WO2015026254A1 - Etiqueta molecular contendo moléculas de adn e processo de marcação e identificação da etiqueta - Google Patents

Etiqueta molecular contendo moléculas de adn e processo de marcação e identificação da etiqueta Download PDF

Info

Publication number
WO2015026254A1
WO2015026254A1 PCT/PT2014/000056 PT2014000056W WO2015026254A1 WO 2015026254 A1 WO2015026254 A1 WO 2015026254A1 PT 2014000056 W PT2014000056 W PT 2014000056W WO 2015026254 A1 WO2015026254 A1 WO 2015026254A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
seq
molecular
molecular label
label
Prior art date
Application number
PCT/PT2014/000056
Other languages
English (en)
French (fr)
Inventor
Newton Carlos Marcial Gomes
Original Assignee
Universidade De Aveiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Aveiro filed Critical Universidade De Aveiro
Priority to EP14786549.7A priority Critical patent/EP3037546A1/en
Publication of WO2015026254A1 publication Critical patent/WO2015026254A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a molecular label and method of labeling various materials (solid or liquid) from the use of molecular labels containing chimeric deoxyribonucleic acid (DNA) molecules.
  • DNA deoxyribonucleic acid
  • the present invention is in the field of traceability and identification of various materials for application in any kind of activity where the use of traceability or certification of origin is required (eg agrifood, pharmaceutical, veterinary industry). and agronomic) or any type of activity where the use of traceability or certification of origin is required. It is an object of the present invention to identify and track various materials (biological and non-biological) and liquid media.
  • the present invention relates to a process of labeling various materials and liquid media from the use of molecular labels containing chimeric deoxyribonucleic acid (DNA) molecules.
  • DNA deoxyribonucleic acid
  • a plurality of chimeric DNA molecules may be used in the preparation of the tag.
  • the label may be applied to the surface of various liquid materials or media. Label reading can be performed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques.
  • PCR polymerase chain reaction
  • DGGE denaturing gradient gel electrophoresis
  • the set of molecules detected on a label provides information relevant to product control in the barcode form. Marked material may be related to primary and industrial products.
  • the present invention is in the area of traceability and identification of various materials with application in any kind of activity where the use of traceability or certification of origin is required.
  • the present invention aims to overcome such limitations by labeling molecularly labeled products from microbial DNA where the mixture does not exist directly in nature. Molecular labels may thus be used as an alternative or in conjunction with the above technologies in the labeling of products in general.
  • the present invention enables microbial DNA fragments of any origin (eg, biological and environmental samples) to be used in making the model chimeric DNA molecule (DNA used as a template for molecular label formulation) without the need to use DNA sequences containing any kind of significant information.
  • any origin eg, biological and environmental samples
  • model chimeric DNA molecule DNA used as a template for molecular label formulation
  • the present invention relates to a molecular label and method of labeling various materials (biological, non-biological and liquid media) from the use of molecular labels containing chimeric DNA molecules.
  • the solution presented achieves a scalable code based on natural sources but which does not exist in nature as such and is still easily and rapidly identifiable (for example to determine only a random sample in a given batch of products).
  • the code is classified as easily scalable as the combination possibilities allow It is possible to apply a molecular label containing a specific code for each product.
  • the molecular tag to be applied is comprised of 10 bands (10 types of model chimeric DNA molecules), and for this there is a collection of 20 types of model chimeric DNA, it is possible to obtain 184756 different codes.
  • the molecular label described in the present invention is hardly adulterated.
  • the DGGE provides a band profile whose presence / absence and intensity can serve as a basis for coding (similar to the traditional barcode) of the molecular label.
  • This form of coding in the present invention is referred to as a barcode.
  • the present invention in addition to increasing the likelihood of combining by making code tampering difficult, also makes the process of creating and formulating molecular tags much simpler, while also reducing the expense of synthesizing and reading DNA tags.
  • the simplicity of the reading methodology of the present invention further allows the possibility to identify and authenticate the product in situ by using portable molecular biology equipment. Another advantage is the high reliability. Because DNA molecules are chimeric, it is virtually impossible for them to occur naturally.
  • One aspect of the present invention describes a molecular label for labeling a substrate comprising: a mixture of a plurality of DNA molecules (or chimeric DNA molecules), each of which comprises a GC-clamp DNA fragment (GC-clamp, SEQ. ID. No. 7) as the identifying segment and a microbial DNA fragment. as encoder segment,
  • Model chimeric DNA molecule is defined as each DNA molecule comprising a staple-GC DNA fragment as an identifying segment and a microbial DNA fragment as an encoding segment.
  • said DNA molecules were obtainable separately.
  • the microbial DNA fragments of the molecular tag of the present invention may have a size ranging from 200-1800 bp (base pairs).
  • the molecular tag fragments of the present invention may have the same base pair number.
  • the molecular label of the present invention may further comprise primers selected from the following list: SEQ. ID No. 0.1; SEQ ID NO.2; SEQ ID NO.3; SEQ ID NO. ; SEQ ID NO.5; SEQ ID NO.6.
  • concentration of each of said model chimeric DNA molecules is variable, wherein a certain density is conferred by the respective DNA concentration.
  • the molecular label of the present invention may be in dehydrated, lyophilized or liquid form.
  • the molecular tag substrates to Mar ⁇ car can be either solid or liquid.
  • the solid label carriers for the molecular label of the present invention may be selected from the following list: epoxy resins, inks, carrier particles, nanoparticles, phospholipid membranes, among others.
  • liquid label carriers for the molecular label of the present invention may be selected from the following list: aqueous solutions, solutions comprising ethanol, solutions comprising acetone, among others.
  • Tagged objects can be food, medicine, paper, documents, leather, clothing, pens, watches, jewelry, an electronic article, plastic packaging, labels.
  • another aspect of the present invention relates to a process
  • each of the model chimeric DNA molecules from a plurality of primers and gene fragments selected from one or more microbial DNA molecules, wherein each DNA molecule contains GC clamp DNA fragment (GC clamp).
  • GC clamp GC clamp DNA fragment
  • said DNA molecules may be obtained separately, in particular by the Escherichia coli cloning step and preparation of genomic libraries containing different types of inserts.
  • the synthesis of at least one of said DNA fragment comprises insertion of primers specific for sites near the insertion region of the plasmid.
  • primers may be selected from the following SEQ list. ID NO.l; SEQ ID NO.2; SEQ ID NO.3; SEQ ID NO. ; SEQ ID NO.5; SEQ ID No. 0.6.
  • the molecular label obtained may be dehydrated, lyophilized or held in solution or in the form of nanoparticles.
  • the substrate / material labeling may be by spraying, dropping or micro-dropping, impregnating with adhesives and / or resins.
  • the label described may further comprise a phospholipid membrane.
  • the plurality of DNA molecules may be used in the preparation of the tag - that is, in the synthesis of a model chimeric DNA molecule, it is first necessary to amplify by DNA fragmentation reaction (PCR) technique DNA fragments.
  • PCR DNA fragmentation reaction
  • example: the 16S rRNA gene from DNA extracted from an environmental sample originating from of one species or a plurality of microbial species naturally present in the sample. This requires specific primers for the target gene (example: primers F968-GC / SEQ. ID NO.1 and L1401 / SEQ ID NO.2 for 16S rRNA gene).
  • primers F968-GC / SEQ. ID NO.1 and L1401 / SEQ ID NO.2 for 16S rRNA gene One primer must contain the 5 " end GC-clamp (SEQ. ID NO.7).
  • the PCR amplified fragments obtained are then ligated into a vector (plasmid) and cloned.
  • a PCR is then performed. for the insert (plasmid-inserted DNA fragment) of each previously isolated clone with primers specific for sites near the insertion region of the plasmid (primers D1 - SEQ. ID NO.3 and RI - SEQ. ID NO.4).
  • a second PCR is performed again for the PCR product obtained using this time the primers D2 - SEQ ID NO.5 and R2 - SEQ ID NO.6
  • the PCR product of each insert is then analyzed.
  • DGGE denaturing gradient gel
  • Another aspect of the present invention describes a method of identifying and / or screening miscellaneous material comprising detecting at least one molecular tag described in the present invention.
  • Another embodiment of the identification and / or identification screening process described in the present invention further comprises the step of comparing at least one molecular tag with the profile of a reference sample (or DNA molecular tag) of the labeled material.
  • the amount of each type of chimeric DNA molecule / fraction added to the molecular tag is also used as information - for example of the intensity of the bars (bands) during the reading process. Therefore, the detection and reading of the label of this invention is highly specific thus making false copies or tampering difficult, allowing each generated label to serve as a guarantee seal for numerous substrates / materials / products.
  • Vehicle In the present invention the word vehicle is used as a generic term for substances that may be used in the incorporation and formulation of the molecular label for the purpose of increasing its volume or mass. In the present invention such substances may act on the process of application, stability and protection of the label (example: adhesives, resins, inks, aqueous solutions and filler substances or particles).
  • substrate refers to any object or material to which the molecular label may be added (eg, food, medicine, objects, pens, watches, paper, jewelry, electrical objects). electrical or electronic).
  • the label can be applied to the surface of various materials (biological and non-biological), added to various food products, or liquid media.
  • Detection of DNA molecules is performed by polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. ⁇ These techniques enable the detection of each chimeric DNA molecule used in the label preparation in the form of a band profile (or bar code).
  • the product (or material) marked with the label may be related to primary and industrial products (or various materials) whose origin and identification is unknown or intended to be confirmed.
  • the present invention is in the area of traceability and identification of various liquid materials and media with application in various industries (eg agrifood, pharmaceutical, veterinary and agronomic industry) or any type of activity in which the use of traceability. or certification of origin is required.
  • the present invention aims, through the use of the molecular label, to provide safer and more reliable information about a given product, thus preventing the information regarding the identification and origin of the merchandise to be removed or tampered with during the different stages of production, processing, distribution and / or marketing. Accordingly, it is an object of the present invention to provide a label and labeling process for various materials (biological and non-biological) using molecular labels containing chimeric DNA molecules, preferably of microbial origin.
  • DNA barcode synthesis involves the creation of the model chimeric DNA molecule.
  • This molecule is comprised of copies of DNA of natural origin and DNA of synthetic origin that will later be produced in large quantities. through the PCR technique.
  • Most of the chimeric DNA molecule is synthesized from another DNA molecule readily obtained from the environment, from pure cultures or mixtures of environmental microorganisms.
  • a DNA fragment of any type or microbial origin may be used for the preparation mo ⁇ lécula chimeric DNA template from said microbial DNA fragments for DGGE have different mobilities.
  • the use of natural DNA fragments in chimeric molecule synthesis reduces the costs associated with DNA molecule synthesis by specialized companies.
  • the technology of the present invention produces non-coding chimeric DNA molecules non-existent in nature and without the addition of atypical chemicals to DNA (example: fluorochromes). Therefore, they do not transmit information that could pose a danger to the environment or substances of unknown effect to human health. Therefore, such labels may be used in food, pharmaceutical and / or cosmetic products.
  • label reading is performed directly from the sample collected by PCR-DGGE technique, using for this purpose a thermocycler, a denaturing gradient gel electrophoresis (DGGE) and their reagents. Therefore reading the labels is fast and economical.
  • label reading is performed by identifying the number and intensity of the bars (DGGE bands) ( Figure 1) and not the nucleotides.
  • the reading and subsequent identification of the product are performed by analyzing the number and intensity of bands (DGGE bands) obtained in each processed label sample. This reading is made when it is intended to confirm the composition of the molecular label bands (eg before, during and after product labeling).
  • One embodiment of the present invention allows product identification and authentication by reading the DNA tag in situ (where the labeled product is). Reading the label in situ provides the user with an additional guarantee of safety as to the accuracy of the results. Sometimes, due to legal reasons, the material may not leave the site for analysis or the user needs to prove the authenticity or otherwise of the product expeditiously on site with witnesses or, by the presence of the competent authorities, etc ...
  • the present invention relates to a molecular label and method of labeling various materials (biological, non-biological and liquid media) from the use of molecular labels.
  • lecular cells containing chimeric deoxyribonucleic acid (DNA) molecules to label desired products.
  • the first step in the molecular tag production process involves the production of model chimeric DNA molecules. These molecules are copies of DNA of natural origin and DNA of synthetic origin that will later be produced in large quantities by polymerase chain reaction (PCR) and used in the formulation of the molecular label.
  • PCR polymerase chain reaction
  • the PCR technique is used to amplify naturally occurring microbial DNA fragments (eg, biological and environmental samples) using primers specific for certain regions of genomic DNA and to attach a GC clamp to the amplified fragments, suitable for analysis in DGGE (Heuer et al. (2001 - Heuer, H., G. ieland, J. Schönfeld, A. Schönwálder, NCM Gomes, and K. Smalla. 2001. Bacterial community profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Environmental Molecular Microbiology: Protocols and Applications Horizon Scientific Press, Ymondham, United Kingdom.).
  • Primers are small fragments of DNA previously synthesized in vitro by specialized companies (synthetic origin). These are synthesized with nucleotides complementary to the genomic DNA sequences flanking the region of interest to be amplified. Because of their ease in obtaining and diversity, primers are often specific for gene fragments of microbial origin (16S, 18S, rpoB and others). Therefore, amplified DNA consists of copies of synthetic DNA (primers) and natural genomic (microbial) DNA. The PCR fragments obtained in the previous step are then ligated into a vector (plasmid DNA molecule) and cloned (Green MR, Sambrook JR (2012) Molecular cloning: a laboratory manual. 4th edition. New York: Cold Spring Harbor Laboratory Press.
  • a PCR is then performed for the insertion of each clone with primers specific to the sites near the plasmid insertion region.
  • the amplified molecule thus corresponds to copies of the insertion region of the vector and In the present invention this molecule is referred to as a model chimeric DNA molecule, which will later be characterized by the DGGE technique, produced in large quantities by PCR and used in the formulation of the molecular labels.
  • synthesized model chimeric DNA molecules are amplified by PCR and analyzed by denaturing gradient gel electrophoresis (DGGE).
  • DGGE denaturing gradient gel electrophoresis
  • Different types of molecules have different mobilities in DGGE (bands). Molecules with distinct mobilities (bands in single positions) are selected for formulation of the molecular label.
  • the complexity of the molecular label barcode is defined as a function of the number (types of molecules) and intensity (concentration used of each type of molecule) of the bands. This allows labels with unique characteristics to be produced according to the needs of each case. For example, a specific label for each company, product, or product part.
  • a tag can contain from 1 to -100 types (bands) of chimeric DNA molecules. 3 ° Application of the molecular label
  • the label may be applied to the surface of various materials (biological and non-biological), added to various food products, or liquid media.
  • the molecular label may be prepared as a solution (eg ethanol, resins or just water), dehydrated or lyophilized.
  • the label may be applied by spraying, dropping or micro-dropping, or other mechanism that allows dispersion of the solution onto the material.
  • the dehydrated or lyophilized label may be applied by adhesives, resins and or other impregnation methods.
  • Label DNA molecules can also be applied to oily substances by transforming them into lipophilic compounds (eg, by using nanoparticles) or by incorporating the molecular label into phospholipid membranes.
  • bar code reading is based on the collection of chimeric DNA molecules.
  • DGGE bands obtained in each processed sample.
  • Tag reading can also be done using other DNA fragment molecular typing techniques (example: Single-stranded conformation polymorphism - SSCP and T-RFLP terminal zone restriction fragment length polymorphisms).
  • Figure IA Schematic representation of the synthesis and selection of chimeric DNA molecules.
  • Figure 1B Schematic representation of the application and detection of the molecular label produced from chimeric DNA molecules.
  • the molecular tag may be prepared by the following steps:
  • the PCR fragments obtained in the previous step are ligated to a vector (plasmid DNA molecule) and used to transform bacterial colonies, which are further isolated and used in the synthesis of the model chimeric DNA molecule.
  • the mobility of the model chimeric DNA molecule is determined by PCR amplification using primers (D2 - SEQ. ID NO.5 and R2 - SEQ. ID NO.6) complementary to the insertion sequences (cloning residue) being, then analyzed for their mobility in DGGE and selected (molecules with distinct mobilities) for molecular label formulation.
  • the complexity of the molecular label barcode is defined as a function of the number (types of chimeric DNA molecules) and intensity of the DGGE bands. Different types of model chimeric DNA molecules are produced for use in the label. Each tag may thus contain different complexities, conferred by the different number of distinctly mobile molecules, which result in distinct bands. Each tag can contain from 1 to ⁇ 100 types (bands) of model chimeric DNA molecules, thus defining a particular product, parts of a product, a company, etc.
  • Dehydrated or lyophilized solution may be applied to the label in a solid or liquid product, whether biological or not, by spraying, dropping or microgelling, or other mechanism allowing solution dispersion. on the material by means of adhesives, resins and or other impregnation methods, when lyophilized, on oily substances by transformation into lipophilic compounds or by incorporation of the molecular label into phosphorous membranes. folipidic.
  • samples of the molecular label may be collected by scraping or a smear.
  • Molecular Label Scanning is based on the collection of chimeric DNA molecules, amplification of the material collected by PCR using specific primers, followed by analysis of the PCR product in DGGE or from the use of of other DNA fragment typing techniques. The reading and subsequent identification of the product are performed by analyzing the number and intensity of bands (DGGE bands) obtained in each processed sample.
  • the product marking location (eg on the tail of the fish, on the surface of an electronic chip, etc.) should be defined and / or applied.
  • chimeric DNA molecules mixed in dyes or inks.
  • the molecular tag can also be impregnated on a paper tag or be integrated with other technologies such as electronic tags (eg RFID).
  • the present invention relates to a molecular label and method of labeling various liquid materials and media from the use of molecular labels containing chimeric deoxyribonucleic acid (DNA) molecules ( Figures 1A and 1B).
  • DNA chimeric deoxyribonucleic acid
  • DNA extraction and synthesis of the model chimeric DNA molecule can be performed as follows: a) DNA extraction (1st step).
  • the first step in the molecular label production process involves the extraction of microbial DNA from natural or environmental samples in general (eg soil, sediment, water and vegetable sample microorganisms).
  • DNA used for synthesis of chimeric DNA molecules was obtained from soil samples according to the protocol previously published by Gomes et al. (GOMES, NCM, COSTA, RS, SMALLA, K.
  • step 3 PCR fragments obtained in the previous step (insert) are then ligated to plasmid vectors (recombinant plasmids) and transformed using a cloning kit (example: ProMega pGEM-T Easy vector kit) or conventional methodologies (Green MR, Sambrook JR
  • recombinant plasmids are transformed into Escherichia coli.
  • the transformed bacteria are then selected in selective culture medium for the bacteria containing the recombinant plasmid.
  • Bacterial colonies containing the recombinant plasmid are then isolated (pure cultures) and further used in the synthesis of the model chimeric DNA molecule.
  • Synthesis of DNA chimeric molecule model step 4).
  • the amplified DNA fragment comprises part of the vector insertion region (region flanking the insert) and the insert.
  • the DNA fragment designated in the present invention is obtained as the model chimeric DNA molecule; containing DNA sequences of plasmid, synthetic (GC clamp and primers) and natural (16S rRNA gene fragment) origin ( Figure IA).
  • Chimeric DNA molecules obtained at this stage are further characterized by the DGGE technique for formulation of molecular labels.
  • Another way of obtaining the template chimeric DNA molecule may be as follows: Synthesis of the template chimeric DNA molecule can also be accomplished by using PCR without the need for cloning. Naturally derived DNA fragments (see topic la) can be amplified with slightly modified DGGE primers (see topic lb).
  • characterization and production of the molecular label may be performed as follows: a) Determination of the mobility of the chimeric DGGE model DNA molecule (5th step).
  • the model chimeric DNA molecules synthesized in the previous step (PCR product) are then subjected to a second round of amplification (PCR) using D2 - SEQ primers.
  • the DGGE image can be processed with a specific program for transforming DGGE profiles into densitometric curves.
  • This analysis can be performed according to the methodology published by Gomes et al. (2010 - Gomes NC., Landi L., Smalla K., Nannipieri P., Brookes PC, Renella G. (2010) Effects of Cd- and Zn-enriched sewage sludge on bacterial soil and fungal communities (Ecotoxicology and Environmental Safety. 73, 6, 1255-63.).
  • This procedure allows to determine the mobility of the model DNA molecule in DGGE. Different types of molecules have different mobilities in DGGE (bands). Therefore, molecules with distinct mobilities (bands at single positions) are selected for molecular label formulation.
  • the formulation and production of the molecular tag step 6).
  • the complexity of the molecular label (formulation) barcode is defined as a function of number (types of chimeric DNA molecules) and band intensity (concentration used of each model chimeric DNA molecule).
  • a tag may contain from 1 to 100 types of model chimeric DNA molecules (bands).
  • the band intensity of each molecule is then decided. THE The intensity of the bands is defined by the DNA concentration, estimated by spectrophotometry, used for each chimeric DNA molecule during molecular label preparation.
  • the insert PCR is performed with primers D1 (SEQ. ID NO.3) and RI (SEQ. ID NO. 4) for each selected molecule (clones containing recombinant plasmid). ) according to the procedure described in topic ld
  • primers D1 SEQ. ID NO.3
  • RI SEQ. ID NO. 4
  • the chimeric DNA molecules produced in the application solution are mixed (see topic 3.a), respecting the concentration or proportion of each molecule according to the decisions made during the label formulation step.
  • This methodology allows labels with unique characteristics to be produced according to the needs of each case. For example, a specific label for each company, product, or product part. The amount of label to be produced will depend on the amount and type and material to be marked.
  • the DGGE band profile should be recorded at the end of each label production (see topic 2. a).
  • Label reading can also be performed using other DNA fragment molecular typing techniques.
  • SSCP single-stranded conformation polymorphism
  • T-RFLP terminal zone restriction fragment length polymorphisms
  • PCR-SSCP a simple and sensitive method for detection of mutations in the genomic DNA PCR Methods Appl 1: 34-38 Liu WT TL Marsh H. CHeng and LJ Forney 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of 16S encoding genes Appl. Environ. Microbiol. 63: 4516-4522.).
  • the marking of different materials (organic and non organic) and reading of the molecular tag it can be made as follows: a) application of molecular tag (step 7).
  • the label may be applied to the surface of various materials, added to various food products on the surface of biological materials or living organisms.
  • the molecular label may be prepared and applied as a solution (eg 70% ethanol in ultra pure water, resins or just water), dehydrated or lyophilized.
  • the label may be applied by spraying, dropping or micro-dropping, or other mechanism allowing dispersion of the solution onto the material.
  • the dehydrated or lyophilized label may be applied as a suspension by adhesives, resins and or other impregnation methods.
  • Label DNA molecules can also be applied to oily substances by their transformation into lipophilic compounds (eg by use of nanoparticles) or by incorporation of the molecular label into phospholipid membranes.
  • the product marking site should be defined (eg, on the tail of the fish, on the surface of an electronic chip, etc.) and / or the mixed chimeric DNA molecules in dyes or inks.
  • the molecular tag may also be impregnated on a paper tag or integrated with other technologies such as electronic tags (eg RFID).
  • the sample is then dissolved in ultrapure water or TE buffer (10mM tris-HCl, 1mM EDTA, pH8) (100-250 ⁇ ) for 10 minutes at 60 ° C.
  • TE buffer 10mM tris-HCl, 1mM EDTA, pH8
  • additives may be used in the molecular label dissolution process, depending on the vehicle or form from which the label is made and the compatibility of reagents with PCR.
  • PCR consists of amplifying copies of the chimeric DNA molecules used in the molecular tag.
  • the PCR product is then analyzed using the DGGE technique (Heuer et al., 2001) (see topic 2.a).
  • Label reading is based on the analysis of the number and intensity of bands (band profile) obtained in each sample by the DGGE technique (see topic 2.a). The results are then compared to the reference sample profile (see topic
  • the label can be read in situ (where the product is). All equipment involved in this step can be purchased in a portable or small version (eg thermal cycler, electrophoresis tub). for DGGE, precast acrylamide gels and accessories). PCR reagents may be lyophilized in the reaction tubes and hydrated on site immediately prior to reading. The rest of the reagents can be easily transported to the assay site.
  • DNA used for synthesis of chimeric DNA molecules was extracted from soil samples (environmental sample) according to the protocol previously published by Gomes and colleagues (GOMES, NCM, COSTA, RS, SMALLA, K (2004) Rapid simultaneous extraction of DNA and RNA from bulk and rhizosphere soil In: Microbial Molecular Ecology Manual Kowalchuk, GA, Bruijn, FJ, Head, IM, Akkermans, ADL, Elsas, JD van. Publishers lOpp 2. Ed) (see topic la). 2. Synthesis of DNA fragments of natural origin.
  • primers F968-GC-SEQ ID NO.le L1401-SEQ ID NO.2 were used to amplify the 16S rRNA gene fragments from the environmental DNA sample.
  • primer F968-GC - SEQ ID NO.l was used to add GC clamp to amplified molecules (see topic lb).
  • model chimeric DNA molecule in DGGE The model chimeric DNA molecules synthesized in the previous step (PCR product) are then subjected to a second round of PCR amplification using D2-SEQ ID NO.5 and R2-SEQ ID NO.5 primers complementary to the sequences. insertion (cloning residue). Then a small aliquot (2-4 ⁇ 1) of the PCR product is analyzed in DGGE according to the protocol published by Heuer and colleagues (2001- Heuer, H., G. Ireland, J. Sch ⁇ nfeld, A. Schönwolder, NCM Government mes, and K. Smalla. 2001. Bacterial community profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Environmental molecular microbiology: protocols and applications Horizon Scientific Press, Wymondham, United Kingdom. ). This procedure allows the determination of the mobility of the model DNA molecule in DGGE (see topic 2.a).
  • the complexity of the molecular label barcode is defined as a function of the number (types of chimeric DNA molecules) and the intensity of the DGGE bands.
  • two molecules with distinct mobilities (single position bands) in DGGE were selected, according to the analysis of DGGE bands in the previous topic. These molecules were named as type 1 and type 2 and then used in the formulation of the molecular label.
  • PCR was then performed for recombinant plasmids containing the selected molecules (inserts for type 1 and 2 chimeric DNA molecules) in 50 ⁇ reaction with primers D1 (SEQ. ID NO.3) and RI (SEQ. ID NO .4) (see topic 2.b).
  • the PCR product was then purified by ethanol precipitation and reconstituted in 50 ⁇ of ultra pure water. Then the molecular label was prepared by homogenizing the PCR product obtained for the type 1 and 2 chimeric DNA molecules ( ⁇ 200 ng each 1: 1) in 10 ml application solution (70% ethanol in ultra-high water). pure).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A presente invenção refere-se a uma etiqueta molecular e um processo de marcação de diversos materiais e meios líquidos a partir da utilização de moléculas de ácido desoxirribonucleico (ADN) quimérico para formulação de etiquetas e a utilização das técnicas de reação em cadeia da polimerase (PCR) e eletroforese em gel de gradiente desnaturante (DGGE) para identificação da etiqueta. A etiqueta molecular para marcar um substrato, descrita na presente invenção, compreende: uma mistura de uma pluralidade de moléculas de ADN, cada uma das quais compreende um fragmento ADN grampo-GC como segmento identificador e um fragmento de ADN microbiano como segmento codificador, em que pelo menos dois dos referidos fragmentos de ADN microbiano têm origem em diferentes microrganismos; e um veículo para suportar a referida mistura. Assim, a presente invenção insere-se na área da rastreabilidade e identificação de diversos materiais com aplicação em qualquer tipo de atividade em que o uso da rastreabilidade ou certificação de origem seja necessário.

Description

DESCRIÇÃO
ETIQUETA MOLECULAR CONTENDO MOLÉCULAS DE ADN E PROCESSO DE MARCAÇÃO E IDENTIFICAÇÃO DA ETIQUETA
Domínio técnico da invenção
A presente invenção refere-se a uma etiqueta molecular e um processo de marcação de diversos materiais (sólidos ou líquidos) a partir da utilização de etiquetas moleculares contendo moléculas de ácido desoxirribonucleico (ADN) quiméricas.
Desta forma, a presente invenção insere-se no domínio da rastre- abilidade e identificação de diversos materiais com aplicação em qualquer tipo de atividade em que o uso da rastreabilidade ou certificação de origem seja necessário (ex. indústria agroali- mentar, farmacêutica, veterinária e agronómica) ou em qualquer tipo de atividade em que o uso da rastreabilidade ou certificação de origem seja necessário. Um dos objetivos da presente invenção é identificar e rastrear diversos materiais (biológicos e não biológicos) e meios líquidos.
Antecedentes da Invenção
Com a crescente globalização dos mercados torna-se cada vez mais importante o registo das informações a respeito da origem das mercadorias e as circunstâncias em que estas são produzidas. Portanto, a utilização de um sistema de rastreabilidade e identificação de mercadorias, é de fundamental importância para garantir a origem, qualidade e segurança de uma determinada mercadoria. Além disso, a adoção de um sistema de rastreabilidade pode agregar valor ao produto. A princípio, é fundamental que os métodos de rastreabilidade garantam, pelo menos, duas informa- ções básicas a respeito da mercadoria: identificação e certificação de origem.
Os sistemas mais usados atualmente baseiam-se na utilização de etiquetas adesivas com ou sem códigos de barras e etiquetas ele- trónicas com identificação por radiofrequência (RFID) . A primeira patente baseada em código de barras foi publicada em 1952 (US 2612994). As etiquetas eletrónicas são mais usadas na cadeia de suprimentos, em escala industrial ou para produtos diferenciados de elevado valor. A primeira patente para uma etiqueta de RFID foi concedida em 1973 (US 3713148) .
Em 2004, pela primeira vez, Beda M. Stadler publicou um documento de patente reivindicando a utilização de sequências de ADN para armazenar informação, podendo ser usada para marcar objectos ou organismos não humanos (US 20040043390 Al).
Essa informação, por sua vez, é obtida a partir das moléculas de ADN (previamente sintetizadas contendo a informação desejada na forma de código) através do uso de tecnologias sofisticadas.
Descrição Geral
A presente invenção refere-se a um processo de marcação de diversos materiais e meios líquidos a partir da utilização de etiquetas moleculares contendo moléculas de ácido desoxirribonu- cleico (ADN) quimérico.
Uma pluralidade de moléculas de ADN quimérico podem ser utilizadas na preparação da etiqueta. A etiqueta pode ser aplicada na superfície de diversos materiais ou meios líquidos. A leitura da etiqueta pode ser efetuada através das técnicas de reação em cadeia da polimerase (PCR) e eletroforese em gel de gradiente des- naturante (DGGE) . O conjunto de moléculas detetadas numa etiqueta fornece informações relevantes para o controle do produto na forma do código de barras. O material marcado pode estar relacionado com produtos primários e industriais.
Assim, a presente invenção insere-se na área da rastreabilidade e identificação de diversos materiais com aplicação em qualquer tipo de atividade em que o uso da rastreabilidade ou certificação de origem seja necessário.
Contudo as etiquetas atualmente existentes podem ser adulteradas, falsificadas, substituídas por outras etiquetas ou simplesmente removidas. A presente invenção pretende ultrapassar essas limitações através da marcação dos produtos com etiquetas moleculares a partir de ADN microbiano em que a mistura não existe diretamente na natureza. As etiquetas moleculares podem assim ser usadas como uma alternativa ou em conjunto com às tecnologias referidas anteriormente, na marcação de produtos em geral.
A presente invenção possibilita que fragmentos de ADN microbiano de qualquer origem (por exemplo amostras biológicas e ambientais) possam ser usados na elaboração da molécula de ADN quimérica modelo (ADN usado como modelo para formulação da etiqueta molecular), sem que haja a necessidade de utilizar sequências de ADN contendo qualquer tipo de informação significante.
A presente invenção refere-se a uma etiqueta molecular e um processo de marcação de diversos materiais (biológicos, não biológicos e meios líquidos) a partir da utilização de etiquetas moleculares contendo moléculas de ADN quimérico. Assim sendo, pela solução apresentada consegue-se um código escalável com base em fontes naturais mas que não existe na natureza como tal e ainda de fácil e rápida identificação (por exemplo para se determinar apenas uma amostra aleatória num dado lote de produtos) .
Na presente invenção o código é classificado de facilmente escalável na medida em que as possibilidades de combinação permitem que seja possível aplicar uma etiqueta molecular contendo um código específico para cada produto. Numa realização preferencial, em um caso hipotético onde a etiqueta molecular a ser aplicada é constituída por 10 bandas (10 tipos de moléculas de DNA quimérico modelo) , e que para isso há uma coleção de 20 tipos de ADN quimérico modelo, é possível obter 184756 códigos diferentes.
Isso sem levar em consideração a possibilidade de adicionar variações na intensidade de cada banda usada na etiqueta molecular. Se adicionarmos a este facto a possibilidade de se utilizar DNA de diferentes microrganismos a etiqueta molecular descrita na presente invenção é dificilmente adulterada.
Através do DGGE é obtido um perfil de bandas, cuja presença/ausência e intensidade é suscetível de servir como base de codificações (de forma análoga ao código de barras tradicional) da etiqueta molecular. Esta forma de codificação na presente invenção é designada como código de barras.
A presente invenção, além de aumentar as probabilidades de combinação dificultando a adulteração do código torna também muito mais simples o processo de criação e formulação das etiquetas moleculares, reduzindo ainda os gastos com a síntese e leitura das etiquetas de ADN. A simplicidade da metodologia de leitura da presente invenção permite ainda a possibilidade de identificar e autenticar o produto in situ, através da utilização de equipamentos de biologia molecular portáteis. Uma outra vantagem é a elevada fiabilidade. Devido ao fato das moléculas de ADN serem quimérico, é praticamente impossível que estas ocorram naturalmente .
Um aspeto da presente invenção descreve uma etiqueta molecular para marcar um substrato compreendida por: uma mistura de uma pluralidade de moléculas de ADN (ou moléculas de ADN quimérico) , cada uma das quais compreende um fragmento ADN grampo-GC (GC-clamp, SEQ . ID. No. 7 ) como segmento identificador e um fragmento de ADN microbiano como segmento codificador,
em que pelo menos dois dos referidos fragmentos de ADN microbiano têm origem em diferentes microrganismos;
e um veiculo para suportar a referida mistura.
Entende-se por molécula de ADN quimérica modelo, cada uma das moléculas de ADN que compreende um fragmento ADN grampo-GC como segmento identificador e um fragmento de ADN microbiano como segmento codificador.
Numa outra realização as referidas moléculas de ADN foram obteníveis separadamente.
Numa outra realização os fragmentos de ADN microbiano da etiqueta molecular da presente invenção podem ter um tamanho que varia entre 200-1800 pb (pares de bases) .
Numa outra realização os fragmentos da etiqueta molecular da presente invenção podem ter o mesmo número de par de bases.
Numa outra realização a etiqueta molecular da presente invenção podem ainda compreender iniciadores (primers) selecionados da seguinte lista: SEQ. ID N0.1; SEQ ID NO.2; SEQ. ID NO.3; SEQ. ID NO. ; SEQ. ID NO.5; SEQ. ID NO.6.
Numa outra realização a concentração de cada uma das referidas moléculas de ADN quimérico modelo é variável, em que uma determinada densidade conferida pela respetiva concentração de ADN.
Numa outra realização a etiqueta molecular da presente invenção pode apresentar-se na forma desidratada, liofilizada ou liquida. Numa outra realização da etiqueta molecular os substratos a mar¬ car podem ser sólidos ou líquidos.
Numa outra realização os veículos para substratos sólidos da etiqueta molecular da presente invenção podem ser selecionados da seguinte lista: resinas epóxi, tintas, partículas carregadoras, nanopartículas , membranas fosfolipídicas , entre outros.
Numa outra realização os veículos para substratos líquidos da etiqueta molecular da presente invenção, podem ser selecionados da seguinte lista: soluções aquosas, soluções que compreendem etanol, soluções que compreendem acetona, entre ouros.
Outro aspeto da presente invenção são os objetos etiquetados que compreendem as etiquetas descritas na presente invenção. Os objetos etiquetados podem ser alimentos, medicamentos, papel, documentos, couro, roupa, canetas, relógios, jóias, um artigo eletrónico, embalagem plástica, etiquetas. outro aspeto da presente invenção diz respeito a um processo
• para incorporação da etiqueta molecular descrita nas reivindicações anteriores no substrato a marcar que compreende os seguintes passos:
• síntese de cada uma das moléculas de ADN quimérico - modelo - a partir de uma pluralidade de iniciadores e fragmentos de gene selecionados de uma ou mais moléculas de ADN microbiano, em que cada molécula de ADN contem fragmento ADN grampo-GC (GC clamp - SEQ. ID. No. 7) como segmento identificador e um fragmento de ADN microbiano como segmento codificador;
• mistura de cada uma das moléculas de ADN obtidas;
• produção de pelo menos uma etiqueta molecular que compreende uma pluralidade de moléculas de ADN, com uma determinada densidade conferida pela respetiva concentração de ADN; • marcação do substrato com pelo menos uma etiqueta molecular .
Numa outra realização do processo de marcação da presente invenção as referidas moléculas de ADN podem ser obtidas separadamente, em particular, pelo passo de clonagem em Escherichia coli e preparação de bibliotecas genómicas contendo diferentes tipos de insertos .
Numa outra realização do processo de marcação da presente invenção a síntese de pelo menos um dos referidos fragmento de ADN compreende a inserção de iniciadores específicos para os sítios próximos à região de inserção do plasmídeo. De preferência os referidos iniciadores (primers) podem ser selecionados da seguinte lista SEQ. ID NO.l; SEQ ID NO.2; SEQ. ID NO.3; SEQ. ID NO. ; SEQ. ID NO.5; SEQ. ID N0.6.
Numa oura realização do processo de marcação da presente invenção a etiqueta molecular obtida pode ser desidratada, liofiliza- da ou manter-se em solução ou na forma de nanopartículas .
Numa oura realização do processo de marcação da presente invenção a marcação do substrato/material pode ser por aspersão, por depósito de gotas ou microgotas, impregnação com substâncias adesivas e/ou resinas.
Uma oura realização do processo de marcação da presente invenção a etiqueta descrita pode compreender ainda uma membrana fosfo- lipídica .
Numa outra realização preferencial a pluralidade de moléculas de ADN as podem ser utilizadas na preparação da etiqueta - isto é na síntese de uma molécula de ADN quimérica modelo, é preciso inicialmente amplificar através da técnica de reação em cadeia da polimerase (PCR) fragmentos de ADN alvo (exemplo: o gene 16S rRNA) a partir do ADN extraído de uma amostra ambiental originá- rio de uma espécie ou uma pluralidade de espécies microbianas, naturalmente presentes na amostra. Para isso é necessário iniciadores específicos para o gene alvo (exemplo: iniciadores F968- GC/ SEQ. ID N0.1 e L1401 / SEQ ID NO.2 para o gene 16S rRNA) . Sendo que um dos iniciadores deve conter o grampo-GC na extremidade 5" (SEQ. ID NO.7). Os fragmentos amplificados por PCR obtidos são então ligados a um vetor (plasmideo) e clonados. Reali- za-se então uma PCR para o inserto (fragmento de ADN inserido no plasmideo) de cada clone previamente isolado com iniciadores específicos para os sítios próximos à região de inserção do plasmideo (iniciadores Dl - SEQ. ID NO.3 e RI - SEQ. ID NO.4). Rea- liza-se novamente um segundo PCR para o produto de PCR obtido utilizando-se dessa vez os iniciadores D2 - SEQ. ID NO.5 e R2 - SEQ. ID NO.6. O produto de PCR de cada inserto é então analisado em gel de gradiente desnaturante (DGGE) para determinação da sua mobilidade. Essa etapa permite a identificação dos clones carregando insertos com tamanhos corretos e com mobilidades distintas em DGGE. Um ou mais clones carregando insertos distintos são então selecionados para posterior utilização na formulação e produção da etiqueta molecular. Para os clones selecionados, reali- za-se novamente uma PCR para o inserto utilizando-se os iniciadores específicos Dl (SEQ. ID NO.3) e RI (SEQ. ID NO.4). Nesta etapa iniciasse a produção das diferentes moléculas de ADN quimérico nas concentrações desejadas para formulação da etiqueta molecular. Nesta fase o produto de PCR do inserto é então denominado nessa invenção como molécula de ADN quimérica modelo. O produto de PCR de pelo menos um inserto é usado para formulação da etiqueta molecular, quanto mais insertos são adicionados na composição da etiqueta mais bandas de DGGE estarão presentes na etiqueta. A quantidade ou concentração de ADN (produto de PCR) de cada inserto também irá influenciar na intensidade de cada banda .
Um outro aspeto da presente invenção descreve um processo de identificação e/ou rastreio de material diverso que compreende a deteção de pelo menos uma etiqueta molecular descrita na presente invenção.
Uma outra realização do processo de identificação e/ou rastreio de identificação descrito na presente invenção compreende ainda a etapa de comparação de pelo menos uma etiqueta molecular com o perfil de uma amostra (ou etiqueta molecular de ADN) de referência do material marcado.
Numa outra realização a quantidade adicionada de cada tipo de molécula /fração de ADN quimérica na etiqueta molecular também é usada como informação - por exemplo de intensidade das barras (bandas), durante o processo de leitura da mesma. Portanto, a deteção e leitura da etiqueta desta invenção é altamente especifica dificultando assim cópias falsas ou adulterações, permitindo que cada etiqueta gerada possa servir como selo de garantia para inúmeros substratos/materiais/produtos.
Veiculo - Na presente invenção a palavra veiculo é usada como termo genérico para substâncias que possam ser utilizadas na incorporação e formulação da etiqueta molecular com o objetivo de aumentar o seu volume ou massa. Na presente invenção essas substâncias podem atuar no processo de aplicação, estabilidade e proteção da etiqueta (exemplo: substâncias adesivas, resinas, tintas, soluções aquosas e substâncias ou partículas carregadoras) .
Substrato/material - Assume—se na presente invenção que o termo substrato refere-se a qualquer objeto ou material no qual a etiqueta molecular possa ser adicionada (exemplo: alimentos, medicamentos, objetos, canetas, relógios, papel; jóias, objetos elé- tricos ou eletrónicos) . A etiqueta pode ser aplicada na superfície de diversos materiais (biológicos e não biológicos), adicionada em diversos produtos alimentares, ou meios líquidos. A deteção das moléculas de ADN (identificação da etiqueta) é efetuada através das técnicas de reaçâo em cadeia da polimerase (PCR) e eletroforese em gel de gradiente desnaturante (DGGE) .· Estas técnicas possibilitam a deteção de cada molécula de ADN quimérica utilizada na preparação da etiqueta na forma de perfil de bandas (ou código de barras) . O produto (ou material) marcado com a etiqueta pode estar relacionado com produtos primários e industriais (ou diversos materiais) , cuja origem e identificação é desconhecida ou se pretende confirmar. Assim, a presente invenção insere-se na área da rastreabilidade e identificação de diversos materiais e meios líquidos com aplicação em várias indústrias (ex. indústria agro- alimentar, farmacêutica, veterinária e agronómica) ou qualquer tipo de atividade em que o uso da rastreabilidade ou certificação de origem seja necessário.
A presente invenção visa, através do uso da etiqueta molecular, providenciar informação mais segura e confiável sobre um determinado produto, evitando assim, que a informação a respeito da identificação e origem da mercadoria seja removida ou adulterada durante as diferentes fases de produção, transformação, distribuição e/ou comercialização. Desta forma, um dos objetos da presente invenção é fornecer uma etiqueta e um processo de marcação de diversos materiais (biológicos e não biológicos) através da utilização de etiquetas moleculares contendo moléculas de ADN - quimérico, de preferência de origem microbiana.
Vantagens técnicas da presente invenção:
Inicialmente a síntese do código de barras de ADN envolve a criação da molécula de ADN quimérica modelo. Esta molécula é compreendida por cópias de ADN de origem natural e ADN de origem sintética que serão posteriormente produzidas em grande quanti- dade através da técnica de PCR. A maior parte da molécula de ADN quimérica é sintetizada a partir de outra molécula de ADN facil¬ mente obtida a partir do ambiente, de culturas puras ou misturas de microrganismos ambientais. Um fragmento de ADN de qualquer tipo ou origem microbiana pode ser usado para elaboração da mo¬ lécula de ADN quimérica modelo desde que os referidos fragmentos de ADN microbiano tenham mobilidades distintas em DGGE . Além disso, a utilização de fragmentos de ADN natural na síntese da molécula quimérica diminui os gastos associados com a síntese de moléculas ADN por empresas especializadas.
A tecnologia da presente invenção produz moléculas de ADN quimérico não codificadoras inexistentes na natureza e sem adição de substancias químicas atípicas ao ADN (exemplo: fluorocromos ) . Portanto, não transmitem informações que possam oferecer algum perigo ao meio ambiente ou substâncias de efeito desconhecido a saúde humana. Assim sendo, este tipo de etiquetas podem ser usadas em produtos alimentares, farmacêuticos e/ou cosméticos
Após a criação das moléculas quimérico modelo, a síntese da etiqueta em larga escala é de baixo custo e não envolve clonagem. A etiqueta molecular pode ser produzida em grande quantidade sem a necessidade de recorrer a aparelhos sofisticados e caros. Basta a utilização de um termociclador e dos seus respetivos reagentes .
A inclusão de um grampo de GC e/ou iniciadores permite que a leitura da etiqueta molecular seja muito simples, não exigindo equipamentos sofisticados e caros e não implica a sequenciação da molécula. A leitura da etiqueta pode ser efetuada diretamente a partir da amostra coletada através da técnica de PCR-DGGE, utilizando-se para o efeito: um termociclador, uma eletroforese em gel de gradiente desnaturante (DGGE) e seus respetivos reagentes. Portanto a leitura das etiquetas é rápida e económica. Numa realização da presente invenção a leitura da etiqueta é efetuada a partir da identificação do número e intensidade das barras (bandas de DGGE) (Figura 1) e não dos nucleótidos. A leitura e subsequente identificação do produto são realizadas através da análise do número e intensidade de bandas (bandas de DGGE) obtidas em cada amostra de etiqueta processada. Essa leitura é feita quando se pretende confirmar a composição de bandas da etiqueta molecular (por exemplo: antes, durante e depois da marcação dos produtos) .
Uma realização da presente invenção permite a identificação e autentificação do produto através da leitura da etiqueta de ADN in situ (no local onde se encontra o produto marcado) . A leitura da etiqueta in situ fornece ao utilizador uma garantia adicional de segurança quanto a veracidade dos resultados. Por vezes, devido a questões legais, o material não pode sair do local para análise ou o utilizador precisa provar a autenticidade ou não do produto de maneira expedita no local com testemunhas ou, pela presença das entidades competentes, etc...
Elevada fiabilidade. Devido ao fato das moléculas de ADN serem quimérico, é praticamente impossível que estas ocorram naturalmente. Para aumentar ainda mais a complexidade do código a quantidade adicionada de cada tipo de molécula/fração de ADN quimérica durante a formulação da etiqueta molecular, também é usada como informação (intensidade das barras) durante o processo de leitura da mesma. Portanto, a deteção e leitura da etiqueta da presente invenção é altamente específica e de difícil adulteração .
Descrição geral da invenção
A presente invenção refere-se a uma etiqueta molecular e um processo de marcação de diversos materiais (biológicos, não biológicos e meios líquidos) a partir da utilização de etiquetas mo- leculares contendo moléculas de ácido desoxirribonucleico (ADN) quimérico para marcar os produtos desejados.
Etapas envolvidas na produção e aplicação da etiqueta molecular:
1° - Realização da síntese das moléculas de ADN quimérico modelo
A primeira etapa do processo de produção da etiqueta molecular envolve a produção das moléculas de ADN quimérico modelo. Estas moléculas são cópias de ADN de origem natural e ADN de origem sintética que serão posteriormente produzidas em grande quantidade através da reação em cadeia da polimerase (PCR) e usadas na formulação da etiqueta molecular.
Numa realização da presente invenção, a técnica de PCR é usada para amplificar fragmentos de ADN microbiano de origem natural (exemplo: amostras biológicas e ambientais) utilizando-se iniciadores específicos para determinadas regiões do ADN genómico e para acoplar um grampo GC aos fragmentos amplificados, adequado para análise em DGGE (Heuer e colaboradores (2001 - Heuer, H. , G. ieland, J. Schõnfeld, A. Schõnwálder, N. C. M. Gomes, and K. Smalla. 2001. Bacterial community profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Environmental molecular microbiology : protocols and applications Horizon Scien- tific Press, ymondham, United Kingdom. ) .
Os iniciadores são pequenos fragmentos de ADN previamente sintetizados in vitro por empresas especializadas (origem sintética) . Estes são sintetizados com nucleótidos complementares às sequências do ADN genómico que flanqueiam a região de interesse a ser amplificada. Devido a sua fácil obtenção e diversidade, os iniciadores são frequentemente específicos para fragmentos de genes de origem microbiana (gene 16S, 18S, rpoB e outros) . Portanto, o ADN amplificado consiste em cópias do ADN sintético (iniciadores) e ADN genómico (microbiano) natural. Os fragmentos de PCR obtidos na etapa anterior são então ligados a um vetor (molécula de ADN plasmidico) e clonados (Green MR, Sambrook JR (2012) Molecular cloning: a laboratory manual. 4th edition. New York: Cold Spring Harbor Laboratory Press. 2028 p.. Depois do isolamento dos clones, realiza-se então uma PCR para o inserto de cada clone com iniciadores específicos para os sítios próximos à região de inserção do plasmídeo. A molécula amplificada corresponde assim a cópias da região de inserção do vetor e inserto. Na presente invenção esta molécula é designada como molécula de ADN quimérica modelo, que posteriormente será caracterizada através da técnica de DGGE, produzida em grandes quantidades através da PCR e utilizada na formulação das etiquetas moleculares .
2° - Realização da Produção da etiqueta molecular
Numa realização da presente invenção, na quarta e quinta etapa do processo, as moléculas sintetizadas de ADN quimérico modelo são amplificadas através da PCR e analisadas por eletroforese em gel com gradiente desnaturante (DGGE). Diferentes tipos de moléculas apresentam diferentes mobilidades em DGGE (bandas). Moléculas com mobilidades distintas (bandas em posições únicas) são selecionadas para formulação da etiqueta molecular. Nesta fase define-se a complexidade do código de barras da etiqueta molecular em função do número (tipos de moléculas) e intensidade (concentração usada de cada tipo de molécula) das bandas. Isto permite que sejam produzidas etiquetas com características únicas, de acordo com a necessidade de cada caso. Por exemplo, uma etiqueta específica para cada empresa, produto ou partes do produto. Em geral, em termos de mobilidade em DGGE, uma etiqueta pode conter de 1 a -100 tipos (bandas) de moléculas de ADN quimérico. 3° - Realização da aplicação da etiqueta molecular
Numa realização da presente invenção, a etiqueta pode ser aplicada na superfície de diversos materiais (biológicos e não biológicos) , adicionada em diversos produtos alimentares, ou meios líquidos. Para esse fim, dependendo do material a ser marcado, a etiqueta molecular pode ser preparada sob a forma de solução (exemplo: etanol, resinas ou apenas água), desidratada ou liofi- lizada. Quando em solução a etiqueta pode ser aplicada através de aspersão, por depósito de gotas ou microgotas, ou outro mecanismo que permita a dispersão da solução sobre o material. A etiqueta desidratada ou liofilizada pode ser aplicada através de substâncias adesivas, resinas e ou outros métodos de impregnação. As moléculas de ADN da etiqueta também podem ser aplicadas em substâncias oleosas através da sua transformação em compostos lipofílicos (exemplo: através do uso de nanopartículas) ou através da incorporação da etiqueta molecular em membranas fosfo- lipídicas .
4° - Realização da leitura das etiquetas
Numa realização da presente invenção, a leitura do código de barras baseia-se na recolha das moléculas de ADN quimérico
(através da raspagem ou de um esfregaço) , amplificação direta do material coletado pela técnica da reação em PCR (utilizando-se iniciadores específicos) , seguida da análise do produto de PCR em DGGE. A leitura e subsequente identificação do produto são realizadas através da análise do número e intensidade de bandas
(bandas de DGGE) obtidas em cada amostra processada. A leitura da etiqueta também pode ser feita a partir da utilização de outras técnicas de tipagem molecular de fragmentos de ADN (exemplo: Polimorfismo de conformação de filamento único - SSCP e Polimorfismos no comprimento dos fragmentos de restrição da zona terminal T-RFLP) . Breve descrição das figuras
Para uma mais fácil compreensão da invenção juntam-se em anexo as figuras, as quais, representam realizações preferenciais do invento que, contudo, não pretendem limitar o objeto da presente invenção .
Figura IA: Representação esquemática da síntese e seleçâo das moléculas de ADN quimérico.
Figura 1B: Representação esquemática da aplicação e deteção da etiqueta molecular produzida a partir de moléculas de ADN quimérico.
Numa realização preferencial, a etiqueta molecular poderá ser preparada pelos seguintes passos:
1. Extração de ADN de uma fonte natural ou ambiental, como por exemplo do solo, para ser utilizado na síntese de ADN quimérico.
2. Síntese de fragmentos de ADN de origem natural, através do uso de PCR em conjunto com os iniciadores selecionados para amplificar os fragmentos do gene 16S rRNA da amostra de ADN ambiental escolhida e para adição do grampo GC, com uso de um dos iniciadores, às moléculas amplificadas.
3. Clonagem, os fragmentos de PCR obtidos na etapa anterior, são ligados a um vetor (molécula de ADN plasmídico) e usados para transformar colónias de bactérias, que são posteriormente isoladas e utilizadas na síntese da molécula de ADN quimérica modelo.
4. Síntese da molécula de ADN quimérica modelo. Os insertos clo- nados são amplificados por PCR com iniciadores específicos para uma região de inserção do ADN plasmídico selecionada, obtendo-se assim uma molécula de ADN quimérica modelo para cada inserto, que compreende sequências de ADN de origem plasmidial (resíduo da clonagem) , sintética (grampo GC e iniciadores) e natural (fragmentos do gene selecionado 16S rRNA da amostra ambiental).
5. Determinação da mobilidade da molécula de ADN quimérica modelo. A mobilidade das moléculas de ADN quimérico modelo é determinada através da amplificação por PCR utilizando-se iniciadores (D2 - SEQ. ID NO.5 e R2 - SEQ. ID NO.6) complementares às sequências de inserção (resíduo da clonagem) sendo, em seguida analisadas quanto à sua mobilidade em DGGE e selecionadas (moléculas com mobilidades distintas) para formulação da etiqueta molecular.
6. Produção da etiqueta molecular e solução de aplicação. Nessa fase, define-se a complexidade do código de barras da etiqueta molecular (formulação) em função do número (tipos de moléculas de ADN. quimérico) e intensidade das bandas de DGGE. Diferentes tipos de moléculas de ADN quimérico modelo são produzidas para uso na etiqueta. Cada etiqueta poderá assim conter diferentes complexidades, conferidas pelo diferente número de moléculas com mobilidade distintas, que resultam em bandas distintas. Cada etiqueta pode conter de 1 a ~100 tipos (bandas) de moléculas de ADN quimérico modelo, definindo assim um determinado produto, partes de um produto, uma empresa, etc.
7. Aplicação e coleta de amostras da etiqueta molecular. A aplicação da etiqueta, em forma de solução, desidratada ou liofili- zada pode ser realizada num produto sólido ou líquido, biológico ou não, através de aspersão, por depósito de gotas ou microgo- tas, ou outro mecanismo que permita a dispersão da solução sobre o material, através de substâncias adesivas, resinas e ou outros métodos de impregnação, quando liofilizada, em substâncias oleosas através da sua transformação em compostos lipofílicos ou através da incorporação da etiqueta molecular em membranas fos- folipidicas. No momento da leitura, a coleta de amostras da etiqueta molecular pode ser feita através da raspagem ou de um es- fregaço .
8. Leitura das etiquetas moleculares: A leitura do código de barras baseia-se na recolha das moléculas de ADN quimérico, amplificação do material coletado por PCR com utilização de iniciadores específicos, seguida da análise do produto de PCR em DGGE ou a partir da utilização de outras técnicas de tipagem molecular de fragmentos de ADN. A leitura e subsequente identificação do produto são realizadas através da análise do número e intensidade de bandas (bandas de DGGE) obtidas em cada amostra processada.
Numa realização da presente invenção, para facilitar a localização da etiqueta no momento da leitura, deve-se definir o local de marcação do produto (exemplo: na cauda do pescado, sobre à superfície de um chip eletrônico, etc.) e/ou aplicar as moléculas de ADN quimérico misturadas em corantes ou tintas. A etiqueta molecular também pode ser impregnada em uma etiqueta de papel ou ser integrada com outras tecnologias, tal como etiquetas ele- trónicas (exemplo: RFID) .
Numa outra realização da presente invenção é possível uma dete- ção in situ mais célere e simples de uma ou todas as moléculas modelo usadas na etiqueta molecular. Isso é obtido através da utilização de técnicas baseadas na amplificação isotérmica de ácidos nucleicos (exemplo: Amplificação circular isotérmica - LA P e amplificação por círculo rolante - RCA) e suas variações metodológicas (exemplo: tipos e números de iniciadores) (Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Ha- seet T. 2000. Loop-mediated isothermal amplification of DNA. Nu- cleic Acids Res 28:e63; Smith JH, Beals TP. 2013. Detection of Nucleic Acid Targets Using Ramified Rolling Circle DNA Amplifi- cation: A Single Nucleotide Polymorphism Assay Model. PLoS ONE 8:e65053. doi : 10.137 l/j ournal . pone .0065053 ) . No entanto, apesar da simplicidade e rapidez na obtenção dos resultados, essas técnicas ainda são mais onerosas do que as técnicas de PCR e DGGE. Podendo ser muito oneroso para a empresa o processo de rastrea- bilidade e autentificação de muitos produtos. Possivelmente, no futuro, com a popularização e diminuição dos custos das técnicas de amplificação isotérmica de ADN, será possível que essas técnicas sejam usadas rotineiramente na deteção e leitura de etiquetas de ADN da presente invenção.
Descrição Detalhada da Invenção
A presente invenção refere-se a uma etiqueta molecular e um processo de marcação de diversos materiais e meios líquidos a partir da utilização de etiquetas moleculares contendo moléculas de ácido desoxirribonucleico (ADN) quimérico (Figuras IA e 1B) .
Numa das realizações da presente invenção, a extração de ADN e síntese da molécula de ADN quimérica modelo pode ser feita da seguinte forma: a) Extração de ADN (1° etapa) . O primeiro passo no processo de produção da etiqueta molecular envolve a extração de ADN microbiano de amostras naturais ou ambientais em geral (exemplo: microrganismos de amostras de solo, sedimento, água e vegetais) . Neste modo de realização da invenção o ADN usado para síntese das moléculas de ADN quimérico foi obtido a partir de amostras de solo de acordo com o protocolo previamente publicado por Gomes e colaboradores (GOMES, N. C. M. , COSTA, R. S., SMALLA, K. (2004) Rapid simultaneous extraction of DNA and RNA from bulk and rhizosphere soil In: Molecular microbial ecology manual. Kowalchuk, G. A., Bruijn, F. J. de, Head, I. M. , Akkermans, A. D. L., Elsas, J. D. van. (eds) Kluwer Academic Publishers. lOpp 2. Ed) . Contudo, outros kits comerciais e protocolos mais recentes podem também ser usados. b) Síntese de fragmentos de ADN de origem natural (2o etapa) . Em seguida a técnica de PCR é usada para amplificar os fragmentos do gene 16S rRNA (ADN de origem natural) usando iniciadores com grampo GC na extremidade de um deles. O grampo GC visa impedir a total desnaturação do fragmento de ADN amplificado durante a sua análise em DGGE (Muyzer G., De aal E. C, Uitterlinden A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reac- tion-amplified genes coding for 16S rRNA. Appl . Environ. Micro- biol. 59: 695-700. ) .
Numa das realizações da presente invenção foram utilizados os iniciadores :
• F968-GC - SEQ ID NO.1: - 5'-
CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGAACGCGAAGAACCTTAC- 3 ' e,
• L1401 - SEQ ID NO.2: - 5 ' -CGGTGTGTACAAGGCCCGGGAACG-3 ' para obtenção (amplificação) de fragmentos do gene 16S rRNA de acordo com o protocolo para PCR previamente publicado por Heuer e colaboradores (2001 - Heuer, H., G. ieland, J. Schõnfeld, A. Schõnwálder, N. C. M. Gomes, and K. Smalla. 2001. Bacterial com- munity profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Environmental molecular microbiology : protocols and applications Horizon Scientific Press, ymondham, United Kingdom. ) .
Contudo, esta invenção não depende exclusivamente do gene 16S rRNA para síntese das moléculas de ADN quimérico. Iniciadores para a reação de PCR contendo o grampo GC podem ser usados para amplificação de virtualmente qualquer parte do ADN genómico microbiano, incluindo fragmentos de outras partes do ADN não codi- ficantes. c) Clonagem (3o etapa) . Os fragmentos de PCR obtidos na etapa anterior (inserto) são então ligados a vetores plasmídicos (plasmídeos recombinantes ) e transformados através da utilização de um kit para clonagem (exemplo: kit pGEM-T Easy vector da Pro- mega) ou de metodologias convencionais (Green MR, Sambrook JR
(2012) Molecular cloning: a laboratory manual. 4th edition. New York: Cold Spring Harbor Laboratory Press. 2028 p.). Em geral, nessa fase os plasmídeos recombinantes são transformados em Escherichia coli. Em seguida as bactérias transformadas são se- lecionadas em meio de cultura seletivo para as bactérias contendo o plasmídeo recombinante . Colónias de bactérias contendo o plasmídeo recombinante são então isoladas (culturas puras) e posteriormente utilizadas na síntese da molécula de ADN quimérica modelo. d) Síntese da molécula de ADN quimérica modelo (4o etapa) . Com o objetivo de verificar a presença do inserto (fragmento de ADN clonado) e produzir a molécula de ADN quimérica modelo, pequenas alíquotas do sistema hospedeiro/vetor (clones: colónias de Escherichia coli contendo plasmídeo recombinante) são então adicionadas em tubos de 0.2 ml contendo reagentes para a PCR e os iniciadores :
• Dl - SEQ. ID NO.3: 5' -GGCCAGTGAATTGTAATACG- 3' e
• RI- SEQ. ID NO.4: 5'- CACAGGAAACAGCTATGACC - 3'
específicos para a região de inserção do ADN plasmídico pGEM-T, Promega. O fragmento de ADN amplificado compreende parte da região de inserção do vetor (região que flanqueia o inserto) e o inserto .
Portanto, nessa fase obtém-se o fragmento de ADN designado na presente invenção como molécula de ADN quimérica modelo; contendo sequências de ADN de origem plasmidial, sintética (grampo GC e iniciadores) e natural (fragmento do gene 16S rRNA) (Figura IA) . As moléculas de ADN quimérico obtidas nessa fase são posteriormente caracterizadas através da técnica de DGGE para formulação das etiquetas moleculares. Uma outra forma de obtenção da molécula de ADN quimérica modelo poderá ser a seguinte : A síntese da molécula de ADN quimérica modelo também pode ser efetuada através da utilização da PCR, sem que haja necessidade da clonagem. Fragmentos de ADN de origem natural (ver tópico l.a) podem ser amplificados com iniciadores para DGGE (ver tópico l.b) ligeiramente modificados. Basta adicionar, na extremidade 5' dos iniciadores, uma cauda de 12 nucleótidos arranjados aleatoriamente com proporções variáveis de adenina, guanina, timina e citosina. Os fragmentos de ADN obtidos podem então ser re-amplifiçados (PCR) utilizando-se mini- iniciadores (Isenbarger TA, Finney M, Rios-Velazquez C, Handels- man J, Ruvkun G. 2008. Miniprimer PCR, a new lens for viewing the microbial world. Appl . Environ. Microbiol. 74:840-849.) complementares às sequencias de nucleótidos das caudas adicionadas nos iniciadores. Esses iniciadores são então usados para a produção (ver tópico 2) e posterior leitura da molécula de ADN quimérica modelo via PCR-DGGE (ver tópico 4) . Desta forma, é possível produzir moléculas de ADN quimérico sem a necessidade do uso da técnica de clonagem. A desvantagem deve-se ao fato de que, esta metodologia frequentemente gera mais do que uma molécula de ADN quimérica por reaçâo de PCR. Portanto, ao contrário da clonagem, não permite o manuseio de cada molécula de ADN quimérica sintetizada isoladamente e consequentemente oferece menos opções quanto à formulação e padronização das etiquetas moleculares.
Numa realização da presente invenção caracterização e Produção da etiqueta molecular pode ser efetuada da seguinte forma: a) Determinação da mobilidade da molécula de ADN quimérica modelo em DGGE (5° etapa) . As moléculas de ADN quimérico modelo sintetizadas na etapa anterior (produto de PCR) são então submetidas a um segundo ciclo de amplificação (PCR) utilizando-se iniciadores D2 - SEQ. ID NO.5: 5 -TAATACGACTCACTATAGGG-3 " e R2- SEQ. ID N0.6_: 5 -ATTTAGGTGACACTATAG-3 " complementares às sequências de inserção (resíduo da clonagem) . Em seguida uma pequena aliquota (2-4μ1) do produto da PCR é analisada em DGGE de acordo com o protocolo publicado por Heuer e colaboradores (2001- Heuer, H., G. Wieland, J. Schõnfeld, A. Schõnwálder, N. C. M. Gomes, and K. Smalla. 2001. Bacterial com- munity profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Environmental molecular microbiology : protocols and applications Horizon Scientific Press, Wymondham, United Kingdom. ) . O perfil de bandas de cada etiqueta pode ser registrado com auxilio de um digitalizador . Se for necessário o registo e comparação de um grande número de etiquetas, a imagem do DGGE pode ser processada com um programa especifico para transformação dos perfis de DGGE em curvas densitométricas . Esta análise pode ser realizada de acordo a metodologia publicada por Gomes e colaboradores (2010 - Gomes N.C. ., Landi L., Smalla K. , Nannipieri P., Brookes P.C., Renella G. (2010) Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungai communities. Ecotoxicology and Environmental Safety. 73, 6, 1255-63. ) .
Este procedimento permite determinar a mobilidade da molécula de ADN modelo em DGGE. Diferentes tipos de moléculas apresentam diferentes mobilidades em DGGE (bandas) . Portanto, moléculas com mobilidades distintas (bandas em posições únicas) são seleciona- das para formulação da etiqueta molecular. b) Formulação e produção da etiqueta molecular (6o etapa). Nesta fase, define-se a complexidade do código de barras da etiqueta molecular (formulação) em função do número (tipos de moléculas de ADN quimérico) e intensidade das bandas (concentração usada de cada molécula de ADN quimérica modelo) . Uma etiqueta pode conter de 1 a 100 tipos de moléculas de ADN quimérico modelo (bandas) . Após as moléculas de ADN modelo, com diferentes mobilidades em DGGE, serem escolhidas para compor a etiqueta molecular, decide-se então a intensidade da banda de cada molécula. A intensidade das bandas é definida pela concentração de ADN, estimada por espectrofotometria , usada para cada molécula de ADN quimérica durante a preparação da etiqueta molecular.
Após os parâmetros acima referidos terem sido definidos, reali- za-se novamente o PCR do inserto com os iniciadores Dl (SEQ. ID NO.3) e RI (SEQ. ID NO .4 ) para cada molécula selecionada (clones contendo plasmideo recombinante) de acordo com o procedimento descrito no tópico l.d. Nesta fase define-se a quantidade necessária de diferentes tipos de moléculas de ADN quimérico modelo para produção da etiqueta molecular. Em seguida, misturam-se as moléculas de ADN quimérico produzidas na solução de aplicação (ver tópico 3. a), respeitando-se a concentração ou proporção de cada molécula de acordo com as decisões feitas durante a etapa de formulação da etiqueta. Esta metodologia permite que sejam produzidas etiquetas com características únicas, de acordo com a necessidade de cada caso. Por exemplo, uma etiqueta específica para cada empresa, produto ou partes do produto. A quantidade de etiqueta a ser produzida irá depender da quantidade e do tipo e material a ser marcado.
O perfil de bandas de DGGE deve ser registado no final da produção de cada etiqueta (ver tópico 2. a).
A leitura da etiqueta (bandas de DGGE) também pode ser efetuada a partir da utilização de outras técnicas de tipagem molecular de fragmentos de ADN. Por exemplo, as técnicas de polimorfismo de conformação de filamento único (SSCP) e polimorfismos no comprimento dos fragmentos de restrição da zona terminal (T-RFLP (Hayashi K. (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1:34-38.; Liu, W. T., T. L. Marsh, H. CHeng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes en- coding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.). Numa realização da presente invenção a marcação de diversos materiais (biológicos e não biológicos) e leitura da etiqueta molecular, pode ser feita da seguinte forma: a) Aplicação da etiqueta molecular (7o etapa) . A etiqueta pode ser aplicada na superfície de diversos materiais, adicionada em diversos produtos alimentares na superfície de materiais biológicos ou organismos vivos. Para esse fim, dependendo do material a ser marcado, a etiqueta molecular pode ser preparada e aplicada sob a forma de solução (exemplo: etanol 70% em água ultra pura, resinas ou apenas água), desidratada ou liofilizada. Quando em solução, a etiqueta pode ser aplicada através de aspersão, por depósito de gotas ou microgotas, ou outro mecanismo que permita a dispersão da solução sobre o material. A etiqueta desidratada ou liofilizada pode ser aplicada na forma de suspensão através de substâncias adesivas, resinas e ou outros métodos de impregnação. As moléculas de ADN da etiqueta podem também ser aplicadas em substâncias oleosas através da sua transformação em compostos lipofílicos (exemplo: através do uso de nanopartícu- las) ou através da incorporação da etiqueta molecular em membranas fosfolipídicas . Para facilitar a localização da etiqueta no momento da leitura, deve-se definir o local de marcação do produto (exemplo: na cauda do pescado, sobre à superfície de um chip eletrônico, etc.) e/ou aplicar as moléculas de ADN quimérico misturadas em corantes ou tintas. A etiqueta molecular também pode ser impregnada em uma etiqueta de papel ou ser integrada com outras tecnologias, tal como etiquetas eletrónicas (exemplo: RFID) .
Após a aplicação das etiquetas, devem ser coletadas amostras dos produtos marcados (pelo menos 5 para cada lote) (ver tópico 4. a para os métodos de coleta) e devem ser determinados os perfis de bandas de DGGE (ver tópico 2. a) . O resultado é comparado com os perfis da etiqueta molecular no momento da sua formulação (controle de qualidade) . As amostras coletadas devem ser preservadas por congelamento (-20°C) e se necessário usadas como referê em analises posteriores das etiquetas dos produtos . b) Leitura da etiqueta (8o etapa) . A leitura do código de barras (perfil de bandas de DGGE) da etiqueta molecular inicia-se com a coleta de uma pequena amostra do produto marcado, através da raspagem ou de um esfregaço embebido de água ou outros solventes polares ou apoiares (dependendo do veiculo ou forma que a etiqueta for fixada) . A amostra é então dissolvida em água ultrapu- ra ou tampão TE (tris-HCl lOmM, EDTA lmM, pH8 ) (100-250 μΐ) durante 10 minutos a 60°C. Outras substâncias químicas (aditivos) podem ser usadas no processo de dissolução da etiqueta molecular, dependendo do veículo ou forma a partir da qual a etiqueta for efetuada e da compatibilidade dos reagentes com a PCR.
Em seguida, 1 μΐ da amostra processada é usado na PCR com os iniciadores D2 (SEQ. ID NO.5) /R2 (SEQ. ID NO.6) (ver tópico
2. a) .
A PCR consiste na amplificação de cópias das moléculas de ADN quimérico usadas na etiqueta molecular. O produto de PCR é então analisado através da técnica de DGGE (Heuer e colaboradores, 2001) (ver tópico 2. a).
A leitura da etiqueta baseia-se na análise do número e intensidade de bandas (perfil de bandas) obtidas em cada amostra através da técnica de DGGE (ver tópico 2. a). Os resultados são então comparados com o perfil da amostra de referência (ver tópico
3. a). A comparação pode ser efetuada visualmente ou através da análise in silico dos perfis de DGGE (ver tópico 2. a) .
Se necessário a leitura da etiqueta pode ser feita in situ (no local onde se encontra o produto) . Todos os equipamentos envolvidos nessa etapa podem ser adquiridos em sua versão portátil ou de pequeno porte (exemplo: termociclador, tina de eletroforese vertical para DGGE, géis de acrilamida pré-moldados e acessórios) . Os reagentes para PCR podem ser liofilizados nos tubos de reação e hidratados no local imediatamente antes da leitura. O restante dos reagentes podem ser facilmente transportados para o local das análises.
Exemplos
Exemplo 1 : Síntese da molécula de ADN quimérica e avaliação da etiqueta molecular para marcação de amostras de bacalhau salgado seco
Neste exemplo pretende-se, evidenciar todas as etapas envolvidas na síntese, produção e utilização da etiqueta molecular (Figura IA e 1B) . Pretende-se ainda mostrar uma das formas de utilização da etiqueta molecular e avaliar a sua aplicação em um produto alimentício (bacalhau salgado seco) segundo a presente invenção. Como conclusão foi observado que a invenção é de fácil reprodução, o processo de marcação e leitura da etiqueta é rápido e simples e a etiqueta apresentou longa durabilidade.
Etapas esquematizadas nas figuras IA e 1B:
1. Extração de ADN. Nessa forma de realização da presente invenção o ADN usado para síntese das moléculas de ADN quimérico foi extraído de amostras de solo (amostra ambiental) de acordo com o protocolo previamente publicado por Gomes e colaboradores (GOMES, N. C. M., COSTA, R. S., SMALLA, K.(2004) Rapid simultaneous extraction of DNA and RNA from bulk and rhizosphere soil In: Molecular microbial ecology manual. Kowalchuk, G. A., Bruijn, F. J. de, Head, I. M. , Akkermans, A. D. L., Elsas, J. D. van. (eds) Kluwer Academic Publishers . lOpp 2. Ed) (ver tópico l.a). 2. Sintese de fragmentos de ADN de origem natural. Em seguida a técnica de PCR foi usada em conjunto com os iniciadores F968-GC - SEQ ID NO.l e L1401- SEQ ID NO.2 para amplificar os fragmentos do gene 16S rRNA da amostra de ADN ambiental. Nessa etapa o iniciador F968-GC - SEQ ID NO.l foi usado para adicionar o grampo GC as moléculas amplificadas (ver tópico l.b).
3. Clonagem. Os fragmentos de PCR obtidos na etapa anterior (inserto) foram então ligados a um vetor (molécula de ADN plasmidi- co) e clonados utilizando-se um kit para clonagem (kit pGEM-T Easy vector da Promega) . Colónias de bactérias transformadas (contendo o plasmideo recombinante ) foram então isoladas (culturas puras) e posteriormente utilizadas na sintese de moléculas de ADN quiméricas (ver tópico l.c) .
4. Sintese da molécula de ADN quimérica modelo. Pequenas alíquo- tas de cada clone (positivo para o inserto) são então adicionadas em tubos de 0.2 ml contendo reagentes para a PCR e os iniciadores Dl (SEQ. ID NO.3) e RI (SEQ. ID NO.4) específicos para a região de inserção do ADN plasmídico pGEM-T, (Promega) . Nessa fase obtém-se o fragmento de ADN designado na presente invenção como molécula de ADN quimérica modelo; contendo sequências de ADN de origem plasmidial (resíduo da clonagem) , sintética (grampo GC e iniciadores) e natural (fragmentos do gene 16S rRNA da amostra ambiental) (ver tópico l.d).
5. Determinação da mobilidade da molécula de ADN quimérica modelo em DGGE. As moléculas de ADN quimérico modelo, sintetizadas na etapa anterior (produto de PCR) , são então submetidas a um segundo ciclo de amplificação por PCR utilizando-se iniciadores D2- SEQ ID NO.5 e R2- SEQ ID NO.5 complementares às sequências de inserção (resíduo da clonagem) . Em seguida uma pequena alí- quota (2-4μ1) do produto da PCR é analisada em DGGE de acordo com o protocolo publicado por Heuer e colaboradores (2001- Heu- er, H., G. ieland, J. Schõnfeld, A. Schõnwãlder, N. C. M. Go- mes, and K. Smalla. 2001. Bacterial community profiling using DGGE or TGGE analysis, p. 177-190. In P. Rouchelle (ed.), Envi- ronmental molecular microbiology : protocols and applications Horizon Scientific Press, Wymondham, United Kingdom. ) . Esse procedimento permite determinar a mobilidade da molécula de ADN modelo em DGGE (ver tópico 2. a).
6. Produção da etiqueta molecular e solução de aplicação. Nessa fase, define-se a complexidade do código de barras da etiqueta molecular (formulação) em função do número (tipos de moléculas de ADN quimérico) e intensidade das bandas de DGGE. Neste exemplo, duas moléculas com mobilidades distintas (bandas em posições únicas) em DGGE foram selecionadas , de acordo com a análise das bandas de DGGE no tópico anterior. Essas moléculas foram denominadas como tipo 1 e tipo 2 e em seguida utilizadas na formulação da etiqueta molecular.
Realizou-se então a PCR para os plasmideos recombinantes contendo as moléculas selecionadas (insertos para as moléculas de ADN quimérico tipo 1 e 2) em 50 μΐ de reação com os iniciadores Dl (SEQ. ID NO.3) e RI (SEQ. ID NO .4 ) (ver tópico 2.b). O produto de PCR foi então purificado por precipitação com etanol e reconstituído em 50 μΐ de água ultra pura. Em seguida a etiqueta molecular foi preparada a partir da homogeneização do produto de PCR obtido para as moléculas de ADN quimérico tipo 1 e 2 (~200 ng cada 1:1) em 10 ml de solução de aplicação (etanol a 70% em água ultra pura) .
7. Aplicação e coleta de amostras da etiqueta molecular. A aplicação da etiqueta foi realizada com auxilio de um pincel, através do espalhamento da solução de etanol contendo a etiqueta sobre a barbatana caudal de 15 peças de bacalhau seco salgado. As peças de bacalhau marcadas foram então mantidas sob refrigeração (4°C) por um periodo de 150 dias. Amostras da etiqueta (3 réplicas independentes) foram obtidas por esfregaço após aplicação e em intervalos de 50 dias com auxilio de uma zaragatoa embebida de etanol 70%.
8. Leitura das amostras por DGGE . A extremidade da zaragatoa correspondente a cada amostra foi então imersa em tampão TE (tris-HCl lOmM, EDTA lmM, pH8) (250 μΐ) e incubada a 60°C durante 10 minutos. Após incubação a amostra foi homogeneizada em vórtex por 10 segundos. A leitura da etiqueta molecular foi realizada diretamente a partir das amostras coletadas em TE através da utilização da técnica de PCR-DGGE (ver tópico 2. a). A Figura 1B mostra que as moléculas de ADN quimérico modelo usadas na formulação da etiqueta molecular (denominadas como tipo 1 e 2) foram detetadas por DGGE 150 dias depois da marcação das amostras (bacalhau 1, 2 e 3) . O perfil de bandas detetado confirma a presença dos dois tipos de moléculas de ADN quimérica modelo inicialmente usadas na formulação da etiqueta molecular. Mantendo inclusive a intensidade das bandas em proporções iguais (1:1) de acordo como foi estabelecido durante a formulação da etiqueta molecular na etapa 6.
Lisboa, 21 de Agosto de 2014.
LISTA DE SEQUÊNCIAS
Iniciador F968-GC/ SEQ. ID N0.1j_
5 ' -CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGAACGCGAA GAACCTTAC-3 "
Iniciador L1401 / SEQ ID N0.2j_
5 ' -CGGTGTGTACAAGGCCCGGGAACG-3 '
Iniciador Dl / SEQ. ID N0.3j_
5' -GGCCAGTGAATTGTAATACG- 3'
Iniciador RI / SEQ. ID N0.4^_
5'- CACAGGAAACAGCTATGACC - 3'
Iniciador D2 / SEQ. ID N0.5j_
5 " -TAATACGACTCACTATAGGG-3 v
Iniciador R2 / SEQ. ID N0.6j_
5 ¾ -ATTTAGGTGACACTATAG-3 s
Grampo GC / SEQ. ID NO.7:
5 ' -CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG-3 '

Claims

REIVINDICAÇÕES
Etiqueta molecular para marcar um substrato compreendida por: uma mistura de uma pluralidade de moléculas de ADN, cada uma das quais compreende um fragmento ADN grampo-GC como segmento identificador e um fragmento de ADN microbiano como segmento codificador,
em que pelo menos dois dos referidos fragmentos de ADN microbiano têm origem em diferentes microrganismos;
e um veiculo para suportar a referida mistura.
Etiqueta molecular de acordo com a reivindicação anterior em que as referidas moléculas de ADN foram obteníveis separadamente .
Etiqueta molecular de acordo com as reivindicações anteriores em que o tamanho dos referidos fragmentos de ADN microbiano esta compreendido entre 200-1800 pb.
Etiqueta molecular de acordo com as reivindicações anteriores em que cada um dos referidos fragmentos tem o mesmo número de par de bases.
Etiqueta molecular de acordo com as reivindicações anteriores caracterizado por compreender ainda como iniciadores selecio- nados da seguinte lista: SEQ. ID NO.l; SEQ ID NO.2; SEQ. ID NO.3; SEQ. ID NO.4; SEQ. ID NO.5; SEQ. ID NO.6.
Etiqueta molecular de acordo com as reivindicações anteriores em que a concentração de cada uma das referidas moléculas de ADN é variável.
Etiqueta molecular de acordo com as reivindicações anteriores em que os substratos são sólidos ou líquidos.
1 Etiqueta molecular de acordo com as reivindicações anteriores em que os veículos para substratos sólidos são selecionados da seguinte lista resinas epóxi, tintas, partículas carregadoras, membranas fosfolipídicas .
Etiqueta molecular de acordo com as reivindicações anteriores em que os veículos para substratos líquidos são selecionados da seguinte lista soluções aquosas, etanol, acetona, membranas fosfolipídicas .
Etiqueta molecular de acordo com as reivindicações anteriores estar na forma desidratada ou liofilizada.
Objeto etiquetado que compreendem as etiquetas descritas nas reivindicações anteriores.
Objeto etiquetado em que o objeto é um alimento, ou medicamento, ou papel, ou roupa, ou relógios, ou jóias, ou um artigo eletrónico.
Processo para incorporação da etiqueta molecular descrita nas reivindicações anteriores no substrato a marcar que compreende os seguintes passos:
• síntese de cada uma das moléculas de ADN, a partir de uma pluralidade de iniciadores e fragmentos de gene selecionados de uma ou mais moléculas de ADN microbiano, em que cada molécula de ADN contem fragmento ADN grampo- GC como segmento identificador e um fragmento de ADN microbiano como segmento codificador;
• mistura de cada uma das moléculas de ADN obtidas;
• produção de pelo menos uma etiqueta molecular que compreende a mistura de uma pluralidade de moléculas de ADN, com uma determinada densidade conferida pela respe- tiva concentração de ADN;
2 • marcação do substrato com pelo menos uma etiqueta molecular .
14. Processo de acordo com a reivindicação anterior em que as referidas moléculas de ADN são obteníveis separadamente pelo passo de clonagem em Escherichia coli e preparação de bibliotecas genómicas contendo diferentes tipos de insertos.
15. Processo de acordo com a reivindicação 13 em que a síntese de pelo menos um dos referidos fragmento de ADN compreende a inserção de iniciadores adequados para os sítios próximos à região de inserção do plasmídeo.
16. Processo de acordo com as reivindicações 13-15 caracterizado por os referidos iniciadores serem selecionados da seguinte lista SEQ. ID NO.l; SEQ ID NO.2; SEQ . ID NO.3; SEQ. ID NO.4; SEQ. ID NO.5; SEQ. ID NO.6.
17. Processo de acordo com as reivindicações 13-16 em que a etiqueta molecular é desidratada, liofilizada, mantida na forma de solução, na forma de nanopartícuias .
18. Processo de acordo com as reivindicações 13-17 em que a aplicação da etiqueta no substrato se realizar por aspersão, por depósito de gotas ou microgotas, impregnação com substâncias adesivas e/ou resinas.
19. Processo de acordo com as reivindicações 13-18 em que a etiqueta molecular compreende ainda uma membrana fosfolipídica .
20. Processo de identificação e/ou rastreio de material diverso que compreende a deteção de pelo menos uma etiqueta molecular de acordo com o descrito nas reivindicações 1-12.
3
21. Processo de identificação e/ou rastreio de material diverso de acordo com a reivindicação anterior que compreende ainda a etapa de comparação de pelo menos uma etiqueta molecular com o perfil de uma amostra de referência da etiqueta molecular usada para marcar o material.
Lisboa, 21 de Agosto de 2014.
4
PCT/PT2014/000056 2013-08-23 2014-08-22 Etiqueta molecular contendo moléculas de adn e processo de marcação e identificação da etiqueta WO2015026254A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14786549.7A EP3037546A1 (en) 2013-08-23 2014-08-22 Molecular tag containing dna molecules and process for marking and identifying the tag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT107124 2013-08-23
PT10712413 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015026254A1 true WO2015026254A1 (pt) 2015-02-26

Family

ID=51752161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2014/000056 WO2015026254A1 (pt) 2013-08-23 2014-08-22 Etiqueta molecular contendo moléculas de adn e processo de marcação e identificação da etiqueta

Country Status (2)

Country Link
EP (1) EP3037546A1 (pt)
WO (1) WO2015026254A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191575A1 (pt) 2016-05-03 2017-11-09 Universidade De Aveiro Dispositivo portátil, método para leitura de etiquetas de autenticação e seus usos
WO2021229549A1 (en) 2020-05-15 2021-11-18 Universidade De Aveiro Method and device for stabilizing and storing dna at room temperature and uses thereof
WO2023147213A3 (en) * 2022-01-10 2023-10-26 Natural Trace Pte. Ltd. Method for confirming the identity of a product by means of a microbial dna tag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612994A (en) 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US3713148A (en) 1970-05-21 1973-01-23 Communications Services Corp I Transponder apparatus and system
US20040043390A1 (en) 2002-07-18 2004-03-04 Asat Ag Applied Science & Technology Use of nucleotide sequences as carrier of cultural information
US20050026181A1 (en) * 2003-04-29 2005-02-03 Genvault Corporation Bio bar-code
WO2005080421A1 (en) * 2004-02-24 2005-09-01 Fnp Corp., Ltd. Novel polygalacturonase inhibitor protein and its use
US20080169926A1 (en) * 2007-01-11 2008-07-17 Paul Reep Systems and Methods to Prevent Counterfeit, Grey and Black Market Proliferation of Pharmaceutical, Medical and Other Products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612994A (en) 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US3713148A (en) 1970-05-21 1973-01-23 Communications Services Corp I Transponder apparatus and system
US20040043390A1 (en) 2002-07-18 2004-03-04 Asat Ag Applied Science & Technology Use of nucleotide sequences as carrier of cultural information
US20050026181A1 (en) * 2003-04-29 2005-02-03 Genvault Corporation Bio bar-code
WO2005080421A1 (en) * 2004-02-24 2005-09-01 Fnp Corp., Ltd. Novel polygalacturonase inhibitor protein and its use
US20080169926A1 (en) * 2007-01-11 2008-07-17 Paul Reep Systems and Methods to Prevent Counterfeit, Grey and Black Market Proliferation of Pharmaceutical, Medical and Other Products

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Troubleshooting Forum, Molecular Biology Techniques Q&A, Primer design", BIOTECHNIQUES, vol. 54, no. 5, May 2013 (2013-05-01), pages 249 - 250, XP055163554 *
DATABASE Geneseq [online] 18 August 2011 (2011-08-18), "Reference molecule amplifying universal reference PCR primer, SEQ: 18.", XP055163583, retrieved from EBI accession no. GSN:AZK36065 Database accession no. AZK36065 *
DATABASE Geneseq [online] 24 March 1993 (1993-03-24), "Factor IX targetting PCR primer h.", XP055163581, retrieved from EBI accession no. GSN:AAQ31245 Database accession no. AAQ31245 *
GOMES N.C.M.; LANDI L.; SMALLA K.; NANNIPIERI P.; BROOKES P.C.; RENELLA G.: "Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities", ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, vol. 73, no. 6, 2010, pages 1255 - 63
GOMES, N.C.M.; COSTA, R.S.; SMALLA, K.: "Molecular microbial ecology manual", 2004, KLUWER ACADEMIC PUBLISHERS, article "Rapid simultaneous extraction of DNA and RNA from bulk and rhizosphere soil"
GOMES, N.C.M.; COSTA, R.S.; SMALLA, K.: "Molecular microbial ecology manual", KLUWER ACADEMIC PUBLISHERS, article "Rapid simultaneous extraction of DNA and RNA from bulk and rhizosphere soil", pages: 10
GREEN MR; SAMBROOK JR: "Molecular cloning: a laboratory manual. 4th edition.", 2012, COLD SPRING HARBOR LABORATORY PRESS, pages: 2028
HAYASHI K.: "PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA", PCR METHODS APPL., vol. 1, 1991, pages 34 - 38
HEUER, H.; G. WIELAND; J. SCH6NFELD; A. SCHONWALDER; N.C.M. GOMES; K. SMALLA: "Environmental molecular microbiology: protocols and applications", 2001, HORIZON SCIENTIFIC PRESS, article "Bacterial community profiling using DGGE or TGGE analysis", pages: 177 - 190
HEUER, H.; G. WIELAND; J. SCHONFELD; A. SCHONWALDER; N.C.M. GOMES; K. SMALLA: "Environmental molecular microbiology: Protocols and applications", 2001, HORIZON SCIENTIFIC PRESS, article "Bacterial community profiling using DGGE or TGGE analysis", pages: 177 - 190
HEUER, H.; G., WIELAND; J. SCH6NFELD; A. SCHONWALDER; N.C.M. GOMES; K. SMALLA: "Environmental molecular microbiology: protocols and applications", 2001, HORIZON SCIENTIFIC PRESS, article "Bacterial community profiling using DGGE or TGGE analysis", pages: 177 - 190
ISENBARGER TA; FINNEY M; RIOS-VELAZQUEZ C; HANDELSMAN J; RUVKUN G: "Miniprimer PCR, the new lens for viewing the microbial world", APPL. ENVIRON. MICROBIOL., vol. 74, 2008, pages 840 - 849
JING NING ET AL: "Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, BERLIN, DE, vol. 82, no. 5, 27 February 2009 (2009-02-27), pages 983 - 993, XP019705556, ISSN: 1432-0614 *
KATIA REGINA ARAÚJO DA SILVA ET AL: "Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 54, no. 2, 1 August 2003 (2003-08-01), pages 213 - 231, XP055163550, ISSN: 0167-7012, DOI: 10.1016/S0167-7012(03)00039-3 *
LIU, W.T.; T.L. MARSH; H. CHENG; L.J. FORNEY: "Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA", APPL. ENVIRON. MICROBIOL., vol. 63, 1997, pages 4516 - 4522
MUYZER G.; DE WAAL E.C.; UITTERLINDEN A.G.: "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA", APPL. ENVIRON. MICRO-BIOL, vol. 59, 1993, pages 695 - 700
NOTOMI T; OKAYAMA H; MASUBUCHI H; YONEKAWA T; WATANABE K; AMINO N; HASEET T.: "Loop-mediated isothermal amplification of DNA", NUCLEIC ACIDS RES, vol. 28, 2000, pages E63
P. ROUCHELLE: "Environmental molecular microbiology: protocols and applications", 2001, HORIZON SCIENTIFIC PRESS, article "Bacterial community profiling using DGGE or TGGE analysis", pages: 177 - 190
PLOS ONE, vol. 8, 2013, pages E65053
SHEFFIELD V C ET AL: "ATTACHMENT OF A 40-BASE-PAIR G + C-RICH SEQUENCE (GC- CLAMP ) TO GENOMIC DNA FRAGMENTS BY THE POLYMERASE CHAIN REACTION RESULTS IN IMPROVED DETECTION OF SINGLE-BASE CHANGES", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 86, no. 1, 1 January 1989 (1989-01-01), pages 232 - 236, XP001156563, ISSN: 0027-8424, DOI: 10.1073/PNAS.86.1.232 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191575A1 (pt) 2016-05-03 2017-11-09 Universidade De Aveiro Dispositivo portátil, método para leitura de etiquetas de autenticação e seus usos
WO2021229549A1 (en) 2020-05-15 2021-11-18 Universidade De Aveiro Method and device for stabilizing and storing dna at room temperature and uses thereof
WO2023147213A3 (en) * 2022-01-10 2023-10-26 Natural Trace Pte. Ltd. Method for confirming the identity of a product by means of a microbial dna tag

Also Published As

Publication number Publication date
EP3037546A1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6799072B2 (ja) 変異体ポア
CN105209634B (zh) 酶停滞方法
CN106471122B (zh) 在遗传上不同的细胞的文库的表型鉴定及原位基因分型
CN109312401B (zh) 连接的核酸的纳米孔测序方法
CN104805180B (zh) 用于下一代测序靶富集的快速杂交
EP3250716B1 (en) Microscope-free imaging
US20150329856A1 (en) Methods and systems for the generation of a plurality of security markers and the detection therof
JP7332733B2 (ja) 次世代シークエンシングのための高分子量dnaサンプル追跡タグ
CN109196114A (zh) 等温扩增组分和工艺
EP3955002B1 (en) Method for controlling speed of polypeptide passing through nanopore, and application thereof
WO2015026254A1 (pt) Etiqueta molecular contendo moléculas de adn e processo de marcação e identificação da etiqueta
Jawla et al. On-site paper-based loop-mediated isothermal amplification coupled lateral flow assay for pig tissue identification targeting mitochondrial CO I gene
Crémazy et al. Determination of the 3D genome organization of bacteria using Hi-C
Kranaster et al. Taking fingerprints of DNA polymerases: multiplex enzyme profiling on DNA arrays
CN114875120A (zh) 一种基于dna条形码的溯源标识物及其制备方法
Rudi et al. Overview of DNA purification for nucleic acid-based diagnostics from environmental and clinical samples
Trapmann et al. Development of a novel approach for the production of dried genomic DNA for use as standards for qualitative PCR testing of food-borne pathogens
Balog et al. Decoding DNA labels by melting curve analysis using real-time PCR
Andreou et al. Single‐Cell Genome and Transcriptome Sequencing Library Construction Using Combination of MDA and Nextera Library Prep Method
Matsunaga et al. FISH with padlock probes can efficiently reveal the genomic position of low or single-copy DNA sequences
Hernández-Neuta et al. Application of Padlock and Selector Probes in Molecular Medicine
US20170058344A1 (en) Mapping protein bound regions on dsDNA by reaction of unblocked Thymidines with Osmium tetroxide 2,2'-bipyridine.
Sørensen Whole Genome Amplification from Blood Spot Samples
Lefèvre et al. Methylation of specific regions: bisulfite-sequencing at the single oocyte or 2-cell embryo level
Smolina Application of PNA Openers for Fluorescence-Based Detection of Bacterial DNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014786549

Country of ref document: EP