WO2015028584A2 - Verfahren zur datenübertragung in einem batteriemanagementsystem - Google Patents

Verfahren zur datenübertragung in einem batteriemanagementsystem Download PDF

Info

Publication number
WO2015028584A2
WO2015028584A2 PCT/EP2014/068326 EP2014068326W WO2015028584A2 WO 2015028584 A2 WO2015028584 A2 WO 2015028584A2 EP 2014068326 W EP2014068326 W EP 2014068326W WO 2015028584 A2 WO2015028584 A2 WO 2015028584A2
Authority
WO
WIPO (PCT)
Prior art keywords
module control
control unit
measured values
battery
values
Prior art date
Application number
PCT/EP2014/068326
Other languages
English (en)
French (fr)
Other versions
WO2015028584A3 (de
Inventor
Christoph Brochhaus
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US14/915,831 priority Critical patent/US9987943B2/en
Priority to JP2016515991A priority patent/JP6059403B2/ja
Priority to KR1020167004547A priority patent/KR101813461B1/ko
Publication of WO2015028584A2 publication Critical patent/WO2015028584A2/de
Publication of WO2015028584A3 publication Critical patent/WO2015028584A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a method for data transmission in a
  • a battery management system comprising at least one main controller and a plurality of module controllers that communicate readings to the controller via a communication channel
  • the invention also relates to a computer program, a battery management system and a battery, which are set up to carry out the method.
  • Electronic control units are increasingly used in the automotive environment today, examples include engine control units and control units for ABS or the airbag.
  • engine control units and control units for ABS or the airbag.
  • airbag for electrically powered vehicles, a current research focus is the development of powerful battery packs with associated
  • battery management systems ensure the safe and reliable functioning of the battery cells and battery packs used. They monitor and control currents, voltages, temperatures, insulation resistances and other sizes for individual cells and / or the entire battery pack. These sizes can be used to implement management functions that increase the life, reliability and safety of the battery system.
  • Battery management systems consist of a large number of control units on which individual software functionalities run. Depending on the number of battery cells, the number of sensors and the distribution of the battery modules to different installation spaces in the vehicle results in a ECU topology with a main controller and several subordinate module control units for the acquisition of measurement data directly to the individual battery modules. The collected data is exchanged between the controllers via a communication channel.
  • a communication channel By using a high number of Battery modules and associated module control units high-frequency measurement data communicated on the communication channel to the main control unit.
  • the measurement frequency is generally limited by characteristics of the communication channel, for example a bandwidth on a data bus, and by the number of battery modules.
  • Main control unit and a plurality of battery units wherein a battery unit determines a reference measured value, which changes based on predetermined criteria without influence of the main control unit.
  • KR10 / 0680901 shows a battery management system comprising a main controller and a plurality of module controllers, the module controllers detecting and providing cell voltages and temperatures.
  • the main controller executes a so-called battery balancing, when a difference of the cell voltage with respect to a reference measured value assumes a defined critical value.
  • a battery management system comprising at least one main controller and a plurality of module controllers that communicate readings to the controller via a communication channel
  • Reference module control unit comprises the following method steps: a) The reference module control unit sends a reference measured value on the
  • the module control units send the difference values of their own measured values to the reference measured value on the communication channel and d) the main control unit reconstructs the measured values of the module control units based on the difference values and the reference measured value.
  • the range of values of the differences between measured values and the reference measured value is less than the value range of the measured values.
  • the maximum number of module control devices can be increased so that more battery modules can communicate trouble-free over the communication channel.
  • the properties of the communication channel can be changed, for example a bus with a lower bandwidth for transmitting the measured values to the
  • Main control unit can be used. Namely, a smaller value range of the difference values can be converted into a smaller bit size of the communication on the communication channel, for example by means of suitable data structures. A lower bandwidth reduces the likelihood of interference, for example due to EMC radiation.
  • Another advantage of the method according to the invention is that it works lossless, d. H. that the measuring accuracy is not limited compared to a conventional transmission of the measured data.
  • the main controller Since one of the module controllers is declared the reference module controller and determines the reference measurement value, the main controller is freed from the reference measurement definition.
  • the module control units calculate their deviations, ie. H. Difference values from the reference measured value, and the main control unit is able to determine the measured value of the corresponding module control unit from the difference values and the reference measured value.
  • the reference module control unit is newly selected after a certain time from the group of module control units.
  • this takes into account the fact that the battery cells and
  • Reference readings may be close to the readings of the battery modules and the reference readings may be small.
  • the check takes place, for example, after each drive cycle, after a defined number of operating hours of the battery, after a defined number of days or triggered by an event, such as a general battery balancing, in which the charge states of the battery cells are compensated.
  • Reference module control unit at random to select new from the group of module control units.
  • the reference module control unit is newly selected from the group of module control units after determining a deviation state. According to a preferred embodiment, it is therefore provided to regularly check the states of the module control devices after a certain time has expired and to re-select the reference module control unit only when a deviation state of the reference module control device is determined in relation to the state of the group of module control devices. According to a preferred embodiment, the deviation state of
  • Reference module control unit determined. This reduces the amount of computation on the main controller side. It is particularly advantageous that the main control unit here acts as a pure data sink and only has to receive and process the measured values in the form of a reference measured value and numerous difference values.
  • the deviation state is determined by a comparison of the reference measured value with a mean value determined via the measured values of all module control devices.
  • Reference reading is present as the previous reference reading because the average deviation of all readings from the mean of another module controller is less than the average deviation of all readings from the mean of the old
  • Modular controller selected as a new reference module control unit.
  • a respective current one selects
  • Reference Module Controller is the new reference module controller.
  • the module control units autonomously determine the reference module control units. This reduces the amount of computation on the main controller side. Thus, the main controller is not with the
  • Module controller with the lowest identification number can be defined as a reference module control unit.
  • Reference measured values can be determined by averaging over stored measured values of the reference module control unit or by a current measured value of the
  • Reference module control unit can be determined.
  • the reference measured values and measured values which are transmitted in the method according to the invention can in principle be arbitrary
  • a reference reading and the deviation of all cell voltages from this reference reading are sufficient to perform the management functions.
  • the value range of the differences is less than the value range of the complete values and thus occupies less bandwidth on the communication channel.
  • Measurements are used, provided that they have similar behavior as voltages and temperatures.
  • Other measurement data which are usually detected and transmitted by module control devices, include, for example, the temperature
  • Insulation resistance the state of charge, the current delivered or the voltage supplied to the module.
  • Quantities include, for example, summed or integrated quantities, multiplied or otherwise aggregated quantities.
  • difference values between minimum and maximum states for example of charge states, relative battery powers or number of implementations of charge and discharge cycles in the derived measurement data may be included.
  • a computer program is also proposed according to which one of the methods described herein is performed when the computer program is executed on a programmable computer device.
  • the computer program can be, for example, a module for implementing a device for providing measurement data for a battery management system and / or a module for implementing a battery management system of a vehicle.
  • Computer program may be stored on a machine-readable storage medium, such as on a permanent or rewritable storage medium or in association with a computer device, for example on a portable storage such as a CD-ROM, DVD, a USB stick or a memory card. Additionally or alternatively, the computer program may be provided for download on a computing device, such as on a server or a cloud server, for example via a data network, such as the Internet, or a communication link, such as a telephone line or a wireless link.
  • a machine-readable storage medium such as on a permanent or rewritable storage medium or in association with a computer device, for example on a portable storage such as a CD-ROM, DVD, a USB stick or a memory card.
  • the computer program may be provided for download on a computing device, such as on a server or a cloud server, for example via a data network, such as the Internet, or a communication link, such as a telephone line or a wireless link.
  • a battery management system is additionally provided, with at least one main control unit and a number of module control units, which send measured values to the main control unit via a communication channel.
  • one of the module control devices is a reference module control unit.
  • the module control units have units for determining and sending difference values of own measured values to reference measured values of the reference module control unit, and the main control unit has a unit for determining the measured values of the module control units on the basis of the reference measured values and the difference values.
  • the module control units also have units for determining deviation states of the own measured values compared to reference measured values.
  • the module control units preferably also have units for determining and selecting a new reference module control unit.
  • a battery in particular a lithium-ion battery or a nickel-metal hydride battery, which comprises a battery management system and can be connected to a drive system of a motor vehicle, the battery management system being designed and / or configured as described above, to carry out the inventive method.
  • the terms “battery” and “battery unit” are used in the present description adapted to the usual language for accumulator or Akkumulatorü.
  • the battery preferably includes one or more battery packs that may include a battery cell, a battery module, a module string, or a battery pack.
  • Battery cells are preferably spatially combined and interconnected circuitry, for example, connected in series or parallel to modules.
  • modules can form so-called Battery Direct Converters (BDCs), and several battery direct converters form a Battery Direct Inverter (BDI).
  • BDCs Battery Direct Converters
  • BDI Battery Direct Inverter
  • a motor vehicle is also provided with such a battery, wherein the battery is connected to a drive system of the motor vehicle.
  • the method is used in electrically powered vehicles, in which an interconnection of a plurality of battery cells to provide the necessary drive voltage.
  • FIG. 2 shows a schematic representation of a possible communication sequence between a main control unit and a plurality of module control units on a CAN bus
  • Fig. 3 is a schematic representation of another possible
  • Fig. 4 is a diagram with temporal course of voltage values different
  • the battery management system 1 in FIG. 1 comprises a central control unit 2, which can also be referred to as a BCU (Battery Control Unit) and a number of BCU (Battery Control Unit) and a number of BCU (Battery Control Unit) and a number of BCU (Battery Control Unit)
  • Battery modules 4 which each have their own module control units 6-1, 6-2, ... 6-n, which are also referred to as CMC (Cell Module Controller).
  • Each battery module 4 battery units 8 are associated with usually a plurality of battery cells, which are connected in series and partially in addition in parallel to achieve the required power and energy data with the battery system.
  • the individual battery cells are, for example, lithium-ion batteries with a voltage range of 2.8 to 4.2 volts.
  • the communication between the central control unit 2 and the module control units 6-1, 6- 2,... 6-n takes place via a communication channel 5, for example via a CAN bus, and suitable interfaces 10, 12.
  • Fig. 2 shows steps of a data transfer method between the main control unit 2 and the module control units 6-1, 6-2, ... 6-n via the communication channel 5.
  • Step S0 the module controllers 6-1, 6-2, ... 6-n determine their measurements of voltages, temperatures, etc. For simplicity, the description below will refer only to the voltage.
  • the module control unit 6-1 is after initiation of the system
  • the reference module control unit 14 determines a reference measured value 16 of the module voltage.
  • the reference module control unit 14 determines the reference measured value 16, for example, as an average value from stored measured values or from a current measured value.
  • the reference module control unit 14 sends the reference measured value 16 on the communication channel 5. Due to the characteristic of the communication channel 5, all connected module control units 6-1, 6-2,... 6-n can read the data.
  • the further module control units 6-2,... 6-n receive the current reference measured value 16 in this way in a step S3.
  • the main control unit 2 also receives the current reference measured value 16 in a step S4.
  • step S5 difference values 18 of the own measured values determined in step S0 to the reference measured value 16.
  • step S6 the further module control devices 6-2,..., 6-n send the difference values 18 of their own measured values to the reference measured value 16 on the communication channel 5.
  • step S7 the reference module control unit 14 reads the measured values of the other module control units 6-2,... 6-n.
  • step S8 the main controller 2 receives the difference values 18.
  • Main control unit 2 are now the reference measured value 16 and the difference values 18 of the measured values of the module control units 6-1, 6-2, ... 6-n to the reference measured value 16 before.
  • the Main controller 2 reconstructs the correct and complete from these values
  • Measured values in step S9. The process is therefore lossless and the measurement accuracy is not affected. It can be provided to repeat only the method steps SO, S5, S6, S8, S9 during operation of the battery or SO, S5, S6, S7, S8, S9. It can also be provided to redetermine the reference measured value 16 each time or after a defined number of passes in step S1, in particular using the current measured values or exclusively using the current measured values, ie. H. to repeat the method steps SO, S1, S2, S3, S4, S5, S6, S7, S8 and S9.
  • FIG. 3 shows a change of the reference module control unit 14 by way of example
  • Module control unit 6-1 on module control unit 6-2 The change is justified by the fact that the current reference module control unit 14, module control unit 6-1, no longer offers a suitable reference measured value 16, since, for example, the battery cells of the
  • Reference module control unit 14 due to aging discharged faster or slower than the other module control units 6-2, ... 6-n on average.
  • step S10 the reference module control unit 14 checks whether there are criteria for a change. The check can take place, for example, after a certain time has elapsed, or after determination of a deviation state of the measured values of the reference module control unit 14 with respect to the measured values of all
  • step S1 1 the reference module control unit 14 selects a new reference module control unit 14 'from the group of all module control units 6-1, 6-2,... 6-n, in the example shown, the module control unit 6-2. It can be provided that the old reference module control unit 14, the message of the definition of the new
  • Reference module control unit 14 'a s a message on the communication channel 5 sent (not shown). All module controllers 6-2, ... 6-n receive this message and consider that the reference module controller 14 'has changed. From now on, the measurement cycles continue essentially unchanged with the only change that the other module control unit 6-2 as a new reference module control unit 14 'the
  • the new reference measured value 16 can, for example, be averaging over the measured values of the reference module control unit 14 'are determined or consist only of the last measured value, which by definition is compatible with the measured values of all module control devices 6-1, 6-2,... 6-n.
  • FIG. 4 shows the exemplary course of voltages across different battery modules over time. Shown are a first average value 20 of a first sensor, a second average value 22 of a second sensor and a third average value 24 of a third sensor. At the beginning, the first mean value 20 of the first sensor is the reference measured value 16 of FIG.
  • Reference module control unit ie the reference module control unit is that of the first sensor.
  • the reference module control unit is redetermined with steps S10 and S1 1 as described with reference to FIG. 3.
  • the first mean value 20 of the first sensor falls less sharply between time points t 0 and t- 1 than the average values 22, 24 of the second and third sensors.
  • the old reference module control unit which is assigned to the first sensor, determines that the second mean value 22 of the second sensor represents a more favorable reference measured value than the previous reference measured value.
  • the mean deviation of all measured values from the mean value 22 of the second sensor is substantially lower than the mean at time t-1
  • Deviation of all measured values from the first mean value 20 of the first sensor is a favorable reference measured value and the old reference module control unit determines as the new reference module control unit that which is assigned to the second sensor. From this point on, there is the new one
  • Embodiment the second average value 22 of the second sensor.

Abstract

Die Erfindung betrifft ein Verfahren zur Datenübertragung in einem Batteriemanagementsystem (1 ) mit mindestens einem Hauptsteuergerät (2) und einer Anzahl von Modulsteuergeräten (6-1, 6-2,...,6-n), die über einen Kommunikationskanal (5) Messwerte an das Hauptsteuergerät (2) versenden. Dabei ist vorgesehen, dass eines der Modulsteuergeräte (6-1, 6-2,...,6-n) ein Referenzmodulsteuergerät ist. Das Verfahren umfasst die Verfahrensschritte: a) Das Referenzmodulsteuergerät versendet einen Referenzmesswert auf dem Kommunikationskanal (5), b) die Modulsteuergeräte (6-1, 6-2,...,6-n) bestimmen Differenzwerte eigener Messwerte zum Referenzmesswert, c) die Modulsteuergeräte (6-1, 6-2,...,6-n) versenden die Differenzwerte der eigenen Messwerte zum Referenzmesswert auf dem Kommunikationskanal (5) und d) das Hauptsteuergerät (2) rekonstruiert die Messwerte der Modulsteuergeräte (6-1, 6-2,...,6-n) anhand der Differenzwerte und des Referenzmesswerts. Weiterhin werden ein Computerprogramm, ein Batteriemanagementsystem (1 ) und eine Batterie angegeben, welche zur Durchführung des Verfahrens eingerichtet sind.

Description

Beschreibung Verfahren zur Datenübertragung in einem Batteriemanagementsystem Stand der Technik
Die Erfindung betrifft ein Verfahren zur Datenübertragung in einem
Batteriemanagementsystem mit mindestens einem Hauptsteuergerät und einer Anzahl von Modulsteuergeräten, die über einen Kommunikationskanal Messwerte an das
Hauptsteuergerät versenden.
Die Erfindung betrifft außerdem ein Computerprogramm, ein Batteriemanagementsystem und eine Batterie, welche zur Durchführung des Verfahrens eingerichtet sind.
Elektronische Steuergeräte werden im automobilen Umfeld heutzutage in zunehmender Zahl eingesetzt, Beispiele hierfür sind Motorsteuergeräte und Steuergeräte für ABS oder den Airbag. Für elektrisch angetriebene Fahrzeuge ist ein heutiger Forschungsschwerpunkt die Entwicklung von leistungsfähigen Batteriepacks mit zugehörigen
Batteriemanagementsystemen, d.h. Steuergeräten, welche mit einer Software zur
Überwachung der Batteriefunktionalität ausgestattet sind. Batteriemanagementsysteme gewährleisten unter anderem die sichere und zuverlässige Funktion der eingesetzten Batteriezellen und Batteriepacks. Sie überwachen und steuern Ströme, Spannungen, Temperaturen, Isolationswiderstände und weitere Größen für einzelne Zellen und/oder den ganzen Batteriepack. Mit Hilfe dieser Größen lassen sich Managementfunktionen realisieren, die die Lebensdauer, Zuverlässigkeit und Sicherheit des Batteriesystems steigern.
Batteriemanagementsysteme bestehen aus einer Vielzahl von Steuergeräten, auf denen individuelle Softwarefunktionalitäten ablaufen. Abhängig von der Anzahl der Batteriezellen, der Anzahl der Sensoren und der Verteilung der Batteriemodule auf verschiedene Bauräume im Fahrzeug ergibt sich dabei eine Steuergeräte-Topologie mit einem Hauptsteuergerät und mehreren untergeordneten Modulsteuergeräten für die Erfassung der Messdaten direkt an den einzelnen Batteriemodulen. Die erfassten Daten werden zwischen den Steuergeräten über einen Kommunikationskanal ausgetauscht. Durch Verwendung einer hohen Anzahl an Batteriemodulen und zugehörigen Modulsteuergeräten werden Messdaten hochfrequent auf dem Kommunikationskanal zum Hauptsteuergerät kommuniziert. Die Messfrequenz wird im Allgemeinen durch Eigenschaften des Kommunikationskanals, beispielsweise einer Bandbreite auf einem Datenbus, und durch die Anzahl der Batteriemodule beschränkt.
US 2010/0019732 A1 beschreibt ein Batteriemanagementsystem mit einem
Hauptsteuergerät und einer Mehrzahl von Batterieeinheiten, wobei eine Batterieeinheit einen Referenzmesswert ermittelt, welcher sich anhand von vorbestimmten Kriterien ohne Einfluss des Hauptsteuergeräts ändert.
KR10/0680901 zeigt ein Batteriemanagementsystem, welches ein Hauptsteuergerät und mehrere Modulsteuergeräte umfasst, wobei die Modulsteuergeräte Zellspannungen und Temperaturen ermitteln und bereitstellen. Das Hauptsteuergerät lässt ein so genanntes Battery Balancing ausführen, wenn ein Unterschied der Zellspannung gegenüber einem Referenzmesswert einen definierten kritischen Wert einnimmt.
Offenbarung der Erfindung
Vorteile der Erfindung
Ein erfindungsgemäßes Verfahren zur Datenübertragung in einem
Batteriemanagementsystem mit mindestens einem Hauptsteuergerät und einer Anzahl von Modulsteuergeräten, die über einen Kommunikationskanal Messwerte an das
Hauptsteuergerät versenden, wobei eines der Modulsteuergeräte ein
Referenzmodulsteuergerät ist, umfasst die nachfolgenden Verfahrensschritte: a) Das Referenzmodulsteuergerät versendet einen Referenzmesswert auf dem
Kommunikationskanal, b) die Modulsteuergeräte bestimmen Differenzwerte eigener Messwerte zum
Referenzmesswert, c) die Modulsteuergeräte versenden die Differenzwerte der eigenen Messwerte zum Referenzmesswert auf dem Kommunikationskanal und d) das Hauptsteuergerät rekonstruiert die Messwerte der Modulsteuergeräte anhand der Differenzwerte und des Referenzmesswerts.
Vorteilhaft wird ausgenutzt, dass der Wertebereich der Differenzen von Messwerten zum Referenzmesswert geringer ist als der Wertebereich der Messwerte. Der
Kommunikationskanal wird somit zu einem geringeren Anteil ausgenutzt.
Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass bei gegebenen
Eigenschaften des Kommunikationskanals, beispielsweise bei fester Bandbreite des
Datenbusses, die maximale Anzahl der Modulsteuergeräte erhöht werden kann, so dass mehr Batteriemodule störungsfrei über den Kommunikationskanal kommunizieren können.
Andererseits können durch die verbesserte Kommunikation alternativ hierzu oder zusätzlich hierzu die Eigenschaften des Kommunikationskanals verändert werden, beispielsweise kann ein Bus mit einer geringeren Bandbreite zum Übertragen der Messwerte an das
Hauptsteuergerät verwendet werden. Ein geringerer Wertebereich der Differenzwerte kann nämlich in einen geringeren Bitumfang der Kommunikation auf dem Kommunikationskanal umgesetzt werden, beispielsweise mittels geeigneter Datenstrukturen. Eine geringere Bandbreite verringert die Wahrscheinlichkeit von Störungen beispielsweise durch EMV- Einstrahlung.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass es verlustfrei arbeitet, d. h. dass die Messgenauigkeit gegenüber einer konventionellen Übertragung der Messdaten nicht eingeschränkt wird.
Da eines der Modulsteuergeräte zum Referenzmodulsteuergerät erklärt wird und den Referenzmesswert bestimmt, wird das Hauptsteuergerät von der Referenzmesswertdefinition befreit. Die Modulsteuergeräte berechnen ihre Abweichungen, d. h. Differenzwerte von dem Referenzmesswert, und das Hauptsteuergerät ist in der Lage, aus den Differenzwerten und dem Referenzmesswert den Messwert des entsprechenden Modulsteuergeräts zu ermitteln.
Nach einer bevorzugten Ausführungsform wird das Referenzmodulsteuergerät nach Ablauf einer bestimmten Zeit neu aus der Gruppe der Modulsteuergeräte ausgewählt. Vorteilhaft wird hierdurch dem Umstand Rechnung getragen, dass die Batteriezellen und
Batteriemodule sich alterungsbedingt unterschiedlich schnell entladen und somit ein Ungleichgewicht der Ladungszustände und gegebenenfalls auch Temperaturen innerhalb des Batteriepacks existiert. Dadurch dass das Referenzmodulsteuergerät nach Ablauf der bestimmten Zeit neu bestimmt wird, werden Voraussetzungen geschaffen, dass die
Referenzmesswerte in der Nähe der Messwerte der Batteriemodule liegen können, und die Referenzmesswerte klein bleiben. Die Überprüfung erfolgt beispielsweise nach jedem Fahrzyklus, nach einer definierten Anzahl von Betriebsstunden der Batterie, nach einer definierten Anzahl von Tagen oder ausgelöst durch ein Ereignis, wie beispielsweise ein allgemeines Batterie-Balancing, bei welchem die Ladungszustände der Batteriezellen ausgeglichen werden.
Es kann vorgesehen sein, nach dem Ablauf der bestimmten Zeit das
Referenzmodulsteuergerät zufällig neu aus der Gruppe der Modulsteuergeräte auszuwählen. Bevorzugt ist allerdings vorgesehen, dass das Referenzmodulsteuergerät nach Ermittlung eines Abweichungszustands neu aus der Gruppe der Modulsteuergeräte ausgewählt wird. Nach einer bevorzugten Ausführungsform ist also vorgesehen, regelmäßig nach Ablauf einer bestimmten Zeit die Zustände der Modulsteuergeräte zu überprüfen und nur bei Ermittlung eines Abweichungszustands des Referenzmodulsteuergeräts gegenüber dem Zustand der Gruppe der Modulsteuergeräte das Referenzmodulsteuergerät neu auszuwählen. Nach einer bevorzugten Ausführungsform wird der Abweichungszustand vom
Referenzmodulsteuergerät ermittelt. Dies reduziert das Rechenaufkommen auf der Seite des Hauptsteuergeräts. Besonders vorteilhaft ist, dass das Hauptsteuergerät hierbei als reine Datensenke fungiert und lediglich die Messwerte in Form von einem Referenzmesswert und zahlreichen Differenzwerten empfängt und verarbeiten muss.
Beispielsweise wird der Abweichungszustand durch einen Vergleich des Referenzmesswerts mit einem über die Messwerte aller Modulsteuergeräte ermittelten Mittelwert ermittelt. Somit kann berücksichtigt werden, dass nach einer gewissen Zeit ein günstigerer
Referenzmesswert vorliegt als der bisherige Referenzmesswert, da die durchschnittliche Abweichung aller Messwerte vom Mittelwert eines anderen Modulsteuergeräts geringer ist als die durchschnittliche Abweichung aller Messwerte vom Mittelwert des alten
Referenzmodulsteuergeräts. Vorteilhaft wird ab diesem Zeitpunkt das andere
Modulsteuergerät als neues Referenzmodulsteuergerät ausgewählt. Nach einer bevorzugten Ausführungsform wählt ein jeweils aktuelles
Referenzmodulsteuergerät das neue Referenzmodulsteuergerät aus. Die Modulsteuergeräte bestimmen die Referenzmodulsteuergeräte autonom. Dies reduziert das Rechenaufkommen auf der Seite des Hauptsteuergeräts. Somit wird das Hauptsteuergerät nicht mit der
Definition von geeigneten Referenzmesswerten belastet, sondern diese Aufgabe übernimmt das aktuelle Referenzmodulsteuergerät. Beim Systemstart kann beispielsweise das
Modulsteuergerät mit der niedrigsten Identifikationsnummer als Referenzmodulsteuergerät definiert werden. Referenzmesswerte können durch eine Mittelbildung über gespeicherte Messwerte des Referenzmodulsteuergeräts oder durch einen aktuellen Messwert des
Referenzmodulsteuergeräts bestimmt werden. Die Referenzmesswerte und Messwerte, die beim erfindungsgemäßen Verfahren übertragen werden, können im Prinzip beliebige
Messwerte sein. Besonders vorteilhaft können Charakteristika von Zellspannungen und Temperaturen ausgenutzt werden. Da in einem Batteriepack alle Zellspannungen
üblicherweise auf gleichem Spannungsniveau sind, reichen ein Referenzmesswert und die Abweichung aller Zellspannungen von diesem Referenzmesswert zur Ausführung der Managementfunktionen. Analog verhält es sich mit Zelltemperaturen. Der Wertebereich der Differenzen ist geringer als der Wertebereich der vollständigen Werte und belegt somit weniger Bandbreite auf dem Kommunikationskanal. Das Verfahren kann auf beliebige
Messwerte angewendet werden, sofern diese ähnliche Verhalten aufweisen wie Spannungen und Temperaturen. Weitere Messdaten, welche üblicherweise durch Modulsteuergeräte erfasst und übertragen werden, umfassen beispielsweise die Temperatur, den
Isolationswiderstand, den Ladezustand, den abgegebenen Strom oder die bereitgestellte Spannung des Moduls. Ebenso können Messdaten aus derartigen Größen abgeleitete
Größen umfassen, beispielsweise zeitlich aufsummierte oder integrierte Größen, miteinander multiplizierte oder anderweitig aggregierte Größen. Außerdem können Differenzwerte zwischen minimalen und maximalen Zuständen, beispielsweise von Ladungszuständen, relative Batterieleistungen oder Anzahl von Durchführungen von Lade- und Entladezyklen in den abgeleiteten Messdaten umfasst sein. Anhand derartiger Messdaten werden
Batteriemanagementfunktionen realisiert, wie beispielsweise die Ermittlung einer
voraussichtlichen Lebensdauer des Batteriesystems oder eines Gesundheitszustands (SOH) der Batterie. Erfindungsgemäß wird weiterhin ein Computerprogramm vorgeschlagen, gemäß dem eines der hierin beschriebenen Verfahren durchgeführt wird, wenn das Computerprogramm auf einer programmierbaren Computereinrichtung ausgeführt wird. Bei dem Computerprogramm kann es sich beispielsweise um ein Modul zur Implementierung einer Einrichtung zur Bereitstellung von Messdaten für ein Batteriemanagementsystem und/oder um ein Modul zur Implementierung eines Batteriemanagementsystems eines Fahrzeugs handeln. Das
Computerprogramm kann auf einem maschinenlesbaren Speichermedium gespeichert werden, etwa auf einem permanenten oder wiederbeschreibbaren Speichermedium oder in Zuordnung zu einer Computereinrichtung, beispielsweise auf einem tragbaren Speicher, wie einer CD-ROM, DVD, einem USB-Stick oder einer Speicherkarte. Zusätzlich oder alternativ dazu kann das Computerprogramm auf einer Computereinrichtung, wie etwa auf einem Server oder einem Cloud-Server, zum Herunterladen bereitgestellt werden, beispielweise über ein Datennetzwerk, wie das Internet, oder eine Kommunikationsverbindung, wie etwa eine Telefonleitung oder eine drahtlose Verbindung.
Erfindungsgemäß wird außerdem ein Batteriemanagementsystem (BMS) bereitgestellt, mit mindestens einem Hauptsteuergerät und einer Anzahl von Modulsteuergeräten, die über einen Kommunikationskanal Messwerte an das Hauptsteuergerät versenden. Dabei ist vorgesehen, dass eines der Modulsteuergeräte ein Referenzmodulsteuergerät ist. Die Modulsteuergeräte weisen Einheiten zur Ermittlung und Versendung von Differenzwerten eigener Messwerte zu Referenzmesswerten des Referenzmodulsteuergeräts auf und das Hauptsteuergerät weist eine Einheit zur Ermittlung der Messwerte der Modulsteuergeräte anhand der Referenzmesswerte und der Differenzwerte auf. Die Modulsteuergeräte weisen außerdem Einheiten zur Ermittlung von Abweichungszuständen der eigenen Messwerte gegenüber Referenzmesswerten auf. Die Modulsteuergeräte weisen bevorzugt außerdem Einheiten zum Ermitteln und Auswählen eines neuen Referenzmodulsteuergeräts auf.
Erfindungsgemäß wird außerdem eine Batterie, insbesondere eine Lithium-Ionenbatterie oder eine Nickel-Metallhydridbatterie, zur Verfügung gestellt, die ein Batteriemanagement- System umfasst und mit einem Antriebssystem eines Kraftfahrzeugs verbindbar ist, wobei das Batteriemanagementsystem wie zuvor beschrieben ausgebildet ist und/oder eingerichtet ist, das erfindungsgemäße Verfahren auszuführen.
Die Begriffe "Batterie" und "Batterieeinheit" werden in der vorliegenden Beschreibung dem üblichen Sprachgebrauch angepasst für Akkumulator bzw. Akkumulatoreinheit verwendet. Die Batterie umfasst bevorzugt eine oder mehrere Batterieeinheiten, die eine Batteriezelle, ein Batteriemodul, einen Modulstrang oder ein Batteriepack umfassen können. Die
Batteriezellen sind dabei vorzugsweise räumlich zusammengefasst und schaltungstechnisch miteinander verbunden, beispielsweise seriell oder parallel zu Modulen verschaltet. Mehrere Module können sogenannte Batteriedirektkonverter (BDC, Battery Direct Converter) bilden, und mehrere Batteriedirektkonverter einen Batteriedirektinverter (BDI, Battery Direct Inverter).
Erfindungsgemäß wird außerdem ein Kraftfahrzeug mit einer derartigen Batterie zur Verfügung gestellt, wobei die Batterie mit einem Antriebssystem des Kraftfahrzeugs verbunden ist. Bevorzugt wird das Verfahren bei elektrisch angetriebenen Fahrzeugen angewendet, bei welchen eine Zusammenschaltung einer Vielzahl von Batteriezellen zur Bereitstellung der nötigen Antriebsspannung erfolgt. Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 ein Batteriemanagementsystem,
Fig. 2 eine schematische Darstellung eines möglichen Kommunikationsablaufs zwischen einem Hauptsteuergerät und mehreren Modulsteuergeräten auf einem CAN-Bus,
Fig. 3 eine schematische Darstellung eines weiteren möglichen
Kommunikationsablaufs zwischen einem Hauptsteuergerät und mehreren Modulsteuergeräten auf dem CAN-Bus und
Fig. 4 ein Diagramm mit zeitlichem Verlauf von Spannungswerten verschiedener
Batteriezellen. Ausführungsformen der Erfindung Das Batteriemanagementsystem 1 in Figur 1 umfasst ein zentrales Steuergerät 2, welches auch als BCU (Battery Control Unit) bezeichnet werden kann und eine Anzahl von
Batteriemodulen 4, welche jeweils eigene Modulsteuergeräte 6-1 , 6-2, ... 6-n aufweisen, welche auch als CMC (Cell Module Controller) bezeichnet werden. Jedem Batteriemodul 4 sind Batterieeinheiten 8 mit üblicherweise mehreren Batteriezellen zugeordnet, wobei diese in Serie und teilweise zusätzlich parallel geschaltet werden, um die geforderten Leistungsund Energiedaten mit dem Batteriesystem zu erzielen. Die einzelnen Batteriezellen sind beispielsweise Lithium-Ionenbatterien mit einem Spannungsbereich von 2,8 bis 4,2 Volt. Die Kommunikation zwischen dem zentralen Steuergerät 2 und den Modulsteuergeräten 6-1 , 6- 2, ... 6-n erfolgt über einen Kommunikationskanal 5, beispielsweise über einen CAN-Bus, und geeignete Schnittstellen 10, 12.
Fig. 2 zeigt Schritte eines Datenübertragungsverfahrens zwischen dem Hauptsteuergerät 2 und den Modulsteuergeräten 6-1 , 6-2, ... 6-n über den Kommunikationskanal 5. In einem
Schritt SO ermitteln die Modulsteuergeräte 6-1 , 6-2, ... 6-n ihre Messungen von Spannungen, Temperaturen usw. Zur Vereinfachung wird sich die Beschreibung im Folgenden nur auf die Spannung beziehen. Das Modulsteuergerät 6-1 ist nach Initiierung des Systems das
Referenzmodulsteuergerät 14. In einem Schritt S1 bestimmt das Referenzmodulsteuergerät 14 einen Referenzmesswert 16 der Modulspannung. Das Referenzmodulsteuergerät 14 bestimmt den Referenzmesswert 16 beispielsweise als einen Mittelwert aus gespeicherten Messwerten oder anhand eines aktuellen Messwerts. In einem Schritt S2 versendet das Referenzmodulsteuergerät 14 den Referenzmesswert 16 auf dem Kommunikationskanal 5. Aufgrund der Charakteristik des Kommunikationskanals 5 können alle angeschlossenen Modulsteuergeräte 6-1 , 6-2, ... 6-n die Daten mitlesen. Die weiteren Modulsteuergeräte 6-2, ... 6-n empfangen auf diesem Weg in einem Schritt S3 den aktuellen Referenzmesswert 16. Auch das Hauptsteuergerät 2 empfängt in einem Schritt S4 den aktuellen Referenzmesswert 16. Die weiteren Modulsteuergeräte 6-2, ... 6-n ermitteln in einem Schritt S5 Differenzwerte 18 der im Schritt SO ermittelten eigenen Messwerte zum Referenzmesswert 16. Im Schritt S6 versenden die weiteren Modulsteuergeräte 6-2, ... 6-n die Differenzwerte 18 der eigenen Messwerte zum Referenzmesswert 16 auf dem Kommunikationskanal 5. Im Schritt S7 liest das Referenzmodulsteuergerät14 die Messwerte der weiteren Modulsteuergeräte 6-2, ... 6-n mit. Im Schritt S8 empfängt das Hauptsteuergerät 2 die Differenzwerte 18. Dem
Hauptsteuergerät 2 liegen nun der Referenzmesswert 16 und die Differenzwerte 18 der Messwerte der Modulsteuergeräte 6-1 , 6-2, ... 6-n zum Referenzmesswert 16 vor. Das Hauptsteuergerät 2 rekonstruiert aus diesen Werten die korrekten und vollständigen
Messwerte im Schritt S9. Das Verfahren läuft somit verlustfrei ab und die Messgenauigkeit wird nicht beeinträchtigt. Es kann vorgesehen sein, im Betrieb der Batterie lediglich die Verfahrensschritte SO, S5, S6, S8, S9 zu wiederholen oder SO, S5, S6, S7, S8, S9. Es kann auch vorgesehen sein, den Referenzmesswert 16 jedes Mal oder nach einer definierten Anzahl von Durchläufen im Schritt S1 neu zu bestimmen, insbesondere unter Verwendung der aktuellen Messwerte oder ausschließlich anhand der aktuellen Messwerte, d. h. die Verfahrensschritte SO, S1 , S2, S3, S4, S5, S6, S7, S8 und S9 zu wiederholen.
Fig. 3 zeigt einen Wechsel des Referenzmodulsteuergeräts 14 beispielhaft von
Modulsteuergerät 6-1 auf Modulsteuergerät 6-2. Der Wechsel wird dadurch begründet, dass das aktuelle Referenzmodulsteuergerät 14, Modulsteuergerät 6-1 , keinen geeigneten Referenzmesswert 16 mehr bietet, da zum Beispiel die Batteriezellen des
Referenzmodulsteuergeräts 14 alterungsbedingt schneller oder langsamer entladen werden als die weiteren Modulsteuergeräte 6-2, ... 6-n im Mittel.
Das in Fig. 3 dargestellte Verfahren läuft zunächst wie das in Fig. 2 beschriebene Verfahren ab, bis das Hauptsteuergerät im Schritt S9 die Messwerte der einzelnen Modulsteuergeräte 6-1 , 6-2, ... 6-n rekonstruiert hat. Im Schritt S10 überprüft das Referenzmodulsteuergerät 14, ob Kriterien für einen Wechsel vorliegen. Die Überprüfung kann beispielsweise nach Ablauf einer bestimmten Zeit erfolgen oder nach Ermittlung eines Abweichungszustands der Messwerte des Referenzmodulsteuergeräts 14 gegenüber den Messwerten aller
Modulsteuergeräte 6-1 , 6-2, ... 6-n. Im Schritt S1 1 wählt das Referenzmodulsteuergerät 14 ein neues Referenzmodulsteuergerät 14' aus der Gruppe aller Modulsteuergeräte 6-1 , 6-2, ... 6-n, im dargestellten Beispiel das Modulsteuergerät 6-2. Dabei kann vorgesehen sein, dass das alte Referenzmodulsteuergerät 14 die Botschaft der Definition des neuen
Referenzmodulsteuergeräts 14' als Nachricht auf dem Kommunikationskanal 5 versendet (nicht dargestellt). Alle Modulsteuergeräte 6-2, ... 6-n empfangen diese Botschaft und berücksichtigen, dass das Referenzmodulsteuergerät 14' gewechselt hat. Von nun an laufen die Messzyklen im Wesentlichen unverändert weiter mit der einzigen Änderung, dass das andere Modulsteuergerät 6-2 als neues Referenzmodulsteuergerät 14' den
Referenzmesswert 16 für die Messungen vorgibt. Der neue Referenzmesswert 16 kann beispielsweise aus einer Mittelbildung über die Messwerte des Referenzmodulsteuergeräts 14' ermittelt werden oder lediglich aus dem letzten Messwert bestehen, wobei dieser sich per Definition mit den Messwerten aller Modulsteuergeräte 6-1 , 6-2, ... 6-n verträgt.
Fig. 4 zeigt den beispielhaften Verlauf von Spannungen an verschiedenen Batteriemodulen über die Zeit. Dargestellt sind ein erster Mittelwert 20 eines ersten Sensors, ein zweiter Mittelwert 22 eines zweiten Sensors und ein dritter Mittelwert 24 eines dritten Sensors. Zu Beginn ist der erste Mittelwert 20 des ersten Sensors der Referenzmesswert 16 des
Referenzmodulsteuergeräts, d. h. das Referenzmodulsteuergerät ist dasjenige des ersten Sensors. Zum Zeitpunkt t-ι erfolgt eine Neubestimmung des Referenzmodulsteuergeräts mit den Schritten S10 und S1 1 wie mit Bezug zu Fig. 3 beschrieben. Im dargestellten Beispiel fällt der erste Mittelwert 20 des ersten Sensors zwischen Zeitpunkten t0 und t-ι weniger stark ab als die Mittelwerte 22, 24 der zweiten und dritten Sensoren. Zum Zeitpunkt t-ι stellt das alte Referenzmodulsteuergerät, welches dem ersten Sensor zugeordnet ist, fest, dass der zweite Mittelwert 22 des zweiten Sensors einen günstigeren Referenzmesswert darstellt als der bisherige Referenzmesswert. Die mittlere Abweichung aller Messwerte vom Mittelwert 22 des zweiten Sensors ist zum Zeitpunkt t-ι nämlich wesentlich geringer als die mittlere
Abweichung aller Messwerte vom ersten Mittelwert 20 des ersten Sensors. Daher ist der zweite Mittelwert 22 des zweiten Sensors ein günstiger Referenzmesswert und das alte Referenzmodulsteuergerät bestimmt als neues Referenzmodulsteuergerät jenes, welches dem zweiten Sensor zugeordnet ist. Ab diesem Zeitpunkt gibt das neue
Referenzmodulsteuergerät den Referenzmesswert 16 vor, welcher im dargestellten
Ausführungsbeispiel der zweite Mittelwert 22 des zweiten Sensors ist.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen
fachmännischen Handelns liegen.

Claims

Ansprüche
1 . Verfahren zur Datenübertragung in einem Batteriemanagementsystem (1 ) mit mindestens einem Hauptsteuergerät (2) und einer Anzahl von Modulsteuergeräten (6-1 , 6-2,
6-n), die über einen Kommunikationskanal (5) Messwerte an das Hauptsteuergerät (2) versenden, wobei eines der Modulsteuergeräte (6-1 , 6-2, 6-n) ein
Referenzmodulsteuergerät (14) ist, mit nachfolgenden Verfahrensschritten: a) Versenden (S2) eines Referenzmesswerts (16) auf dem Kommunikationskanal (5) durch das Referenzmodulsteuergerät (14), b) Bestimmen (S5) von Differenzwerten (18) eigener Messwerte zum Referenzmesswert (16) durch die Modulsteuergeräte (6-1 , 6-2, 6-n), c) Versenden (S6) der Differenzwerte (18) der eigenen Messwerte zum
Referenzmesswert (16) auf dem Kommunikationskanal (5) durch die
Modulsteuergeräte (6-1 , 6-2, 6-n) und d) Rekonstruieren (S9) der eigenen Messwerte der Modulsteuergeräte (6-1 , 6-2, 6-n) anhand der Differenzwerte und des Referenzmesswerts (16) durch das
Hauptsteuergerät (2).
2. Verfahren zur Datenübertragung nach Anspruch 1 , dadurch gekennzeichnet, dass das Referenzmodulsteuergerät (14') nach Ablauf einer bestimmten Zeit neu aus der Gruppe der Modulsteuergeräte (6-1 , 6-2, 6-n) ausgewählt wird.
3. Verfahren zur Datenübertragung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Referenzmodulsteuergerät (14') nach Ermittlung eines
Abweichungszustands neu aus der Gruppe der Modulsteuergeräte (6-1 , 6-2, 6-n) ausgewählt wird.
4. Verfahren zur Datenübertragung nach Anspruch 3, dadurch gekennzeichnet, dass der Abweichungszustand vom Referenzmodulsteuergerät (14) ermittelt wird (S10).
5. Verfahren zur Datenübertragung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein jeweils aktuelles Referenzmodulsteuergerät (14) das neue
Referenzmodulsteuergerät (14') auswählt (S1 1 ).
6. Verfahren zur Datenübertragung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Referenzmesswert (16) durch eine Mittelbildung über gespeicherte Messwerte des Referenzmodulsteuergeräts (14) oder durch einen aktuellen Messwert des Referenzmodulsteuergeräts (14) bestimmt wird.
7. Verfahren zur Datenübertragung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messwerte Zellspannungen und/oder Temperaturen sind.
8. Computerprogramm zur Ausführung eines der Verfahren nach einem der
vorhergehenden Ansprüche, wobei das Computerprogramm auf einer programmierbaren Computereinrichtung ausgeführt wird.
9. Batteriemanagementsystem (1 ) mit mindestens einem Hauptsteuergerät (2) und einer Anzahl von Modulsteuergeräten (6-1 , 6-2, 6-n), die über einen Kommunikationskanal (5) Messwerte an das Hauptsteuergerät (2) versenden, dadurch gekennzeichnet, dass eines der Modulsteuergeräte (6-1 , 6-2, 6-n) ein Referenzmodulsteuergerät (14) ist, wobei die Modulsteuergeräte (6-1 , 6-2, 6-n) Einheiten zur Ermittlung und Versendung von
Differenzwerten (18) eigener Messwerte zu Referenzmesswerten (16) des
Referenzmodulsteuergeräts (14) aufweisen, und wobei das Hauptsteuergerät (2) eine Einheit zur Ermittlung der eigenen Messwerte der Modulsteuergeräte (6-1 , 6-2, 6-n) anhand der Referenzmesswerte (16) und der Differenzwerte (18) aufweist.
10. Batterie mit einem Batteriemanagementsystem (1 ) nach Anspruch 9.
1 1. Kraftfahrzeug mit einer Batterie nach Anspruch 10.
PCT/EP2014/068326 2013-09-02 2014-08-29 Verfahren zur datenübertragung in einem batteriemanagementsystem WO2015028584A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/915,831 US9987943B2 (en) 2013-09-02 2014-08-29 Method for transmitting data in a battery management system
JP2016515991A JP6059403B2 (ja) 2013-09-02 2014-08-29 バッテリ管理システム内でのデータ伝送方法
KR1020167004547A KR101813461B1 (ko) 2013-09-02 2014-08-29 배터리 관리 시스템 내의 데이터 전송 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013217451.9A DE102013217451A1 (de) 2013-09-02 2013-09-02 Verfahren zur Datenübertragung in einem Batteriemanagementsystem
DE102013217451.9 2013-09-02

Publications (2)

Publication Number Publication Date
WO2015028584A2 true WO2015028584A2 (de) 2015-03-05
WO2015028584A3 WO2015028584A3 (de) 2015-05-07

Family

ID=51483400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/068326 WO2015028584A2 (de) 2013-09-02 2014-08-29 Verfahren zur datenübertragung in einem batteriemanagementsystem

Country Status (5)

Country Link
US (1) US9987943B2 (de)
JP (1) JP6059403B2 (de)
KR (1) KR101813461B1 (de)
DE (1) DE102013217451A1 (de)
WO (1) WO2015028584A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100078A (zh) * 2016-08-30 2016-11-09 山东得普达电机股份有限公司 一种无损均衡控制装置及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107003357B (zh) * 2014-11-28 2019-08-06 罗伯特·博世有限公司 基于无线网络的电池管理系统
DE102016107038A1 (de) * 2016-04-15 2017-10-19 Johnson Controls Autobatterie Gmbh & Co. Kgaa Verfahren und Vorrichtung zum Abschätzen eines Zustands eines Energiespeichersystems eines Fahrzeuges
KR102322291B1 (ko) * 2017-02-23 2021-11-04 주식회사 엘지에너지솔루션 셀 모듈 컨트롤러에 대한 고유번호 할당 시스템 및 방법
KR102323035B1 (ko) * 2017-07-28 2021-11-05 주식회사 엘지에너지솔루션 배터리 모니터링 시스템 및 방법
KR101943617B1 (ko) * 2017-09-06 2019-04-17 주식회사 티피엠에스 릴레이 방식을 이용한 2차 전지 보호회로 검사방법
KR102259970B1 (ko) 2017-10-13 2021-06-02 주식회사 엘지에너지솔루션 데이터 입력 스케쥴링 장치
KR20220045497A (ko) * 2020-10-05 2022-04-12 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
DE102021122664A1 (de) 2021-09-01 2023-03-02 Elringklinger Ag Kontrollvorrichtung für ein Batteriesystem
DE102021005087A1 (de) 2021-10-12 2021-11-25 Daimler Ag Verfahren zur Überwachung einer Traktionsbatterie
AT526548A1 (de) * 2022-10-05 2024-04-15 Avl List Gmbh Codierverfahren für ein Codieren von erfassten Zellspannungen in einem elektrochemischen System

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680901B1 (ko) 2006-02-28 2007-02-09 김금수 배터리 관리 시스템 및 그 제어 방법
US20100019732A1 (en) 2006-11-06 2010-01-28 Nec Corporation Electric cells for battery pack, battery control system, and battery control method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940757A (en) * 1998-02-27 1999-08-17 Motorola, Inc. Communication system and method for selecting alternative frequencies
JP3405526B2 (ja) 1999-04-02 2003-05-12 エヌイーシートーキン栃木株式会社 複数電池パック電源装置
WO2002021662A2 (en) * 2000-09-04 2002-03-14 Invensys Energy Systems (Nz) Limited Battery monitoring network
JP2003017134A (ja) 2001-06-27 2003-01-17 Osaka Gas Co Ltd 蓄電装置の管理システム
US8285451B2 (en) * 2005-03-17 2012-10-09 Nsk Ltd. Method and apparatus for controlling electric power steering system
KR100669470B1 (ko) 2005-12-22 2007-01-16 삼성에스디아이 주식회사 배터리의 soo 보정 방법 및 이를 이용한 배터리 관리시스템
JP2008241358A (ja) 2007-03-26 2008-10-09 Sanyo Electric Co Ltd 電池の満充電容量検出方法
KR101029108B1 (ko) 2008-12-11 2011-04-15 충북대학교 산학협력단 생체신호관리시스템에서의 심전도 데이터 압축 및 압축 해제 방법
US8232768B2 (en) * 2009-01-23 2012-07-31 O2Micro, Inc. System and method for balancing battery cells
US8004243B2 (en) 2009-04-08 2011-08-23 Tesla Motors, Inc. Battery capacity estimating method and apparatus
DE102009027177A1 (de) * 2009-06-25 2010-12-30 SB LiMotive Company Ltd., Suwon Warnsystem für Batteriesysteme
US20110234167A1 (en) 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device
EP2385604A1 (de) * 2010-05-07 2011-11-09 Brusa Elektronik AG Verfahren und Zellüberwachungseinheit zur Überwachung eines Akkumulators, zentrale Überwachungseinheit und Akkumulator
DE102010038860A1 (de) * 2010-08-04 2012-02-09 Robert Bosch Gmbh Warnsystem zur Überwachung von kritischen Zuständen in Batteriesystemen, insbesondere in Lithium-Ionen-Batteriesystemen
DE102010038886A1 (de) * 2010-08-04 2012-02-09 Sb Limotive Company Ltd. Verteiltes Batteriesystem für Kraftfahrzeuge
US8612168B2 (en) 2010-09-22 2013-12-17 GM Global Technology Operations LLC Method and apparatus for estimating battery capacity of a battery
WO2012043592A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 電源装置及びこれを用いた車両
US9037426B2 (en) 2011-05-13 2015-05-19 GM Global Technology Operations LLC Systems and methods for determining cell capacity values in a multi-cell battery
KR101455443B1 (ko) 2011-09-26 2014-10-28 주식회사 엘지화학 고유 식별자를 할당하는 방법 및 이를 이용하는 배터리 관리 시스템
DE102011085787A1 (de) 2011-11-04 2013-05-08 Sb Limotive Company Ltd. Batteriemanagementeinheit mit einer Vielzahl von Überwachungs-IC Chips
DE102011086620A1 (de) 2011-11-18 2013-05-23 Robert Bosch Gmbh Verfahren zum Überwachen einer Batterie
DE102012202079A1 (de) * 2012-02-13 2013-08-14 Robert Bosch Gmbh Verfahren zum Überwachen einer Batterie
DE102012211120A1 (de) * 2012-06-28 2014-01-02 Robert Bosch Gmbh Verfahren zur Datenübertragung zwischen elektronischen Steuergeräten, Batterie und Kraftfahrzeug mit einer solchen Batterie
DE102013209433A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterie
DE102013209443A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zur Authentifizierung von Messdaten einer Batterie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680901B1 (ko) 2006-02-28 2007-02-09 김금수 배터리 관리 시스템 및 그 제어 방법
US20100019732A1 (en) 2006-11-06 2010-01-28 Nec Corporation Electric cells for battery pack, battery control system, and battery control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100078A (zh) * 2016-08-30 2016-11-09 山东得普达电机股份有限公司 一种无损均衡控制装置及控制方法

Also Published As

Publication number Publication date
US9987943B2 (en) 2018-06-05
KR101813461B1 (ko) 2017-12-29
JP6059403B2 (ja) 2017-01-11
DE102013217451A1 (de) 2015-03-05
WO2015028584A3 (de) 2015-05-07
US20160193936A1 (en) 2016-07-07
JP2016535386A (ja) 2016-11-10
KR20160027242A (ko) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2015028584A2 (de) Verfahren zur datenübertragung in einem batteriemanagementsystem
EP3127208B1 (de) Verfahren zum batteriemanagement einer batterie mit einem ladezustandsausgleichssystem und batteriemanagementsystem
EP3095153B1 (de) Verfahren zum ladezustandsausgleich einer batterie
EP2531869B1 (de) Vorrichtung und verfahren zur bestimmung eines bereichs einer batteriekennlinie
EP3766120B1 (de) Charakterisierung von lithium-plating bei wiederaufladbaren batterien
DE102014207395A1 (de) Verfahren zum Batteriemanagement und Batteriemanagementsystem
WO2016177529A1 (de) Akkumulatoranordnung mit einer verbesserten zustandsüberwachung
AT524131B1 (de) Ermittlung des Gesundheitszustands einer Fahrzeugbatterie
DE102014219889A1 (de) Fahrzeug und Verfahren zum Steuern einer Batterie in einem Fahrzeug
EP3148837B1 (de) Verfahren zum batteriemanagement und batteriemanagementsystem
DE102022211063A1 (de) Controller zum Abschätzen charakteristischer Parameter einer Batterie und Verfahren dafür
WO2016012196A1 (de) Verfahren zum betreiben einer sekundärbatterie
DE102013209433A1 (de) Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterie
EP3273507B1 (de) Traktionsenergiespeichersystem für ein fahrzeug
WO2015106974A1 (de) Verfahren zum überwachen einer batterie
DE102014210178A1 (de) Verfahren zum Starten eines Batteriemanagementsystems
WO2015000954A1 (de) Verfahren und system zur minimierung von leistungsverlusten bei einem energiespeicher
WO2014001118A1 (de) Verfahren zur datenübertragung zwischen elektronischen steuergeräten, batterie und kraftfahrzeug mit einer solchen batterie
DE102012224060A1 (de) Verfahren zur Datenübertragung für ein Batteriemanagementsystem
WO2014044860A2 (de) Verfahren zum betreiben eines bordnetzes
WO2013104394A1 (de) Batterieanordnung für ein kraftfahrzeug
DE102013201451A1 (de) Verfahren und System zur Batteriediagnose
DE102014201229A1 (de) Verfahren zur Bereitstellung von Messwerten einer Batterie und Batteriemanagementsystem
DE102014200684A1 (de) Verfahren zum Überwachen einer Batterie
EP4361655A1 (de) Verfahren zum ermitteln eines anteils defekter batteriezellen, ein batteriesteuergerät, ein computerprogramm, ein computerlesbares speichermedium, eine batterie und ein kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14758526

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2016515991

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004547

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14915831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14758526

Country of ref document: EP

Kind code of ref document: A2