WO2015027546A1 - 一种烟气中三氧化硫的在线检测装置及方法 - Google Patents

一种烟气中三氧化硫的在线检测装置及方法 Download PDF

Info

Publication number
WO2015027546A1
WO2015027546A1 PCT/CN2013/084460 CN2013084460W WO2015027546A1 WO 2015027546 A1 WO2015027546 A1 WO 2015027546A1 CN 2013084460 W CN2013084460 W CN 2013084460W WO 2015027546 A1 WO2015027546 A1 WO 2015027546A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
gas
liquid
unit
sulfur trioxide
Prior art date
Application number
PCT/CN2013/084460
Other languages
English (en)
French (fr)
Inventor
高翔
骆仲泱
岑可法
倪明江
吴学成
宋浩
吴卫红
余鸿敏
施正伦
周劲松
方梦祥
余春江
王树荣
程乐鸣
王勤辉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2015027546A1 publication Critical patent/WO2015027546A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0042Specially adapted to detect a particular component for SO2, SO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of flue gas treatment, in particular to an on-line detecting device and method for sulfur trioxide in flue gas.
  • Selective catalytic reduction is a measure of the power plant in order to control NO x emissions is employed, with the addition of NH 3, the SCR reducing NO x to N 2, but also result in a small amount of SO 2 conversion For SO 3 , although SO 3 is not concentrated at this time, highly visible secondary plumes are produced upon discharge.
  • the power plant needs to know the concentration of SO 3 in the flue gas.
  • the flue gas analyzer has not found the function of measuring SO 3 content, which is mainly due to the process of transmitting SO 3 to the measuring terminal of the instrument. It will condense or adhere to the transfer pipe in the form of sulfuric acid vapor or sulfuric acid mist, resulting in sampling errors and strong corrosion of the instrument.
  • the measurement of particulate matter in flue gas is proposed in "Measurement of particulate matter in fixed source exhaust gas and sampling method of gaseous pollutants", and the measurement of liquid particles such as SO 3 is not considered.
  • the concentration of SO 3 in flue gas can reach 10 mg/m 3 or more, and the concentration of SO 3 after SCR denitrification can reach 30-80 mg/m 3 , which has become the main problem of fine particle pollution in coal-fired power plants.
  • the utility model patent No. 200620163937.1 discloses a sampling device for SO 3 in flue gas, comprising a dust removing mechanism, a sampling tube, a spiral collecting tube and a suction mechanism, wherein the dust removing mechanism is installed at the inlet end of the sampling tube, the sampling tube The outlet end is connected to the inlet of the spiral collecting pipe through a pipeline.
  • the inlet and outlet of the spiral collecting pipe are located at the upper end of the spiral, and the outlet thereof communicates with the suction mechanism through a silicone hose.
  • Patent No. 20091021169.1 discloses a method and apparatus for detecting, measuring and controlling SO 3 and other condensables in flue gas, capable of measuring the concentration of various condensables, but the method is accurate for materials High requirements make it impossible to measure online continuously.
  • Patent No. 2011/0097809 discloses a SO 3 measurement method with high precision, but the device is inconvenient to carry and is suitable for laboratory operations.
  • the present invention provides an apparatus and method for online detection of sulfur trioxide in the flue gas to SO 3 content of the flue gas analysis to achieve the flue gas line measurement of SO 3, has a simple structure, easy to carry and so on.
  • An on-line detecting device for sulfur trioxide in flue gas comprising a flue gas sampling unit, further comprising:
  • a gas-liquid separator for condensing SO 3 in the flue gas from the flue gas sampling unit into a sulfuric acid droplet to be separated from the gas phase
  • a gas phase detecting unit for metering a gas phase flow rate from the gas-liquid separator
  • a first solution tank for supplying an absorption liquid to the gas-liquid separator to mix the sulfuric acid droplets to form a mixed liquid
  • a liquid phase detecting unit for measuring the quality of the converted SO 3 in the mixed liquid from the gas-liquid separator
  • a digital control unit configured to calculate a concentration of SO 3 in the flue gas according to the detection results of the gas phase detecting unit and the liquid phase detecting unit.
  • the gas-liquid separator can adopt various implementation manners, and in the present invention, as a preferred
  • the gas-liquid separator is a plurality of serpentine condenser tubes connected in parallel with each other, and the inlet of the serpentine condenser tube is passed through corresponding pipes and valves
  • the flue gas sampling unit is in communication with the first solution tank, and the outlet of the serpentine condenser is connected to the gas phase detecting unit and the liquid phase detecting unit through corresponding pipes and valves.
  • the gas phase detecting unit and the corresponding serpentine condenser tube An air pump is provided between the outlets for drawing the gas in the serpentine condenser into the gas phase detecting unit.
  • the gas generated in the corresponding serpentine condenser is separated by the negative pressure generated by the air pump and metered by the gas phase detecting unit.
  • the serpentine condensation tube, the first solution tank, the gas phase detecting unit, the corresponding valve and the liquid phase detecting unit constitute an SO 3 detecting unit
  • the flue gas sampling unit continuously collects the flue gas to be tested, and then enters the serpentine condenser tube, due to the temperature in the condenser tube Below the dew point of sulfuric acid, a droplet of sulfuric acid is formed in the serpentine tube to separate the SO 3 from the flue gas.
  • an absorption liquid is added to the serpentine tube to form a sulfate droplet (SO 4 2- ), a serpentine shape.
  • SO 4 2- sulfate droplet
  • the cerium salt solution is added, and after stirring, a precipitate is formed, the SO 4 2- concentration is detected by the optical system, and the SO 3 detecting unit sends the detection information of the gas-liquid two phases to the digital control unit.
  • the content of SO 3 in the flue gas to be tested is received and calculated by the digital control unit.
  • a thermostatic chamber for mounting the serpentine condenser is further provided.
  • the temperature of the constant temperature chamber is controlled to be 60-80 °C.
  • the serpentine condenser has a diameter of 8-15 cm.
  • the serpentine condenser in the constant temperature chamber condenses the flue gas from the flue gas sampling unit to separate the SO 3 in the flue gas, and the flue gas flow rate is detected by the gas phase detecting unit.
  • the gas-liquid separator may be a plurality of serpentine condenser tubes connected in parallel with each other, and the serpentine condenser tubes are alternately operated with each other.
  • the gas-liquid separators are connected in parallel with each other. Serpentine condensation tube.
  • a control valve corresponding to the two serpentine condensers is provided in the apparatus for replacement after sampling of a serpentine condenser. After the collection of one serpentine condenser tube is completed, an absorption liquid is added to the serpentine tube, and SO 3 in the flue gas to be tested finally forms SO 4 2- in the liquid phase mixture, and the liquid phase detecting unit detects SO 4 2 - the amount.
  • the gas phase detection unit includes a flow meter, a thermometer, and a barometer, and simultaneously records temperature and pressure information of the gas phase.
  • the liquid phase detecting unit is configured to detect the SO 3 content in the flue gas, and the liquid phase detecting unit comprises:
  • a second air pump connected to the inlet of the serpentine condenser for hydraulically mixing the mixture in the serpentine condenser into the reactor;
  • a light source for emitting detection light to the reactor
  • a photometer for receiving transmitted light transmitted through the reactor the photometer being communicatively coupled to a digital control unit.
  • a second solution tank in communication with the reactor via a liquid pump, the reactor being provided with a magnetic stirrer.
  • the solution tank contains a substance capable of reacting with SO 4 2- to form colored ions or precipitates, for example, may be a phosphonium salt, and a liquid phase from the gas-liquid separator reacts with a substance in the reactor, and then The detection light is emitted into the reactor, passed through the liquid in the reactor, and then received by the photometer.
  • the photometer sends the received information to the digital control unit, and the amount of SO 3 is calculated by the digital control unit.
  • the onium salt in the solution tank of the liquid phase detection unit is barium chloride, barium chlorate or barium perchlorate.
  • the flue gas sampling unit is configured to continuously collect the flue gas containing SO 3 and send it into the SO 3 detecting unit. As far as the sampling unit itself is concerned, it may be an existing sampling mechanism.
  • the flue gas sampling unit includes a flue gas sampling gun head, a filtering chamber and a flue gas sampling tube which are sequentially connected, the tail end of the flue gas sampling tube is connected to the gas-liquid separator, and the filtering chamber is provided with filtering Device.
  • the flue gas sampling tube is provided with a heating device for maintaining the temperature inside the flue gas sampling tube, and the heating device is externally Features an insulated outer layer.
  • the heating device is preferably an electric heating device disposed outside the flue gas sampling tube for heating the flue gas to be tested in the flue gas sampling tube.
  • the flue gas sampling tube is a steel pipe made of rustproof material, and an electric heating device is arranged around the steel pipe to heat the temperature of the steel pipe so that the temperature of the flue gas in the steel pipe is maintained at 300 ⁇ 400 °C, an insulated outer layer made of insulating material is wound around the electric heating device.
  • the flue gas sampling tube is further provided with a temperature collecting device, and the temperature collecting device is communicably connected to the digital control unit.
  • the digital control unit comprises a housing and a central processor located within the housing, the housing being provided with control buttons and a display screen.
  • the housing is used to place control buttons and display screens, the control buttons are used to control the parameters related to the entire sampling process, and the display screen is used to display the smoke related parameters and test results.
  • the central processing unit is configured to receive, control and store the data returned by each measuring device, and automatically calculate the concentration of SO 3 in the flue gas.
  • the central processor preferably can employ a PLC controller.
  • the invention also provides an online monitoring method for sulfur trioxide in flue gas, comprising:
  • the air pump After the flue gas to be tested is heated to 300 ⁇ 400 °C, the air pump provides negative pressure to allow the flue gas to enter the serpentine condensation tube, and the SO 3 in the flue gas in the serpentine condensation tube is condensed into sulfuric acid droplets to remove SO 3 After the flue gas enters the gas phase detection unit to record the gas phase flow rate;
  • an absorption liquid is introduced into the serpentine condensation tube, and mixed with the sulfuric acid droplets to form a liquid phase mixture liquid, and the liquid phase mixture liquid enters the liquid phase detection unit to react with the barium salt solution, and the detection is performed.
  • the temperature of the serpentine condenser is 60-80 °C.
  • the temperature is below the dew point of the sulfuric acid, and the SO 3 in the flue gas condenses into droplets of sulfuric acid, which is separated from the flue gas.
  • the absorbing liquid is an aqueous solution of isopropyl alcohol or water.
  • the invention realizes the on-line measurement of SO 3 in flue gas, has the characteristics of simple structure and convenient carrying, and can sample SO 3 in the flue gas, and analyzes the content of SO 3 , so that the coal-fired power plant can take corresponding measures. Control the SO 3 content in the flue gas, reduce the corrosion of the flue and its equipment, and minimize the heat loss of the boiler exhaust, with the advantages of short measurement time and automation of the whole process.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic structural view of a flue gas collecting unit of the present invention
  • Figure 3 is a schematic illustration of the SO 3 detecting unit of the present invention.
  • Figure 4 is a schematic structural view of a digital control unit of the present invention.
  • Figure 5 is a schematic view showing the installation of the detecting device of the present invention in a flue gas treating system.
  • 100 is the flue gas collection unit
  • 200 is the SO 3 detection unit
  • 300 is the digital control unit.
  • the system consists of these three parts.
  • the flue gas collecting unit 100 includes a flue gas sampling gun head 105, a filtering chamber 101, and a sampling gun that are sequentially connected. .
  • the sampling gun is an inner and outer double-layer structure, and the inner layer is a flue gas sampling pipe 102, which is a steel pipe made of a rustproof material, and a heating device 103 is disposed outside the flue gas sampling pipe 102.
  • the heating device 103 is wound around
  • the electric heating device disposed outside the flue gas sampling tube 102 is provided with a thermal insulating outer layer 104 outside the heating device 103, and the thermal insulating outer layer 104 is made of an insulating material.
  • the heating device 103 and the insulating outer layer 104 cooperate to maintain the temperature of the flue gas in the flue gas sampling tube 102 at 300 to 400 °C.
  • the tail of the flue gas sampling tube 102 is in communication with the SO 3 detecting unit.
  • the flue gas sampling tube 102 is screwed to the filter chamber 101, and is detachable, and the filter chamber 101 It is filled with quartz wool, which can be replaced to filter the ash particles in the flue gas.
  • Flue gas sampling tube 102 A temperature collecting device is provided at the exit, for example, a temperature sensor for detecting the temperature of the outlet flue gas and transmitting it to the digital control unit.
  • the flue gas collecting unit 100 is connected to the SO 3 detecting unit 200 through a pipe.
  • the gas-liquid separator in the SO 3 detecting unit 200 of the present embodiment is two serpentine condenser tubes (the first snake) connected in parallel with each other.
  • a condensation tube 202 and a second serpentine condenser 201 two serpentine condenser tubes are installed in the thermostatic chamber 215, and the inlets of the two serpentine condenser tubes pass through the tee conduit and the corresponding valve and the tail of the flue gas sampling tube 102
  • the outlet is connected to the first solution tank 212, and the outlets of the two serpentine condensation tubes are connected to the gas phase pipeline and the liquid phase pipeline through the three-way pipeline and the corresponding valve, and when the serpentine condenser tube is used as the gas-liquid separator, the serpentine shape
  • the outlet of the condensing tube is both a gas phase outlet and a liquid phase outlet, controlled by a corresponding valve.
  • the inlet and the flue gas sampling tube 102 and the first solution tank are controlled by a valve V6 and a valve V3.
  • Connection between 212, valve V8 and valve V9 control the connection of the outlet to the gas and liquid pipelines; for the second serpentine condenser 201, by the valve V5 and the valve V4
  • the connection between the control inlet and the flue gas sampling tube 102 and the first solution tank 212 is controlled, and the outlet of the gas phase line and the liquid phase line is controlled by the valve V11 and the valve V10.
  • a pipeline is also connected in parallel between the gas phase pipeline and the flue gas sampling pipe 102, and a valve V7 is arranged on the pipeline. It is used for pumping detection of the gas phase pipeline before sampling.
  • a second air pump 214 is also provided, and the second air pump 214
  • the three-way pipe and the valve are respectively connected to the inlets of the two serpentine condenser tubes, wherein the connection between the second air pump 214 and the inlet of the first serpentine condenser tube 202 is controlled by the valve V1, and the valve V2 controls the second air pump The connection between the 214 and the second serpentine condenser 201.
  • a first air pump 203, a control valve V13, and a gas phase detecting unit 204 are sequentially disposed along the gas phase pipeline, and the gas phase detecting unit 204 includes a flow meter, a thermometer, and a barometer; the reactor 206 is connected along the outlet of the liquid phase line, and the reactor 206 further has an inlet connected to the liquid pump 210, the second solution tank 211, and the reactor.
  • the bottom of the 206 is a magnetic stirrer 207, the reactor 206 has a stirrer 208, a light source 205 is disposed on one side of the reactor 206, and a photometer is disposed on the other side of the reactor 206. 209, light passing through the reactor 206 is absorbed by the photometer 209 and sent to the digital control unit 300.
  • a discharge line is arranged at the bottom of the reactor 206, and a valve V12 is arranged on the discharge line. .
  • the SO 3 detecting unit 200 further includes a first solution tank 212 connected to the inlet of a serpentine condenser through a three-way pipe and a valve between the first solution tank 212 and the corresponding serpentine condenser tube.
  • a water pump 213 is disposed on the pipeline, and the water pump 213 pumps the absorption liquid in the first solution tank 212 into the corresponding serpentine condensation tube; and the second air pump 214 is disposed on the pipeline corresponding to the serpentine condensation tube and the first solution tank 212 and Corresponding control valve.
  • the digital control unit 300 is composed of a housing and a central processing unit 304.
  • the housing includes a display screen 302, a control button 303, and an outer box 301.
  • the display 302 is used to display the result of measuring SO 3
  • the control button 303 is used to control the start and end of the measurement and some parameters
  • the central processor 304 is used to control the switch of the liquid pump, the two air pumps and a series of valves, accepting The parameters of the acquisition device, the central processor 304 and each device (temperature collection device; flow meter in the gas phase detection unit, thermometer and barometer; photometer; and each valve) are connected by line communication.
  • the central processor 304 receives the gas flow and the SO 4 2- signal in the liquid, and processes the SO 3 reading in the flue gas and displays it on a digital display.
  • valve V7 the heating device of the sampling gun starts to heat, and the temperature is heated to After 300 ⁇ 400 °C, close the valve V7 and open the valve V6 and the valve V8.
  • the temperature of the flue gas to be tested in the sampling gun is 300 ⁇ 400 °C, and the smoke to be tested passes through the filter chamber. After filtering, it enters the flue gas sampling tube 102.
  • the flue gas exits the flue gas sampling tube 102 and enters the first serpentine condenser 202 in the thermostatic chamber (temperature of the thermostatic chamber is 60-80 ° C), and the SO 3 in the flue gas condenses into a sulfate droplet.
  • the first air pump 203 behind the first serpentine condenser 202 is for supplying a negative pressure to draw the gas from the first serpentine condenser 202, and the control valve V13 is for controlling the gas flow rate, and the flow meter in the gas phase detecting unit 204 is used. metering the gas flow rate, the flow meter measurement information which is fed back to the control unit 300, is calculated to prepare for flue gas SO 3 content.
  • the sampling time of a serpentine tube is 5 min, the sampling time must be more than 3 min, and the flow rate is 1-3 L/min.
  • valve V6 and valve V8 are closed, and valve V5 and valve V11 are opened, switching to the second serpentine condenser 201 At this time, the flow meter reading is fed back to the digital control unit 300.
  • the second serpentine condenser 201 and its subsequent piping operate in the same manner as the first serpentine condenser 202, which begins sampling.
  • the valve V3 and the valve V9 are opened, and the water pump 213 pumps the absorption liquid in the first solution tank 212 into the first serpentine condenser 202, and the flow rate of the water pump 213 can be set, generally 1- At 2 ml/s, the water pump 213 is turned on for 30 seconds, and the liquid added to the first serpentine condenser 202 can be controlled, and the flow rate is fed back to the digital control unit for calculation of the SO 3 concentration.
  • the valve V1 After the liquid pump is turned on, the valve V1 is turned on, the second gas pump 214 is started to operate, and all the liquid in the first serpentine condenser 202 is pressed into the reactor 206 in the liquid phase detecting device by the high-pressure air, and the second gas pump 214 is opened.
  • the time is generally 30s.
  • the valve V1 and the valve V9 are closed, the liquid pump 210 starts to work, and the liquid in the second solution tank 211 is pressed into the reactor 206, and the flow rate of the liquid pump 210 can be set, generally 1-2 ml/s.
  • the liquid pump 210 is turned on for 30 seconds, and the liquid added to the reactor 206 can be controlled, and the flow is fed back to the digital control unit for calculation of the SO 3 concentration.
  • the magnetic stirrer starts stirring, and the stirring time is 40 s.
  • the light source 205 The light wave having a light wave of 500-600 nm is emitted, and after being absorbed by the reactor 206, the transmitted light is received by the photometer 209 and the light intensity is measured, and the light intensity is fed back to the digital control unit 300. .
  • the valve V12 at the bottom of the reactor 206 is opened to discharge the waste liquid, and the valve V12 is closed after being turned on for 10 seconds.
  • the central processing unit 304 of the digital control unit 300 receives the liquid pump 210, the water pump 213, the photometer 209, and the flow meter parameters, and processes the SO 3 readings in the flue gas and displays them on the digital display.
  • the next measurement is the second serpentine condenser 201.
  • valve V5 and valve V11 When closed, valve V6 and valve V8 are opened, switching to the first serpentine condenser 202 sampling, and the method of measuring the sulfuric acid droplets in the second serpentine condenser 201 and the first serpentine condenser 202 The same, the difference is that the control valve is different, the corresponding valve is valve V2, valve V4 and valve V10.
  • the flue gas is removed from the filter chamber 101 and then passed through the flue gas sampling tube 102 into the corresponding serpentine condenser.
  • the serpentine condenser has a temperature of 60-80 ° C, which is lower than the sulfuric acid dew point and therefore condenses in a serpentine condenser.
  • the sulfuric acid droplets in the serpentine condenser are mixed with the absorption liquid supplied from the water pump 213 and then enter the reactor. After the liquid enters the reactor, it reacts with the reactants in the second solution tank to form precipitated or colored ions, and the precipitated or colored ions are equal or proportional to the concentration of the sulfate ions, ie, with sulfur trioxide.
  • the concentration is equal or proportional, the ion concentration is measured and the SO 3 content can be measured.
  • the colored ions have specific absorption peaks of light waves (for example, chlorinated acid ions can absorb light waves with a wavelength of 535 nm), and the ion concentration can be determined optically to obtain the concentration of sulfur trioxide in the sampled flue gas.
  • the apparatus and the measuring method of the invention are used to detect the concentration of SO 3 in the flue gas before denitration of a power plant.
  • the measuring point arrangement of the denitration SCR system of a power plant is shown in Figure 5.
  • the SCR system is at the measuring point.
  • the device of the present invention is arranged on the horizontal flue of the inlet of the economizer 400 (at position 401), and the measuring holes are evenly distributed.
  • the quartz wool in the filter chamber 101 was replaced, and the first solution tank 212 was filled with an aqueous solution having an isopropyl alcohol concentration of 80%, and the second solution tank 211 was filled with a solution of hydrazine reagent and BaCl 2 at a wavelength of 530 nm.
  • this position is detected plant condition that the average concentration of SO 3 of 14.6mg / m 3, with - the "Desulphurised device performance test method GB / T21508-2008" measured as the SO 3 concentration in flue gas 14.4 Mg/m 3 .
  • the apparatus and the measuring method of the invention are used to detect the concentration of SO 3 in the flue gas after denitration in a power plant.
  • the measuring point arrangement of the denitration SCR system of a power plant is shown in Figure 5.
  • the SCR system exits the measuring point.
  • the device of the present invention is arranged on the horizontal flue of the economizer 400 outlet (at position 402), and the measuring holes are evenly distributed. Replace the quartz wool in the filter chamber 101 before testing.
  • the first solution tank 212 is filled with an aqueous solution having an isopropyl alcohol concentration of 80%
  • the second solution tank 211 is filled with a solution of hydrazine reagent and BaCl 2 at a wavelength of 530 nm, and the position of the power plant at the position of SO 3 is detected.
  • the lower average concentration is 42.1 mg/m 3
  • the SO 3 concentration in the flue gas is 42.2 mg/m 3 measured by the method of “Test method for performance of coal-fired flue gas desulfurization equipment - GB/T21508-2008”.

Abstract

一种烟气中三氧化硫的在线检测装置及方法,装置包括烟气采集单元(100);气液分离器,用于将来自烟气采样单元的烟气中的SO3冷凝成硫酸液滴以与气相分离;气相检测单元,用于计量来自所述气液分离器的气相流量;第一溶液罐(212),用于向所述气液分离器中提供吸收液以混合所述硫酸液滴形成混合液;液相检测单元,用于计量来自所述气液分离器的混合液中已转化的SO3的质量;数字控制单元(300),用于根据所述气相检测单元和液相检测单元的检测结果计算烟气中SO3的浓度。该方法实现了烟气中SO3的在线测量,对烟气中的SO3进行采样,并分析出SO3的含量,便于燃煤电厂采取相应措施,控制烟气中SO3含量,减少对烟道及其设备的腐蚀,同时最大限度降低锅炉排烟热损失。

Description

一种烟气中三氧化硫的在线检测装置及方法
本发明涉及烟气治理技术领域,具体涉及一种烟气中三氧化硫的在线检测装置及方法。
目前火电厂 SO3 的排放量虽然很少,但由于 SO3 极易与烟气中的水蒸气结合形成硫酸蒸汽,在壁温低于酸露点的受热面上凝结,造成酸露点腐蚀。烟气中 SO3 ,含量愈多,酸露点温度越高,腐蚀范围越广也越严重。近年来我国越来越多的电厂安装了湿法烟气脱硫,由于湿法脱硫后净烟气的湿度较大,烟气中残存的 SO3 极易快速转化为硫酸雾滴,对烟道和下游设备造成严重腐蚀。废气中的 SO3 浓度低至 5-10ppm 时,由于热烟道气在大气中的较冷空气中冷却而产生白色、紫色或黑色羽状物。
选择性催化还原反应( selective catalytic reactor , SCR )是电厂中为了控制 NOx 排放而采用的措施,在加入 NH3 的情况下, SCR 将 NOx 还原为 N2 ,但是也会导致少量 SO2 转化为 SO3 ,尽管 SO3 此时浓度不高,但排放时会产生高度可见的次级羽状物。
为针对性的解决酸露点腐蚀问题,电厂需要了解烟气中 SO3 的浓度,目前尚未发现烟气分析仪具有测定 SO3 含量这项功能,这主要是由于 SO3 在传输到仪器测量终端过程中会以硫酸蒸汽或硫酸雾的形式凝结或粘附在传输管道上,导致采样误差和对仪器的强烈腐蚀。
《固定污染源排气中颗粒物测定与气态污染物采样方法》中提出了对烟气中固体颗粒物的测量,而未考虑对 SO3 等液体颗粒物的测量。事实上, SO3 在烟气中排放浓度可达 10 mg/m3 以上, SCR 脱硝后 SO3 的浓度可达 30~80 mg/m3 ,已成为目前燃煤电厂细粒子污染的主要问题。
在本领域中已经发展了多种用于测量烟气中 SO3 浓度的技术。专利号为 200620163937.1 的实用新型专利公开了一种烟气中 SO3 的采样装置,包括除尘机构、采样管、螺旋收集管和抽吸机构,其中除尘机构安装在采样管的入口端,该采样管的出口端通过管路与螺旋收集管的进口连接,螺旋收集管的进、出口均位于螺旋形的上端,其出口通过硅胶软管与所述抽吸机构相通。在专利中无测量部分,而且无法实现在线测量。
专利号为 20091021169.1 的发明专利公开了一种用于检测、测量和控制烟道气中 SO3 和其他可冷凝物的方法和装置,能够测量多种可冷凝物的浓度,但是该方法对于材料精度要求高,无法实现在线连续的测量。在美国,专利号 2011/0097809 中公开了一种 SO3 测量方法,精度较高,但是该装置携带不便,适合实验室操作。
本发明提供了一种烟气中三氧化硫的在线检测装置及方法,以分析烟气中 SO3 的含量,实现了烟气中 SO3 的在线测量,具有结构简单、便于携带等特点。
一种烟气中三氧化硫的在线检测装置,包括烟气采样单元,还包括 :
气液分离器,用于将来自烟气采样单元的烟气中的 SO3 冷凝成硫酸液滴以与气相分离;
气相检测单元,用于计量来自所述气液分离器的气相流量;
第一溶液罐,用于向所述气液分离器中提供吸收液以混合所述硫酸液滴形成混合液;
液相检测单元,用于计量来自所述气液分离器的混合液中已转化的 SO3 的质量;
数字控制单元,用于根据所述气相检测单元和液相检测单元的检测结果 计算烟气中 SO3 的浓度。
所述气液分离器可以采用多种实现方式,本发明中,作为优选,
所述气液分离器为若干个相互并联的蛇形冷凝管,该蛇形冷凝管的入口通过对应的管道及阀门与所述 烟气采样单元及第一溶液罐相连通,该 蛇形冷凝管的出口通过对应的管道及阀门与气相检测单元和液相检测单元相连通。
为方便气相的分离,进一步优选,所述气相检测单元与对应蛇形冷凝管 的出口之间设有气泵,用于将所述蛇形冷凝管中的气体抽入气相检测单元中。通过该气泵产生的负压使对应蛇形冷凝管中的气体分离并经过气相检测单元计量。
蛇形冷凝管、第一溶液罐、气相检测单元、对应阀门和液相检测单元构成 SO3 检测单元,烟气采样单元连续采集待测烟气,而后进入蛇形冷凝管,由于冷凝管中温度低于硫酸露点,在蛇形管中形成硫酸液滴,从而将 SO3 与烟气进行分离,采样结束后向蛇形管中加入吸收液,形成硫酸液滴( SO4 2- ),蛇形管中的溶液送入液相检测单元检测,首先加入钡盐溶液,搅拌后形成沉淀,由光学系统检测 SO4 2- 浓度, SO3 检测单元将气液两相的检测信息发送给数字控制单元,由数字控制单元接收并计算出待测烟气中 SO3 的含量。
进一步优选地,还设有一用于安装所述蛇形冷凝管的恒温室。控制该恒温室温度为 60-80 ℃。
进一步优选地,所述蛇形冷凝管的直径为 8-15cm 。
在 SO3 检测单元中,恒温室内蛇形冷凝管将来自烟气采样单元的烟气进行冷凝,分离出烟气中的 SO3 ,其烟气流量通过气相检测单元检测。
所述气液分离器可以为相互并联的若干个蛇形冷凝管,蛇形冷凝管之间相互交替工作,作为本发明的一种优选技术方案,所述气液分离器为两个相互并联的蛇形冷凝管。
装置中设有与两个蛇形冷凝管相应的控制阀门,用于在一个蛇形冷凝管采样结束后进行替换。其中一个蛇形冷凝管采集结束后,向该蛇形管中加入吸收液,待测烟气中的 SO3 最终形成 SO4 2- 存在于液相混合液,由液相检测单元检测 SO4 2- 的量。
气相检测单元包括流量计、温度计和气压计,同时记录气相的温度和压力信息。
液相检测单元用于检测烟气中 SO3 含量,一种优选的技术方案 ,所述液相检测单元包括:
与所述蛇形冷凝管的出口连通的反应器;
与所述蛇形冷凝管的入口相连的第二气泵,用于将所述蛇形冷凝管中的混合液压入反应器;
用于向所述反应器发射检测光的光源;
用于接收透过所述反应器的透射光的光度计,该光度计与数字控制单元通信连接。
进一步优选,还设有通过液泵与所述反应器相连通的第二溶液罐,所述反应器带有磁力搅拌器。
在溶液罐中盛装由能与 SO4 2- 发生反应并生成有颜色的离子或者沉淀的物质,例如,可以是钡盐,来自气液分离器中的液相与反应器中的物质反应,然后向反应器中发射检测光,透过反应器中的液体后由光度计接收,光度计将接收的信息发送给数字控制单元,由数字控制单元计算出 SO3 的量。
优选地,所述液相检测单元溶液罐中的钡盐为氯化钡、氯冉酸钡或者高氯酸钡。
烟气采样单元用以连续采集含有 SO3 的烟气,送入 SO3 检测单元中,就采样单元本身而言,可以是现有的采样机构,本发明中,作为一种优选的技术方案,所述烟气采样单元包括依次连通的烟气采样枪头、过滤室和烟气采样管,所述烟气采样管的尾端与所述气液分离器相连通, 所述过滤室内设有过滤装置。
为了保证待测烟气的温度,使烟气中的 SO3 全部以气体状态存在,优选地,所述烟气采样管外设有用于保持烟气采样管内温度的加热装置,所述加热装置外设有保温外层。
所述的加热装置优选为绕设在烟气采样管外的电加热装置,用以加热烟气采样管内的待测烟气。
烟气采样管为防锈材料制成的钢管,钢管外绕设电加热装置,用以加热钢管温度,使钢管内的烟气温度保持在 300~400℃ ,在电加热装置外绕置由保温材料制成的保温外层。
为了方便烟气温度的采集和控制,作为优选,所述烟气采样管外还设有温度采集装置,该温度采集装置通信连接至所述数字控制单元。
优选地,所述数字控制单元包括外壳和位于外壳内的中央处理器,所述外壳上设有控制按钮和显示屏。
外壳,用于放置控制按钮和显示屏,控制按钮用于控制整个采样过程相关参数,显示屏用于显示烟气相关参数及测试结果。
中央处理器,用于接收、控制及储存各测量装置返回过来的数据,同时自动计算烟气中 SO3 的浓度。该中央处理器优选可以采用 PLC 控制器。
本发明还提供了一种烟气中三氧化硫的在线监测方法,包括:
( 1 )通过烟气采样单元连续采集待测烟气,对烟气升温;
( 2 )待测烟气升温至 300~400℃ 后,气泵提供负压使烟气进入蛇形冷凝管中,在蛇形冷凝管中烟气中的 SO3 冷凝成硫酸液滴,去除 SO3 后的烟气则进入气相检测单元记录气相流量;
( 3 )冷凝结束后向所述蛇形冷凝管中通入吸收液,与所述硫酸液滴混合,形成液相混合液,液相混合液进入液相检测单元中与钡盐溶液反应,检测液相中已转化的 SO3 的质量;
( 4 )通过数字控制单元接收气相检测单元和液相检测单元的检测结果,并 计算烟气中 SO3 的浓度。
作为优选,所述蛇形冷凝管的温度为 60-80 ℃。该温度低于硫酸露点,烟气中的 SO3 冷凝成硫酸液滴,与烟气分离。
作为优选,所述 吸收液为异丙醇的水溶液或水。
本发明的有益效果:
本发明实现了烟气中 SO3 的在线测量,具有结构简单、便于携带等特点,它能对烟气中的 SO3 进行采样,并分析出 SO3 的含量,便于燃煤电厂采取相应措施,控制烟气中 SO3 含量,减少对烟道及其设备的腐蚀,同时最大限度降低锅炉排烟热损失,具有测量时间短,全过程自动化的优点。
图 1 是本发明的整体结构示意图;
图 2 是本发明的烟气采集单元结构示意图;
图 3 是本发明的 SO3 检测单元的示意图;
图 4 是本发明的数字控制单元的结构示意图;
图 5 是本发明的检测装置在烟气处理系统中的安装示意图。
下面结合附图和实施例对本发明作进一步说明:
如图 1 所示,图中 100 为烟气采集单元, 200 为 SO3 检测单元, 300 为数字控制单元,系统由这三大部分构成。
如图 2 所示,烟气采集单元 100 包括依次连通的烟气采样枪头 105 、过滤室 101 和采样枪 。
采样枪为内外双层结构,内层为烟气采样管 102 ,为由防锈材料制成的钢管,在烟气采样管 102 外设置加热装置 103 ,本实施方式中,该加热装置103为绕置在烟气采样管 102 外的电加热装置,在位于加热装置103外设置保温外层 104 ,保温外层 104 由保温材料制成。加热装置 103 和保温外层 104 共同作用,使烟气采样管 102 内的烟气温度保持在 300~400℃ 。烟气采样管 102 尾部与 SO3 检测单元连通。
烟气采样管 102 与过滤室 101 为螺纹连接,可拆卸,过滤室 101 内填充有石英棉,石英棉可更换,用于过滤烟气中的灰粒。
烟气采样管 102 的出口处设置一个温度采集装置,例如可以是温度传感器,用以检测出口烟气温度,并传输给数字控制单元。
如图 3 所示,烟气采集单元 100 通过管道与 SO3 检测单元 200 连接,本实施方式的 SO3 检测单元 200 中的气液分离器为两个相互并联的蛇形冷凝管(第一蛇形冷凝管 202 和第二蛇形冷凝管 201 ),两个蛇形冷凝管安装在恒温室 215 中,两个蛇形冷凝管的入口通过三通管道及对应阀门与烟气采样管 102 的尾部出口和第一溶液罐 212 相连,两个蛇形冷凝管的出口通过三通管道与对应的阀门连接气相管路和液相管路,当采用蛇形冷凝管为气液分离器时,蛇形冷凝管的出口既为气相出口又为液相出口,通过对应的阀门控制。
对于第一蛇形冷凝管 202 ,由阀门 V6 和阀门 V3 控制入口与烟气采样管 102 及第一溶液罐 212 之间的连接,由阀门 V8 和阀门 V9 控制出口与气相管路及液相管路的连接;对于第二蛇形冷凝管 201 ,由阀门 V5 和阀门 V4 控制入口与烟气采样管 102 及第一溶液罐 212 之间的连接,由阀门 V11 和阀门 V10 控制出口与气相管路及液相管路的连接。
在气相管路与烟气采样管 102 之间还并联了一根管路,该管路上设置阀门 V7 ,用于采样前对气相管路进行抽气检测。
为了方便蛇形冷凝管内液相的排除,还设置一个第二气泵 214 ,该第二气泵 214 通过三通管道及阀门分别连接至两个蛇形冷凝管的入口,其中由阀门 V1 控制第二气泵 214 与第一蛇形冷凝管 202 入口之间的连接,阀门 V2 控制第二气泵 214 与第二蛇形冷凝管 201 之间的连接。
沿气相管路上依次设置第一气泵 203 、控制阀 V13 和气相检测单元 204 ,气相检测单元 204 包括流量计、温度计和气压计;沿液相管路出口连接反应器 206 ,反应器 206 还有一个入口依次连接液泵 210 、第二溶液罐 211 ,反应器 206 底部为磁力搅拌器 207 ,反应器 206 内有搅拌子 208 ,在反应器 206 的一侧设置光源 205 ,在反应器 206 的另一侧设置光度计 209 ,透过反应器 206 的光由该光度计 209 吸收并发送至数字控制单元 300 。反应器 206 底部设置排放管路,该排放管路上设置阀门 V12 。
SO3 检测单元 200 还包括一个第一溶液罐 212 ,第一溶液罐 212 通过三通管道及阀门与一个蛇形冷凝管的入口相连,在第一溶液罐 212 与对应蛇形冷凝管之间的管道上设置水泵 213 ,水泵 213 将第一溶液罐 212 中的吸收液泵入对应蛇形冷凝管中;在对应蛇形冷凝管与第一溶液罐 212 的管道上设有第二气泵 214 及其相应控制阀。
以上部件之间全部由管道连接。
如图 4 所示,数字控制单元 300 由外壳和中央处理器 304 组成,外壳包括显示屏 302 、控制按钮 303 、外箱 301 。其中显示屏 302 用于显示测量出 SO3 的结果,控制按钮 303 用于控制测量的开始和结束及一些参数;中央处理器 304 用于控制液泵、两个气泵及一系列阀门的开关,接受采集装置的参数,中央处理器 304 与各装置(温度采集装置;气相检测单元中的流量计、温度计和气压计;光度计;以及各路阀门)以线路通信连接。中央处理器 304 接收气体流量与液体中 SO4 2- 信号,通过处理得出烟气中 SO3 读数,并显示到数字显示器上。
本发明装置的工作过程如下:
采样前所有阀门关闭。开始采样时,打开阀门 V7 ,采样枪的加热装置开始加热,待温度加热到 300~400 ℃后,关闭阀门 V7 ,打开阀门 V6 和阀门 V8 ,采集过程中保持采样枪内的待测烟气温度为 300~400 ℃ ,待测烟气经过滤室 101 过滤后进入烟气采样管 102 。
烟气从烟气采样管 102 出来后进入恒温室(恒温室温度为 60~80 ℃ )中的第一蛇形冷凝管 202 ,烟气中的 SO3 冷凝成为硫酸液滴。第一蛇形冷凝管 202 后的第一气泵 203 用于提供负压,使气体从第一蛇形冷凝管 202 中抽出,控制阀 V13 用于控制气体流量,气相检测单元 204 中的流量计用于计量气体流量,流量计将其计量的流量信息反馈给数字控制单元 300 ,以备计算烟气中 SO3 的含量。
一般一个蛇形管的采样时间为 5min ,采样时间必须在 3min 以上,流量为 1-3L/min ,第一蛇形冷凝管 202 采样结束后,阀门 V6 和阀门 V8 关闭,同时阀门 V5 和阀门 V11 打开,切换至第二蛇形冷凝管 201 ,此时流量计的读数反馈至数字控制单元 300 。第二蛇形冷凝管 201 及其后面管路的工作与第一蛇形冷凝管 202 相同,该蛇形冷凝管开始采样。
切换至第二蛇形冷凝管 201 后,阀门 V3 和阀门 V9 打开,水泵 213 将第一溶液罐 212 中的吸收液泵入第一蛇形冷凝管 202 ,水泵 213 流量可设置,一般为 1-2ml/s ,水泵 213 打开时间为 30s ,加入第一蛇形冷凝管 202 中的液体可控制,该流量反馈到数字控制单元,以备计算 SO3 浓度。
液泵打开时间结束后关闭,阀门 V1 打开,第二气泵 214 开始工作,利用高压空气将第一蛇形冷凝管 202 中所有液体压入液相检测装置中的反应器 206 ,第二气泵 214 打开时间一般为 30s ,结束后关闭阀门 V1 和阀门 V9 ,液泵 210 开始工作,将第二溶液罐 211 中的液体压入反应器 206 ,液泵 210 流量可设置,一般为 1-2ml/s ,液泵 210 打开时间为 30s ,加入反应器 206 中的液体可控制,该流量反馈到数字控制单元以备计算 SO3 浓度。
在液泵 210 开始工作的同时,磁力搅拌器开始搅拌,搅拌时间为 40s, 搅拌结束后,光源 205 发出光波为 500-600nm 的光波,经反应器 206 吸收后,透过的光由光度计 209 进行接收并测量光强度,并将该光强度反馈给数字控制单元 300 。得到光强度信号后,反应器 206 底部阀门 V12 打开,排出废液,阀门 V12 打开 10s 后关闭。
数字控制单元 300 的中央处理器 304 接收液泵 210 、水泵 213 、光度计 209 、流量计参数,通过处理得出烟气中 SO3 读数,并显示到数字显示器上。
一次测量到此结束,下一次测量为第二蛇形冷凝管 201 采样时间结束后,阀门 V5 和阀门 V11 关闭,阀门 V6 和阀门 V8 开启,切换至第一蛇形冷凝管 202 采样,第二蛇形冷凝管 201 内硫酸液滴的测量方法与第一蛇形冷凝管 202 相同,区别在于控制阀门不一样,对应阀门为阀门 V2 、阀门 V4 和阀门 V10 。
本发明装置的工作原理如下:
烟气由过滤室 101 除去其中的灰尘后经过烟气采样管 102 进入对应蛇形冷凝管。蛇形冷凝管的温度为 60-80 ℃,低于硫酸露点,因此在蛇形冷凝管中冷凝。蛇形冷凝管中的硫酸液滴与水泵 213 输送来的吸收液进行混合后进入反应器。液体进入反应器后,与第二溶液罐中的反应物发生反应,生成沉淀或有颜色的离子,而该沉淀或有颜色的离子与硫酸根离子浓度等同或成比例,即与三氧化硫的浓度等同或成比例,则测量该离子浓度,即可测出 SO3 含量。有颜色的离子都有光波的特定吸收峰(如氯冉酸离子能够吸收波长为 535nm 的光波),可通过光学法测定离子浓度,从而得出采样烟气中三氧化硫的浓度。
实施例 1
利用本发明装置及测量方法检测某电厂脱硝前烟气中 SO3 浓度。某电厂脱硝 SCR 系统测点布置如图 5 所示, SCR 系统入口测点,本发明装置布置在省煤器 400 入口的水平烟道上(位置 401 处),测孔均匀分布。测试前更换过滤室 101 中石英棉,在第一溶液罐 212 中装入异丙醇浓度为 80% 的水溶液,第二溶液罐 211 中装入钍试剂和 BaCl2 的溶液,光源波长为 530nm ,检测出电厂该位置 SO3 该工况下平均浓度为 14.6mg/m3 ,用《燃煤烟气脱硫设备性能测试方法- GB/T21508-2008 》中方法测出烟气中 SO3 浓度为 14.4mg/m3
实施例 2
利用本发明装置及测量方法检测某电厂脱硝后烟气中 SO3 浓度。某电厂脱硝 SCR 系统测点布置如图 5 所示, SCR 系统出口测点,本发明的装置布置在省煤器 400 出口的水平烟道上(位置 402 处),测孔均匀分布。测试前更换过滤室 101 中石英棉。在第一溶液罐 212 中装入异丙醇浓度为 80% 的水溶液,第二溶液罐 211 中装入钍试剂和 BaCl2 的溶液,光源波长为 530nm ,检测出电厂该位置 SO3 该工况下平均浓度为 42.1mg/m3 ,用《燃煤烟气脱硫设备性能测试方法- GB/T21508-2008 》中方法测出烟气中 SO3 浓度为 42.2mg/m3

Claims (10)

  1. 一种烟气中三氧化硫的在线检测装置,包括烟气采样单元,其特征在于,还包括 :
    气液分离器,用于将来自烟气采样单元的烟气中的 SO3 冷凝成硫酸液滴以与气相分离;
    气相检测单元,用于计量来自所述气液分离器的气相流量;
    第一溶液罐,用于向所述气液分离器中提供吸收液以混合所述硫酸液滴形成混合液;
    液相检测单元,用于计量来自所述气液分离器的混合液中已转化的 SO3 的质量;
    数字控制单元,用于根据所述气相检测单元和液相检测单元的检测结果计算烟气中 SO3 的浓度。
  2. 根据权利要求 1 所述烟气中三氧化硫的在线检测装置,其特征在于,所述气液分离器为若干个相互并联的蛇形冷凝管,该蛇形冷凝管的入口通过对应的管道及阀门与所述烟气采样单元及第一溶液罐相连通,该蛇形冷凝管的出口通过对应的管道及阀门与气相检测单元和液相检测单元相连通。
  3. 根据权利要求 2 所述烟气中三氧化硫的在线检测装置,其特征在于,所述气相检测单元与对应 蛇形冷凝管 的出口之间设有气泵,用于将所述蛇形冷凝管中的气体抽入气相检测单元中。
  4. 根据权利要求 3 所述烟气中三氧化硫的在线检测装置,其特征在于,所述液相检测单元包括:
    与所述蛇形冷凝管的出口连通的反应器;
    与所述蛇形冷凝管的入口相连的第二气泵,用于将所述蛇形冷凝管中的混合液压入反应器;
    用于向所述反应器发射检测光的光源;
    用于接收透过所述反应器的透射光的光度计,该光度计与数字控制单元通信连接。
  5. 根据权利要求 4 所述 烟气中三氧化硫的在线检测装置 ,其特征在于,还设有通过液泵与所述反应器相连通的第二溶液罐,所述反应器带有磁力搅拌器。
  6. 根据权利要求 1~5 任一权利要求所述烟气中三氧化硫的在线检测装置,其特征在于, 所述烟气采样单元包括依次连通的烟气采样枪头、过滤室和烟气采样管,所述烟气采样管的尾端与所述气液分离器相连通, 所述过滤室内设有过滤装置。
  7. 根据权利要求 6 所述烟气中三氧化硫的在线检测装置,其特征在于, 所述烟气采样管外设有用于保持烟气采样管内温度的加热装置,所述加热装置外设有保温外层。
  8. 根据权利要求 6 所述烟气中三氧化硫的在线检测装置,其特征在于,所述烟气采样管外还设有温度采集装置,该温度采集装置通信连接至所述数字控制单元。
  9. 一种烟气中三氧化硫的在线监测方法,其特征在于,包括:
    ( 1 )通过烟气采样单元连续采集待测烟气,对烟气升温;
    ( 2 )待测烟气升温至 300~400℃ 后,气泵提供负压使烟气进入蛇形冷凝管中,在蛇形冷凝管中烟气中的 SO3 冷凝成硫酸液滴,去除 SO3 后的烟气则进入气相检测单元记录气相流量;
    ( 3 )冷凝结束后向所述蛇形冷凝管中通入吸收液,与所述硫酸液滴混合,形成液相混合液,液相混合液进入液相检测单元中与钡盐溶液反应,检测液相中已转化的 SO3 的质量;
    ( 4 )通过数字控制单元接收气相检测单元和液相检测单元的检测结果,并计算烟气中 SO3 的浓度。
  10. 根据权利要求 9 所述的方法,其特征在于,所述蛇形冷凝管的温度为 60-80 ℃。
PCT/CN2013/084460 2013-08-27 2013-09-27 一种烟气中三氧化硫的在线检测装置及方法 WO2015027546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310376879.5 2013-08-27
CN201310376879.5A CN103472061B (zh) 2013-08-27 2013-08-27 一种烟气中三氧化硫的在线检测装置及方法

Publications (1)

Publication Number Publication Date
WO2015027546A1 true WO2015027546A1 (zh) 2015-03-05

Family

ID=49797000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084460 WO2015027546A1 (zh) 2013-08-27 2013-09-27 一种烟气中三氧化硫的在线检测装置及方法

Country Status (2)

Country Link
CN (1) CN103472061B (zh)
WO (1) WO2015027546A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043824A (zh) * 2015-08-18 2015-11-11 中国大唐集团科学技术研究院有限公司华中分公司 便携式三氧化硫化学吸收自动采样装置
CN106198385A (zh) * 2016-08-23 2016-12-07 合肥金星机电科技发展有限公司 烟气检测系统
CN109085101A (zh) * 2018-10-25 2018-12-25 浙江三尼科技有限公司 一种烟气可溶物连续在线监测分析方法及系统
CN109141992A (zh) * 2018-10-16 2019-01-04 华北电力大学(保定) 基于控制冷凝法的硫酸氢氨采样装置及方法
CN109254124A (zh) * 2018-10-31 2019-01-22 华能国际电力股份有限公司 一种so3浓度在线检测装置及方法
CN109692544A (zh) * 2019-02-11 2019-04-30 深圳国技仪器有限公司 气液分离器及大气采样设备
CN109738487A (zh) * 2019-02-22 2019-05-10 西安西热锅炉环保工程有限公司 一种烟气中so3在线测量系统及方法
CN113970600A (zh) * 2020-07-23 2022-01-25 湖南中烟工业有限责任公司 一种加热卷烟烟气在线分析检测装置及方法
CN112945887B (zh) * 2021-03-11 2023-12-19 西安交通大学 一种烟气原位监测系统及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153407A (zh) * 2015-04-02 2016-11-23 赵正芳 一种气体取样检测设备
CN105004761A (zh) * 2015-06-26 2015-10-28 华电电力科学研究院 一种脱硝系统逃逸氨在线连续监测的装置及方法
CN105181614B (zh) * 2015-09-04 2018-06-12 深圳睿境环保科技有限公司 三氧化硫分析仪器及方法
CN105352784A (zh) * 2015-12-08 2016-02-24 东南大学 一种测试湿法脱硫净烟气中so3酸雾浓度的采样方法及装置
CN106153827A (zh) * 2016-08-02 2016-11-23 华电电力科学研究院 基于液体吸收法的在线三氧化硫浓度测量装置及方法
CN106289883A (zh) * 2016-08-02 2017-01-04 华电电力科学研究院 基于控制冷凝法的便携式三氧化硫采样装置及方法
CN106353457B (zh) * 2016-09-06 2019-04-30 山东能工低碳科技有限公司 一种基于盐吸收的检测烟气so3的方法及系统
CN106289884B (zh) * 2016-09-06 2019-07-09 山东能工低碳科技有限公司 一种so3在线检测的方法
CN106248442B (zh) * 2016-09-06 2019-07-19 山东能工低碳科技有限公司 一种检测烟气中so3的方法
CN106501443A (zh) * 2016-10-31 2017-03-15 杭州意能电力技术有限公司 用于测试烟气中三氧化硫浓度的测试系统及其冷凝器
CN106596427A (zh) * 2016-12-15 2017-04-26 东南大学 一种工业废气中so3在线测量装置和方法
CN106813954A (zh) * 2017-01-23 2017-06-09 浙江菲达环保科技股份有限公司 一种适用于低浓度三氧化硫采样的采样系统
CN107843464A (zh) * 2017-12-01 2018-03-27 西安交通大学 旋转密封多通道的so3和h2so4采样检测装置及方法
CN108303293A (zh) * 2018-02-09 2018-07-20 华能国际电力股份有限公司 一种燃煤锅炉烟气中三氧化硫的采样和检测系统及方法
CN109283023B (zh) * 2018-11-06 2024-04-16 华北电力大学(保定) 模拟烟气含量对三氧化硫浓度影响的实验装置及使用方法
CN109387595B (zh) * 2018-11-30 2024-04-09 浙江大维高新技术股份有限公司 连续监测so3的浓度的装置及其方法
CN110044834A (zh) * 2019-05-20 2019-07-23 华能国际电力股份有限公司 一种三氧化硫在线监测系统及方法
CN110687062A (zh) * 2019-09-30 2020-01-14 李朋 一种烟气中三氧化硫含量的检测系统及检测方法
CN110954377A (zh) * 2019-12-03 2020-04-03 华电电力科学研究院有限公司 一种基于冷凝分离的烟气中so3检测装置及方法
CN111122564B (zh) * 2019-12-31 2020-10-02 深圳市华域环保科技有限公司 用于制备烧结类再生产品的渣土检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211846A (ja) * 1983-05-17 1984-11-30 Mitsubishi Heavy Ind Ltd 排ガス中のso↓3濃度の検知方法
EP0138879A1 (en) * 1983-03-18 1985-05-02 Boliden Ab METHOD AND DEVICE FOR DETECTING SULFUR TRIOXIDE.
JP2000304695A (ja) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd 排ガス中の三酸化硫黄濃度測定装置
CN1865993A (zh) * 2006-06-19 2006-11-22 上海吴泾化工有限公司 高纯度so3气体及其中杂质so2气体的联合检测方法
CN1995956A (zh) * 2006-12-31 2007-07-11 中电投远达环保工程有限公司 烟气中so3含量的检测方法及其装置
US20120075632A1 (en) * 2010-09-29 2012-03-29 Sick Maihak Gmbh Ag Apparatus and method for measuring so3 and h2so4 concentrations in gases
CN203490171U (zh) * 2013-08-27 2014-03-19 浙江大学 一种烟气中三氧化硫的在线检测装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232758A (ja) * 2002-02-08 2003-08-22 Mineral Seimitsu Kagaku Kk 燃焼排ガスのso3濃度の測定方法及び測定装置並びにso3を含有する燃焼排ガス処理方法及び処理装置
CN203148720U (zh) * 2012-11-23 2013-08-21 江苏泰洁检测技术有限公司 一种快速定位尘烟采样枪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0138879A1 (en) * 1983-03-18 1985-05-02 Boliden Ab METHOD AND DEVICE FOR DETECTING SULFUR TRIOXIDE.
JPS59211846A (ja) * 1983-05-17 1984-11-30 Mitsubishi Heavy Ind Ltd 排ガス中のso↓3濃度の検知方法
JP2000304695A (ja) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd 排ガス中の三酸化硫黄濃度測定装置
CN1865993A (zh) * 2006-06-19 2006-11-22 上海吴泾化工有限公司 高纯度so3气体及其中杂质so2气体的联合检测方法
CN1995956A (zh) * 2006-12-31 2007-07-11 中电投远达环保工程有限公司 烟气中so3含量的检测方法及其装置
US20120075632A1 (en) * 2010-09-29 2012-03-29 Sick Maihak Gmbh Ag Apparatus and method for measuring so3 and h2so4 concentrations in gases
CN203490171U (zh) * 2013-08-27 2014-03-19 浙江大学 一种烟气中三氧化硫的在线检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.J JACKWOROWSKI ET AL.: "Evaluation of method for measurement of SO3/H2SO4 in flue gas", JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 31 January 1979 (1979-01-31), pages 43 *
ZHANG YOU: "Research and Application of SO3 Measurement in Flue Gas", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 15 August 2013 (2013-08-15) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043824A (zh) * 2015-08-18 2015-11-11 中国大唐集团科学技术研究院有限公司华中分公司 便携式三氧化硫化学吸收自动采样装置
CN106198385A (zh) * 2016-08-23 2016-12-07 合肥金星机电科技发展有限公司 烟气检测系统
CN106198385B (zh) * 2016-08-23 2023-10-13 合肥金星智控科技股份有限公司 烟气检测系统
CN109141992A (zh) * 2018-10-16 2019-01-04 华北电力大学(保定) 基于控制冷凝法的硫酸氢氨采样装置及方法
CN109085101A (zh) * 2018-10-25 2018-12-25 浙江三尼科技有限公司 一种烟气可溶物连续在线监测分析方法及系统
CN109085101B (zh) * 2018-10-25 2024-03-22 浙江三尼科技有限公司 一种烟气可溶物连续在线监测分析方法及系统
CN109254124A (zh) * 2018-10-31 2019-01-22 华能国际电力股份有限公司 一种so3浓度在线检测装置及方法
CN109692544A (zh) * 2019-02-11 2019-04-30 深圳国技仪器有限公司 气液分离器及大气采样设备
CN109692544B (zh) * 2019-02-11 2024-04-30 深圳国技仪器有限公司 气液分离器及大气采样设备
CN109738487A (zh) * 2019-02-22 2019-05-10 西安西热锅炉环保工程有限公司 一种烟气中so3在线测量系统及方法
CN113970600A (zh) * 2020-07-23 2022-01-25 湖南中烟工业有限责任公司 一种加热卷烟烟气在线分析检测装置及方法
CN112945887B (zh) * 2021-03-11 2023-12-19 西安交通大学 一种烟气原位监测系统及方法

Also Published As

Publication number Publication date
CN103472061B (zh) 2016-05-04
CN103472061A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015027546A1 (zh) 一种烟气中三氧化硫的在线检测装置及方法
CN106248442B (zh) 一种检测烟气中so3的方法
CN109959538B (zh) 固定污染源排放三氧化硫与可凝结颗粒物测试装置及方法
CN1995956A (zh) 烟气中so3含量的检测方法及其装置
CN104730266B (zh) 一种总有机碳与总氮同步连续实时测定的方法与仪器
CN106353457B (zh) 一种基于盐吸收的检测烟气so3的方法及系统
CN109342284A (zh) 一种用于烟气中有害物质的检测系统及检测方法
CA2872782C (en) Extractive continuous ammonia monitoring system
CN203490171U (zh) 一种烟气中三氧化硫的在线检测装置
CN208766151U (zh) 一种在线检测烟气中so3含量的系统
CN112147287A (zh) 一种烟气中HCl的在线测量系统及方法
CN106501443A (zh) 用于测试烟气中三氧化硫浓度的测试系统及其冷凝器
CN108414299A (zh) 一种固定污染源废气采样装置和采样方法
CN111366677A (zh) 协同脱除一氧化氮、苯、甲苯的scr催化剂性能评价装置
CN111487364A (zh) 应用于分析检测的煤中氯元素的捕获与收集系统
CN106289884B (zh) 一种so3在线检测的方法
CN113959792A (zh) 一种基于低温等离子体热解的烟气中汞测量装置及方法
CN104792704B (zh) Toc、tn、tp三指标连续同步实时在线测定仪器
CN206270239U (zh) 一种烟气中氮氧化物含量测量的紫外分析仪
CN207248580U (zh) 一种基于烟气温度及恒温水浴锅水温控制的so3取样系统
CN110687062A (zh) 一种烟气中三氧化硫含量的检测系统及检测方法
CN108120681B (zh) 一种测量ho2的转换效率及ro2干扰大小的装置和方法
CN212134237U (zh) 一种燃煤烟气中可凝结颗粒物与三氧化硫同步采样装置
CN212159716U (zh) 协同脱除一氧化氮、苯、甲苯的scr催化剂性能评价装置
CN106596197A (zh) 一种污染源废气组合采样系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892166

Country of ref document: EP

Kind code of ref document: A1