a gradation component included in the input signal SIG from the input signal SIG. The system controller 50 has a function of converting the extracted gradation component into a gradation value Din for controlling the luminance for each pixel PX.
 システムコントローラー50は、画素PXごとの階調値Dinをデータドライバ40に出力する。画素PXごとの階調値Dinは、1行分ずつ行番号順に、かつ、1行分のデータにおいては1列ずつ列番号順に出力される。画素PXごとの階調値Dinは、例えば、ビット長として8ビットを有するデジタル値である。 The system controller 50 outputs the gradation value Din for each pixel PX to the data driver 40. The gradation value Din for each pixel PX is output in the order of row numbers for each row, and in the data for one row, the columns are output in the order of column numbers. The gradation value Din for each pixel PX is, for example, a digital value having 8 bits as a bit length.
 システムコントローラー50は、パネル10を駆動するためのシステムクロックなどのタイミング信号を入力信号SIGから抽出してもよいし、入力信号SIGがタイミング信号成分を含まないときには、別途タイミング信号を生成してもよい。入力信号SIGが、例えば、テレビ放送信号などのコンポジット映像信号のように、画像の表示タイミングを規定するタイミング信号成分を含むとき、システムコントローラー50は、階調成分を抽出する機能のほかに、タイミング信号成分を抽出する機能を有している。 The system controller 50 may extract a timing signal such as a system clock for driving the panel 10 from the input signal SIG, or may generate a separate timing signal when the input signal SIG does not include a timing signal component. Good. When the input signal SIG includes a timing signal component that defines the display timing of an image, for example, a composite video signal such as a television broadcast signal, the system controller 50 performs a timing in addition to a function of extracting a gradation component. It has a function of extracting signal components.
 システムコントローラー50は、選択ドライバ20の駆動を制御するための選択制御信号SCON1をタイミング信号に基づいて生成して、選択制御信号SCON1を選択ドライバ20に入力する。システムコントローラー50は、電源ドライバ30の駆動を制御するための電源制御信号SCON2をタイミング信号に基づいて生成して、電源制御信号SCON2を電源ドライバ30に入力する。システムコントローラー50は、データドライバ40の駆動を制御するためのデータ制御信号SCON3をタイミング信号に基づいて生成して、データ制御信号SCON3をデータドライバ40に入力する。 The system controller 50 generates a selection control signal SCON1 for controlling the driving of the selection driver 20 based on the timing signal, and inputs the selection control signal SCON1 to the selection driver 20. The system controller 50 generates a power control signal SCON 2 for controlling the driving of the power driver 30 based on the timing signal, and inputs the power control signal SCON 2 to the power driver 30. The system controller 50 generates a data control signal SCON3 for controlling the driving of the data driver 40 based on the timing signal, and inputs the data control signal SCON3 to the data driver 40.
 [画素PXの構成]
 図2が示すように、画素PXを構成する画素回路PCCは、薄膜トランジスタの一例である3つのnチャンネル型トランジスタと1つの保持容量Csとを備えている。3つのnチャンネル型トランジスタは、例えば、半導体膜としてアモルファスシリコン膜を有する薄膜トランジスタであってもよいし、半導体膜としてポリシリコン膜を有する薄膜トランジスタであってもよい。
[Configuration of Pixel PX]
As shown in FIG. 2, the pixel circuit PCC constituting the pixel PX includes three n-channel transistors, which are examples of thin film transistors, and one storage capacitor Cs. The three n-channel transistors may be, for example, thin film transistors having an amorphous silicon film as a semiconductor film, or thin film transistors having a polysilicon film as a semiconductor film.
 駆動トランジスタT1のゲートは、ノードN1に電気的接続されている。駆動トランジスタT1の第1端子であるソースは、ノードN2を通じて電流駆動素子の一例であるEL素子OELのアノードに電気的接続され、駆動トランジスタT1の第2端子であるドレインは、ノードN3を通じて電源線Laに電気的接続されている。駆動トランジスタT1は、飽和領域において電流を制御することの可能なトランジスタであって、駆動トランジスタT1のゲート‐ソース間電圧Vgsに基づく電流をドレイン‐ソース間電流Idsとして流す機能を有している。 The gate of the driving transistor T1 is electrically connected to the node N1. The source which is the first terminal of the driving transistor T1 is electrically connected to the anode of the EL element OEL which is an example of the current driving element through the node N2, and the drain which is the second terminal of the driving transistor T1 is connected to the power supply line through the node N3. It is electrically connected to La. The drive transistor T1 is a transistor capable of controlling a current in a saturation region, and has a function of causing a current based on the gate-source voltage Vgs of the drive transistor T1 to flow as a drain-source current Ids.
 EL素子OELのアノードは、画素回路PCCにおけるノードN2に電気的接続されて、EL素子OELのカソードの電圧レベルには、接地レベルなどの基準レベルELVSSが設定されている。なお、EL素子OELには画素容量が含まれ、データ線Ldには寄生容量が含まれている。 The anode of the EL element OEL is electrically connected to the node N2 in the pixel circuit PCC, and a reference level ELVSS such as a ground level is set as the voltage level of the cathode of the EL element OEL. Note that the EL element OEL includes a pixel capacitance, and the data line Ld includes a parasitic capacitance.
 保持容量Csの有する2つの電極の中で第1電極は、ノードN1に電気的接続され、保持容量Csの有する2つの電極の中で第2電極は、ノードN2に電気的接続されている。保持容量Csは、駆動トランジスタT1のゲートと、駆動トランジスタT1のソースとの間に形成される寄生容量であってもよいし、ノードN1とノードN2との間に別途備えられる容量素子であってもよいし、これらの組み合わせであってもよい。保持容量Csは、駆動トランジスタT1のゲート‐ソース間電圧Vgsを保持する機能を有している。 Among the two electrodes of the storage capacitor Cs, the first electrode is electrically connected to the node N1, and among the two electrodes of the storage capacitor Cs, the second electrode is electrically connected to the node N2. The storage capacitor Cs may be a parasitic capacitor formed between the gate of the driving transistor T1 and the source of the driving transistor T1, or may be a capacitive element provided separately between the node N1 and the node N2. Or a combination thereof. The holding capacitor Cs has a function of holding the gate-source voltage Vgs of the driving transistor T1.
 保持トランジスタT2のゲートは、ノードN4を通じて選択線Lsに電気的接続されている。保持トランジスタT2のドレインは、ノードN3を通じて電源線Laに電気的接続されて、保持トランジスタT2のソースは、ノードN1に電気的接続されている。保持トランジスタT2は、駆動トランジスタT1のドレインと、駆動トランジスタT1のゲートとの導通を、選択線Lsに設定される電圧レベルに基づいて制御する。 The gate of the holding transistor T2 is electrically connected to the selection line Ls through the node N4. The drain of the holding transistor T2 is electrically connected to the power supply line La through the node N3, and the source of the holding transistor T2 is electrically connected to the node N1. The holding transistor T2 controls conduction between the drain of the driving transistor T1 and the gate of the driving transistor T1 based on the voltage level set on the selection line Ls.
 例えば、選択線Lsに入力された選択信号Vselの電圧レベルが、ハイレベルHであるとき、保持トランジスタT2は、駆動トランジスタT1のドレインと、駆動トランジスタT1のゲートとを導通させて、駆動トランジスタT1をダイオード接続させる。これに対して、選択線Lsに入力された選択信号Vselの電圧レベルが、ローレベルLであるとき、保持トランジスタT2は、駆動トランジスタT1のドレインと、駆動トランジスタT1のゲートとを電気的に絶縁させて、駆動トランジスタT1にダイオード接続を解除させる。 For example, when the voltage level of the selection signal Vsel input to the selection line Ls is the high level H, the holding transistor T2 makes the drain of the driving transistor T1 and the gate of the driving transistor T1 conductive, thereby driving the driving transistor T1. Is diode-connected. On the other hand, when the voltage level of the selection signal Vsel input to the selection line Ls is the low level L, the holding transistor T2 electrically insulates the drain of the driving transistor T1 from the gate of the driving transistor T1. This causes the drive transistor T1 to release the diode connection.
 選択トランジスタT3のゲートは、選択線Lsに電気的接続されている。選択トランジスタT3のソースは、データ線Ldに電気的接続され、選択トランジスタT3のドレインは、ノードN2に電気的接続されている。選択トランジスタT3は、駆動トランジスタT1のソースとデータ線Ldとの導通を選択線Lsの電圧レベルに基づいて制御する。 The gate of the selection transistor T3 is electrically connected to the selection line Ls. The source of the selection transistor T3 is electrically connected to the data line Ld, and the drain of the selection transistor T3 is electrically connected to the node N2. The selection transistor T3 controls conduction between the source of the driving transistor T1 and the data line Ld based on the voltage level of the selection line Ls.
 例えば、選択線Lsに入力された選択信号Vselの電圧レベルが、ハイレベルHであるとき、選択トランジスタT3は、駆動トランジスタT1のソースとデータ線Ldとを導通させて、保持容量Csの第1電極における電圧レベルと、データ線Ldに入力されたデータ信号Vdの電圧レベルとの差に応じた電圧を保持容量Csに保持させる。これに対して、選択線Lsに入力された選択信号Vselの電圧レベルが、ローレベルLであるとき、選択トランジスタT3は、駆動トランジスタT1のソースとデータ線Ldとを電気的に絶縁させる。 For example, when the voltage level of the selection signal Vsel input to the selection line Ls is the high level H, the selection transistor T3 makes the source of the driving transistor T1 and the data line Ld conductive, and the first of the storage capacitor Cs. A voltage corresponding to the difference between the voltage level at the electrode and the voltage level of the data signal Vd input to the data line Ld is held in the holding capacitor Cs. On the other hand, when the voltage level of the selection signal Vsel input to the selection line Ls is the low level L, the selection transistor T3 electrically insulates the source of the driving transistor T1 from the data line Ld.
 [画素PXの動作]
 画素PXに設定される発光期間は、階調値Dinに基づく階調値レベルVdataがデータ線Ldに設定される書込動作と、その書込動作後の発光動作とを、m行×n列の画素回路PCCが1つの画素行ずつ行番号順に行う期間である。
[Operation of Pixel PX]
In the light emission period set in the pixel PX, the writing operation in which the gradation value level Vdata based on the gradation value Din is set in the data line Ld and the light emitting operation after the writing operation are performed in m rows × n columns. This is a period in which the pixel circuit PCC performs each pixel row in the order of row numbers.
 画素PXに設定される非発光期間は、最低階調値に相当する階調値レベルVdataがデータ線Ldに設定される書込動作と、その書込動作後の非発光動作とを、m行×n列の画素回路PCCが1つの画素行ずつ行番号順に行う期間である。 In the non-light emission period set in the pixel PX, the writing operation in which the gradation value level Vdata corresponding to the lowest gradation value is set in the data line Ld and the non-light emission operation after the writing operation are performed in m rows. This is a period in which the pixel circuits PCC of xn columns perform one pixel row at a time in the row number order.
 画素PXに設定される測定期間は、測定レベルVMがデータ線Ldに設定される書込動作と、その書込動作後の測定動作とを、m行×n列の画素回路PCCが1つの画素行ずつ行う期間である。 During the measurement period set for the pixel PX, the writing operation in which the measurement level VM is set to the data line Ld and the measurement operation after the writing operation are performed by the pixel circuit PCC of m rows × n columns. This is the period for line by line.
 [発光期間の書込動作]
 図3が示すように、発光期間における書込動作において、選択ドライバ20は、選択信号VselにハイレベルHを設定して、保持トランジスタT2、および、選択トランジスタT3にオン状態を設定する。電源ドライバ30は、基準レベルELVSSとほぼ等しい電圧レベルである書込レベルWDVSSを電源信号Vaに設定する。データドライバ40は、階調値Dinから生成された階調値レベルVdataをデータ信号Vdに設定する。そして、保持トランジスタT2、および、選択トランジスタT3は、階調値レベルVdataと書込レベルWDVSSとの差に応じた電圧を保持容量Csに書き込む。
[Write operation during light emission period]
As shown in FIG. 3, in the writing operation in the light emission period, the selection driver 20 sets the selection signal Vsel to the high level H, and sets the holding transistor T2 and the selection transistor T3 to the on state. The power supply driver 30 sets the write level WDVSS, which is a voltage level substantially equal to the reference level ELVSS, to the power supply signal Va. The data driver 40 sets the gradation value level Vdata generated from the gradation value Din to the data signal Vd. The holding transistor T2 and the selection transistor T3 write a voltage corresponding to the difference between the gradation value level Vdata and the writing level WDVSS in the holding capacitor Cs.
 発光期間における書込動作においてデータ信号Vdに設定される電圧レベルは、階調値Dinに相当する階調値レベルVdataであって、基準レベルELVSS、および、書込レベルWDVSSよりも低い電圧レベルである。 The voltage level set in the data signal Vd in the writing operation in the light emission period is a gradation value level Vdata corresponding to the gradation value Din, and is a voltage level lower than the reference level ELVSS and the writing level WDVSS. is there.
 こうしたデータ信号Vdがデータ線Ldに入力されるとき、駆動トランジスタT1のソースは、基準レベルELVSSよりも低い電圧レベルを設定される。そして、ダイオード接続された駆動トランジスタT1のゲートは、駆動トランジスタT1のドレインと等しい電圧レベルを設定される。これによって、駆動トランジスタT1のドレイン‐ソース間電圧Vdsに順バイアスが設定されて、ドレイン‐ソース間電圧Vdsに基づくドレイン‐ソース間電流Idsが流れる。 When such a data signal Vd is input to the data line Ld, the source of the drive transistor T1 is set to a voltage level lower than the reference level ELVSS. The gate of the diode-connected driving transistor T1 is set to a voltage level equal to the drain of the driving transistor T1. As a result, a forward bias is set to the drain-source voltage Vds of the driving transistor T1, and a drain-source current Ids based on the drain-source voltage Vds flows.
 この際に、駆動トランジスタT1がダイオード接続されているため、駆動トランジスタT1のドレイン‐ソース間電圧Vdsは、ゲート‐ソース間電圧Vgsにほぼ等しい。そして、駆動トランジスタT1のゲート‐ソース間において順バイアスであって、かつ、EL素子OELに対して逆バイアスとなるゲート‐ソース間電圧Vgsが保持容量Csに書き込まれる。 At this time, since the drive transistor T1 is diode-connected, the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs. Then, a gate-source voltage Vgs that is forward biased between the gate and source of the driving transistor T1 and reversely biased with respect to the EL element OEL is written into the storage capacitor Cs.
 [非発光期間の書込動作]
 非発光期間における書込動作は、発光期間の書込動作とはデータ線Ldに設定される電圧レベルが異なる。非発光期間の書込動作においてデータ信号Vdに設定される電圧レベルは、最低階調に相当する階調値レベルVdataであって、基準レベルELVSS、および、書込レベルWDVSSとほぼ等しい電圧レベルである。
[Write operation during non-emission period]
The write operation in the non-light emission period differs from the write operation in the light emission period in the voltage level set on the data line Ld. The voltage level set in the data signal Vd in the writing operation in the non-light emitting period is a gradation value level Vdata corresponding to the lowest gradation, and is a voltage level substantially equal to the reference level ELVSS and the writing level WDVSS. is there.
 こうしたデータ信号Vdがデータ線Ldに入力されるとき、駆動トランジスタT1のソースは、基準レベルELVSSとほぼ等しい電圧レベルを設定される。そして、ダイオード接続された駆動トランジスタT1のゲートが、駆動トランジスタT1のドレインと等しい電圧レベルを設定されて、駆動トランジスタT1のドレイン‐ソース間電圧Vdsにほぼ0Vであるゼロバイアスが設定されるため、ドレイン‐ソース間電流Idsが流れない。 When such a data signal Vd is input to the data line Ld, the source of the drive transistor T1 is set to a voltage level substantially equal to the reference level ELVSS. Since the gate of the diode-connected driving transistor T1 is set to a voltage level equal to that of the drain of the driving transistor T1, a zero bias that is substantially 0 V is set to the drain-source voltage Vds of the driving transistor T1. The drain-source current Ids does not flow.
 この際に、駆動トランジスタT1がダイオード接続されているため、駆動トランジスタT1のドレイン‐ソース間電圧Vdsは、ゲート‐ソース間電圧Vgsにほぼ等しい。そして、駆動トランジスタT1のゲート‐ソース間においてほぼゼロバイアスとなるゲート‐ソース間電圧Vgsが保持容量Csに書き込まれる。 At this time, since the drive transistor T1 is diode-connected, the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs. Then, the gate-source voltage Vgs that is almost zero bias between the gate and the source of the driving transistor T1 is written in the storage capacitor Cs.
 [測定期間の書込動作]
 測定期間における書込動作では、データ線Ldに設定される電圧レベルが発光期間の書込動作とは異なる。測定期間の書込動作においてデータ信号Vdに設定される電圧レベルは、測定レベルVMであって、基準レベルELVSS、および、書込レベルWDVSSよりも低く、かつ、書込レベルWDVSSと測定レベルVMとの差が、駆動トランジスタT1のしきい値を越える電圧レベルである。
[Write operation during measurement period]
In the writing operation in the measurement period, the voltage level set to the data line Ld is different from that in the light emission period. The voltage level set for the data signal Vd in the write operation during the measurement period is the measurement level VM, which is lower than the reference level ELVSS and the write level WDVSS, and the write level WDVSS and the measurement level VM. Is a voltage level exceeding the threshold value of the driving transistor T1.
 こうしたデータ信号Vdがデータ線Ldに入力されるとき、駆動トランジスタT1のソースは、基準レベルELVSSよりも低い電圧レベルを設定される。そして、ダイオード接続された駆動トランジスタT1のゲートが、駆動トランジスタT1のドレインと等しい電圧レベルを設定されて、駆動トランジスタT1のドレイン‐ソース間電圧Vdsに順バイアスが設定されて、ドレイン‐ソース間電圧Vdsに基づくドレイン‐ソース間電流Idsが流れる。 When such a data signal Vd is input to the data line Ld, the source of the drive transistor T1 is set to a voltage level lower than the reference level ELVSS. The gate of the diode-connected driving transistor T1 is set to a voltage level equal to that of the drain of the driving transistor T1, and a forward bias is set to the drain-source voltage Vds of the driving transistor T1, so that the drain-source voltage is set. A drain-source current Ids based on Vds flows.
 この際に、駆動トランジスタT1がダイオード接続されているため、駆動トランジスタT1のドレイン‐ソース間電圧Vdsは、ゲート‐ソース間電圧Vgsにほぼ等しい。そして、駆動トランジスタT1のゲート‐ソース間において順バイアスであって、かつ、EL素子OELに対して逆バイアスとなるゲート‐ソース間電圧Vgsが、駆動トランジスタT1のしきい値電圧Vthを越える大きさを有して保持容量Csに書き込まれる。 At this time, since the drive transistor T1 is diode-connected, the drain-source voltage Vds of the drive transistor T1 is substantially equal to the gate-source voltage Vgs. The gate-source voltage Vgs that is forward biased between the gate and source of the driving transistor T1 and reversely biased with respect to the EL element OEL exceeds the threshold voltage Vth of the driving transistor T1. And is written to the storage capacitor Cs.
 [発光動作]
 図4が示すように、発光期間における発光動作において、選択ドライバ20は、選択信号VselにローレベルLを設定して、保持トランジスタT2、および、選択トランジスタT3にオフ状態を設定する。電源ドライバ30は、書込レベルWDVSSよりも高い電圧レベルであって、駆動トランジスタT1が飽和領域にて駆動するような発光レベルELVDDを電源信号Vaに設定する。そして、駆動トランジスタT1は、保持容量Csの保持するゲート‐ソース間電圧Vgsに基づくドレイン‐ソース間電流Idsを流す。
[Light emission operation]
As shown in FIG. 4, in the light emission operation in the light emission period, the selection driver 20 sets the selection signal Vsel to the low level L, and sets the holding transistor T2 and the selection transistor T3 to the off state. The power supply driver 30 sets the light emission level ELVDD, which is a voltage level higher than the write level WDVSS, such that the drive transistor T1 is driven in the saturation region, as the power supply signal Va. The driving transistor T1 allows a drain-source current Ids to flow based on the gate-source voltage Vgs held by the holding capacitor Cs.
 この際に、駆動トランジスタT1におけるドレイン‐ソース間電流Idsは、ゲート‐ソース間電圧Vgsと、駆動トランジスタT1におけるしきい値電圧Vthとの差に基づく大きさであって、ゲート‐ソース間電圧Vgsと、しきい値電圧Vthとの差ごとに異なる。そして、発光期間の書込動作において保持容量Csに保持されたゲート‐ソース間電圧Vgsは、駆動トランジスタT1のしきい値電圧Vthを越えているため、駆動トランジスタT1の電流路にドレイン‐ソース間電流Idsが流れて、EL素子OELが発光する。 At this time, the drain-source current Ids in the driving transistor T1 has a magnitude based on the difference between the gate-source voltage Vgs and the threshold voltage Vth in the driving transistor T1, and the gate-source voltage Vgs. And the difference from the threshold voltage Vth. Since the gate-source voltage Vgs held in the holding capacitor Cs in the write operation during the light emission period exceeds the threshold voltage Vth of the drive transistor T1, the drain-source voltage is connected to the current path of the drive transistor T1. The current Ids flows and the EL element OEL emits light.
 [非発光動作]
 非発光期間における非発光動作において、発光動作と同じく、選択ドライバ20は選択信号VselにローレベルLを設定して、保持トランジスタT2、および、選択トランジスタT3にオフ状態を設定する。電源ドライバ30は、書込レベルWDVSSよりも高い電圧レベルであって、駆動トランジスタT1が飽和領域にて駆動するような発光レベルELVDDを電源信号Vaに設定する。
[Non-light emission operation]
In the non-light emission operation in the non-light emission period, the selection driver 20 sets the selection signal Vsel to the low level L and sets the holding transistor T2 and the selection transistor T3 to the off state, as in the light emission operation. The power supply driver 30 sets the light emission level ELVDD, which is a voltage level higher than the write level WDVSS, such that the drive transistor T1 is driven in the saturation region, as the power supply signal Va.
 この際に、駆動トランジスタT1のドレインは、駆動トランジスタT1のソースよりも高い電圧レベルを設定されるものの、非発光期間における書込動作によれば、保持容量Csに保持されたゲート‐ソース間電圧Vgsがおよそ0Vである。そのため、駆動トランジスタT1の電流路にドレイン‐ソース間電流Idsが流れず、EL素子OELは発光しない。 At this time, although the drain of the driving transistor T1 is set to a higher voltage level than the source of the driving transistor T1, according to the writing operation in the non-light emitting period, the gate-source voltage held in the holding capacitor Cs. Vgs is approximately 0V. Therefore, the drain-source current Ids does not flow in the current path of the driving transistor T1, and the EL element OEL does not emit light.
 [測定動作]
 図5が示すように、測定期間における測定動作において、選択ドライバ20は、選択信号VselにハイレベルHを設定して、保持トランジスタT2、および、選択トランジスタT3にオン状態を設定する。電源ドライバ30は、電源信号Vaに書込レベルWDVSSを設定し、データドライバ40は、データ信号Vdの出力回路とデータ線Ldとの接続を切断し、それによって、データ線Ldにハイインピーダンス状態HZを設定する。そして、ハイインピーダンス状態HZの設定から経過した時間である経過時間が、所定の緩和時間tsに到達するまで、データドライバ40は、データ線Ldのハイインピーダンス状態HZを保つ。
[Measurement operation]
As shown in FIG. 5, in the measurement operation in the measurement period, the selection driver 20 sets the selection signal Vsel to the high level H, and sets the holding transistor T2 and the selection transistor T3 to the on state. The power supply driver 30 sets the write level WDVSS to the power supply signal Va, and the data driver 40 disconnects the connection between the output circuit of the data signal Vd and the data line Ld, thereby causing the data line Ld to be in the high impedance state HZ. Set. The data driver 40 maintains the high impedance state HZ of the data line Ld until the elapsed time, which is the time elapsed since the setting of the high impedance state HZ, reaches a predetermined relaxation time ts.
 この際に、駆動トランジスタT1におけるソースの電圧レベルは、経過時間の増加と共に、駆動トランジスタT1のドレインの電圧レベルに徐々に近づく。また、駆動トランジスタT1のドレイン‐ソース間電流Idsも徐々に減少し、これに伴って、保持容量Csに蓄積された電荷が徐々に放電される。保持容量Csに蓄積された電荷が徐々に放電されると、保持容量Csの両電極間の電圧、すなわち、駆動トランジスタT1のゲート‐ソース間電圧Vgsが徐々に減少する。結果として、駆動トランジスタT1のソースの電圧レベルは、経過時間の経過と共に徐々に上昇する。駆動トランジスタT1のソースの電圧レベルの上昇は、駆動トランジスタT1のドレイン‐ソース間電流Idsがほぼ流れなくなる電圧レベルまで続き、ドレイン‐ソース間電流Idsが流れなくなるとき、保持容量Csの放電も停止する。 At this time, the voltage level of the source in the driving transistor T1 gradually approaches the voltage level of the drain of the driving transistor T1 as the elapsed time increases. In addition, the drain-source current Ids of the driving transistor T1 also gradually decreases, and accordingly, the charge accumulated in the storage capacitor Cs is gradually discharged. When the charge accumulated in the storage capacitor Cs is gradually discharged, the voltage between both electrodes of the storage capacitor Cs, that is, the gate-source voltage Vgs of the drive transistor T1 gradually decreases. As a result, the voltage level of the source of the driving transistor T1 gradually increases as the elapsed time passes. The rise in the voltage level of the source of the driving transistor T1 continues to a voltage level at which the drain-source current Ids of the driving transistor T1 almost does not flow. When the drain-source current Ids stops flowing, the discharge of the storage capacitor Cs also stops. .
 これによって、駆動トランジスタT1のゲート‐ソース間電圧Vgsは、原理的には駆動トランジスタT1におけるしきい値電圧Vthに収束する。ただし、実際には、保持容量Csの放電する期間を無限に設定することができないうえに、仮に、保持容量Csの放電する期間を無限に続けるようにしても、サブスレッシュホルド電流が流れてしまい、しきい値電圧Vthの情報は失われてしまう。このため、所定の緩和時間tsとして一定期間の放電の期間を定め、緩和時間tsが経過したときの電圧レベルである収束レベルVsを、しきい値電圧Vthに基づく電圧レベルとしてデータ線Ldに保持させる。基準となる電圧レベルと収束レベルVsとの差が収束電圧であり、しきい値電圧Vthが大きいほど収束電圧は大きい。 Thereby, in principle, the gate-source voltage Vgs of the driving transistor T1 converges to the threshold voltage Vth in the driving transistor T1. However, in practice, the discharge period of the storage capacitor Cs cannot be set to infinity, and the sub-threshold current flows even if the discharge period of the storage capacitor Cs continues indefinitely. Information on the threshold voltage Vth is lost. Therefore, a predetermined discharge period is defined as the predetermined relaxation time ts, and the convergence level Vs, which is the voltage level when the relaxation time ts has elapsed, is held on the data line Ld as a voltage level based on the threshold voltage Vth. Let The difference between the reference voltage level and the convergence level Vs is the convergence voltage, and the convergence voltage increases as the threshold voltage Vth increases.
 なお、この間において、駆動トランジスタT1におけるソースの電圧レベルは、書込レベルWDVSS、および、基準レベルELVSSよりも低い電圧レベルであるため、ドレイン‐ソース間電流Idsは、EL素子OELに流れない。 During this period, the source voltage level in the drive transistor T1 is lower than the write level WDVSS and the reference level ELVSS, and therefore the drain-source current Ids does not flow through the EL element OEL.
 [選択ドライバ20の構成]
 図6が示すように、選択ドライバ20の備えるシフトレジスタ回路21は、選択制御信号SCON1の1つである選択スタートパルス信号SPから、ビット長がmビットであるパラレル信号を生成する。駆動シフトクロックClksがシフトクロック信号としてシフトレジスタ回路21に入力されるとき、シフトレジスタ回路21は、駆動シフトクロックClksの周期ごとに選択スタートパルス信号SPを1ビットずつシフトさせる。測定シフトクロックClkrがシフトクロック信号として入力されるとき、シフトレジスタ回路21は、測定シフトクロックClkrの周期ごとに選択スタートパルス信号SPを1ビットずつシフトさせる。
[Configuration of Selected Driver 20]
As shown in FIG. 6, the shift register circuit 21 included in the selection driver 20 generates a parallel signal having a bit length of m bits from the selection start pulse signal SP that is one of the selection control signals SCON1. When the drive shift clock Clks is input to the shift register circuit 21 as a shift clock signal, the shift register circuit 21 shifts the selection start pulse signal SP bit by bit for each period of the drive shift clock Clks. When the measurement shift clock Clkr is input as a shift clock signal, the shift register circuit 21 shifts the selection start pulse signal SP by one bit for each period of the measurement shift clock Clkr.
 シフトレジスタ回路21の生成するmビットのパラレル信号は、m行の選択線Lsの中から1つの選択線Lsを1行ずつ行番号順に選択するための信号である。シフトレジスタ回路21は、1つの選択線Lsを選択するためのパラレル信号の生成をシフトクロック信号の周期に同期させる。 The m-bit parallel signal generated by the shift register circuit 21 is a signal for selecting one selection line Ls from the m selection lines Ls one by one in the order of row numbers. The shift register circuit 21 synchronizes the generation of a parallel signal for selecting one selection line Ls with the cycle of the shift clock signal.
 駆動シフトクロックClksは、階調値レベルVdataの書込動作を1行ずつ行番号順に設定するためのシフトクロック信号である。測定シフトクロックClkrは、シフトレジスタ回路21が測定シフトクロックClkrを用いて選択スタートパルス信号SPを1ビット目からmビット目までシフトさせる間に、複数の選択線Lsのなかの1つの選択線Lsに対して測定レベルVMの書込動作を設定するためのシフトクロック信号である。測定シフトクロックClkrの有する周期は、駆動シフトクロックClksの有する周期よりも十分に短い。 The drive shift clock Clks is a shift clock signal for setting the write operation of the gradation value level Vdata in order of the row numbers one row at a time. The measurement shift clock Clkr is used as one selection line Ls among the plurality of selection lines Ls while the shift register circuit 21 shifts the selection start pulse signal SP from the first bit to the m-th bit using the measurement shift clock Clkr. Is a shift clock signal for setting the write operation of the measurement level VM. The period of the measurement shift clock Clkr is sufficiently shorter than the period of the drive shift clock Clks.
 シフトレジスタ回路21は、クリア信号RSTがシフトレジスタ回路21に入力されるときに、選択スタートパルス信号SPのシフトを初期化する。シフトレジスタ回路21は、クリア信号RSTの入力後に選択スタートパルス信号SPが再び入力されることによって、選択線Lsの選択を再び1行目から始める。 The shift register circuit 21 initializes the shift of the selection start pulse signal SP when the clear signal RST is input to the shift register circuit 21. The shift register circuit 21 starts the selection of the selection line Ls from the first row again when the selection start pulse signal SP is input again after the clear signal RST is input.
 シフトレジスタ回路21は、選択スタートパルス信号SPのシフトによって生成されたパラレル信号を、選択マスクパルス信号MP1が論理的にハイレベルであるときのみ出力する。シフトレジスタ回路21は、選択マスクパルス信号MP1が論理的にローレベルであるとき、選択スタートパルス信号SPのシフトによって生成されたパラレル信号に関わらず、いずれの選択線Lsも選択されないパラレル信号を出力する。 The shift register circuit 21 outputs a parallel signal generated by shifting the selection start pulse signal SP only when the selection mask pulse signal MP1 is logically at a high level. When the selection mask pulse signal MP1 is logically at a low level, the shift register circuit 21 outputs a parallel signal in which no selection line Ls is selected regardless of the parallel signal generated by shifting the selection start pulse signal SP. To do.
 例えば、シフトクロック信号が駆動シフトクロックClksであり、かつ、選択マスクパルス信号MP1が論理的にハイレベルであるとき、シフトレジスタ回路21は、全ての選択線Lsの中のいずれか1つの選択線Lsを選択するためのパラレル信号の生成を駆動シフトクロックClksに同期させる。 For example, when the shift clock signal is the drive shift clock Clks and the selection mask pulse signal MP1 is logically at the high level, the shift register circuit 21 selects any one selection line among all the selection lines Ls. The generation of the parallel signal for selecting Ls is synchronized with the drive shift clock Clks.
 例えば、シフトクロック信号が測定シフトクロックClkrであり、かつ、選択マスクパルス信号MP1が論理的にローレベルであるとき、シフトレジスタ回路21は、いずれの選択線Lsも選択されないパラレル信号を出力し続ける。そして、測定シフトクロックClkrの周期によるシフトがq回(1≦q≦m)進められ、かつ、選択マスクパルス信号MP1の電圧レベルがハイレベルに切り替わるとき、シフトレジスタ回路21は、q行目の選択線Lsを選択するためのパラレル信号を出力する。次いで、選択マスクパルス信号MP1の電圧レベルがローレベルに切り替わるとき、シフトレジスタ回路21は、いずれの選択線Lsも選択されないパラレル信号を再び出力する。 For example, when the shift clock signal is the measurement shift clock Clkr and the selection mask pulse signal MP1 is logically at the low level, the shift register circuit 21 continues to output a parallel signal in which no selection line Ls is selected. . When the shift by the cycle of the measurement shift clock Clkr is advanced q times (1 ≦ q ≦ m) and the voltage level of the selection mask pulse signal MP1 is switched to the high level, the shift register circuit 21 A parallel signal for selecting the selection line Ls is output. Next, when the voltage level of the selection mask pulse signal MP1 is switched to the low level, the shift register circuit 21 again outputs a parallel signal in which no selection line Ls is selected.
 こうした選択マスクパルス信号MP1が入力されることによって、シフトレジスタ回路21は、駆動シフトクロックClksの周期で選択線Lsを1行ずつ行番号順に選択することも、特定の行であるq行目まで選択線Lsの選択を行わないことも可能としている。なお、選択マスクパルス信号MP1の入力によるパラレル信号の出力制御は、例えば、選択マスクパルス信号MP1の入力される論理積回路がシフトレジスタ回路21のビットごとの出力段に設けられることによって実現される。 When the selection mask pulse signal MP1 is input, the shift register circuit 21 can select the selection lines Ls row by row in the order of the row numbers in the cycle of the drive shift clock Clks, or the specific row up to the q-th row. It is also possible not to select the selection line Ls. Note that the parallel signal output control by the input of the selection mask pulse signal MP1 is realized, for example, by providing an AND circuit to which the selection mask pulse signal MP1 is input at an output stage for each bit of the shift register circuit 21. .
 選択ドライバ20の備える出力バッファ22は、シフトレジスタ回路21の出力するパラレル信号の電圧レベルを、保持トランジスタT2、および、選択トランジスタT3の駆動する電圧レベルに変換する。出力バッファ22は、m行の選択線Lsに接続されて、m行の選択線Lsを1行ずつパラレル信号のビット番号に対応付けている。 The output buffer 22 included in the selection driver 20 converts the voltage level of the parallel signal output from the shift register circuit 21 into a voltage level driven by the holding transistor T2 and the selection transistor T3. The output buffer 22 is connected to the m selection lines Ls, and associates the m selection lines Ls one by one with the bit number of the parallel signal.
 例えば、シフトレジスタ回路21の出力するパラレル信号において第q番ビットが選択されているとき、出力バッファ22は、第q番ビットの電圧レベルを、画素回路PCCにおけるハイレベルHに変換し、第q番ビット以外のビットの電圧レベルを、画素回路PCCにおけるローレベルLに変換する。そして、出力バッファ22は、q行目の選択線Lsの選択信号VselにハイレベルHを設定し、q行目以外の選択線Lsの選択信号VselにローレベルLを設定する。 For example, when the q-th bit is selected in the parallel signal output from the shift register circuit 21, the output buffer 22 converts the voltage level of the q-th bit into a high level H in the pixel circuit PCC, and the q-th bit. The voltage level of bits other than the number bit is converted to a low level L in the pixel circuit PCC. Then, the output buffer 22 sets the high level H to the selection signal Vsel of the q-th selection line Ls, and sets the low level L to the selection signal Vsel of the selection lines Ls other than the q-th row.
 [電源ドライバ30の構成]
 図7が示すように、電源ドライバ30の備えるシフトレジスタ31は、選択ドライバ20の備えるシフトレジスタ回路21と同じく、電源制御信号SCON2の1つである選択スタートパルス信号SPから、ビット長がmビットであるパラレル信号を生成する。
[Configuration of Power Supply Driver 30]
As shown in FIG. 7, the shift register 31 included in the power supply driver 30 has a bit length of m bits from the selection start pulse signal SP that is one of the power supply control signals SCON <b> 2, similarly to the shift register circuit 21 included in the selection driver 20. A parallel signal is generated.
 シフトレジスタ31の生成するmビットのパラレル信号は、m行の電源線Laの中から1つの電源線Laを1行ずつ行番号順に選択するための信号である。シフトレジスタ31は、1つの電源線Laを選択するためのパラレル信号をシフトクロックの周期によって生成する。 The m-bit parallel signal generated by the shift register 31 is a signal for selecting one power supply line La from the m power supply lines La in order of the row numbers one by one. The shift register 31 generates a parallel signal for selecting one power supply line La according to the cycle of the shift clock.
 シフトレジスタ31は、クリア信号RSTがシフトレジスタ31に入力されるときに、選択スタートパルス信号SPのシフトを初期化する。シフトレジスタ31は、クリア信号RSTの入力後に選択スタートパルス信号SPが再び入力されることによって、電源線Laの選択を再び1行目から開始する。 The shift register 31 initializes the shift of the selection start pulse signal SP when the clear signal RST is input to the shift register 31. The shift register 31 starts the selection of the power supply line La from the first row again when the selection start pulse signal SP is input again after the clear signal RST is input.
 シフトレジスタ31は、選択スタートパルス信号SPのシフトによって生成されたパラレル信号を、電源マスクパルス信号MP2が論理的にハイレベルであるときのみ出力する。これに対して、電源マスクパルス信号MP2が論理的にローレベルであるとき、シフトレジスタ31は、選択スタートパルス信号SPのシフトによって生成されたパラレル信号に関わらず、全ての電源線Laが選択されるパラレル信号を出力する。 The shift register 31 outputs the parallel signal generated by shifting the selection start pulse signal SP only when the power supply mask pulse signal MP2 is logically at a high level. On the other hand, when the power supply mask pulse signal MP2 is logically at a low level, the shift register 31 selects all the power supply lines La regardless of the parallel signal generated by shifting the selection start pulse signal SP. Output parallel signals.
 例えば、シフトクロック信号が駆動シフトクロックClksであり、かつ、電源マスクパルス信号MP2が論理的にハイレベルであるとき、シフトレジスタ31は、いずれか1つの電源線Laを選択するためのパラレル信号の生成を駆動シフトクロックClksの周期に同期させる。 For example, when the shift clock signal is the drive shift clock Clks and the power mask pulse signal MP2 is logically at a high level, the shift register 31 uses a parallel signal for selecting any one power line La. The generation is synchronized with the period of the drive shift clock Clks.
 例えば、シフトクロック信号が駆動シフトクロックClksであり、かつ、電源マスクパルス信号MP2が論理的にローレベルであるとき、シフトレジスタ31は、パラレル信号における全てのビット値を、電源線Laを選択するためのハイレベルに切り替える。 For example, when the shift clock signal is the drive shift clock Clks and the power mask pulse signal MP2 is logically at a low level, the shift register 31 selects all the bit values in the parallel signal for the power line La. Switch to high level for.
 例えば、シフトクロック信号が測定シフトクロックClkrであり、かつ、電源マスクパルス信号MP2が論理的にローレベルであるとき、シフトレジスタ31は、全ての電源線Laが選択されるパラレル信号を出力する。 For example, when the shift clock signal is the measurement shift clock Clkr and the power mask pulse signal MP2 is logically at a low level, the shift register 31 outputs a parallel signal for selecting all the power lines La.
 こうした電源マスクパルス信号MP2が入力されることによって、シフトレジスタ31は、駆動シフトクロックClksの周期によって電源線Laを1行ずつ行番号順に選択することも、測定シフトクロックClkrの周期では全ての電源線Laを1度に選択することも可能としている。なお、電源マスクパルス信号MP2の入力によるパラレル信号の出力の制御は、例えば、電源マスクパルス信号MP2の入力される論理積回路がシフトレジスタ31のビットごとの出力段に設けられることによって実現される。 When the power mask pulse signal MP2 is input, the shift register 31 selects the power line La one row at a time in accordance with the cycle of the drive shift clock Clks, or in the cycle of the measurement shift clock Clkr, It is also possible to select the line La at a time. The control of the output of the parallel signal by the input of the power supply mask pulse signal MP2 is realized, for example, by providing an AND circuit to which the power supply mask pulse signal MP2 is input in an output stage for each bit of the shift register 31. .
 電源ドライバ30の備える出力バッファ32は、シフトレジスタ31の出力するパラレル信号の電圧レベルを、書込レベルWDVSSと発光レベルELVDDのいずれかに変換する。出力バッファ32は、m行の電源線Laに接続されて、m行の電源線Laを1行ずつパラレル信号のビット番号に対応付けている。 The output buffer 32 provided in the power supply driver 30 converts the voltage level of the parallel signal output from the shift register 31 into either the write level WDVSS or the light emission level ELVDD. The output buffer 32 is connected to m rows of power supply lines La, and associates m rows of power supply lines La one by one with the bit number of the parallel signal.
 例えば、シフトレジスタ31の出力するパラレル信号において第q番ビットが選択されているとき、出力バッファ32は、第q番ビットの電圧レベルを書込レベルWDVSSに変換し、第q番ビット以外の電圧レベルを発光レベルELVDDに変換する。そして、出力バッファ32は、q行目の電源線Laに対して書込レベルWDVSSを設定された電源信号Vaを入力し、q行目以外の電源線Laに対して発光レベルELVDDを設定された電源信号Vaを入力する。 For example, when the q-th bit is selected in the parallel signal output from the shift register 31, the output buffer 32 converts the voltage level of the q-th bit into the write level WDVSS, and a voltage other than the q-th bit. The level is converted to the light emission level ELVDD. Then, the output buffer 32 receives the power signal Va in which the write level WDVSS is set for the q-th power line La, and the light emission level ELVDD is set for the power lines La other than the q-th line. The power supply signal Va is input.
 [しきい値電圧Vthと緩和時間ts]
 図8における特性曲線L1は、特性値が経時的に変化する前の状態である初期状態の駆動トランジスタT1の特性を示す。図8において特性曲線L2は、特性値が経時的にシフトした状態であるシフト状態の駆動トランジスタT1の状態を示す。なお、図8の縦軸は、電源信号Vaが書込レベルWDVSSに設定されたときの駆動トランジスタT1のドレイン‐ソース間電流Idsを示す。図8の横軸は、ゲート‐ソース間電圧Vgsに相当する電圧であって、書込レベルWDVSSに相当するゲートレベルV0と、データ信号Vdに設定された階調値レベルVdataとの差である駆動電圧(=V0-Vd)を示す。
[Threshold voltage Vth and relaxation time ts]
A characteristic curve L1 in FIG. 8 shows the characteristic of the driving transistor T1 in the initial state, which is a state before the characteristic value changes with time. In FIG. 8, a characteristic curve L2 shows the state of the driving transistor T1 in a shifted state where the characteristic value is shifted with time. 8 indicates the drain-source current Ids of the drive transistor T1 when the power supply signal Va is set to the write level WDVSS. The horizontal axis of FIG. 8 is a voltage corresponding to the gate-source voltage Vgs and is the difference between the gate level V0 corresponding to the write level WDVSS and the gradation value level Vdata set to the data signal Vd. A drive voltage (= V0−Vd) is shown.
 初期状態における駆動トランジスタT1のしきい値電圧Vth[V]を初期値Vthとし、初期状態における駆動トランジスタT1の電流増幅率[A/V]を電流増幅率βとする。また、シフト状態におけるしきい値電圧Vthをシフト値Vth(=初期値Vth+シフト量ΔVth)とする。 The threshold voltage Vth [V] of the driving transistor T1 in the initial state is set to the initial value Vth 0, and the current amplification factor [A / V 2 ] of the driving transistor T1 in the initial state is set to the current amplification factor β. Further, the threshold voltage Vth in the shift state is set to a shift value Vth 1 (= initial value Vth 0 + shift amount ΔVth).
 この際に、初期状態におけるドレイン‐ソース間電流Idsは、下記式(1)によって示され、シフト状態におけるドレイン‐ソース間電流Idsは、下記式(2)によって示される。
 Ids=β(V0-Vd-Vth      ・・・(1)
 Ids=β(V0-Vd-Vth      ・・・(2)
At this time, the drain-source current Ids in the initial state is expressed by the following formula (1), and the drain-source current Ids in the shifted state is expressed by the following formula (2).
Ids = β (V0−Vd−Vth 0 ) 2 (1)
Ids = β (V0−Vd−Vth 1 ) 2 (2)
 図8、および、式(1)、(2)が示すように、特性曲線L2は、特性曲線L1における駆動電圧がシフト量ΔVthだけ並進した形状を有し、しきい値電圧Vthのシフトの前後において、特性曲線L1の有する形状と、特性曲線L2の有する形状とは、ほぼ同じである。特性曲線L1の有する形状と、特性曲線L2の有する形状とがほぼ同じであることは、式(1)、(2)が示すように、電流増幅率βの経時的な変化が、しきい値電圧Vthの経時的な変化に比べて十分に小さいことを示している。それゆえに、初期値Vthとシフト値Vthとの差であるシフト量ΔVthが、階調値レベルVdataに加えられることによって、シフト状態におけるドレイン‐ソース間電流Idsは補正される。すなわち、上述した入力信号SIGから生成される基準階調値Dbにシフト量ΔVthに相当するしきい値補正量kが加算されることによって、EL素子OELの輝度の変化のうち、経時的なしきい値電圧Vthのシフトに起因した変化は補正される。 As shown in FIG. 8 and equations (1) and (2), the characteristic curve L2 has a shape in which the drive voltage in the characteristic curve L1 is translated by the shift amount ΔVth, and before and after the shift of the threshold voltage Vth. The shape of the characteristic curve L1 is substantially the same as the shape of the characteristic curve L2. The fact that the shape of the characteristic curve L1 and the shape of the characteristic curve L2 are almost the same indicate that the change over time of the current amplification factor β is a threshold value, as shown in equations (1) and (2). It shows that the voltage Vth is sufficiently smaller than the change with time. Therefore, the shift amount ΔVth which is the difference between the initial value Vth 0 and the shift value Vth 1 is added to the gradation value level Vdata, whereby the drain-source current Ids in the shift state is corrected. That is, by adding a threshold correction amount k corresponding to the shift amount ΔVth to the reference gradation value Db generated from the input signal SIG described above, the threshold over time of the change in the luminance of the EL element OEL. Changes due to the shift of the value voltage Vth are corrected.
 図9を参照して測定動作における緩和時間tsを説明する。図9は、測定動作におけるデータ線Ldの電圧レベルVNs、すなわち、駆動トランジスタT1におけるソースの電圧レベルに基づく電圧レベルと経過時間tとの関係を示す。 The relaxation time ts in the measurement operation will be described with reference to FIG. FIG. 9 shows the relationship between the voltage level VNs of the data line Ld in the measurement operation, that is, the voltage level based on the voltage level of the source in the driving transistor T1 and the elapsed time t.
 図9が示すように、測定動作において経過時間tが進むとき、データ線Ldの電圧レベルVNsは、保持容量Csにおける放電に従って、測定レベルVMから書込レベルWDVSSに近づく。そして、経過時間tが緩和時間tsに到達するとき、データ線Ldの電圧レベルVNsは、しきい値電圧Vthに基づく収束レベルVsに収束して、ドレイン‐ソース間電流Idsはほぼ流れなくなる。 As shown in FIG. 9, when the elapsed time t advances in the measurement operation, the voltage level VNs of the data line Ld approaches the write level WDVSS from the measurement level VM according to the discharge in the storage capacitor Cs. When the elapsed time t reaches the relaxation time ts, the voltage level VNs of the data line Ld converges to the convergence level Vs based on the threshold voltage Vth, and the drain-source current Ids hardly flows.
 この際に、緩和時間tsが経過したときのデータ線Ldの電圧レベルである収束レベルVsは、シフト量ΔVthを反映した電圧レベルであって、その時々のしきい値電圧Vthに基づく特性値でもある。駆動トランジスタT1のしきい値電圧Vthは、収束レベルVsと書込レベルWDVSSとの差に基づく電圧として推定される。そして、データ線Ldに保持された収束レベルVsは、データドライバ40に取り込まれて、収束レベルVsと、基準となる電圧レベルとの差、例えば、アナログ基準電圧DVSSとの差である収束電圧を示すデジタル値である測定データDoutに変換される。なお、収束レベルVsから測定データDoutへの変換に際しては、しきい値電圧Vthが大きいほど測定データDoutが大きいように、基準となる電圧レベルは設定されている。 At this time, the convergence level Vs, which is the voltage level of the data line Ld when the relaxation time ts has elapsed, is a voltage level reflecting the shift amount ΔVth, and is a characteristic value based on the threshold voltage Vth at that time. is there. The threshold voltage Vth of the drive transistor T1 is estimated as a voltage based on the difference between the convergence level Vs and the write level WDVSS. Then, the convergence level Vs held in the data line Ld is taken into the data driver 40, and a convergence voltage that is a difference between the convergence level Vs and a reference voltage level, for example, an analog reference voltage DVSS is obtained. It is converted into measurement data Dout which is a digital value. In the conversion from the convergence level Vs to the measurement data Dout, the reference voltage level is set so that the measurement data Dout increases as the threshold voltage Vth increases.
 [データドライバ40の構成]
 図10が示すように、測定部、および、設定部を構成するデータドライバ40は、シフトレジスタ41、データレジスタ42、データラッチ回路43、DAC44、バッファ45、レベルシフタ46、および、アップカウンタ47を備えている。
[Configuration of Data Driver 40]
As shown in FIG. 10, the data driver 40 constituting the measurement unit and the setting unit includes a shift register 41, a data register 42, a data latch circuit 43, a DAC 44, a buffer 45, a level shifter 46, and an up counter 47. ing.
 シフトレジスタ41、データレジスタ42、データラッチ回路43、および、アップカウンタ47は、低耐圧回路として構成され、これらの回路には、ロジック電源60から、論理的にハイレベルのロジック高電圧LVDD、および、論理的にローレベルのロジック低電圧LVSSが印加される。 The shift register 41, the data register 42, the data latch circuit 43, and the up-counter 47 are configured as a low withstand voltage circuit. These circuits include a logic high voltage LVDD that is logically high from the logic power supply 60, and , A logic low voltage LVSS of a logical low level is applied.
 DAC44、および、バッファ45は、高耐圧回路として構成され、これらの回路には、アナログ電源70から、ハイレベルのアナログ基準電圧DVSS、および、ローレベルのアナログ電源電圧VEEが印加される。アナログ基準電圧DVSSは、書込レベルWDVSS、および、基準レベルELVSSとほぼ等しい電圧レベルに設定される。 The DAC 44 and the buffer 45 are configured as high withstand voltage circuits, and a high level analog reference voltage DVSS and a low level analog power supply voltage VEE are applied to these circuits from the analog power supply 70. Analog reference voltage DVSS is set to a voltage level substantially equal to write level WDVSS and reference level ELVSS.
 シフトレジスタ41は、データスタートパルス信号SP1から、ビット長がnビットであるパラレル信号を生成する。データシフトクロックClkdがシフトクロック信号として入力されるとき、シフトレジスタ41は、データシフトクロックClkdの周期によってデータスタートパルス信号SP1を1ビットずつシフトさせる。 The shift register 41 generates a parallel signal having a bit length of n bits from the data start pulse signal SP1. When the data shift clock Clkd is input as a shift clock signal, the shift register 41 shifts the data start pulse signal SP1 bit by bit according to the cycle of the data shift clock Clkd.
 シフトレジスタ41の生成するnビットのパラレル信号は、n列のデータ線Ldの中から1つのデータ線Ldを1列ずつ列番号順に選択するための信号である。シフトレジスタ41は、データ線Ldを選択するためのパラレル信号の生成をデータシフトクロックClkdの周期に同期させる。 The n-bit parallel signal generated by the shift register 41 is a signal for selecting one data line Ld from the n columns of data lines Ld one column at a time in the column number order. The shift register 41 synchronizes the generation of the parallel signal for selecting the data line Ld with the cycle of the data shift clock Clkd.
 データシフトクロックClkdは、書込動作において、1つの選択線Lsが選択される期間において、1行分の画素PXの全てに階調値Dinを割り当てるシフトクロック信号である。データシフトクロックClkdの有する周期は、駆動シフトクロックClksの有する周期よりも十分に短く、例えば、駆動シフトクロックClksの1/nであって、測定シフトクロックClkrの有する周期とほぼ等しい。 The data shift clock Clkd is a shift clock signal that assigns the gradation value Din to all of the pixels PX for one row in a period in which one selection line Ls is selected in the write operation. The period of the data shift clock Clkd is sufficiently shorter than the period of the drive shift clock Clks, and is, for example, 1 / n of the drive shift clock Clks and substantially the same as the period of the measurement shift clock Clkr.
 また、データシフトクロックClkdは、測定動作において、アップカウンタ47のカウント値を増やすクロック信号である。測定動作におけるデータシフトクロックClkdの送出回数Nは、アップカウンタ47の数えるカウント値の最大値である。アップカウンタ47のカウントするカウント値は、収束電圧を測定するための電圧レベルであるリファレンスレベルをカウント値ごとに1段ずつ降圧するためのデジタル値である。 The data shift clock Clkd is a clock signal that increases the count value of the up counter 47 in the measurement operation. The number N of transmissions of the data shift clock Clkd in the measurement operation is the maximum count value counted by the up counter 47. The count value counted by the up counter 47 is a digital value for stepping down the reference level, which is a voltage level for measuring the convergence voltage, by one stage for each count value.
 例えば、アップカウンタ47のカウントしたカウント値が「1」であるとき、デジタル値である「1」に基づく電圧レベルとして、アナログ基準電圧DVSSよりも1×分解能Vcnt[V]だけ低い電圧レベルがリファレンスレベルとして生成される。また、アップカウンタ47のカウントしたカウント値が「4」であるとき、デジタル値である「4」に基づく電圧レベルとして、アナログ基準電圧DVSSよりも4×分解能Vcnt[V]だけ低い電圧レベルがリファレンスレベルとして生成される。そして、アップカウンタ47のカウント値が変わるごとに、収束レベルVsと比較される新たなリファレンスレベルが生成される。リファレンスレベルと、基準となる電圧レベルとの差がリファレンス電圧であり、こうした基準となる電圧レベルは、収束電圧において基準となる電圧レベルと同じであり、カウント値が大きいほどリファレンス電圧が大きいように、基準となる電圧レベルは設定されている。 For example, when the count value counted by the up counter 47 is “1”, the voltage level based on the digital value “1” is a voltage level lower than the analog reference voltage DVSS by 1 × resolution Vcnt [V]. Generated as a level. When the count value counted by the up counter 47 is “4”, the voltage level based on the digital value “4” is a voltage level lower than the analog reference voltage DVSS by 4 × resolution Vcnt [V]. Generated as a level. Each time the count value of the up counter 47 changes, a new reference level to be compared with the convergence level Vs is generated. The difference between the reference level and the reference voltage level is the reference voltage. The reference voltage level is the same as the reference voltage level in the convergence voltage, and the reference voltage increases as the count value increases. The reference voltage level is set.
 データレジスタ42は、n列×k個のレジスタを備え、シフトレジスタ41の出力するパラレル信号のビットごとにk個のレジスタを備えている。例えば、階調値Dinにおける最高階調値が255であるとき、階調値Dinは8ビットのデジタル値であって、データレジスタ42はn列×8個のレジスタを備えている。シフトレジスタ41の出力するパラレル信号は、こうしたn列×k個のレジスタから、1列ずつ列番号順にk個のレジスタを選択する。データレジスタ42は、選択されたk個のレジスタに階調値Dinを格納して、格納先となるk個のレジスタをデータシフトクロックClkdの周期によって1列ずつ列番号順にシフトさせる。 The data register 42 includes n columns × k registers, and includes k registers for each bit of the parallel signal output from the shift register 41. For example, when the maximum gradation value in the gradation value Din is 255, the gradation value Din is an 8-bit digital value, and the data register 42 includes n columns × 8 registers. For the parallel signal output from the shift register 41, k registers are selected from the n columns × k registers in the order of the column numbers one column at a time. The data register 42 stores the gradation value Din in the selected k registers, and shifts the k registers as the storage destination one column at a time in the order of the column number according to the cycle of the data shift clock Clkd.
 データラッチ回路43は、n列のデータラッチ43a、n列の論理積回路43b、および、n列のフリップフロップ43cを備えている。また、データラッチ回路43は、n列の入力スイッチSW1、n列の出力スイッチSW2、n列の測定用スイッチSW3、および、1つの転送スイッチSWtrsを備えている。 The data latch circuit 43 includes an n-column data latch 43a, an n-column AND circuit 43b, and an n-column flip-flop 43c. The data latch circuit 43 includes an n-column input switch SW1, an n-column output switch SW2, an n-column measurement switch SW3, and one transfer switch SWtrs.
 アップカウンタ47の出力端子は、n列の入力スイッチSW1の各々の入力端子に並列に接続されている。アップカウンタ47は、測定動作においてデータシフトクロックClkdに同期してカウントアップし、データシフトクロックClkdの送出回数Nであるカウント値をn列の入力スイッチSW1の各々にデジタル値として一斉に入力する。 The output terminal of the up counter 47 is connected in parallel to each input terminal of the n-row input switch SW1. The up counter 47 counts up in synchronization with the data shift clock Clkd in the measurement operation, and inputs the count value, which is the number N of transmissions of the data shift clock Clkd, as a digital value to each of the n columns of input switches SW1.
 j列目(1≦j≦n)の入力スイッチSW1は、j列目のデータラッチ43aの入力端子に接続されている。p列目(1≦p≦n-1)の入力スイッチSW1は、システムコントローラー50から入力されるデータ制御信号SCON3に基づいて駆動されて、p列目のデータラッチ43aの入力端子を、データレジスタ42におけるp列目のレジスタの出力端子、アップカウンタ47の出力端子、p+1列目のデータラッチ43aの出力端子の中のいずれか1つに接続する。 The input switch SW1 in the j-th column (1 ≦ j ≦ n) is connected to the input terminal of the data latch 43a in the j-th column. The input switch SW1 in the p-th column (1 ≦ p ≦ n−1) is driven based on the data control signal SCON3 input from the system controller 50, and the input terminal of the data latch 43a in the p-th column is connected to the data register. 42 is connected to any one of the output terminal of the register in the p-th column, the output terminal of the up-counter 47, and the output terminal of the data latch 43a in the p + 1-th column.
 j列目の出力スイッチSW2は、j列目のデータラッチ43aの出力端子に接続されている。p+1列目の出力スイッチSW2は、システムコントローラー50から入力されるデータ制御信号SCON3に基づいて駆動され、p+1列目のデータラッチ43aの出力端子を、p+1列目のレベルシフタ46の入力端子と、p列目の入力スイッチSW1の入力端子のいずれか1つに接続する。1列目の出力スイッチSW2は、システムコントローラー50からの制御信号に基づいて駆動され、1列目のデータラッチ43aの出力端子を、1列目のレベルシフタ46の入力端子と、転送スイッチSWtrsの入力端子のいずれか1つに接続する。 The output switch SW2 in the j-th column is connected to the output terminal of the data latch 43a in the j-th column. The output switch SW2 in the (p + 1) th column is driven based on the data control signal SCON3 input from the system controller 50, and the output terminal of the data latch 43a in the (p + 1) th column is connected to the input terminal of the level shifter 46 in the (p + 1) th column. Connect to one of the input terminals of the input switch SW1 in the column. The output switch SW2 in the first column is driven based on a control signal from the system controller 50. The output terminal of the data latch 43a in the first column is the input terminal of the level shifter 46 in the first column and the input of the transfer switch SWtrs. Connect to one of the terminals.
 j列目の測定用スイッチSW3は、システムコントローラー50から入力されるデータ制御信号SCON3に基づいて駆動され、j列目のフリップフロップ43cのQ端子である出力端子と、j列目の論理積回路43bの入力端子との接続と切断とを切り替える。 The measurement switch SW3 in the j-th column is driven based on the data control signal SCON3 input from the system controller 50, and an output terminal that is a Q terminal of the flip-flop 43c in the j-th column and a logical product circuit in the j-th column The connection and disconnection with the input terminal 43b are switched.
 転送スイッチSWtrsは、システムコントローラー50から入力されるデータ制御信号SCON3に基づいて駆動され、1列目の出力スイッチSW2の出力端子とシステムコントローラー50との接続と切断とを切り替える。 The transfer switch SWtrs is driven based on the data control signal SCON3 input from the system controller 50, and switches connection and disconnection between the output terminal of the output switch SW2 in the first column and the system controller 50.
 j列目(1≦j≦n)のデータラッチ43aの入力端子は、上述した書込動作、発光動作、および、非発光動作において、データレジスタ42におけるj列目のレジスタに接続される。j列目のデータラッチ43aとj列目のレジスタとが接続されるとき、n列の論理積回路43bの各々の出力レベルが一斉に論理的にハイレベルになるごとに、j列目のデータラッチ43aは、j列目のレジスタに格納された階調値Dinを保持する。j列目のデータラッチ43aは、j列目のデータラッチ43aに保持される階調値DinをDAC44へ出力する。そして、n列の論理積回路43bの出力レベルが一斉に論理的にハイレベルになるごとに、データレジスタ42に格納された1行分の階調値Dinをn列のデータラッチ43aは保持する。n列のデータラッチ43aは、保持された1行分の階調値Dinをn列のDAC44へ一斉に出力する。 The input terminal of the data latch 43a in the j-th column (1 ≦ j ≦ n) is connected to the register in the j-th column of the data register 42 in the write operation, light emission operation, and non-light emission operation described above. When the data latch 43a in the j-th column and the register in the j-th column are connected, every time the output levels of the AND circuits 43b in the n-th column all become logically high, the data in the j-th column The latch 43a holds the gradation value Din stored in the register in the jth column. The data latch 43a in the j-th column outputs the gradation value Din held in the data latch 43a in the j-th column to the DAC 44. The n-column data latch 43a holds the gradation value Din for one row stored in the data register 42 every time the output levels of the n-column AND circuits 43b logically become high. . The n-column data latches 43a output the held gradation values Din for one row to the n-column DACs 44 all at once.
 これに対して、n列のデータラッチ43aの各々の入力端子は、上述した測定動作において、アップカウンタ47の出力端子に並列に接続される。n列のデータラッチ43aの各々の入力端子とアップカウンタ47の出力端子とが接続されるとき、データシフトクロックClkdとラッチパルス信号LPとが同期して、これらデータシフトクロックClkdとラッチパルス信号LPとが、データドライバ40に入力される。そして、j列目の論理積回路43bの出力レベルが論理的にハイレベルになるごとに、j列目のデータラッチ43aはアップカウンタ47のカウント値を保持する。 On the other hand, each input terminal of the n-row data latch 43a is connected in parallel to the output terminal of the up counter 47 in the above-described measurement operation. When the input terminal of each of the n columns of data latches 43a and the output terminal of the up counter 47 are connected, the data shift clock Clkd and the latch pulse signal LP are synchronized, and the data shift clock Clkd and the latch pulse signal LP are synchronized. Are input to the data driver 40. The j-th column data latch 43a holds the count value of the up-counter 47 each time the output level of the j-th AND circuit 43b becomes a logical high level.
 例えば、2つのデータラッチ43aの間において、それの接続される論理積回路43bの出力レベルが同時に論理的にハイレベルになるとき、2つのデータラッチ43aの各々は、相互に同じカウント値を保持する。一方で、2つのデータラッチ43aの間において、それらに接続される論理積回路43bの出力レベルが相互に異なるタイミングで論理的にハイレベルになるとき、2つのデータラッチ43aの各々は、別々のカウント値を保持する。 For example, between the two data latches 43a, when the output level of the AND circuit 43b to which the data latches 43a are connected simultaneously becomes a logical high level, each of the two data latches 43a holds the same count value. To do. On the other hand, when the output level of the AND circuit 43b connected to the two data latches 43a becomes logically high at different timings, each of the two data latches 43a Holds the count value.
 また、p列目のデータラッチ43aの入力端子は、上述した測定動作において、p+1列目のデータラッチ43aの出力端子に接続される。p列目のデータラッチ43aの入力端子と、p+1列目のデータラッチ43aの出力端子とが接続されるとき、p列目の論理積回路43bの出力レベルが論理的にハイレベルになるごとに、p列目のデータラッチ43aは、p+1列目のデータラッチ43aに保持されるデータを測定データDoutとして保持する。 Further, the input terminal of the data latch 43a in the p-th column is connected to the output terminal of the data latch 43a in the p + 1-th column in the measurement operation described above. When the input terminal of the data latch 43a in the p-th column and the output terminal of the data latch 43a in the p + 1-th column are connected, every time the output level of the AND circuit 43b in the p-th column becomes logically high. The data latch 43a in the p-th column holds the data held in the data latch 43a in the p + 1-th column as measurement data Dout.
 この際に、最後列であるn列目のデータラッチ43aは、ロジック電源60に接続されて、n列目のデータラッチ43aにはロジック低電圧LVSSが印加される。また、1列目のデータラッチ43aの出力端子は、システムコントローラー50に接続されて、1列目のデータラッチ43aに保持される測定データDoutをシステムコントローラー50へ出力する。そして、1列目のデータラッチ43aは、1列目の論理積回路43bの出力レベルが論理的にハイレベルになるごとに、2列目からn列目までの各々のデータラッチ43aに保持される測定データDoutを、2列目のデータラッチ43aから列番号順に保持し、その保持された測定データDoutをシステムコントローラー50へ出力する。 At this time, the data latch 43a in the nth column, which is the last column, is connected to the logic power supply 60, and the logic low voltage LVSS is applied to the data latch 43a in the nth column. The output terminal of the data latch 43a in the first column is connected to the system controller 50 and outputs the measurement data Dout held in the data latch 43a in the first column to the system controller 50. The data latches 43a in the first column are held in the data latches 43a from the second column to the nth column each time the output level of the AND circuit 43b in the first column becomes a logical high level. Measurement data Dout is held from the data latch 43a in the second column in the order of the column numbers, and the held measurement data Dout is output to the system controller 50.
 j列目の出力スイッチSW2とj列目のDAC44との間には、低耐圧回路から高耐圧回路への電圧調整回路であるj列目のレベルシフタ46が設けられている。j列目のレベルシフタ46は、j列目のデータラッチ43aの出力値であるデジタル値を、j列目のDAC44の駆動レベルに変換する。 Between the output switch SW2 in the j-th column and the DAC 44 in the j-th column, a j-th level shifter 46 that is a voltage adjusting circuit from the low withstand voltage circuit to the high withstand voltage circuit is provided. The level shifter 46 in the j-th column converts the digital value that is the output value of the data latch 43a in the j-th column into the drive level of the DAC 44 in the j-th column.
 n列のDAC44の各々は、DAC44に入力されるデジタル値に対してDAC44から出力されるアナログ値が線形性を有するリニア電圧デジタル‐アナログ変換回路である。n列のDAC44の各々は、電圧変換時の入力範囲であるデジタル値のビット長を、階調値Dinの範囲であるビット長と等しい8ビットに設定している。 Each of the n columns of DACs 44 is a linear voltage digital-analog conversion circuit in which an analog value output from the DAC 44 has linearity with respect to a digital value input to the DAC 44. Each of the n columns of DACs 44 sets the bit length of the digital value, which is the input range at the time of voltage conversion, to 8 bits, which is equal to the bit length that is the range of the gradation value Din.
 j列目のDAC44の入力端子と、j列目のデータラッチ43aの出力端子とが、レベルシフタ46を介して接続されるとき、j列目のDAC44は、j列目のデータラッチ43aに保持されたデジタル値をアナログ値に変換して、バッファ45の非反転入力端子に入力する。 When the input terminal of the jth DAC 44 and the output terminal of the jth data latch 43a are connected via the level shifter 46, the jth DAC 44 is held in the jth data latch 43a. The converted digital value is converted into an analog value and input to the non-inverting input terminal of the buffer 45.
 例えば、発光期間の書込動作や非発光期間の書込動作において、j列目のデータラッチ43aは駆動量の一例である階調値Dinを保持する。このとき、j列目のDAC44は、階調値Dinに基づく階調値レベルVdataを生成するために、デジタル値である階調値Dinをアナログ値に変換してバッファ45の非反転入力端子に入力する。 For example, in the write operation during the light emission period and the write operation during the non-light emission period, the data latch 43a in the j-th column holds the gradation value Din, which is an example of the drive amount. At this time, the DAC 44 in the j-th column converts the gradation value Din, which is a digital value, into an analog value to generate a gradation value level Vdata based on the gradation value Din, and applies it to the non-inverting input terminal of the buffer 45. input.
 これに対して、測定期間における測定動作において、j列目のデータラッチ43aはアップカウンタ47のカウント値を保持する。このとき、j列目のDAC44は、デジタル値であるカウント値をアナログ値であるリファレンスレベルに変換してバッファ45の非反転入力端子に入力する。 On the other hand, in the measurement operation in the measurement period, the data latch 43a in the j-th column holds the count value of the up counter 47. At this time, the DAC 44 in the j-th column converts the count value, which is a digital value, into a reference level, which is an analog value, and inputs it to the non-inverting input terminal of the buffer 45.
 j列目のバッファ45の非反転入力端子は、j列目のDAC44の出力端子に接続されている。j列目のバッファ45の反転入力端子は、データ線Ldにおいて表示用スイッチSWdとj列目の画素回路PCCとの間の部位に接続されている。j列目のバッファ45の出力端子は、j列目の表示用スイッチSWdを介してデータ線Ldに接続されている。 The non-inverting input terminal of the buffer 45 in the j-th column is connected to the output terminal of the DAC 44 in the j-th column. The inverting input terminal of the buffer 45 in the j-th column is connected to a portion between the display switch SWd and the pixel circuit PCC in the j-th column on the data line Ld. The output terminal of the buffer 45 in the j-th column is connected to the data line Ld via the display switch SWd in the j-th column.
 j列目のバッファ45は、表示用スイッチSWdがオン状態であるとき、データドライバ40の出力インピーダンスを抑える出力機能を発現して、j列目のDAC44から入力されたアナログ値を階調値レベルVdataとして出力する。 The buffer 45 in the j-th column expresses an output function that suppresses the output impedance of the data driver 40 when the display switch SWd is in the on state, and converts the analog value input from the DAC 44 in the j-th column to the gradation value level. Output as Vdata.
 例えば、発光期間における書込動作や非発光期間における書込動作において、表示用スイッチSWdはオン状態であり、かつ、j列目のDAC44は、階調値Dinの変換値であるアナログ値をj列目のバッファ45に入力する。そして、j列目のバッファ45は、j列目の階調値Dinの変換結果である階調値レベルVdataをj列目のデータ線Ldに入力する。 For example, in the writing operation in the light emission period and the writing operation in the non-light emission period, the display switch SWd is in the on state, and the DAC 44 in the j-th column sets the analog value that is the converted value of the gradation value Din to j Input to the buffer 45 in the column. Then, the buffer 45 in the jth column inputs the gradation value level Vdata, which is the conversion result of the gradation value Din in the jth column, to the data line Ld in the jth column.
 一方で、測定期間における測定動作において、表示用スイッチSWdはオフ状態であり、j列目のバッファ45は、非反転入力端子の入力レベルと、反転入力端子の入力レベルとの比較の結果を出力する比較器として機能する。そして、j列目のバッファ45は、DAC44の出力レベルであるリファレンスレベルと、j列目のデータ線Ldの電圧レベルである収束レベルVsとを比較し、すなわち、リファレンス電圧と収束電圧とを比較して、その比較の結果を出力する。 On the other hand, in the measurement operation during the measurement period, the display switch SWd is in the off state, and the buffer 45 in the j-th column outputs the result of comparison between the input level of the non-inverting input terminal and the input level of the inverting input terminal. Functions as a comparator. Then, the buffer 45 in the j-th column compares the reference level that is the output level of the DAC 44 with the convergence level Vs that is the voltage level of the data line Ld in the j-th column, that is, compares the reference voltage with the convergence voltage. Then, the result of the comparison is output.
 この際に、非反転入力端子の入力レベルが反転入力端子の入力レベルよりもハイレベルであるとき、バッファ45の出力する電圧レベルは、アナログ電源電圧VEEとほぼ等しいハイレベルである。これに対して、非反転入力端子の入力レベルが反転入力端子の入力レベルよりもローレベルであるとき、バッファ45の出力する電圧レベルは、アナログ電源電圧VEEよりもローレベルである。 At this time, when the input level of the non-inverting input terminal is higher than the input level of the inverting input terminal, the voltage level output from the buffer 45 is a high level substantially equal to the analog power supply voltage VEE. On the other hand, when the input level of the non-inverting input terminal is lower than the input level of the inverting input terminal, the voltage level output from the buffer 45 is lower than the analog power supply voltage VEE.
 例えば、j列目のDAC44がリファレンスレベルを出力するとき、そのときのリファレンスレベルとデータ線Ldの収束レベルVsとをj列目のバッファ45は比較して、その比較の結果を出力する。この際に、j列目のDAC44の出力するリファレンスレベルは、アップカウンタ47のカウントアップごとに降下する電圧レベルであるから、このリファレンスレベルが収束レベルVsよりもハイレベルである間において、j列目のバッファ45の出力する電圧レベルはハイレベルを保つ。そして、リファレンスレベルが収束レベルVsよりもローレベルになるときに、j列目のバッファ45の出力する電圧レベルは、ハイレベルからローレベルに切り替わる。 For example, when the DAC 44 in the j-th column outputs a reference level, the buffer 45 in the j-th column compares the reference level at that time with the convergence level Vs of the data line Ld, and outputs the comparison result. At this time, since the reference level output from the DAC 44 in the j-th column is a voltage level that drops every time the up-counter 47 counts up, while the reference level is higher than the convergence level Vs, the j-th column The voltage level output from the eye buffer 45 remains high. When the reference level is lower than the convergence level Vs, the voltage level output from the buffer 45 in the j-th column is switched from the high level to the low level.
 j列目のバッファ45の出力端子は、j列目の表示用スイッチSWdの入力端子と、j列目のレベルシフタ48の入力端子とに並列に接続されている。j列目の表示用スイッチSWdは、システムコントローラー50から入力されるデータ制御信号SCON3に基づいて駆動されて、j列目のバッファ45の出力端子の接続先を、j列目のデータ線Ldとj列目のレベルシフタ48とに切り替える。 The output terminal of the buffer 45 in the jth column is connected in parallel to the input terminal of the display switch SWd in the jth column and the input terminal of the level shifter 48 in the jth column. The display switch SWd in the j-th column is driven based on the data control signal SCON3 input from the system controller 50, and the connection destination of the output terminal of the buffer 45 in the j-th column is connected to the j-th data line Ld. Switch to the level shifter 48 in the jth column.
 j列目の表示用スイッチSWdが、j列目のバッファ45の出力端子と、j列目のデータ線Ldとを接続するとき、j列目のバッファ45は負帰還接続されて階調値レベルVdataを生成する。これに対して、j列目の表示用スイッチSWdが、j列目のバッファ45とデータ線Ldとを切断するとき、データ線Ldの電圧レベルがバッファ45の反転入力端子に設定される。 When the display switch SWd in the j-th column connects the output terminal of the buffer 45 in the j-th column and the data line Ld in the j-th column, the j-th column buffer 45 is connected in a negative feedback manner and has a gradation value level. Vdata is generated. In contrast, when the display switch SWd in the j-th column disconnects the buffer 45 and the data line Ld in the j-th column, the voltage level of the data line Ld is set to the inverting input terminal of the buffer 45.
 j列目の表示用スイッチSWdの出力側であって、j列目のバッファ45の反転入力端子の接続先と画素回路PCCとの間には、測定用電圧スイッチSWsの出力端子が接続されている。測定用電圧スイッチSWsは、システムコントローラー50から測定用電圧スイッチSWsに入力されるデータ制御信号SCON3に基づいて駆動されて、データ線Ldとアナログ電源70との接続と切断とを切り替える。測定用電圧スイッチSWsがデータ線Ldとアナログ電源70とを接続し、かつ、表示用スイッチSWdがオフ状態であるとき、データ線Ldの電圧レベルは測定レベルVMに設定される。 An output terminal of the measurement voltage switch SWs is connected to the output side of the display switch SWd in the j-th column and between the connection destination of the inverting input terminal of the buffer 45 in the j-th column and the pixel circuit PCC. Yes. The measurement voltage switch SWs is driven based on the data control signal SCON3 input from the system controller 50 to the measurement voltage switch SWs, and switches between connection and disconnection of the data line Ld and the analog power supply 70. When the measurement voltage switch SWs connects the data line Ld and the analog power supply 70 and the display switch SWd is in the off state, the voltage level of the data line Ld is set to the measurement level VM.
 バッファ45の出力端子と、フリップフロップ43cの入力端子との間には、高耐圧回路から低耐圧回路への電圧調整回路であるレベルシフタ48が設けられている。レベルシフタ48は、バッファ45の出力する比較の結果を、フリップフロップ43cの駆動レベルに変換する。 Between the output terminal of the buffer 45 and the input terminal of the flip-flop 43c, a level shifter 48 which is a voltage adjusting circuit from the high withstand voltage circuit to the low withstand voltage circuit is provided. The level shifter 48 converts the comparison result output from the buffer 45 into the drive level of the flip-flop 43c.
 n列のフリップフロップ43cは、D型フリップフロップであり、フリップフロップ43cのクロック端子には、システムコントローラー50からラッチパルス信号LPが入力される。n列のフリップフロップ43cのD端子である入力端子は、レベルシフタ48の出力端子に接続され、n列のフリップフロップ43cのQ端子である出力端子は、測定用スイッチSW3の入力端子に接続されている。n列のフリップフロップ43cは、クロック信号であるラッチパルス信号LPの立ち上がりごとに、レベルシフタ48からの入力レベルを出力レベルとして保持する。 The n-row flip-flops 43c are D-type flip-flops, and the latch pulse signal LP is input from the system controller 50 to the clock terminals of the flip-flops 43c. The input terminal which is the D terminal of the n-row flip-flop 43c is connected to the output terminal of the level shifter 48, and the output terminal which is the Q terminal of the n-row flip-flop 43c is connected to the input terminal of the measurement switch SW3. Yes. The flip-flops 43c in the n column hold the input level from the level shifter 48 as the output level every time the latch pulse signal LP that is a clock signal rises.
 j列目の論理積回路43bは、ラッチパルス信号LPの入力される第1入力端子と、j列目の測定用スイッチSW3の出力端子に接続された第2入力端子とを備えている。j列目の論理積回路43bの出力端子は、データラッチ43aの入力端子に接続され、j列目の論理積回路43bの出力レベルは、データラッチ43aにデータを保持させる制御レベルとして利用される。 The AND circuit 43b in the j-th column includes a first input terminal to which the latch pulse signal LP is input and a second input terminal connected to the output terminal of the measurement switch SW3 in the j-th column. The output terminal of the AND circuit 43b in the jth column is connected to the input terminal of the data latch 43a, and the output level of the AND circuit 43b in the jth column is used as a control level for causing the data latch 43a to hold data. .
 j列目の測定用スイッチSW3がオフ状態であるとき、j列目の論理積回路43bにおける第2入力端子はハイレベルに設定されて、ラッチパルス信号LPの入力ごとに、j列目の論理積回路43bは論理的にハイレベルを出力する。 When the measurement switch SW3 in the j-th column is in an off state, the second input terminal in the AND circuit 43b in the j-th column is set to a high level, and the j-th column logic is input every time the latch pulse signal LP is input. The product circuit 43b logically outputs a high level.
 例えば、j列目の測定用スイッチSW3がオフ状態であって、かつ、ラッチパルス信号LPが論理積回路43bに入力されるとき、j列目の論理積回路43bは、j列目のデータラッチ43aに階調値Dinを保持させて、j列目のデータラッチ43aは、保持された階調値DinをDAC44へ出力する。また例えば、p列目の測定用スイッチSW3がオフ状態であって、かつ、ラッチパルス信号LPが論理積回路43bに入力されるとき、p列目の論理積回路43bは、p+1列目のデータラッチ43aの保持するデータをp列目のデータラッチ43aに保持させる。 For example, when the measurement switch SW3 in the j-th column is in the OFF state and the latch pulse signal LP is input to the AND circuit 43b, the j-th AND circuit 43b performs the j-th column data latch. The gradation value Din is held in 43 a and the data latch 43 a in the j-th column outputs the held gradation value Din to the DAC 44. Further, for example, when the measurement switch SW3 in the p-th column is in an off state and the latch pulse signal LP is input to the AND circuit 43b, the AND circuit 43b in the p-th column The data held in the latch 43a is held in the data latch 43a in the p-th column.
 j列目の測定用スイッチSW3がオン状態であって、かつ、j列目のフリップフロップ43cの出力レベルがハイレベルであるとき、ラッチパルス信号LPの入力ごとに、j列目の論理積回路43bは論理的にハイレベルを出力する。 When the measurement switch SW3 in the j-th column is on and the output level of the flip-flop 43c in the j-th column is high, the AND circuit in the j-th column is input for each input of the latch pulse signal LP. 43b logically outputs a high level.
 例えば、j列目の測定用スイッチSW3がオン状態であって、かつ、リファレンスレベルが収束レベルVsよりもハイレベルであるとき、j列目の論理積回路43bは、ラッチパルス信号LPの入力ごとにデータラッチ43aにカウント値を保持させる。この際に、j列目のDAC44の出力する電圧レベルは、アップカウンタ47のカウントアップごとに降下するため、リファレンスレベルが収束レベルVsを下回るまで、ラッチパルス信号LPの入力ごとにデータラッチ43aはカウント値を更新し続ける。 For example, when the measurement switch SW3 in the j-th column is in an on state and the reference level is higher than the convergence level Vs, the AND circuit 43b in the j-th column receives every input of the latch pulse signal LP. The count value is held in the data latch 43a. At this time, the voltage level output from the DAC 44 in the j-th column drops every time the up-counter 47 counts up. Therefore, the data latch 43a is input every time the latch pulse signal LP is input until the reference level falls below the convergence level Vs. Continue to update the count value.
 j列目の測定用スイッチSW3がオン状態であって、かつ、j列目のフリップフロップ43cの出力レベルがローレベルであるとき、ラッチパルス信号LPの入力ごとに、j列目の論理積回路43bは論理的にローレベルを出力する。 When the measurement switch SW3 in the j-th column is in an ON state and the output level of the flip-flop 43c in the j-th column is at a low level, the AND circuit in the j-th column is input every time the latch pulse signal LP is input. 43b logically outputs a low level.
 例えば、j列目の測定用スイッチSW3がオン状態であって、かつ、リファレンスレベルが収束レベルVsよりもローレベルであるとき、j列目の論理積回路43bは、ラッチパルス信号LPの入力にかかわらず、データラッチ43aにカウント値を保持させない。 For example, when the measurement switch SW3 in the j-th column is on and the reference level is lower than the convergence level Vs, the j-th AND circuit 43b receives the latch pulse signal LP. Regardless, the count value is not held in the data latch 43a.
 結局のところ、j列目のDAC44の出力するリファレンスレベルは、アップカウンタ47のカウントアップごとに降下するため、リファレンスレベルが収束レベルVsを下回るまで、データラッチ43aは、データラッチ43aの保持するカウント値を更新し続ける。そして、リファレンスレベルが収束レベルVsを下回るとき、ラッチパルス信号LPごとのカウント値の保持をデータラッチ43aは停止する。結果として、1度の測定期間においてデータラッチ43aが最終的に保持するカウント値は、その測定期間における収束レベルVsとの差が分解能Vcnt以内であり、その収束レベルVsを上回るリファレンスレベルを生成するための値である。また、1度の測定期間においてデータラッチ43aが最終的に保持するカウント値は、全てのリファレンスレベルのなかで収束レベルVsに最も近いリファレンスレベルを生成する値に相当する。そして、j列目のデータラッチ43aは、j列目における収束電圧の測定データDoutとして、こうしたカウント値を保持する。 After all, since the reference level output from the DAC 44 in the j-th column drops every time the up counter 47 counts up, the data latch 43a keeps the count held by the data latch 43a until the reference level falls below the convergence level Vs. Continue to update the value. When the reference level falls below the convergence level Vs, the data latch 43a stops holding the count value for each latch pulse signal LP. As a result, the count value finally held by the data latch 43a in one measurement period has a difference from the convergence level Vs in the measurement period within the resolution Vcnt, and generates a reference level exceeding the convergence level Vs. It is a value for. In addition, the count value that is finally held by the data latch 43a in one measurement period corresponds to a value that generates a reference level closest to the convergence level Vs among all reference levels. The data latch 43a in the j-th column holds such a count value as the convergence voltage measurement data Dout in the j-th column.
 なお、階調値Dinとカウント値とは、これらに共通するデータラッチ43aに保持されるデジタル値であって、相互に等しい入力範囲を有したデジタル値である。そして、階調値Dinの最下位ビットは、カウント値の最下位ビットであり、階調値Dinの最上位ビットは、カウント値の最上位ビットである。例えば、階調値Dinが「1」であるときの階調値レベルVdataと、カウント値が「1」であるときのリファレンスレベルとは相互に等しく、また、階調値Dinが「2」であるときの階調値レベルVdataと、カウント値が「2」であるときのリファレンスレベルとも相互に等しい。 It should be noted that the gradation value Din and the count value are digital values held in the data latch 43a common to these, and are digital values having an input range equal to each other. The least significant bit of the gradation value Din is the least significant bit of the count value, and the most significant bit of the gradation value Din is the most significant bit of the count value. For example, the gradation value level Vdata when the gradation value Din is “1” and the reference level when the count value is “1” are equal to each other, and the gradation value Din is “2”. The gradation value level Vdata at a certain time and the reference level when the count value is “2” are also equal to each other.
 [システムコントローラー50の構成]
 図11を参照してシステムコントローラー50の構成を説明する。
 図11が示すように、システムコントローラー50は、入力信号処理部51、タイミングコントローラー52、補正処理部53、データ処理部54、監視部55、および、期間決定部56を備えている。
[Configuration of system controller 50]
The configuration of the system controller 50 will be described with reference to FIG.
As shown in FIG. 11, the system controller 50 includes an input signal processing unit 51, a timing controller 52, a correction processing unit 53, a data processing unit 54, a monitoring unit 55, and a period determination unit 56.
 入力信号処理部51は、入力信号SIGである映像信号から画素回路PCCごとの階調成分である階調成分Dsigを生成して補正処理部53に入力する。入力信号処理部51は、入力信号SIGから画素回路PCCごとの駆動のタイミングを制御するための基準クロックを生成してタイミングコントローラー52に入力する。 The input signal processing unit 51 generates a gradation component Dsig that is a gradation component for each pixel circuit PCC from the video signal that is the input signal SIG, and inputs the gradation component Dsig to the correction processing unit 53. The input signal processing unit 51 generates a reference clock for controlling the driving timing for each pixel circuit PCC from the input signal SIG and inputs the reference clock to the timing controller 52.
 タイミングコントローラー52は、入力信号処理部51から入力された基準クロックに基づいて選択スタートパルス信号SP、選択マスクパルス信号MP1、電源マスクパルス信号MP2、データスタートパルス信号SP1、ラッチパルス信号LPを生成する。タイミングコントローラー52は、選択スタートパルス信号SP、および、選択マスクパルス信号MP1を選択ドライバ20に入力し、また、選択スタートパルス信号SP、および、電源マスクパルス信号MP2を電源ドライバ30に入力する。また、タイミングコントローラー52は、データスタートパルス信号SP1、および、ラッチパルス信号LPをデータドライバ40に入力する。 The timing controller 52 generates a selection start pulse signal SP, a selection mask pulse signal MP1, a power supply mask pulse signal MP2, a data start pulse signal SP1, and a latch pulse signal LP based on the reference clock input from the input signal processing unit 51. . The timing controller 52 inputs the selection start pulse signal SP and the selection mask pulse signal MP1 to the selection driver 20 and inputs the selection start pulse signal SP and the power supply mask pulse signal MP2 to the power supply driver 30. The timing controller 52 inputs the data start pulse signal SP1 and the latch pulse signal LP to the data driver 40.
 タイミングコントローラー52は、駆動シフトクロックClks、測定シフトクロックClkr、および、データシフトクロックClkdを生成する。タイミングコントローラー52は、駆動シフトクロックClksを選択ドライバ20、および、電源ドライバ30に入力し、また、測定シフトクロックClkrを選択ドライバ20、および、電源ドライバ30に入力し、データシフトクロックClkdをデータドライバに入力する。 The timing controller 52 generates a drive shift clock Clks, a measurement shift clock Clkr, and a data shift clock Clkd. The timing controller 52 inputs the drive shift clock Clks to the selection driver 20 and the power supply driver 30, inputs the measurement shift clock Clkr to the selection driver 20 and the power supply driver 30, and uses the data shift clock Clkd as the data driver. To enter.
 タイミングコントローラー52は、補正処理部53が1行分の階調値Dinをデータドライバ40に出力する際に、データスタートパルス信号SP1、データシフトクロックClkd、および、ラッチパルス信号LPをデータドライバ40に入力する。また、タイミングコントローラー52は、データドライバ40に測定データDoutを生成させる際に、データシフトクロックClkd、および、ラッチパルス信号LPをデータドライバ40に入力する。また、タイミングコントローラー52は、補正処理部53が1行分の測定データDoutをデータドライバ40から入力する際に、ラッチパルス信号LPをデータドライバ40に入力する。
 補正処理部53は、基準階調生成部53A、加算器である補正量加算部53B、および、補正量算出部53Cを備えている。
The timing controller 52 outputs the data start pulse signal SP1, the data shift clock Clkd, and the latch pulse signal LP to the data driver 40 when the correction processing unit 53 outputs the gradation value Din for one row to the data driver 40. input. The timing controller 52 inputs the data shift clock Clkd and the latch pulse signal LP to the data driver 40 when the data driver 40 generates the measurement data Dout. The timing controller 52 inputs the latch pulse signal LP to the data driver 40 when the correction processing unit 53 inputs the measurement data Dout for one row from the data driver 40.
The correction processing unit 53 includes a reference gradation generation unit 53A, a correction amount addition unit 53B that is an adder, and a correction amount calculation unit 53C.
 基準階調生成部53Aは、補正処理部53に入力される階調成分Dsigに対して各種の調整を行うためのルックアップテーブルを備え、画素PXごとの階調成分Dsigに対し、ガンマ補正、初期輝度調整、色度調整などの各種の調整を行う。基準階調生成部53Aは、調整後の階調である画素PXごとの基準階調値Dbを補正量加算部53Bに入力する。 The reference gradation generation unit 53A includes a lookup table for performing various adjustments on the gradation component Dsig input to the correction processing unit 53, and performs gamma correction on the gradation component Dsig for each pixel PX. Various adjustments such as initial brightness adjustment and chromaticity adjustment are performed. The reference gradation generation unit 53A inputs the reference gradation value Db for each pixel PX, which is the adjusted gradation, to the correction amount addition unit 53B.
 補正量加算部53Bは、i行j列に位置する画素PXに対して生成された基準階調値Dbに、i行j列に位置する画素PXに対するしきい値補正量kを加算する。補正量加算部53Bは、加算された結果である新たな階調値を、i行j列に位置する画素PXに対する階調値Dinとして出力する。階調値Dinは、画素PXごとのしきい値電圧Vthを階調値として加味した新たな階調値であって、画素PXごとの階調値である。 The correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column. The correction amount adding unit 53B outputs a new gradation value as a result of the addition as the gradation value Din for the pixel PX located in the i row and j column. The gradation value Din is a new gradation value that takes into account the threshold voltage Vth for each pixel PX as a gradation value, and is a gradation value for each pixel PX.
 補正量算出部53Cは、複数の画素PXの測定データDoutの中からi行j列に位置する画素PXの測定データDoutを抽出し、補正量算出部53Cが抽出した測定データDoutから、i行j列に位置する画素PXに対するしきい値補正量kを算出する。i行j列に位置する画素PXに対して生成された基準階調値Dbが補正量加算部53Bに入力されるとき、補正量算出部53Cは、i行j列に位置する画素PXに対するしきい値補正量kを補正量加算部53Bに入力する。 The correction amount calculation unit 53C extracts the measurement data Dout of the pixel PX located in i rows and j columns from the measurement data Dout of the plurality of pixels PX, and the i-th row is extracted from the measurement data Dout extracted by the correction amount calculation unit 53C. A threshold value correction amount k for the pixel PX located in the j column is calculated. When the reference gradation value Db generated for the pixel PX located in the i row and j column is input to the correction amount adding unit 53B, the correction amount calculating unit 53C performs the correction for the pixel PX located in the i row and j column. The threshold value correction amount k is input to the correction amount adding unit 53B.
 なお、収束電圧の測定に際して測定データDoutが示す1ビットごとの電圧と、階調値レベルVdataの生成に際して階調値Dinが示す1ビットごとの電圧とが相互に等しいとき、補正量算出部53Cは、補正量算出部53Cが抽出した測定データDoutをしきい値補正量kとして取り扱う。一方で、収束電圧として測定データDoutが示す1ビットごとの電圧と、階調値レベルVdataとして階調値Dinが示す1ビットごとの電圧とが相互に異なるとき、補正量算出部53Cは、これらの2つの電圧レベルを合わせるように、補正量算出部53Cが抽出した測定データDoutをしきい値補正量kに変換する。 Note that when the voltage for each bit indicated by the measurement data Dout when measuring the convergence voltage and the voltage for each bit indicated by the gradation value Din when generating the gradation value level Vdata are equal to each other, the correction amount calculation unit 53C Handles the measurement data Dout extracted by the correction amount calculation unit 53C as the threshold correction amount k. On the other hand, when the voltage for each bit indicated by the measurement data Dout as the convergence voltage and the voltage for each bit indicated by the gradation value Din as the gradation value level Vdata are different from each other, the correction amount calculation unit 53C The measurement data Dout extracted by the correction amount calculation unit 53C is converted into a threshold correction amount k so that the two voltage levels are matched.
 データ処理部54は、1つの画素PXごとの記憶領域であるm行×n列の記憶領域を備えている。新たな測定動作が1つの画素行において実施されるごとに、その測定動作によって得られたn列の測定データDoutは、データドライバ40からデータ処理部54に入力される。データ処理部54は、データドライバ40から入力されるn列の測定データDoutを、今回の測定動作が実施された画素PXに対応付けて記憶領域に記憶する。例えば、今回の測定動作が実施された画素行が1行目であるとき、データ処理部54は、1行目の画素PXに対応付けられたn列の記憶領域の各々に、測定データDoutを記憶する。 The data processing unit 54 includes a storage area of m rows × n columns, which is a storage area for each pixel PX. Each time a new measurement operation is performed in one pixel row, n columns of measurement data Dout obtained by the measurement operation are input from the data driver 40 to the data processing unit 54. The data processing unit 54 stores the n columns of measurement data Dout input from the data driver 40 in a storage area in association with the pixel PX on which the current measurement operation is performed. For example, when the pixel row on which the current measurement operation is performed is the first row, the data processing unit 54 stores the measurement data Dout in each of the n columns of storage areas associated with the pixels PX in the first row. Remember.
 データ処理部54は、i行目に位置する画素PXの測定データDoutを入力するごとに、i行目に対応付けられた測定データDoutを更新する。データ処理部54は、m行×n列の記憶領域から1つの画素行ずつ測定データDoutを監視部55に出力する。 The data processing unit 54 updates the measurement data Dout associated with the i-th row every time the measurement data Dout of the pixel PX located in the i-th row is input. The data processing unit 54 outputs the measurement data Dout to the monitoring unit 55 for each pixel row from the storage area of m rows × n columns.
 監視部55は、1つの画素行ごとの記憶領域であるm行の記憶領域を備えている。監視部55は、i行目の画素行における測定データDoutの中から最も大きい測定データDoutを抽出し、監視部55が抽出した測定データDoutを今回のi行目の最大値データDmaxとして取り扱う。 The monitoring unit 55 includes m storage areas that are storage areas for each pixel row. The monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the i-th pixel row, and handles the measurement data Dout extracted by the monitoring unit 55 as the current maximum value data Dmax in the i-th row.
 例えば、1行目の画素行の測定データDoutの中において1行1列目の測定データDoutが最も大きいとき、監視部55は、1行1列目の測定データDoutを今回の測定による1行目の最大値データDmaxとして取り扱う。また、2行目の画素行の測定データDoutの中において2行4列目の測定データDoutが最も大きいとき、監視部55は、2行4列目の測定データDoutを今回の測定による2行目の最大値データDmaxとして取り扱う。 For example, when the measurement data Dout of the first row and the first column is the largest among the measurement data Dout of the first pixel row, the monitoring unit 55 uses the measurement data Dout of the first row and the first column as one row by the current measurement. The maximum eye value data Dmax is handled. When the measurement data Dout of the second row and the fourth column is the largest among the measurement data Dout of the second pixel row, the monitoring unit 55 uses the measurement data Dout of the second row and the fourth column as two rows by the current measurement. The maximum eye value data Dmax is handled.
 監視部55は、今回の測定によるi行目の最大値データDmaxと、前回までの測定によるi行目の最大値データDmaxとを比較する。そして、今回の測定によるi行目の最大値データDmaxが前回までの測定によるi行目の最大値データDmax以下であるとき、前回までの測定によるi行目の最大値データDmaxをi行目の新たな最大値データDmaxとして監視部55は記憶する。一方で、今回の測定によるi行目の最大値データDmaxが前回までの測定によるi行目の最大値データDmaxよりも大きいとき、今回の測定によるi行目の最大値データDmaxをi行目の新たな最大値データDmaxとして監視部55は記憶する。 The monitoring unit 55 compares the maximum value data Dmax of the i-th row from the current measurement with the maximum value data Dmax of the i-th row from the previous measurement. Then, when the maximum value data Dmax of the i-th row by the current measurement is equal to or less than the maximum value data Dmax of the i-th row by the previous measurement, the maximum value data Dmax of the i-th row by the previous measurement is changed to the i-th row. The monitoring unit 55 stores the new maximum value data Dmax. On the other hand, when the maximum value data Dmax of the i-th row by the current measurement is larger than the maximum value data Dmax of the i-th row by the previous measurement, the maximum value data Dmax of the i-th row by the current measurement is changed to the i-th row. The monitoring unit 55 stores the new maximum value data Dmax.
 例えば、今回の測定による1行目の最大値データDmaxが、1行1列目の画素PXから得られたとき、この1行1列目の画素PXから得られた測定データDoutが、前回までの測定による1行目の最大値データDmaxと比較される。そして、今回の測定による1行目の最大値データDmaxが前回までの測定による1行目の最大値データDmaxよりも大きいとき、今回の測定による1行目の最大値データDmaxは、1行目の新たな最大値データDmaxとして記憶される。 For example, when the maximum value data Dmax in the first row by the current measurement is obtained from the pixel PX in the first row and the first column, the measurement data Dout obtained from the pixel PX in the first row and the first column is up to the previous time. Is compared with the maximum value data Dmax in the first row. When the maximum value data Dmax on the first line obtained by the current measurement is larger than the maximum value data Dmax on the first line obtained by the previous measurement, the maximum value data Dmax on the first line obtained by the current measurement is the first line. Is stored as new maximum value data Dmax.
 監視部55は、次回の測定期間を設定される画素行を把握して、その画素行に対応付けられた最大値データDmaxを記憶領域から抽出する。そして、次回の測定期間が設定されるとき、記憶領域から抽出された最大値データDmaxを監視部55は期間決定部56に入力する。 The monitoring unit 55 grasps the pixel row for which the next measurement period is set, and extracts the maximum value data Dmax associated with the pixel row from the storage area. When the next measurement period is set, the monitoring unit 55 inputs the maximum value data Dmax extracted from the storage area to the period determination unit 56.
 例えば、次回の測定期間を設定される画素行が1行目の画素行であるとき、1行目の最大値データDmaxを監視部55は抽出する。そして、1行目の画素行に測定期間が設定されるとき、監視部55は1行目の最大値データDmaxを設定部の一例である期間決定部56に入力する。 For example, when the pixel row for which the next measurement period is set is the first pixel row, the monitoring unit 55 extracts the maximum value data Dmax in the first row. When the measurement period is set in the first pixel row, the monitoring unit 55 inputs the maximum value data Dmax in the first row to the period determining unit 56 which is an example of a setting unit.
 期間決定部56は、監視部55から入力される最大値データDmaxに基づいて、データシフトクロックClkdの送出回数Nを決定する。期間決定部56の決定する送出回数Nは、最大値データDmaxに対して線形性を有する値であり、監視部55から入力される最大値データDmaxが大きいほど大きい。期間決定部56の決定する送出回数Nは、アップカウンタ47におけるカウント値の最大値を測定期間ごとに定める値であって、上述したリファレンスレベルの中で最もローレベルとなる電圧レベルを定めるパラメータである。 The period determination unit 56 determines the number N of transmissions of the data shift clock Clkd based on the maximum value data Dmax input from the monitoring unit 55. The number N of transmissions determined by the period determination unit 56 is a value having linearity with respect to the maximum value data Dmax, and increases as the maximum value data Dmax input from the monitoring unit 55 increases. The number N of transmissions determined by the period determination unit 56 is a value that determines the maximum value of the count value in the up-counter 47 for each measurement period, and is a parameter that determines the voltage level that is the lowest among the reference levels described above. is there.
 ここで、監視部55から入力される最大値データDmaxは、前回までの測定による収束レベルVsとの差が分解能Vcnt以内であり、かつ、その収束レベルVsを上回るリファレンスレベルを生成するためのカウント値である。また、監視部55から入力される最大値データDmaxは、全てのリファレンスレベルの中で、前回までの測定による収束レベルVsの最低値に最も近いリファレンスレベルを生成するためのカウント値である。
 期間決定部56の決定する送出回数Nは、リファレンスレベルをデータシフトクロックClkdの送出ごとに変えるためのデジタル値である。そして、データシフトクロックClkdの送出ごとに1段ずつ変わるリファレンスレベルが、今回までの測定による収束レベルVsの最低値を通過するように、監視部55から入力される最大値データDmaxに基づいて、期間決定部56は今回の送出回数Nを決定する。また、前回の測定期間と今回の測定期間との間においてしきい値電圧Vthが推定値だけ変わることを推定し、この推定値の分だけ今回のカウント値が前回よりも高まるように、期間決定部56は今回の送出回数Nを決定する。
Here, the maximum value data Dmax input from the monitoring unit 55 is a count for generating a reference level whose difference from the convergence level Vs by the previous measurement is within the resolution Vcnt and exceeding the convergence level Vs. Value. Further, the maximum value data Dmax input from the monitoring unit 55 is a count value for generating a reference level closest to the minimum value of the convergence level Vs obtained by the previous measurement among all reference levels.
The number N of transmissions determined by the period determination unit 56 is a digital value for changing the reference level every time the data shift clock Clkd is transmitted. Then, based on the maximum value data Dmax input from the monitoring unit 55 so that the reference level that changes by one step every time the data shift clock Clkd is sent passes through the minimum value of the convergence level Vs measured up to this time. The period determination unit 56 determines the number N of transmissions this time. Further, it is estimated that the threshold voltage Vth changes by an estimated value between the previous measurement period and the current measurement period, and the period is determined so that the current count value is higher than the previous value by the estimated value. The unit 56 determines the number N of transmissions this time.
 例えば、期間決定部56は、前回の測定期間と今回の測定期間との間におけるシフト量ΔVthの推定値を予め設定する。こうしたシフト量ΔVthの推定値は、例えば、今回の測定期間までの駆動トランジスタT1における累積の駆動量などに基づく一定値であってもよいし、変動値であってもよい。また、期間決定部56は、最大値データDmaxと送出回数Nとの対応付けを予め設定する。この際に、今回の送出回数Nに基づくリファレンスレベルが、前回までの収束レベルVsを通過するように、最大値データDmaxと送出回数Nとの対応付けを期間決定部56は設定する。 For example, the period determining unit 56 presets an estimated value of the shift amount ΔVth between the previous measurement period and the current measurement period. The estimated value of the shift amount ΔVth may be a constant value based on, for example, a cumulative driving amount in the driving transistor T1 until the current measurement period, or may be a fluctuation value. In addition, the period determination unit 56 presets the association between the maximum value data Dmax and the number of transmissions N. At this time, the period determination unit 56 sets the association between the maximum value data Dmax and the number N of transmissions so that the reference level based on the current number N of transmissions passes the convergence level Vs up to the previous time.
 そして、期間決定部56は、監視部55から入力される最大値データDmaxにシフト量ΔVthの推定値を加算して、その加算の結果を今回の最大値データDmaxの推定値とする。次いで、期間決定部56は、最大値データDmaxと送出回数Nとの関係に、今回の最大値データDmaxの推定値を適用して、今回の最大値データDmaxの推定値に対応する送出回数Nを決定する。これによって、段階的に変わるリファレンスレベルが前回までの収束レベルVsを通過するように、期間決定部56は送出回数Nを決定する。 Then, the period determining unit 56 adds the estimated value of the shift amount ΔVth to the maximum value data Dmax input from the monitoring unit 55, and uses the result of the addition as the estimated value of the current maximum value data Dmax. Next, the period determination unit 56 applies the estimated value of the current maximum value data Dmax to the relationship between the maximum value data Dmax and the number of transmissions N, and transmits the number of transmissions N corresponding to the estimated value of the current maximum value data Dmax. To decide. As a result, the period determining unit 56 determines the number N of transmissions so that the step-by-step reference level passes through the previous convergence level Vs.
 このように決定された送出回数Nであれば、今回の測定期間におけるリファレンスレベルは、前回までの測定による収束レベルVsの最低値を測定することの可能な範囲まで降圧され、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難くなる。期間決定部56は、こうして決定された今回の送出回数Nをタイミングコントローラー52に入力する。そして、データシフトクロックClkdがタイミングコントローラー52から送出されるごとに、上述したリファレンスレベルが段階的に下がり、データシフトクロックClkdの送出される回数が送出回数Nに到達するまで、上述したリファレンスレベルが下がり続ける。 If the number of times of transmission N is determined in this way, the reference level in the current measurement period is stepped down to a range in which the minimum value of the convergence level Vs from the previous measurement can be measured, and the convergence level Vs. It is difficult to step down to a voltage level that is not necessary for the measurement. The period determination unit 56 inputs the current number of transmissions N thus determined to the timing controller 52. Each time the data shift clock Clkd is transmitted from the timing controller 52, the above-described reference level decreases stepwise, and the above-described reference level is maintained until the number of times the data shift clock Clkd is transmitted reaches the number N of transmissions. It keeps falling.
 期間決定部56は、今回決定された送出回数Nから今回の延長期間teをさらに決定する。期間決定部56の決定する延長期間teは、送出回数Nが大きいほど短い期間であって、送出回数Nに対して線形性を有する値である。期間決定部56の決定する延長期間teは、発光期間の設定を延長するための期間であって、測定期間における収束電圧がアナログ基準電圧DVSSに近いほど、すなわち、しきい値電圧Vthが小さく、かつ、収束電圧の測定に要する期間が短いほど長い。 The period determination unit 56 further determines the extension period te of this time from the number N of transmissions determined this time. The extension period te determined by the period determination unit 56 is a shorter period as the number of transmissions N is larger, and is a value having linearity with respect to the number of transmissions N. The extension period te determined by the period determination unit 56 is a period for extending the setting of the light emission period, and the closer the convergence voltage in the measurement period is to the analog reference voltage DVSS, that is, the threshold voltage Vth is smaller. In addition, the shorter the period required for measuring the convergence voltage, the longer.
 図12が示すように、タイミングコントローラー52は、入力信号処理部51から入力された基準クロックに基づいて発光期間を設定する際に、選択スタートパルス信号SPを生成する。そして、タイミングコントローラー52は、タイミングコントローラー52が生成した選択スタートパルス信号SPを発光期間開始信号SPaとして選択ドライバ20、および、電源ドライバ30に入力して、選択ドライバ20、および、電源ドライバ30に発光期間を開始させる。また、タイミングコントローラー52は、発光期間の開始に際して生成された選択スタートパルス信号SPの入力から経過した時間をカウントする。 As shown in FIG. 12, the timing controller 52 generates the selection start pulse signal SP when setting the light emission period based on the reference clock input from the input signal processing unit 51. The timing controller 52 inputs the selection start pulse signal SP generated by the timing controller 52 to the selection driver 20 and the power supply driver 30 as the light emission period start signal SPa, and emits light to the selection driver 20 and the power supply driver 30. Start the period. The timing controller 52 counts the time that has elapsed since the input of the selection start pulse signal SP generated at the start of the light emission period.
 タイミングコントローラー52は、発光期間に続く非発光期間を設定する際に選択スタートパルス信号SPを生成して、生成された選択スタートパルス信号SPを非発光期間開始信号SPbとして選択ドライバ20、および、電源ドライバ30に入力する。この際に、タイミングコントローラー52は、発光期間、および、非発光期間の実施される基準の時間である基準期間tbの経過後から、選択スタートパルス信号SPの出力を延長期間teだけ遅らせる。すなわち、タイミングコントローラー52は、発光期間の実施される期間を、基準期間tbよりも延長期間teだけ長い期間である補正発光期間tpとして設定する。 The timing controller 52 generates a selection start pulse signal SP when setting a non-light emission period following the light emission period, and uses the generated selection start pulse signal SP as a non-light emission period start signal SPb. Input to the driver 30. At this time, the timing controller 52 delays the output of the selection start pulse signal SP by the extension period te after the elapse of the reference period tb, which is the reference time during which the light emission period and the non-light emission period are performed. That is, the timing controller 52 sets the period during which the light emission period is performed as the corrected light emission period tp that is longer than the reference period tb by the extension period te.
 なお、タイミングコントローラー52における基準期間tbは、例えば、基準期間tbにおける駆動シフトクロックClksの送出回数が選択線Lsの本数と等しくなるように設定されている。また、発光期間、および、非発光期間が設定される際に、タイミングコントローラー52は、駆動シフトクロックClksを選択ドライバ20、および、電源ドライバ30へ入力する。 Note that the reference period tb in the timing controller 52 is set so that, for example, the number of drive shift clocks Clks sent in the reference period tb is equal to the number of selection lines Ls. Further, when the light emission period and the non-light emission period are set, the timing controller 52 inputs the drive shift clock Clks to the selection driver 20 and the power supply driver 30.
 タイミングコントローラー52は、非発光期間に続く測定期間を設定する際に選択スタートパルス信号SPを生成して、タイミングコントローラー52が生成した選択スタートパルス信号SPを測定期間開始信号SPcとして選択ドライバ20、および、電源ドライバ30に入力する。この際に、タイミングコントローラー52は、非発光期間開始信号SPbから基準期間tbを経過したときに、測定期間開始信号SPc、および、測定シフトクロックClkrを入力する。 The timing controller 52 generates a selection start pulse signal SP when setting a measurement period subsequent to the non-light emission period, and uses the selection start pulse signal SP generated by the timing controller 52 as the measurement period start signal SPc. , Input to the power supply driver 30. At this time, the timing controller 52 inputs the measurement period start signal SPc and the measurement shift clock Clkr when the reference period tb has elapsed from the non-light emission period start signal SPb.
 ここで、タイミングコントローラー52は、選択マスクパルス信号MP1の電圧レベルが論理的にローレベルである期間を、測定期間の設定される行番号ごとに変える。すなわち、タイミングコントローラー52は、選択マスクパルス信号MP1の電圧レベルに第1非選択期間tmaだけローレベルを設定し、次いで、選択マスクパルス信号MP1の電圧レベルに測定選択期間tmbだけハイレベルを設定し、そして、選択マスクパルス信号MP1の電圧レベルに第2非選択期間tmcだけ再びローレベルを設定する。 Here, the timing controller 52 changes the period in which the voltage level of the selection mask pulse signal MP1 is logically low for each row number in which the measurement period is set. That is, the timing controller 52 sets the voltage level of the selection mask pulse signal MP1 to the low level for the first non-selection period tma, and then sets the voltage level of the selection mask pulse signal MP1 to the high level for the measurement selection period tmb. Then, the low level is set again for the second non-selection period tmc to the voltage level of the selection mask pulse signal MP1.
 例えば、測定期間の設定対象がq行目であるとき、測定シフトクロックClkrをq回送出することに要する期間が第1非選択期間tmaであり、測定シフトクロックClkrをm-q回送出することに要する期間が第2非選択期間tmcである。そして、データ線Ldの電圧レベルに測定レベルVMが設定されること、および、データ線Ldの電圧レベルを緩和時間tsだけ収束させることに要する期間が測定選択期間tmbであって、予め設定されている長さの期間である。 For example, when the setting target of the measurement period is the q-th row, the period required to send the measurement shift clock Clkr q times is the first non-selection period tma, and the measurement shift clock Clkr is sent mq times. The period required for is the second non-selection period tmc. The period required for setting the measurement level VM to the voltage level of the data line Ld and converging the voltage level of the data line Ld by the relaxation time ts is the measurement selection period tmb, which is set in advance. It is a period of a certain length.
 こうした選択マスクパルス信号MP1が測定シフトクロックClkrと共に選択ドライバ20、および、電源ドライバ30に入力されることによって、選択線Lsの選択は1行目からq行目に飛ばされ、電源線Laの選択もまた1行目からq行目に飛ばされる。なお、タイミングコントローラー52は、測定期間の設定対象となる画素行を、測定期間の設定の機会ごとに列方向に沿って1行ずつ行番号順に変える。 When the selection mask pulse signal MP1 is input to the selection driver 20 and the power supply driver 30 together with the measurement shift clock Clkr, the selection of the selection line Ls is skipped from the first line to the qth line, and the selection of the power supply line La is selected. Is also skipped from line 1 to line q. Note that the timing controller 52 changes the pixel row to be set for the measurement period one row at a time in the row number order along the column direction at every opportunity for setting the measurement period.
 また、タイミングコントローラー52は、電源マスクパルス信号MP2の電圧レベルが論理的にローレベルである期間を設定する。この際に、タイミングコントローラー52は、第1非選択期間tma、測定選択期間tmb、および、測定選択期間tmbの全体にわたり、電源マスクパルス信号MP2の電圧レベルを論理的にローレベルに設定し続ける。 The timing controller 52 sets a period during which the voltage level of the power supply mask pulse signal MP2 is logically low. At this time, the timing controller 52 continues to set the voltage level of the power supply mask pulse signal MP2 to a logical low level throughout the first non-selection period tma, the measurement selection period tmb, and the measurement selection period tmb.
 また、タイミングコントローラー52は、リファレンスレベルを生成するためのデータシフトクロックClkd、および、ラッチパルス信号LPを生成して、期間決定部56から入力された送出回数Nに従って入力する。そして、タイミングコントローラー52は、データシフトクロックClkd、および、ラッチパルス信号LPを送出回数Nだけ送出する。 Further, the timing controller 52 generates a data shift clock Clkd for generating a reference level and a latch pulse signal LP, and inputs them according to the number N of transmissions input from the period determining unit 56. Then, the timing controller 52 sends out the data shift clock Clkd and the latch pulse signal LP as many times as N.
 タイミングコントローラー52は、発光期間開始信号SPa、非発光期間開始信号SPb、および、測定期間開始信号SPcをこの順に出力し、選択スタートパルス信号SPを3回生成するごとに、シフトクロック信号の周期を、駆動シフトクロック周期から測定シフトクロック周期に変える。こうしたシフトクロック信号の周期の変更によって、選択線Lsと電源線Laとが駆動シフトクロック周期で1行ずつ行番号順に選択され、m行分の選択が2回繰り返される。そして、m行分の選択が2回繰り返されるごとに、q行目の選択線Lsに対して測定期間が設定される。 The timing controller 52 outputs the light emission period start signal SPa, the non-light emission period start signal SPb, and the measurement period start signal SPc in this order, and every time the selection start pulse signal SP is generated three times, the cycle of the shift clock signal is changed. The drive shift clock cycle is changed to the measurement shift clock cycle. By such a change in the cycle of the shift clock signal, the selection line Ls and the power supply line La are selected row by row in order of the drive shift clock cycle, and selection for m rows is repeated twice. Each time selection for m rows is repeated twice, a measurement period is set for the selection line Ls of the qth row.
 [発光期間、および、非発光期間]
 図13を参照して、発光期間、および、非発光期間における選択線Ls、電源線La、データ線Ld、および、データドライバ40に入力される各信号の電圧レベルの推移を説明する。なお、発光動作、および、非発光動作は、データ線Ldに入力されるデータ信号Vdの電圧レベルが相互に異なる一方で、その他の推移については同様である。
[Light emission period and non-light emission period]
With reference to FIG. 13, the transition of the voltage level of each signal input to the selection line Ls, the power supply line La, the data line Ld, and the data driver 40 in the light emission period and the non-light emission period will be described. The light emission operation and the non-light emission operation are the same in other transitions while the voltage level of the data signal Vd input to the data line Ld is different from each other.
 図13の下側に示されるように、発光期間、および、非発光期間において、測定用スイッチSW3、測定用電圧スイッチSWs、および、転送スイッチSWtrsは、オフ状態に設定され続ける。また、出力スイッチSW2は、j列目のデータラッチ43aと、j列目のDAC44とを接続するDAC接続の状態に設定され続けて、入力スイッチSW1は、j列目のデータラッチ43aとj列目のデータレジスタ42とを接続するデータレジスタ接続の状態に設定され続ける。 As shown in the lower side of FIG. 13, in the light emission period and the non-light emission period, the measurement switch SW3, the measurement voltage switch SWs, and the transfer switch SWtrs are continuously set to the off state. Further, the output switch SW2 continues to be set to a DAC connection state for connecting the j-th column data latch 43a and the j-th column DAC 44, and the input switch SW1 is connected to the j-th column data latch 43a and the j-th column. The data register connection state for connecting the second data register 42 continues to be set.
 まず、タイミングtd1において、表示用スイッチSWdがオン状態に切り替えられて、バッファ45が負帰還接続された増幅器として機能し始める。そして、シフトレジスタ41、データレジスタ42、データラッチ43a、レベルシフタ46、DAC44、バッファ45、および、データ線Ldが直列に接続される。 First, at the timing td1, the display switch SWd is turned on, and the buffer 45 starts to function as an amplifier connected with negative feedback. The shift register 41, the data register 42, the data latch 43a, the level shifter 46, the DAC 44, the buffer 45, and the data line Ld are connected in series.
 次いで、データスタートパルス信号SP1がデータドライバ40に入力されて、シフト信号がシフトレジスタ41からデータレジスタ42に入力される。これによって、1行目の階調値Dinがシステムコントローラー50からデータレジスタ42へ取り込まれる。 Next, the data start pulse signal SP 1 is input to the data driver 40, and the shift signal is input from the shift register 41 to the data register 42. As a result, the gradation value Din in the first row is taken into the data register 42 from the system controller 50.
 タイミングtd2では、1行目の選択線Lsの電圧レベルがハイレベルHに設定され、かつ、1行目の電源線Laの電源信号Vaとして書込レベルWDVSSが設定される。これによって、1行目の選択トランジスタT3と1行目の保持トランジスタT2とがオフ状態からオン状態に遷移して、1行目の駆動トランジスタT1が飽和領域において駆動できる状態となる。 At timing td2, the voltage level of the selection line Ls in the first row is set to the high level H, and the write level WDVSS is set as the power supply signal Va of the power supply line La in the first row. As a result, the selection transistor T3 in the first row and the holding transistor T2 in the first row shift from the off state to the on state, and the driving transistor T1 in the first row can be driven in the saturation region.
 この際に、ラッチパルス信号LPがデータドライバ40に入力されて、1行目の階調値Dinはn列のデータラッチ43aに一斉に保持される。n列のデータラッチ43aに保持された1行目の階調値Dinは、n列のレベルシフタ46とn列のDAC44とを通じてアナログ値に変換されて、変換後のアナログ値が階調値レベルVdataとしてデータ線Ldに設定される。そして、1行目の駆動トランジスタT1のゲート‐ソース間電圧Vgsは、書込レベルWDVSSと階調値レベルVdataとの差に応じた電圧として保持容量Csに保持される。 At this time, the latch pulse signal LP is input to the data driver 40, and the gradation value Din of the first row is held in the n-column data latch 43a all at once. The gradation value Din of the first row held in the n-column data latch 43a is converted into an analog value through the n-column level shifter 46 and the n-column DAC 44, and the converted analog value is converted into the gradation value level Vdata. To the data line Ld. The gate-source voltage Vgs of the driving transistor T1 in the first row is held in the holding capacitor Cs as a voltage corresponding to the difference between the write level WDVSS and the gradation value level Vdata.
 これによって、1行目の画素PXにおける書込動作が終了する。なお、1行j列目のデータ線Ldに設定される階調値レベルVdataは、1行j列目の基準階調値Dbに対して、1行j列目の画素PXから得られたしきい値補正量kによる補正が加味されたものである。 This completes the writing operation in the pixel PX in the first row. The gradation value level Vdata set for the data line Ld in the first row and j column is obtained from the pixel PX in the first row and j column with respect to the reference gradation value Db in the first row and j column. The correction by the threshold value correction amount k is added.
 なお、この間に、データスタートパルス信号SP1が再びデータドライバ40へ出力されて、シフト信号がシフトレジスタ41からデータレジスタ42に入力される。これによって、2行目の階調値Dinがシステムコントローラー50からデータレジスタ42へ取り込まれる。 During this time, the data start pulse signal SP1 is output to the data driver 40 again, and the shift signal is input from the shift register 41 to the data register 42. As a result, the gradation value Din in the second row is taken from the system controller 50 into the data register 42.
 タイミングtd3では、1行目の選択線Lsの電圧レベルがローレベルLに設定され、かつ、1行目の電源線Laの電圧レベルが発光レベルELVDDに設定される。これによって、1行目の選択トランジスタT3と1行目の保持トランジスタT2とがオン状態からオフ状態に遷移する。そして、1行目の駆動トランジスタT1は、1行目の保持容量Csに保持された電圧と、駆動トランジスタT1のしきい値電圧Vthとの差に応じたドレイン‐ソース間電流IdsをEL素子OELに流す。 At timing td3, the voltage level of the selection line Ls in the first row is set to the low level L, and the voltage level of the power supply line La in the first row is set to the light emission level ELVDD. As a result, the selection transistor T3 in the first row and the holding transistor T2 in the first row transition from the on state to the off state. Then, the driving transistor T1 in the first row generates the drain-source current Ids corresponding to the difference between the voltage held in the holding capacitor Cs in the first row and the threshold voltage Vth of the driving transistor T1 in the EL element OEL. Shed.
 この際に、データ線Ldのデータ信号Vdとして設定された階調値レベルVdataは、駆動トランジスタT1におけるしきい値電圧Vthの変動分が補正された電圧レベルである。そのため、EL素子OELに流れるドレイン‐ソース間電流Idsもまた、しきい値電圧Vthの変動分が補正されたものとなる。これによって、1行目の画素PXが発光動作を行う。 At this time, the gradation value level Vdata set as the data signal Vd of the data line Ld is a voltage level in which the variation of the threshold voltage Vth in the drive transistor T1 is corrected. Therefore, the drain-source current Ids flowing through the EL element OEL is also corrected for the variation of the threshold voltage Vth. As a result, the pixels PX in the first row perform a light emission operation.
 なお、この際に、2行目の選択線Lsの電圧レベルがハイレベルHに設定され、かつ、2行目の電源線Laの電圧レベルが書込レベルWDVSSに設定されて、2行目の選択トランジスタT3と2行目の保持トランジスタT2とがオン状態になる。また、ラッチパルス信号LPが再びデータドライバ40へ出力されることによって、n列のデータラッチ43aに2行目の階調値Dinが保持される。n列のデータラッチ43aに保持された2行目の階調値Dinは、レベルシフタ46とDAC44とを通じてアナログ信号電圧に変換されて、n列の階調値レベルVdataとしてデータ線Ldに設定される。 At this time, the voltage level of the selection line Ls in the second row is set to the high level H, and the voltage level of the power supply line La in the second row is set to the write level WDVSS. The selection transistor T3 and the holding transistor T2 in the second row are turned on. Further, the latch pulse signal LP is output again to the data driver 40, whereby the gradation value Din of the second row is held in the n-th column data latch 43a. The gradation value Din of the second row held in the n-column data latch 43a is converted into an analog signal voltage through the level shifter 46 and the DAC 44, and is set as the gradation value level Vdata of the n-column to the data line Ld. .
 そして、2行目の駆動トランジスタT1のゲート‐ソース間電圧Vgsは、書込レベルWDVSSと階調値レベルVdataとの差に応じた電圧として保持容量Csに保持される。これによって、2行目の駆動トランジスタT1は、飽和領域で駆動できる状態となり、2行目の画素PXにおける発光期間の書込動作が終了する。2行j列目のデータ線Ldに設定される階調値レベルVdataは、2行j列目の基準階調値Dbに対して、2行j列目の画素PXから得られるしきい値補正量kによる補正が加味されたものである。 The gate-source voltage Vgs of the driving transistor T1 in the second row is held in the holding capacitor Cs as a voltage corresponding to the difference between the write level WDVSS and the gradation value level Vdata. As a result, the driving transistors T1 in the second row can be driven in the saturation region, and the writing operation in the light emission period in the pixels PX in the second row is completed. The gradation value level Vdata set for the data line Ld in the second row and j column is a threshold value correction obtained from the pixel PX in the second row and j column with respect to the reference gradation value Db in the second row and j column. The correction by the amount k is taken into account.
 このような書込動作と発光動作とが1行ずつ行番号順に行われて、これらの動作が1行目からn行目まで駆動シフトクロック周期によって行われる。これによって、1つのフレームとして画像が表示される。なお、非発光動作においては、上記書込動作と発光動作とにおける階調値レベルVdataが、最低階調値に相当する電圧レベルに変更される。 Such a writing operation and a light emitting operation are performed in the order of row numbers one row at a time, and these operations are performed from the first row to the nth row by a drive shift clock cycle. As a result, an image is displayed as one frame. In the non-light emission operation, the gradation value level Vdata in the writing operation and the light emission operation is changed to a voltage level corresponding to the lowest gradation value.
 [測定期間]
 図14を参照して、測定期間における選択線Ls、電源線La、データ線Ld、および、データドライバ40に入力される各信号の電圧レベルの推移を説明する。
[Measurement period]
With reference to FIG. 14, the transition of the voltage level of each signal input to the selection line Ls, the power supply line La, the data line Ld, and the data driver 40 in the measurement period will be described.
 図14の下側が示すように、q行目の画素PXが測定期間における書込動作、および、測定動作を行う期間において、q行目の電源線Laの電圧レベルは書込レベルWDVSSに設定され続ける。また、表示用スイッチSWdはオフ状態に設定され続けて、データ線Ldは、データドライバ40におけるシフトレジスタ41、および、データレジスタ42から切断され続ける。そして、バッファ45の非反転入力端子は、DAC44の出力レベルに設定され続け、かつ、バッファ45の反転入力端子は、データ線Ldの電圧レベルに設定され続け、バッファ45は、DAC44の出力レベルとデータ線Ldの電圧レベルとを比較する、すなわち、リファレンス電圧と収束電圧とを比較する比較器として機能し続ける。 As shown in the lower side of FIG. 14, the voltage level of the power line La in the q-th row is set to the write level WDVSS during the writing operation and the measurement operation in the q-th pixel PX. to continue. Further, the display switch SWd continues to be set in the OFF state, and the data line Ld continues to be disconnected from the shift register 41 and the data register 42 in the data driver 40. The non-inverting input terminal of the buffer 45 continues to be set to the output level of the DAC 44, and the inverting input terminal of the buffer 45 continues to be set to the voltage level of the data line Ld. It continues to function as a comparator that compares the voltage level of the data line Ld, that is, compares the reference voltage and the convergence voltage.
 まず、タイミングt1において、転送スイッチSWtrsはオフ状態に設定される。この状態から、q行目の選択線Lsの電圧レベルがハイレベルHに設定されて、q行目の保持トランジスタT2、および、q行目の選択トランジスタT3がオン状態に切り替わる。そして、測定用電圧スイッチSWsがオン状態に切り替わり、n列のデータ線Ldの各々のデータ信号Vdが測定レベルVMに設定される。 First, at the timing t1, the transfer switch SWtrs is set to an off state. From this state, the voltage level of the selection line Ls in the q-th row is set to the high level H, and the holding transistor T2 in the q-th row and the selection transistor T3 in the q-th row are turned on. Then, the measurement voltage switch SWs is turned on, and the data signal Vd of each of the n columns of data lines Ld is set to the measurement level VM.
 なお、入力スイッチSW1の入力端子は、アップカウンタ47の出力端子に接続されるカウンタ接続である。出力スイッチSW2は、データラッチ43aとレベルシフタ46とを接続している。 The input terminal of the input switch SW1 is a counter connection connected to the output terminal of the up counter 47. The output switch SW2 connects the data latch 43a and the level shifter 46.
 この際に、駆動トランジスタT1のゲート‐ソース間電圧Vgsがしきい値電圧Vthよりも大きくなるように、測定レベルVMが設定される。こうした測定レベルVMがn列のデータ線Ldの各々の電圧レベルとして設定されると、測定レベルVMと書込レベルWDVSSとの差に基づくドレイン‐ソース間電流Idsが、q行目の駆動トランジスタT1とq行目の選択トランジスタT3とを通じてアナログ電源70へ流れる。これに伴い、q行目の保持容量Csは、駆動トランジスタT1のゲート‐ソース間電圧Vgsとして、しきい値電圧Vthを超える電圧を保持する。これによって、q行目の画素PXが測定期間における書込動作を終了する。 At this time, the measurement level VM is set so that the gate-source voltage Vgs of the drive transistor T1 is larger than the threshold voltage Vth. When such a measurement level VM is set as the voltage level of each of the n columns of data lines Ld, the drain-source current Ids based on the difference between the measurement level VM and the write level WDVSS becomes the q-th drive transistor T1. And the q-th row selection transistor T3. Accordingly, the holding capacitor Cs in the q-th row holds a voltage exceeding the threshold voltage Vth as the gate-source voltage Vgs of the driving transistor T1. Thereby, the pixel PX in the q-th row finishes the writing operation in the measurement period.
 タイミングt2において、q行目の選択線Lsの電圧レベルはハイレベルHに設定され続ける一方で、測定用電圧スイッチSWsはオフ状態に切り替わる。これによって、n列のデータ線Ldの各々はハイインピーダンス状態に設定される。 At timing t2, the voltage level of the selection line Ls in the q-th row continues to be set to the high level H, while the measurement voltage switch SWs is switched to the off state. As a result, each of the n columns of data lines Ld is set to a high impedance state.
 この際に、q行目の駆動トランジスタT1におけるゲート‐ソース間電圧Vgsが保持容量Csに保持されているため、q行目の駆動トランジスタT1におけるソースレベルがi行目の駆動トランジスタT1のドレインレベルに近づくように、q行目の駆動トランジスタT1において、ドレイン‐ソース間電流Idsが流れる。 At this time, since the gate-source voltage Vgs in the driving transistor T1 in the q-th row is held in the storage capacitor Cs, the source level in the driving transistor T1 in the q-th row is the drain level of the driving transistor T1 in the i-th row. So that the drain-source current Ids flows in the driving transistor T1 in the q-th row.
 そして、タイミングt2から時間が経過するに連れて、q行目の保持容量Csに蓄積された電荷は放電され、q行目の駆動トランジスタT1におけるゲート‐ソース間電圧Vgsは、ドレイン‐ソース間電流Idsがほぼ流れなくなるまで低下する。結果として、タイミングt2から緩和時間tsが経過したとき、データ線Ldの電圧レベルは、収束レベルVsに収束し、その収束レベルVsがバッファ45の反転入力端子に取り込まれる。 Then, as time elapses from the timing t2, the charge accumulated in the storage capacitor Cs in the q-th row is discharged, and the gate-source voltage Vgs in the driving transistor T1 in the q-th row is the drain-source current. It decreases until Ids almost stops flowing. As a result, when the relaxation time ts has elapsed from the timing t2, the voltage level of the data line Ld converges to the convergence level Vs, and the convergence level Vs is taken into the inverting input terminal of the buffer 45.
 一方で、期間決定部56は、監視部55の記憶している最大値データDmaxの中から、今回の測定期間が設定される画素行の最大値データDmaxを参照して、データシフトクロックClkd、および、ラッチパルス信号LPの送出回数Nを決定する。上述したように、期間決定部56の決定する送出回数Nであれば、今回の測定期間におけるリファレンスレベルは、前回の測定期間における収束レベルVsを測定することの可能な範囲まで降圧され、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難くなる。すなわち、今回の測定期間におけるリファレンス最大値は、前回の測定期間における収束電圧を測定することの可能な大きさまで増大する一方で、収束電圧の測定に不要な大きさまでは増大され難くなる。 On the other hand, the period determining unit 56 refers to the maximum value data Dmax of the pixel row in which the current measurement period is set, from the maximum value data Dmax stored in the monitoring unit 55, and the data shift clock Clkd, And the number N of times of sending the latch pulse signal LP is determined. As described above, if the number of transmissions N is determined by the period determination unit 56, the reference level in the current measurement period is stepped down to a range in which the convergence level Vs in the previous measurement period can be measured, and It is difficult to step down to a voltage level that is unnecessary for the measurement of the convergence level Vs. In other words, the reference maximum value in the current measurement period increases to a level at which the convergence voltage can be measured in the previous measurement period, but it is difficult to increase the reference maximum value in a size unnecessary for the measurement of the convergence voltage.
 また、期間決定部56は、決定された送出回数Nから今回の延長期間teを決定する。上述したように、期間決定部56の決定する延長期間teは、発光期間の設定を延長するための期間であって、しきい値電圧Vthが小さく、かつ、収束レベルVsの測定に要する期間が短いほど長い。 Further, the period determining unit 56 determines the extension period te of this time from the determined number N of transmissions. As described above, the extension period te determined by the period determination unit 56 is a period for extending the setting of the light emission period, and has a small threshold voltage Vth and a period required for measuring the convergence level Vs. The shorter, the longer.
 タイミングt3において、q行目の選択線Lsの電圧レベルがローレベルLに設定されて、q行目の保持トランジスタT2と、q行目の選択トランジスタT3とがオフ状態に切り替わる。また、測定用スイッチSW3がオン状態に切り替る。 At timing t3, the voltage level of the selection line Ls in the q-th row is set to the low level L, and the holding transistor T2 in the q-th row and the selection transistor T3 in the q-th row are switched to the off state. Further, the measurement switch SW3 is turned on.
 この際に、データシフトクロックClkdがアップカウンタ47に入力され、かつ、ラッチパルス信号LPがデータラッチ43a、および、論理積回路43bに入力される。アップカウンタ47の出力値であるカウント値は、入力スイッチSW1、および、データラッチ43aを通じてレベルシフタ46に入力され、レベルシフタ46は、階調値Dinに対する増幅と同じく、カウント値の電圧レベルを増幅する。DAC44は、階調値レベルVdataの生成と同じく、レベルシフタ46によって増幅されたデジタル値をアナログ値に変換して、変換結果であるリファレンスレベルをバッファ45の非反転入力端子に入力する。 At this time, the data shift clock Clkd is input to the up counter 47, and the latch pulse signal LP is input to the data latch 43a and the AND circuit 43b. The count value, which is the output value of the up counter 47, is input to the level shifter 46 through the input switch SW1 and the data latch 43a. The level shifter 46 amplifies the voltage level of the count value in the same manner as the amplification with respect to the gradation value Din. Similarly to the generation of the gradation value level Vdata, the DAC 44 converts the digital value amplified by the level shifter 46 into an analog value, and inputs the reference level as a conversion result to the non-inverting input terminal of the buffer 45.
 ここで、DAC44の出力するリファレンスレベルが収束レベルVsよりもハイレベルであるとき、バッファ45の出力する電圧レベルはハイレベルである。これに対して、DAC44の出力するリファレンスレベルが収束レベルVsよりもローレベルであるとき、バッファ45の出力する電圧レベルはローレベルである。結果として、DAC44の出力するリファレンスレベルが、書込レベルWDVSSから収束レベルVsまでの間であるとき、バッファ45の出力レベルはハイレベルである。これに対して、DAC44の出力するリファレンスレベルが収束レベルVsよりもローレベルであるとき、バッファ45の出力レベルはローレベルである。 Here, when the reference level output from the DAC 44 is higher than the convergence level Vs, the voltage level output from the buffer 45 is high. On the other hand, when the reference level output from the DAC 44 is lower than the convergence level Vs, the voltage level output from the buffer 45 is low. As a result, when the reference level output by the DAC 44 is between the write level WDVSS and the convergence level Vs, the output level of the buffer 45 is high. On the other hand, when the reference level output from the DAC 44 is lower than the convergence level Vs, the output level of the buffer 45 is low.
 リファレンスレベルと収束レベルVsとの比較の結果は、ラッチパルス信号LPの入力ごとに、フリップフロップ43cに保持されて、論理積回路43bに入力される。そして、j列目の論理積回路43bの出力レベルが論理的にハイレベルであるとき、すなわち、j列目のDAC44の出力するリファレンスレベルが、書込レベルWDVSSから収束レベルVsまでの間であるとき、j列目のデータラッチ43aはアップカウンタ47のカウント値を更新する。これに対して、j列目のDAC44の出力するリファレンスレベルが収束レベルVsよりもローレベルであるとき、j列目のデータラッチ43aはアップカウンタ47のカウント値を更新しない。 The result of the comparison between the reference level and the convergence level Vs is held in the flip-flop 43c for each input of the latch pulse signal LP and input to the AND circuit 43b. When the output level of the AND circuit 43b in the j-th column is logically high, that is, the reference level output from the DAC 44 in the j-th column is between the write level WDVSS and the convergence level Vs. At this time, the data latch 43a in the j-th column updates the count value of the up counter 47. On the other hand, when the reference level output from the DAC 44 in the j-th column is lower than the convergence level Vs, the data latch 43a in the j-th column does not update the count value of the up counter 47.
 結果として、リファレンスレベルが収束レベルVsよりもハイレベルであって、かつ、収束レベルVsに最も近いとき、こうしたリファレンスレベルを生成するカウント値をj列目のデータラッチ43aは最終的に保持する。そして、j列目のデータラッチ43aが最終的に保持するカウント値が、この測定期間におけるj列目の測定データDoutとして取り扱われる。 As a result, when the reference level is higher than the convergence level Vs and closest to the convergence level Vs, the data latch 43a in the j-th column finally holds the count value for generating such a reference level. The count value finally held by the data latch 43a in the j-th column is handled as the measurement data Dout in the j-th column during this measurement period.
 例えば、カウント値が「3」であるときのリファレンスレベルが、1列目の収束レベルVsよりもハイレベルであって、かつ、1列目の収束レベルVsに最も近いとき、このリファレンスレベルを生成するカウント値である「3」を1列目のデータラッチ43aは最終的に保持する。これに対して、カウント値が「5」であるときのリファレンスレベルが、2列目の収束レベルVsよりもハイレベルであって、かつ、2列目の収束レベルVsに最も近いとき、このリファレンスレベルを生成するカウント値である「5」を2列目のデータラッチ43aは最終的に保持する。そして、1列目のデータラッチ43aは、この測定期間における1列目の測定データDoutとして「3」を記憶し、2列目のデータラッチ43aは、この測定期間における2列目の測定データDoutとして「5」を記憶する。 For example, when the reference level when the count value is “3” is higher than the convergence level Vs of the first column and closest to the convergence level Vs of the first column, this reference level is generated. The data latch 43a in the first column finally holds “3” that is the count value to be stored. On the other hand, when the reference level when the count value is “5” is higher than the convergence level Vs of the second column and is closest to the convergence level Vs of the second column, this reference. The data latch 43a in the second column finally holds “5” which is a count value for generating the level. The data latch 43a in the first column stores “3” as the measurement data Dout in the first column in this measurement period, and the data latch 43a in the second column stores the measurement data Dout in the second column in this measurement period. Is stored as “5”.
 このようなリファレンスレベルを設定するカウント値、すなわち、送出回数Nは、段階的に降下するリファレンスレベルがn列の収束レベルVsの各々を下回れば足りる回数である。そして、送出回数Nは、段階的に降下するリファレンスレベルがn列の収束レベルVsを大幅に下回る必要のない回数である。この点において、上述した期間決定部56は、今回の測定期間が設定される画素行の最大値データDmaxと、シフト量ΔVthの推定値とを参照して、データシフトクロックClkd、および、ラッチパルス信号LPの送出回数Nを決定する。それゆえに、期間決定部56の決定する送出回数Nであれば、今回の測定期間におけるリファレンスレベルは、前回までの測定期間における収束レベルVsを測定することの可能な範囲まで降圧され、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難くなる。 The count value for setting such a reference level, that is, the number of transmissions N, is the number of times that it is sufficient if the reference level that falls stepwise falls below each of the n columns of convergence levels Vs. The number N of times of transmission is the number of times that the reference level that falls stepwise does not need to be significantly lower than the convergence level Vs of the n columns. In this regard, the period determination unit 56 described above refers to the maximum value data Dmax of the pixel row in which the current measurement period is set and the estimated value of the shift amount ΔVth, and the data shift clock Clkd and the latch pulse The number N of transmissions of the signal LP is determined. Therefore, if the number of transmissions N is determined by the period determination unit 56, the reference level in the current measurement period is stepped down to a range where the convergence level Vs in the previous measurement period can be measured and converged. It becomes difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
 タイミングt4において、p列目の入力スイッチSW1の入力端子と、p+1列目の出力スイッチSW2の出力端子とが接続されるデータラッチ直列接続に切り替わる。測定用スイッチSW3がオフ状態に切り替り、n列の論理積回路43bの各々がラッチパルス信号LPの入力ごとに論理的にハイレベルを出力する状態に切り替わる。また、転送スイッチSWtrsがオン状態に切り替る。そして、タイミングコントローラー52からデータドライバ40にラッチパルス信号LPが入力されて、n列のデータラッチ43aの各々に保持されている列ごとの測定データDoutは、ラッチパルス信号LPの入力に同期して列番号順にシステムコントローラー50に転送される。なお、図14では、説明の便宜上、ラッチパルス信号LPの繰り返される回数が省略されている。 At timing t4, the input switch SW1 in the p-th column and the output terminal of the output switch SW2 in the (p + 1) -th column are switched to a data latch series connection. The measurement switch SW3 is switched to an OFF state, and each of the n-column AND circuits 43b is switched to a state in which a logical high level is output for each input of the latch pulse signal LP. Further, the transfer switch SWtrs is turned on. Then, the latch pulse signal LP is input from the timing controller 52 to the data driver 40, and the measurement data Dout for each column held in each of the n column data latches 43a is synchronized with the input of the latch pulse signal LP. The data is transferred to the system controller 50 in the order of the column numbers. In FIG. 14, the number of times the latch pulse signal LP is repeated is omitted for convenience of explanation.
 タイミングt5において、転送スイッチSWtrsはオフ状態に切り替えられる。そして、入力スイッチSW1は、データラッチ43aの入力端子をデータレジスタ42におけるレジスタに接続して、これによって測定期間が終了する。 At timing t5, the transfer switch SWtrs is switched to the off state. The input switch SW1 connects the input terminal of the data latch 43a to the register in the data register 42, thereby ending the measurement period.
 [動作シーケンス]
 図15~図17を参照して、1つのフレーム期間のなかに設定される測定期間のタイミングを説明する。なお、画素PXが540行×960列に配置され、フレームレートが60fpsである例を説明する。また、図15は、第1フレームに実行される黒色の表示動作における測定期間のタイミングを示し、図16は、第2フレームに実行される黒色の黒表示動作における測定期間のタイミングを示し、図17は、第540フレームに実行される黒色の表示動作における測定期間のタイミングを示す。
[Operation sequence]
The timing of the measurement period set in one frame period will be described with reference to FIGS. An example in which the pixels PX are arranged in 540 rows × 960 columns and the frame rate is 60 fps will be described. FIG. 15 shows the timing of the measurement period in the black display operation executed in the first frame, and FIG. 16 shows the timing of the measurement period in the black display operation executed in the second frame. Reference numeral 17 denotes the timing of the measurement period in the black display operation executed in the 540th frame.
 図15が示すように、まず、タイミングTf1aにおいて、1行目の各画素PXに発光期間が設定されて、階調値レベルVdataをデータ線Ldに設定する書込動作が1行目の各画素PXにおいて開始される。書込動作が1行目の各画素PXにおいて終了すると、階調値レベルVdataに基づく表示動作が1行目の各画素PXにて開始されるとともに、2行目の各画素PXに発光期間が設定されて、階調値レベルVdataを設定する書込動作が2行目の各画素PXにおいて開始される。こうして、階調値Dinに基づく書込動作が、1行目から540行目まで行番号順に選択シフトクロック周期によって開始されて、書込動作の終了した行から順に表示動作が開始される。 As shown in FIG. 15, first, at a timing Tf1a, a writing operation in which a light emission period is set in each pixel PX in the first row and the gradation value level Vdata is set in the data line Ld is performed in each pixel in the first row. Start at PX. When the writing operation is finished in each pixel PX in the first row, a display operation based on the gradation value level Vdata is started in each pixel PX in the first row, and the light emission period is set in each pixel PX in the second row. The writing operation for setting the gradation value level Vdata is started in each pixel PX in the second row. Thus, the writing operation based on the gradation value Din is started in the order of row numbers from the first row to the 540th row in the selected shift clock cycle, and the display operation is started in order from the row where the writing operation is completed.
 タイミングTf1bにおいて、階調値レベルVdataをデータ線Ldに設定する書込動作は、最終行である540行目まで終了して、1行目の画素PXにおける発光期間の長さは、それの基準となる基準期間tbまで到達する。そして、基準期間tbから経過した期間の長さが、1行目の画素PXから行番号順にカウントされて、基準期間tbから経過した期間の長さが延長期間teに到達するまで、発光期間の設定を延長させる表示延長動作が続けられる。 At timing Tf1b, the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the length of the light emission period in the pixel PX on the first row is the reference level. Reaches the reference period tb. Then, the length of the period elapsed from the reference period tb is counted in order of the row numbers from the pixel PX in the first row, and the length of the period elapsed from the reference period tb reaches the extension period te. The display extension operation to extend the setting is continued.
 この際に、後続する測定期間の設定される対象行は1行目の画素行であり、全ての画素行の各々に共通する今回の延長期間teは、今回の測定において1行目の画素行に設定される送出回数Nから決定される。そして、全ての画素行の各々に共通する延長期間teは、1行目の画素行に対する送出回数Nが大きいほど短い期間である。 At this time, the target row in which the subsequent measurement period is set is the first pixel row, and the current extended period te common to all the pixel rows is the first pixel row in the current measurement. It is determined from the number of transmissions N set in. The extension period te common to all the pixel rows is a shorter period as the number N of transmissions for the first pixel row is larger.
 タイミングTf1cにおいて、基準期間tbから経過した期間の長さが、1行目の画素PXにおいて延長期間teに到達して、1行目の各画素PXに非発光期間が設定される。そして、黒色を表示するための書込動作が1行目の各画素PXにおいて開始される。黒色を表示するための書込動作が1行目の各画素PXにおいて終了すると、黒色を表示するための表示動作として非発光動作が1行目の各画素PXにおいて開始されるとともに、2行目の各画素PXに非発光期間が設定されて、黒色を表示するための書込動作が2行目の各画素PXにおいて開始される。こうして、黒色を表示するための書込動作が、1行目から540行目まで行番号順に選択シフトクロック周期によって開始されて、書込動作の終了した行から順に黒色の表示動作が開始される。 At the timing Tf1c, the length of the period elapsed from the reference period tb reaches the extension period te in the pixels PX in the first row, and the non-light emission period is set in each pixel PX in the first row. Then, a writing operation for displaying black is started in each pixel PX in the first row. When the writing operation for displaying black is finished in each pixel PX in the first row, a non-light emission operation is started in each pixel PX in the first row as a display operation for displaying black. A non-emission period is set for each pixel PX, and a writing operation for displaying black is started at each pixel PX in the second row. Thus, the writing operation for displaying black is started from the first row to the 540th row in the order of the row numbers in the selected shift clock cycle, and the black display operation is started in order from the row where the writing operation is completed. .
 タイミングTf1dにおいて、黒色を表示するための書込動作は、最終行である540行目まで終了して、ハイレベルHの設定される選択線Lsの候補が、1行目から540行目まで行番号順に測定シフトクロック周期によってシフトされる。この際に、まず、ハイレベルHの設定される選択線Lsの候補、すなわち、特性値である収束電圧の測定される対象行として1行目が設定されて、1行目の各画素PXに対して測定期間が設定される。この際に、1行目の画素行に対する送出回数Nは、今回の測定期間が設定される1行目の画素行に対応した最大値データDmaxから得られる値である。そして、1行目の画素行に対して今回設定されるリファレンスレベルは、1行目の画素行に対して前回得られた収束レベルVsを測定することの可能な範囲であって、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難い値である。 At the timing Tf1d, the writing operation for displaying black is completed up to the 540th line which is the last line, and the selection line Ls set to the high level H is lined up from the first line to the 540th line. Shifted by the measurement shift clock period in numerical order. At this time, first, the first line is set as a candidate for the selection line Ls for which the high level H is set, that is, the target line for measuring the convergence voltage, which is a characteristic value, and is set in each pixel PX in the first line. On the other hand, a measurement period is set. At this time, the transmission count N for the first pixel row is a value obtained from the maximum value data Dmax corresponding to the first pixel row for which the current measurement period is set. The reference level set this time for the first pixel row is a range in which the convergence level Vs obtained for the first pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
 これによって、1行目の各駆動トランジスタT1に関する測定データDoutが、システムコントローラー50のデータ処理部54に列番号順に取り込まれる。そして、1行目の各画素PXに対する測定動作が終了すると、ハイレベルHの設定される選択線Lsの候補が、2行目から540行目まで行番号順に測定シフトクロック周期によってシフトされる。一方で、選択マスクパルス信号MP1、および、電源マスクパルス信号MP2の出力によって、全ての選択線LsにはローレベルLが設定され続けて、全ての画素PXは黒色の表示を続ける。 Thereby, the measurement data Dout relating to each drive transistor T1 in the first row is taken into the data processing unit 54 of the system controller 50 in the order of the column numbers. When the measurement operation for each pixel PX in the first row is completed, the selection line Ls candidates for which the high level H is set are shifted from the second row to the 540th row by the measurement shift clock cycle in the row number order. On the other hand, due to the output of the selection mask pulse signal MP1 and the power supply mask pulse signal MP2, the low level L is continuously set to all the selection lines Ls, and all the pixels PX continue to display black.
 タイミングTf2aにおいて、測定シフトクロック周期による候補のシフトが最終行である540行目まで進み、1行目の各画素PXに対して、再び、階調値レベルVdataを設定する書込動作が開始される。 At timing Tf2a, the candidate shift based on the measurement shift clock cycle proceeds to the 540th row, which is the final row, and the writing operation for setting the gradation value level Vdata is started again for each pixel PX in the first row. The
 図16が示すように、タイミングTf2aにおいて、階調値レベルVdataを設定する書込動作が1行目から540行目まで行番号順に再び開始され、階調値レベルVdataをデータ線Ldに設定する書込動作が終了した行から順に発光期間が設定される。 As shown in FIG. 16, at the timing Tf2a, the writing operation for setting the gradation value level Vdata is started again in the order of the row numbers from the first row to the 540th row, and the gradation value level Vdata is set to the data line Ld. The light emission period is set in order from the row where the writing operation is completed.
 タイミングTf2bにおいて、階調値レベルVdataをデータ線Ldに設定する書込動作が最終行である540行目まで終了して、発光期間の設定を延長させる表示延長動作が開始される。この際に、後続する測定期間の設定される対象行は2行目の画素行であり、全ての画素行の各々に共通する今回の延長期間teは、今回の測定において2行目の画素行に設定される送出回数Nから決定される。そして、全ての画素行の各々に共通する今回の延長期間teは、2行目の画素行に対する送出回数Nが大きいほど短い期間である。 At timing Tf2b, the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the display extending operation for extending the setting of the light emission period is started. At this time, the target row in which the subsequent measurement period is set is the second pixel row, and the current extended period te common to all the pixel rows is the second pixel row in the current measurement. It is determined from the number of transmissions N set in. The current extended period te common to all the pixel rows is a shorter period as the number N of times of transmission for the second pixel row is larger.
 タイミングTf2cにおいて、発光期間の設定を延長させる表示延長動作が終了し、次いで、黒色を表示するための非発光期間の設定が、1行目から540行目まで行番号順に進められ、黒色を表示するための書込動作が終了した行から順に、黒色の表示動作が開始される。 At timing Tf2c, the display extension operation for extending the setting of the light emission period is completed, and then the setting of the non-light emission period for displaying black is advanced from the first line to the 540th line in order of the line number, and black is displayed. The black display operation is started in order from the row in which the writing operation for completing is completed.
 タイミングTf2dにおいて、黒色を表示するための書込動作が最終行である540行目まで終了して、ハイレベルHの設定される選択線Lsの候補が、1行目から540行目まで行番号順に測定シフトクロック周期によってシフトされる。この際に、収束電圧の測定される対象行として2行目が設定されて、測定シフトクロック周期による候補のシフトが2行目まで進められる。なお、ハイレベルHの設定される選択線Lsの候補が1行目であるとき、選択マスクパルス信号MP1、および、電源マスクパルス信号MP2の出力によって1行目の選択線LsにはローレベルLが印加される。そして、ハイレベルHの設定される選択線Lsの候補が2行目であるとき、2行目の各画素PXに対して測定期間が設定される。 At the timing Tf2d, the writing operation for displaying black is finished up to the 540th line, which is the last line, and the selection line Ls for which the high level H is set is changed from the first line to the 540th line number. It is shifted in turn by the measurement shift clock period. At this time, the second row is set as the target row for which the convergence voltage is measured, and the candidate shift based on the measurement shift clock cycle is advanced to the second row. When the selection line Ls candidate for which the high level H is set is in the first row, the selection line Ls in the first row is set to the low level L by the output of the selection mask pulse signal MP1 and the power supply mask pulse signal MP2. Is applied. When the selection line Ls candidate for which the high level H is set is in the second row, a measurement period is set for each pixel PX in the second row.
 この際に、2行目の画素行に対する送出回数Nは、今回の測定期間が設定される2行目の画素行に対応した最大値データDmaxから得られる値である。そして、2行目の画素行に対して今回設定されるリファレンスレベルは、2行目の画素行に対して前回得られた収束レベルVsを測定することの可能な範囲であって、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難い値である。 At this time, the transmission number N for the second pixel row is a value obtained from the maximum value data Dmax corresponding to the second pixel row for which the current measurement period is set. The reference level set this time for the second pixel row is a range in which the convergence level Vs obtained last time for the second pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
 これによって、2行目の各駆動トランジスタT1に関する測定データDoutが、システムコントローラー50のデータ処理部54に列番号順に取り込まれる。そして、2行目の各画素PXに対する測定動作が終了すると、ハイレベルHの設定される選択線Lsの候補が、3行目から540行目まで行番号順にシフトされる。この際に、選択マスクパルス信号MP1、および、電源マスクパルス信号MP2の出力によって、全ての選択線LsにはローレベルLが設定され続けて、全ての画素PXは黒色の表示を続ける。 Thereby, the measurement data Dout regarding each driving transistor T1 in the second row is taken into the data processing unit 54 of the system controller 50 in the order of the column numbers. When the measurement operation for each pixel PX in the second row is completed, the selection line Ls candidates for which the high level H is set are shifted in order of the row numbers from the third row to the 540th row. At this time, the low level L is continuously set to all the selection lines Ls by the output of the selection mask pulse signal MP1 and the power supply mask pulse signal MP2, and all the pixels PX continue to display black.
 タイミングTf3aにおいて、測定シフトクロック周期による候補のシフトが最終行である540行目まで進み、1行目の各画素PXに対して、再び、階調値レベルVdataを設定する書込動作が開始される。 At timing Tf3a, the candidate shift based on the measurement shift clock cycle proceeds to the 540th row, which is the final row, and the writing operation for setting the gradation value level Vdata is started again for each pixel PX in the first row. The
 図17が示すように、タイミングTfmaにおいて、階調値レベルVdataをデータ線Ldに設定する書込動作が1行目から540行目まで行番号順に再び開始され、階調値レベルVdataをデータ線Ldに設定する書込動作が終了した行から順に発光期間が設定される。 As shown in FIG. 17, at the timing Tfma, the writing operation for setting the gradation value level Vdata to the data line Ld is started again in the order of the row numbers from the first row to the 540th row, and the gradation value level Vdata is set to the data line. The light emission period is set in order from the row where the writing operation set to Ld is completed.
 タイミングTfmbにおいて、階調値レベルVdataをデータ線Ldに設定する書込動作が最終行である540行目まで終了して、発光期間の設定を延長させる表示延長動作が開始される。この際に、後続する測定期間の設定される対象行は540行目の画素行であり、全ての画素行の各々に共通する今回の延長期間teは、今回の測定において540行目の画素行に設定される送出回数Nから決定される。そして、全ての画素行の各々に共通する今回の延長期間teは、2行目の画素行に対する送出回数Nが大きいほど短い期間である。 At timing Tfmb, the writing operation for setting the gradation value level Vdata to the data line Ld is completed up to the 540th row, which is the last row, and the display extending operation for extending the setting of the light emission period is started. At this time, the target row in which the subsequent measurement period is set is the 540th pixel row, and the current extended period te common to all the pixel rows is the 540th pixel row in the current measurement. It is determined from the number of transmissions N set in. The current extended period te common to all the pixel rows is a shorter period as the number N of times of transmission for the second pixel row is larger.
 タイミングTfmcにおいて、発光期間の設定を延長させる表示延長動作が終了し、次いで、黒色を表示するための非発光期間の設定が、1行目から540行目まで行番号順に進められ、黒色を表示するための書込動作が終了した行から順に、黒色の表示動作が開始される。 At the timing Tfmc, the display extension operation for extending the setting of the light emission period is completed, and then the setting of the non-light emission period for displaying black is advanced from the first line to the 540th line in order of line numbers, and black is displayed. The black display operation is started in order from the row in which the writing operation for completing is completed.
 タイミングTfmdにおいて、黒色を表示するための書込動作が最終行である540行目まで終了して、ハイレベルHの設定される選択線Lsの候補が、1行目から540行目まで行番号順に測定シフトクロック周期によってシフトされる。この際に、収束電圧の測定される対象行として540行目が設定されて、ハイレベルHの設定される選択線Lsの候補が1行目から539目であるとき、選択マスクパルス信号MP1、および、電源マスクパルス信号MP2の出力によって、全ての選択線LsにローレベルLが設定される。そして、ハイレベルHの設定される選択線Lsの候補が540行目であるとき、540行目の各画素PXに対して測定期間が設定される。これによって、540行目の各駆動トランジスタT1に関する測定データDoutが、システムコントローラー50のデータ処理部54に行番号順に取り込まれる。 At timing Tfmd, the writing operation for displaying black is finished up to the 540th line, which is the last line, and the selection lines Ls set to the high level H are line numbers from the 1st line to the 540th line. It is shifted in turn by the measurement shift clock period. At this time, when the 540th row is set as the target row for which the convergence voltage is measured, and the selection line Ls candidates for which the high level H is set are from the first row to the 539th row, the selection mask pulse signal MP1, Further, the low level L is set to all the selection lines Ls by the output of the power supply mask pulse signal MP2. When the selection line Ls candidate for which the high level H is set is the 540th row, the measurement period is set for each pixel PX on the 540th row. As a result, the measurement data Dout regarding each drive transistor T1 in the 540th row is taken into the data processing unit 54 of the system controller 50 in the order of the row numbers.
 なお、540行目の画素行に対する送出回数Nも、今回の測定期間が設定される540行目の画素行に対応した最大値データDmaxから得られる値である。そして、540行目の画素行に対して今回設定されるリファレンスレベルは、540行目の画素行に対して前回得られた収束レベルVsを測定することの可能な範囲であって、かつ、収束レベルVsの測定に不要な電圧レベルまで降圧され難い値である。 Note that the number of transmissions N for the 540th pixel row is also a value obtained from the maximum value data Dmax corresponding to the 540th pixel row for which the current measurement period is set. The reference level set this time for the 540th pixel row is a range in which the convergence level Vs obtained previously for the 540th pixel row can be measured and is converged. It is a value that is difficult to step down to a voltage level that is unnecessary for the measurement of the level Vs.
 タイミングTfmeにおいて、540行目の各画素PXにおける測定動作が終了し、1行目の各画素PXに対して、再び、階調値レベルVdataを設定する書込動作が開始される。 At timing Tfme, the measurement operation for each pixel PX in the 540th row is completed, and the writing operation for setting the gradation value level Vdata is started again for each pixel PX in the first row.
 このように、1つのフレームが表示される期間において、540行目まで黒色の表示動作が開始された後に、特定の画素行に対して測定期間が設定される。測定の対象となる画素行は、1つのフレームごとに、1行目の画素行から行番号順に1行ずつずらされる。すなわち、第kフレーム(kは1以上の整数)において、q行目(1≦q≦539)の画素行が測定動作を行うとき、第k+1フレームにおいては、q+1行目の画素行が測定動作を行い、測定期間の設定される対象行が最終行まで到達すると、測定期間の設定される対象行は1行目の画素行に戻る。 Thus, after a black display operation is started up to the 540th line in a period in which one frame is displayed, a measurement period is set for a specific pixel line. The pixel rows to be measured are shifted by one row from the first pixel row in the order of row numbers for each frame. That is, when the pixel row in the q-th row (1 ≦ q ≦ 539) performs the measurement operation in the k-th frame (k is an integer of 1 or more), the pixel row in the q + 1-th row performs the measurement operation in the k + 1-th frame. When the target row for which the measurement period is set reaches the last row, the target row for which the measurement period is set returns to the first pixel row.
 この際に、測定期間の設定される対象行がq行目であるとき、システムコントローラー50のデータ処理部54は、q行目の各列から得られた測定データDoutを、q行目の各画素PXに対応する記憶領域に記憶する。それゆえに、システムコントローラー50の補正処理部53は、次のフレームである第k+1フレームにおいて、しきい値補正量kの算出に際し、q行目の各画素PXの測定データDoutとして最新の測定データDoutを利用できる。そして、システムコントローラー50の監視部55は、q行目の各画素PXにおける最新の測定データDoutの中から最大値データDmaxを抽出して、q行目の最大値データDmaxを更新する。また、システムコントローラー50の期間決定部56は、q行目の画素行に対する次回の測定に先駆けて、監視部55から入力されるq行目の最大値データDmaxに基づいて送出回数Nを決定する。そして、このような測定期間が540回繰り返されるごとに、システムコントローラー50は、全ての画素行の測定データDout、最大値データDmax、および、送出回数Nを更新する。 At this time, when the target row for which the measurement period is set is the q-th row, the data processing unit 54 of the system controller 50 uses the measurement data Dout obtained from each column of the q-th row for each q-th row. The data is stored in the storage area corresponding to the pixel PX. Therefore, the correction processing unit 53 of the system controller 50 calculates the latest measurement data Dout as the measurement data Dout of each pixel PX in the q-th row when calculating the threshold correction amount k in the k + 1 frame, which is the next frame. Can be used. Then, the monitoring unit 55 of the system controller 50 extracts the maximum value data Dmax from the latest measurement data Dout in each pixel PX in the q row, and updates the maximum value data Dmax in the q row. The period determination unit 56 of the system controller 50 determines the number N of transmissions based on the maximum value data Dmax in the q-th row input from the monitoring unit 55 prior to the next measurement for the q-th pixel row. . Each time such a measurement period is repeated 540 times, the system controller 50 updates the measurement data Dout, the maximum value data Dmax, and the number N of transmissions of all the pixel rows.
 図18を参照して、1つのフレームが表示される期間における各制御信号の推移について詳しく説明する。なお、以下では、第kフレームにおいて測定期間の設定される画素行がq行目である場合を説明する。 Referring to FIG. 18, the transition of each control signal during a period in which one frame is displayed will be described in detail. Hereinafter, a case will be described in which the pixel row for which the measurement period is set in the k-th frame is the q-th row.
 選択ドライバ20は、選択スタートパルス信号SPの入力に応じ、選択シフトクロック周期によってシフト信号を生成し、シフト信号に同期して各選択線LsにハイレベルHを設定する。また、選択ドライバ20は、ハイレベルHを設定された行から順に、選択線LsにローレベルLを設定する。 The selection driver 20 generates a shift signal in accordance with the selection shift clock cycle in response to the input of the selection start pulse signal SP, and sets the high level H to each selection line Ls in synchronization with the shift signal. The selection driver 20 sets the low level L to the selection line Ls in order from the row where the high level H is set.
 電源ドライバ30は、選択スタートパルス信号SPの入力に応じ、選択シフトクロック周期によってシフト信号を生成し、シフト信号に同期して各電源線Laに書込レベルWDVSSを設定する。また、電源ドライバ30は、書込レベルWDVSSを設定された行から順に、電源線Laに発光レベルELVDDを設定する。 The power supply driver 30 generates a shift signal in accordance with the selected shift clock cycle in response to the input of the selection start pulse signal SP, and sets the write level WDVSS to each power supply line La in synchronization with the shift signal. Further, the power supply driver 30 sets the light emission level ELVDD to the power supply line La in order from the row in which the write level WDVSS is set.
 そして、q行目の選択線LsにハイレベルHが設定され、かつ、q行目の電源線Laに書込レベルWDVSSが設定されているとき、q行目の各画素回路PCCにおけるデータ線Ldは、階調値Dinに基づく階調値レベルVdataを設定される。また、q行目の選択線LsにローレベルLが設定され、かつ、q行目の電源線Laに発光レベルELVDDが設定されているとき、q行目の各画素回路PCCは、階調値Dinに基づくドレイン‐ソース間電流IdsをEL素子OELに流す。 When the high level H is set to the q-th selection line Ls and the write level WDVSS is set to the q-th power line La, the data line Ld in each pixel circuit PCC in the q-th row is set. Is set to a gradation value level Vdata based on the gradation value Din. Further, when the low level L is set to the selection line Ls of the qth row and the light emission level ELVDD is set to the power supply line La of the qth row, each pixel circuit PCC of the qth row has a gradation value. A drain-source current Ids based on Din is passed through the EL element OEL.
 最終行である540行目まで書込動作が終了すると、今回の測定における送出回数Nから決定された今回の延長期間teだけ、選択ドライバ20は、全ての選択線LsにローレベルLを設定し続け、また、電源ドライバ30は、全ての電源線Laに発光レベルELVDDを設定し続ける。こうした設定の継続によって、ドレイン‐ソース間電流Idsは、延長期間teだけさらにEL素子OELに流れる。 When the writing operation is completed up to the 540th line which is the last line, the selection driver 20 sets the low level L to all the selection lines Ls only for the current extension period te determined from the number N of transmissions in the current measurement. The power supply driver 30 continues to set the light emission level ELVDD for all the power supply lines La. By continuing such setting, the drain-source current Ids further flows to the EL element OEL only for the extended period te.
 540行目の書込動作の終了から延長期間teが経過すると、選択ドライバ20は、選択スタートパルス信号SPの入力に応じ、再び、選択シフトクロック周期によってシフト信号を生成し、シフト信号に同期して選択線LsにハイレベルHを設定する。また、選択ドライバ20は、ハイレベルHを設定された行から順に、選択線LsにローレベルLを設定する。 When the extension period te elapses from the end of the write operation on the 540th row, the selection driver 20 generates a shift signal again in accordance with the selected shift clock period in response to the input of the selection start pulse signal SP, and synchronizes with the shift signal. The high level H is set to the selection line Ls. The selection driver 20 sets the low level L to the selection line Ls in order from the row where the high level H is set.
 また、電源ドライバ30は、選択スタートパルス信号SPの入力に応じ、再び、選択シフトクロック周期によってシフト信号を生成し、シフト信号に同期して電源線Laに書込レベルWDVSSを設定する。また、電源ドライバ30は、書込レベルWDVSSを設定された行から順に、電源線Laに発光レベルELVDDを設定する。 Further, the power supply driver 30 again generates a shift signal in accordance with the selected shift clock cycle in response to the input of the selection start pulse signal SP, and sets the write level WDVSS to the power supply line La in synchronization with the shift signal. Further, the power supply driver 30 sets the light emission level ELVDD to the power supply line La in order from the row in which the write level WDVSS is set.
 そして、q行目の選択線LsにハイレベルHが設定され、かつ、q行目の電源線Laに書込レベルWDVSSが設定されているとき、q行目の各画素回路PCCにおけるデータ線Ldは、最低階調値に基づく階調値レベルVdataを設定される。また、q行目の選択線LsにローレベルLが印加され、かつ、q行目の電源線Laに発光レベルELVDDが設定されているとき、q行目の各画素回路PCCは、最低階調値に基づいてドレイン‐ソース間電流Idsの供給を抑える。 When the high level H is set to the q-th selection line Ls and the write level WDVSS is set to the q-th power line La, the data line Ld in each pixel circuit PCC in the q-th row is set. Is set to a gradation value level Vdata based on the lowest gradation value. In addition, when the low level L is applied to the q-th selection line Ls and the light emission level ELVDD is set to the q-th power line La, each pixel circuit PCC in the q-th row has the lowest gradation. The supply of the drain-source current Ids is suppressed based on the value.
 最終行である540行目まで黒色の表示動作が進められると、選択ドライバ20、および、電源ドライバ30の各々は、測定シフトクロックClkrの入力に応じて、測定シフトクロック周期によるシフトを開始する。この際に、選択ドライバ20は、選択マスクパルス信号MP1の入力に応じて、q行目の選択線LsにハイレベルHを設定する。また、電源ドライバ30は、電源マスクパルス信号MP2の入力に応じて、全ての電源線Laに書込レベルWDVSSを設定する。そして、q行目の各画素PXに対して、収束電圧の測定が開始される。 When the black display operation is advanced to the 540th line, which is the final line, each of the selection driver 20 and the power supply driver 30 starts shifting according to the measurement shift clock cycle according to the input of the measurement shift clock Clkr. At this time, the selection driver 20 sets the high level H to the selection line Ls of the q-th row in accordance with the input of the selection mask pulse signal MP1. Further, the power supply driver 30 sets the write level WDVSS for all the power supply lines La in response to the input of the power supply mask pulse signal MP2. Then, the measurement of the convergence voltage is started for each pixel PX in the q-th row.
 この際に、システムコントローラー50は、前回までの測定に基づくq行目の送出回数Nに従って、データシフトクロックClkd、および、ラッチパルス信号LPを、q行目の送出回数Nだけ送出する。そして、q行目の送出回数Nに従ったパルスの送出によって、今回の測定期間におけるリファレンスレベルは、前回までのq行目の測定期間における収束レベルVsを測定することの可能な範囲まで降圧され、かつ、今回の収束レベルVsの測定に不要な電圧レベルまで降圧され難くなる。 At this time, the system controller 50 sends the data shift clock Clkd and the latch pulse signal LP by the number N of times of transmission in the q row according to the number of times N of transmission of the q row based on the previous measurements. The reference level in the current measurement period is stepped down to a range in which the convergence level Vs in the measurement period in the q row up to the previous measurement can be measured by sending pulses in accordance with the number N of transmissions in the q row. And it becomes difficult to step down to a voltage level unnecessary for the measurement of the current convergence level Vs.
 次いで、q行目の各画素PXに対する測定データDoutがデータドライバ40から出力されると、選択ドライバ20、および、電源ドライバ30の各々は、測定シフトクロック周期によるシフトをタイミングthから540行目まで進める。そして、測定シフトクロック周期によるシフトが540行目まで到達すると、選択ドライバ20、および、電源ドライバ30の各々は、選択スタートパルス信号SPの入力に応じて、1行目の選択線Lsから540行目の選択線Lsまで行番号順に、階調値レベルVdataをデータ線Ldに設定する書込動作を開始する。 Next, when the measurement data Dout for each pixel PX in the q-th row is output from the data driver 40, each of the selection driver 20 and the power supply driver 30 shifts the measurement shift clock cycle from the timing th to the 540th row. Proceed. When the shift by the measurement shift clock cycle reaches the 540th row, each of the selection driver 20 and the power supply driver 30 starts from the selection line Ls on the first row in accordance with the input of the selection start pulse signal SP. The writing operation for setting the gradation value level Vdata to the data line Ld is started in the order of the row numbers up to the eye selection line Ls.
 上記実施形態によれば、以下に列挙する効果が得られる。
 (1)各画素行における測定データDoutの中の画素行ごとの最大値は、画素行ごとの最大値データDmaxとして記憶される。そして、今回の測定におけるリファレンス電圧の中の最大値であるリファレンス最大値は、今回の測定の対象となる画素行に対応付けられた最大値データDmax、すなわち、今回の測定よりも前の測定における収束電圧の中の最大値に基づいて設定される。それゆえに、今回の測定期間において逐次比較に要する時間は、最大値データDmaxが小さいほど短く、結果として、リファレンス電圧の中の最大値が一定値である構成と比べて、駆動トランジスタT1の特性値の取得に要する時間を短くすることが可能である。
According to the embodiment, the effects listed below can be obtained.
(1) The maximum value for each pixel row in the measurement data Dout in each pixel row is stored as maximum value data Dmax for each pixel row. The reference maximum value, which is the maximum value of the reference voltage in the current measurement, is the maximum value data Dmax associated with the pixel row to be measured this time, that is, in the measurement before the current measurement. It is set based on the maximum value in the convergence voltage. Therefore, the time required for the successive comparison in the current measurement period is shorter as the maximum value data Dmax is smaller. As a result, the characteristic value of the drive transistor T1 is compared with the configuration in which the maximum value in the reference voltage is a constant value. It is possible to shorten the time required for obtaining the.
 (2)今回の測定の対象となる画素行に対応付けられた最大値データDmaxは、今回の測定の対象となる画素行に測定期間が設定されるごとに更新される。ここで、前回の測定における駆動トランジスタT1の温度が、前々回の測定における駆動トランジスタT1の温度よりも大幅に低いとき、前回の測定における収束電圧の最大値は、前々回の測定における収束電圧の最大値から若干減少するときもある。このように、今回の測定の対象となる画素行の中における収束電圧の最大値が、測定の機会ごとに単調に増加しない場合であっても、上述した構成であれば、前々回の収束電圧の最大値に基づき、今回の測定におけるリファレンス電圧の中の最大値が設定される。それゆえに、今回の測定におけるリファレンス電圧の最大値が収束電圧を下回ることによって収束レベルVsが正確に測定されないことが抑えられる。 (2) The maximum value data Dmax associated with the pixel row to be measured this time is updated every time a measurement period is set for the pixel row to be measured this time. Here, when the temperature of the driving transistor T1 in the previous measurement is significantly lower than the temperature of the driving transistor T1 in the previous measurement, the maximum value of the convergence voltage in the previous measurement is the maximum value of the convergence voltage in the previous measurement. Sometimes it decreases slightly. As described above, even if the maximum value of the convergence voltage in the pixel row to be measured this time does not increase monotonously for each measurement opportunity, the previous configuration of the convergence voltage can be obtained with the above-described configuration. Based on the maximum value, the maximum value among the reference voltages in this measurement is set. Therefore, it is possible to prevent the convergence level Vs from being accurately measured when the maximum value of the reference voltage in the current measurement falls below the convergence voltage.
 (3)今回の測定におけるリファレンス電圧の中の最大値が小さいほど、今回の測定に先駆けた延長期間teが長いため、収束レベルVsの測定に要する時間が短くなるほど、EL素子OELの発光する時間はその測定に先駆けて長くなる。それゆえに、収束レベルVsの測定に要する時間と、EL素子OELの発光する時間との総和が大きく変わることを抑えて、EL素子OELの発光する時間を長くすることが可能である。ひいては、1つのフレームにおける輝度の低下が抑えられる。 (3) The smaller the maximum value of the reference voltage in the current measurement, the longer the extension period te prior to the current measurement. Therefore, the shorter the time required for measuring the convergence level Vs, the longer the time required for the EL element OEL to emit light. Becomes longer prior to the measurement. Therefore, it is possible to lengthen the light emission time of the EL element OEL while suppressing a significant change in the sum of the time required to measure the convergence level Vs and the light emission time of the EL element OEL. As a result, a decrease in luminance in one frame can be suppressed.
 (4)データドライバ40は、収束レベルVsとリファレンスレベルとの逐次比較において、リファレンス電圧を最小値から一定値ずつ上昇させる。それゆえに、今回の測定におけるリファレンス電圧の最大値が小さい分だけ、今回の測定における逐次比較に要する時間は確実に短くなる。 (4) In the successive comparison between the convergence level Vs and the reference level, the data driver 40 increases the reference voltage from the minimum value by a certain value. Therefore, the time required for the successive comparison in the current measurement is surely shortened by the smaller maximum value of the reference voltage in the current measurement.
 (5)期間決定部56は、前回の測定期間と今回の測定期間との間においてしきい値電圧Vthが推定値だけ変わることを予測し、この推定値の分だけ今回のカウント値が高まるように送出回数Nを決定する。すなわち、期間決定部56は、今回の測定前の測定における収束電圧の最大値に一定値を加えた値を、今回の測定におけるリファレンス電圧の中の最大値に設定する。それゆえに、今回の測定前の測定から収束電圧が大きくなる場合であっても、収束電圧の大きくなる範囲が一定値以内であれば、今回の測定におけるリファレンス電圧の最大値が収束電圧を下回ることによって収束レベルVsが正確に測定されないことが抑えられる。 (5) The period determination unit 56 predicts that the threshold voltage Vth changes by the estimated value between the previous measurement period and the current measurement period, and the current count value increases by the estimated value. The number of transmissions N is determined. That is, the period determination unit 56 sets a value obtained by adding a constant value to the maximum value of the convergence voltage in the measurement before the current measurement as the maximum value in the reference voltage in the current measurement. Therefore, even if the convergence voltage increases from the measurement before the current measurement, the maximum value of the reference voltage in the current measurement is less than the convergence voltage if the range in which the convergence voltage increases is within a certain value. Therefore, it is possible to prevent the convergence level Vs from being accurately measured.
 (6)補正処理部53は、i行j列に位置する画素PXの測定データDoutを抽出し、抽出された測定データDoutから、i行j列に位置する画素PXに対するしきい値補正量kを算出する。そして、補正処理部53は、i行j列に位置する画素PXに対して生成された基準階調値Dbに、i行j列に位置する画素PXに対するしきい値補正量kを加算する。それゆえに、駆動トランジスタT1のしきい値電圧Vthが変動するとしても、変動後のしきい値電圧Vthに応じて階調値Dinが補正されるため、表示される画質の劣化を抑えることが可能となる。 (6) The correction processing unit 53 extracts the measurement data Dout of the pixel PX located in the i row and j column, and the threshold correction amount k for the pixel PX located in the i row and j column from the extracted measurement data Dout. Is calculated. Then, the correction processing unit 53 adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column. Therefore, even if the threshold voltage Vth of the driving transistor T1 varies, the gradation value Din is corrected according to the threshold voltage Vth after the variation, so that it is possible to suppress degradation of the displayed image quality. It becomes.
 (7)黒色の表示動作は、動画の表示を鮮明にするために挿入される動作であって、こうした黒色の表示動作が行われている期間に、上述した送出回数Nに基づく逐次比較が実施される。それゆえに、黒色の表示動作の行われている期間が不要に長くなることが抑えられて、こうした黒色の表示動作が行われている期間を、動画の表示を鮮明にすることに特化した期間の長さに近くすることが容易にもなる。 (7) The black display operation is an operation that is inserted in order to make the display of the moving image clear, and the successive comparison based on the number N of transmissions described above is performed during the period during which the black display operation is performed. Is done. Therefore, the period during which the black display operation is performed is suppressed from being unnecessarily long, and the period during which the black display operation is performed is a period specialized for clearing the video display. It becomes easy to be close to the length.
 [変形例]
 上記実施形態は、以下のように変更して実施することが可能である。
 [動作シーケンス]
 ・測定期間の設定される画素行の行番号は、1つのフレームごとに同じであってもよいし、1つのフレームごとにランダムであってもよい。また、測定期間の設定される画素行の行番号は、1つのフレームごとに2つ以上設定されてもよい。
[Modification]
The above embodiment can be implemented with the following modifications.
[Operation sequence]
The row number of the pixel row for which the measurement period is set may be the same for each frame, or may be random for each frame. Further, two or more row numbers of pixel rows for which a measurement period is set may be set for each frame.
 ・測定期間の設定される画素行は、EL表示装置が起動されるときや、EL表示装置が表示を休止してから復帰するときなど、1つのフレームが表示される期間以外において、全ての画素行、あるいは、一部の画素行であってもよい。 The pixel row in which the measurement period is set includes all the pixels other than the period in which one frame is displayed, such as when the EL display device is activated or when the EL display device suspends display and then returns. It may be a row or a part of pixel rows.
 ・測定期間の設定される画素行の行番号は、1つのフレームごとに一定値ずつ間隔を空けてもよい。例えば、m行の選択線Lsが相互に隣り合う10本の選択線Lsからなる複数の選択線群に区画される。そして、測定期間の設定される画素行は、1つのフレームごとに1つの選択線群ずつ設定されてもよい。 · The row numbers of the pixel rows for which the measurement period is set may be spaced by a fixed value for each frame. For example, the m selection lines Ls are divided into a plurality of selection line groups including ten selection lines Ls adjacent to each other. Then, one selection line group may be set for each frame in the pixel row in which the measurement period is set.
 詳述すると、図19が示すように、第1フレームにおいて、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、1行目の画素行に測定期間が設定される。次いで、第2フレームにおいて、第1フレームと同様に、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、11行目の画素行に測定期間が設定される。このように、1つのフレームが表示されるごとに、測定期間の設定される画素行の行番号は、1行目の画素行から531行目の画素行まで、一定値である10行ずつ間隔を空けて設定される。 More specifically, as shown in FIG. 19, in the first frame, the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, a measurement period is set in the first pixel row. Next, in the second frame, similarly to the first frame, the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, a measurement period is set in the eleventh pixel row. In this way, every time one frame is displayed, the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the first pixel row to the 531st pixel row. Set with a gap.
 次いで、図20が示すように、第55フレームにおいて、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、1群目の選択線群から2行目の画素行に測定期間が設定される。次いで、第56フレームにおいて、第55フレームと同様に、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、2群目の選択線群から12行目の画素行に測定期間が設定される。このように、1つのフレームが表示されるごとに、測定期間の設定される画素行の行番号は、2行目の画素行から532行目の画素行まで、一定値である10行ずつ間隔を空けて設定される。 Next, as shown in FIG. 20, in the 55th frame, the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, the measurement period is set from the first selection line group to the second pixel row. Next, in the 56th frame, as in the 55th frame, the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, the measurement period is set from the second selection line group to the twelfth pixel row. In this way, every time one frame is displayed, the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the second pixel row to the 532th pixel row. Set with a gap.
 次いで、図21が示すように、第487フレームにおいて、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、1群目の選択線群から10行目の画素行に測定期間が設定される。次いで、第488フレームにおいて、第487フレームと同様に、1行目から行番号順に書込動作、表示動作、および、表示延長動作が実施される。そして、黒色を表示するための書込動作が最終行まで行われると、2群目の選択線群から20行目の画素行に測定期間が設定される。このように、1つのフレームが表示されるごとに、測定期間の設定される画素行の行番号は、10行目の画素行から540行目の画素行まで、一定値である10行ずつ間隔を空けて設定される。そして、各画素行の測定データDoutは、m回のフレームが表示されるごとに1回ずつ更新される。 Next, as shown in FIG. 21, in the 487th frame, the writing operation, the display operation, and the display extension operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, the measurement period is set from the first selection line group to the tenth pixel row. Next, in the 488th frame, similarly to the 487th frame, a writing operation, a display operation, and a display extending operation are performed in the order of the row numbers from the first row. When the writing operation for displaying black is performed up to the last row, the measurement period is set from the second selection line group to the 20th pixel row. In this way, every time one frame is displayed, the row number of the pixel row for which the measurement period is set is an interval of 10 rows having a constant value from the 10th pixel row to the 540th pixel row. Set with a gap. The measurement data Dout for each pixel row is updated once every m frames are displayed.
 ここで、測定期間の設定される画素行が1行ずつシフトするとき、例えば、10回のフレームが表示される間に、収束レベルVsの測定される画素PXの範囲は、540行の画素行の中において1行目から10行目までに偏る。これに対して、測定期間の設定される画素行が上述したように10行ずつシフトするとき、例えば、10回のフレームが表示される間に、収束レベルVsの測定される画素PXの範囲は、1行目から100行目までの画素行の中に等間隔に分散する。それゆえに、収束レベルVsの測定される画素PXの範囲が広範囲にわたって分散するため、しきい値電圧Vthの変動が広い範囲にわたる場合には、表示される画質の劣化が効果的に抑えられる。 Here, when the pixel rows in which the measurement period is set are shifted one by one, for example, while 10 frames are displayed, the range of the pixels PX to which the convergence level Vs is measured is 540 pixel rows. It is biased from the 1st line to the 10th line. On the other hand, when the pixel row in which the measurement period is set is shifted by 10 rows as described above, for example, the range of the pixel PX for which the convergence level Vs is measured is displayed while 10 frames are displayed. The pixel lines from the first line to the 100th line are distributed at equal intervals. Therefore, since the range of the pixels PX whose convergence level Vs is measured is dispersed over a wide range, when the threshold voltage Vth varies over a wide range, degradation of displayed image quality can be effectively suppressed.
 ・m行の選択線Lsは、相互に隣り合うs本の選択線Lsからなる複数の選択線群に区画されて、測定期間の設定される画素行は、1つのフレームごとに1つの選択線群ずつ設定されてもよい。この際に、システムコントローラー50は、画素PXごとの測定データDoutを、測定の対象となる画素PXの属する列ごとの代表値として画素群ごとに取り扱ってもよい。 The m selection lines Ls are partitioned into a plurality of selection line groups each consisting of s selection lines Ls adjacent to each other, and one pixel line for which a measurement period is set is one selection line for each frame. Each group may be set. At this time, the system controller 50 may handle the measurement data Dout for each pixel PX for each pixel group as a representative value for each column to which the pixel PX to be measured belongs.
 例えば、m行の選択線Lsは、相互に隣り合う10本の選択線Lsからなる複数の選択線群に区画される。この際に、システムコントローラー50におけるデータ処理部54は、m/10行×n列の記憶領域を備え、列方向に沿って並ぶ10個の画素PXの各々を1つの記憶領域に対応づけている。すなわち、データ処理部54は、m/10個の選択線群の各々において、列方向に沿って並ぶ10個の画素PXの各々を、1つの記憶領域に対応づける。そして、データ処理部54は、データ処理部54に入力された画素PXごとの測定データDoutを、その画素PXが対応づけられた記憶領域に記憶する。データ処理部54は、画素PXごとの測定データDoutが入力されるごとに、その画素PXに対応づけられた測定データDoutを更新する。 For example, the m selection lines Ls are divided into a plurality of selection line groups including ten selection lines Ls adjacent to each other. At this time, the data processing unit 54 in the system controller 50 includes a storage area of m / 10 rows × n columns, and associates each of the ten pixels PX arranged in the column direction with one storage area. . That is, in each of the m / 10 selection line groups, the data processing unit 54 associates each of the ten pixels PX arranged in the column direction with one storage area. The data processing unit 54 stores the measurement data Dout for each pixel PX input to the data processing unit 54 in a storage area associated with the pixel PX. Each time the measurement data Dout for each pixel PX is input, the data processing unit 54 updates the measurement data Dout associated with the pixel PX.
 また、補正量加算部53Bは、i行j列に位置する画素PXに対応する測定データDoutから、i行j列に位置する画素PXに対するしきい値補正量kを加算する。補正量加算部53Bは、i行j列に位置する画素PXに対して生成された基準階調値Dbに、i行j列に位置する画素PXに対するしきい値補正量kを加算する。そして、補正量加算部53Bは、加算された結果である新たな階調値を、i行j列に位置する画素PXに対する階調値Dinとして出力する。 Further, the correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column from the measurement data Dout corresponding to the pixel PX located in the i row and j column. The correction amount adding unit 53B adds the threshold correction amount k for the pixel PX located in the i row and j column to the reference gradation value Db generated for the pixel PX located in the i row and j column. Then, the correction amount adding unit 53B outputs a new gradation value as a result of the addition as the gradation value Din for the pixel PX located in i row and j column.
 また、監視部55は、行方向に沿って並ぶn列の画素群ごとの記憶領域として、m/10行の記憶領域を備えている。監視部55は、i行目の画素行における測定データDoutの中から最も大きい測定データDoutを抽出し、抽出された測定データDoutを、i行目の画素行が属する画素群の最大値データDmaxとして取り扱う。 Further, the monitoring unit 55 includes a storage area of m / 10 rows as a storage area for each pixel group of n columns arranged in the row direction. The monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the i-th pixel row, and uses the extracted measurement data Dout as the maximum value data Dmax of the pixel group to which the i-th pixel row belongs. Treat as.
 また、期間決定部56は、監視部55から入力される最大値データDmaxに基づいて、画素群ごとの送出回数Nを決定する。期間決定部56の決定する送出回数Nは、最大値データDmaxに対して線形性を有する値であり、監視部55から入力される最大値データDmaxが大きいほど大きい。期間決定部56の決定する送出回数Nは、アップカウンタ47におけるカウント値の最大値を画素群ごとに定める値である。 Also, the period determining unit 56 determines the number N of transmissions for each pixel group based on the maximum value data Dmax input from the monitoring unit 55. The number N of transmissions determined by the period determination unit 56 is a value having linearity with respect to the maximum value data Dmax, and increases as the maximum value data Dmax input from the monitoring unit 55 increases. The number N of transmissions determined by the period determination unit 56 is a value that determines the maximum value of the count value in the up counter 47 for each pixel group.
 例えば、データ処理部54は、1群目の選択線群において1列目に位置する10個の画素PXを、1行1列目の記憶領域に対応づけ、2群目の選択線群において2列目に位置する10個の画素PXを、2行2列目の記憶領域に対応づける。また、データ処理部54は、54群目の選択線群において959列目に位置する10個の画素PXを、54行959列目の記憶領域に対応づけ、54群目の選択線群において960列目に位置する10個の画素PXを、54行960列目の記憶領域に対応づける。 For example, the data processing unit 54 associates the ten pixels PX located in the first column in the first selection line group with the storage area in the first row and first column, and 2 in the second selection line group. The ten pixels PX located in the column are associated with the storage area in the second row and the second column. In addition, the data processing unit 54 associates the ten pixels PX located in the 959th column in the 54th selection line group with the storage area in the 54th row, the 959th column, and 960 in the 54th selection line group. The ten pixels PX located in the column are associated with the storage area in the 54th row and the 960th column.
 また、例えば、監視部55は、1行目の画素行における測定データDoutの中から最も大きい測定データDoutを抽出し、抽出された測定データDoutを、1群目の画素群における最大値データDmaxとして取り扱う。また、監視部55は、11行目の画素行における測定データDoutの中から最も大きい測定データDoutを抽出し、抽出された測定データDoutを、2群目の画素群における最大値データDmaxとして取り扱う。 Further, for example, the monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the first pixel row, and uses the extracted measurement data Dout as the maximum value data Dmax in the first pixel group. Treat as. The monitoring unit 55 extracts the largest measurement data Dout from the measurement data Dout in the eleventh pixel row, and handles the extracted measurement data Dout as the maximum value data Dmax in the second pixel group. .
 また、例えば、期間決定部56は、1群目の画素群における最大値データDmaxに基づいて、1群目の画素群の送出回数Nを決定し、決定された送出回数Nは、1群目に属する1行目から10行目までの画素行の各々の測定に適用される。また、期間決定部56は、2群目の画素群における最大値データDmaxに基づいて、2群目の画素群の送出回数Nを決定し、決定された送出回数Nは、2群目に属する11行目から20行目までの画素行の各々の測定に適用される。 Further, for example, the period determining unit 56 determines the number N of transmissions of the first group of pixels based on the maximum value data Dmax in the first group of pixels, and the determined number N of transmissions is determined by the first group. This is applied to the measurement of each of the pixel rows from the first row to the tenth row belonging to. Further, the period determining unit 56 determines the number N of transmissions of the second group of pixels based on the maximum value data Dmax in the second group of pixels, and the determined number of transmissions N belongs to the second group. This is applied to the measurement of each pixel row from the 11th row to the 20th row.
 こうした構成によれば、測定データDoutを記憶するための記憶領域の容量がデータ処理部54において抑えられ、また、最大値データDmaxを記憶するための記憶領域の容量が監視部55において抑えられる。 According to such a configuration, the capacity of the storage area for storing the measurement data Dout is suppressed in the data processing unit 54, and the capacity of the storage area for storing the maximum value data Dmax is suppressed in the monitoring unit 55.
 また、駆動トランジスタT1を構成する薄膜の膜特性は、しきい値電圧Vthの変動量を支配することが少なくなく、こうした薄膜の膜特性は、相互に隣り合う画素行において近しい。それゆえに、相互に隣り合う画素行においては、収束レベルVsが相互に近い場合が少なくない。この点で、上述した構成によれば、1つの画素群の中において、1つの画素行の測定データDoutは、他の画素行の測定データDoutとしても取り扱われる。それゆえに、全ての画素PXに対して測定データDoutが更新されることに際し、測定データDoutの更新される周期が短くなる。結果として、駆動トランジスタT1における特性値の変化が、単位時間あたりに大きい場合には、表示される画質の劣化がより効果的に抑えられる。 Also, the film characteristics of the thin film constituting the driving transistor T1 often dominate the fluctuation amount of the threshold voltage Vth, and the film characteristics of such a thin film are close to each other in adjacent pixel rows. Therefore, in the pixel rows adjacent to each other, the convergence levels Vs are often close to each other. In this regard, according to the configuration described above, in one pixel group, the measurement data Dout of one pixel row is handled as the measurement data Dout of another pixel row. Therefore, when the measurement data Dout is updated for all the pixels PX, the cycle of updating the measurement data Dout is shortened. As a result, when the change in the characteristic value in the drive transistor T1 is large per unit time, the degradation of the displayed image quality is more effectively suppressed.
 [監視部55]
 ・今回の測定の対象となる画素行に対応付けられる最大値データDmaxは、今回の測定の対象となる画素行に対して実施された前回の測定における収束電圧の最大値であってもよい。
[Monitoring unit 55]
The maximum value data Dmax associated with the pixel row to be measured this time may be the maximum value of the convergence voltage in the previous measurement performed on the pixel row to be measured this time.
 この際に、監視部55は、今回の測定における最大値データDmaxのみを記憶し、次回の測定期間を設定される画素行を把握して、その画素行に対応付けられた最大値データDmaxを記憶領域から抽出する。そして、次回の測定期間が設定されるとき、記憶領域から抽出された最大値データDmaxを監視部55は期間決定部56に入力する。 At this time, the monitoring unit 55 stores only the maximum value data Dmax in the current measurement, grasps the pixel row in which the next measurement period is set, and calculates the maximum value data Dmax associated with the pixel row. Extract from the storage area. When the next measurement period is set, the monitoring unit 55 inputs the maximum value data Dmax extracted from the storage area to the period determination unit 56.
 例えば、駆動トランジスタT1がEL素子OELに電流を流すことを繰り返すとき、駆動トランジスタT1のしきい値電圧Vthは単調に増加しやすい。そして、しきい値電圧Vthが単調に増加する傾向を有する場合であれば、今回の測定前の測定における収束電圧の最大値を決定するための母集団が、前回の測定における収束電圧で足りる。それゆえに、監視部55が今回の測定における最大値データDmaxのみを記憶する構成であれば、駆動トランジスタT1の特性値の取得に要する時間を短くすることが可能であり、さらに、今回の測定前の測定における収束電圧の最大値を決定するための構成の簡素化が図られる。
 ・また、今回の測定の対象となる画素行に対応付けられる最大値データDmaxは、例えば、測定の対象となる画素行の2回ごとの測定における収束電圧の最大値であってもよく、最大値を抽出するための測定が所定の回数ごとの測定であってもよい。要するに、今回の測定におけるリファレンス電圧の中の最大値は、今回の測定前の測定における収束電圧の最大値より大きく、かつ、今回の測定前の測定における収束電圧の中の最大値が小さいほど小さい値であればよい。
For example, when the driving transistor T1 repeats passing a current through the EL element OEL, the threshold voltage Vth of the driving transistor T1 tends to increase monotonously. If the threshold voltage Vth has a tendency to increase monotonically, the population for determining the maximum value of the convergence voltage in the measurement before the current measurement is sufficient for the convergence voltage in the previous measurement. Therefore, if the monitoring unit 55 is configured to store only the maximum value data Dmax in the current measurement, the time required to acquire the characteristic value of the drive transistor T1 can be shortened, and further, before the current measurement. This simplifies the configuration for determining the maximum value of the convergence voltage in the measurement.
Further, the maximum value data Dmax associated with the pixel row to be measured this time may be, for example, the maximum value of the convergence voltage in every second measurement of the pixel row to be measured. The measurement for extracting the value may be a measurement every predetermined number of times. In short, the maximum value of the reference voltage in this measurement is larger than the maximum value of the convergence voltage in the measurement before the current measurement, and is smaller as the maximum value in the convergence voltage in the measurement before the current measurement is smaller. Any value is acceptable.
 [延長期間te]
 ・延長期間teは、今回の測定直後に設定される発光期間を延長する期間であってもよい。すなわち、今回の測定におけるリファレンス電圧の中の最大値が小さいほど、今回の測定直後における発光の期間が長くてもよく、収束レベルVsの測定に要する時間が短くなるほど、EL素子OELの発光する時間がその測定直後に長くてもよい。こうした構成であっても、1つのフレームにおける輝度の低下が抑えられる。
[Extension period te]
The extension period te may be a period for extending the light emission period set immediately after the current measurement. In other words, the smaller the maximum value of the reference voltage in the current measurement, the longer the light emission period immediately after the current measurement, and the shorter the time required to measure the convergence level Vs, the longer the light emission time of the EL element OEL. May be long immediately after the measurement. Even with such a configuration, a decrease in luminance in one frame can be suppressed.
 ・延長期間teは、割愛されてもよい。すなわち、今回の測定におけるリファレンス電圧の大きさに関わらず、今回の測定直前、および、今回の測定直後に設定される発光期間の長さは一定値であってもよい。 ・ The extension period te may be omitted. That is, regardless of the magnitude of the reference voltage in the current measurement, the length of the light emission period set immediately before the current measurement and immediately after the current measurement may be a constant value.
 [送出回数N]
 ・期間決定部56の決定する送出回数Nは、今回の測定前の測定における収束電圧の中の最大値より大きく、かつ、今回の測定前の測定における収束電圧の中の最大値が小さいほど小さい値を、今回の測定におけるリファレンス電圧の中の最大値とする値であればよい。例えば、期間決定部56の決定する送出回数Nは、前回の測定におけるカウント値の中の最大値に、1よりも大きい所定値を乗算して得られる値であってもよい。
[Number of transmissions N]
The number N of transmissions determined by the period determining unit 56 is smaller as the maximum value in the convergence voltage in the measurement before the current measurement is larger and the smaller the maximum value in the convergence voltage in the measurement before the current measurement is smaller. Any value may be used as long as the value is the maximum value among the reference voltages in the current measurement. For example, the transmission count N determined by the period determination unit 56 may be a value obtained by multiplying the maximum value among the count values in the previous measurement by a predetermined value greater than 1.
 ・しきい値補正量kは、測定データDout自体であってもよいし、抽出された測定データDoutから別途算出される値であってもよい。要するに、しきい値補正量kは、測定データDoutに基づく値であって、シフト量ΔVthの変化に起因した輝度の変化を抑えるように、基準階調値Dbを補正する値であればよい。 The threshold correction amount k may be the measurement data Dout itself, or may be a value calculated separately from the extracted measurement data Dout. In short, the threshold correction amount k is a value based on the measurement data Dout and may be a value that corrects the reference gradation value Db so as to suppress a change in luminance due to a change in the shift amount ΔVth.
 ・緩和時間tsが経過したときの収束レベルVsは、しきい値電圧Vthとみなされる電圧レベルであってもよいし、しきい値電圧Vthの変化に対して線形性を有して変わる電圧レベルであってもよい。要するに、駆動トランジスタT1における特性値は、駆動トランジスタT1のシフト量ΔVthが反映される測定可能な値であればよい。 The convergence level Vs when the relaxation time ts has elapsed may be a voltage level that is regarded as the threshold voltage Vth, or a voltage level that changes linearly with respect to a change in the threshold voltage Vth. It may be. In short, the characteristic value in the driving transistor T1 may be a measurable value that reflects the shift amount ΔVth of the driving transistor T1.
 [測定動作]
 ・1回の測定動作において測定レベルVMの設定されるデータ線Ldは、全てのデータ線Ldにおける一部であってもよい。この際に、1回の測定動作では、測定レベルVMの設定の対象となる一部のデータ線Ldのみが、測定用電圧スイッチSWsを介してアナログ電源70と接続される。そして、最大値データDmaxを抽出するための画素PXの母集団は、1回の測定動作において測定レベルVMの設定される画素PXから構成されてもよいし、2回以上の測定動作において測定レベルVMの設定される画素PXから構成されてもよい。すなわち、画素群は、画素行に限らず、1行の画素行における一部であってもよいし、複数回の測定動作の各々における測定対象から構成される集合であってもよく、リファレンス電圧の最大値が共通する画素の集合であればよい。
[Measurement operation]
The data line Ld to which the measurement level VM is set in one measurement operation may be a part of all the data lines Ld. At this time, in one measurement operation, only a part of the data lines Ld for which the measurement level VM is set is connected to the analog power supply 70 via the measurement voltage switch SWs. The population of the pixels PX for extracting the maximum value data Dmax may be composed of the pixels PX to which the measurement level VM is set in one measurement operation, or the measurement level in two or more measurement operations. You may comprise from the pixel PX to which VM is set. That is, the pixel group is not limited to the pixel row, but may be a part of one pixel row, or a set of measurement objects in each of the plurality of measurement operations, and the reference voltage Any set of pixels having a common maximum value may be used.
 ・駆動トランジスタT1の特性値は、収束レベルVsに寄与するパラメータであって、駆動トランジスタT1の有するしきい値電圧Vthであってもよいし、駆動トランジスタT1の有する電流増幅率βであってもよい。 The characteristic value of the driving transistor T1 is a parameter that contributes to the convergence level Vs, and may be the threshold voltage Vth that the driving transistor T1 has, or the current amplification factor β that the driving transistor T1 has. Good.
 ・例えば、露光対象を露光するか否かという2階調の光源としてEL装置が用いられる場合のように、入力信号SIGは、EL素子OELごとの輝度の階調値を示すデジタル信号であってもよい。 For example, the input signal SIG is a digital signal indicating a luminance gradation value for each EL element OEL, as in the case where an EL device is used as a light source of two gradations whether or not to expose an exposure target. Also good.
 [画素回路PCC]
 ・画素回路PCCは、3つのnチャンネル型トランジスタと1つの保持容量Csとを備える3T1C型の回路に限らず、例えば、2つのnチャンネル型トランジスタと1つの保持容量Csとを備える2T1C型の回路であってもよいし、4つ以上のトランジスタから構成される回路であってもよい。
[Pixel circuit PCC]
The pixel circuit PCC is not limited to a 3T1C type circuit including three n-channel transistors and one holding capacitor Cs. For example, a 2T1C circuit including two n-channel transistors and one holding capacitor Cs. It may be a circuit composed of four or more transistors.
 ・画素回路PCCは、駆動トランジスタT1におけるゲート‐ソース間電圧Vgsの保持機能を有しない構成であってもよいし、ゲート‐ソース間電圧Vgsの保持機能以外の機能を能動素子や受動素子として備える構成であってもよい。なお、画素PXにおける輝度が安定する点において、駆動トランジスタT1におけるゲート‐ソース間電圧Vgsの保持機能を画素回路PCCが備えることが好ましい。 The pixel circuit PCC may have a configuration that does not have a function of holding the gate-source voltage Vgs in the driving transistor T1, or has a function other than the function of holding the gate-source voltage Vgs as an active element or a passive element. It may be a configuration. Note that the pixel circuit PCC preferably has a function of holding the gate-source voltage Vgs in the driving transistor T1 in that the luminance in the pixel PX is stabilized.
 ・駆動トランジスタT1、保持トランジスタT2、および、選択トランジスタT3は、nチャンネル型トランジスタに限らず、pチャンネル型トランジスタであってもよい。この際に、駆動トランジスタT1のソースは、電源線Laに電気的接続し、駆動トランジスタT1のドレインは、ノードN2に電気的接続される。保持トランジスタT2のソースは、駆動トランジスタT1のソースに電気的接続され、保持トランジスタT2のドレインは、駆動トランジスタT1のゲートに電気的接続される。そして、選択トランジスタT3のドレインは、データ線Ldに電気的接続され、選択トランジスタT3のソースは、駆動トランジスタT1のドレインに電気的接続される。 The driving transistor T1, the holding transistor T2, and the selection transistor T3 are not limited to n-channel transistors but may be p-channel transistors. At this time, the source of the driving transistor T1 is electrically connected to the power supply line La, and the drain of the driving transistor T1 is electrically connected to the node N2. The source of the holding transistor T2 is electrically connected to the source of the driving transistor T1, and the drain of the holding transistor T2 is electrically connected to the gate of the driving transistor T1. The drain of the selection transistor T3 is electrically connected to the data line Ld, and the source of the selection transistor T3 is electrically connected to the drain of the driving transistor T1.
 ・非発光期間におけるゲート‐ソース間電圧Vgsは、駆動トランジスタT1において逆バイアスであってもよい。例えば、非発光期間における非発光動作では、基準レベルELVSSよりも低い電圧レベルが電源信号Vaに設定されてもよい。 The gate-source voltage Vgs in the non-light emitting period may be reverse biased in the driving transistor T1. For example, in the non-light emission operation during the non-light emission period, a voltage level lower than the reference level ELVSS may be set in the power supply signal Va.
 ・保持トランジスタT2のゲートに接続される選択線と、選択トランジスタT3のゲートに接続される選択線とは、相互に異なる選択線であって、保持トランジスタT2に接続される選択線と、選択トランジスタT3に接続される選択線とは、相互に異なる電圧レベルを設定されてもよい。 The selection line connected to the gate of the holding transistor T2 and the selection line connected to the gate of the selection transistor T3 are different from each other, and the selection line connected to the holding transistor T2 and the selection transistor Different voltage levels may be set for the selection lines connected to T3.
 こうした構成によれば、保持トランジスタT2のオン状態と、選択トランジスタT3のオン状態とを、相互に異なるタイミングに設定することが可能である。また、保持トランジスタT2のオフ状態と、選択トランジスタT3のオフ状態とを、これもまた相互に異なるタイミングに設定することが可能である。 According to such a configuration, it is possible to set the ON state of the holding transistor T2 and the ON state of the selection transistor T3 at different timings. Further, the off state of the holding transistor T2 and the off state of the selection transistor T3 can also be set at different timings.
 ・要するに、複数の画素回路PCCの各々は、駆動トランジスタT1がEL素子OELに電流を流す電流路を備え、その駆動トランジスタT1が階調値レベルVdataに基づいて電流を制御する回路であって、データ線Ldにハイインピーダンス状態を設定することの可能な構成であればよい。画素回路PCCの備える回路素子の種類や回路素子間の接続構成は、こうした範囲において任意に選択することが可能である。 In short, each of the plurality of pixel circuits PCC is a circuit in which the drive transistor T1 includes a current path for passing a current to the EL element OEL, and the drive transistor T1 controls the current based on the gradation value level Vdata. Any configuration that can set the high impedance state to the data line Ld may be used. The type of circuit elements provided in the pixel circuit PCC and the connection configuration between the circuit elements can be arbitrarily selected within such a range.
 [EL素子OEL]
 ・EL素子OELは、有機EL素子であってもよいし、無機EL素子であってもよいし、発光ダイオードであってもよい。要するに、EL素子は、駆動トランジスタのドレイン‐ソース間電流が流れることによって発光する素子であればよい。
[EL element OEL]
The EL element OEL may be an organic EL element, an inorganic EL element, or a light emitting diode. In short, the EL element may be an element that emits light when a drain-source current of the driving transistor flows.
 [EL装置]
 ・EL装置は、例えば、デジタルカメラ、モバイル型のパーソナルコンピュータ、携帯機器などの各種の電子機器の表示部に用いることができる。
 ・EL装置において画素の並ぶ方向は、2次元方向であってもよいし、1次元方向であってもよい。例えば、EL装置は、複数の画素PXが1次元方向に沿って並ぶ発光素子アレイ基板として感光体ドラムに搭載されて、発光素子アレイ基板から出射された光が感光ドラムに照射されて感光ドラムを露光する露光装置であってもよい。
[EL device]
The EL device can be used in a display unit of various electronic devices such as a digital camera, a mobile personal computer, and a portable device.
The pixel arrangement direction in the EL device may be a two-dimensional direction or a one-dimensional direction. For example, in an EL device, a plurality of pixels PX are mounted on a photosensitive drum as a light emitting element array substrate arranged in a one-dimensional direction, and light emitted from the light emitting element array substrate is irradiated onto the photosensitive drum to cause the photosensitive drum to be used. The exposure apparatus which exposes may be sufficient.
 [要素回路]
 ・駆動トランジスタT1から駆動電流を受ける電流駆動素子は、EL素子OELや発光ダイオードに限らず、各種のセンサー素子であってもよい。また、電流駆動素子を備える要素回路は、画素回路PCCとEL素子OELとの組み合わせに限らず、駆動トランジスタT1が電流駆動素子に電流を流す電流路を備え、その駆動トランジスタT1が階調値レベルVdataに基づいて電流を制御する回路であって、データ線Ldにハイインピーダンス状態を設定することの可能な構成であればよい。
[Element circuit]
The current driving element that receives the driving current from the driving transistor T1 is not limited to the EL element OEL or the light emitting diode, but may be various sensor elements. The element circuit including the current driving element is not limited to the combination of the pixel circuit PCC and the EL element OEL, and the driving transistor T1 includes a current path through which current flows to the current driving element, and the driving transistor T1 has a gradation value level. Any circuit that controls the current based on Vdata and can set the high impedance state to the data line Ld may be used.
 ・要素回路は、例えば、センサー素子と駆動トランジスタT1とを備えるセンサー回路であってもよく、センサー回路が適用される電流駆動装置は、EL装置に限らず、各種のセンサー回路を備えるセンサー装置であってもよい。センサー装置は、例えば、バイオセンサー装置、温度センサー装置、照度センサー装置、および、濃度センサー装置のいずれか1つに具体化される。センサー素子は、センサー装置の測定する対象に合わせて適宜選択されるものであって、例えば、バイオセンサー素子、温度センサー素子、照度センサー素子、および、濃度センサー素子のいずれか1つに具体化される。
 この際に、駆動トランジスタT1がEL素子OELに電流を流す発光期間のように、駆動トランジスタT1がセンサー素子に電流を流す期間は、センサー素子における検出対象の測定期間である。
 例えば、センサー素子が電界セルであるとき、電界セルは、所望の電気化学反応を進めるための基質を含む電解質溶液と、ノードN2に接続される第1作用電極と、第1作用電極との間で電界反応を生じさせる第2作用電極と、参照電極とを備える。第1作用電極、第2作用電極、および、参照電極は、いずれも電解質溶液に接続される。第1作用電極と第2作用電極との間で電気化学反応が進むとき、負電位側の電極はカソード電極として機能し、正電位側の電極はアノード電極として機能する。
The element circuit may be, for example, a sensor circuit including a sensor element and a driving transistor T1, and a current driving device to which the sensor circuit is applied is not limited to an EL device, but a sensor device including various sensor circuits. There may be. The sensor device is embodied in any one of a biosensor device, a temperature sensor device, an illuminance sensor device, and a concentration sensor device, for example. The sensor element is appropriately selected according to an object to be measured by the sensor device. For example, the sensor element is embodied as any one of a biosensor element, a temperature sensor element, an illuminance sensor element, and a concentration sensor element. The
At this time, the period in which the drive transistor T1 passes current to the sensor element, such as the light emission period in which the drive transistor T1 passes current to the EL element OEL, is the measurement period of the detection target in the sensor element.
For example, when the sensor element is an electric field cell, the electric field cell is located between an electrolyte solution containing a substrate for advancing a desired electrochemical reaction, a first working electrode connected to the node N2, and a first working electrode. A second working electrode for generating an electric field reaction and a reference electrode. The first working electrode, the second working electrode, and the reference electrode are all connected to the electrolyte solution. When an electrochemical reaction proceeds between the first working electrode and the second working electrode, the negative potential side electrode functions as a cathode electrode, and the positive potential side electrode functions as an anode electrode.
 データドライバ40は、センサー素子の駆動量に相当する反応レベルの電圧をデータ線Ldに設定し、反応レベルと書込レベルとの差に相当する電圧に基づいて、反応レベルに基づく駆動電流を電界セルECに流す。これによって、要素回路は、電界セルを電流駆動する。また、データドライバ40は、測定レベルの一例である反応レベルの電圧をデータ線Ldに設定し、その後、ハイインピーダンス状態に設定されたデータ線Ldの電圧レベルと、参照電極の電圧レベルとを測定し、これらデータ線Ldの電圧レベルと、参照電極の電圧レベルとの差から、電解質中における基質の酸化還元電位を測定する。 The data driver 40 sets a response level voltage corresponding to the driving amount of the sensor element to the data line Ld, and based on the voltage corresponding to the difference between the reaction level and the write level, the drive current based on the reaction level is applied to the electric field. Flow in cell EC. Thereby, the element circuit drives the electric field cell with current. Further, the data driver 40 sets a voltage at a reaction level, which is an example of a measurement level, to the data line Ld, and then measures the voltage level of the data line Ld set to the high impedance state and the voltage level of the reference electrode. Then, the oxidation-reduction potential of the substrate in the electrolyte is measured from the difference between the voltage level of the data line Ld and the voltage level of the reference electrode.
 上述したセンサー装置においても、複数の要素回路から構成される要素回路群における測定データDoutの中の最大値は、要素回路群の最大値データDmaxとして記憶される。そして、今回の測定におけるリファレンス電圧の中の最大値は、今回の測定の対象となる画素行に対応付けられた最大値データDmax、すなわち、今回の測定よりも前の測定における収束電圧の中の最大値に基づいて設定される。それゆえに、今回の測定期間において逐次比較に要する時間は、最大値データDmaxが小さいほど短く、結果として、リファレンス電圧の中の最大値が一定値である構成と比べて、駆動トランジスタT1の特性値の取得に要する時間を短くすること、ひいては、酸化還元電位の測定に要する時間を短くすることが可能である。 Also in the sensor device described above, the maximum value in the measurement data Dout in the element circuit group composed of a plurality of element circuits is stored as the maximum value data Dmax of the element circuit group. The maximum value in the reference voltage in the current measurement is the maximum value data Dmax associated with the pixel row to be measured this time, that is, the convergence voltage in the measurement before the current measurement. It is set based on the maximum value. Therefore, the time required for the successive comparison in the current measurement period is shorter as the maximum value data Dmax is smaller. As a result, the characteristic value of the drive transistor T1 is compared with the configuration in which the maximum value in the reference voltage is a constant value. It is possible to shorten the time required for obtaining the above, and in turn shorten the time required for measuring the oxidation-reduction potential.
 k…しきい値補正量、N…送出回数、t…経過時間、Cs…保持容量、Db…基準階調値、HZ…ハイインピーダンス状態、L1,L2…特性曲線、La…電源線、Ld…データ線、LP…ラッチパルス信号、Ls…選択線、PX…画素、SP…選択スタートパルス信号、T1…駆動トランジスタ、T2…保持トランジスタ、T3…選択トランジスタ、tb…基準期間、te…延長期間、tp…補正発光期間、ts…緩和時間、Va…電源信号、Vd…データ信号、VM…測定レベル、Vs…収束レベル、Din…階調値、Ids…ドレイン‐ソース間電流、MP1…選択マスクパルス信号、MP2…電源マスクパルス信号、OEL…EL素子、PCC…画素回路、RST…クリア信号、SIG…入力信号、SP1…データスタートパルス信号、SPa…発光期間開始信号、SPb…非発光期間開始信号、SPc…測定期間開始信号、SW1…入力スイッチ、SW2…出力スイッチ、SW3…測定用スイッチ、SWd…表示用スイッチ、SWs…測定用電圧スイッチ、tma…第1非選択期間、tmb…測定選択期間、tmc…第2非選択期間、Vds…ドレイン‐ソース間電圧、VEE…アナログ電源電圧、Vgs…ゲート‐ソース間電圧、Clkd…データシフトクロック、Clkr…測定シフトクロック、Clks…駆動シフトクロック、Dmax…最大値データ、Dout…測定データ、Dsig…階調成分、DVSS…アナログ基準電圧、LVDD…ロジック高電圧、LVSS…ロジック低電圧、Vsel…選択信号、ELVDD…発光レベル、ELVSS…基準レベル、SWtrs…転送スイッチ、Vdata…階調値レベル、WDVSS…書込レベル、10…パネル、20…選択ドライバ、21…シフトレジスタ回路、22…出力バッファ、30…電源ドライバ、31…シフトレジスタ、32…出力バッファ、40…データドライバ、41…シフトレジスタ、42…データレジスタ、43…データラッチ回路、43a…データラッチ、43b…論理積回路、43c…フリップフロップ、44…DAC、45…バッファ、46…レベルシフタ、47…アップカウンタ、48…レベルシフタ、50…システムコントローラー、51…入力信号処理部、52…タイミングコントローラー、53…補正処理部、53A…基準階調生成部、53B…補正処理部、53C…補正量算出部、54…データ処理部、55…監視部、56…期間決定部、60…ロジック電源、70…アナログ電源。 k ... threshold correction amount, N ... number of transmissions, t ... elapsed time, Cs ... retention capacity, Db ... reference gradation value, HZ ... high impedance state, L1, L2 ... characteristic curve, La ... power supply line, Ld ... Data line, LP ... Latch pulse signal, Ls ... Select line, PX ... Pixel, SP ... Select start pulse signal, T1 ... Drive transistor, T2 ... Hold transistor, T3 ... Select transistor, tb ... Reference period, te ... Extension period, tp ... correction light emission period, ts ... relaxation time, Va ... power supply signal, Vd ... data signal, VM ... measurement level, Vs ... convergence level, Din ... gradation value, Ids ... drain-source current, MP1 ... selection mask pulse Signal, MP2 ... Power supply mask pulse signal, OEL ... EL element, PCC ... Pixel circuit, RST ... Clear signal, SIG ... Input signal, SP1 ... Data start pulse SPa ... Light emission period start signal, SPb ... Non-light emission period start signal, SPc ... Measurement period start signal, SW1 ... Input switch, SW2 ... Output switch, SW3 ... Measurement switch, SWd ... Display switch, SWs ... Measurement Voltage switch, tma: first non-selection period, tmb: measurement selection period, tmc: second non-selection period, Vds: drain-source voltage, VEE: analog power supply voltage, Vgs: gate-source voltage, Clkd: data Shift clock, Clkr ... Measurement shift clock, Clks ... Drive shift clock, Dmax ... Maximum value data, Dout ... Measurement data, Dsig ... Gradation component, DVSS ... Analog reference voltage, LVDD ... Logic high voltage, LVSS ... Logic low voltage, Vsel ... select signal, ELVDD ... light emission level, ELVSS ... reference level , SWtrs: transfer switch, Vdata: gradation value level, WDVSS: write level, 10: panel, 20: selection driver, 21: shift register circuit, 22: output buffer, 30: power driver, 31: shift register, 32 ... Output buffer, 40 ... Data driver, 41 ... Shift register, 42 ... Data register, 43 ... Data latch circuit, 43a ... Data latch, 43b ... AND circuit, 43c ... Flip-flop, 44 ... DAC, 45 ... Buffer, 46 ... level shifter, 47 ... up counter, 48 ... level shifter, 50 ... system controller, 51 ... input signal processing unit, 52 ... timing controller, 53 ... correction processing unit, 53A ... reference gradation generation unit, 53B ... correction processing unit, 53C ... correction amount calculation unit, 54 ... data processing unit, 55 ... supervision Visual section, 56... Period determining section, 60... Logic power supply, 70.

Claims (8)

  1.  複数の要素回路を含む要素回路群であって、各要素回路が、電流駆動素子と、データ線と、前記データ線に設定された電圧に基づく電流を前記電流駆動素子に流す電流路を有した駆動トランジスタとを備え、前記データ線が前記電流路に電気的に接続可能に構成された前記要素回路群と、
     前記要素回路ごとの収束電圧を測定するように構成された測定部であって、該測定部は、複数の前記要素回路の各々について、前記駆動トランジスタのしきい値電圧を越える電圧であって、かつ、前記電流駆動素子に対する逆バイアスである1つの電圧を、前記データ線に設定した後に、前記データ線をハイインピーダンス状態へ切り替え、それによって、前記データ線の電圧を収束電圧に収束させ、その後に、互いに異なる大きさを有する複数のリファレンス電圧と前記収束電圧との逐次比較を行うように構成され、各要素回路に対して用いられる複数の前記リファレンス電圧は、他の要素回路で用いられる複数の前記リファレンス電圧と共通する前記測定部と、
     今回の測定における全ての前記リファレンス電圧の中の最大値であるリファレンス最大値を設定する設定部であって、今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定する設定部と、を備える
     電流駆動装置。
    An element circuit group including a plurality of element circuits, each element circuit having a current drive element, a data line, and a current path for passing a current based on a voltage set in the data line to the current drive element A drive transistor; and the element circuit group configured such that the data line can be electrically connected to the current path;
    A measurement unit configured to measure a convergence voltage for each of the element circuits, the measurement unit being a voltage exceeding a threshold voltage of the driving transistor for each of the plurality of element circuits, And after setting one voltage which is a reverse bias with respect to the said current drive element to the said data line, the said data line is switched to a high impedance state, thereby converging the voltage of the said data line to a convergence voltage, In addition, a plurality of reference voltages used for each element circuit are configured to perform successive comparison between a plurality of reference voltages having different magnitudes and the convergence voltage. The measurement unit in common with the reference voltage of
    A setting unit for setting a reference maximum value that is a maximum value among all the reference voltages in the current measurement, and is a maximum among all the convergence voltages in at least one measurement before the current measurement. A setting unit configured to set the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller than the value.
  2.  前記設定部は、前回までの測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定する
     請求項1に記載の電流駆動装置。
    The setting unit sets the reference maximum value such that the reference maximum value is smaller as the maximum value is larger than a maximum value among all the converged voltages in the previous measurement and the maximum value is smaller. 2. The current drive device according to 1.
  3.  前記設定部は、前回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス電圧が小さいように、前記リファレンス最大値を設定する
     請求項1に記載の電流駆動装置。
    The said setting part sets the said reference maximum value so that it may be larger than the maximum value in all the said convergence voltage in the last measurement, and the said reference voltage may become so small that the said maximum value is small. The current drive device described.
  4.  前記測定部が今回の測定を実行した後に、前記電流駆動素子の駆動量に基づく階調電圧を前記データ線に設定し、その後、前記階調電圧に基づく前記電流を前記駆動トランジスタに流させる駆動部をさらに備え、
     前記設定部は、
     前記駆動部が前記電流駆動素子に前記電流を流す期間である駆動期間を、今回の測定における前記リファレンス最大値が小さいほど長い期間に設定する
     請求項1から3のいずれか1つに記載の電流駆動装置。
    After the measurement unit performs the current measurement, the gray level voltage based on the driving amount of the current driving element is set in the data line, and then the current based on the gray level voltage is caused to flow through the driving transistor. Further comprising
    The setting unit
    4. The current according to claim 1, wherein a driving period in which the driving unit flows the current through the current driving element is set to a longer period as the reference maximum value in the current measurement is smaller. 5. Drive device.
  5.  前記測定部が今回の測定を実行する前に、前記電流駆動素子の駆動量に基づく階調電圧を前記データ線に設定し、その後、前記階調電圧に基づく前記電流を前記駆動トランジスタに流させる駆動部をさらに備え、
     前記設定部は、
     前記駆動部が前記電流駆動素子に前記電流を流す期間である駆動期間を、今回の測定における前記リファレンス最大値が小さいほど長い期間に設定する
     請求項1から3のいずれか1つに記載の電流駆動装置。
    Before the measurement unit performs the current measurement, a gradation voltage based on the driving amount of the current driving element is set in the data line, and then the current based on the gradation voltage is caused to flow through the driving transistor. A drive unit;
    The setting unit
    4. The current according to claim 1, wherein a driving period in which the driving unit flows the current through the current driving element is set to a longer period as the reference maximum value in the current measurement is smaller. 5. Drive device.
  6.  前記測定部は、
     前記逐次比較において、所定の最小値から一定値ずつ上昇させた電圧を前記リファレンス電圧に用いる
     請求項1から5のいずれか1つに記載の電流駆動装置。
    The measuring unit is
    6. The current driving device according to claim 1, wherein in the successive approximation, a voltage that is increased by a predetermined value from a predetermined minimum value is used as the reference voltage. 7.
  7.  前記設定部は、
     今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値に一定値を加えた値を、今回の測定における前記リファレンス最大値に設定する
     請求項1から6のいずれか1つに記載の電流駆動装置。
    The setting unit
    The value obtained by adding a constant value to the maximum value of all the convergence voltages in at least one measurement prior to the current measurement is set as the reference maximum value in the current measurement. The current driving device according to claim 1.
  8.  複数の要素回路を含む要素回路群を駆動する電流駆動装置の駆動方法であって、前記要素回路が、電流駆動素子と、データ線と、前記データ線に設定された電圧に基づく電流を前記電流駆動素子に流す電流路を有した駆動トランジスタとを備え、前記データ線が前記電流路に電気的に接続可能に構成され、前記駆動方法は、
     複数の前記要素回路の各々について、前記駆動トランジスタのしきい値電圧を越える電圧であって、かつ、前記電流駆動素子に対する逆バイアスである1つの電圧を前記データ線に設定した後に、前記データ線をハイインピーダンス状態へ切り替え、それによって、前記データ線の電圧を収束電圧に収束させる工程と、
     複数の前記要素回路の各々について、互いに異なる大きさを有する複数のリファレンス電圧と前記収束電圧との逐次比較を行い、それによって、前記要素回路ごとの前記収束電圧を測定する工程であって、各要素回路で用いられる複数の前記リファレンス電圧は、他の要素回路で用いられる複数の前記リファレンス電圧と共通する、前記工程と、
     を含み、
     今回の測定における全ての前記リファレンス電圧の中の最大値が、リファレンス最大値であり、今回の測定よりも前の少なくとも1回の測定における全ての前記収束電圧の中の最大値よりも大きく、かつ、当該最大値が小さいほど前記リファレンス最大値が小さいように、前記リファレンス最大値を設定する工程をさらに含む
     ことを特徴とする電流駆動装置の駆動方法。
    A driving method of a current driving device for driving an element circuit group including a plurality of element circuits, wherein the element circuit supplies a current based on a current driving element, a data line, and a voltage set in the data line. A drive transistor having a current path that flows to the drive element, the data line is configured to be electrically connectable to the current path, and the drive method includes:
    For each of the plurality of element circuits, after setting one voltage that exceeds the threshold voltage of the driving transistor and that is a reverse bias to the current driving element to the data line, the data line Switching to a high impedance state, thereby converging the data line voltage to a converged voltage;
    For each of the plurality of element circuits, a step of sequentially comparing a plurality of reference voltages having different magnitudes with the convergence voltage, thereby measuring the convergence voltage for each of the element circuits, A plurality of the reference voltages used in an element circuit are common to a plurality of the reference voltages used in other element circuits; and
    Including
    The maximum value among all the reference voltages in the current measurement is the reference maximum value, and is greater than the maximum value among all the convergence voltages in at least one measurement before the current measurement, and The method for driving a current driver further includes a step of setting the reference maximum value such that the reference maximum value is smaller as the maximum value is smaller.
PCT/JP2015/064659 2014-06-11 2015-05-21 Current driving device and driving method for current driving device WO2015190258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-120829 2014-06-11
JP2014120829 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190258A1 true WO2015190258A1 (en) 2015-12-17

Family

ID=54833363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064659 WO2015190258A1 (en) 2014-06-11 2015-05-21 Current driving device and driving method for current driving device

Country Status (1)

Country Link
WO (1) WO2015190258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203660A1 (en) * 2022-04-20 2023-10-26 シャープ株式会社 Control device, display device, and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237194A (en) * 2008-03-27 2009-10-15 Oki Semiconductor Co Ltd Display driving circuit and display driving method
JP2010153981A (en) * 2008-12-24 2010-07-08 Sony Corp Analog-digital converter and analog-digital conversion method, and image pickup device and method of driving the same, and camera
JP2011034058A (en) * 2009-07-10 2011-02-17 Casio Computer Co Ltd Pixel drive apparatus, light-emitting apparatus, drive control method for the light-emitting apparatus, and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237194A (en) * 2008-03-27 2009-10-15 Oki Semiconductor Co Ltd Display driving circuit and display driving method
JP2010153981A (en) * 2008-12-24 2010-07-08 Sony Corp Analog-digital converter and analog-digital conversion method, and image pickup device and method of driving the same, and camera
JP2011034058A (en) * 2009-07-10 2011-02-17 Casio Computer Co Ltd Pixel drive apparatus, light-emitting apparatus, drive control method for the light-emitting apparatus, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203660A1 (en) * 2022-04-20 2023-10-26 シャープ株式会社 Control device, display device, and control method

Similar Documents

Publication Publication Date Title
JP6656265B2 (en) Display device and driving method thereof
JP5240581B2 (en) Pixel drive device, light emitting device, drive control method thereof, and electronic apparatus
KR101201722B1 (en) Organic light emitting display and driving method thereof
JP4470955B2 (en) Display device and driving method thereof
JP5200539B2 (en) Display device and driving method of display device
JP5146521B2 (en) Pixel drive device, light emitting device, drive control method thereof, and electronic apparatus
JP6169191B2 (en) Display device and driving method thereof
US8319707B2 (en) Organic light emitting display and driving method thereof
KR101065419B1 (en) OLED display and driving method thereof
US8284126B2 (en) Organic light emitting display and driving method thereof
JP4935979B2 (en) Display device and driving method thereof, display driving device and driving method thereof
KR101147427B1 (en) Organic light emitting display and driving method thereof
KR101248204B1 (en) Pixel drive apparatus, light-emitting apparatus and drive control method for light-emitting apparatus
KR101450919B1 (en) Organic Light Emitting Diode Display And Driving Method Thereof
WO2014208459A1 (en) Display device and drive method for same
US9418589B2 (en) Display device for controlling light emission period based on the sum of gray values and driving method of the same
JP6089656B2 (en) Display device and display method
JP2010281872A (en) Light emitting device and method of driving and controlling same, and electronic equipment
JP5540556B2 (en) Display device and driving method thereof
WO2015029336A1 (en) Display device and display method
JP5218222B2 (en) Pixel driving device, light emitting device, and driving control method of light emitting device
JP4935920B2 (en) Pixel drive device, light emitting device, drive control method thereof, and electronic apparatus
JP2011028214A (en) Pixel driving device, light emitting device, and driving control method for light emitting device
JP4284704B2 (en) Display drive device and drive control method thereof, and display device and drive control method thereof
JP4877536B2 (en) Pixel drive device, light emitting device, drive control method thereof, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15807387

Country of ref document: EP

Kind code of ref document: A1