WO2015027741A1 - 图像传感器及其制作方法 - Google Patents

图像传感器及其制作方法 Download PDF

Info

Publication number
WO2015027741A1
WO2015027741A1 PCT/CN2014/080560 CN2014080560W WO2015027741A1 WO 2015027741 A1 WO2015027741 A1 WO 2015027741A1 CN 2014080560 W CN2014080560 W CN 2014080560W WO 2015027741 A1 WO2015027741 A1 WO 2015027741A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
region
doped region
conductive type
semiconductor substrate
Prior art date
Application number
PCT/CN2014/080560
Other languages
English (en)
French (fr)
Inventor
赵立新
李文强
李�杰
徐泽
Original Assignee
格科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格科微电子(上海)有限公司 filed Critical 格科微电子(上海)有限公司
Priority to US14/419,888 priority Critical patent/US9437632B2/en
Publication of WO2015027741A1 publication Critical patent/WO2015027741A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Definitions

  • An image sensor is a semiconductor device that converts an optical signal into an electrical signal.
  • the image sensor includes a photodiode (PD) for sensitization and a logic circuit for converting the sensed light into an electrical signal.
  • the logic circuit generally includes a transfer transistor, and the photodiode is connected to a floating diffusion (FD) through the transfer transistor.
  • the problem to be solved by the present invention is to provide an image sensor and a method of fabricating the same to improve the transmission efficiency of photogenerated carriers.
  • the present invention provides a method for fabricating an image sensor, including: A: forming a second conductivity type region in the first conductivity type semiconductor substrate, thereby forming a photodiode, wherein the second conductivity type region functions as a photogenerated carrier collection region, and the first conductivity type semiconductor liner Forming a first conductive type isolation layer over the photodiode; B: forming a second conductive type shallow doped region and a first conductive type shallow doped region located under the second conductive type shallow doped region; The second conductive type shallow doped region is isolated from the second conductive type region of the photodiode by the first conductive type shallow doped region;
  • a floating diffusion region having a second conductivity type heavily doped is formed by a doping process, the floating diffusion region being in contact with the second conductivity type shallow doped region.
  • the second conductive type region of the photodiode and the first conductive type isolation layer have self-aligned characteristics.
  • the second conductive type shallow doped region and the first conductive type shallow doped region have self-aligned characteristics.
  • step B applying a photoresist on a surface of the first conductive type semiconductor substrate, using a first mask, exposing and developing through a photolithography process, and performing the doping process
  • the second conductivity type shallow doped region is formed or formed with the first conductivity type shallow doped region i.
  • step B coating a photoresist on the surface of the first conductive type semiconductor substrate, using a first mask, and performing exposure and development by a photolithography process on the photoresist.
  • the gate structure covers the first conductive type isolation layer and the second conductive type shallow doped region.
  • the forming the gate structure comprises: sequentially forming a gate oxide layer, a gate layer covering the gate oxide layer, and the gate electrode by a thermal oxidation process, a patterning process The gate spacers on both sides of the layer.
  • the first conductivity type is P type
  • the second conductivity type is N type
  • the first conductivity type is N type
  • the second conductivity type is P type.
  • the carrier is an electron or a hole.
  • the present invention also provides an image sensor, comprising: a photodiode, a photodiode is formed by forming a second conductivity type region in a first conductivity type semiconductor substrate, wherein the second conductivity type a region as a photo-generated carrier collection region; a first conductivity-type isolation layer formed inside the first-conductivity-type semiconductor substrate, above the photodiode region; and a second-conductivity-type shallow-doped region formed in An inner portion of the first conductive type semiconductor substrate; a first conductive type shallow doped region formed in a lower portion of the second conductive type shallow doped region; and the second conductive type shallow doped region through the first
  • the conductive type shallow doped region is isolated from the second conductive type region of the photodiode; the gate structure of the transfer tube is formed on the upper surface of the first conductive type semiconductor substrate corresponding to the first conductive type isolation layer The gate structure covers all or part of the shallow doped region of the second conductivity type;
  • the second conductive type region of the photodiode has a self-aligned property with the first conductive type isolation layer.
  • coating a photoresist on a surface of the first conductive type semiconductor substrate, using a first mask, exposing and developing through a photolithography process, and performing a doping process to make the second conductive type shallow doped The impurity region is formed with the shallow doped region of the first conductivity type.
  • a photoresist on a surface of the first conductive type semiconductor substrate using a first mask, exposing and developing through a photolithography process, forming an etch to the semiconductor liner on the photoresist a recess of the bottom surface, forming a second conductive type shallow doped region by a doping process in a region in the semiconductor substrate corresponding to the recess; and further etching the inner sidewall of the recess to make the recess An opening formed between the inner sidewalls is increased; then the first conductive type shallow doped region is formed by doping with a region within the first conductive type semiconductor substrate corresponding to the recess.
  • the gate structure covers the first conductive type isolation layer and the second conductive type shallow doped region.
  • forming the gate structure includes sequentially forming a gate oxide layer, a gate layer covering the gate oxide layer, and a gate sidewall on both sides of the gate layer by a thermal oxidation process, a patterning process .
  • the first conductivity type is P type
  • the second conductivity type is N type
  • the first conductivity type is N type
  • the second conductivity type is P type.
  • the carrier is an electron or a hole.
  • the technical solution of the present invention has the following advantages:
  • photo-generated carriers are transmitted in the channel by forming a shallow-doped region of the second conductivity type in contact with the floating diffusion region.
  • the transmission rate is higher, and the distance between the floating diffusion region and the photodiode is reduced by the bridge action of the doped region of the second conductivity type, so that the photogenerated carriers can be more quickly transferred from the photodiode to the floating diffusion region.
  • the transmission efficiency of photogenerated carriers is improved.
  • FIG. 1 to FIG. 4 are schematic diagrams showing an embodiment of a method for fabricating an image sensor according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the conventional image sensor, since the floating diffusion region is a heavily doped region, the transmission efficiency of the photogenerated carriers is limited, and the photo-generated carrier transmission efficiency is low during transmission.
  • the present invention provides an image sensor that is provided with a second conductivity type shallow doped region in a first conductivity type semiconductor substrate under the gate, and the second conductivity type shallow doped region In contact with the floating diffusion region, the second conductivity type shallow doped region corresponds to an epitaxial portion of the floating diffusion region, so that the photogenerated carriers are easily shielded by the second conductivity due to the potential in the transmission channel during channel transmission.
  • An embodiment of the present invention first provides a method for fabricating an image sensor. Referring to FIG. 1 to FIG. 4, the method includes Step A, Step B, Step C, and Step D, which are described below in conjunction with the accompanying drawings. Step A, referring to FIG.
  • a second conductive type region 110 is formed in the first conductive type semiconductor substrate 100 to form a photodiode, wherein the second conductive type region
  • the domain 110 acts as a photo-generated carrier collection region and forms a first conductivity-type isolation layer 120 over the photodiode within the first conductivity-type semiconductor substrate 100.
  • the first conductive type semiconductor substrate 100 may be a silicon substrate, a semiconductor substrate including an epi-layer, or a silicon-on-insulator (SOI) substrate.
  • the first conductive type semiconductor substrate 100 may further include one or more of silicon carbide, gallium arsenide, indium arsenide, indium phosphide, germanium silicon, silicon germanium carbide, gallium arsenide, and phosphorous indium gallium.
  • a photodiode can be formed by forming the second conductive type region 110 in the first conductive type semiconductor substrate 100.
  • the second conductivity type region 110 serves as a photo-generated carrier collection region, and the carrier may be an electron or a hole.
  • the carrier is exemplified by an electron. Since the carriers in this embodiment are electrons, the first conductivity type is P type and the second conductivity type is N type. Therefore, the first conductive type semiconductor substrate 100 may be doped with a P-type dopant such as boron.
  • the carriers may be holes, and the first conductivity type is N-type, and the second conductivity type is P-type.
  • the present embodiment may first form the first conductive type isolation ring 150 surrounding the subsequent photodiode.
  • the step of the first conductive type isolation ring 150 includes: forming a photoresist layer (not shown) having an opening on the surface of the first conductive type semiconductor substrate 100, and using a positive or negative glue, The position of the opening corresponds to the position of the first conductive type spacer ring 150 to be formed.
  • the first conductive type isolation ring 150 is formed by using the photoresist layer as a mask to form a first conductive type isolation ring 150 surrounding the photodiode, and the formed first conductive type isolation ring 150 is annealed to activate The first conductivity type ion implanted.
  • a photoresist (not shown) may be coated on the surface of the first conductive type semiconductor substrate 100, and exposed by a photolithography process using a second mask (not shown). And developing, forming a patterned photoresist, using the patterned photoresist as a mask, performing a first doping process on the first conductive type semiconductor substrate 100 The impurity ions are doped thereinto to form the second conductivity type region 110, thereby forming the photodiode.
  • the second mask can be used again, and the above photolithography process and doping process are performed to form the first conductive type isolation layer 120.
  • the first doping process may be an ion implantation process, and the doped impurity ions may include one or more of phosphorus ions, arsenic ions, and antimony ions, and ions of the first conductivity type isolation layer 120.
  • the doping concentration may be one to two orders of magnitude greater than the doping concentration of the first conductive type semiconductor substrate 100.
  • the photoresist may be directly doped without using a photoresist, and the photodiode and the first conductive type isolation layer 120 may be formed by using a mask as a mask. In this embodiment, the photodiode and the first conductive type isolation layer 120 may also be formed by other methods.
  • a photoresist (not shown) may be coated on the surface of the first conductive type semiconductor substrate 100, and after the exposure and development by the photolithography process, the first conductive type is used.
  • the inner side wall of the groove is etched, or the gas may be burned with oxygen and burned.
  • the structure of the inner side wall of the part is a kind of descum in the field of the process.
  • Step B referring to FIG. 2, forming a second conductive type shallow doped region 170 and a first conductive type shallow doped region 160 located at a lower portion of the second conductive type shallow doped region 170; a second conductive type shallow doped region 170
  • the second conductive type region 110 of the photodiode is isolated by the first conductive type shallow doped region 160.
  • a photoresist (not shown) may be applied on the surface of the first conductive type semiconductor substrate 100, using the first mask a template (not shown), exposed and developed by a photolithography process, and subjected to a doping process to form the first conductive type shallow doped region 160, which is again formed over the first conductive type shallow doped region 160 by the above steps.
  • the second conductivity type shallow doped region 170 is shaped.
  • the photoresist may be directly used as a mask without using a photoresist, and the corresponding doping is performed to form the second conductive type shallow doped region 170 and the first conductive Type shallow doped region 160.
  • the second conductive type shallow doped region may also be formed by other methods.
  • a photoresist (not shown) may be coated on the surface of the first conductive type semiconductor substrate 100, and after the exposure and development by the photolithography process using the first mask, Forming a recess (not shown) on the surface of the first conductive type semiconductor substrate 100, forming a shallow doped region 160 of the first conductive type in the first conductive type semiconductor substrate 100 corresponding to the bottom of the recess by a doping process, Etching the inner sidewall of the recess to increase the recess, and filling the recess to form a shallow doped region 170 of the second conductivity type.
  • the photodiode and the first conductive type isolation layer 120 have Self-aligned features.
  • Step C referring to FIG. 3, a gate structure 130 of the transfer tube is formed by a deposition process and a patterning process, and the gate structure 130 is located on the upper surface of the first conductive type semiconductor substrate 100.
  • an oxide layer (not shown) may be formed by a thermal oxidation process, and then a polysilicon layer (not shown) is deposited on the oxide layer, and then passed through Forming a patterned photoresist layer (not shown) on the polysilicon layer, using the patterned photoresist layer as a mask, etching the polysilicon layer by dry etching or wet etching And the oxide layer until the gate oxide layer 131 and the gate layer 132 covering the gate oxide layer 131 are formed.
  • a sidewall material layer (not shown) may then be formed by a physical vapor deposition process, a chemical vapor deposition process, or an atomic layer deposition process, and the sidewall spacers may be etched by a dry etching process to form gate spacers 133.
  • Step D referring to FIG. 4, a floating diffusion region 140 having a second conductivity type heavily doped is formed by a doping process, and the floating diffusion region 140 is in contact with the second conductivity type shallow doping region 170.
  • the second conductivity type light doping may be performed once, and then the second conductivity type is heavily doped to form the floating diffusion region 140, and the formed floating The diffusion region 140 is in contact with the first conductive type shallow doped region 160 and the second conductive type shallow doped region 170, and the floating diffusion region 140 is located away from the first conductive type isolation layer with respect to the second conductive type shallow doped region 170 One end of 120.
  • the first conductive type shallow doped region 160 and the second conductive type shallow doped region 170 are formed in the first conductive type semiconductor substrate 100 under the gate structure 130, and the first conductive type is shallow
  • the doped region 160 and the second conductive type shallow doped region 170 are in contact with the floating diffusion region 140.
  • the gate structure 130 is opened to cause photo-generated carriers in the photodiode to flow into the floating diffusion region 140 through the channel
  • the shallow-doped region 170 of the second conductivity type is formed, the floating diffusion region 140 is shortened. The distance from the photodiode, that is, the channel distance is shortened, so that the transmission efficiency of photogenerated carriers is improved.
  • the embodiment of the present invention further provides an image sensor. As shown in FIG. 4, the image sensor can be fabricated by the above manufacturing method. Therefore, reference may be made to the related content of the foregoing manufacturing method embodiment.
  • the image sensor includes a first conductive type semiconductor substrate 100, a photodiode (corresponding to the second conductive type region 110), a first conductive type isolation layer 120, a floating diffusion region 140, and a gate structure 130 of the transfer tube.
  • the gate structure 130 of the transfer tube is located on the first conductive type semiconductor substrate 100, and the first conductive type isolation layer 120 and the floating diffusion region 140 are located in the first conductive type semiconductor substrate 100 on both sides of the gate structure 130.
  • the photodiode is located in the first conductive type semiconductor substrate 100 under the first conductive type isolation layer 120, and the photodiode includes a second conductive type region 110 located in the first conductive type semiconductor substrate 100, that is, through the first conductive
  • a second conductive type region 110 is formed within the type semiconductor substrate 100 to form a photodiode.
  • the second conductivity type region 110 serves as a photo-generated carrier collection region, and the carrier may be an electron or a hole. In this embodiment, the carrier is exemplified by an electron.
  • the first conductivity type semiconductor substrate 100 may be doped with a P-type dopant such as boron.
  • the carriers may be holes, and the first conductivity type is N-type, and the second conductivity type is P-type.
  • the image sensor may be a charge coupled (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor. In addition to the structure shown in FIG.
  • the image sensor provided in this embodiment may further include a reset transistor, a source follower transistor, and the like, that is, the image sensor may be a 3T (Transistors), 4T or 5T type structure, and the image The sensor can be either a front-illuminated (FSI) image sensor or a back-illuminated (BSI) image sensor.
  • the first conductive type semiconductor substrate 100 may be a silicon substrate, a semiconductor substrate including an epitaxial layer, or a silicon-on-insulator (SOI) substrate.
  • the first conductive type semiconductor substrate 100 may further include one or more of silicon carbide, gallium arsenide, indium arsenide, indium phosphide, germanium silicon, silicon germanium carbide, gallium arsenide, and phosphorous indium gallium. random combination.
  • the first conductive type semiconductor substrate 100 is doped with impurities of the first conductivity type Child.
  • the first conductive type isolation layer 120 is formed inside the first conductive type semiconductor substrate 100 and above the photodiode (ie, the second conductive type region 110). The first conductive type isolation layer 120 can prevent current caused by surface defects of the first conductive type semiconductor substrate 100 to a certain extent, so that the photodiode output information is relatively accurate, and the generated image is not distorted.
  • the floating diffusion region 140 has a second conductivity type heavily doped.
  • the floating diffusion region 140 can receive the photocharge from the photodiode as an input node, and then transfer the photocharge into other transistors for reading the amplified signal, thereby forming a corresponding image signal.
  • the gate structure 130 of the transfer tube includes a gate oxide layer 131, a gate layer 132, and a gate spacer 133.
  • a gate oxide layer 131 is formed on the surface of the first conductive type semiconductor substrate 100
  • a gate layer 132 is formed on the surface of the gate oxide layer 131
  • a gate spacer 133 is formed on the side of the gate oxide layer 131 and the gate layer 132.
  • the material of the gate oxide layer 131 may be silicon oxide, a high-k dielectric material, silicon nitride or a low dielectric material. In the present embodiment, the gate oxide layer 131 is made of silicon oxide.
  • the material of the gate layer 132 may be (doped) polysilicon or a metal material.
  • the material of the gate layer 132 of this embodiment is exemplified by polysilicon.
  • the material of the gate spacer 133 may be silicon oxide, silicon nitride or silicon oxynitride. In this embodiment, silicon nitride is exemplified.
  • the image sensor further includes a second conductive type shallow doped region 170 and a first conductive type shallow doped region 160.
  • the second conductive type shallow doped region 170 is formed inside the first conductive type semiconductor substrate 100, and the first conductive type shallow doped region 160 is formed under the second conductive type shallow doped region 170. And the second conductive type shallow doped region 170 and the first conductive type shallow doped region 160 are at least partially under the gate structure 130 of the transfer tube and contact the floating diffusion region 140. In order to prevent the second conductive type shallow doped region 170 and the second conductive type region 110 from being directly turned on, the first conductive type shallow doped region 160 is formed under the second conductive type shallow doped region 170, thereby enabling the first Two conductivity type shallow doped regions 170 and second leads The electrical type regions 110 are spaced apart.
  • the second conductive type shallow doped region 170 and the first conductive type shallow doped region 160 have self-aligned characteristics. That is, the second conductive type shallow doped region 170 and the first conductive type shallow doped region 160 may be formed by the same mask, thereby giving them self-aligned characteristics.
  • the image sensor further includes a first conductive type isolation ring 150 formed in the first conductive type semiconductor substrate 100 and surrounding the periphery of the photodiode. The first conductive type isolation ring 150 is adapted to prevent mutual crosstalk of carriers of adjacent photodiodes.
  • the material of the first conductive type isolation ring 150 may be one or more of silicon dioxide, silicon nitride, silicon oxynitride, polyimide, and spin-on glass.
  • the first conductive type isolation ring 150 can separate the photodiode from the peripheral region such that noise generated in the peripheral region is isolated outside the photodiode, thereby improving image quality.
  • the image sensor itself may overflow electrons. If the overflowed electrons are captured by the photodiode, the signal crosstalk may be caused, which may affect the image quality. Therefore, the embodiment can isolate the first conductivity type.
  • the ring 150 is electrically connected to the high potential, thereby effectively capturing the overflowed electrons and pumping them to a high potential to further improve the image quality.
  • a structure such as a pinned layer may be formed under each photodiode, and the first conductive type isolation ring 150 may be replaced with a shallow trench isolation structure (STI) or Silicon selective oxidation (LOCOS) isolation structure.
  • STI shallow trench isolation structure
  • LOC Silicon selective oxidation
  • the second conductive type region 110 of the photodiode and the first conductive type isolation layer 120 have self-aligned characteristics, and the same mask can be used to form the second conductive type region 110 and the first conductive
  • the isolation layer 120 is typed such that the second conductive type region 110 and the first conductive type isolation layer 120 have self-aligned characteristics.
  • Above the electric diode thereby preventing etching of the first conductive type semiconductor substrate above the photodiode during formation of the gate structure, thereby reducing defects of the surface of the first conductive type semiconductor substrate above the photodiode To prevent dark currents due to surface defects, the performance of the entire image sensor is improved.
  • a second conductive type shallow doped region 170 is formed under the gate structure 130, and the second conductive type shallow doped region 170 is in contact with the floating diffusion region 140, which is equivalent to the second conductive type shallow doped region. 170 is an epitaxial portion of the floating diffusion region 140. Therefore, when the photo-generated carriers are transported in the channel, the second conductive type doped region and the adjacent floating diffusion region are easily formed due to the potential in the transfer channel.
  • the transmission rate of the photo-generated carriers is higher, and the distance between the floating diffusion region 140 and the photo-electric diode becomes smaller by the bridge action of the doping region 170 of the second conductivity type, so that the gate structure 130 of the transmission tube When the operation is turned on, the photo-generated carriers are more rapidly transferred into the floating diffusion region 140, which improves the transmission efficiency of the photo-generated carriers and reduces the signal delay.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种图像传感器及其制作方法,所述图像传感器包括光电二极管;第一导电类型隔离层;第二导电类型浅掺杂区域,形成于所述第一导电类型半导体衬底的内部;第一导电类型浅掺杂区域,形成于所述第二导电类型浅掺杂区域下部;所述第二导电类型浅掺杂区域通过所述第一导电类型浅掺杂区域隔离于所述光电二极管的第二导电类型区域;传输管的栅极结构;浮置扩散区,其具有第二导电类型重掺杂。所述图像传感器通过形成与浮置扩散区接触的第二导电类型浅掺杂区域,减小浮置扩散区与光电二极管的距离,从而使光生载流子能够更加迅速地从光电二极管传输到浮置扩散区,提高了光生载流子的传输效率。

Description

图像传感器及其制作方法 本申请要求 2013 年 8 月 30 日提交中国专利局、 申请号为 201310391161.3 , 发明名称为 "图像传感器及其制作方法 "的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及半导体技术领域,尤其是涉及一种图像传感器及其制 作方法。 背景技术 图像传感器是将光学信号转化为电信号的半导体器件。图像传感 器包括用于感光的光电二极管(photo diode, PD )和用于将所感测的 光转化为电信号的逻辑电路。 所述逻辑电路中通常包括有转移晶体 管, 所述光电二极管通过所述转移晶体管连接浮置扩散区 (Floating Diffusion, FD )。 当图像传感器工作时, 通过使打开传输管打开, 而 使得所述光电二极管中的光生载流子通过传输管的沟道传输至所述 浮置扩散区。 现有图像传感器中,光生载流子从光电二极管传输至浮置扩散区 的传输效率低。更多关于图像传感器光生载流子传输效率的资料请参
为此, 亟需一种新的图像传感器及其制作方法, 以提高光生载流 子的传输效率。 发明内容 本发明解决的问题是提供一种图像传感器及其制作方法,以提高 光生载流子的传输效率。 为解决上述问题,本发明提供一种图像传感器的制作方法,包括: A: 在第一导电类型半导体衬底内形成第二导电类型区域, 从而 形成光电二极管, 其中, 所述第二导电类型区域作为光生载流子收集 区,并在所述第一导电类型半导体衬底内形成位于所述光电二极管上 方的第一导电类型隔离层; B: 形成第二导电类型浅掺杂区域和位于第二导电类型浅掺杂区 域下部的第一导电类型浅掺杂区域;所述第二导电类型浅掺杂区域通 过所述第一导电类型浅掺杂区域隔离于所述光电二极管的第二导电 类型区域;
C: 通过沉积工艺、 图形化工艺形成传输管的栅极结构, 所述栅 极结构位于第一导电类型半导体衬底上表面;所述栅极结构覆盖所述 第二导电类型浅掺杂区的全部区域或部分区域;
D: 通过掺杂工艺形成具有第二导电类型重掺杂的浮置扩散区, 所述浮置扩散区接触于第二导电类型浅掺杂区域。 可选的, 所述步骤 A中, 所述光电二极管的所述第二导电类型 区域与所述第一导电类型隔离层具有自对准的特性。 可选的,所述步骤 B中,所述第二导电类型浅掺杂区域与所述第 一导电类型浅掺杂区域具有自对准的特性。 可选的,所述步骤 B中,在所述第一导电类型半导体衬底的表面 涂布光刻胶, 使用第一掩模板, 经过光刻工艺的曝光和显影, 经过掺 杂工艺使所述第二导电类型浅掺杂区域与所述第一导电类型浅掺杂 区 i或成形。 可选的,所述步骤 B中,在所述第一导电类型半导体衬底的表面 涂布光刻胶, 使用第一掩模板, 经过光刻工艺的曝光和显影后, 于所 述光刻胶形成刻蚀至半导体衬底表面的凹槽,通过掺杂工艺于对应于 所述凹槽的半导体衬底内的区域形成第二导电类型浅掺杂区域;对所 述凹槽的内侧壁进行刻蚀, 使凹槽内侧壁之间形成的开口增大; 随后 于对应于所述凹槽的第一导电类型半导体衬底内的区域掺杂形成所 述第一导电类型浅掺杂区域。 可选的,所述栅极结构覆盖于所述第一导电类型隔离层与所述第 二导电类型浅掺杂区域。 可选的, 所述步骤 C中, 形成所述栅极结构包括: 通过热氧化工 艺、 图形化工艺依次形成栅氧化层、 覆盖于所述栅氧化层的栅极层、 以及位于所述栅极层两侧的栅极侧墙。 可选的, 第一导电类型为 P型时, 第二导电类型为 N型; 第一 导电类型为 N型时, 第二导电类型为 P型。 可选的, 所述载流子为电子或空穴。 为解决上述问题, 本发明还提供了一种图像传感器, 包括: 光电二极管,通过在第一导电类型半导体衬底内形成第二导电类 型区域, 从而形成光电二极管, 其中, 所述第二导电类型区域作为光 生载流子收集区; 第一导电类型隔离层,形成于所述第一导电类型半导体衬底的内 部, 位于所述光电二极管区域的上方; 第二导电类型浅掺杂区域,形成于所述第一导电类型半导体衬底 的内部; 第一导电类型浅掺杂区域,形成于所述第二导电类型浅掺杂区域 下部;所述第二导电类型浅掺杂区域通过所述第一导电类型浅掺杂区 域隔离于所述光电二极管的第二导电类型区域; 传输管的栅极结构,对应于所述第一导电类型隔离层形成于所述 第一导电类型半导体衬底的上表面;所述栅极结构覆盖所述第二导电 类型浅掺杂区的全部区域或部分区域; 浮置扩散区, 具有第二导电类型重掺杂,接触并形成于所述第二 导电类型浅掺杂区域的侧部,所述第二导电类型重掺杂区域位于相对 于第二导电类型浅掺杂区域远离第一导电类型隔离层的一端。 可选的,所述光电二极管的第二导电类型区域与第一导电类型隔 离层具有自对准的特性。 可选的, 在所述第一导电类型半导体衬底的表面涂布光刻胶, 使 用第一掩模板, 经过光刻工艺的曝光和显影, 经过掺杂工艺使所述第 二导电类型浅掺杂区域与所述第一导电类型浅掺杂区域成形。 可选的, 在所述第一导电类型半导体衬底的表面涂布光刻胶, 使 用第一掩模板, 经过光刻工艺的曝光和显影后, 于所述光刻胶形成刻 蚀至半导体衬底表面的凹槽,通过掺杂工艺于对应于所述凹槽的半导 体衬底内的区域形成第二导电类型浅掺杂区域;进而对所述凹槽的内 侧壁进行刻蚀, 使凹槽内侧壁之间形成的开口增大; 随后于对应于所 述凹槽的第一导电类型半导体衬底内的区域掺杂形成所述第一导电 类型浅掺杂区域。 可选的,所述栅极结构覆盖于所述第一导电类型隔离层与第二导 电类型浅掺杂区域。 可选的, 形成栅极结构包括, 通过热氧化工艺、 图形化工艺依次 形成栅氧化层、覆盖于所述栅氧化层的栅极层、 以及位于所述栅极层 两侧的栅极侧墙。 可选的, 第一导电类型为 P型时, 第二导电类型为 N型; 第一 导电类型为 N型时, 第二导电类型为 P型。 可选的, 所述载流子为电子或空穴。 与现有技术相比, 本发明的技术方案具有以下优点: 本发明的技术方案中,通过形成与浮置扩散区接触的第二导电类 型浅掺杂区域, 使得光生载流子在沟道传输时, 由于电势的原因易于 被第二导电类型掺杂区域及与其相邻的浮置扩散区吸引,光生载流子 的传输率更高,并且通过第二导电类型掺杂区域的桥梁作用减小浮置 扩散区与光电二极管的距离,从而使光生载流子能够更加迅速地从光 电二极管传输到浮置扩散区, 提高了光生载流子的传输效率。 进一步,设置第一导电类型隔离环, 使光电二极管相互之间分隔 开, 防止发生信号串扰。 附图说明 图 1至图 4为本发明图像传感器的制作方法实施例示意图。 具体实施方式 现有图像传感器中, 由于浮置扩散区为重掺杂区域, 因此光生载 流子的传输效率有限, 并且传输时光生载流子传输效率低。 为此, 本发明提供一种图像传感器, 所述图像传感器通过在栅极 下方的第一导电类型半导体衬底内设置第二导电类型浅掺杂区域,并 且所述第二导电类型浅掺杂区域与浮置扩散区接触,所述第二导电类 型浅掺杂区域相当于浮置扩散区的外延部分,使得光生载流子在沟道 传输时,由于传输沟道中电势的原因易于被第二导电类型掺杂区域及 与其相邻的浮置扩散区吸引, 光生载流子的传输率更高, 并且通过第 二导电类型掺杂区域的桥梁作用从而减小了浮置扩散区与光电二极 管之间的距离,因此光生载流子能够更加迅速地传输进入到浮置扩散 区中, 提高了图像传感器的光生载流子传输效率, 降低了信号延迟。 为使本发明的上述目的、特征和优点能够更为明显易懂, 下面结 合附图对本发明的具体实施例做详细的说明。 本发明实施例首先提供一种图像传感器的制作方法, 请参考图 1 至图 4, 所述方法包括步骤 A、 步骤 B、 步骤 C和步骤 D, 下面结合 各附图加以说明。 步骤 A, 请参考图 1, 在第一导电类型半导体衬底 100内形成第 二导电类型区域 110, 从而形成光电二极管, 其中, 第二导电类型区 域 110作为光生载流子收集区,并在第一导电类型半导体衬底 100内 形成位于的光电二极管上方的第一导电类型隔离层 120。 本实施例中, 第一导电类型半导体衬底 100可以是硅衬底, 也可 以是包括外延层( epi-layer )的半导体衬底,或者是绝缘体上硅( SOI ) 衬底。 第一导电类型半导体衬底 100还可以包括碳化硅、 砷化镓、 砷 化铟、 磷化铟、 锗硅、 硅锗碳化物、 磷砷化镓和磷铟镓中的一种或者 多种的任意组合。 本实施例中,可通过在第一导电类型半导体衬底 100内形成第二 导电类型区域 110形成光电二极管。第二导电类型区域 110作为光生 载流子收集区域, 所述载流子可以为电子或空穴, 本实施例载流子以 电子为例。 由于本实施例中载流子为电子, 因此, 第一导电类型为 P型, 第 二导电类型为 N型。 因此, 第一导电类型半导体衬底 100可以掺杂 有 P型掺杂物, 例如硼。 但是在本发明的其它实施例中, 载流子可以 为空穴, 此时第一导电类型为 N型, 对应的, 第二导电类型为 P型。 形成第二导电类型区域 110之前,本实施例可以先形成围绕后续 光电二极管的第一导电类型隔离环 150。 第一导电类型隔离环 150的 步骤包括:在第一导电类型半导体衬底 100表面铺设形成具有开口的 光刻胶层 (photoresist ) (未示出), 可釆用正胶或负胶, 所述开口的 位置与要形成的第一导电类型隔离环 150的位置相对应。以所述光刻 胶层为掩模, 注入第一导电类型离子, 形成围绕所述光电二极管的第 一导电类型隔离环 150, 并对所形成的第一导电类型隔离环 150进行 退火处理以激活所注入的第一导电类型离子。 形成第二导电类型区域 110时,可以在第一导电类型半导体衬底 100的表面涂布光刻胶(未示出), 并使用第二掩模板(未示出), 经 过光刻工艺的曝光和显影, 形成图案化的光刻胶, 以所述图案化的光 刻胶为掩模, 进行第一次掺杂工艺, 在第一导电类型半导体衬底 100 内掺入杂质离子, 形成第二导电类型区域 110, 从而形成所述光电二 极管。 形成第一导电类型隔离层 120 时, 可以再次使用所述第二掩模 板,并进行上述光刻工艺和掺杂工艺,形成第一导电类型隔离层 120。 其中, 所述第一次掺杂工艺可以是离子注入工艺, 所掺杂的杂质离子 可以包括磷离子、砷离子和锑离子中的一种或者多种, 且第一导电类 型隔离层 120的离子掺杂浓度可以大于第一导电类型半导体衬底 100 掺杂浓度的一至两个数量级。 需要说明的是, 在本发明的其它实施例中, 可以不使用光刻胶, 而直接用掩模板为掩模, 进行相应的掺杂, 形成所述光电二极管和第 一导电类型隔离层 120。 本实施例中,也可以釆用其它方式形成所述光电二极管和第一导 电类型隔离层 120。 具体的, 可以在第一导电类型半导体衬底 100的 表面涂布光刻胶(未示出), 并使用所述第二掩模板, 经过光刻工艺 的曝光和显影后, 于第一导电类型半导体衬底 100表面形成凹槽(未 示出), 通过掺杂工艺于所述凹槽底部对应的第一导电类型半导体衬 底 100内形成所述光电二极管; 对所述凹槽的内侧壁进行刻蚀, 使所 述凹槽增大, 并于所述凹槽内填充形成第一导电类型隔离层 120, 此 方法中对凹槽内侧壁进行刻蚀, 或者, 可釆用氧气烧一下, 烧掉部分 的内侧壁的结构, 在工艺领域中为预处理(descum ) 的一种。 本实施例中, 由于形成第二导电类型区域 110和形成第一导电类 型隔离层 120均使用所述第二掩模板, 因此, 所述光电二极管和第一 导电类型隔离层 120具有自对准的特性。 步骤 B, 请参考图 2, 形成第二导电类型浅掺杂区域 170和位于 第二导电类型浅掺杂区域 170下部的第一导电类型浅掺杂区域 160; 第二导电类型浅掺杂区域 170通过第一导电类型浅掺杂区域 160隔离 于所述光电二极管的第二导电类型区域 110。 形成第二导电类型浅掺杂区域 170和第一导电类型浅掺杂区域 160时,可通过在第一导电类型半导体衬底 100的表面涂布光刻胶(未 示出), 使用第一掩模板(未示出), 经过光刻工艺的曝光和显影, 并 经过掺杂工艺形成所述第一导电类型浅掺杂区域 160, 再次利用上述 步骤在第一导电类型浅掺杂区域 160上方形成第二导电类型浅掺杂 区域 170成形。 需要说明的是, 在本发明的其它实施例中, 可以不使用光刻胶, 而直接用掩模板为掩模, 进行相应的掺杂, 形成第二导电类型浅掺杂 区域 170和第一导电类型浅掺杂区域 160。 本实施例中,也可以釆用其它方式形成第二导电类型浅掺杂区域
170和第一导电类型浅掺杂区域 160。 具体的, 可以在所述第一导电 类型半导体衬底 100的表面涂布光刻胶(未示出), 并使用所述第一 掩模板, 经过光刻工艺的曝光和显影后, 于所述第一导电类型半导体 衬底 100表面形成凹槽 (未示出), 通过掺杂工艺于所述凹槽底部对 应的第一导电类型半导体衬底 100 内形成第一导电类型浅掺杂区域 160, 对所述凹槽的内侧壁进行刻蚀, 使所述凹槽增大, 于所述凹槽 内填充形成第二导电类型浅掺杂区域 170。 本实施例中,由于形成第二导电类型浅掺杂区域 170和第一导电 类型浅掺杂区域 160均使用所述第一掩模板, 因此, 所述光电二极管 和第一导电类型隔离层 120具有自对准的特性。 步骤 C, 请参考图 3, 通过沉积工艺、 图形化工艺形成传输管的 栅极结构 130, 栅极结构 130位于第一导电类型半导体衬底 100上表 面。 形成传输管的栅极结构 130时,可先通过热氧化工艺形成一层氧 化层(未示出), 然后在所述氧化层上沉积一层多晶硅层(未示出), 再通过在所述多晶硅层上形成图案化的光刻胶层 (未示出), 以图案 化的光刻胶层为掩模,釆用干法刻蚀或者湿法刻蚀蚀刻所述多晶硅层 和所述氧化层,直至形成栅氧化层 131和覆盖栅氧化层 131的所述栅 极层 132。 然后可以通过物理气相沉积工艺、 化学气相沉积工艺或者 原子层沉积工艺形成侧墙材料层(未示出), 再通过干法刻蚀工艺蚀 刻所述侧墙材料层形成栅极侧墙 133。 步骤 D, 请参考图 4, 通过掺杂工艺形成具有第二导电类型重掺 杂的浮置扩散区 140, 浮置扩散区 140接触于第二导电类型浅掺杂区 域 170。 本实施例中, 在形成浮置扩散区 140之前, 可以先进行一次第二 导电类型轻掺杂, 然后再进行第二导电类型重掺杂, 以形成浮置扩散 区 140, 所形成的浮置扩散区 140与第一导电类型浅掺杂区域 160和 第二导电类型浅掺杂区域 170接触,并且浮置扩散区 140位于相对于 第二导电类型浅掺杂区域 170远离第一导电类型隔离层 120的一端。 本实施例中,由于在栅极结构 130下方的第一导电类型半导体衬 底 100内形成了第一导电类型浅掺杂区域 160和第二导电类型浅掺杂 区域 170, 并且第一导电类型浅掺杂区域 160和第二导电类型浅掺杂 区域 170与浮置扩散区 140接触。当栅极结构 130打开使所述光电二 极管中的光生载流子通过沟道流入浮置扩散区 140时,由于形成有第 二导电类型浅掺杂区域 170, 相当于缩短了浮置扩散区 140和所述光 电二极管的距离, 即缩短了沟道距离, 因此光生载流子的传输效率提 高。 此外,由于在第二导电类型浅掺杂区域 170下方形成了第一导电 类型浅掺杂区域 160, 因此第一导电类型浅掺杂区域 160可以防止在 栅极结构 130关闭时(即沟道关闭时),第二导电类型浅掺杂区域 170 与所述光电二极管直接导通。 本发明实施例还提供了一种图像传感器, 如图 4所示, 所述图像 传感器可以由上述制作方法制作, 因此, 可参考上述制作方法实施例 相关内容。 所述图像传感器包括第一导电类型半导体衬底 100、 光电二极管 (相当于第二导电类型区域 110 )、 第一导电类型隔离层 120、 浮置扩 散区 140和传输管的栅极结构 130。 传输管的栅极结构 130位于第一导电类型半导体衬底 100上,第 一导电类型隔离层 120和浮置扩散区 140位于栅极结构 130两侧的第 一导电类型半导体衬底 100内。 光电二极管位于第一导电类型隔离层 120 下方的第一导电类型 半导体衬底 100 内, 光电二极管包括位于第一导电类型半导体衬底 100内的第二导电类型区域 110, 即可通过在第一导电类型半导体衬 底 100内形成第二导电类型区域 110形成光电二极管。第二导电类型 区域 110作为光生载流子收集区域, 所述载流子可以为电子或空穴, 本实施例载流子以电子为例。 由于本实施例中载流子为电子, 因此, 第一导电类型为 P型, 第 二导电类型为 N型。 因此, 第一导电类型半导体衬底 100可以掺杂 有 P型掺杂物, 例如硼。 但是在本发明的其它实施例中, 载流子可以 为空穴, 此时第一导电类型为 N型, 对应的, 第二导电类型为 P型。 本实施例中, 所述图像传感器可以为电荷耦合 (CCD)图像传感器 或者互补式金属氧化物半导体 (CMOS)图像传感器。 除了图 1所示结 构, 本实施例所提供的图像传感器还可以包括复位晶体管、 源极跟随 晶体管等结构, 即所述图像传感器可以是 3T ( Transistors ), 4T或者 5T型结构, 并且所述图像传感器可以是正照式(FSI ) 图像传感器, 也可以是背照式(BSI ) 图像传感器。 本实施例中, 第一导电类型半导体衬底 100可以是硅衬底, 也可 以包括外延层的半导体衬底, 或者是绝缘体上硅(SOI )衬底。 第一 导电类型半导体衬底 100还可以包括碳化硅、 砷化镓、 砷化铟、 磷化 铟、 锗硅、 硅锗碳化物、 磷砷化镓和磷铟镓中的一种或者多种的任意 组合。第一导电类型半导体衬底 100中掺杂有第一导电类型的杂质离 子。 本实施例中,第一导电类型隔离层 120形成于第一导电类型半导 体衬底 100 的内部, 且位于所述光电二极管 (即第二导电类型区域 110 ) 的上方。 第一导电类型隔离层 120可以在一定程度上防止由第 一导电类型半导体衬底 100表面缺陷引起的电流,从而使所述光电二 极管输出信息较为准确, 产生的图像不失真。 本实施例中, 浮置扩散区 140具有第二导电类型重掺杂。 浮置扩 散区 140可以作为输入节点接收来自光电二极管的光电荷,后续再将 光电荷转入其它晶体管中进行信号的放大的读取,从而形成相应的图 像信号。 本实施例中, 传输管的栅极结构 130包含栅氧化层 131、 栅极层 132和栅极侧墙 133。 栅氧化层 131形成在第一导电类型半导体衬底 100表面, 栅极层 132形成在栅氧化层 131表面, 而栅极侧墙 133形 成在栅氧化层 131和栅极层 132的侧面。栅氧化层 131的材料可以是 氧化硅、 高 K介质材料、 氮化硅或者低介电材料, 本实施例栅氧化 层 131釆用氧化硅。 栅极层 132的材料可以是(掺杂)多晶硅或者金 属材料, 本实施例栅极层 132的材料以多晶硅为例。栅极侧墙 133的 材料可以是氧化硅、氮化硅或者是氮氧化硅,本实施例以氮化硅为例。 本实施例中, 所述图像传感器还包括第二导电类型浅掺杂区域 170和第一导电类型浅掺杂区域 160。 其中第二导电类型浅掺杂区域 170形成于所述第一导电类型半导体衬底 100的内部, 第一导电类型 浅掺杂区域 160形成于所述第二导电类型浅掺杂区域 170下方。并且 第二导电类型浅掺杂区域 170与所述第一导电类型浅掺杂区域 160至 少部分位于传输管的栅极结构 130下方,并且接触于浮置扩散区 140。 为防止第二导电类型浅掺杂区域 170与第二导电类型区域 110直 接导通,本实施例在第二导电类型浅掺杂区域 170下方形成第一导电 类型浅掺杂区域 160, 从而使第二导电类型浅掺杂区域 170与第二导 电类型区域 110隔开。 本实施例中,第二导电类型浅掺杂区域 170与第一导电类型浅掺 杂区域 160具有自对准的特性。即第二导电类型浅掺杂区域 170和第 一导电类型浅掺杂区域 160可以通过同一掩模板形成,从而使它们具 有自对准的特性。 本实施例中, 所述图像传感器还包括第一导电类型隔离环 150, 第一导电类型隔离环 150形成于所述第一导电类型半导体衬底 100 内, 并且环绕于所述光电二极管的外围。 第一导电类型隔离环 150适 于防止相邻的光电二极管的载流子的相互串扰。第一导电类型隔离环 150的材料可以为二氧化硅、 氮化硅、 氮氧化硅、 聚酰亚胺和旋转涂 覆玻璃中的一种或者多种。 第一导电类型隔离环 150可以把光电二极管与外围区域隔开,使 得外围区域所产生的噪声被隔离在光电二极管之外,从而提高成像质 量。 在入射光比较强的情况下, 所述图像传感器本身会有电子溢出, 如果所溢出的电子被光电二极管所俘获, 会造成信号串扰, 影响图像 质量, 因此本实施例可以使第一导电类型隔离环 150 与高电位电连 接, 从而有效俘获溢出的电子, 并抽送到高电位, 进一步提高图像质 量。 在本发明的其它实施实施例中,可以在每个光电二极管下面形成 钉扎层(pinned layer )等结构, 而所述第一导电类型隔离环 150可以 替换为浅沟槽隔离结构 (STI )或者硅的选择氧化(LOCOS ) 隔离结 构。 本实施例中,所述光电二极管的第二导电类型区域 110与第一导 电类型隔离层 120具有自对准的特性,可釆用同一掩模板用于形成第 二导电类型区域 110和第一导电类型隔离层 120, 从而使第二导电类 型区域 110和第一导电类型隔离层 120具有自对准的特性。 电二极管上方, 从而防止在栅极结构形成过程中, 对所述光电二极管 上方的第一导电类型半导体衬底进行蚀刻,进而减少位于所述光电二 极管上方的第一导电类型半导体衬底表面的缺陷,从而防止因表面缺 陷产生暗电流, 整个图像传感器的性能得到提高。 本实施例中, 由于浮置扩散区 140为重掺杂区域, 导致其与光电 二极管的电势差较小, 因此光生载流子的传输率有限, 并且光生载流 子容易发生向外部的扩散。因此本实施例在栅极结构 130下方形成了 第二导电类型浅掺杂区域 170, 并且第二导电类型浅掺杂区域 170接 触于浮置扩散区 140, 相当于第二导电类型浅掺杂区域 170为浮置扩 散区 140的一个外延部分, 因此, 使得光生载流子在沟道传输时, 由 于传输沟道中电势的原因易于被第二导电类型掺杂区域及与其相邻 的浮置扩散区吸引, 光生载流子的传输率更高, 并且通过第二导电类 型掺杂区域 170的桥梁作用,浮置扩散区 140与所述光电二管的距离 变小, 使得传输管的栅极结构 130在打开工作时, 光生载流子更加迅 速地传输进入浮置扩散区 140, 提高了光生载流子的传输效率, 降低 信号延迟。 虽然本发明披露如上, 但本发明并非限定于此。任何本领域技术 人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因 此本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1.一种图像传感器的制作方法, 其特征在于, 包括以下步骤:
A: 在第一导电类型半导体衬底内形成第二导电类型区域, 从而 形成光电二极管, 其中, 所述第二导电类型区域作为光生载流子收集 区,并在所述第一导电类型半导体衬底内形成位于所述光电二极管上 方的第一导电类型隔离层;
B: 形成第二导电类型浅掺杂区域和位于第二导电类型浅掺杂区 域下部的第一导电类型浅掺杂区域;所述第二导电类型浅掺杂区域通 过所述第一导电类型浅掺杂区域隔离于所述光电二极管的第二导电 类型区域;
C: 通过沉积工艺、 图形化工艺形成传输管的栅极结构, 所述栅 极结构位于第一导电类型半导体衬底上表面;所述栅极结构覆盖所述 第二导电类型浅掺杂区的全部区域或部分区域;
D: 通过掺杂工艺形成具有第二导电类型重掺杂的浮置扩散区, 所述浮置扩散区接触于第二导电类型浅掺杂区域。
2.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于, 所述步骤 A 中, 所述光电二极管的所述第二导电类型区域与所 述第一导电类型隔离层具有自对准的特性。
3.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于,所述步骤 B中,所述第二导电类型浅掺杂区域与所述第一导电类 型浅掺杂区域具有自对准的特性。
4.根据权利要求 3 中所述的图像传感器的制作方法, 其特征在 于,所述步骤 B中,在所述第一导电类型半导体衬底的表面涂布光刻 胶, 使用第一掩模板, 经过光刻工艺的曝光和显影, 经过掺杂工艺使 所述第二导电类型浅掺杂区域与所述第一导电类型浅掺杂区域成形。
5.根据权利要求 3 中所述的图像传感器的制作方法, 其特征在 于,所述步骤 B中,在所述第一导电类型半导体衬底的表面涂布光刻 胶, 使用第一掩模板, 经过光刻工艺的曝光和显影后, 于所述光刻胶 形成刻蚀至半导体衬底表面的凹槽,通过掺杂工艺于对应于所述凹槽 的半导体衬底内的区域形成第二导电类型浅掺杂区域;对所述凹槽的 内侧壁进行刻蚀, 使凹槽内侧壁之间形成的开口增大; 随后于对应于 所述凹槽的第一导电类型半导体衬底内的区域掺杂形成所述第一导 电类型浅掺杂区域。
6.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于,所述栅极结构覆盖于所述第一导电类型隔离层与所述第二导电类 型浅掺杂区域。
7.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于, 所述步骤 C中, 形成所述栅极结构包括: 通过热氧化工艺、 图形 化工艺依次形成栅氧化层、覆盖于所述栅氧化层的栅极层、 以及位于 所述栅极层两侧的栅极侧墙。
8.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于, 第一导电类型为 P型时, 第二导电类型为 N型; 第一导电类型 为 N型时, 第二导电类型为 P型。
9.根据权利要求 1 中所述的图像传感器的制作方法, 其特征在 于, 所述载流子为电子或空穴。
10.—种图像传感器, 其特征在于, 包括: 光电二极管,通过在第一导电类型半导体衬底内形成第二导电类 型区域, 从而形成光电二极管, 其中, 所述第二导电类型区域作为光 生载流子收集区; 第一导电类型隔离层,形成于所述第一导电类型半导体衬底的内 部, 位于所述光电二极管区域的上方; 第二导电类型浅掺杂区域,形成于所述第一导电类型半导体衬底 的内部; 第一导电类型浅掺杂区域,形成于所述第二导电类型浅掺杂区域 下部;所述第二导电类型浅掺杂区域通过所述第一导电类型浅掺杂区 域隔离于所述光电二极管的第二导电类型区域; 传输管的栅极结构,对应于所述第一导电类型隔离层形成于所述 第一导电类型半导体衬底的上表面;所述栅极结构覆盖所述第二导电 类型浅掺杂区的全部区域或部分区域; 浮置扩散区, 具有第二导电类型重掺杂,接触并形成于所述第二 导电类型浅掺杂区域的侧部,所述第二导电类型重掺杂区域位于相对 于第二导电类型浅掺杂区域远离第一导电类型隔离层的一端。
11.根据权利要求 10中所述的图像传感器, 其特征在于, 所述光 电二极管的第二导电类型区域与第一导电类型隔离层具有自对准的 特性。
12.根据权利要求 10中所述的图像传感器, 其特征在于, 在所述 第一导电类型半导体衬底的表面涂布光刻胶, 使用第一掩模板, 经过 光刻工艺的曝光和显影,经过掺杂工艺使所述第二导电类型浅掺杂区 域与所述第一导电类型浅掺杂区域成形。
13.根据权利要求 10中所述的图像传感器, 其特征在于, 在所述 第一导电类型半导体衬底的表面涂布光刻胶, 使用第一掩模板, 经过 光刻工艺的曝光和显影后,于所述光刻胶形成刻蚀至半导体衬底表面 第二导电类型浅掺杂区域; 进而对所述凹槽的内侧壁进行刻蚀, 使凹 槽内侧壁之间形成的开口增大;随后于对应于所述凹槽的第一导电类 型半导体衬底内的区域掺杂形成所述第一导电类型浅掺杂区域。
14.根据权利要求 10中所述的图像传感器, 其特征在于, 所述栅 极结构覆盖于所述第一导电类型隔离层与第二导电类型浅掺杂区域。
15.根据权利要求 10中所述的图像传感器, 其特征在于, 形成栅 极结构包括, 通过热氧化工艺、 图形化工艺依次形成栅氧化层、 覆盖 于所述栅氧化层的栅极层、 以及位于所述栅极层两侧的栅极侧墙。
16.根据权利要求 10中所述的图像传感器, 其特征在于, 第一导 电类型为 P型时, 第二导电类型为 N型; 第一导电类型为 N型时, 第二导电类型为 P型。
17.根据权利要求 10中所述的图像传感器, 其特征在于, 所述载 流子为电子或空穴。
PCT/CN2014/080560 2013-08-30 2014-06-24 图像传感器及其制作方法 WO2015027741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/419,888 US9437632B2 (en) 2013-08-30 2014-06-24 Image sensor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310391161.3 2013-08-30
CN201310391161.3A CN103413818B (zh) 2013-08-30 2013-08-30 图像传感器及其制作方法

Publications (1)

Publication Number Publication Date
WO2015027741A1 true WO2015027741A1 (zh) 2015-03-05

Family

ID=49606816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080560 WO2015027741A1 (zh) 2013-08-30 2014-06-24 图像传感器及其制作方法

Country Status (3)

Country Link
US (1) US9437632B2 (zh)
CN (1) CN103413818B (zh)
WO (1) WO2015027741A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441133B (zh) 2013-08-30 2016-01-27 格科微电子(上海)有限公司 背照式图像传感器及降低背照式图像传感器暗电流的方法
CN103413818B (zh) * 2013-08-30 2015-11-11 格科微电子(上海)有限公司 图像传感器及其制作方法
CN103730477B (zh) * 2013-12-31 2019-07-19 上海集成电路研发中心有限公司 基于暗角补偿的图像传感器像素阵列及其形成方法
CN105845614B (zh) * 2015-01-15 2019-06-18 中芯国际集成电路制造(上海)有限公司 半导体器件及其制作方法
KR20170092911A (ko) * 2016-02-04 2017-08-14 주식회사 동부하이텍 후면 조사형 이미지 센서 및 그 제조 방법
JP7171170B2 (ja) * 2017-06-29 2022-11-15 キヤノン株式会社 撮像装置、撮像システム、移動体、撮像装置の製造方法
CN107994044A (zh) * 2017-12-15 2018-05-04 上海华力微电子有限公司 Cmos图像传感器及其制作方法
CN109246370B (zh) * 2018-11-19 2021-04-27 德淮半导体有限公司 图像传感器、其制作方法和操作方法以及成像装置
CN110085609A (zh) * 2019-04-08 2019-08-02 天津大学 带有微光模式的图像传感器像素结构及其制作方法
CN112490259A (zh) * 2020-12-28 2021-03-12 上海集成电路装备材料产业创新中心有限公司 一种像素单元结构及制作方法
CN112582439B (zh) * 2020-12-29 2022-07-05 上海集成电路装备材料产业创新中心有限公司 背照式图像传感器及制备方法
CN112635506A (zh) * 2021-01-08 2021-04-09 尤小月 一种图像传感器的形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511883B1 (en) * 1999-07-07 2003-01-28 United Microelectronics Corp. Method of fabricating MOS sensor
US7008815B1 (en) * 2004-10-05 2006-03-07 United Microelectronics Corp. Method of manufacturing a self-aligned guard ring of a photo diode
CN1819225A (zh) * 2004-12-29 2006-08-16 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
CN101211940A (zh) * 2006-12-29 2008-07-02 东部高科股份有限公司 Cmos图像传感器及其制造方法
CN103413818A (zh) * 2013-08-30 2013-11-27 格科微电子(上海)有限公司 图像传感器及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720503B1 (ko) * 2005-06-07 2007-05-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
KR100699849B1 (ko) * 2005-06-21 2007-03-27 삼성전자주식회사 국부적인 불순물 영역을 갖는 cmos 이미지 소자 및 그제조방법
KR100937667B1 (ko) * 2007-12-27 2010-01-19 주식회사 동부하이텍 트랜지스터 제조 방법
KR101057651B1 (ko) * 2008-11-24 2011-08-18 주식회사 동부하이텍 반도체 소자의 제조방법
KR20100063269A (ko) 2008-12-03 2010-06-11 주식회사 동부하이텍 이미지센서 및 그 제조방법
JP5651986B2 (ja) * 2010-04-02 2015-01-14 ソニー株式会社 固体撮像装置とその製造方法、並びに電子機器及びカメラモジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511883B1 (en) * 1999-07-07 2003-01-28 United Microelectronics Corp. Method of fabricating MOS sensor
US7008815B1 (en) * 2004-10-05 2006-03-07 United Microelectronics Corp. Method of manufacturing a self-aligned guard ring of a photo diode
CN1819225A (zh) * 2004-12-29 2006-08-16 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
CN101211940A (zh) * 2006-12-29 2008-07-02 东部高科股份有限公司 Cmos图像传感器及其制造方法
CN103413818A (zh) * 2013-08-30 2013-11-27 格科微电子(上海)有限公司 图像传感器及其制作方法

Also Published As

Publication number Publication date
US20160027826A1 (en) 2016-01-28
CN103413818A (zh) 2013-11-27
US9437632B2 (en) 2016-09-06
CN103413818B (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2015027741A1 (zh) 图像传感器及其制作方法
JP5569153B2 (ja) 固体撮像装置およびその製造方法
US10170517B2 (en) Method for forming image sensor device
US9123606B2 (en) Pixel structures of CMOS imaging sensors
US9613998B2 (en) Backside illumination image sensor and method for reducing dark current of backside illumination image sensor
US7560330B2 (en) CMOS image sensor and method for manufacturing the same
US20060226456A1 (en) Pixel sensor cell having reduced pinning layer barrier potential and method thereof
US8076702B2 (en) CMOS image sensor and fabricating method thereof
US7713808B2 (en) CMOS image sensor and method for fabricating the same
JP2007027730A (ja) イメージセンサ及びその製造方法
KR20110025087A (ko) 고체 촬상 장치 및 그 제조 방법
TWI695496B (zh) 半導體裝置及其製造方法及cmos影像感測器
US7611940B2 (en) CMOS image sensor and manufacturing method thereof
US7572663B2 (en) Method for manufacturing CMOS image sensor
US7537971B2 (en) Method for fabricating CMOS image sensor
US20090166687A1 (en) Image Sensor and Method for Manufacturing the Same
US7145190B2 (en) Pinned photodiode integrated with trench isolation and fabrication method
KR100708866B1 (ko) 이미지 센서의 제조 방법
KR100790210B1 (ko) 이미지센서 및 그 제조방법
US8883524B2 (en) Methods and apparatus for CMOS sensors
US20080157256A1 (en) Cmos image sensor and method of manufacturing thereof
KR100790208B1 (ko) 이미지센서 제조 방법
KR100790287B1 (ko) 이미지센서 제조 방법
CN115708213A (zh) Cmos图像传感器及其形成方法
US20080149973A1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14419888

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839054

Country of ref document: EP

Kind code of ref document: A1