WO2015025912A1 - Device for separating blood components - Google Patents

Device for separating blood components Download PDF

Info

Publication number
WO2015025912A1
WO2015025912A1 PCT/JP2014/071853 JP2014071853W WO2015025912A1 WO 2015025912 A1 WO2015025912 A1 WO 2015025912A1 JP 2014071853 W JP2014071853 W JP 2014071853W WO 2015025912 A1 WO2015025912 A1 WO 2015025912A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
blood
blocking member
rod
storage unit
Prior art date
Application number
PCT/JP2014/071853
Other languages
French (fr)
Japanese (ja)
Inventor
田鍬紘信
北嶋小百合
中村修二
佐渡克行
金田健太
Original Assignee
株式会社ジェイ・エム・エス
株式会社Jimro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス, 株式会社Jimro filed Critical 株式会社ジェイ・エム・エス
Priority to JP2015532890A priority Critical patent/JP6154904B2/en
Publication of WO2015025912A1 publication Critical patent/WO2015025912A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/029Separating blood components present in distinct layers in a container, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging

Definitions

  • the present invention relates to an apparatus for separating blood components used for centrifuging blood into blood components.
  • a conventional blood bag 800 used for separating blood components includes a substantially rectangular bag body 801 made of plastic, a port 802 communicating with the bag body 801, and liquid feeding tubes 811, 812 and 813. It has.
  • a child bag (not shown) for storing separated blood components (plasma component, leukocyte component) is connected to the ends of the liquid feeding tubes 812 and 813, respectively.
  • Separation of blood components using the blood bag 800 is performed as follows. First, the collected blood is stored in the bag body 801 via the liquid feeding tube 811. At this time, the port 802 and the liquid feeding tubes 812 and 813 are closed. Next, the blood in the bag body 801 is centrifuged to separate the red blood cell layer A, the plasma layer B, and the white blood cell layer C containing platelets, as shown in FIG. Next, the liquid supply tube 812 is opened, the bag body 801 is pressurized, and the plasma layer B is transferred via the liquid supply tube 812 to a child bag (not shown) connected to the end of the liquid supply tube 812. .
  • the liquid supply tube 813 is opened, the bag body 801 is pressurized, and the leukocyte layer C is connected to another child bag (not shown) connected to the end of the liquid supply tube 813 via the liquid supply tube 813. Transport. Thus, the separation of each blood component is completed.
  • the leukocyte component in the blood is less than the other components. Therefore, in the conventional blood bag 800 shown in FIG. 27, the white blood cell layer C is separated as a very thin layer between the red blood cell layer A and the plasma layer B. In the above method, the red blood cell component is not mixed with the white blood cell component, or the white blood cell component is not left in the red blood cell layer A, and only the white blood cell component is not transferred to the child bag via the liquid feeding tube 813. Not easy. Further, when the leukocyte layer C is moved in the bag main body 801 to be transferred to the child bag, leukocyte components adhere to the inner surface of the bag main body 801, so that it is difficult to collect all leukocyte components.
  • Patent Document 1 a blood component separating blood bag capable of solving these problems.
  • the blood component separating blood bag 900 includes a bag body 901 for storing blood and a liquid feeding tube 902 for transferring the collected blood to the bag body 901.
  • the bag body 901 includes a first bag part 911 and a second bag part 912 at both ends, and a third bag part 913 between them.
  • the third bag portion 913 is narrower than the first bag portion 911 and the second bag portion 912.
  • the first bag portion 911, the second bag portion 912, and the third bag portion 913 are provided with a first port 921, a second port 922, and a third port 923, respectively, for taking out the contents.
  • Separation of blood components using the blood bag 900 is performed as follows. First, blood is stored in the bag body 901 through the liquid feeding tube 902. Next, the blood in the bag body 901 is centrifuged. The blood is separated into a red blood cell layer A in the first bag portion 911, a plasma layer B in the second bag portion 912, and a white blood cell layer C in the third bag portion 913. Next, the boundary portion between the first bag portion 911 and the third bag portion 913 and the boundary portion between the third bag portion 913 and the second bag portion 912 are sealed. The sealing is performed by, for example, a heat sealing method or a high frequency sealing method. Next, the bag body 901 is cut into first, second, and third bag portions 911, 912, and 913 at the seal portion.
  • the red blood cell layer A, the plasma layer B, and the white blood cell layer C in the first, second, and third bag portions 911, 912, and 913 are connected via the first port 921, the second port 922, and the third port 923. Take out each one.
  • the blood bag 900 is configured so that the bag body 901 can be sealed and separated for each component after centrifugation. Therefore, it is possible to separate blood into pure blood components without mixing other blood components, and in particular, it is possible to improve the recovery rate of leukocyte components.
  • the above-described conventional blood bag 900 (see FIG. 28) is a bag-like material in which a flexible sheet is bonded, it does not have shape retention in a state where blood is stored. Therefore, even if the blood can be separated into components by centrifugation, the components are mixed with each other when the blood bag 900 is deformed by an external force or the like before sealing the boundary portion between adjacent bag portions. Inconveniences such as being easily generated.
  • the container for storing blood has a shape-retaining property that does not substantially deform
  • the boundary portion is sealed in the same manner as the blood bag 900 (see FIG. 28) to remove the container. Dividing into three parts is difficult.
  • An object of the present invention is to provide a blood component separation device that can efficiently collect leukocyte components by dividing the interior into three parts after centrifugation.
  • the blood component separation device of the present invention includes a blood reservoir for storing blood, and is used for centrifuging blood stored in the blood reservoir.
  • the blood reservoir is provided between the first reservoir, the second reservoir, the first reservoir and the second reservoir, and communicates with the first reservoir and the second reservoir.
  • the blood component separation device includes a first blocking member and a second blocking member in the blood reservoir.
  • the first blocking member is configured to block communication between the first storage unit and the third storage unit.
  • the second blocking member is configured to block communication between the second storage unit and the third storage unit.
  • the first blocking member that blocks communication between the first reservoir and the third reservoir and the second block that blocks communication between the second reservoir and the third reservoir.
  • a member is provided in the blood reservoir. Therefore, unlike the conventional blood bag, communication between adjacent reservoirs can be blocked without deforming or crushing the blood reservoir at the boundary between adjacent reservoirs. This reduces the possibility that the blood components stored in the adjacent reservoirs will be mixed with each other when the communication between the adjacent reservoirs is blocked after centrifugation, thus improving the recovery efficiency of the white blood cell components. Is advantageous.
  • the inner diameter of the third reservoir can be set relatively large, it is advantageous for further improving the recovery efficiency of leukocyte components.
  • FIG. 1 is a perspective view of a blood component separation device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the blood component separation device according to the first embodiment of the present invention, in which the support member is separated from the blood reservoir.
  • FIG. 3 is a cross-sectional perspective view of the blood component separation device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the blood component separation device according to the first embodiment of the present invention, in which communication between the first reservoir and the third reservoir is blocked by the first blocking member.
  • FIG. 5 is a perspective view of the blood component separation device according to the first embodiment of the present invention, with the stopper removed from the state of FIG. FIG.
  • FIG. 6 shows the implementation of the present invention in which the first blocking member blocks the communication between the first reservoir and the third reservoir and the second blocking member blocks the communication between the second reservoir and the third reservoir.
  • FIG. 7 is an enlarged cross-sectional view showing the flow of fluid when collecting the white blood cell component in the third reservoir in the blood component separation device according to the first embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing the flow of fluid when the inside of the third reservoir is washed with physiological saline in the blood component separation device according to the first embodiment of the present invention.
  • FIG. 9 is a perspective view of an apparatus for separating blood components according to Embodiment 2 of the present invention.
  • FIG. 10 is an exploded perspective view of the blood component separation device according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional perspective view of the blood component separation device according to the second embodiment of the present invention.
  • FIG. 12 is an enlarged cross-sectional view of the first reservoir of the blood component separation device according to the second embodiment of the present invention.
  • FIG. 13 is an expanded sectional view of the 2nd interruption
  • FIG. 14 is a cross-sectional view of the blood component separation device according to the second embodiment of the present invention, in which communication between the first reservoir and the third reservoir is blocked by the first blocking member.
  • FIG. 15 shows the implementation of the present invention in which the communication between the first storage unit and the third storage unit is blocked by the first blocking member and the communication between the second storage unit and the third storage unit is blocked by the second blocking member.
  • FIG. 16 is a perspective view of an apparatus for separating blood components according to Embodiment 3 of the present invention.
  • FIG. 17 is a cross-sectional perspective view of the blood component separation device according to the third embodiment of the present invention.
  • FIG. 18 is an enlarged cross-sectional view of the second blocking member and its peripheral portion of the blood component separation device according to the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of the blood component separation device according to the third embodiment of the present invention in which the first blocking member blocks communication between the first storage unit and the third storage unit.
  • FIG. 20 shows the implementation of the present invention in which the communication between the first storage unit and the third storage unit is blocked by the first blocking member and the communication between the second storage unit and the third storage unit is blocked by the second blocking member.
  • FIG. 10 is a cross-sectional view of a blood component separation device according to form 3.
  • FIG. 21 is a perspective view of the blood component separation device according to the third embodiment of the present invention in the state of FIG.
  • FIG. 22 is an enlarged cross-sectional view showing the flow of fluid when the leukocyte component in the third reservoir is collected in the blood component separation device according to the third embodiment of the present invention.
  • FIG. 23A is a cross-sectional view of a blood component separation device according to another embodiment of the present invention including two balloon-shaped blocking members communicating with each other.
  • FIG. 23B shows blood according to another embodiment of the present invention in which communication between the third reservoir, the first reservoir 21, and the second reservoir 22 is blocked by the two balloon-shaped blocking members shown in FIG. 23A. It is sectional drawing of the apparatus for component separation.
  • FIG. 24A is a cross-sectional view of a blood component separation device according to still another embodiment of the present invention, which includes two balloon-shaped blocking members that are independent of each other.
  • FIG. 24B relates to still another embodiment of the present invention in which the communication between the third reservoir, the first reservoir 21, and the second reservoir 22 is blocked by the two balloon-shaped blocking members shown in FIG. 24A.
  • FIG. 25 is a cross-sectional view of a second blocking member having a structure similar to a lens shutter provided in a blood component separation device according to still another embodiment of the present invention and the vicinity thereof.
  • 26A and 26B are perspective views of the second blocking member shown in FIG. 25, FIG. 26A shows its closed state, and FIG. 26B shows its open state.
  • FIG. 27 is a schematic longitudinal sectional view showing a conventional blood bag used for separating blood components.
  • FIG. 28 is a schematic longitudinal sectional view showing a conventional improved blood bag used for separating blood components.
  • the blood component separation device of the present invention includes a blood reservoir for storing blood, and is used for centrifuging blood stored in the blood reservoir.
  • the blood reservoir is provided between the first reservoir, the second reservoir, the first reservoir and the second reservoir, and communicates with the first reservoir and the second reservoir.
  • the blood component separation device includes a first blocking member and a second blocking member in the blood reservoir.
  • the first blocking member is configured to block communication between the first storage unit and the third storage unit.
  • the second blocking member is configured to block communication between the second storage unit and the third storage unit.
  • the first blocking member moves in the first reservoir and blocks communication between the first reservoir and the third reservoir.
  • blocks the communication with a said 2nd storage part and a said 3rd storage part by moving within the said 2nd storage part. According to this preferable embodiment, it is not necessary to substantially deform the first blocking member and the second blocking member themselves in order to block communication. Therefore, the liquid tightness when the communication between the adjacent reservoirs is blocked is improved. This is further advantageous for efficiently collecting leukocyte components.
  • the device includes a first rod that holds the first blocking member and is led out of the blood reservoir.
  • the first blocking member can be moved by moving the first rod.
  • blocking member can be easily moved from the blood storage tank outside, and the communication with a 1st storage part and a 3rd storage part can be interrupted
  • the first blocking member blocks communication between the first storage unit and the third storage unit and the second blocking member blocks communication between the second storage unit and the third storage unit. It is preferable that the 1st flow path which connects the inside of a 3rd storage part and the said blood storage tank outside is provided. According to such a preferred embodiment, the white blood cell component in the third reservoir can be collected via the first flow path.
  • the white blood cell component in the third reservoir can be collected smoothly while suppressing the pressure fluctuation in the third reservoir.
  • the number of parts constituting the device can be reduced and the configuration of the device can be simplified as compared with the case where the first flow path and the second flow path are provided outside the first rod. it can.
  • the first rod may have a double tube structure in which an inner tube is inserted into an outer tube.
  • the first flow path is formed in the inner pipe, and the second flow path is formed between the inner pipe and the outer pipe.
  • the first flow path and the second flow path independent from each other can be provided in the common first rod with a simple configuration.
  • the first blocking member can be disposed in contact with the bottom surface of the first storage portion. According to such a preferred embodiment, the first blocking member can be stably held during centrifugation.
  • the device includes a second rod that holds the second blocking member and is led out of the blood reservoir.
  • the second blocking member can be moved by moving the second rod.
  • blocking member can be easily moved from the blood storage tank outside, and the communication with a 2nd storage part and a 3rd storage part can be interrupted
  • the device is configured to prevent the second blocking member from being blocked. It is preferable to further include a movement restricting mechanism for restricting the movement. According to such a preferable embodiment, the second blocking member can be stably held during centrifugation.
  • the movement restriction mechanism includes a removable stopper provided outside the blood storage tank. According to this preferable form, a stopper can be removed after centrifugation and a 2nd interruption
  • the movement restriction mechanism may include a stopper provided outside the blood storage tank and connected to the second rod. According to such a preferable configuration, it is possible to prevent the stopper from being lost. Even if the second rod is shortened, the second blocking member can be moved by operating the stopper.
  • the first blocking member blocks communication between the first reservoir and the third reservoir
  • the second blocking member disconnects the second reservoir and the first reservoir.
  • the pressure release mechanism includes a through-hole provided in the second blocking member so as to communicate the second storage portion and the third storage portion. According to such a preferable configuration, the pressure release mechanism can be configured with a simple configuration.
  • the pressure release mechanism may further include a one-way valve provided in the through hole.
  • the one-way valve allows a flow from the third reservoir to the second reservoir through the through hole, and passes from the second reservoir to the third through the through hole. It is preferable to prohibit the flow to the reservoir.
  • the pressure release mechanism can be configured with a simple configuration.
  • the pressure release mechanism may further include a tube having one end connected to the through hole.
  • the other end of the tube is opened at a position above the blood surface in the blood reservoir. According to such a preferable configuration, a pressure release mechanism with improved operational reliability can be realized.
  • the first blocking member blocks communication between the first storage unit and the third storage unit
  • the second blocking member blocks communication between the second storage unit and the third storage unit.
  • the above-described blood component separation device of the present invention may further include a bellows structure provided in the blood reservoir and a bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure.
  • the volume of the blood reservoir can be adjusted by changing the expansion / contraction amount of the bellows structure using the bellows adjustment mechanism.
  • the volume of the blood reservoir can be adjusted by adjusting the expansion / contraction amount of the bellows structure according to the blood volume and hematocrit value of the blood to be centrifuged.
  • the position of the buffy coat after the centrifugation can always be made coincident with the third storage part regardless of the blood volume or hematocrit value of the blood to be centrifuged.
  • the recovery rate of leukocyte components can be improved. Since the bellows structure is simple in structure, it is advantageous for reliability, durability, and cost reduction.
  • the bellows structure is provided in the first storage part in which red blood cell components are stored after centrifugation. According to such a preferable configuration, the position of the buffy coat after centrifugation can be easily matched with the third reservoir.
  • the blood reservoir is integrally formed as one part including the bellows structure. This reduces the possibility that blood pressurized by the centrifugal force during centrifugation will leak out of the blood reservoir. Moreover, since a blood reservoir can be manufactured easily, cost can be reduced.
  • the bellows adjustment mechanism may include a male screw and a female screw.
  • the expansion / contraction amount of the bellows structure can be adjusted by adjusting the screwing depth between the male screw and the female screw.
  • the configuration of the bellows adjustment mechanism is simplified, which is advantageous in terms of reliability, durability, and cost reduction. Further, fine adjustment of the compression amount of the bellows structure and further fine adjustment of the volume of the blood reservoir are easy.
  • the blood component separation device of the present invention further includes a support member that prevents the third reservoir from being deformed during centrifugation, and a bottom cap that contacts at least a part of the bottom of the first reservoir. You may have.
  • the support member and the bottom cap is provided with the male screw and the other is provided with the female screw. Accordingly, the bellows adjustment mechanism can be configured while suppressing an increase in the number of parts and a complicated structure.
  • the bottom cap or the support member may be provided with a scale serving as an index when adjusting the amount of expansion and contraction of the bellows structure.
  • the first blocking member and the second blocking member may include an inflatable balloon.
  • the first blocking member and the second blocking member may include a plurality of blades that can be opened and closed. According to this form, the structure for interrupting
  • FIG. 1 is a schematic perspective view showing a configuration of a blood component separation device 1 (hereinafter simply referred to as “device 1”) according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the device 1 showing a state in which the pair of support halves 91a and 91b are separated from the blood storage tank 20.
  • FIG. FIG. 3 is a cross-sectional perspective view of the device 1 along the vertical direction.
  • an alternate long and short dash line 1 a is the central axis of the device 1.
  • a direction parallel to the central axis 1a is referred to as “vertical direction”
  • a direction parallel to a plane orthogonal to the central axis 1a is referred to as “horizontal direction”.
  • the apparatus 1 includes a blood storage tank 20 for storing blood.
  • the device 1 is used for centrifuging blood stored in the blood storage tank 20 into each blood component.
  • the blood reservoir 20 includes a first reservoir 21, a second reservoir 22, and a third reservoir 23 provided between the first reservoir 21 and the second reservoir 22.
  • the third reservoir 23 communicates with the first reservoir 21 and the second reservoir 22 respectively. Therefore, the first storage unit 21 and the second storage unit 22 communicate with each other via the third storage unit 23. During centrifugation, each blood component can freely move from the first reservoir 21 through the third reservoir 23 to the second reservoir 22 or vice versa.
  • the apparatus 1 is normally used with the central axis 1a in the vertical direction and the first reservoir 21 facing down.
  • Blood is injected into the blood storage tank 20 through an injection port 24 provided on the upper surface of the second storage unit 22.
  • the device 1 that stores blood in the blood reservoir 20 is mounted on a centrifuge so that centrifugal force acts in the direction of arrow F in FIGS.
  • the red blood cell component is stored in the first storage unit 21
  • the plasma component is stored in the second storage unit 22
  • the buffy coat white blood cell layer
  • each volume of the 1st, 2nd, and 3rd storage parts 21, 22, and 23 is set up.
  • the first, second, and third reservoirs 21, 22, and 23 each have a hollow, substantially cylindrical shape and are arranged coaxially.
  • the first reservoir 21 and the second reservoir 22 have substantially the same inner diameter and substantially the same outer diameter.
  • the inner peripheral surface of the third storage part 23 is a smooth cylindrical surface having a substantially constant inner diameter in the direction of the central axis 1a. Since the 3rd storage part 23 which connects the 1st storage part 21 and the 2nd storage part 22 has such an internal peripheral surface, the blood component which moves the inside of the 3rd storage part 23 at the time of centrifugation is the 3rd storage part. It is hard to stay in 23. That is, during centrifugation, a blood cell component having a relatively large specific gravity such as red blood cells can easily move from the second reservoir 22 to the first reservoir 21 through the third reservoir 23, and plasma or the like. It is easy for a component having a relatively small specific gravity to move from the first reservoir 21 to the second reservoir 22 through the third reservoir 23. Therefore, the inner peripheral surface of the third reservoir 23 being a cylindrical surface having a constant inner diameter is advantageous for improving the recovery rate of the white blood cell component.
  • the inner diameter of the third reservoir 23 is smaller than the inner diameters of the first reservoir 21 and the second reservoir 22. Since the proportion of the white blood cell component in the blood is relatively small, the thickness (vertical dimension) of the white blood cell component layer (buffy coat) after centrifugation is relatively reduced by reducing the inner diameter of the third reservoir 23. Can be bigger. This is advantageous for efficiently collecting leukocyte components.
  • the inner diameter of the third reservoir 23 (the minimum value of the inner diameter of the third reservoir 23 when the inner diameter of the third reservoir 23 is not constant in the vertical direction) is 20 mm or more.
  • the inner surface (bottom surface) of the lower side wall (the wall on the third storage unit 23 side) 22a of the second storage unit 22 is inclined so as to descend (approach the third storage unit 23) as it approaches the central axis 1a. (In other words, it has a conical surface shape or a tapered surface shape).
  • the inclination of the inner surface of the lower wall 22a means that blood cell components having a relatively high specific gravity such as red blood cells in the second reservoir 22 pass through the third reservoir 23 to the first reservoir 21 during centrifugation. Make it easy to move.
  • the inner surface (upper surface) of the upper side wall (the wall on the third storage unit 23 side) 21a of the first storage unit 21 is inclined so as to rise (approach the third storage unit 23) as it approaches the central axis 1a. It is preferable to have a funnel shape (that is, a conical surface shape or a tapered surface shape).
  • the fact that the inner surface of the upper wall 21a is inclined means that components having a relatively low specific gravity such as plasma in the first reservoir 21 pass through the third reservoir 23 and move to the second reservoir 22 during centrifugation. Make it easy to do.
  • the inclination angle with respect to the plane along the horizontal direction of the inner surface of the lower wall 22a of the second reservoir 22 and the horizontal direction of the inner surface of the upper wall 21a of the first reservoir 21 is not particularly limited, but is preferably 10 to 45 degrees, more preferably 15 to 30 degrees, and can be set to 20 degrees as an example.
  • the volumes of the first and second storage units 21 and 22 become small. If the inclination angle is smaller than this numerical range, red blood cells, white blood cells, etc. remain in the second reservoir 22 after centrifugation, or white blood cells, plasma components remain in the first reservoir 21, etc.
  • the recovery rate decreases.
  • the inner surface of the lower wall 22a of the second reservoir 22 and the inner surface of the upper wall 21a of the first reservoir 21 do not have to be exact conical surfaces.
  • the inclination angle of the inner surface of the lower wall 22a and the inner surface of the upper wall 21a May be an inclined surface that varies depending on the distance along the horizontal direction from the central axis 1a.
  • a columnar knob 25 protrudes upward at the center of the upper surface of the second reservoir 22.
  • the knob 25 can be used as a handle when the device 1 is grasped and moved by hand.
  • a ventilation filter 26 is provided on the side surface of the knob 25.
  • the ventilation filter 26 is a filter having a property that gas is allowed to pass therethrough but liquid is not allowed to pass therethrough, and bacteria and the like are not allowed to pass therethrough.
  • the blood reservoir 20 communicates with the outside through the ventilation filter 26. When blood is injected into the empty blood storage tank 20 through the injection port 24, the air originally present in the blood storage tank 20 is discharged out of the blood storage tank 20 through the ventilation filter 26.
  • the ventilation filter 26 is provided on the side surface of the knob 25, but the ventilation filter 26 may be provided at a position other than the knob 25. However, once the ventilation filter 26 comes into contact with blood and gets wet, the air permeability of the ventilation filter 26 decreases. Therefore, it is preferable to provide the ventilation filter 26 at a location where the possibility of touching the blood is low in the second reservoir 22.
  • the knob 25 has a substantially cylindrical shape, but may have any other shape. For example, it may have an inverted “U” shape so that a finger can be inserted. Further, the inside of the knob 25 may not be hollow.
  • the material of the blood reservoir 20 including the first, second, and third reservoirs 21, 22, and 23 is mechanical to such an extent that the shape does not change (that is, has shape retainability) in a state where blood is stored. It is preferable to have strength, and further, it is preferable to have relatively high rigidity so that deformation can be suppressed to be small even by centrifugal force acting on blood during centrifugation. Moreover, it is preferable to have transparency so that the blood stored in the inside can be visually recognized from the outside. Such a material is not particularly limited.
  • polycarbonate polyethylene
  • PP polypropylene
  • polyester polymethylpentene
  • methacryl ABS resin (acrylonitrile / butadiene / styrene copolymer)
  • PET resin polyethylene terephthalate
  • PVC polyvinyl chloride
  • the manufacturing method of the blood reservoir 20 is not particularly limited.
  • the blood reservoir 20 is created by combining a plurality of separately molded members in a liquid-tight manner in the direction of the central axis 1a. If necessary, an O-ring can be interposed at the joint between adjacent members.
  • a disc-shaped first blocking member 31 is provided in the first storage portion 21.
  • a first O-ring 51 is mounted on the cylindrical outer peripheral surface of the first blocking member 31.
  • the first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41.
  • the first rod 41 extends upward along the central axis 1a and penetrates the upper surface of the second reservoir 22 (knob 25).
  • the cylindrical outer peripheral wall of the first rod 41 is formed with a first hole 41a that communicates the inside and the outside of the first rod 41 and a plurality (two in this embodiment) of second holes 41b.
  • the first hole 41a is provided in the vicinity of the first blocking member 31 and slightly above it.
  • the second hole 41b is the third storage portion 23. It is provided so that it may be located in the upper end vicinity.
  • a flexible tube 43 having a hollow cylindrical shape is inserted into the first rod 41.
  • the lower end of the tube 43 is led out of the first rod 41 through a first hole 41 a formed in the first rod 41.
  • the tube 43 led out from the first rod 41 is curved downward, and the opening at the lower end thereof is located in the vicinity of the upper surface of the first blocking member 31.
  • the upper end of the tube 43 is led out from the opening at the upper end of the first rod 41.
  • a connector female connector
  • a connector female connector
  • the mouth male luer
  • the outer diameter of the tube 43 is smaller than the inner diameter of the first rod 41. Therefore, a slight gap is formed between the first rod 41 and the tube 43 in the first rod 41.
  • a disk-shaped second blocking member 32 is provided in the second reservoir 22.
  • a second O-ring 52 is attached to the cylindrical outer peripheral surface of the second blocking member 32.
  • the second blocking member 32 is held at the lower ends of the two second rods 42.
  • the second rod 42 is disposed at a symmetric position with respect to the first rod 41, extends upward in parallel with the first rod 41, and penetrates the upper surface of the second reservoir 22 (knob 25).
  • the upper end of the 2nd rod 42 is being fixed to the operation piece 45 distribute
  • the first rod 41 passes through the second blocking member 32 and the operation piece 45.
  • the third O-ring 53 is formed on the inner peripheral surface of the through hole through which the first rod 41 of the second blocking member 32 passes. It is installed.
  • the material of the first blocking member 31 and the second blocking member 32 is preferably a hard material that can be regarded as a substantially rigid body so that the O-rings 51, 52, and 53 can form a liquid-tight seal.
  • the material of the second blocking member 32 is preferably a material having a small specific gravity in order to avoid a large centrifugal force from acting during centrifugation, and has a specific gravity lower than the specific gravity of plasma (about 1.027). It is preferable. From such a viewpoint, as the material of the first blocking member 31 and the second blocking member 32, for example, a resin material such as polypropylene (PP), polyethylene (PE), or ethylene vinyl acetate copolymer resin (EVA) can be used. .
  • PP polypropylene
  • PE polyethylene
  • EVA ethylene vinyl acetate copolymer resin
  • an inclined surface such as a conical surface is provided on the upper surface of the first blocking member 31 and the second blocking member 32, or coating is performed. Is preferable.
  • the O-rings 51, 52, and 53 a general-purpose O-ring capable of forming a liquid-tight seal can be used.
  • the material is not particularly limited, but a material having rubber elasticity (also called an elastomer) such as natural rubber, isoprene rubber, silicone rubber and the like, and thermoplastic elastomers such as styrene elastomer, olefin elastomer and polyurethane elastomer. ) Can be used.
  • the first blocking member 31 and the first rod 41 can be moved up and down integrally. Further, by operating the operation piece 45 attached to the upper end of the second rod 42, the second blocking member 32, the second rod 42, and the operation piece 45 can be integrally moved up and down.
  • the up-and-down movement of the integrated object including the first blocking member 31 and the up-and-down movement of the integrated object including the second blocking member 32 can be performed independently of each other.
  • a stopper 47 is inserted between the upper surface of the second reservoir 22 (knob 25) and the operation piece 45.
  • the stopper 47 is formed with three notches 47n extending in the vertical direction (see FIG. 5 described later).
  • the first rod 41 and the two second rods 42 are inserted into the three notches 47n.
  • the stopper 47 regulates the downward movement of the integrated object composed of the second blocking member 32, the second rod 42, and the operation piece 45.
  • the stopper 47 can be freely inserted and removed between the upper surface of the second reservoir 22 and the operation piece 45 by moving in the horizontal direction along the notch 47n.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22.
  • the positions of the first blocking member 31 and the second blocking member 32 in FIG. 3 are referred to as “initial positions” in the present invention.
  • a support member 90 is attached to the blood reservoir 20.
  • the support member 90 is configured by support halves 91 a and 91 b each having a semi-cylindrical shape.
  • the support halves 91a and 91b are mounted on the blood reservoir 20 between the first reservoir 21 and the second reservoir 22 so as to face the third reservoir 23.
  • the support half 91a and the support half 91b are coupled to each other using a fastening member (not shown) such as a screw.
  • the first support portion 90 a at the lower end of the support halves 91 a and 91 b contacts the first storage portion 21, and the second support portion 90 b at the upper end contacts the second storage portion 22.
  • the outer peripheral surface of the support member 90 is substantially the same cylinder as the outer peripheral surfaces of the first storage unit 21 and the second storage unit 22. Form a surface.
  • the support member 90 prevents the blood reservoir 20 (particularly the third reservoir 23) from being bent or buckled due to centrifugal force acting on the blood in the blood reservoir 20 during centrifugation. Therefore, it is preferable that the support member 90 has a high mechanical strength that can be regarded as a substantially rigid body. Further, the support member 90 is transparent so that the blood in the third reservoir 23 can be seen through the support member 90 in a state where the support member 90 is mounted on the blood storage tank 20 (see FIG. 1). It is preferable to have. From such a viewpoint, examples of the material of the support member 90 include resin materials such as polycarbonate, polypropylene, hard polyvinyl chloride, polyoxymethylene, and polyetheretherketone.
  • the device 1 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 3 is prepared. Blood is injected into the blood reservoir 20 of the device 1 through the injection port 24. As the blood flows into the blood reservoir 20, the air in the blood reservoir 20 flows out of the blood reservoir 20 through the ventilation filter 26.
  • the blood to be centrifuged can be collected by a well-known method. For example, a syringe previously wetted with heparin is punctured into dozens of bone marrows, and a predetermined amount (eg, about 100 ml to 400 ml) of bone marrow fluid is collected.
  • a predetermined amount eg, about 100 ml to 400 ml
  • the injection port 24 is closed.
  • the device 1 filled with blood is centrifuged and centrifuged.
  • the centrifugal force acts in the direction of arrow F in FIGS. 1 and 3 in parallel with the central axis 1a.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21.
  • a stopper 47 is inserted between the upper surface of the second storage part 22 and the operation piece 45. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
  • the operation piece 45 is suppressed downward with a hand different from the hand that has gripped the first rod 41 as necessary. May be.
  • the first blocking member 31 attached to the lower end of the first rod 41 moves upward in the first reservoir 21.
  • the first O-ring 51 attached to the first blocking member 31 is fitted into the lower opening of the third reservoir 23.
  • the opening on the first reservoir 21 side of the third reservoir 23 is closed by the first blocking member 31.
  • the communication between the first storage unit 21 and the third storage unit 23 is liquid-tightly blocked by the first blocking member 31.
  • the stopper 47 is removed between the upper surface of the second reservoir 22 and the operation piece 45. Subsequently, the operation piece 45 is pushed downward. At this time, the upper end of the first rod 41 is pulled upward with a hand different from the hand that pushes down the operating piece 45 as necessary so that the first blocking member 31 does not descend together with the operating piece 45 that is lowered. May be.
  • the second blocking member 32 attached to the lower end of the second rod 42 moves downward in the second reservoir 22.
  • the second O-ring 52 attached to the second blocking member 32 is fitted into the upper opening of the third storage portion 23.
  • the opening on the second reservoir 22 side of the third reservoir 23 is closed with the second blocking member 32.
  • the communication between the second storage part 22 and the third storage part 23 is liquid-tightly blocked by the second blocking member 32.
  • the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. .
  • the lower end of the tube 43 led out from the first hole 41 a of the first rod 41 and the second hole 41 b of the first rod 41 are open in the third reservoir 23.
  • the third reservoir 23 and the inside of the tube 43 may be washed with physiological saline, and the leukocyte component remaining inside these may be further recovered.
  • physiological saline is injected from the syringe into the third reservoir 23 via the first flow path 61 in the tube 43 as indicated by an arrow 67 in FIG.
  • the air that already exists in the third reservoir 23 passes through the second hole 41 b provided in the first rod 41 and the gap between the first rod 41 and the tube 43 as indicated by an arrow 68. It flows out of the 3rd storage part 23 through the 2nd flow path 62 connected in order.
  • the physiological saline injected into the third reservoir 23 can also be recovered by a suction operation of a syringe attached to the upper end of the tube 43, as in the recovery of the white blood cell component described above.
  • the collected physiological saline contains a white blood cell component.
  • the collected physiological saline may be centrifuged to perform a known process such as removal of heparin or concentration of leukocyte components.
  • the first blocking member 31 is provided in the first storage part 21, and the second blocking member 32 is provided in the second storage part 22.
  • the first blocking member 31 can be moved to block the boundary portion between the first storage unit 21 and the third storage unit 23 with the first blocking member 31, and the second blocking member 32 can be moved.
  • the boundary portion between the second storage portion 22 and the third storage portion 23 can be closed with the second blocking member 32. Therefore, even if the blood storage tank 20 is made of a hard material and has a shape retaining property that does not substantially deform, the blood storage tank 20 is obtained after centrifuging blood into three components of a red blood cell component, a plasma component, and a white blood cell component.
  • the inside can be divided into three parts in a liquid-tight manner. Therefore, leukocyte components can be efficiently collected.
  • the blood storage tank 20 is deformed or pushed at the boundary part. There is no need to crush. Therefore, it is possible to set the inner diameter of the third storage portion 23 to be relatively large. This facilitates the passage of each component through the third reservoir 23 during centrifugation, so that blood is easily centrifuged into three components. This is advantageous for efficiently collecting leukocyte components. Further, the large inner diameter of the third reservoir 23 is advantageous for improving the strength of the blood reservoir 20.
  • the first blocking member 31 and the second blocking member 32 are moved in the blood storage tank 20 in order to block both ends of the third storage unit 23.
  • the first blocking member and the second blocking member are inflated to close both ends of the third storage portion, which will be described later.
  • the liquid tightness when both ends of the third reservoir 23 are closed is improved. This is advantageous for efficiently collecting leukocyte components.
  • the first rod 41 and the second rod 42 led out upward from the blood reservoir 20 are operated. .
  • the 1st cutoff member 31 and the 2nd cutoff member 32 can be easily moved from the blood storage tank 20 outside.
  • operation of the 1st rod 41 and the 2nd rod 42 is performed by moving the 1st rod 41 and the 2nd rod 42 to the longitudinal direction. This reduces the possibility that the first rod 41 and the second rod 42 are bent and deformed when the first blocking member 31 and the second blocking member 32 are moved. Therefore, the end of the first reservoir 41 and the second rod 42 can be operated from outside the blood reservoir 20 to reliably close the end of the third reservoir 23 in a liquid-tight manner.
  • the tube 43 is inserted into the first rod 41 that holds the first blocking member 31 to form a double tube structure, the first flow path 61 is formed in the tube 43 that is the inner tube, and the tube 43 (inner tube) A second flow path 62 is formed between the first rod 41, which is an outer tube. Since the two flow paths 61 and 62 for communicating the third reservoir 23 sealed at both ends with the outside of the blood reservoir 20 are formed, the third reservoir is suppressed while suppressing the pressure fluctuation in the third reservoir 23. The leukocyte component in the unit 23 can be collected smoothly. In addition, since the first flow path 61 and the second flow path 62 are formed in the first rod 41 that holds the first blocking member 31, the first flow path 61 and the second flow path 62 are outside the first rod 41. As compared with the case of forming, the number of parts constituting the device 1 can be reduced, and the configuration of the device 1 can be simplified.
  • the blood reservoir 20 is made of a material having shape retention. Therefore, after centrifugation, there is a low possibility that the blood reservoir 20 is deformed by external force or the like and the red blood cell component, plasma component, and white blood cell component are mixed with each other. Further, the liquid tightness is improved when both ends of the third reservoir 23 are closed by the first blocking member 31 and the second blocking member 32 to seal the third reservoir 23. As a result, leukocyte components can be efficiently collected. In addition, the fact that the blood reservoir 20 has shape retention is advantageous for improving the handleability of the blood reservoir 20.
  • a blood component separation device 2 (hereinafter simply referred to as “device 2”) according to the second embodiment of the present invention differs from the device 1 of the first embodiment mainly in the following two points.
  • the device 2 includes a volume adjustment mechanism for adjusting the volume of the blood reservoir 20.
  • the device 2 includes a pressure release mechanism for preventing the inside of the third reservoir 23 from becoming a positive pressure when the openings at both ends of the third reservoir 23 are closed.
  • the apparatus 2 of this Embodiment 2 is demonstrated centering around difference with the apparatus 1 of Embodiment 1.
  • FIG. 9 is a perspective view of the device 2.
  • FIG. 10 is an exploded perspective view of the device 2.
  • FIG. 11 is a cross-sectional perspective view along the vertical direction surface of the device 2. In FIG. 11, the alternate long and short dash line 1 a is the central axis of the device 2.
  • the blood reservoir 20 includes a first reservoir 21, a second reservoir 22, and a third reservoir 23 provided between the first reservoir 21 and the second reservoir 22.
  • the third storage unit 23 communicates with the first storage unit 21 and the second storage unit 22.
  • the blood reservoir 20 has an opening 27 facing upward at the upper end thereof.
  • the opening 27 has a hollow cylindrical shape that is coaxial with the central axis 1 a, and has an outer diameter and an inner diameter smaller than those of the second storage portion 22.
  • the 1st storage part 21 has a hollow substantially cylindrical shape as a whole.
  • a bellows structure 28 that can be extended and / or compressed in the vertical direction is provided on the outer peripheral surface of the first storage portion 21.
  • the bellows structure 28 is formed by periodically bending the outer peripheral wall of the first reservoir 21 in a zigzag shape. By expanding and contracting the bellows structure 28 in the vertical direction, the volume of the first reservoir 21 and the volume of the blood reservoir 20 can be increased or decreased.
  • the outer diameter of the first reservoir 21 is substantially the same as the outer diameter of the second reservoir 22.
  • the entire blood storage tank 20 is integrally formed as one part.
  • the blood reservoir 20 has no seam, so that the blood pressurized by the centrifugal force during centrifugation is outside the blood reservoir 20. The possibility of leaking out is reduced.
  • manufacture of the blood storage tank 20 becomes easy and cost can be reduced.
  • the resin material that can be used is not limited from the viewpoint of imparting flexibility that allows the bellows structure 28 to expand and contract.
  • hard vinyl chloride, LDPE (low density polyethylene), PP (polypropylene), Resin materials such as EVA (ethylene / vinyl acetate copolymer resin) can be used.
  • the blood reservoir 20 can also be manufactured by combining a plurality of separately created members in a liquid-tight manner. If necessary, an O-ring can be interposed at the joint between adjacent members.
  • the bellows structure 28 (or the first reservoir 21 including the bellows structure 28) is preferably made using the above-described relatively soft material.
  • Other portions of the blood reservoir 20 are made of relatively hard materials such as polycarbonate, polyethylene, polyester, polymethylpentene, methacryl, ABS resin (acrylonitrile / butadiene / styrene copolymer), PET resin (polyethylene terephthalate). ) And a resin material such as PVC (polyvinyl chloride).
  • the support member 90 is mounted on the outer peripheral surface of the blood reservoir 20.
  • the support member 90 includes support halves 91a and 91b.
  • the shape of the support member 90 is slightly different from that of the first embodiment.
  • the support member 90 of the second embodiment has an inner peripheral surface that is substantially along the outer peripheral surface of the blood reservoir 20 and covers the blood reservoir 20 from the opening 27 at the upper end of the blood reservoir 20 to the bellows structure 28.
  • the support half 91a and the support half 91b are integrated by attaching a top cap 250 and a bottom cap 80 on the top and bottom thereof (details will be described later).
  • the support member 90 has a constriction along the constriction of the third storage portion 23, and eight ribs 90c extend radially from the constriction.
  • the rib 90c connects the first support part 90a and the second support part 90b, and prevents the support member 90 from being bent or buckled by a centrifugal force during centrifugation.
  • the first support part 90 a abuts on the upper side wall 21 a of the first storage part 21, and the second support part 90 b abuts on the lower side wall 22 a of the second storage part 22.
  • FIG. 12 is an enlarged cross-sectional view of the first storage unit 21.
  • the support member 90 includes a skirt portion 92 at the lower end thereof.
  • the skirt portion 92 has a cylindrical shape and surrounds the bellows structure 28 of the first storage portion 21.
  • a male screw 93 and a groove 94 are formed on the outer peripheral surface of the skirt portion 92.
  • the groove 94 is an annular groove that is arranged adjacent to the lower side of the male screw 93 and is continuous in the circumferential direction.
  • An O-ring 97 is fitted in the groove 94.
  • An annular rib 95 continuous in the circumferential direction protrudes from the inner peripheral surface of the skirt portion 92 toward the central axis 1a. The rib 95 is fitted in the uppermost concave portion of the concave and convex portions formed on the outer peripheral surface of the bellows structure 28.
  • the support member 90 is attached to the blood reservoir 20, and then the O-ring 97 is attached to the groove 94 of the support member 90. Thereafter, the bottom cap 80 is attached to the blood reservoir 20 from below.
  • the bottom cap 80 has a bottomed cylindrical shape (see FIG. 10).
  • a female screw 83 is formed on the inner peripheral surface of the cylindrical portion of the bottom cap 80. The female screw 83 is screwed with the male screw 93 of the support member 90.
  • the first support portion 90 a of the support member 90 is in contact with the upper side wall 21 a of the first storage portion 21. Further, the rib 95 of the skirt portion 92 of the support member 90 is fitted into the uppermost concave portion of the bellows structure 28. As a result, the upper side wall 21a of the first reservoir 21 is gripped in the vertical direction by the support member 90.
  • the bottom portion 80b of the bottom cap 80 covers and contacts the bottom portion 21b of the first storage portion 21. Therefore, as the bottom cap 80 is rotated with respect to the support member 90 and the male screw 93 is screwed into the female screw 83, the bellows structure 28 of the first storage portion 21 is supported by the support member 90 and the bottom cap 80. Compression deformation in the vertical direction.
  • the volume of the first reservoir 21 is reduced and the volume of the blood reservoir 20 is reduced.
  • the male screw 93 of the support member 90 and the female screw 83 of the bottom cap 80 constitute a bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure 28.
  • the bottom cap 80 or the support member 90 may be provided with a scale indicating the rotational position of the bottom cap 80 or the screwing depth between the male screw 93 and the female screw 83.
  • the O-ring 97 increases the frictional force between the support member 90 and the bottom cap 80, and prevents the relative position between the male screw 93 and the female screw 83 from being changed by centrifugal force or vibration during centrifugation. To do.
  • the amount of compressive deformation of the bellows structure 28 is kept constant, and the volume of the blood reservoir 20 is prevented from changing unintentionally.
  • the bottom cap 80 like the support member 90, preferably has high mechanical strength and transparency that can be regarded as a substantially rigid body. From this point of view, the same material as the support member 90 described in the first embodiment can be used as the material of the bottom cap 80.
  • the material of the O-ring 97 is not particularly limited, but is a material having rubber elasticity such as rubber such as natural rubber, isoprene rubber and silicone rubber, and thermoplastic elastomer such as styrene elastomer, olefin elastomer and polyurethane elastomer ( (Also called elastomers) can be used. Further, instead of using the O-ring 97, the material may be embedded in the support member 90 or the bottom cap 80 by two-color molding to increase the frictional force between the support member 90 and the bottom cap 80.
  • each scale 98 may be accompanied by a blood hematocrit value (not shown). The vertical position of each scale 98 with the hematocrit value added is set so that the buffy coat matches the third reservoir 23 when the blood having the hematocrit value is centrifuged.
  • the bottom cap 80 Prior to centrifugation, the hematocrit value of blood is obtained, and the bottom cap 80 is rotated so that the O-ring 97 coincides with the scale 98 corresponding to the hematocrit value to adjust the amount of compressive deformation of the bellows structure 28.
  • the adjustment operation work of the volume of the blood storage tank 20 according to the blood can be performed easily and rapidly.
  • the compression deformation amount of the bellows structure 28 may be adjusted by seeing through the bottom cap 80 the positions on the support member 90 (particularly the skirt portion 92) other than the O-ring 97.
  • a disc-shaped first blocking member 31 is provided in the first storage portion 21.
  • a first O-ring 51 is attached to the outer peripheral surface of the first blocking member 31.
  • the first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41.
  • the first rod 41 extends upward to the outside of the blood reservoir 20 along the central axis 1a.
  • the cylindrical outer peripheral wall of the first rod 41 is formed with a first hole 41a that communicates the inside and the outside of the first rod 41 and a plurality (two in this embodiment) of second holes 41b.
  • a flexible tube 43 having a hollow cylindrical shape is inserted into the first rod 41.
  • the lower end of the tube 43 is led out of the first rod 41 through a first hole 41 a formed in the first rod 41.
  • the lower end of the tube 43 is open near the upper surface of the first blocking member 31.
  • FIG. 13 is an enlarged cross-sectional view of the second blocking member 32 and its peripheral portion.
  • a second O-ring 52 is attached to the outer peripheral surface of the second blocking member 32.
  • the second blocking member 32 is held at the lower end of the second rod (slider) 242.
  • the second rod 242 has a hollow cylindrical shape and is disposed coaxially with the central axis 1a.
  • a through hole 32 h that penetrates the second blocking member 32 in the vertical direction is formed at a position off the center of the second blocking member 32.
  • a one-way valve 235 is provided in the through hole 32h.
  • the one-way valve 235 allows the liquid (blood) to flow upward through the through hole 32h, but prohibits the liquid (blood) from flowing downward through the through hole 32h.
  • an umbrella valve made of a rubber-like elastic material (so-called elastomer) and having a substantially mushroom shape is used as the one-way valve 235.
  • the one-way valve 235 may be of any type as long as it has the above function.
  • a duckbill valve can be used.
  • the first rod 41 passes through the second blocking member 32 and the second rod 242.
  • the third O-ring 53 is attached to the inner peripheral surface of the through hole through which the first rod 41 of the second blocking member 32 passes.
  • the third O-ring 53 provides a liquid-tight seal between the outer peripheral surface of the first rod 41 and the second blocking member 32.
  • a fourth O-ring 54 is mounted on the inner peripheral surface of the second rod 242 at a position near the upper end thereof. The fourth O-ring 54 seals between the outer peripheral surface of the first rod 41 and the second rod 242.
  • the second rod 242 is inserted into a guide cylinder 270 having a hollow cylindrical shape.
  • the upper end of the guide tube 270 is held by a top plate 255 having a substantially disc shape.
  • On the top plate 255 four ports 256a to 256d (ports 256b and 256c are not visible in FIG. 13) are formed.
  • the ports 256a to 256d are through holes that allow the inside and outside of the blood reservoir 20 to communicate with each other.
  • the number of ports is not limited to four and may be more or less.
  • the second rod 242 includes an operation piece 245 extending upward from a portion having a hollow cylindrical shape.
  • the operation piece 245 protrudes above the top plate 255. Similar to the operation piece 45 of the first embodiment, by operating the operation piece 245, the second rod 242 and the second blocking member 32 can be integrally moved up and down. These vertical movements can be performed independently of the vertical movement of the first blocking member 31 and the first rod 41.
  • a fifth O-ring 55 and a sixth O-ring 56 are provided.
  • the fifth O-ring 55 is mounted on the inner peripheral surface of the guide tube 270 and in the vicinity of the lower end thereof.
  • the sixth O-ring 56 is mounted on the outer peripheral surface of the second rod 242 and in the vicinity of the upper end thereof.
  • a sealed space 273 sealed with the fifth O-ring 55 and the sixth O-ring 56 is formed between the second rod 242 and the guide cylinder 270.
  • the lower end of the air tube 272 is connected to the guide tube 270 at a position near the lower end of the sealed space 273.
  • the upper end of the air pipe 272 is connected to a port 256 d formed on the top plate 255. Therefore, the sealed space 273 is communicated with the outside of the blood storage tank 20 through the air pipe 272 and the port 256d. Thereby, it becomes easy to move the second rod 242 in the vertical direction with respect to the guide tube 270 without changing the atmospheric pressure in the sealed space 273.
  • O-rings 54, 55, and 56 general-purpose O-rings can be used similarly to the O-rings 51, 52, and 53 described in the first embodiment.
  • the same material as the O-rings 51, 52, 53 can be used.
  • the outer peripheral surface of the second rod 242 is sterilized when the apparatus 2 is assembled.
  • the O-rings 55 and 56 maintain their sterilized state. Therefore, when the second rod 242 is pushed down to close the opening on the upper side of the third reservoir 23 with the second blocking member 32 (see FIG. 15 described later), the possibility that bacteria are mixed into the blood can be reduced.
  • a stopper 247 (see FIG. 10) having a substantially U-shape is detachably locked to the second rod 242 in the horizontal direction.
  • the stopper 247 is inserted into the groove formed on the outer peripheral surface of the second rod 242. Can be locked.
  • the lower surface of the stopper 247 comes into contact with the upper end of the guide tube 270 or the upper surface of the top plate 255, so the second rod 242 cannot be lowered. In the present invention, this state is referred to as a “locked state” by the stopper 247.
  • the support member 90 surrounds the cylindrical opening 27 of the blood reservoir 20.
  • a male screw 96 is formed on the outer peripheral surface of the portion of the support member 90 surrounding the opening 27.
  • the female screw 252 of the top cap 250 is screwed into the male screw 96.
  • An annular seal member 253 is interposed between the top cap 250 and the edge of the opening 27 of the blood reservoir 20.
  • a top plate 255 is fitted into the central opening of the top cap 250.
  • the male screw 96 is formed on the support member 90, but the present invention is not limited to this, and the male screw 96 may be formed in the blood reservoir 20. Similar to the knob 25 of the first embodiment, the top cap 250 can be used as a handle when the device 2 is gripped and moved.
  • the port 256a formed in the top plate 255 is provided with a ventilation filter 226 that functions in the same manner as the ventilation filter 26 of the first embodiment.
  • the ports 256b and 256c can be used as blood injection ports for injecting blood into the blood reservoir 20.
  • one end of a flexible tube may be connected to the blood injection port.
  • a known female connector may be provided at the other end of the tube.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22.
  • the positions in FIG. 11 of the first blocking member 31 and the second blocking member 32 are referred to as “initial position”.
  • the blood volume and hematocrit value of the collected blood are measured.
  • the amount of erythrocyte component and plasma volume are calculated from the blood volume and hematocrit value.
  • the empty device 2 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 11 is prepared.
  • the bottom cap 80 is rotated to adjust the amount of compressive deformation of the bellows structure 28.
  • the amount of compressive deformation is determined so that the buffy coat after centrifugation is formed in the third reservoir 23 of the blood reservoir 20 based on the amount of red blood cell components and the amount of plasma determined previously.
  • the bottom cap 80 is provided with a plurality of scales 98 corresponding to the hematocrit value of blood, the bottom cap is set so that the O-ring 97 coincides with the position of the scale 98 corresponding to the measured hematocrit value of blood. Rotate 80. In this case, the calculation of the amount of erythrocyte component and the amount of plasma described above is unnecessary.
  • the collected blood is injected into the blood storage tank 20 through blood injection ports 256 b and 256 c provided on the top plate 255. Thereafter, the blood injection ports 256b and 256c are sealed in a liquid-tight manner.
  • the device 2 filled with blood is centrifuged and centrifuged.
  • the centrifugal force acts in the direction of arrow F in FIGS. 9 and 11 in parallel with the central axis 1a.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21.
  • a stopper 247 is locked to the second rod 242. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
  • the bottom cap 80 may be rotated to finely adjust the vertical position of the buffy coat.
  • the upper end of the first rod 41 is grasped, and the first rod 41 is pulled upward.
  • the first blocking member 31 is fitted into the lower opening of the third reservoir 23.
  • the opening of the third reservoir 23 on the first reservoir 21 side is closed by the first blocking member 31.
  • the second blocking member 32 remains at the initial position (see FIG. 11).
  • the stopper 247 is removed from the second rod 242 (see FIG. 10). Subsequently, the operation piece 245 is pushed downward. As the second rod 242 descends, the volume of the sealed space 273 decreases. The air existing in the sealed space 273 is discharged out of the device 2 through the air pipe 272 and the port 256d. Therefore, the pressure in the sealed space 273 does not increase, and the operation of lowering the second rod 242 is easy.
  • the operation piece 245 is operated, and the second blocking member 32 is inserted into the upper opening of the third reservoir 23 as shown in FIG.
  • the opening of the third reservoir 23 on the second reservoir 22 side is closed by the second blocking member 32.
  • the communication between the second storage part 22 and the third storage part 23 is liquid-tightly blocked by the second blocking member 32.
  • the first blocking member 31 is not displaced from the position of FIG.
  • the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. .
  • the lower end of the tube 43 led out from the first hole 41 a of the first rod 41 and the second hole 41 b of the first rod 41 are open in the third reservoir 23.
  • the white blood cell component in the third reservoir 23 is sucked and collected through the flow path (first flow path) 61 in the tube 43.
  • the outside air passes through the flow path (second flow path) 62 that sequentially connects the gap between the first rod 41 and the tube 43 and the second hole 41b provided in the first rod 41.
  • physiological saline may be injected into the third reservoir 23 via the first flow path 61 in the tube 43. Thereafter, the physiological saline is collected through the first flow path 61 in the tube 43. As physiological saline flows into / out of the third reservoir 23 via the first flow path 61, air flows out / inflow of the third reservoir 23 via the second flow path 62. To do. Thereby, the leukocyte component remaining in the third reservoir 23 and the tube 43 can be collected together with the physiological saline.
  • the second embodiment has the following actions in addition to the actions of the first embodiment.
  • Blood has different red blood cell components and plasma volume depending on its hematocrit value and blood volume.
  • the hematocrit value is a numerical value indicating the proportion of the blood cell volume in the blood.
  • the normal value is about 40 to 50% for adult men and about 35 to 45% for adult women. This hematocrit value may be lower or higher than the normal value for some reason. If the hematocrit value and the blood volume vary, the position of the buffy coat formed in the blood reservoir 20 after the blood is centrifuged changes.
  • the apparatus 2 of this embodiment includes a bellows structure 28 as a volume adjustment mechanism for adjusting the volume of the blood reservoir 20.
  • the volume of the blood reservoir 20 is adjusted by measuring the blood volume and hematocrit value of the blood before centrifugation and adjusting the amount of compression of the bellows structure 28 accordingly.
  • the amount of compression of the bellows structure 28 can be adjusted by adjusting the screwing depth between the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism. Since each of the bellows structure 28 and the bellows adjustment mechanism has a very simple configuration, it is excellent in reliability, durability, and cost reduction. Further, the fine adjustment of the compression amount of the bellows structure 28 and the fine adjustment of the volume of the blood reservoir 20 are easy.
  • the blood reservoir 20 is made of a material having shape retentivity, even if the bottom cap 80 is rotated after centrifugation and the amount of compression of the bellows structure 28 is finely adjusted, the buffy coat does not adhere to the red blood cell layer or the plasma layer. The possibility of mixing is low.
  • the bellows structure 28 constitutes a part of the blood reservoir 20, the volume reduction of the blood reservoir 20 due to the provision of the bellows structure 28 is slight.
  • the bellows structure 28 is provided in the first reservoir 21 in which red blood cell components are stored after centrifugation, it is easy to position the buffy coat in the third reservoir 23 after centrifugation. This is advantageous for further improving the recovery rate of leukocyte components.
  • the lower opening of the third storage unit 23 is closed (FIG. 4), and then the second blocking member. If 32 is to be inserted into the upper opening of the third reservoir 23, the pressure in the third reservoir 23 may increase. Therefore, the white blood cell component in the third reservoir 23 can leak out of the device 1 through the first channel 61 and / or the second channel 62. If the first flow path 61 and the second flow path 62 are sealed, the leukocyte component can be prevented from leaking out of the apparatus 1.
  • the second blocking member 32 is provided with a through hole 32h and a one-way valve 235.
  • the one-way valve 235 opens, and the white blood cell component in the third reservoir 23 flows to the second reservoir 22 through the through hole 32h.
  • the through hole 32h and the one-way valve 235 provided in the second blocking member 32 function as a pressure release mechanism that releases the pressure in the third reservoir so that the pressure in the third reservoir 23 does not rise abnormally. For this reason, in this embodiment, it is possible to prevent the leukocyte component from leaking to the outside and the above-mentioned erroneous operation.
  • the one-way valve 235 prevents an increase in pressure in the third reservoir 23.
  • the third reservoir 23 and the second reservoir 22 communicate with each other through the through hole 32h even when it is not necessary to release the pressure in the third reservoir 23. Therefore, the white blood cell component in the third reservoir 23 is sucked and collected in a state where the lower opening and the upper opening of the third reservoir 23 are respectively closed by the first blocking member 31 and the second blocking member 32 (see FIG. 15).
  • the plasma component in the second reservoir 22 may flow into the third reservoir 23 through the through hole 32h. This reduces the recovery rate of leukocyte components.
  • the one-way valve 235 prevents the plasma component from flowing into the third reservoir 23 from the second reservoir 22 when the white blood cell component in the third reservoir 23 is collected.
  • the white blood cell component flows out from the third reservoir 23 to the second reservoir 22 simultaneously with releasing the pressure in the third reservoir 23.
  • the problem of the outflow of the white blood cell component due to the provision of the through hole 32h and the one-way valve 235 is negligibly small.
  • the bellows structure 28 by adjusting the bellows structure 28 so that the position of the buffy coat is formed in the third reservoir 23 at a position slightly away from the second reservoir 22, the white blood cell component that flows out through the one-way valve 235 is reduced. It is possible to reduce the amount.
  • the pressure in the first storage part 21 may decrease.
  • the first reservoir 21 is provided with a bellows structure 28.
  • the bellows structure 28 can be appropriately modified so as to reduce its length in accordance with a decrease in the pressure in the first reservoir 21. Therefore, in this embodiment, the pressure in the 1st storage part 21 falls, and the problem that it becomes difficult to insert the 1st cutoff member 31 in the lower opening of the 3rd storage part 23 does not arise easily. .
  • the second embodiment is the same as the first embodiment except for the above.
  • the description of the first embodiment is similarly applied to the second embodiment.
  • a blood component separation device 3 (hereinafter simply referred to as “device 3”) according to the third embodiment of the present invention is different from the device 2 of the second embodiment mainly in the following two points.
  • the first rod 41 that holds the first blocking member 31 does not have a double tube structure.
  • the device 3 is different from the device 2 in the configuration of the pressure release mechanism for preventing the inside of the third reservoir 23 from becoming a positive pressure.
  • the apparatus 3 of this Embodiment 3 is demonstrated centering on difference with the apparatus 2 of Embodiment 2.
  • FIG. 16 is a perspective view of the device 3.
  • FIG. 17 is a cross-sectional perspective view of the device 3 along the vertical surface.
  • the alternate long and short dash line 1 a is the central axis of the device 3.
  • the first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41.
  • the first rod 41 extends upward to the outside of the blood reservoir 20 along the central axis 1a.
  • the first rod 41 of the third embodiment is not formed with the first hole 41a and the plurality of second holes 41b (see FIGS. 3 and 11) formed in the first and second embodiments. Further, the tube 43 (see FIGS. 3 and 11) inserted in the first and second embodiments does not exist in the first rod 41 of the third embodiment.
  • Two openings 31 a are formed on the upper surface of the first blocking member 31.
  • the two openings 31 a communicate with each other via a substantially “U” -shaped channel 31 b formed in the first blocking member 31.
  • the lower end of the first rod 41 is inserted into the first blocking member 31 and communicates with the substantially central portion of the flow path 31b. Therefore, the first rod 41 and the opening 31 a communicate with each other in the first blocking member 31.
  • FIG. 18 is an enlarged cross-sectional view of the second blocking member 32 and its peripheral portion.
  • the second blocking member 32 is held at the lower end of the second rod 242.
  • the second blocking member 32 is formed with a through hole 32h penetrating in the vertical direction.
  • the above is the same as in the second embodiment.
  • the one-way valve 235 (see FIG. 13) provided in the second embodiment is not provided in the through hole 32h.
  • the lower end of the flexible hollow first tube 371 is inserted into the through hole 32h from above.
  • the upper end of the first tube 371 is inserted and held in a first holder 376 formed near the upper end of the guide tube 270.
  • a flexible hollow second tube 372 is connected to the guide tube 270 of the third embodiment instead of the air pipe 272 (see FIG. 13) of the second embodiment.
  • a sealed space 273 between the second rod 242 and the guide tube 270 communicates with the second tube 372.
  • the upper end of the second tube 372 is inserted and held in a second holder 377 formed in the vicinity of the upper end of the guide tube 270.
  • a two-dot chain line L indicates a representative position of the blood surface when the apparatus 3 is used.
  • the upper ends of the first tube 371 and the second tube 372 are open toward the horizontal direction in the blood reservoir 20 at a position higher than the blood surface L.
  • the top plate 255 has two ports 256a and 256b.
  • the ports 256a and 256b are through holes that allow the inside and outside of the blood reservoir 20 to communicate with each other.
  • the port 256a is provided with a ventilation filter 226 that functions in the same manner as the ventilation filter 26 of the first embodiment.
  • the port 256 b is a blood injection port used for injecting blood into the blood reservoir 20.
  • one end of a flexible tube may be connected to the blood injection port 256b.
  • a known female connector may be provided at the other end of the tube.
  • the second rod 242 includes an operation piece 245 extending upward from a portion having a hollow cylindrical shape.
  • the operation piece 245 protrudes above the top plate 255.
  • a stopper 347 is connected to the upper end of the operation piece 245 via a rotation shaft 347a along the horizontal direction.
  • the stopper 347 can rotate around the rotation shaft 347a.
  • the stopper 347 is disposed outside the operation piece 245 (on the side far from the central axis 1 a) so as to overlap the operation piece 245.
  • the stopper end 347e which is the tip of the stopper 347 (the end opposite to the rotation shaft 347a), abuts on the upper end of the guide tube 270 or the top surface of the top plate 255. Therefore, when the stopper 347 is in this position, the second rod 242 cannot be lowered. In the present invention, this state is referred to as a “locked state” by the stopper 347. In the third embodiment, the detachable stopper 247 of the second embodiment is not provided.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22.
  • the positions of the first blocking member 31 and the second blocking member 32 in FIG. 17 are referred to as “initial positions”.
  • the configuration of the support halves 91a and 91b is substantially the same as that of the second embodiment.
  • an annular support ring 91c is mounted on the outer peripheral surface of the support halves 91a and 91b so that the two support halves 91a and 91b mounted in the blood reservoir 20 are not separated. (See FIGS. 16 and 17).
  • the support ring 91c is advantageous in improving the workability of assembling the support halves 91a and 91b to the blood reservoir 20.
  • blood to be centrifuged (bone marrow fluid) is collected. Measure blood volume and hematocrit value of blood, and calculate the amount of red blood cell component and plasma volume.
  • the empty device 3 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 17 is prepared.
  • the bottom cap 80 is rotated to adjust the amount of compressive deformation of the bellows structure 28 so that the buffy coat after centrifugation is formed in the third reservoir 23 of the blood reservoir 20. Similar to the second embodiment, the amount of compressive deformation may be adjusted using the scale 98.
  • the collected blood is injected into the blood storage tank 20 through the blood injection port 256 b provided on the top plate 255. Thereafter, the blood injection port 256b is sealed in a liquid-tight manner. As shown in FIG. 18, the blood surface L is located below the openings at the upper ends of the first tube 371 and the second tube 372.
  • the device 2 filled with blood is centrifuged and centrifuged.
  • the centrifugal force acts in the direction of arrow F in FIGS. 16 and 17 in parallel with the central axis 1a.
  • the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21.
  • the stopper 347 connected to the second rod 242 is in a locked state. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
  • the bottom cap 80 may be rotated to finely adjust the vertical position of the buffy coat.
  • the upper end of the first rod 41 is grasped, and the first rod 41 is pulled upward.
  • the first blocking member 31 is fitted into the lower opening of the third reservoir 23.
  • the opening of the third reservoir 23 on the first reservoir 21 side is closed by the first blocking member 31.
  • the second blocking member 32 remains at the initial position (see FIG. 17).
  • the stopper 347 is rotated from the state shown in FIGS. 16 and 17 to release the locked state. Subsequently, the operation piece 245 is pushed downward. As the second rod 242 descends, the volume of the sealed space 273 decreases. The air existing in the sealed space 273 flows into the second reservoir 22 through the second tube 372 and is further discharged to the outside of the device 3 through the ventilation filter 226 provided in the port 256a. . Therefore, the pressure in the sealed space 273 does not increase, and the operation of lowering the second rod 242 is easy.
  • the operation piece 245 is operated, and the second blocking member 32 is inserted into the upper opening of the third reservoir 23 as shown in FIG.
  • the opening of the third reservoir 23 on the second reservoir 22 side is closed by the second blocking member 32.
  • the first blocking member 31 is not displaced from the position of FIG.
  • the first tube 371 is deformed as the second blocking member 32 is lowered.
  • the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. .
  • FIG. 21 is a perspective view of the device 3 in the state shown in FIG. 20 in which the second blocking member 32 blocks the upper opening of the third storage unit 23.
  • the stopper 347 rotates around the rotation shaft 347 a and protrudes above the top plate 255. Most of the operation piece 245 is accommodated in the guide tube 270. Even if the length of the operation piece 245 is shortened by connecting the stopper 347 to the tip of the operation piece 245 so as to be rotatable as in the third embodiment, the second blocking member 32 causes the third storage portion 23 to be The operation of closing the upper opening can be easily performed by operating the stopper 347. Further, unlike the stopper 47 (see FIG. 5) of the first embodiment and the stopper 247 (see FIG. 10) of the second embodiment, the stopper 347 is connected to the operation piece 245 of the second rod 242, and thus the stopper 347 is lost. There is no possibility of doing so.
  • an empty syringe mouth (male luer) is connected to the upper end of the first rod 41 via a flexible tube or the like, and the plunger of the syringe is pulled.
  • the white blood cell component in the third reservoir 23 is connected to the flow path 31b and the first rod 41 in order from the opening 31a on the upper surface of the first blocking member 31 ( It is sucked and collected into the syringe through the first flow path 261).
  • the ventilation filter 226 see FIG.
  • the inside of the third reservoir 23 does not become excessively negative pressure, and the white blood cell component can be easily recovered.
  • physiological saline may be injected into the third reservoir 23 via the first flow path 261 in the first rod 41. Thereafter, the physiological saline is collected through the first flow path 261 in the first rod 41. As physiological saline flows into / out of the third reservoir 23 via the first flow path 261, air flows out / inflow of the third reservoir 23 via the second flow path 262. To do. Thereby, the leukocyte component remaining in the third reservoir 23, the first rod 41, and the flow path 31b can be collected together with the physiological saline.
  • the third embodiment has the following operation in addition to the operation of the first embodiment.
  • the tube 43 present in the first and second embodiments does not exist in the first rod 41. This eliminates the need to insert the tube 43 into the first rod 41, which is advantageous for simplifying the assembly work of the device 3. Further, when the white blood cell component in the third reservoir 23 is sucked and collected via the first rod 41, the cross-sectional area of the flow path (that is, the first flow path 261) in the first rod 41 through which the white blood cell component flows is enlarged. To do. This lowers the flow resistance, which is advantageous for facilitating the recovery of the leukocyte component.
  • the white blood cell component in the third reservoir 23 flows from the opening 31a on the upper surface of the first blocking member 31 to the first rod 41 through the flow path 31b. Therefore, it is not necessary to form a hole into which the white blood cell component flows in the outer peripheral surface of the first rod 41.
  • the air flowing into the third reservoir 23 instead of the leukocyte component passes through the first tube 371 and the through hole 32h of the second blocking member 32 instead of the first rod 41 in the third reservoir 23. Flow into. Therefore, it is not necessary to form a plurality of second holes 41b in the first rod 41 as in the first and second embodiments.
  • the structure of the first rod 41 is simplified.
  • the mechanical strength of the first rod 41 is improved, it is possible to easily and reliably perform the operation of operating the first rod 41 and closing the lower opening of the third storage portion 23 with the first blocking member 31. it can.
  • a through hole may be formed at a position near the first blocking member 31 on the outer peripheral surface of the first rod 41, and the white blood cell component may be collected through the through hole.
  • the opening 31a and the flow path 31b of the first blocking member 31 are not necessary.
  • the through hole 32h of the second blocking member 32 and the hollow first tube 371 connected thereto constitute a pressure release mechanism.
  • the leukocyte component in the third reservoir 23 becomes the through-hole 32h and the first tube 371. Flows through the second reservoir 22. Thereby, it can prevent that the pressure in the 3rd storage part 23 rises abnormally.
  • the pressure release mechanism of the second embodiment is configured by a through hole 32h of the second blocking member 32 and a one-way valve 235 provided in the through hole 32h.
  • the one-way valve 235 may not open, and therefore the pressure in the third reservoir 23 may not be released.
  • the pressure release mechanism of the present embodiment is configured by simply connecting the hollow first tube 371 to the through hole 32 h of the second blocking member 32. Since the pressure release mechanism does not have a valve, the pressure in the third reservoir 23 is reliably released regardless of the degree of positive pressure in the third reservoir 23. Therefore, the reliability of the operation of the pressure release mechanism is improved, and the leakage and erroneous operation of the white blood cell component described in the second embodiment can be prevented. This is advantageous for improving the recovery rate of leukocyte components.
  • the upper end of the first tube 371 is opened above the blood surface L in the blood reservoir 20. Therefore, the leukocyte component in the third reservoir 23 is sucked and collected in a state where the lower opening and the upper opening of the third reservoir 23 are respectively closed by the first blocking member 31 and the second blocking member 32 (see FIG. 22). Sometimes, the plasma component in the second reservoir 22 does not flow into the third reservoir 23 through the first tube 371. Further, since the ventilation filter 226 is provided in the port 256a, the leukocyte component that has flowed out from the third reservoir 23 through the first tube 371 does not leak out of the device 3.
  • the first holder 376 holds the first tube 371 so that the opening at the upper end of the first tube 371 faces the horizontal direction. Therefore, the possibility that the leukocyte component that has flowed out through the first tube 371 wets the ventilation filter 226 is low. Moreover, even if the first tube 371 is pulled downward due to the lowering of the second blocking member 32, the possibility that the first tube 371 drops from the first holder 376 is low.
  • the pressure release mechanism allows the leukocyte component in the third reservoir 23 to be collected in the third reservoir 23 instead of the leukocyte component when the leukocyte component is collected through the first flow path 261. It also functions as a second flow path 262 for allowing outside air to flow in. Since the pressure release mechanism of the second embodiment cannot function as the second flow path, the second flow path needs to be secured separately from the pressure release mechanism in the second embodiment. In the present embodiment, since the pressure release mechanism and the second flow path can be configured by a common member, the number of parts configuring the device 3 can be reduced, and the configuration can be simplified. .
  • the third embodiment is the same as the first and second embodiments except for the above.
  • the description of the first and second embodiments is similarly applied to the third embodiment.
  • the first blocking member 31 is mounted with the first O-ring 51 and the second blocking member 32 is mounted with the second O-ring 52 and the third O-ring 53 in order to form a liquid-tight seal. It was.
  • the O-rings 51, 52, and 53 can be omitted by configuring the first blocking member 31 and the second blocking member 32 themselves with a material having rubber elasticity (also called an elastomer).
  • the material having rubber elasticity that can be used as the material of the first blocking member 31 and the second blocking member 32 is not particularly limited, but rubber such as natural rubber, isoprene rubber, silicone rubber, or styrene elastomer Thermoplastic elastomers such as olefin elastomers and polyurethane elastomers can be used.
  • the first blocking member 31 fixed to the end of the first rod 41 is stored in the third reservoir from the second reservoir 22 side.
  • the assemblability of the apparatus can be improved, for example, by passing the part 23 through the first storage part 21.
  • the first flow path 61 and the second flow path 62 are both formed in the first rod 41, but the present invention is not limited to this.
  • the 2nd rod 42 is comprised with a hollow rod-shaped member, the lower end of the said 2nd rod 42 is inserted in the through-hole which penetrates the 2nd interruption
  • the 2nd flow path which makes the 3rd storage part 23 and the blood storage tank 20 exterior which were sealed fluid-tightly communicate can be formed in the 2nd rod 42.
  • FIG. In this case, only one flow path (first flow path) needs to be formed in the first rod 41. Therefore, the tube 43 becomes unnecessary. Further, it is not necessary to form the second hole 41b in the first rod 41.
  • the inner peripheral surface of the third storage part 23 does not have to be a cylindrical surface whose inner diameter is constant in the direction of the central axis 1a.
  • the inner diameter may change in the direction of the central axis 1a.
  • the method of blocking the communication between the third reservoir 23 and the first reservoir 21 and the second reservoir 22 moves the first blocking member 31 and the second blocking member 32 up and down in the blood reservoir as in the above example. It is not limited to the method of moving in the direction.
  • the first blocking member 431 and the second blocking member 432 may be configured with balloons that are inflatable in the horizontal direction.
  • the two balloons 431 and 432 communicate with each other through a tube 433.
  • the tube 433 is led out of the blood reservoir 20.
  • the balloons 431 and 432 are inflated as shown in FIG. 23B, and the balloon 431 blocks communication between the first storage unit 21 and the third storage unit 23.
  • the balloon 432 blocks communication between the second storage unit 22 and the third storage unit 23.
  • the fluid for inflating the balloons 431 and 432 is not particularly limited, but liquid such as physiological saline or air can be used.
  • the vertical position of the balloons 431 and 432 may be adjusted by moving the tube 433 in the vertical direction.
  • reference numerals 461 and 462 denote the same as the flow paths 61 and 62 described above when the leukocyte component is collected from the third reservoir 23 that is liquid-tightly sealed by the balloons 431 and 432 after centrifugation. It is the 1st and 2nd flow path used.
  • two balloons 431 and 432 functioning as a first blocking member and a second blocking member may be connected to separate tubes 435 and 436 without being communicated with each other.
  • the two balloons 431 and 432 can be inflated independently of each other.
  • FIG. 24B inflates the balloons 431 and 432, the balloon 431 blocks communication between the first reservoir 21 and the third reservoir 23, and the balloon 432 allows communication between the second reservoir 22 and the third reservoir 23. Shows the shut-off state.
  • the device of FIGS. 24A and 24B is the same as the device of FIGS. 23A and 23B, except that the two balloons 431 and 432 can be inflated independently of each other.
  • FIG. 25 is a cross-sectional view of the second blocking member 532 having a structure similar to a lens shutter of the camera and the vicinity thereof.
  • 26A and 26B are perspective views of the second blocking member 532, FIG. 26A shows its closed state, and FIG. 26B shows its open state.
  • the second blocking member 532 includes a plurality of blades 541 made of a thin plate. Each of the plurality of blades 541 is pivotally supported by a support plate 542 having an opening at the center.
  • the support plate 542 is fixed to the blood storage tank 20.
  • a cam ring 543 having an annular shape is provided so as to sandwich the plurality of blades 541 with the support plate 542.
  • the cam ring 543 is rotatable with respect to the support plate 542.
  • the cam ring 543 includes a plurality of cam pins (not shown) that engage with cam grooves (not shown) that are slot-like openings provided in each of the plurality of blades 541.
  • a magnet ring 545 having an annular shape is provided at a position facing the cam ring 543 on the outer peripheral surface of the blood reservoir 20.
  • the magnet ring 545 is rotatable with respect to the blood storage tank 20.
  • the magnet ring 545 includes, for example, a plurality of magnets arranged at regular intervals in the circumferential direction, and magnetically attracts the cam ring 543.
  • FIG. 26A, FIG. 26B the 2nd interruption
  • a similar blocking member (first blocking member) is provided between the first storage unit 21 and the third storage unit 23 in order to block communication between them.
  • FIG. 23A, FIG. 23B, FIG. 24A, and FIG. 24B show how to collect white blood cell components from the third reservoir 23 sealed with the first and second blocking members having a structure similar to the lens shutter after centrifugation.
  • a flow path similar to the flow paths 461 and 462 is provided in the third storage unit 23.
  • FIGS. 24A and 24B One of the first blocking member 31 and the second blocking member 32 (particularly the first blocking member 31) that moves in the vertical direction included in the devices 1 to 3 of the first to third embodiments is shown in FIGS. 24A and 24B.
  • first blocking member and the second blocking member By configuring the first blocking member and the second blocking member with an inflatable balloon as shown in FIGS. 23A, 23B, 24A, and 24B, or as shown in FIGS. 25, 26A, and 26B.
  • member and the second blocking member By configuring the member and the second blocking member with a blocking member having a plurality of blades that can be opened and closed, a mechanism for moving the first blocking member and the second blocking member becomes unnecessary, so communication between adjacent reservoirs It is possible to simplify the configuration for shutting off.
  • the configuration of the support member 90 for maintaining the shape of the blood reservoir 20 is not limited to the above example, and is arbitrary.
  • the support member may be composed of three or more members divided into three or more instead of dividing the hollow cylindrical member into two as in the above example.
  • the support member may be composed of a plurality of columnar members that are separated from each other in the circumferential direction (the direction surrounding the central axis 1a).
  • the bellows adjustment mechanism is configured to compress the bellows structure 28 in the vertical direction and adjust the compression amount.
  • the bellows structure 28 is elongated in the vertical direction and the extension is performed. It may be configured to adjust the amount.
  • the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure 28 are formed on the support member 90 and the bottom cap 80, respectively.
  • a female screw may be formed on the bottom cap 80, and a male screw may be formed on the bottom cap 80.
  • the bellows adjustment mechanism adjusts the compression amount of the bellows structure 28 according to the rotational position of the support member 90 and the bottom cap 80 and the screwing depth of the male screw 93 and the female screw 83.
  • the adjustment may be performed by other methods.
  • the support member 90 and the bottom cap 80 are fitted with a plate-like member having a thickness corresponding to the compression width of the bellows interposed between the bottom portion 80 b of the bottom cap 80 and the bottom portion 21 b of the first storage portion 21. A method of combining them is conceivable.
  • the bellows structure 28 is compressed by a desired amount when the support member 90 and the bottom cap 80 are fitted without adjusting the screwing depth. Can be made.
  • a second bellows structure and a second bellows adjustment mechanism similar to the bellows structure 28 and the bellows adjustment mechanism of the second and third embodiments may be provided in the third reservoir 23.
  • the thickness (vertical dimension) of the buffy coat after centrifugation may vary depending on the blood. Since the third reservoir 23 is provided with the second bellows structure and the second bellows adjustment mechanism, the vertical dimension of the third reservoir 23 can be changed according to the thickness of the buffy coat. The recovery rate can be further improved.
  • the male screw 93 may be provided on a member other than the support member 90, and the female screw 83 may be provided on a member other than the bottom cap 80.
  • at least one of the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism may be provided in the blood reservoir 20.
  • the male screw 93 can be provided at a position above the bellows mechanism 28 of the blood reservoir 20.
  • the support member 90 can be omitted when the blood reservoir 20 has a strength that does not cause deformation due to the centrifugal force during centrifugation.
  • the male screw 93 can be provided at a position below the bellows mechanism 28 of the blood reservoir 20.
  • the skirt portion 92 of the support member 90 is extended downward, and a female screw is formed on the inner peripheral surface thereof.
  • the bottom cap 80 can be omitted.
  • the extension amount of the bellows mechanism 28 can be adjusted by rotating the support member 90 relative to the blood reservoir 20.
  • the volume adjustment mechanism for adjusting the volume of the blood reservoir 20 is not limited to the bellows structure 28 shown in the second and third embodiments.
  • the volume adjustment mechanism can be configured by a diaphragm, a piston, a balloon, or the like.
  • the volume adjustment mechanism can be provided in or in communication with the first reservoir 21 so that the volume of the first reservoir 21 can be changed, for example.
  • the hematocrit value of blood can be obtained before centrifugation, and the volume of the blood reservoir 20 can be adjusted using a volume adjustment mechanism so that a buffy coat is formed in the third reservoir 23 after centrifugation.
  • the application field of the present invention is not particularly limited, and can be widely used in fields where blood needs to be centrifuged.
  • the present invention can be preferably used in the fields of blood component separation, bone marrow transplantation mainly using leukocyte components, and regenerative medicine when performing component transfusion for transfusion of only necessary components in blood.

Abstract

A blood reservoir tank (20) for retaining blood comprises a first reservoir section (21), a second reservoir section (22), and a third reservoir section (23) that is provided between the first reservoir section (21) and the second reservoir section (22) and by which the first reservoir section (21) and the second reservoir section (22) communicate. A first blocking member (31) and a second blocking member (32) are provided in the blood reservoir tank (20). The first blocking member (31) is configured so as to be able to block communication between the first reservoir section (21) and the third reservoir section (23). The second blocking member (32) is configured so as to be able to block communication between the second reservoir section (22) and the third reservoir section (23).

Description

血液成分分離用装置Blood component separation device
 本発明は、血液を各血液成分に遠心分離するために用いられる血液成分分離用装置に関する。 The present invention relates to an apparatus for separating blood components used for centrifuging blood into blood components.
 近年、全血輸血に代わって血液中の必要な成分のみを患者に輸血する成分輸血、さらには、血漿製剤を製造するための血漿採取などが行われるようになってきている。このため、従来、プラスチック製の血液バッグに入れられた血液を、赤血球、白血球、血小板等の各成分に比重の差を利用して遠心分離し、必要な成分を取り出す血液成分の分離が、血液事業の分野において行われている。 In recent years, instead of whole blood transfusion, component transfusion in which only necessary components in the blood are transfused to a patient, and further, plasma collection for producing a plasma preparation has been performed. For this reason, blood that has been placed in a plastic blood bag is conventionally centrifuged using the difference in specific gravity of each component such as red blood cells, white blood cells, and platelets, and the necessary blood components are separated. It is done in the field of business.
 図27に示すように、血液成分の分離に用いられる従来の血液バッグ800は、プラスチック製の略長方形状のバッグ本体801と、バッグ本体801に連通するポート802及び送液チューブ811,812,813を備えている。送液チューブ812,813の末端には、分離した血液成分(血漿成分、白血球成分)を貯留するための子バッグ(図示せず)がそれぞれ接続される。 As shown in FIG. 27, a conventional blood bag 800 used for separating blood components includes a substantially rectangular bag body 801 made of plastic, a port 802 communicating with the bag body 801, and liquid feeding tubes 811, 812 and 813. It has. A child bag (not shown) for storing separated blood components (plasma component, leukocyte component) is connected to the ends of the liquid feeding tubes 812 and 813, respectively.
 血液バッグ800を用いた血液成分の分離は、以下のようにして行われる。最初に、採取された血液を、送液チューブ811を介してバッグ本体801内に貯留する。このとき、ポート802及び送液チューブ812,813は閉じられている。次いで、バッグ本体801内の血液を遠心分離して、図27に示すように、赤血球層Aと、血漿層Bと、血小板を含んだ白血球層Cとに分離する。次いで、送液チューブ812を開通させ、バッグ本体801を加圧して、血漿層Bを送液チューブ812を介して当該送液チューブ812の末端に接続された子バッグ(図示せず)に移送する。次いで、送液チューブ813を開通させ、バッグ本体801を加圧して、白血球層Cを送液チューブ813を介して当該送液チューブ813の末端に接続された別の子バッグ(図示せず)に移送する。かくして、各血液成分の分離が完了する。 Separation of blood components using the blood bag 800 is performed as follows. First, the collected blood is stored in the bag body 801 via the liquid feeding tube 811. At this time, the port 802 and the liquid feeding tubes 812 and 813 are closed. Next, the blood in the bag body 801 is centrifuged to separate the red blood cell layer A, the plasma layer B, and the white blood cell layer C containing platelets, as shown in FIG. Next, the liquid supply tube 812 is opened, the bag body 801 is pressurized, and the plasma layer B is transferred via the liquid supply tube 812 to a child bag (not shown) connected to the end of the liquid supply tube 812. . Next, the liquid supply tube 813 is opened, the bag body 801 is pressurized, and the leukocyte layer C is connected to another child bag (not shown) connected to the end of the liquid supply tube 813 via the liquid supply tube 813. Transport. Thus, the separation of each blood component is completed.
 血液中に占める白血球成分は他の成分に比して少ない。従って、図27に示す従来の血液バッグ800では、赤血球層Aと血漿層Bとの間に、白血球層Cがごく薄い層として分離される。上記の方法では、赤血球成分を白血球成分に混入させずに、あるいは赤血球層Aに白血球成分を残存させずに、白血球成分のみを残らずに送液チューブ813を介して子バッグに移送することは容易でない。また、白血球層Cを、子バッグに移送するためにバッグ本体801内で移動させると、バッグ本体801の内面に白血球成分が付着するので、全ての白血球成分を回収することは困難である。 The leukocyte component in the blood is less than the other components. Therefore, in the conventional blood bag 800 shown in FIG. 27, the white blood cell layer C is separated as a very thin layer between the red blood cell layer A and the plasma layer B. In the above method, the red blood cell component is not mixed with the white blood cell component, or the white blood cell component is not left in the red blood cell layer A, and only the white blood cell component is not transferred to the child bag via the liquid feeding tube 813. Not easy. Further, when the leukocyte layer C is moved in the bag main body 801 to be transferred to the child bag, leukocyte components adhere to the inner surface of the bag main body 801, so that it is difficult to collect all leukocyte components.
 そこで、これらの問題点を解消することが可能な血液成分分離用血液バッグが提案されており(例えば、特許文献1参照)、これを図28を用いて説明する。 Therefore, a blood component separating blood bag capable of solving these problems has been proposed (see, for example, Patent Document 1), which will be described with reference to FIG.
 図28に示すように、この血液成分分離用血液バッグ900は、血液を貯留するためのバッグ本体901と、採血した血液をバッグ本体901に移送するための送液チューブ902とを備えている。バッグ本体901は、両端の第1バッグ部911及び第2バッグ部912と、これらの間の第3バッグ部913とを備える。第3バッグ部913は第1バッグ部911及び第2バッグ部912よりも幅が狭い。第1バッグ部911、第2バッグ部912、第3バッグ部913には、それぞれの内容物を取り出すための第1ポート921、第2ポート922、第3ポート923がそれぞれ設けられている。 28, the blood component separating blood bag 900 includes a bag body 901 for storing blood and a liquid feeding tube 902 for transferring the collected blood to the bag body 901. The bag body 901 includes a first bag part 911 and a second bag part 912 at both ends, and a third bag part 913 between them. The third bag portion 913 is narrower than the first bag portion 911 and the second bag portion 912. The first bag portion 911, the second bag portion 912, and the third bag portion 913 are provided with a first port 921, a second port 922, and a third port 923, respectively, for taking out the contents.
 血液バッグ900を用いた血液成分の分離は、以下のようにして行われる。最初に、血液を送液チューブ902を介してバッグ本体901内に貯留する。次いで、バッグ本体901内の血液を遠心分離する。血液は、第1バッグ部911内の赤血球層A、第2バッグ部912内の血漿層B、第3バッグ部913内の白血球層Cに分離される。次いで、第1バッグ部911と第3バッグ部913の境界部分、及び、第3バッグ部913と第2バッグ部912の境界部分をそれぞれシールする。シールは、例えば熱シール法や高周波シール法で行われる。次いで、シール部分にてバッグ本体901を第1、第2及び第3バッグ部911,912,913に切り離す。第1、第2、及び第3バッグ部911,912,913内の赤血球層A、血漿層B、及び白血球層Cを、第1ポート921、第2ポート922、及び第3ポート923を介してそれぞれ取り出す。 Separation of blood components using the blood bag 900 is performed as follows. First, blood is stored in the bag body 901 through the liquid feeding tube 902. Next, the blood in the bag body 901 is centrifuged. The blood is separated into a red blood cell layer A in the first bag portion 911, a plasma layer B in the second bag portion 912, and a white blood cell layer C in the third bag portion 913. Next, the boundary portion between the first bag portion 911 and the third bag portion 913 and the boundary portion between the third bag portion 913 and the second bag portion 912 are sealed. The sealing is performed by, for example, a heat sealing method or a high frequency sealing method. Next, the bag body 901 is cut into first, second, and third bag portions 911, 912, and 913 at the seal portion. The red blood cell layer A, the plasma layer B, and the white blood cell layer C in the first, second, and third bag portions 911, 912, and 913 are connected via the first port 921, the second port 922, and the third port 923. Take out each one.
 このように、血液バッグ900は、遠心分離後にバッグ本体901を各成分ごとにシールし分離することができるように構成されている。従って、他の血液成分を混入させることなく、血液を純粋な各血液成分に分離することが可能となり、特に、白血球成分の回収率を向上させることが可能となる。 As described above, the blood bag 900 is configured so that the bag body 901 can be sealed and separated for each component after centrifugation. Therefore, it is possible to separate blood into pure blood components without mixing other blood components, and in particular, it is possible to improve the recovery rate of leukocyte components.
特許第4431929号公報Japanese Patent No. 4431929
 上記の従来の血液バッグ900(図28参照)は、柔軟なシートを貼り合わせた袋状物であるから、血液を貯留した状態において形状保持性を有しない。従って、仮に遠心分離によって血液を各成分に分離することができたとしても、その後、隣り合うバッグ部間の境界部分をシールする前に外力などによって血液バッグ900が変形すると各成分が互いに混ざり合ってしまう等の不都合が生じやすい。 Since the above-described conventional blood bag 900 (see FIG. 28) is a bag-like material in which a flexible sheet is bonded, it does not have shape retention in a state where blood is stored. Therefore, even if the blood can be separated into components by centrifugation, the components are mixed with each other when the blood bag 900 is deformed by an external force or the like before sealing the boundary portion between adjacent bag portions. Inconveniences such as being easily generated.
 一方、血液を貯留するための容器が実質的に変形しない形状保持性を有していると、遠心分離後に、血液バッグ900(図28参照)と同様の方法で境界部分をシールして容器を3部分に分割することは困難である。 On the other hand, if the container for storing blood has a shape-retaining property that does not substantially deform, after the centrifugation, the boundary portion is sealed in the same manner as the blood bag 900 (see FIG. 28) to remove the container. Dividing into three parts is difficult.
 本発明は、遠心分離後にその内部を3部分に分割して白血球成分を効率よく回収することが可能な血液成分分離用装置を提供することを目的とする。 An object of the present invention is to provide a blood component separation device that can efficiently collect leukocyte components by dividing the interior into three parts after centrifugation.
 本発明の血液成分分離用装置は、血液を貯留するための血液貯留槽を備え、前記血液貯留槽内に貯留した血液を遠心分離するために用いられる。前記血液貯留槽は、第1貯留部と、第2貯留部と、前記第1貯留部と前記第2貯留部との間に設けられ、前記第1貯留部及び前記第2貯留部と連通した第3貯留部とを備える。前記血液成分分離用装置は、前記血液貯留槽内に、第1遮断部材及び第2遮断部材を備える。前記第1遮断部材は、前記第1貯留部と前記第3貯留部との連通を遮断することができるように構成されている。前記第2遮断部材は、前記第2貯留部と前記第3貯留部との連通を遮断することができるように構成されている。 The blood component separation device of the present invention includes a blood reservoir for storing blood, and is used for centrifuging blood stored in the blood reservoir. The blood reservoir is provided between the first reservoir, the second reservoir, the first reservoir and the second reservoir, and communicates with the first reservoir and the second reservoir. A third reservoir. The blood component separation device includes a first blocking member and a second blocking member in the blood reservoir. The first blocking member is configured to block communication between the first storage unit and the third storage unit. The second blocking member is configured to block communication between the second storage unit and the third storage unit.
 本発明の血液成分分離用装置では、第1貯留部と第3貯留部との連通を遮断する第1遮断部材、及び、第2貯留部と第3貯留部との連通を遮断する第2遮断部材が、血液貯留槽内に設けられている。従って、従来の血液バッグとは異なり、隣り合う貯留部間の境界部分で血液貯留槽を変形させたり押し潰したりすることなく、隣り合う貯留部間の連通を遮断することができる。これは、遠心分離後に隣り合う貯留部間の連通を遮断する際に、隣り合う貯留部にそれぞれ貯留された血液成分が互いに混ざり合う可能性を低減させるので、白血球成分の回収効率を向上させるのに有利である。また、第3貯留部の内径を比較的大きく設定することが可能になるので、白血球成分の回収効率の更なる向上に有利である。 In the blood component separation device of the present invention, the first blocking member that blocks communication between the first reservoir and the third reservoir, and the second block that blocks communication between the second reservoir and the third reservoir. A member is provided in the blood reservoir. Therefore, unlike the conventional blood bag, communication between adjacent reservoirs can be blocked without deforming or crushing the blood reservoir at the boundary between adjacent reservoirs. This reduces the possibility that the blood components stored in the adjacent reservoirs will be mixed with each other when the communication between the adjacent reservoirs is blocked after centrifugation, thus improving the recovery efficiency of the white blood cell components. Is advantageous. In addition, since the inner diameter of the third reservoir can be set relatively large, it is advantageous for further improving the recovery efficiency of leukocyte components.
図1は、本発明の実施形態1にかかる血液成分分離用装置の斜視図である。FIG. 1 is a perspective view of a blood component separation device according to Embodiment 1 of the present invention. 図2は、血液貯留槽から支持部材を分離した、本発明の実施形態1にかかる血液成分分離用装置の分解斜視図である。FIG. 2 is an exploded perspective view of the blood component separation device according to the first embodiment of the present invention, in which the support member is separated from the blood reservoir. 図3は、本発明の実施形態1にかかる血液成分分離用装置の断面斜視図である。FIG. 3 is a cross-sectional perspective view of the blood component separation device according to the first embodiment of the present invention. 図4は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断した、本発明の実施形態1にかかる血液成分分離用装置の断面図である。FIG. 4 is a cross-sectional view of the blood component separation device according to the first embodiment of the present invention, in which communication between the first reservoir and the third reservoir is blocked by the first blocking member. 図5は、図4の状態からストッパーが取り外された、本発明の実施形態1にかかる血液成分分離用装置の斜視図である。FIG. 5 is a perspective view of the blood component separation device according to the first embodiment of the present invention, with the stopper removed from the state of FIG. 図6は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断し且つ第2貯留部と第3貯留部との連通を第2遮断部材が遮断した、本発明の実施形態1にかかる血液成分分離用装置の断面図である。FIG. 6 shows the implementation of the present invention in which the first blocking member blocks the communication between the first reservoir and the third reservoir and the second blocking member blocks the communication between the second reservoir and the third reservoir. It is sectional drawing of the apparatus for blood component separation concerning Embodiment 1. 図7は、本発明の実施形態1にかかる血液成分分離用装置において、第3貯留部内の白血球成分を回収する際の流体の流れを示した拡大断面図である。FIG. 7 is an enlarged cross-sectional view showing the flow of fluid when collecting the white blood cell component in the third reservoir in the blood component separation device according to the first embodiment of the present invention. 図8は、本発明の実施形態1にかかる血液成分分離用装置において、第3貯留部内を生理食塩水で洗浄する際の流体の流れを示した拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing the flow of fluid when the inside of the third reservoir is washed with physiological saline in the blood component separation device according to the first embodiment of the present invention. 図9は、本発明の実施形態2にかかる血液成分分離用装置の斜視図である。FIG. 9 is a perspective view of an apparatus for separating blood components according to Embodiment 2 of the present invention. 図10は、本発明の実施形態2にかかる血液成分分離用装置の分解斜視図である。FIG. 10 is an exploded perspective view of the blood component separation device according to the second embodiment of the present invention. 図11は、本発明の実施形態2にかかる血液成分分離用装置の断面斜視図である。FIG. 11 is a cross-sectional perspective view of the blood component separation device according to the second embodiment of the present invention. 図12は、本発明の実施形態2にかかる血液成分分離用装置の第1貯留部の拡大断面図である。FIG. 12 is an enlarged cross-sectional view of the first reservoir of the blood component separation device according to the second embodiment of the present invention. 図13は、本発明の実施形態2にかかる血液成分分離用装置の第2遮断部材及びその周辺部分の拡大断面図である。FIG. 13: is an expanded sectional view of the 2nd interruption | blocking member of the apparatus for blood component separation concerning Embodiment 2 of this invention, and its peripheral part. 図14は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断した、本発明の実施形態2にかかる血液成分分離用装置の断面図である。FIG. 14 is a cross-sectional view of the blood component separation device according to the second embodiment of the present invention, in which communication between the first reservoir and the third reservoir is blocked by the first blocking member. 図15は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断し且つ第2貯留部と第3貯留部との連通を第2遮断部材が遮断した、本発明の実施形態2にかかる血液成分分離用装置の断面図である。FIG. 15 shows the implementation of the present invention in which the communication between the first storage unit and the third storage unit is blocked by the first blocking member and the communication between the second storage unit and the third storage unit is blocked by the second blocking member. It is sectional drawing of the apparatus for blood component separation concerning Embodiment 2. 図16は、本発明の実施形態3にかかる血液成分分離用装置の斜視図である。FIG. 16 is a perspective view of an apparatus for separating blood components according to Embodiment 3 of the present invention. 図17は、本発明の実施形態3にかかる血液成分分離用装置の断面斜視図である。FIG. 17 is a cross-sectional perspective view of the blood component separation device according to the third embodiment of the present invention. 図18は、本発明の実施形態3にかかる血液成分分離用装置の第2遮断部材及びその周辺部分の拡大断面図である。FIG. 18 is an enlarged cross-sectional view of the second blocking member and its peripheral portion of the blood component separation device according to the third embodiment of the present invention. 図19は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断した、本発明の実施形態3にかかる血液成分分離用装置の断面図である。FIG. 19 is a cross-sectional view of the blood component separation device according to the third embodiment of the present invention in which the first blocking member blocks communication between the first storage unit and the third storage unit. 図20は、第1貯留部と第3貯留部との連通を第1遮断部材が遮断し且つ第2貯留部と第3貯留部との連通を第2遮断部材が遮断した、本発明の実施形態3にかかる血液成分分離用装置の断面図である。FIG. 20 shows the implementation of the present invention in which the communication between the first storage unit and the third storage unit is blocked by the first blocking member and the communication between the second storage unit and the third storage unit is blocked by the second blocking member. FIG. 10 is a cross-sectional view of a blood component separation device according to form 3. 図21は、図20の状態にある本発明の実施形態3にかかる血液成分分離用装置の斜視図である。FIG. 21 is a perspective view of the blood component separation device according to the third embodiment of the present invention in the state of FIG. 図22は、本発明の実施形態3にかかる血液成分分離用装置において、第3貯留部内の白血球成分を回収する際の流体の流れを示した拡大断面図である。FIG. 22 is an enlarged cross-sectional view showing the flow of fluid when the leukocyte component in the third reservoir is collected in the blood component separation device according to the third embodiment of the present invention. 図23Aは、互いに連通した2つのバルーン状の遮断部材を備える、本発明の別の実施形態にかかる血液成分分離用装置の断面図である。FIG. 23A is a cross-sectional view of a blood component separation device according to another embodiment of the present invention including two balloon-shaped blocking members communicating with each other. 図23Bは、図23Aに示す2つのバルーン状の遮断部材で第3貯留部と第1貯留部21及び第2貯留部22との連通が遮断された、本発明の別の実施形態にかかる血液成分分離用装置の断面図である。FIG. 23B shows blood according to another embodiment of the present invention in which communication between the third reservoir, the first reservoir 21, and the second reservoir 22 is blocked by the two balloon-shaped blocking members shown in FIG. 23A. It is sectional drawing of the apparatus for component separation. 図24Aは、互いに独立した2つのバルーン状の遮断部材を備える、本発明の更に別の実施形態にかかる血液成分分離用装置の断面図である。FIG. 24A is a cross-sectional view of a blood component separation device according to still another embodiment of the present invention, which includes two balloon-shaped blocking members that are independent of each other. 図24Bは、図24Aに示す2つのバルーン状の遮断部材で第3貯留部と第1貯留部21及び第2貯留部22との連通が遮断された、本発明の更に別の実施形態にかかる血液成分分離用装置の断面図である。FIG. 24B relates to still another embodiment of the present invention in which the communication between the third reservoir, the first reservoir 21, and the second reservoir 22 is blocked by the two balloon-shaped blocking members shown in FIG. 24A. It is sectional drawing of the apparatus for blood component separation. 図25は、本発明の更に別の実施形態にかかる血液成分分離用装置に設けられた、レンズシャッターに類似した構造を有する第2遮断部材及びその近傍の断面図である。FIG. 25 is a cross-sectional view of a second blocking member having a structure similar to a lens shutter provided in a blood component separation device according to still another embodiment of the present invention and the vicinity thereof. 図26A及び図26Bは、図25に示した第2遮断部材の斜視図であり、図26Aはその閉状態を示し、図26Bはその開状態を示す。26A and 26B are perspective views of the second blocking member shown in FIG. 25, FIG. 26A shows its closed state, and FIG. 26B shows its open state. 図27は、血液成分の分離に用いられる従来の血液バッグを示す概略縦断面図である。FIG. 27 is a schematic longitudinal sectional view showing a conventional blood bag used for separating blood components. 図28は、血液成分の分離に用いられる従来の改良された血液バッグを示す概略縦断面図である。FIG. 28 is a schematic longitudinal sectional view showing a conventional improved blood bag used for separating blood components.
 本発明の血液成分分離用装置は、血液を貯留するための血液貯留槽を備え、前記血液貯留槽内に貯留した血液を遠心分離するために用いられる。前記血液貯留槽は、第1貯留部と、第2貯留部と、前記第1貯留部と前記第2貯留部との間に設けられ、前記第1貯留部及び前記第2貯留部と連通した第3貯留部とを備える。前記血液成分分離用装置は、前記血液貯留槽内に、第1遮断部材及び第2遮断部材を備える。前記第1遮断部材は、前記第1貯留部と前記第3貯留部との連通を遮断することができるように構成されている。前記第2遮断部材は、前記第2貯留部と前記第3貯留部との連通を遮断することができるように構成されている。 The blood component separation device of the present invention includes a blood reservoir for storing blood, and is used for centrifuging blood stored in the blood reservoir. The blood reservoir is provided between the first reservoir, the second reservoir, the first reservoir and the second reservoir, and communicates with the first reservoir and the second reservoir. A third reservoir. The blood component separation device includes a first blocking member and a second blocking member in the blood reservoir. The first blocking member is configured to block communication between the first storage unit and the third storage unit. The second blocking member is configured to block communication between the second storage unit and the third storage unit.
 上記の本発明の血液成分分離用装置において、前記第1遮断部材は、前記第1貯留部内で移動して前記第1貯留部と前記第3貯留部との連通を遮断することが好ましい。また、前記第2遮断部材は、前記第2貯留部内で移動して前記第2貯留部と前記第3貯留部との連通を遮断することが好ましい。かかる好ましい形態によれば、連通を遮断するために第1遮断部材及び第2遮断部材自身を実質的に変形させる必要がない。従って、隣り合う貯留部間の連通を遮断したときの液密性が向上する。これは、白血球成分を効率よく回収するのに更に有利である。 In the blood component separation device according to the present invention, it is preferable that the first blocking member moves in the first reservoir and blocks communication between the first reservoir and the third reservoir. Moreover, it is preferable that a said 2nd interruption | blocking member interrupts | blocks the communication with a said 2nd storage part and a said 3rd storage part by moving within the said 2nd storage part. According to this preferable embodiment, it is not necessary to substantially deform the first blocking member and the second blocking member themselves in order to block communication. Therefore, the liquid tightness when the communication between the adjacent reservoirs is blocked is improved. This is further advantageous for efficiently collecting leukocyte components.
 上記において、前記装置が、前記第1遮断部材を保持し且つ前記血液貯留槽外に導出された第1ロッドを備えることが好ましい。この場合、前記第1ロッドを移動させることにより前記第1遮断部材を移動させることができることが好ましい。かかる好ましい形態によれば、血液貯留槽外から第1遮断部材を容易に移動させて、第1貯留部と第3貯留部との連通を遮断することができる。 In the above, it is preferable that the device includes a first rod that holds the first blocking member and is led out of the blood reservoir. In this case, it is preferable that the first blocking member can be moved by moving the first rod. According to this preferable form, the 1st interruption | blocking member can be easily moved from the blood storage tank outside, and the communication with a 1st storage part and a 3rd storage part can be interrupted | blocked.
 前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態において前記第3貯留部内と前記血液貯留槽外とを連通させる第1流路が設けられていることが好ましい。かかる好ましい形態によれば、第3貯留部内の白血球成分を第1流路を介して回収することができる。 In a state where the first blocking member blocks communication between the first storage unit and the third storage unit and the second blocking member blocks communication between the second storage unit and the third storage unit. It is preferable that the 1st flow path which connects the inside of a 3rd storage part and the said blood storage tank outside is provided. According to such a preferred embodiment, the white blood cell component in the third reservoir can be collected via the first flow path.
 前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態において前記第3貯留部内と前記血液貯留槽外とを連通させる第2流路が更に設けられていることが好ましい。かかる好ましい形態によれば、第3貯留部内の圧力変動を抑えながら、第3貯留部内の白血球成分をスムーズに回収することができる。 In a state where the first blocking member blocks communication between the first storage unit and the third storage unit and the second blocking member blocks communication between the second storage unit and the third storage unit. It is preferable that the 2nd flow path which connects the inside of a 3rd storage part and the said blood storage tank outside is further provided. According to such a preferred embodiment, the white blood cell component in the third reservoir can be collected smoothly while suppressing the pressure fluctuation in the third reservoir.
 前記第1流路及び前記第2流路のうちの少なくとも一方が前記第1ロッド内に設けられていることが好ましい。かかる好ましい形態によれば、第1流路及び第2流路を第1ロッド外に設ける場合に比べて、装置を構成する部品点数を少なくすることができ、装置の構成を簡単化することができる。 It is preferable that at least one of the first flow path and the second flow path is provided in the first rod. According to such a preferred embodiment, the number of parts constituting the device can be reduced and the configuration of the device can be simplified as compared with the case where the first flow path and the second flow path are provided outside the first rod. it can.
 前記第1ロッドが外側管内に内側管が挿入された二重管構造を有していてもよい。この場合、前記内側管内に前記第1流路が形成され、前記内側管と前記外側管との間に前記第2流路が形成されていることが好ましい。かかる好ましい形態によれば、簡単な構成で、共通する第1ロッド内に互いに独立した第1流路及と第2流路を設けることができる。 The first rod may have a double tube structure in which an inner tube is inserted into an outer tube. In this case, it is preferable that the first flow path is formed in the inner pipe, and the second flow path is formed between the inner pipe and the outer pipe. According to such a preferred embodiment, the first flow path and the second flow path independent from each other can be provided in the common first rod with a simple configuration.
 前記第1遮断部材を前記第1貯留部の底面に当接して配置することができることが好ましい。かかる好ましい形態によれば、遠心分離時に第1遮断部材を安定的に保持することができる。 It is preferable that the first blocking member can be disposed in contact with the bottom surface of the first storage portion. According to such a preferred embodiment, the first blocking member can be stably held during centrifugation.
 前記装置が、前記第2遮断部材を保持し且つ前記血液貯留槽外に導出された第2ロッドを備えることが好ましい。この場合、前記第2ロッドを移動させることにより前記第2遮断部材を移動させることができることが好ましい。かかる好ましい形態によれば、血液貯留槽外から第2遮断部材を容易に移動させて、第2貯留部と第3貯留部との連通を遮断することができる。 It is preferable that the device includes a second rod that holds the second blocking member and is led out of the blood reservoir. In this case, it is preferable that the second blocking member can be moved by moving the second rod. According to this preferable form, the 2nd interruption | blocking member can be easily moved from the blood storage tank outside, and the communication with a 2nd storage part and a 3rd storage part can be interrupted | blocked.
 遠心分離時に前記第2遮断部材が前記血液貯留槽内で移動して前記第2貯留部と前記第3貯留部との連通を遮断することがないように、前記装置は、前記第2遮断部材の移動を規制する移動規制機構を更に備えることが好ましい。かかる好ましい形態によれば、遠心分離時に第2遮断部材を安定的に保持することができる。 In order to prevent the second blocking member from moving in the blood reservoir and blocking communication between the second reservoir and the third reservoir during centrifugation, the device is configured to prevent the second blocking member from being blocked. It is preferable to further include a movement restricting mechanism for restricting the movement. According to such a preferable embodiment, the second blocking member can be stably held during centrifugation.
 前記移動規制機構が、前記血液貯留槽外に設けられた取り外し可能なストッパーを含むことが好ましい。かかる好ましい形態によれば、遠心分離後にストッパーを取り外し、第2遮断部材を移動させることができる。従って、遠心分離時には移動が規制され、遠心分離後には移動可能な第2遮断部材を、簡単な構成で実現することができる。 It is preferable that the movement restriction mechanism includes a removable stopper provided outside the blood storage tank. According to this preferable form, a stopper can be removed after centrifugation and a 2nd interruption | blocking member can be moved. Accordingly, the movement is restricted during centrifugation, and the second blocking member that can move after centrifugation can be realized with a simple configuration.
 あるいは、前記移動規制機構が、前記血液貯留槽外に設けられ且つ前記第2ロッドに連結されたストッパーを含んでいてもよい。かかる好ましい構成によれば、ストッパーを紛失してしまうのを防止できる。また、第2ロッドを短くしても、ストッパーを操作して第2遮断部材を移動させることができる。 Alternatively, the movement restriction mechanism may include a stopper provided outside the blood storage tank and connected to the second rod. According to such a preferable configuration, it is possible to prevent the stopper from being lost. Even if the second rod is shortened, the second blocking member can be moved by operating the stopper.
 上記の本発明の血液成分分離用装置は、前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断したときの前記第3貯留部内の圧力を開放するための圧力解放機構を更に備えることが好ましい。かかる好ましい構成によれば、第3貯留部内の圧力が上昇することによって第3貯留部内の白血球成分が前記第1流路又は前記第2流路を通って外界へ漏れ出したり、第2遮断部材で第3貯留部と第2貯留部との連通を遮断するのが困難になったりする可能性を低減できる。 In the blood component separation device according to the present invention, the first blocking member blocks communication between the first reservoir and the third reservoir, and the second blocking member disconnects the second reservoir and the first reservoir. It is preferable to further include a pressure release mechanism for releasing the pressure in the third storage part when communication with the three storage part is blocked. According to such a preferable configuration, when the pressure in the third reservoir rises, the white blood cell component in the third reservoir leaks out to the outside through the first channel or the second channel, or the second blocking member Thus, it is possible to reduce the possibility that it is difficult to block communication between the third storage unit and the second storage unit.
 前記圧力開放機構は、前記第2貯留部と前記第3貯留部とを連通するように前記第2遮断部材に設けられた貫通孔を含むことが好ましい。かかる好ましい構成によれば、簡単な構成で圧力解放機構を構成することができる。 It is preferable that the pressure release mechanism includes a through-hole provided in the second blocking member so as to communicate the second storage portion and the third storage portion. According to such a preferable configuration, the pressure release mechanism can be configured with a simple configuration.
 上記において、前記圧力開放機構は、前記貫通孔に設けられた一方向弁を更に含み得る。この場合、前記一方向弁は、前記貫通孔を通って前記第3貯留部から前記第2貯留部への流れを許容し、且つ、前記貫通孔を通って前記第2貯留部から前記第3貯留部への流れを禁止することが好ましい。かかる好ましい構成によれば、簡単な構成で圧力解放機構を構成することができる。 In the above, the pressure release mechanism may further include a one-way valve provided in the through hole. In this case, the one-way valve allows a flow from the third reservoir to the second reservoir through the through hole, and passes from the second reservoir to the third through the through hole. It is preferable to prohibit the flow to the reservoir. According to such a preferable configuration, the pressure release mechanism can be configured with a simple configuration.
 あるいは、前記圧力開放機構は、前記貫通孔に一端が接続されたチューブを更に含み得る。この場合、前記チューブの他端は、前記血液貯留槽内の血液面より上の位置で開口していることが好ましい。かかる好ましい構成によれば、動作の信頼性が向上した圧力解放機構を実現することができる。 Alternatively, the pressure release mechanism may further include a tube having one end connected to the through hole. In this case, it is preferable that the other end of the tube is opened at a position above the blood surface in the blood reservoir. According to such a preferable configuration, a pressure release mechanism with improved operational reliability can be realized.
 前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態で前記第3貯留部内の白血球成分を吸引して回収するとき、前記圧力解放機構は、外界の空気を前記第3貯留部内に流入させる流路を構成することが好ましい。かかる好ましい構成によれば、第3貯留部内の圧力変動を抑えながら、第3貯留部内の白血球成分をスムーズに回収することができる。また、外界の空気を第3貯留部内に流入させる流路を圧力解放機構とは別に設ける必要がないので、血液成分分離用装置を構成する部品数を少なくすることができ、またその構成を簡単化することができる。 The first blocking member blocks communication between the first storage unit and the third storage unit, and the second blocking member blocks communication between the second storage unit and the third storage unit. When the white blood cell component in the third reservoir is sucked and collected, it is preferable that the pressure release mechanism constitute a flow path for allowing outside air to flow into the third reservoir. According to such a preferable configuration, the white blood cell component in the third reservoir can be smoothly collected while suppressing the pressure fluctuation in the third reservoir. In addition, since it is not necessary to provide a flow path for allowing outside air to flow into the third reservoir separately from the pressure release mechanism, the number of parts constituting the blood component separation device can be reduced, and the structure can be simplified. Can be
 上記の本発明の血液成分分離用装置は、更に、前記血液貯留槽に設けられた蛇腹構造と、前記蛇腹構造の伸縮量を調整する蛇腹調整機構とを備え得る。この場合、前記蛇腹調整機構を用いて前記蛇腹構造の伸縮量を変えることにより、前記血液貯留槽の容積を調整することができることが好ましい。かかる好ましい構成によれば、遠心分離される血液の血液量及びヘマトクリット値に応じて蛇腹構造の伸縮量を調整して、血液貯留槽の容積を調整することができる。これにより、遠心分離される血液の血液量やヘマトクリット値に関わらず、遠心分離後のバフィーコートの位置を常に第3貯留部に一致させることができる。その結果、白血球成分の回収率を向上させることができる。蛇腹構造は、構成が簡単であるので、信頼性、耐久性、コスト低減に有利である。 The above-described blood component separation device of the present invention may further include a bellows structure provided in the blood reservoir and a bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure. In this case, it is preferable that the volume of the blood reservoir can be adjusted by changing the expansion / contraction amount of the bellows structure using the bellows adjustment mechanism. According to such a preferable configuration, the volume of the blood reservoir can be adjusted by adjusting the expansion / contraction amount of the bellows structure according to the blood volume and hematocrit value of the blood to be centrifuged. Thereby, the position of the buffy coat after the centrifugation can always be made coincident with the third storage part regardless of the blood volume or hematocrit value of the blood to be centrifuged. As a result, the recovery rate of leukocyte components can be improved. Since the bellows structure is simple in structure, it is advantageous for reliability, durability, and cost reduction.
 前記蛇腹構造は、遠心分離後に赤血球成分が貯留される前記第1貯留部に設けられていることが好ましい。かかる好ましい構成によれば、遠心分離後のバフィーコートの位置を第3貯留部に容易に一致させることができる。 It is preferable that the bellows structure is provided in the first storage part in which red blood cell components are stored after centrifugation. According to such a preferable configuration, the position of the buffy coat after centrifugation can be easily matched with the third reservoir.
 前記血液貯留槽は、前記蛇腹構造を含めて一部品として一体的に形成されていることが好ましい。これにより、遠心分離時の遠心力によって加圧された血液が血液貯留槽外に漏れ出す可能性が低減する。また、血液貯血槽を容易に製造することができるので、コストを低減することができる。 It is preferable that the blood reservoir is integrally formed as one part including the bellows structure. This reduces the possibility that blood pressurized by the centrifugal force during centrifugation will leak out of the blood reservoir. Moreover, since a blood reservoir can be manufactured easily, cost can be reduced.
 前記蛇腹調整機構は、雄ネジと雌ネジとを備え得る。この場合、前記雄ネジと前記雌ネジとの螺合深さを調整することにより、前記蛇腹構造の伸縮量を調整することができることが好ましい。かかる好ましい構成によれば、蛇腹調整機構の構成が簡単になるので、信頼性、耐久性、コスト低減に有利である。また、蛇腹構造の圧縮量の微調整、更には血液貯留槽の容積の微調整が容易である。 The bellows adjustment mechanism may include a male screw and a female screw. In this case, it is preferable that the expansion / contraction amount of the bellows structure can be adjusted by adjusting the screwing depth between the male screw and the female screw. According to such a preferable configuration, the configuration of the bellows adjustment mechanism is simplified, which is advantageous in terms of reliability, durability, and cost reduction. Further, fine adjustment of the compression amount of the bellows structure and further fine adjustment of the volume of the blood reservoir are easy.
 上記の本発明の血液成分分離用装置が、遠心分離時に前記第3貯留部が変形するのを防止する支持部材と、前記第1貯留部の底部の少なくとも一部に当接するボトムキャップとを更に備えていてもよい。この場合、前記支持部材及び前記ボトムキャップのうちの一方に前記雄ネジが設けられ、他方に前記雌ネジが設けられていることが好ましい。これにより、部品点数の増加や構造の複雑化を抑えながら、蛇腹調整機構を構成することができる。 The blood component separation device of the present invention further includes a support member that prevents the third reservoir from being deformed during centrifugation, and a bottom cap that contacts at least a part of the bottom of the first reservoir. You may have. In this case, it is preferable that one of the support member and the bottom cap is provided with the male screw and the other is provided with the female screw. Accordingly, the bellows adjustment mechanism can be configured while suppressing an increase in the number of parts and a complicated structure.
 前記ボトムキャップまたは支持部材に、前記蛇腹構造の伸縮量を調整する際の指標となる目盛りが設けられていてもよい。これにより、血液に応じた血液貯留槽の容積の調整作業を簡単且つ迅速に行うことができる。 The bottom cap or the support member may be provided with a scale serving as an index when adjusting the amount of expansion and contraction of the bellows structure. Thereby, the adjustment operation | work of the volume of the blood storage tank according to the blood can be performed easily and rapidly.
 前記第1遮断部材及び第2遮断部材は、膨張可能なバルーンを備えていてもよい。あるいは、前記第1遮断部材及び第2遮断部材は、開閉可能な複数の羽根を備えていてもよい。かかる形態によれば、隣り合う貯留部間の連通を遮断するための構成を簡単化することができる。 The first blocking member and the second blocking member may include an inflatable balloon. Alternatively, the first blocking member and the second blocking member may include a plurality of blades that can be opened and closed. According to this form, the structure for interrupting | blocking the communication between adjacent storage parts can be simplified.
 以下に、本発明をその好適な実施形態を示しながら詳細に説明する。但し、本発明は以下の実施形態に限定されないことはいうまでもない。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態を構成する部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の部材を備え得る。また、以下の各図では、実際の部材の寸法および各部材の寸法比率等は忠実に表されていない。 Hereinafter, the present invention will be described in detail while showing preferred embodiments thereof. However, it goes without saying that the present invention is not limited to the following embodiments. For convenience of explanation, the drawings referred to in the following description show only the main members necessary for explaining the present invention in a simplified manner among the members constituting the embodiment of the present invention. Therefore, the present invention can include any member not shown in the following drawings. Further, in the following drawings, the actual dimensions of members and the dimensional ratios of the members are not faithfully represented.
 (実施形態1)
 [血液成分分離用装置の構成]
 本発明の実施形態1にかかる血液成分分離用装置の構成について説明する。
(Embodiment 1)
[Configuration of blood component separation device]
The configuration of the blood component separation device according to the first embodiment of the present invention will be described.
 図1は、本発明の実施形態1にかかる血液成分分離用装置1(以下、単に「装置1」という)の構成を示す概略斜視図である。図2は、血液貯留槽20から一対の支持半体91a,91bを分離した状態を示した装置1の分解斜視図である。図3は、装置1の上下方向面に沿った断面斜視図である。図3において、一点鎖線1aは、装置1の中心軸である。以下の説明の便宜のため、中心軸1aに平行な方向を「上下方向」と言い、中心軸1aに直交する平面に平行な方向を「水平方向」と言う。 FIG. 1 is a schematic perspective view showing a configuration of a blood component separation device 1 (hereinafter simply referred to as “device 1”) according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view of the device 1 showing a state in which the pair of support halves 91a and 91b are separated from the blood storage tank 20. FIG. FIG. 3 is a cross-sectional perspective view of the device 1 along the vertical direction. In FIG. 3, an alternate long and short dash line 1 a is the central axis of the device 1. For convenience of the following description, a direction parallel to the central axis 1a is referred to as “vertical direction”, and a direction parallel to a plane orthogonal to the central axis 1a is referred to as “horizontal direction”.
 図1、図2、図3に示すように、装置1は、血液を貯留するための血液貯留槽20を備える。装置1は、血液貯留槽20内に貯留した血液を各血液成分に遠心分離するために用いられる。 As shown in FIG. 1, FIG. 2, and FIG. 3, the apparatus 1 includes a blood storage tank 20 for storing blood. The device 1 is used for centrifuging blood stored in the blood storage tank 20 into each blood component.
 血液貯留槽20は、第1貯留部21と、第2貯留部22と、第1貯留部21と第2貯留部22との間に設けられた第3貯留部23とを備える。第3貯留部23は、第1貯留部21及び第2貯留部22とそれぞれ互いに連通している。従って、第1貯留部21と第2貯留部22とは第3貯留部23を介して互いに連通している。遠心分離時に各血液成分は、第1貯留部21から第3貯留部23を通って第2貯留部22へ、またはその逆に、自由に移動することができる。装置1は、通常は、中心軸1aを鉛直方向にして、第1貯留部21を下にして使用される。 The blood reservoir 20 includes a first reservoir 21, a second reservoir 22, and a third reservoir 23 provided between the first reservoir 21 and the second reservoir 22. The third reservoir 23 communicates with the first reservoir 21 and the second reservoir 22 respectively. Therefore, the first storage unit 21 and the second storage unit 22 communicate with each other via the third storage unit 23. During centrifugation, each blood component can freely move from the first reservoir 21 through the third reservoir 23 to the second reservoir 22 or vice versa. The apparatus 1 is normally used with the central axis 1a in the vertical direction and the first reservoir 21 facing down.
 血液は、第2貯留部22の上面に設けられた注入ポート24を介して血液貯留槽20内に注入される。血液貯留槽20内に血液を貯留した装置1は、図1、図3の矢印Fの向きに遠心力が作用するように遠心分離機に搭載される。遠心分離後に、赤血球成分が第1貯留部21に貯留され、血漿成分が第2貯留部22に貯留され、白血球成分及び血小板を含むバフィーコート(白血球層)が第3貯留部23に貯留されるように、第1、第2、及び第3貯留部21,22,23の各容積が設定されている。 Blood is injected into the blood storage tank 20 through an injection port 24 provided on the upper surface of the second storage unit 22. The device 1 that stores blood in the blood reservoir 20 is mounted on a centrifuge so that centrifugal force acts in the direction of arrow F in FIGS. After centrifugation, the red blood cell component is stored in the first storage unit 21, the plasma component is stored in the second storage unit 22, and the buffy coat (white blood cell layer) containing the white blood cell component and platelets is stored in the third storage unit 23. Thus, each volume of the 1st, 2nd, and 3rd storage parts 21, 22, and 23 is set up.
 第1、第2、及び第3貯留部21,22,23は、それぞれ中空の略円筒形状を有し、同軸に配置されている。第1貯留部21と第2貯留部22とは略同一の内径及び略同一の外径を有している。 The first, second, and third reservoirs 21, 22, and 23 each have a hollow, substantially cylindrical shape and are arranged coaxially. The first reservoir 21 and the second reservoir 22 have substantially the same inner diameter and substantially the same outer diameter.
 第3貯留部23の内周面は、中心軸1a方向において内径が略一定の滑らかな円筒面である。第1貯留部21と第2貯留部22とを連通させる第3貯留部23がこのような内周面を有するので、遠心分離時に第3貯留部23内を移動する血液成分が第3貯留部23内に滞留しにくい。即ち、遠心分離時に、赤血球などの相対的に比重が大きな血球成分が第3貯留部23を通って第2貯留部22から第1貯留部21へ移動するのが容易であり、また、血漿などの相対的に比重が小さな成分が第3貯留部23を通って第1貯留部21から第2貯留部22へ移動するのが容易である。従って、第3貯留部23の内周面が一定の内径を有する円筒面であることは、白血球成分の回収率の向上に有利である。 The inner peripheral surface of the third storage part 23 is a smooth cylindrical surface having a substantially constant inner diameter in the direction of the central axis 1a. Since the 3rd storage part 23 which connects the 1st storage part 21 and the 2nd storage part 22 has such an internal peripheral surface, the blood component which moves the inside of the 3rd storage part 23 at the time of centrifugation is the 3rd storage part. It is hard to stay in 23. That is, during centrifugation, a blood cell component having a relatively large specific gravity such as red blood cells can easily move from the second reservoir 22 to the first reservoir 21 through the third reservoir 23, and plasma or the like. It is easy for a component having a relatively small specific gravity to move from the first reservoir 21 to the second reservoir 22 through the third reservoir 23. Therefore, the inner peripheral surface of the third reservoir 23 being a cylindrical surface having a constant inner diameter is advantageous for improving the recovery rate of the white blood cell component.
 第3貯留部23の内径は、第1貯留部21及び第2貯留部22の各内径より小さい。血液中の白血球成分の割合は相対的に小さいから、第3貯留部23の内径を小さくすることにより、遠心分離後の白血球成分の層(バフィーコート)の厚さ(上下方向寸法)を比較的大きくすることができる。これは、白血球成分を効率よく回収するのに有利である。 The inner diameter of the third reservoir 23 is smaller than the inner diameters of the first reservoir 21 and the second reservoir 22. Since the proportion of the white blood cell component in the blood is relatively small, the thickness (vertical dimension) of the white blood cell component layer (buffy coat) after centrifugation is relatively reduced by reducing the inner diameter of the third reservoir 23. Can be bigger. This is advantageous for efficiently collecting leukocyte components.
 但し、第3貯留部23の内径が小さすぎると、遠心分離時に、赤血球などの相対的に比重が大きな血球成分が第3貯留部23を通って第2貯留部22から第1貯留部21へ移動するのが困難になり、また、血漿などの相対的に比重が小さな成分が第3貯留部23を通って第1貯留部21から第2貯留部22へ移動するのが困難になり、その結果、遠心分離後に第3貯留部23内に白血球成分の層を形成することが困難になる。従って、第3貯留部23の内径(第3貯留部23の内径が上下方向において一定でない場合には、第3貯留部23の内径の最小値)は、20mm以上であることが好ましい。 However, if the inner diameter of the third reservoir 23 is too small, blood cell components such as erythrocytes having a relatively large specific gravity pass through the third reservoir 23 to the first reservoir 21 during the centrifugation. It becomes difficult to move, and it becomes difficult for components having a relatively low specific gravity such as plasma to move from the first reservoir 21 to the second reservoir 22 through the third reservoir 23, As a result, it becomes difficult to form a leukocyte component layer in the third reservoir 23 after centrifugation. Therefore, it is preferable that the inner diameter of the third reservoir 23 (the minimum value of the inner diameter of the third reservoir 23 when the inner diameter of the third reservoir 23 is not constant in the vertical direction) is 20 mm or more.
 第2貯留部22の下側壁(第3貯留部23側の壁)22aの内面(底面)は、中心軸1aに近づくにしたがって下降する(第3貯留部23に近づく)ように傾斜した漏斗形状(即ち、円錐面形状又はテーパ面形状)を有していることが好ましい。下側壁22aの内面が傾斜していることは、遠心分離時に第2貯留部22内の赤血球などの相対的に比重が大きな血球成分が第3貯留部23を通過して第1貯留部21へ移動するのを容易にする。 The inner surface (bottom surface) of the lower side wall (the wall on the third storage unit 23 side) 22a of the second storage unit 22 is inclined so as to descend (approach the third storage unit 23) as it approaches the central axis 1a. (In other words, it has a conical surface shape or a tapered surface shape). The inclination of the inner surface of the lower wall 22a means that blood cell components having a relatively high specific gravity such as red blood cells in the second reservoir 22 pass through the third reservoir 23 to the first reservoir 21 during centrifugation. Make it easy to move.
 同様に、第1貯留部21の上側壁(第3貯留部23側の壁)21aの内面(上面)は、中心軸1aに近づくにしたがって上昇する(第3貯留部23に近づく)ように傾斜した漏斗形状(即ち、円錐面形状又はテーパ面形状)を有していることが好ましい。上側壁21aの内面が傾斜していることは、遠心分離時に第1貯留部21内の血漿などの相対的に比重が小さな成分が第3貯留部23を通過して第2貯留部22へ移動するのを容易にする。 Similarly, the inner surface (upper surface) of the upper side wall (the wall on the third storage unit 23 side) 21a of the first storage unit 21 is inclined so as to rise (approach the third storage unit 23) as it approaches the central axis 1a. It is preferable to have a funnel shape (that is, a conical surface shape or a tapered surface shape). The fact that the inner surface of the upper wall 21a is inclined means that components having a relatively low specific gravity such as plasma in the first reservoir 21 pass through the third reservoir 23 and move to the second reservoir 22 during centrifugation. Make it easy to do.
 中心軸1aを含む面に沿った断面において、第2貯留部22の下側壁22aの内面の水平方向に沿った面に対する傾斜角度、及び、第1貯留部21の上側壁21aの内面の水平方向に沿った面に対する傾斜角度は、特に制限はないが10度~45度が好ましく、更には15度~30度が好ましく、一例を挙げれば20度に設定することができる。傾斜角度がこの数値範囲より大きいと、第1及び第2貯留部21,22の容積が小さくなる。傾斜角度がこの数値範囲より小さいと、遠心分離後に第2貯留部22内に赤血球や白血球などが残存したり、第1貯留部21内に白血球や血漿成分が残存したりして、白血球成分の回収率が低下する。第2貯留部22の下側壁22aの内面及び第1貯留部21の上側壁21aの内面は、正確な円錐面である必要はなく、例えば下側壁22aの内面及び上側壁21aの内面の傾斜角度が中心軸1aからの水平方向に沿った距離によって変化する傾斜面であってもよい。 In the cross section along the plane including the central axis 1a, the inclination angle with respect to the plane along the horizontal direction of the inner surface of the lower wall 22a of the second reservoir 22 and the horizontal direction of the inner surface of the upper wall 21a of the first reservoir 21 The inclination angle with respect to the surface along the axis is not particularly limited, but is preferably 10 to 45 degrees, more preferably 15 to 30 degrees, and can be set to 20 degrees as an example. When the inclination angle is larger than this numerical range, the volumes of the first and second storage units 21 and 22 become small. If the inclination angle is smaller than this numerical range, red blood cells, white blood cells, etc. remain in the second reservoir 22 after centrifugation, or white blood cells, plasma components remain in the first reservoir 21, etc. The recovery rate decreases. The inner surface of the lower wall 22a of the second reservoir 22 and the inner surface of the upper wall 21a of the first reservoir 21 do not have to be exact conical surfaces. For example, the inclination angle of the inner surface of the lower wall 22a and the inner surface of the upper wall 21a May be an inclined surface that varies depending on the distance along the horizontal direction from the central axis 1a.
 第2貯留部22の上面の中央に、柱状形状のノブ25が上方に向かって突出している。ノブ25は、装置1を手で掴んで移動する際の取っ手として利用することができる。ノブ25の側面に通気フィルタ26が設けられている。通気フィルタ26は、気体は通過させるが液体は通過させず、また、細菌等も通過させない性質を有するフィルタである。通気フィルタ26を介して血液貯留槽20内と外界とが気体連通している。注入ポート24を介して空の血液貯留槽20内に血液が注入されると、元々血液貯留槽20内に存在していた空気が通気フィルタ26を介して血液貯留槽20外に排出される。その結果、血液貯留槽20内の圧力が過度に高まることが軽減され、血液貯留槽20内への血液の注入速度を低下させることなく、所望の量の血液を血液貯留槽20内に注入することが可能となる。なお、本実施形態ではノブ25の側面に通気フィルタ26を設けたが、通気フィルタ26をノブ25以外の位置に設けてもよい。但し、通気フィルタ26は、一旦、血液に触れて濡れてしまうと、その通気性が低下してしまう。従って、通気フィルタ26は、第2貯留部22の、血液に触れる可能性が低い箇所に設けることが好ましい。 A columnar knob 25 protrudes upward at the center of the upper surface of the second reservoir 22. The knob 25 can be used as a handle when the device 1 is grasped and moved by hand. A ventilation filter 26 is provided on the side surface of the knob 25. The ventilation filter 26 is a filter having a property that gas is allowed to pass therethrough but liquid is not allowed to pass therethrough, and bacteria and the like are not allowed to pass therethrough. The blood reservoir 20 communicates with the outside through the ventilation filter 26. When blood is injected into the empty blood storage tank 20 through the injection port 24, the air originally present in the blood storage tank 20 is discharged out of the blood storage tank 20 through the ventilation filter 26. As a result, an excessive increase in the pressure in the blood reservoir 20 is reduced, and a desired amount of blood is injected into the blood reservoir 20 without reducing the blood injection rate into the blood reservoir 20. It becomes possible. In the present embodiment, the ventilation filter 26 is provided on the side surface of the knob 25, but the ventilation filter 26 may be provided at a position other than the knob 25. However, once the ventilation filter 26 comes into contact with blood and gets wet, the air permeability of the ventilation filter 26 decreases. Therefore, it is preferable to provide the ventilation filter 26 at a location where the possibility of touching the blood is low in the second reservoir 22.
 本実施形態では、ノブ25は略円柱形状を有しているが、これ以外の任意の形状であってもよい。例えば、指を挿入することができるように逆「U」字形状を有していてもよい。また、ノブ25の内部は中空でなくてもよい。 In this embodiment, the knob 25 has a substantially cylindrical shape, but may have any other shape. For example, it may have an inverted “U” shape so that a finger can be inserted. Further, the inside of the knob 25 may not be hollow.
 第1、第2、及び第3貯留部21,22,23を含む血液貯留槽20の材料は、血液を貯留した状態においてその形状が変化しない(即ち、形状保持性を有する)程度の機械的強度を有することが好ましく、更には、遠心分離時に血液に作用する遠心力によっても変形が小さく抑えられるように比較的高い剛性を有することが好ましい。また、その内部に貯留された血液を外から視認することができるように透明性を有することが好ましい。このような材料としては、特に制限はないが、例えば、ポリカーボネート、ポリエチレン、PP(ポリプロピレン)、ポリエステル、ポリメチルペンテン、メタクリル、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合体)、PET樹脂(ポリエチレンテレフタレート)、PVC(ポリ塩化ビニル)等の樹脂材料を挙げることができる。 The material of the blood reservoir 20 including the first, second, and third reservoirs 21, 22, and 23 is mechanical to such an extent that the shape does not change (that is, has shape retainability) in a state where blood is stored. It is preferable to have strength, and further, it is preferable to have relatively high rigidity so that deformation can be suppressed to be small even by centrifugal force acting on blood during centrifugation. Moreover, it is preferable to have transparency so that the blood stored in the inside can be visually recognized from the outside. Such a material is not particularly limited. For example, polycarbonate, polyethylene, PP (polypropylene), polyester, polymethylpentene, methacryl, ABS resin (acrylonitrile / butadiene / styrene copolymer), PET resin (polyethylene terephthalate). ) And PVC (polyvinyl chloride).
 血液貯留槽20の製造方法は、特に制限はない。本実施形態では、別個に成形された複数の部材を中心軸1a方向に液密に結合し一体化して血液貯留槽20を作成している。隣り合う部材間の結合部には必要に応じてOリングを介在させることができる。但し、これ以外の方法で血液貯留槽20を作成することも可能である。例えば、インフレーション法等により血液貯留槽20の全部又はその大部分を一体的に成形することもできる。 The manufacturing method of the blood reservoir 20 is not particularly limited. In the present embodiment, the blood reservoir 20 is created by combining a plurality of separately molded members in a liquid-tight manner in the direction of the central axis 1a. If necessary, an O-ring can be interposed at the joint between adjacent members. However, it is also possible to create the blood reservoir 20 by other methods. For example, all or most of the blood reservoir 20 can be integrally formed by an inflation method or the like.
 図3に示されているように、第1貯留部21内に円板状の第1遮断部材31が設けられている。第1遮断部材31の円筒面状の外周面に、第1Oリング51が装着されている。第1遮断部材31は、中空円筒形状の第1ロッド41の下端に保持されている。第1ロッド41は、中心軸1aに沿って上方に延び、第2貯留部22(ノブ25)の上面を貫通している。第1ロッド41の円筒状の外周壁には、第1ロッド41の内外を連通させる第1孔41a及び複数(本実施形態では2つ)の第2孔41bが形成されている。第1孔41aは、第1遮断部材31の近傍であってこれよりわずかに上の位置に設けられている。第2孔41bは、第1遮断部材31を第1貯留部21と第3貯留部23との連通を遮断する位置に配置したとき(後述する図6、図7参照)、第3貯留部23の上端付近に位置するように設けられている。 As shown in FIG. 3, a disc-shaped first blocking member 31 is provided in the first storage portion 21. A first O-ring 51 is mounted on the cylindrical outer peripheral surface of the first blocking member 31. The first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41. The first rod 41 extends upward along the central axis 1a and penetrates the upper surface of the second reservoir 22 (knob 25). The cylindrical outer peripheral wall of the first rod 41 is formed with a first hole 41a that communicates the inside and the outside of the first rod 41 and a plurality (two in this embodiment) of second holes 41b. The first hole 41a is provided in the vicinity of the first blocking member 31 and slightly above it. When the first blocking member 31 is disposed at a position where the communication between the first storage portion 21 and the third storage portion 23 is blocked (see FIGS. 6 and 7 described later), the second hole 41b is the third storage portion 23. It is provided so that it may be located in the upper end vicinity.
 第1ロッド41内には、中空円筒形状を有する柔軟なチューブ43が挿入されている。チューブ43の下端は、第1ロッド41に形成された第1孔41aを通って第1ロッド41外に導出されている。第1ロッド41から導出されたチューブ43は下方に向かって湾曲され、その下端の開口は第1遮断部材31の上面の近傍に位置している。 A flexible tube 43 having a hollow cylindrical shape is inserted into the first rod 41. The lower end of the tube 43 is led out of the first rod 41 through a first hole 41 a formed in the first rod 41. The tube 43 led out from the first rod 41 is curved downward, and the opening at the lower end thereof is located in the vicinity of the upper surface of the first blocking member 31.
 チューブ43の上端は、第1ロッド41の上端の開口から導出されている。図示を省略しているが、チューブ43の上端には、シリンジの口部(オスルアー)と接続可能なコネクタ(メスコネクタ)が設けられている。 The upper end of the tube 43 is led out from the opening at the upper end of the first rod 41. Although not shown, a connector (female connector) that can be connected to the mouth (male luer) of the syringe is provided at the upper end of the tube 43.
 チューブ43の外径は、第1ロッド41の内径よりも小さい。従って、第1ロッド41と、第1ロッド41内のチューブ43との間に、わずかな隙間が形成されている。 The outer diameter of the tube 43 is smaller than the inner diameter of the first rod 41. Therefore, a slight gap is formed between the first rod 41 and the tube 43 in the first rod 41.
 第2貯留部22内に、円板状の第2遮断部材32が設けられている。第2遮断部材32の円筒面状の外周面に、第2Oリング52が装着されている。第2遮断部材32は、2本の第2ロッド42の下端に保持されている。第2ロッド42は、第1ロッド41に対して対称位置に配置され、第1ロッド41と平行に上方に延び、第2貯留部22(ノブ25)の上面を貫通している。第2ロッド42の上端は、第2貯留部22(ノブ25)の上面より上に配された操作片45に固定されている。 A disk-shaped second blocking member 32 is provided in the second reservoir 22. A second O-ring 52 is attached to the cylindrical outer peripheral surface of the second blocking member 32. The second blocking member 32 is held at the lower ends of the two second rods 42. The second rod 42 is disposed at a symmetric position with respect to the first rod 41, extends upward in parallel with the first rod 41, and penetrates the upper surface of the second reservoir 22 (knob 25). The upper end of the 2nd rod 42 is being fixed to the operation piece 45 distribute | arranged above the upper surface of the 2nd storage part 22 (knob 25).
 第1ロッド41が、第2遮断部材32及び操作片45を貫通している。第1ロッド41の外周壁と第2遮断部材32との間を液密にシールするために、第3Oリング53が第2遮断部材32の第1ロッド41が貫通する貫通孔の内周面に装着されている。 The first rod 41 passes through the second blocking member 32 and the operation piece 45. In order to provide a fluid-tight seal between the outer peripheral wall of the first rod 41 and the second blocking member 32, the third O-ring 53 is formed on the inner peripheral surface of the through hole through which the first rod 41 of the second blocking member 32 passes. It is installed.
 第1遮断部材31及び第2遮断部材32の材料は、Oリング51,52,53が液密なシールを形成することができるように、実質的に剛体とみなしうる硬質材料であることが好ましい。また、第2遮断部材32の材料は、遠心分離時に大きな遠心力が作用するのを回避するために比重の小さい材料であることが好ましく、血漿の比重(約1.027)より低比重であることが好ましい。このような観点から、第1遮断部材31及び第2遮断部材32の材料として、例えばポリプロピレン(PP)、ポリエチレン(PE)、エチレン酢酸ビニル共重合樹脂(EVA)などの樹脂材料を用いることができる。また、第1遮断部材31及び第2遮断部材32への赤血球の付着を抑制するため、第1遮断部材31及び第2遮断部材32の上面に円錐面等の傾斜面を設けたり、コーティングを施したりすることが好ましい。 The material of the first blocking member 31 and the second blocking member 32 is preferably a hard material that can be regarded as a substantially rigid body so that the O- rings 51, 52, and 53 can form a liquid-tight seal. . The material of the second blocking member 32 is preferably a material having a small specific gravity in order to avoid a large centrifugal force from acting during centrifugation, and has a specific gravity lower than the specific gravity of plasma (about 1.027). It is preferable. From such a viewpoint, as the material of the first blocking member 31 and the second blocking member 32, for example, a resin material such as polypropylene (PP), polyethylene (PE), or ethylene vinyl acetate copolymer resin (EVA) can be used. . In addition, in order to suppress adhesion of red blood cells to the first blocking member 31 and the second blocking member 32, an inclined surface such as a conical surface is provided on the upper surface of the first blocking member 31 and the second blocking member 32, or coating is performed. Is preferable.
 一方、Oリング51,52,53としては、液密なシールを形成することができる汎用されているOリングを用いることができる。その材料は、特に制限はないが、天然ゴム、イソプレンゴム、シリコーンゴム等のゴムや、スチレン系エラストマー、オレフィン系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマー等のゴム弾性を有する材料(エラストマーとも呼ばれる)を使用することができる。 On the other hand, as the O- rings 51, 52, and 53, a general-purpose O-ring capable of forming a liquid-tight seal can be used. The material is not particularly limited, but a material having rubber elasticity (also called an elastomer) such as natural rubber, isoprene rubber, silicone rubber and the like, and thermoplastic elastomers such as styrene elastomer, olefin elastomer and polyurethane elastomer. ) Can be used.
 血液貯留槽20外に突き出した第1ロッド41を操作することにより、第1遮断部材31及び第1ロッド41を一体的に上下に移動させることができる。また、第2ロッド42の上端に取り付けられた操作片45を操作することにより、第2遮断部材32、第2ロッド42、及び、操作片45を一体的に上下に移動させることができる。第1遮断部材31を含むその一体化物の上下移動と第2遮断部材32を含むその一体化物の上下移動とは互いに独立して行うことができる。 By operating the first rod 41 protruding out of the blood storage tank 20, the first blocking member 31 and the first rod 41 can be moved up and down integrally. Further, by operating the operation piece 45 attached to the upper end of the second rod 42, the second blocking member 32, the second rod 42, and the operation piece 45 can be integrally moved up and down. The up-and-down movement of the integrated object including the first blocking member 31 and the up-and-down movement of the integrated object including the second blocking member 32 can be performed independently of each other.
 第2貯留部22(ノブ25)の上面と操作片45との間にストッパー47が挿入されている。ストッパー47には、上下方向に延びた3つの切り欠き47nが形成されている(後述する図5参照)。3つの切り欠き47nに、第1ロッド41及び2本の第2ロッド42が挿入されている。ストッパー47は、第2遮断部材32、第2ロッド42、及び、操作片45からなる一体化物が下方に移動するのを規制している。ストッパー47は、切り欠き47nに沿って水平方向に移動させることにより、第2貯留部22の上面と操作片45との間に自由に抜き差しすることができる。 A stopper 47 is inserted between the upper surface of the second reservoir 22 (knob 25) and the operation piece 45. The stopper 47 is formed with three notches 47n extending in the vertical direction (see FIG. 5 described later). The first rod 41 and the two second rods 42 are inserted into the three notches 47n. The stopper 47 regulates the downward movement of the integrated object composed of the second blocking member 32, the second rod 42, and the operation piece 45. The stopper 47 can be freely inserted and removed between the upper surface of the second reservoir 22 and the operation piece 45 by moving in the horizontal direction along the notch 47n.
 図3では、第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2遮断部材32は、第2貯留部22の内周面に接触することなく第2貯留部22内に浮かんでいる。第1遮断部材31及び第2遮断部材32の図3の位置を本発明では「初期位置」という。 In FIG. 3, the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22. The positions of the first blocking member 31 and the second blocking member 32 in FIG. 3 are referred to as “initial positions” in the present invention.
 血液貯留槽20には支持部材90が装着される。図2に示すように、本実施形態では、支持部材90は、それぞれが半円筒形状を有する支持半体91a,91bで構成される。支持半体91a,91bは、第1貯留部21と第2貯留部22との間に、第3貯留部23に対向させて血液貯留槽20に装着される。支持半体91aと支持半体91bとは、ネジ等の締結部材(図示せず)を用いて相互に結合される。支持半体91a,91bの下端の第1支持部90aが第1貯留部21に当接し、その上端の第2支持部90bが第2貯留部22に当接する。図1に示されているように、血液貯留槽20に支持部材90を装着したとき、支持部材90の外周面は、第1貯留部21及び第2貯留部22の外周面と略同一の円筒面を形成する。 A support member 90 is attached to the blood reservoir 20. As shown in FIG. 2, in this embodiment, the support member 90 is configured by support halves 91 a and 91 b each having a semi-cylindrical shape. The support halves 91a and 91b are mounted on the blood reservoir 20 between the first reservoir 21 and the second reservoir 22 so as to face the third reservoir 23. The support half 91a and the support half 91b are coupled to each other using a fastening member (not shown) such as a screw. The first support portion 90 a at the lower end of the support halves 91 a and 91 b contacts the first storage portion 21, and the second support portion 90 b at the upper end contacts the second storage portion 22. As shown in FIG. 1, when the support member 90 is attached to the blood storage tank 20, the outer peripheral surface of the support member 90 is substantially the same cylinder as the outer peripheral surfaces of the first storage unit 21 and the second storage unit 22. Form a surface.
 支持部材90は、遠心分離時に血液貯留槽20内の血液に作用する遠心力によって血液貯留槽20(特に第3貯留部23)が屈曲変形や座屈変形するのを防止する。従って、支持部材90は、実質的に剛体とみなしうる程度の高い機械的強度を有することが好ましい。また、支持部材90を血液貯留槽20に装着した状態(図1参照)において支持部材90を介して第3貯留部23内の血液を透視することができるように、支持部材90は透明性を有していることが好ましい。このような観点から、支持部材90の材料としては、例えば、ポリカーボネート、ポリプロピレン、硬質ポリ塩化ビニル、ポリオキシメチレン、ポリエーテルエーテルケトンなどの樹脂材料を例示することができる。 The support member 90 prevents the blood reservoir 20 (particularly the third reservoir 23) from being bent or buckled due to centrifugal force acting on the blood in the blood reservoir 20 during centrifugation. Therefore, it is preferable that the support member 90 has a high mechanical strength that can be regarded as a substantially rigid body. Further, the support member 90 is transparent so that the blood in the third reservoir 23 can be seen through the support member 90 in a state where the support member 90 is mounted on the blood storage tank 20 (see FIG. 1). It is preferable to have. From such a viewpoint, examples of the material of the support member 90 include resin materials such as polycarbonate, polypropylene, hard polyvinyl chloride, polyoxymethylene, and polyetheretherketone.
 [血液成分分離方法]
 上記のように構成された装置1を用いて、採取した血液を各血液成分に遠心分離する方法を説明する。
[Blood component separation method]
A method of centrifuging collected blood into each blood component using the apparatus 1 configured as described above will be described.
 最初に、第1遮断部材31及び第2遮断部材32が図3に示した初期位置にある装置1を準備する。注入ポート24を介して、この装置1の血液貯留槽20内に血液を注入する。血液が血液貯留槽20内に流入するにしたがって、血液貯留槽20内の空気は通気フィルタ26を通って血液貯留槽20外に流出する。 First, the device 1 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 3 is prepared. Blood is injected into the blood reservoir 20 of the device 1 through the injection port 24. As the blood flows into the blood reservoir 20, the air in the blood reservoir 20 flows out of the blood reservoir 20 through the ventilation filter 26.
 遠心分離される血液(骨髄液)は、周知の方法で採取することができる。例えば、事前にヘパリンで湿潤させたシリンジを骨髄に十数か所穿刺し、所定量(例えば100ml~400ml程度)の骨髄液を採取する。 The blood to be centrifuged (bone marrow fluid) can be collected by a well-known method. For example, a syringe previously wetted with heparin is punctured into dozens of bone marrows, and a predetermined amount (eg, about 100 ml to 400 ml) of bone marrow fluid is collected.
 血液貯留槽20内に血液を注入した後、注入ポート24を閉じる。 After injecting blood into the blood reservoir 20, the injection port 24 is closed.
 次に、血液が充填された装置1を遠心分離機にかけ、遠心分離を行う。遠心力は、中心軸1aと平行に、図1、図3の矢印Fの向きに作用する。第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2貯留部22の上面と操作片45との間にストッパー47が挿入されている。従って、遠心分離時に遠心力Fが作用しても、第1遮断部材31及び第2遮断部材32の上下方向位置は、いずれも初期位置から変化することはない。 Next, the device 1 filled with blood is centrifuged and centrifuged. The centrifugal force acts in the direction of arrow F in FIGS. 1 and 3 in parallel with the central axis 1a. The lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, a stopper 47 is inserted between the upper surface of the second storage part 22 and the operation piece 45. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
 遠心分離後、装置1を遠心分離機から取り出す。バフィーコートが第3貯留部23に集まっていることを確認した後、最初に、第1ロッド41の上端を掴み、第1ロッド41を上方に引き上げる。このとき、上昇する第1ロッド41と一緒に第2遮断部材32が上昇しないように、必要に応じて第1ロッド41を掴んだ手とは別の手で操作片45を下方に向かって抑えてもよい。第1ロッド41を引き上げることにより、第1ロッド41の下端に取り付けられた第1遮断部材31が第1貯留部21内で上方に向かって移動する。そして、図4に示すように、第1遮断部材31に装着された第1Oリング51が第3貯留部23の下側の開口に嵌入する。かくして、第3貯留部23の第1貯留部21側の開口が第1遮断部材31で塞がれる。この結果、第1貯留部21と第3貯留部23との連通が、第1遮断部材31によって液密に遮断される。 After centrifugation, remove the device 1 from the centrifuge. After confirming that the buffy coat is gathered in the third reservoir 23, first, the upper end of the first rod 41 is grasped and the first rod 41 is pulled upward. At this time, in order to prevent the second blocking member 32 from being lifted together with the rising first rod 41, the operation piece 45 is suppressed downward with a hand different from the hand that has gripped the first rod 41 as necessary. May be. By pulling up the first rod 41, the first blocking member 31 attached to the lower end of the first rod 41 moves upward in the first reservoir 21. Then, as shown in FIG. 4, the first O-ring 51 attached to the first blocking member 31 is fitted into the lower opening of the third reservoir 23. Thus, the opening on the first reservoir 21 side of the third reservoir 23 is closed by the first blocking member 31. As a result, the communication between the first storage unit 21 and the third storage unit 23 is liquid-tightly blocked by the first blocking member 31.
 次に、図5に示すように、第2貯留部22の上面と操作片45との間からストッパー47を取り除く。続いて、操作片45を下方に押し下げる。このとき、下降する操作片45と一緒に第1遮断部材31が下降しないように、必要に応じて操作片45を押し下げる手とは別の手で第1ロッド41の上端を上方に向かって引っ張ってもよい。操作片45を押し下げることにより、第2ロッド42の下端に取り付けられた第2遮断部材32が第2貯留部22内で下方に向かって移動する。そして、図6に示すように、第2遮断部材32に装着された第2Oリング52が第3貯留部23の上側の開口に嵌入する。かくして、第3貯留部23の第2貯留部22側の開口が第2遮断部材32で塞がれる。この結果、第2貯留部22と第3貯留部23との連通が、第2遮断部材32によって液密に遮断される。 Next, as shown in FIG. 5, the stopper 47 is removed between the upper surface of the second reservoir 22 and the operation piece 45. Subsequently, the operation piece 45 is pushed downward. At this time, the upper end of the first rod 41 is pulled upward with a hand different from the hand that pushes down the operating piece 45 as necessary so that the first blocking member 31 does not descend together with the operating piece 45 that is lowered. May be. By pushing down the operation piece 45, the second blocking member 32 attached to the lower end of the second rod 42 moves downward in the second reservoir 22. As shown in FIG. 6, the second O-ring 52 attached to the second blocking member 32 is fitted into the upper opening of the third storage portion 23. Thus, the opening on the second reservoir 22 side of the third reservoir 23 is closed with the second blocking member 32. As a result, the communication between the second storage part 22 and the third storage part 23 is liquid-tightly blocked by the second blocking member 32.
 かくして、赤血球成分が貯留された第1貯留部21と、白血球成分が貯留された第3貯留部23と、血漿成分が貯留された第2貯留部22とが、相互に液密に分断される。第1ロッド41の第1孔41aから導出されたチューブ43の下端、及び、第1ロッド41の第2孔41bは、第3貯留部23内に開口している。 Thus, the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. . The lower end of the tube 43 led out from the first hole 41 a of the first rod 41 and the second hole 41 b of the first rod 41 are open in the third reservoir 23.
 次に、チューブ43の上端のコネクタ(図示せず)に空のシリンジの口部(オスルアー)を接続し、シリンジのプランジャを引く。これにより、第3貯留部23内の白血球成分を、図7において矢印65で示すように、チューブ43内の流路(第1流路)61を介してシリンジ内に吸い込み回収する。白血球成分が第3貯留部23からシリンジへ移動するにしたがって、外界の空気が、矢印66で示すように、第1ロッド41とチューブ43との間の隙間、及び、第1ロッド41に設けられた第2孔41bを順につなぐ流路(第2流路)62を通って第3貯留部23内に流入する。従って、第3貯留部23内が過大に負圧になることはなく、白血球成分を容易に回収することができる。 Next, connect the empty syringe mouth (male luer) to the connector (not shown) at the upper end of the tube 43, and pull the plunger of the syringe. As a result, the leukocyte component in the third reservoir 23 is sucked and collected into the syringe via the flow path (first flow path) 61 in the tube 43 as indicated by an arrow 65 in FIG. As the leukocyte component moves from the third reservoir 23 to the syringe, external air is provided in the gap between the first rod 41 and the tube 43 and in the first rod 41 as indicated by an arrow 66. Then, it flows into the third reservoir 23 through a flow path (second flow path) 62 that connects the second holes 41b in order. Accordingly, the inside of the third reservoir 23 does not become excessively negative pressure, and the white blood cell component can be easily recovered.
 更に、第3貯留部23やチューブ43内を生理食塩水で洗浄して、これらの内部に残存する白血球成分を更に回収してもよい。これは、以下のようにして行うことができる。チューブ43の上端のコネクタから白血球成分を回収したシリンジを取り外し、この代わりに、生理食塩水を充填したシリンジを当該コネクタに接続する。そして、このシリンジから生理食塩水を、図8において矢印67で示すように、チューブ43内の第1流路61を介して第3貯留部23内に注入する。このとき第3貯留部23内に既に存在する空気は、矢印68で示すように、第1ロッド41に設けられた第2孔41b、及び、第1ロッド41とチューブ43との間の隙間を順につなぐ第2流路62を通って、第3貯留部23外に流出する。第3貯留部23内に注入された生理食塩水は、上述の白血球成分の回収と同様、チューブ43の上端に取り付けられたシリンジの吸引操作によって回収することもできる。回収した生理食塩水は、白血球成分を含んでいる。この回収した生理食塩水を遠心分離して、ヘパリンの除去や白血球成分の濃縮など公知の処理を行ってもよい。 Furthermore, the third reservoir 23 and the inside of the tube 43 may be washed with physiological saline, and the leukocyte component remaining inside these may be further recovered. This can be done as follows. The syringe from which the white blood cell component has been collected is removed from the connector at the upper end of the tube 43, and instead of this, a syringe filled with physiological saline is connected to the connector. Then, physiological saline is injected from the syringe into the third reservoir 23 via the first flow path 61 in the tube 43 as indicated by an arrow 67 in FIG. At this time, the air that already exists in the third reservoir 23 passes through the second hole 41 b provided in the first rod 41 and the gap between the first rod 41 and the tube 43 as indicated by an arrow 68. It flows out of the 3rd storage part 23 through the 2nd flow path 62 connected in order. The physiological saline injected into the third reservoir 23 can also be recovered by a suction operation of a syringe attached to the upper end of the tube 43, as in the recovery of the white blood cell component described above. The collected physiological saline contains a white blood cell component. The collected physiological saline may be centrifuged to perform a known process such as removal of heparin or concentration of leukocyte components.
 [作用]
 以上のように、本実施形態の装置1では、第1貯留部21内に第1遮断部材31が設けられており、第2貯留部22内に第2遮断部材32が設けられている。遠心分離後に、第1遮断部材31を移動させて、第1貯留部21と第3貯留部23との境界部分を第1遮断部材31で塞ぐことができ、また、第2遮断部材32を移動させて、第2貯留部22と第3貯留部23との境界部分を第2遮断部材32で塞ぐことができる。従って、血液貯留槽20が、硬質材料からなり実質的に変形しない形状保持性を有していても、血液を赤血球成分、血漿成分、及び白血球成分の3成分に遠心分離した後に血液貯留槽20内を3部分に液密に分割することができる。従って、白血球成分を効率よく回収することができる。
[Action]
As described above, in the device 1 according to the present embodiment, the first blocking member 31 is provided in the first storage part 21, and the second blocking member 32 is provided in the second storage part 22. After the centrifugal separation, the first blocking member 31 can be moved to block the boundary portion between the first storage unit 21 and the third storage unit 23 with the first blocking member 31, and the second blocking member 32 can be moved. Thus, the boundary portion between the second storage portion 22 and the third storage portion 23 can be closed with the second blocking member 32. Therefore, even if the blood storage tank 20 is made of a hard material and has a shape retaining property that does not substantially deform, the blood storage tank 20 is obtained after centrifuging blood into three components of a red blood cell component, a plasma component, and a white blood cell component. The inside can be divided into three parts in a liquid-tight manner. Therefore, leukocyte components can be efficiently collected.
 また、第1貯留部21と第3貯留部23との境界部分及び第2貯留部22と第3貯留部23との境界部分を塞ぐために、当該境界部分で血液貯留槽20を変形させたり押し潰したりする必要はない。従って、第3貯留部23の内径を比較的大きく設定することが可能である。これにより、遠心分離時に各成分が第3貯留部23を通過することが容易になるので、血液は容易に3成分に遠心分離される。これは、白血球成分を効率よく回収するのに有利である。また、第3貯留部23の内径が大きいことは、血液貯留槽20の強度の向上に有利である。 Moreover, in order to block the boundary part between the first storage part 21 and the third storage part 23 and the boundary part between the second storage part 22 and the third storage part 23, the blood storage tank 20 is deformed or pushed at the boundary part. There is no need to crush. Therefore, it is possible to set the inner diameter of the third storage portion 23 to be relatively large. This facilitates the passage of each component through the third reservoir 23 during centrifugation, so that blood is easily centrifuged into three components. This is advantageous for efficiently collecting leukocyte components. Further, the large inner diameter of the third reservoir 23 is advantageous for improving the strength of the blood reservoir 20.
 第3貯留部23の両端を塞ぐために、第1遮断部材31及び第2遮断部材32を血液貯留槽20内で移動させる。この方法では、第1遮断部材31及び第2遮断部材32自身を実質的に変形させる必要はないので、第1遮断部材及び第2遮断部材を膨らませて第3貯留部の両端を塞ぐ後述する実施形態(図23A、図23B、図24A、図24B参照)に比べて、第3貯留部23の両端を塞いだときの液密性が向上する。これは、白血球成分を効率よく回収するのに有利である。 The first blocking member 31 and the second blocking member 32 are moved in the blood storage tank 20 in order to block both ends of the third storage unit 23. In this method, since it is not necessary to substantially deform the first blocking member 31 and the second blocking member 32 themselves, the first blocking member and the second blocking member are inflated to close both ends of the third storage portion, which will be described later. Compared to the form (see FIGS. 23A, 23B, 24A, and 24B), the liquid tightness when both ends of the third reservoir 23 are closed is improved. This is advantageous for efficiently collecting leukocyte components.
 第3貯留部23の上下の開口を第1遮断部材31及び第2遮断部材32で塞ぐために、血液貯留槽20外に上方に向かって導出された第1ロッド41及び第2ロッド42を操作する。これにより、血液貯留槽20外から第1遮断部材31及び第2遮断部材32を容易に移動させることができる。さらに、第1ロッド41及び第2ロッド42の操作は、第1ロッド41及び第2ロッド42をその長手方向に移動させることにより行う。これは、第1遮断部材31及び第2遮断部材32を移動させる際に、第1ロッド41及び第2ロッド42が屈曲変形する可能性を低下させる。従って、血液貯留槽20外から第1ロッド41及び第2ロッド42の末端を操作して第3貯留部23の端部を確実に液密に塞ぐことができる。 In order to close the upper and lower openings of the third reservoir 23 with the first blocking member 31 and the second blocking member 32, the first rod 41 and the second rod 42 led out upward from the blood reservoir 20 are operated. . Thereby, the 1st cutoff member 31 and the 2nd cutoff member 32 can be easily moved from the blood storage tank 20 outside. Furthermore, operation of the 1st rod 41 and the 2nd rod 42 is performed by moving the 1st rod 41 and the 2nd rod 42 to the longitudinal direction. This reduces the possibility that the first rod 41 and the second rod 42 are bent and deformed when the first blocking member 31 and the second blocking member 32 are moved. Therefore, the end of the first reservoir 41 and the second rod 42 can be operated from outside the blood reservoir 20 to reliably close the end of the third reservoir 23 in a liquid-tight manner.
 第1遮断部材31を保持する第1ロッド41内にチューブ43を挿入して二重管構造とし、内側管であるチューブ43内に第1流路61を形成し、チューブ43(内側管)と外側管である第1ロッド41との間に第2流路62を形成している。両端が封止された第3貯留部23と血液貯留槽20外とを連通させる2つの流路61,62が形成されるので、第3貯留部23内の圧力変動を抑えながら、第3貯留部23内の白血球成分をスムーズに回収することができる。しかも、第1流路61及び第2流路62が第1遮断部材31を保持する第1ロッド41内に形成されるので、第1ロッド41外に第1流路61及び第2流路62を形成する場合に比べて、装置1を構成する部品点数を少なくすることができ、装置1の構成を簡単化することができる。 The tube 43 is inserted into the first rod 41 that holds the first blocking member 31 to form a double tube structure, the first flow path 61 is formed in the tube 43 that is the inner tube, and the tube 43 (inner tube) A second flow path 62 is formed between the first rod 41, which is an outer tube. Since the two flow paths 61 and 62 for communicating the third reservoir 23 sealed at both ends with the outside of the blood reservoir 20 are formed, the third reservoir is suppressed while suppressing the pressure fluctuation in the third reservoir 23. The leukocyte component in the unit 23 can be collected smoothly. In addition, since the first flow path 61 and the second flow path 62 are formed in the first rod 41 that holds the first blocking member 31, the first flow path 61 and the second flow path 62 are outside the first rod 41. As compared with the case of forming, the number of parts constituting the device 1 can be reduced, and the configuration of the device 1 can be simplified.
 血液貯留槽20が、形状保持性を有する材料からなる。従って、遠心分離後に、外力等によって血液貯留槽20が変形して赤血球成分、血漿成分、及び白血球成分が互いに混じり合ってしまう可能性が低い。また、第3貯留部23の両端を第1遮断部材31及び第2遮断部材32で塞いで第3貯留部23を封止したときの液密性が向上する。その結果、白血球成分を効率よく回収することができる。また、血液貯留槽20が形状保持性を有することは、血液貯留槽20の取り扱い性の向上にも有利である。 The blood reservoir 20 is made of a material having shape retention. Therefore, after centrifugation, there is a low possibility that the blood reservoir 20 is deformed by external force or the like and the red blood cell component, plasma component, and white blood cell component are mixed with each other. Further, the liquid tightness is improved when both ends of the third reservoir 23 are closed by the first blocking member 31 and the second blocking member 32 to seal the third reservoir 23. As a result, leukocyte components can be efficiently collected. In addition, the fact that the blood reservoir 20 has shape retention is advantageous for improving the handleability of the blood reservoir 20.
 (実施形態2)
 本発明の実施形態2にかかる血液成分分離装置2(以下、単に「装置2」という)は、主として以下の2点で実施形態1の装置1と異なる。第1に、装置2は、血液貯留槽20の容積を調整するための容積調整機構を備える。第2に、装置2は、第3貯留部23の両端の開口を塞いだときに第3貯留部23内が陽圧になるのを防止するための圧力解放機構を備える。以下に、実施形態1の装置1との相違点を中心に本実施形態2の装置2を説明する。
(Embodiment 2)
A blood component separation device 2 (hereinafter simply referred to as “device 2”) according to the second embodiment of the present invention differs from the device 1 of the first embodiment mainly in the following two points. First, the device 2 includes a volume adjustment mechanism for adjusting the volume of the blood reservoir 20. Secondly, the device 2 includes a pressure release mechanism for preventing the inside of the third reservoir 23 from becoming a positive pressure when the openings at both ends of the third reservoir 23 are closed. Below, the apparatus 2 of this Embodiment 2 is demonstrated centering around difference with the apparatus 1 of Embodiment 1. FIG.
 [血液成分分離用装置の構成]
 実施形態2の装置2の構成を図面を用いて説明する。以下に示す図面において、本実施形態2の装置2を構成する部材のうち、実施形態1の装置1と同じ部材又は対応する部材には実施形態1と同じ符号を付すことにし、それらについての説明を省略する。
[Configuration of blood component separation device]
A configuration of the apparatus 2 according to the second embodiment will be described with reference to the drawings. In the drawings shown below, among the members constituting the device 2 of the second embodiment, the same or corresponding members as those of the device 1 of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and descriptions thereof are given. Is omitted.
 図9は、装置2の斜視図である。図10は、装置2の分解斜視図である。図11は、装置2の上下方向面に沿った断面斜視図である。図11において、一点鎖線1aは、装置2の中心軸である。 FIG. 9 is a perspective view of the device 2. FIG. 10 is an exploded perspective view of the device 2. FIG. 11 is a cross-sectional perspective view along the vertical direction surface of the device 2. In FIG. 11, the alternate long and short dash line 1 a is the central axis of the device 2.
 血液貯留槽20は、実施形態1と同様に、第1貯留部21と、第2貯留部22と、第1貯留部21と第2貯留部22との間に設けられた第3貯留部23とを備える。第3貯留部23は、第1貯留部21及び第2貯留部22と連通している。血液貯留槽20は、その上端に、上方に向いた開口27を有する。開口27は、中心軸1aと同軸の中空の円筒形状を有し、その外径及び内径は第2貯留部22のそれらより小さい。 As in the first embodiment, the blood reservoir 20 includes a first reservoir 21, a second reservoir 22, and a third reservoir 23 provided between the first reservoir 21 and the second reservoir 22. With. The third storage unit 23 communicates with the first storage unit 21 and the second storage unit 22. The blood reservoir 20 has an opening 27 facing upward at the upper end thereof. The opening 27 has a hollow cylindrical shape that is coaxial with the central axis 1 a, and has an outer diameter and an inner diameter smaller than those of the second storage portion 22.
 第1貯留部21は、全体として中空の略円筒形状を有している。第1貯留部21の外周面には、上下方向に伸長及び/又は圧縮することができる蛇腹構造28が設けられている。蛇腹構造28は、第1貯留部21の外周壁をジグザグ状に周期的に折り曲げることにより形成されている。蛇腹構造28を上下方向に伸縮させることにより、第1貯留部21の容積、更には血液貯留槽20の容積を増減することができる。第1貯留部21の外径は第2貯留部22の外径と略同一である。 The 1st storage part 21 has a hollow substantially cylindrical shape as a whole. A bellows structure 28 that can be extended and / or compressed in the vertical direction is provided on the outer peripheral surface of the first storage portion 21. The bellows structure 28 is formed by periodically bending the outer peripheral wall of the first reservoir 21 in a zigzag shape. By expanding and contracting the bellows structure 28 in the vertical direction, the volume of the first reservoir 21 and the volume of the blood reservoir 20 can be increased or decreased. The outer diameter of the first reservoir 21 is substantially the same as the outer diameter of the second reservoir 22.
 本実施形態では、血液貯留槽20の全体が一部品として一体的に成形されている。別個に作成した複数の部品を接合した実施形態1の血液貯留槽20に比べて、血液貯留槽20に継ぎ目がないので、遠心分離時の遠心力によって加圧された血液が血液貯留槽20外に漏れ出す可能性が低減する。また、血液貯留槽20の製造が簡単になり、コストを低減することができる。このような血液貯留槽20の製造方法は、制限はなく、例えば、樹脂材料を用いたブロー成形法を採用しうる。使用しうる樹脂材料としては、蛇腹構造28に伸縮することができる程度の柔軟性を付与する観点から、制限はないが、例えば、硬質塩化ビニル、LDPE(低密度ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン・酢酸ビニル共重合体樹脂)等の樹脂材料を用いることができる。 In the present embodiment, the entire blood storage tank 20 is integrally formed as one part. Compared to the blood reservoir 20 of the first embodiment in which a plurality of separately created parts are joined, the blood reservoir 20 has no seam, so that the blood pressurized by the centrifugal force during centrifugation is outside the blood reservoir 20. The possibility of leaking out is reduced. Moreover, manufacture of the blood storage tank 20 becomes easy and cost can be reduced. There is no restriction | limiting in the manufacturing method of such a blood storage tank 20, For example, the blow molding method using a resin material can be employ | adopted. The resin material that can be used is not limited from the viewpoint of imparting flexibility that allows the bellows structure 28 to expand and contract. For example, hard vinyl chloride, LDPE (low density polyethylene), PP (polypropylene), Resin materials such as EVA (ethylene / vinyl acetate copolymer resin) can be used.
 もちろん、血液貯留槽20を、別個に作成した複数の部材を液密に結合し一体化して製造することもできる。隣り合う部材間の結合部には必要に応じてOリングを介在させることができる。この場合、蛇腹構造28(または蛇腹構造28を含む第1貯留部21)は、上述した比較的に軟質の材料を使用して作成することが好ましい。血液貯血槽20のこれ以外の部分は、相対的に硬質の材料、例えば、ポリカーボネート、ポリエチレン、ポリエステル、ポリメチルペンテン、メタクリル、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合体)、PET樹脂(ポリエチレンテレフタレート)、PVC(ポリ塩化ビニル)等の樹脂材料を用いて作成することができる。 Of course, the blood reservoir 20 can also be manufactured by combining a plurality of separately created members in a liquid-tight manner. If necessary, an O-ring can be interposed at the joint between adjacent members. In this case, the bellows structure 28 (or the first reservoir 21 including the bellows structure 28) is preferably made using the above-described relatively soft material. Other portions of the blood reservoir 20 are made of relatively hard materials such as polycarbonate, polyethylene, polyester, polymethylpentene, methacryl, ABS resin (acrylonitrile / butadiene / styrene copolymer), PET resin (polyethylene terephthalate). ) And a resin material such as PVC (polyvinyl chloride).
 実施形態1と同様に、血液貯留槽20の外周面に支持部材90が装着される。支持部材90は、支持半体91a,91bで構成される。但し、支持部材90の形状は、実施形態1のそれと若干異なる。本実施形態2の支持部材90は、血液貯留槽20の外周面にほぼ沿った内周面を有し、血液貯留槽20の上端の開口27から蛇腹構造28までにわたって血液貯留槽20を覆う。支持半体91aと支持半体91bとは、その上下にトップキャップ250及びボトムキャップ80を装着することにより(詳細は後述する)、一体化される。 As in the first embodiment, the support member 90 is mounted on the outer peripheral surface of the blood reservoir 20. The support member 90 includes support halves 91a and 91b. However, the shape of the support member 90 is slightly different from that of the first embodiment. The support member 90 of the second embodiment has an inner peripheral surface that is substantially along the outer peripheral surface of the blood reservoir 20 and covers the blood reservoir 20 from the opening 27 at the upper end of the blood reservoir 20 to the bellows structure 28. The support half 91a and the support half 91b are integrated by attaching a top cap 250 and a bottom cap 80 on the top and bottom thereof (details will be described later).
 支持部材90は、第3貯留部23のくびれに沿ったくびれを有し、当該くびれから8つのリブ90cが放射状に延びている。リブ90cは、第1支持部90aと第2支持部90bとをつなぎ、遠心分離時の遠心力によって支持部材90が屈曲変形や座屈変形するのを防止する。第1支持部90aは第1貯留部21の上側壁21aに当接し、第2支持部90bは第2貯留部22の下側壁22aに当接する。 The support member 90 has a constriction along the constriction of the third storage portion 23, and eight ribs 90c extend radially from the constriction. The rib 90c connects the first support part 90a and the second support part 90b, and prevents the support member 90 from being bent or buckled by a centrifugal force during centrifugation. The first support part 90 a abuts on the upper side wall 21 a of the first storage part 21, and the second support part 90 b abuts on the lower side wall 22 a of the second storage part 22.
 図12は、第1貯留部21の拡大断面図である。支持部材90は、その下端に、スカート部92を備える。スカート部92は、円筒形状を有し、第1貯留部21の蛇腹構造28を取り囲んでいる。スカート部92の外周面には、雄ネジ93と溝94が形成されている。溝94は、雄ネジ93に対してその下側に隣接して配置され、周方向に連続した環状溝である。溝94内にOリング97が嵌入している。周方向に連続した環状のリブ95が、スカート部92の内周面から中心軸1aに向かって突出している。リブ95は、蛇腹構造28の外周面に形成された凹凸のうち最上の凹部内に嵌入している。 FIG. 12 is an enlarged cross-sectional view of the first storage unit 21. The support member 90 includes a skirt portion 92 at the lower end thereof. The skirt portion 92 has a cylindrical shape and surrounds the bellows structure 28 of the first storage portion 21. A male screw 93 and a groove 94 are formed on the outer peripheral surface of the skirt portion 92. The groove 94 is an annular groove that is arranged adjacent to the lower side of the male screw 93 and is continuous in the circumferential direction. An O-ring 97 is fitted in the groove 94. An annular rib 95 continuous in the circumferential direction protrudes from the inner peripheral surface of the skirt portion 92 toward the central axis 1a. The rib 95 is fitted in the uppermost concave portion of the concave and convex portions formed on the outer peripheral surface of the bellows structure 28.
 血液貯留槽20に支持部材90を装着し、次いで、支持部材90の溝94にOリング97を装着する。その後、血液貯留槽20に、下側からボトムキャップ80が装着される。ボトムキャップ80は、有底円筒形状を有している(図10参照)。ボトムキャップ80の円筒部の内周面には雌ネジ83が形成されている。雌ネジ83は、支持部材90の雄ネジ93と螺合される。 The support member 90 is attached to the blood reservoir 20, and then the O-ring 97 is attached to the groove 94 of the support member 90. Thereafter, the bottom cap 80 is attached to the blood reservoir 20 from below. The bottom cap 80 has a bottomed cylindrical shape (see FIG. 10). A female screw 83 is formed on the inner peripheral surface of the cylindrical portion of the bottom cap 80. The female screw 83 is screwed with the male screw 93 of the support member 90.
 支持部材90の第1支持部90aは第1貯留部21の上側壁21aに当接している。また、支持部材90のスカート部92のリブ95が蛇腹構造28の最上の凹部内に嵌入している。これらにより、第1貯留部21の上側壁21aは、支持部材90によって上下方向に把持されている。ボトムキャップ80の底部80bは、第1貯留部21の底部21bを覆い且つこれに当接する。従って、支持部材90に対してボトムキャップ80を回転させて、雄ネジ93を雌ネジ83に螺入していくにしたがって、第1貯留部21の蛇腹構造28は、支持部材90とボトムキャップ80との間で上下方向に圧縮変形される。蛇腹構造28が圧縮変形すると、第1貯留部21の容積が減少し、血液貯留槽20の容積が減少する。このように、雌ネジ83に対する雄ネジ93の螺入深さを調整することにより、蛇腹構造28の圧縮変形量を調整することができ、ひいては血液貯留槽20の容積を調整することができる。支持部材90の雄ネジ93と、ボトムキャップ80の雌ネジ83とは、蛇腹構造28の伸縮量を調整する蛇腹調整機構を構成する。ボトムキャップ80の回転位置、または、雄ネジ93と雌ネジ83との螺合深さを示す目盛りが、ボトムキャップ80又は支持部材90に設けられていてもよい。 The first support portion 90 a of the support member 90 is in contact with the upper side wall 21 a of the first storage portion 21. Further, the rib 95 of the skirt portion 92 of the support member 90 is fitted into the uppermost concave portion of the bellows structure 28. As a result, the upper side wall 21a of the first reservoir 21 is gripped in the vertical direction by the support member 90. The bottom portion 80b of the bottom cap 80 covers and contacts the bottom portion 21b of the first storage portion 21. Therefore, as the bottom cap 80 is rotated with respect to the support member 90 and the male screw 93 is screwed into the female screw 83, the bellows structure 28 of the first storage portion 21 is supported by the support member 90 and the bottom cap 80. Compression deformation in the vertical direction. When the bellows structure 28 is compressed and deformed, the volume of the first reservoir 21 is reduced and the volume of the blood reservoir 20 is reduced. Thus, by adjusting the screwing depth of the male screw 93 with respect to the female screw 83, the amount of compressive deformation of the bellows structure 28 can be adjusted, and consequently the volume of the blood reservoir 20 can be adjusted. The male screw 93 of the support member 90 and the female screw 83 of the bottom cap 80 constitute a bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure 28. The bottom cap 80 or the support member 90 may be provided with a scale indicating the rotational position of the bottom cap 80 or the screwing depth between the male screw 93 and the female screw 83.
 スカート部92の溝94に保持されたOリング97は、ボトムキャップ80の雌ネジ83に当接し、支持部材90とボトムキャップ80とによって半径方向に圧縮される。Oリング97は、支持部材90とボトムキャップ80との間の摩擦力を増大させ、遠心分離時の遠心力や振動によって雄ネジ93と雌ネジ83との相対的な位置が変化するのを防止する。その結果、蛇腹構造28の圧縮変形量を一定に保ち、血液貯留槽20の容積が意図せずに変化するのを抑える。 The O-ring 97 held in the groove 94 of the skirt 92 contacts the female screw 83 of the bottom cap 80 and is compressed in the radial direction by the support member 90 and the bottom cap 80. The O-ring 97 increases the frictional force between the support member 90 and the bottom cap 80, and prevents the relative position between the male screw 93 and the female screw 83 from being changed by centrifugal force or vibration during centrifugation. To do. As a result, the amount of compressive deformation of the bellows structure 28 is kept constant, and the volume of the blood reservoir 20 is prevented from changing unintentionally.
 ボトムキャップ80は、支持部材90と同様に、実質的に剛体とみなしうる程度の高い機械的強度と透明性を有することが好ましい。このような観点から、ボトムキャップ80の材料としては、実施形態1で説明した支持部材90と同じ材料を用いうる。 The bottom cap 80, like the support member 90, preferably has high mechanical strength and transparency that can be regarded as a substantially rigid body. From this point of view, the same material as the support member 90 described in the first embodiment can be used as the material of the bottom cap 80.
 Oリング97の材料は、特に制限はないが、天然ゴム、イソプレンゴム、シリコーンゴム等のゴムや、スチレン系エラストマー、オレフィン系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマー等のゴム弾性を有する材料(エラストマーとも呼ばれる)を使用することができる。また、Oリング97を用いる代わりに、二色成形によって支持部材90もしくはボトムキャップ80に上記材料を埋込み、支持部材90とボトムキャップ80との間の摩擦力を増大させる構成としてもよい。 The material of the O-ring 97 is not particularly limited, but is a material having rubber elasticity such as rubber such as natural rubber, isoprene rubber and silicone rubber, and thermoplastic elastomer such as styrene elastomer, olefin elastomer and polyurethane elastomer ( (Also called elastomers) can be used. Further, instead of using the O-ring 97, the material may be embedded in the support member 90 or the bottom cap 80 by two-color molding to increase the frictional force between the support member 90 and the bottom cap 80.
 ボトムキャップ80が透明性を有する場合、ボトムキャップ80を介して、スカート部92に装着されたOリング97を透視することができる。従って、ボトムキャップ80の外周面に、Oリング97の位置合わせをするための複数の目盛り98を設けてもよい(図11参照)。各目盛り98には、血液のヘマトクリット値を付記しておくとよい(図示を省略)。ヘマトクリット値が付記された各目盛り98の上下方向位置は、当該ヘマトクリット値を有する血液を遠心分離した場合にバフィーコートが第3貯留部23に一致するように設定される。遠心分離前に血液のヘマトクリット値を求め、Oリング97が当該ヘマトクリット値に対応する目盛り98に一致するようにボトムキャップ80を回転して蛇腹構造28の圧縮変形量を調整する。これにより、血液に応じた血液貯留槽20の容積の調整作業を簡単且つ迅速に行うことができる。なお、Oリング97以外の支持部材90(特にスカート部92)上の位置をボトムキャップ80を介して透視して、蛇腹構造28の圧縮変形量を調整してもよい。 When the bottom cap 80 has transparency, the O-ring 97 attached to the skirt portion 92 can be seen through the bottom cap 80. Therefore, a plurality of scales 98 for aligning the O-ring 97 may be provided on the outer peripheral surface of the bottom cap 80 (see FIG. 11). Each scale 98 may be accompanied by a blood hematocrit value (not shown). The vertical position of each scale 98 with the hematocrit value added is set so that the buffy coat matches the third reservoir 23 when the blood having the hematocrit value is centrifuged. Prior to centrifugation, the hematocrit value of blood is obtained, and the bottom cap 80 is rotated so that the O-ring 97 coincides with the scale 98 corresponding to the hematocrit value to adjust the amount of compressive deformation of the bellows structure 28. Thereby, the adjustment operation | work of the volume of the blood storage tank 20 according to the blood can be performed easily and rapidly. The compression deformation amount of the bellows structure 28 may be adjusted by seeing through the bottom cap 80 the positions on the support member 90 (particularly the skirt portion 92) other than the O-ring 97.
 図11に示されているように、第1貯留部21内に円板状の第1遮断部材31が設けられている。第1遮断部材31の外周面に、第1Oリング51が装着されている。第1遮断部材31は、中空円筒形状の第1ロッド41の下端に保持されている。第1ロッド41は、中心軸1aに沿って血液貯留槽20外まで上方に延びている。第1ロッド41の円筒状の外周壁には、第1ロッド41の内外を連通させる第1孔41a及び複数(本実施形態では2つ)の第2孔41bが形成されている。 As shown in FIG. 11, a disc-shaped first blocking member 31 is provided in the first storage portion 21. A first O-ring 51 is attached to the outer peripheral surface of the first blocking member 31. The first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41. The first rod 41 extends upward to the outside of the blood reservoir 20 along the central axis 1a. The cylindrical outer peripheral wall of the first rod 41 is formed with a first hole 41a that communicates the inside and the outside of the first rod 41 and a plurality (two in this embodiment) of second holes 41b.
 第1ロッド41内には、中空円筒形状を有する柔軟なチューブ43が挿入されている。チューブ43の下端は、第1ロッド41に形成された第1孔41aを通って第1ロッド41外に導出されている。チューブ43の下端は第1遮断部材31の上面の近傍で開口している。 A flexible tube 43 having a hollow cylindrical shape is inserted into the first rod 41. The lower end of the tube 43 is led out of the first rod 41 through a first hole 41 a formed in the first rod 41. The lower end of the tube 43 is open near the upper surface of the first blocking member 31.
 第2貯留部22内に、円板状の第2遮断部材32が設けられている。図13は、第2遮断部材32及びその周辺部分の拡大断面図である。第2遮断部材32の外周面に、第2Oリング52が装着されている。第2遮断部材32は、第2ロッド(スライダ)242の下端に保持されている。第2ロッド242は、中空の円筒形状を有し、中心軸1aと同軸に配置されている。 A disk-shaped second blocking member 32 is provided in the second reservoir 22. FIG. 13 is an enlarged cross-sectional view of the second blocking member 32 and its peripheral portion. A second O-ring 52 is attached to the outer peripheral surface of the second blocking member 32. The second blocking member 32 is held at the lower end of the second rod (slider) 242. The second rod 242 has a hollow cylindrical shape and is disposed coaxially with the central axis 1a.
 第2遮断部材32の中央から外れた位置に、第2遮断部材32を上下方向に貫通する貫通孔32hが形成されている。貫通孔32hに、一方向弁235が設けられている。一方向弁235は、液体(血液)が貫通孔32hを通って上方に向かって流れるのを許容するが、貫通孔32hを通って下方に向かって流れるのを禁止する。本実施形態では、一方向弁235として、ゴム状の弾性を有する材料(いわゆるエラストマー)からなり、略キノコ形状を有するアンブレラバルブを用いている。但し、一方向弁235は、上記の機能を有していればその形式は問わない。例えば、ダックビルバルブを用いることもできる。 A through hole 32 h that penetrates the second blocking member 32 in the vertical direction is formed at a position off the center of the second blocking member 32. A one-way valve 235 is provided in the through hole 32h. The one-way valve 235 allows the liquid (blood) to flow upward through the through hole 32h, but prohibits the liquid (blood) from flowing downward through the through hole 32h. In the present embodiment, as the one-way valve 235, an umbrella valve made of a rubber-like elastic material (so-called elastomer) and having a substantially mushroom shape is used. However, the one-way valve 235 may be of any type as long as it has the above function. For example, a duckbill valve can be used.
 第1ロッド41が、第2遮断部材32及び第2ロッド242を貫通している。第3Oリング53が、第2遮断部材32の第1ロッド41が貫通する貫通孔の内周面に装着されている。第3Oリング53は、第1ロッド41の外周面と第2遮断部材32との間を液密にシールする。更に、第4Oリング54が、第2ロッド242の内周面であってその上端近傍の位置に装着されている。第4Oリング54は、第1ロッド41の外周面と第2ロッド242との間をシールする。 The first rod 41 passes through the second blocking member 32 and the second rod 242. The third O-ring 53 is attached to the inner peripheral surface of the through hole through which the first rod 41 of the second blocking member 32 passes. The third O-ring 53 provides a liquid-tight seal between the outer peripheral surface of the first rod 41 and the second blocking member 32. Further, a fourth O-ring 54 is mounted on the inner peripheral surface of the second rod 242 at a position near the upper end thereof. The fourth O-ring 54 seals between the outer peripheral surface of the first rod 41 and the second rod 242.
 第2ロッド242は、中空の円筒形状を有する案内筒270内に挿入されている。案内筒270の上端は、略円板形状を有する天板255に保持されている。天板255には、4つのポート256a~256d(図13では、ポート256b,256cは見えない)が形成されている。ポート256a~256dは、血液貯留槽20の内外を連通させる貫通孔である。ポートの数は、4つに限定されず、これより多くても少なくてもよい。 The second rod 242 is inserted into a guide cylinder 270 having a hollow cylindrical shape. The upper end of the guide tube 270 is held by a top plate 255 having a substantially disc shape. On the top plate 255, four ports 256a to 256d ( ports 256b and 256c are not visible in FIG. 13) are formed. The ports 256a to 256d are through holes that allow the inside and outside of the blood reservoir 20 to communicate with each other. The number of ports is not limited to four and may be more or less.
 第2ロッド242は、中空円筒形状を有する部分から上方に向かって延びた操作片245を備える。操作片245は、天板255よりも上方に突出している。実施形態1の操作片45と同様に、操作片245を操作することにより、第2ロッド242及び第2遮断部材32を一体的に上下に移動させることができる。これらの上下移動は、第1遮断部材31及び第1ロッド41の上下移動とは独立して行うことができる。 The second rod 242 includes an operation piece 245 extending upward from a portion having a hollow cylindrical shape. The operation piece 245 protrudes above the top plate 255. Similar to the operation piece 45 of the first embodiment, by operating the operation piece 245, the second rod 242 and the second blocking member 32 can be integrally moved up and down. These vertical movements can be performed independently of the vertical movement of the first blocking member 31 and the first rod 41.
 第2ロッド242の外周面と案内筒270の内周面との間をシールするために、第5Oリング55及び第6Oリング56が設けられている。第5Oリング55は、案内筒270の内周面であってその下端近傍の位置に装着されている。第6Oリング56は、第2ロッド242の外周面であってその上端近傍の位置に装着されている。 In order to seal between the outer peripheral surface of the second rod 242 and the inner peripheral surface of the guide tube 270, a fifth O-ring 55 and a sixth O-ring 56 are provided. The fifth O-ring 55 is mounted on the inner peripheral surface of the guide tube 270 and in the vicinity of the lower end thereof. The sixth O-ring 56 is mounted on the outer peripheral surface of the second rod 242 and in the vicinity of the upper end thereof.
 第2ロッド242と案内筒270との間に、第5Oリング55及び第6Oリング56でシールされた密閉空間273が形成される。案内筒270の、密閉空間273の下端近傍の位置に、空気管272の下端が接続されている。空気管272の上端は、天板255に形成されたポート256dに接続されている。従って、密閉空間273は、空気管272及びポート256dを介して血液貯留槽20外と連通される。これにより、密閉空間273内の気圧が変化することなく、第2ロッド242を案内筒270に対して上下方向に移動させることが容易になる。 A sealed space 273 sealed with the fifth O-ring 55 and the sixth O-ring 56 is formed between the second rod 242 and the guide cylinder 270. The lower end of the air tube 272 is connected to the guide tube 270 at a position near the lower end of the sealed space 273. The upper end of the air pipe 272 is connected to a port 256 d formed on the top plate 255. Therefore, the sealed space 273 is communicated with the outside of the blood storage tank 20 through the air pipe 272 and the port 256d. Thereby, it becomes easy to move the second rod 242 in the vertical direction with respect to the guide tube 270 without changing the atmospheric pressure in the sealed space 273.
 Oリング54,55,56としては、実施形態1で説明したOリング51,52,53と同様に、汎用されているOリングを用いることができる。その材料もOリング51,52,53と同じものを用いうる。 As the O- rings 54, 55, and 56, general-purpose O-rings can be used similarly to the O- rings 51, 52, and 53 described in the first embodiment. The same material as the O- rings 51, 52, 53 can be used.
 装置2の組み立て時に第2ロッド242の外周面は滅菌処理される。Oリング55,56は、その滅菌状態を維持する。従って、第3貯留部23の上側の開口を第2遮断部材32で塞ぐために第2ロッド242を押し下げるときに(後述する図15参照)、血液内に細菌が混入する可能性を低減できる。 The outer peripheral surface of the second rod 242 is sterilized when the apparatus 2 is assembled. The O- rings 55 and 56 maintain their sterilized state. Therefore, when the second rod 242 is pushed down to close the opening on the upper side of the third reservoir 23 with the second blocking member 32 (see FIG. 15 described later), the possibility that bacteria are mixed into the blood can be reduced.
 略U字形状を有するストッパー247(図10参照)が、第2ロッド242に対して水平方向に着脱可能に係止されている。第2遮断部材32が第2貯留部22内に浮かぶように第2ロッド242を上昇させたとき(図11、図13参照)、ストッパー247を第2ロッド242の外周面に形成された溝に係止することができる。ストッパ247が第2ロッド242に係止した状態では、ストッパー247の下面が案内筒270の上端又は天板255の上面に当接するので、第2ロッド242を下降させることはできない。本発明では、この状態を、ストッパー247による「ロック状態」という。 A stopper 247 (see FIG. 10) having a substantially U-shape is detachably locked to the second rod 242 in the horizontal direction. When the second rod 242 is raised so that the second blocking member 32 floats in the second storage portion 22 (see FIGS. 11 and 13), the stopper 247 is inserted into the groove formed on the outer peripheral surface of the second rod 242. Can be locked. In a state where the stopper 247 is locked to the second rod 242, the lower surface of the stopper 247 comes into contact with the upper end of the guide tube 270 or the upper surface of the top plate 255, so the second rod 242 cannot be lowered. In the present invention, this state is referred to as a “locked state” by the stopper 247.
 血液貯留槽20の円筒形状の開口27を、支持部材90が取り囲んでいる。開口27を取り囲む支持部材90の部分の外周面に雄ネジ96が形成されている。雄ネジ96には、トップキャップ250の雌ネジ252が螺合される。トップキャップ250と血液貯留槽20の開口27の端縁との間に、環状のシール部材253が介在している。トップキャップ250の中央の開口内に天板255が嵌入している。かくして、血液貯留槽20の開口27は、封止される。本実施形態では、雄ネジ96は支持部材90に形成されているが、本発明はこれに限定されず、雄ネジ96が血液貯留槽20に形成されていてもよい。トップキャップ250は、実施形態1のノブ25と同様に、装置2を手で掴んで移動する際の取っ手として利用することができる。 The support member 90 surrounds the cylindrical opening 27 of the blood reservoir 20. A male screw 96 is formed on the outer peripheral surface of the portion of the support member 90 surrounding the opening 27. The female screw 252 of the top cap 250 is screwed into the male screw 96. An annular seal member 253 is interposed between the top cap 250 and the edge of the opening 27 of the blood reservoir 20. A top plate 255 is fitted into the central opening of the top cap 250. Thus, the opening 27 of the blood reservoir 20 is sealed. In the present embodiment, the male screw 96 is formed on the support member 90, but the present invention is not limited to this, and the male screw 96 may be formed in the blood reservoir 20. Similar to the knob 25 of the first embodiment, the top cap 250 can be used as a handle when the device 2 is gripped and moved.
 天板255に形成されたポート256aには、実施形態1の通気フィルタ26と同様に機能する通気フィルタ226が設けられている。ポート256b,256cは、血液貯留槽20内に血液を注入するための血液注入ポートとして使用しうる。血液注入ポートには、例えば柔軟なチューブの一端が接続されてもよい。この場合、当該チューブの他端には、公知のメスコネクタが設けられていてもよい。 The port 256a formed in the top plate 255 is provided with a ventilation filter 226 that functions in the same manner as the ventilation filter 26 of the first embodiment. The ports 256b and 256c can be used as blood injection ports for injecting blood into the blood reservoir 20. For example, one end of a flexible tube may be connected to the blood injection port. In this case, a known female connector may be provided at the other end of the tube.
 図11では、第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2遮断部材32は、第2貯留部22の内周面に接触することなく第2貯留部22内に浮かんでいる。第1遮断部材31及び第2遮断部材32の図11の位置を「初期位置」という。 In FIG. 11, the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22. The positions in FIG. 11 of the first blocking member 31 and the second blocking member 32 are referred to as “initial position”.
 [血液成分分離方法]
 上記のように構成された装置2を用いて、採取した血液を各血液成分に遠心分離する方法を説明する。
[Blood component separation method]
A method of centrifuging collected blood into each blood component using the apparatus 2 configured as described above will be described.
 最初に、遠心分離される血液(骨髄液)を採取する。 First, collect blood (bone marrow fluid) to be centrifuged.
 次いで、採取した血液の血液量とヘマトクリット値を測定する。血液量及びヘマトクリット値から赤血球成分の量、血漿量を計算する。 Next, the blood volume and hematocrit value of the collected blood are measured. The amount of erythrocyte component and plasma volume are calculated from the blood volume and hematocrit value.
 第1遮断部材31及び第2遮断部材32が図11に示した初期位置にある空の装置2を準備する。ボトムキャップ80を回転させて、蛇腹構造28の圧縮変形量を調整する。圧縮変形量は、先に求めた赤血球成分量及び血漿量に基づいて、遠心分離後のバフィーコートが血液貯留槽20の第3貯留部23内に形成されるように決定される。なお、ボトムキャップ80に血液のヘマトクリット値に対応する複数の目盛り98が設けられている場合には、測定した血液のヘマトクリット値に対応する目盛り98の位置にOリング97が一致するようにボトムキャップ80を回転させる。この場合には、上述した赤血球成分の量や血漿量の計算は不要である。 The empty device 2 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 11 is prepared. The bottom cap 80 is rotated to adjust the amount of compressive deformation of the bellows structure 28. The amount of compressive deformation is determined so that the buffy coat after centrifugation is formed in the third reservoir 23 of the blood reservoir 20 based on the amount of red blood cell components and the amount of plasma determined previously. When the bottom cap 80 is provided with a plurality of scales 98 corresponding to the hematocrit value of blood, the bottom cap is set so that the O-ring 97 coincides with the position of the scale 98 corresponding to the measured hematocrit value of blood. Rotate 80. In this case, the calculation of the amount of erythrocyte component and the amount of plasma described above is unnecessary.
 次いで、天板255に設けられた血液注入ポート256b,256cを介して、採取した血液を血液貯留槽20内に注入する。その後、血液注入ポート256b,256cを液密に封止する。 Next, the collected blood is injected into the blood storage tank 20 through blood injection ports 256 b and 256 c provided on the top plate 255. Thereafter, the blood injection ports 256b and 256c are sealed in a liquid-tight manner.
 次いで、血液が充填された装置2を遠心分離機にかけ、遠心分離を行う。遠心力は、中心軸1aと平行に、図9、図11の矢印Fの向きに作用する。第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2ロッド242にはストッパー247が係止されている。従って、遠心分離時に遠心力Fが作用しても、第1遮断部材31及び第2遮断部材32の上下方向位置は、いずれも初期位置から変化することはない。 Next, the device 2 filled with blood is centrifuged and centrifuged. The centrifugal force acts in the direction of arrow F in FIGS. 9 and 11 in parallel with the central axis 1a. The lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. A stopper 247 is locked to the second rod 242. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
 遠心分離後、装置2を遠心分離機から取り出す。バフィーコートが第3貯留部23に形成されていることを確認する。必要に応じて、ボトムキャップ80を回転させて、バフィーコートの上下方向位置を微調整してもよい。 After centrifugation, remove the device 2 from the centrifuge. It is confirmed that the buffy coat is formed in the third storage part 23. If necessary, the bottom cap 80 may be rotated to finely adjust the vertical position of the buffy coat.
 次いで、第1ロッド41の上端を掴み、第1ロッド41を上方に引き上げる。そして、図14に示すように、第1遮断部材31を第3貯留部23の下側の開口に嵌入させる。第3貯留部23の第1貯留部21側の開口が第1遮断部材31で塞がれる。この結果、第1貯留部21と第3貯留部23との連通が、第1遮断部材31によって液密に遮断される。第2遮断部材32は初期位置(図11参照)のままである。 Next, the upper end of the first rod 41 is grasped, and the first rod 41 is pulled upward. Then, as shown in FIG. 14, the first blocking member 31 is fitted into the lower opening of the third reservoir 23. The opening of the third reservoir 23 on the first reservoir 21 side is closed by the first blocking member 31. As a result, the communication between the first storage unit 21 and the third storage unit 23 is liquid-tightly blocked by the first blocking member 31. The second blocking member 32 remains at the initial position (see FIG. 11).
 次に、ストッパー247を第2ロッド242から取り外す(図10参照)。続いて、操作片245を下方に押し下げる。第2ロッド242が下降するのにともなって、密閉空間273の容積が減少する。密閉空間273内に存在していた空気は、空気管272及びポート256dを通って装置2外に放出される。従って、密閉空間273内の圧力が上昇することはなく、第2ロッド242を下降させる操作は容易である。 Next, the stopper 247 is removed from the second rod 242 (see FIG. 10). Subsequently, the operation piece 245 is pushed downward. As the second rod 242 descends, the volume of the sealed space 273 decreases. The air existing in the sealed space 273 is discharged out of the device 2 through the air pipe 272 and the port 256d. Therefore, the pressure in the sealed space 273 does not increase, and the operation of lowering the second rod 242 is easy.
 操作片245を操作して、図15に示すように、第2遮断部材32を第3貯留部23の上側の開口に嵌入させる。第3貯留部23の第2貯留部22側の開口が第2遮断部材32で塞がれる。この結果、第2貯留部22と第3貯留部23との連通が、第2遮断部材32によって液密に遮断される。第1遮断部材31は、図14の位置から変位していない。 The operation piece 245 is operated, and the second blocking member 32 is inserted into the upper opening of the third reservoir 23 as shown in FIG. The opening of the third reservoir 23 on the second reservoir 22 side is closed by the second blocking member 32. As a result, the communication between the second storage part 22 and the third storage part 23 is liquid-tightly blocked by the second blocking member 32. The first blocking member 31 is not displaced from the position of FIG.
 かくして、赤血球成分が貯留された第1貯留部21と、白血球成分が貯留された第3貯留部23と、血漿成分が貯留された第2貯留部22とが、相互に液密に分断される。第1ロッド41の第1孔41aから導出されたチューブ43の下端、及び、第1ロッド41の第2孔41bは、第3貯留部23内に開口している。 Thus, the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. . The lower end of the tube 43 led out from the first hole 41 a of the first rod 41 and the second hole 41 b of the first rod 41 are open in the third reservoir 23.
 その後、実施形態1と同様にして、第3貯留部23内の白血球成分を、チューブ43内の流路(第1流路)61を介して吸い込み回収する。これと同時に、外界の空気が、第1ロッド41とチューブ43との間の隙間、及び、第1ロッド41に設けられた第2孔41bを順につなぐ流路(第2流路)62を通って第3貯留部23内に流入する。 Thereafter, in the same manner as in the first embodiment, the white blood cell component in the third reservoir 23 is sucked and collected through the flow path (first flow path) 61 in the tube 43. At the same time, the outside air passes through the flow path (second flow path) 62 that sequentially connects the gap between the first rod 41 and the tube 43 and the second hole 41b provided in the first rod 41. Into the third reservoir 23.
 更に、実施形態1と同様に、チューブ43内の第1流路61を介して第3貯留部23に生理食塩水を注入してもよい。その後、生理食塩水をチューブ43内の第1流路61を介して回収する。生理食塩水が第1流路61を介して第3貯留部23に対して流入/流出するのにともなって、空気が第2流路62を介して第3貯留部23に対して流出/流入する。これにより、第3貯留部23やチューブ43内に残存する白血球成分を、生理食塩水とともに回収することができる。 Furthermore, as in the first embodiment, physiological saline may be injected into the third reservoir 23 via the first flow path 61 in the tube 43. Thereafter, the physiological saline is collected through the first flow path 61 in the tube 43. As physiological saline flows into / out of the third reservoir 23 via the first flow path 61, air flows out / inflow of the third reservoir 23 via the second flow path 62. To do. Thereby, the leukocyte component remaining in the third reservoir 23 and the tube 43 can be collected together with the physiological saline.
 [作用]
 本実施形態2は、実施形態1の作用に加えて、以下の作用を奏する。
[Action]
The second embodiment has the following actions in addition to the actions of the first embodiment.
 第1貯留部21に設けられた蛇腹構造28の作用を説明する。 The operation of the bellows structure 28 provided in the first reservoir 21 will be described.
 血液は、そのヘマトクリット値及び血液量によって赤血球成分の量や血漿量が異なる。ヘマトクリット値は、血液中に占める血球の体積の割合を示す数値であり、成人男性で40~50%程度、成人女性で35~45%程度が正常値である。このヘマトクリット値は、何らかの原因で正常値よりも低くなったり高くなったりすることもある。ヘマトクリット値及び血液量にバラツキがあると、血液を遠心分離した後に血液貯留槽20内に形成されるバフィーコートの位置が変化する。 Blood has different red blood cell components and plasma volume depending on its hematocrit value and blood volume. The hematocrit value is a numerical value indicating the proportion of the blood cell volume in the blood. The normal value is about 40 to 50% for adult men and about 35 to 45% for adult women. This hematocrit value may be lower or higher than the normal value for some reason. If the hematocrit value and the blood volume vary, the position of the buffy coat formed in the blood reservoir 20 after the blood is centrifuged changes.
 本実施形態の装置2は、血液貯留槽20の容積を調整するための容積調整機構として蛇腹構造28を備える。遠心分離前に血液の血液量やヘマトクリット値を測定し、これに応じて蛇腹構造28の圧縮量を調整することにより、血液貯留槽20の容積を調整する。これにより、血液量やヘマトクリット値が血液貯留槽20に注入される血液ごとに異なっていても、遠心分離後のバフィーコートの位置を常に第3貯留部23に一致させることができる。その結果、白血球成分の回収率を向上させることができる。 The apparatus 2 of this embodiment includes a bellows structure 28 as a volume adjustment mechanism for adjusting the volume of the blood reservoir 20. The volume of the blood reservoir 20 is adjusted by measuring the blood volume and hematocrit value of the blood before centrifugation and adjusting the amount of compression of the bellows structure 28 accordingly. Thereby, even if the blood volume and the hematocrit value are different for each blood injected into the blood reservoir 20, the position of the buffy coat after centrifugation can always be matched with the third reservoir 23. As a result, the recovery rate of leukocyte components can be improved.
 蛇腹構造28の圧縮量は、蛇腹調整機構を構成する雄ネジ93と雌ネジ83との螺合深さを調整することにより調整することができる。蛇腹構造28及び蛇腹調整機構は、いずれも極めて簡単な構成であるので、信頼性、耐久性及びコスト低減に優れる。また、蛇腹構造28の圧縮量の微調整、更には血液貯留槽20の容積の微調整が容易である。 The amount of compression of the bellows structure 28 can be adjusted by adjusting the screwing depth between the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism. Since each of the bellows structure 28 and the bellows adjustment mechanism has a very simple configuration, it is excellent in reliability, durability, and cost reduction. Further, the fine adjustment of the compression amount of the bellows structure 28 and the fine adjustment of the volume of the blood reservoir 20 are easy.
 血液貯留槽20が形状保持性を有する材料で構成されているので、遠心分離後にボトムキャップ80を回転させて蛇腹構造28の圧縮量を微調整しても、バフィーコートが赤血球層や血漿層と混じり合う可能性は低い。 Since the blood reservoir 20 is made of a material having shape retentivity, even if the bottom cap 80 is rotated after centrifugation and the amount of compression of the bellows structure 28 is finely adjusted, the buffy coat does not adhere to the red blood cell layer or the plasma layer. The possibility of mixing is low.
 蛇腹構造28は血液貯留槽20の一部を構成するので、蛇腹構造28を設けたことによる血液貯留槽20の容積の減小はわずかである。 Since the bellows structure 28 constitutes a part of the blood reservoir 20, the volume reduction of the blood reservoir 20 due to the provision of the bellows structure 28 is slight.
 蛇腹構造28が、遠心分離後に赤血球成分が貯留される第1貯留部21に設けられているので、遠心分離後にバフィーコートを第3貯留部23に位置させることが容易である。これは、白血球成分の回収率の更なる向上に有利である。 Since the bellows structure 28 is provided in the first reservoir 21 in which red blood cell components are stored after centrifugation, it is easy to position the buffy coat in the third reservoir 23 after centrifugation. This is advantageous for further improving the recovery rate of leukocyte components.
 第2遮断部材32に設けられた貫通孔32h及び一方向弁235の作用を説明する。 The operation of the through hole 32h and the one-way valve 235 provided in the second blocking member 32 will be described.
 第2遮断部材32に貫通孔32h及び一方向弁235が設けられていない実施形態1の装置1では、第3貯留部23の下側の開口を塞ぎ(図4)、続いて第2遮断部材32を第3貯留部23の上側の開口に嵌入しようとすると、第3貯留部23内の圧力が上昇する可能性がある。従って、第3貯留部23内の白血球成分が、第1流路61及び/又は第2流路62を通って装置1外に漏れ出し得る。第1流路61及び第2流路62を封止しておけば、白血球成分が装置1外に漏れ出るのを防止できる。ところが、この場合、第3貯留部23内の圧力上昇によって、第2遮断部材32を第3貯留部23の上側の開口に嵌入させることが困難になったり、第1遮断部材31が第3貯留部23の下側の開口から抜け出たりする誤操作が起こる可能性がある。このような誤操作は、白血球成分の回収率を低下させる。 In the apparatus 1 according to the first embodiment in which the second blocking member 32 is not provided with the through hole 32h and the one-way valve 235, the lower opening of the third storage unit 23 is closed (FIG. 4), and then the second blocking member. If 32 is to be inserted into the upper opening of the third reservoir 23, the pressure in the third reservoir 23 may increase. Therefore, the white blood cell component in the third reservoir 23 can leak out of the device 1 through the first channel 61 and / or the second channel 62. If the first flow path 61 and the second flow path 62 are sealed, the leukocyte component can be prevented from leaking out of the apparatus 1. However, in this case, it becomes difficult to fit the second blocking member 32 into the upper opening of the third storage unit 23 due to the pressure increase in the third storage unit 23, or the first blocking member 31 is stored in the third storage unit 23. There is a possibility that an erroneous operation such as getting out of the lower opening of the portion 23 may occur. Such an erroneous operation reduces the recovery rate of the white blood cell component.
 これに対して、本実施形態2では、第2遮断部材32に、貫通孔32h及び一方向弁235が設けられている。このため、第3貯留部23内が圧力上昇すると、一方向弁235が開き、第3貯留部23内の白血球成分が貫通孔32hを通って第2貯留部22へ流れる。第2遮断部材32に設けられた貫通孔32h及び一方向弁235は、第3貯留部23内の圧力が異常に上昇しないように第3貯留部内の圧力を開放する圧力開放機構として機能する。このため、本実施形態では、白血球成分の外界への漏れ出しや、上記の誤操作を防止できる。 In contrast, in the second embodiment, the second blocking member 32 is provided with a through hole 32h and a one-way valve 235. For this reason, when the pressure in the third reservoir 23 rises, the one-way valve 235 opens, and the white blood cell component in the third reservoir 23 flows to the second reservoir 22 through the through hole 32h. The through hole 32h and the one-way valve 235 provided in the second blocking member 32 function as a pressure release mechanism that releases the pressure in the third reservoir so that the pressure in the third reservoir 23 does not rise abnormally. For this reason, in this embodiment, it is possible to prevent the leukocyte component from leaking to the outside and the above-mentioned erroneous operation.
 貫通孔32hに一方向弁235が設けられていなくても、第3貯留部23内の圧力上昇を防止することは可能である。但し、この場合には、第3貯留部23内の圧力を開放する必要がないときにも、貫通孔32hを介して第3貯留部23と第2貯留部22とが連通する。従って、第3貯留部23の下側開口及び上側開口を第1遮断部材31及び第2遮断部材32でそれぞれ塞いだ状態(図15参照)で第3貯留部23内の白血球成分を吸い込み回収するときに、第2貯留部22内の血漿成分が貫通孔32hを通って第3貯留部23内に流入する可能性がある。これは、白血球成分の回収率を低下させる。一方向弁235は、第3貯留部23内の白血球成分を回収時に、血漿成分が第2貯留部22から第3貯留部23内に流入するのを防止する。 Even if the one-way valve 235 is not provided in the through hole 32h, it is possible to prevent an increase in pressure in the third reservoir 23. However, in this case, the third reservoir 23 and the second reservoir 22 communicate with each other through the through hole 32h even when it is not necessary to release the pressure in the third reservoir 23. Therefore, the white blood cell component in the third reservoir 23 is sucked and collected in a state where the lower opening and the upper opening of the third reservoir 23 are respectively closed by the first blocking member 31 and the second blocking member 32 (see FIG. 15). Sometimes, the plasma component in the second reservoir 22 may flow into the third reservoir 23 through the through hole 32h. This reduces the recovery rate of leukocyte components. The one-way valve 235 prevents the plasma component from flowing into the third reservoir 23 from the second reservoir 22 when the white blood cell component in the third reservoir 23 is collected.
 第2遮断部材32に貫通孔32h及び一方向弁235を設けたことにより、第3貯留部23内の圧力を開放するのと同時に白血球成分が第3貯留部23から第2貯留部22へ流出する可能性がある。しかしながら、貫通孔32h及び一方向弁235が設けられていない場合に起こりうる白血球成分の血液貯留槽20外への漏れ出しや上記の誤操作による白血球成分の回収率の低下という問題の大きさに比べれば、貫通孔32h及び一方向弁235を設けたことによる白血球成分の流出という問題は無視しうるほどに小さい。また、蛇腹構造28を調整してバフィーコートの位置を第3貯留部23内で第2貯留部22からわずかに離れた位置に形成させることにより、一方向弁235を通って流出する白血球成分の量を少なくすることが可能である。 By providing the second blocking member 32 with the through-hole 32h and the one-way valve 235, the white blood cell component flows out from the third reservoir 23 to the second reservoir 22 simultaneously with releasing the pressure in the third reservoir 23. there's a possibility that. However, compared to the magnitude of the problem of leakage of leukocyte components to the outside of the blood reservoir 20 that may occur when the through-hole 32h and the one-way valve 235 are not provided, and a decrease in the recovery rate of leukocyte components due to the above-described erroneous operation. For example, the problem of the outflow of the white blood cell component due to the provision of the through hole 32h and the one-way valve 235 is negligibly small. Further, by adjusting the bellows structure 28 so that the position of the buffy coat is formed in the third reservoir 23 at a position slightly away from the second reservoir 22, the white blood cell component that flows out through the one-way valve 235 is reduced. It is possible to reduce the amount.
 第1遮断部材31を第3貯留部23の下側の開口に嵌入させる過程(図14参照)で、第1貯留部21内の圧力が低下する可能性がある。しかしながら、本実施形態では、第1貯留部21には蛇腹構造28が設けられている。蛇腹構造28は、第1貯留部21内の圧力の低下に応じてその長さを縮小するように適宜変形することができる。従って、本実施形態では、第1貯留部21内の圧力が低下することによって、第1遮断部材31を第3貯留部23の下側の開口に嵌入させるのが困難になるという問題は生じにくい。 In the process of fitting the first blocking member 31 into the lower opening of the third storage part 23 (see FIG. 14), the pressure in the first storage part 21 may decrease. However, in the present embodiment, the first reservoir 21 is provided with a bellows structure 28. The bellows structure 28 can be appropriately modified so as to reduce its length in accordance with a decrease in the pressure in the first reservoir 21. Therefore, in this embodiment, the pressure in the 1st storage part 21 falls, and the problem that it becomes difficult to insert the 1st cutoff member 31 in the lower opening of the 3rd storage part 23 does not arise easily. .
 本実施形態2は、上記を除いて実施形態1と同じである。実施形態1の説明は、本実施形態2にも同様に適用される。 The second embodiment is the same as the first embodiment except for the above. The description of the first embodiment is similarly applied to the second embodiment.
 (実施形態3)
 本発明の実施形態3にかかる血液成分分離装置3(以下、単に「装置3」という)は、主として以下の2点で実施形態2の装置2と異なる。第1に、装置3では、第1遮断部材31を保持する第1ロッド41が二重管構造を有していない。第2に、装置3は、第3貯留部23内が陽圧になるのを防止するための圧力解放機構の構成が装置2と異なる。以下に、実施形態2の装置2との相違点を中心に本実施形態3の装置3を説明する。
(Embodiment 3)
A blood component separation device 3 (hereinafter simply referred to as “device 3”) according to the third embodiment of the present invention is different from the device 2 of the second embodiment mainly in the following two points. First, in the device 3, the first rod 41 that holds the first blocking member 31 does not have a double tube structure. Secondly, the device 3 is different from the device 2 in the configuration of the pressure release mechanism for preventing the inside of the third reservoir 23 from becoming a positive pressure. Below, the apparatus 3 of this Embodiment 3 is demonstrated centering on difference with the apparatus 2 of Embodiment 2. FIG.
 [血液成分分離用装置の構成]
 実施形態3の装置3の構成を図面を用いて説明する。以下に示す図面において、本実施形態3の装置3を構成する部材のうち、実施形態1,2の装置1,2と同じ部材又は対応する部材には実施形態1,2と同じ符号を付すことにし、それらについての説明を省略する。
[Configuration of blood component separation device]
A configuration of the device 3 according to the third embodiment will be described with reference to the drawings. In the drawings shown below, among members constituting the device 3 of the third embodiment, the same members as or corresponding members to the devices 1 and 2 of the first and second embodiments are denoted by the same reference numerals as the first and second embodiments. Therefore, the description about them is omitted.
 図16は、装置3の斜視図である。図17は、装置3の上下方向面に沿った断面斜視図である。図17において、一点鎖線1aは、装置3の中心軸である。 FIG. 16 is a perspective view of the device 3. FIG. 17 is a cross-sectional perspective view of the device 3 along the vertical surface. In FIG. 17, the alternate long and short dash line 1 a is the central axis of the device 3.
 図17に示されているように、中空円筒形状の第1ロッド41の下端に第1遮断部材31が保持されている。第1ロッド41は、中心軸1aに沿って血液貯留槽20外まで上方に延びている。本実施形態3の第1ロッド41には、実施形態1,2では形成されていた第1孔41a及び複数の第2孔41b(図3、図11参照)が形成されていない。また、本実施形態3の第1ロッド41内には、実施形態1,2では挿入されていたチューブ43(図3、図11参照)は存在しない。 As shown in FIG. 17, the first blocking member 31 is held at the lower end of the hollow cylindrical first rod 41. The first rod 41 extends upward to the outside of the blood reservoir 20 along the central axis 1a. The first rod 41 of the third embodiment is not formed with the first hole 41a and the plurality of second holes 41b (see FIGS. 3 and 11) formed in the first and second embodiments. Further, the tube 43 (see FIGS. 3 and 11) inserted in the first and second embodiments does not exist in the first rod 41 of the third embodiment.
 第1遮断部材31の上面に、2つの開口31aが形成されている。2つの開口31aは、第1遮断部材31内に形成された、略「U」字状の流路31bを介して連通している。第1ロッド41の下端は第1遮断部材31内に挿入され、流路31bの略中央部分と連通している。従って、第1ロッド41と開口31aとが第1遮断部材31内で連通している。 Two openings 31 a are formed on the upper surface of the first blocking member 31. The two openings 31 a communicate with each other via a substantially “U” -shaped channel 31 b formed in the first blocking member 31. The lower end of the first rod 41 is inserted into the first blocking member 31 and communicates with the substantially central portion of the flow path 31b. Therefore, the first rod 41 and the opening 31 a communicate with each other in the first blocking member 31.
 図18は、第2遮断部材32及びその周辺部分の拡大断面図である。第2ロッド242の下端に第2遮断部材32が保持されている。第2遮断部材32には、これを上下方向に貫通する貫通孔32hが形成されている。以上は、実施形態2と同じである。但し、貫通孔32hには、実施形態2では設けられていた一方向弁235(図13参照)が設けられていない。本実施形態では、可撓性を有する中空の第1チューブ371の下端が、貫通孔32hに上方から挿入されている。第1チューブ371の上端は、案内筒270の上端近傍に形成された第1ホルダ376に挿入されて保持されている。 FIG. 18 is an enlarged cross-sectional view of the second blocking member 32 and its peripheral portion. The second blocking member 32 is held at the lower end of the second rod 242. The second blocking member 32 is formed with a through hole 32h penetrating in the vertical direction. The above is the same as in the second embodiment. However, the one-way valve 235 (see FIG. 13) provided in the second embodiment is not provided in the through hole 32h. In the present embodiment, the lower end of the flexible hollow first tube 371 is inserted into the through hole 32h from above. The upper end of the first tube 371 is inserted and held in a first holder 376 formed near the upper end of the guide tube 270.
 本実施形態3の案内筒270には、実施形態2の空気管272(図13参照)に代えて、可撓性を有する中空の第2チューブ372の下端が接続されている。第2ロッド242と案内筒270との間の密閉空間273は第2チューブ372と連通している。第2チューブ372の上端は、案内筒270の上端近傍に形成された第2ホルダ377に挿入されて保持されている。 The lower end of a flexible hollow second tube 372 is connected to the guide tube 270 of the third embodiment instead of the air pipe 272 (see FIG. 13) of the second embodiment. A sealed space 273 between the second rod 242 and the guide tube 270 communicates with the second tube 372. The upper end of the second tube 372 is inserted and held in a second holder 377 formed in the vicinity of the upper end of the guide tube 270.
 図18において、二点鎖線Lは、装置3の使用時の血液面の代表的な位置を示す。第1チューブ371及び第2チューブ372の上端は、血液面Lよりも高い位置で、血液貯留槽20内で水平方向に向かって開口している。 18, a two-dot chain line L indicates a representative position of the blood surface when the apparatus 3 is used. The upper ends of the first tube 371 and the second tube 372 are open toward the horizontal direction in the blood reservoir 20 at a position higher than the blood surface L.
 天板255には2つのポート256a,256bが形成されている。ポート256a,256bは、血液貯留槽20の内外を連通させる貫通孔である。ポート256aには、実施形態1の通気フィルタ26と同様に機能する通気フィルタ226が設けられている。ポート256bは、血液貯留槽20内に血液を注入するために使用される血液注入ポートである。血液注入ポート256bには、例えば柔軟なチューブの一端が接続されてもよい。この場合、当該チューブの他端には、公知のメスコネクタが設けられていてもよい。 The top plate 255 has two ports 256a and 256b. The ports 256a and 256b are through holes that allow the inside and outside of the blood reservoir 20 to communicate with each other. The port 256a is provided with a ventilation filter 226 that functions in the same manner as the ventilation filter 26 of the first embodiment. The port 256 b is a blood injection port used for injecting blood into the blood reservoir 20. For example, one end of a flexible tube may be connected to the blood injection port 256b. In this case, a known female connector may be provided at the other end of the tube.
 第2ロッド242は、中空円筒形状を有する部分から上方に向かって延びた操作片245を備える。操作片245は、天板255よりも上方に突出している。図16及び図17に示されているように、操作片245の上端には、水平方向に沿った回動軸347aを介してストッパー347が接続されている。ストッパー347は回動軸347aの周りを回動可能である。図16及び図17では、ストッパー347は、操作片245に対して外側(中心軸1aから遠い側)に、操作片245に重なるように配置されている。ストッパー347がこの位置にあるとき、ストッパー347の先端(回動軸347aとは反対側端)であるストッパー端347eは、案内筒270の上端又は天板255の上面に当接する。従って、ストッパー347がこの位置にあるとき、第2ロッド242を下降させることはできない。本発明では、この状態を、ストッパー347による「ロック状態」という。本実施形態3では、実施形態2の着脱可能なストッパー247は設けられていない。 The second rod 242 includes an operation piece 245 extending upward from a portion having a hollow cylindrical shape. The operation piece 245 protrudes above the top plate 255. As shown in FIGS. 16 and 17, a stopper 347 is connected to the upper end of the operation piece 245 via a rotation shaft 347a along the horizontal direction. The stopper 347 can rotate around the rotation shaft 347a. In FIGS. 16 and 17, the stopper 347 is disposed outside the operation piece 245 (on the side far from the central axis 1 a) so as to overlap the operation piece 245. When the stopper 347 is in this position, the stopper end 347e, which is the tip of the stopper 347 (the end opposite to the rotation shaft 347a), abuts on the upper end of the guide tube 270 or the top surface of the top plate 255. Therefore, when the stopper 347 is in this position, the second rod 242 cannot be lowered. In the present invention, this state is referred to as a “locked state” by the stopper 347. In the third embodiment, the detachable stopper 247 of the second embodiment is not provided.
 図17では、第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2遮断部材32は、第2貯留部22の内周面に接触することなく第2貯留部22内に浮かんでいる。第1遮断部材31及び第2遮断部材32の図17の位置を「初期位置」という。 In FIG. 17, the lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the second blocking member 32 floats in the second reservoir 22 without contacting the inner peripheral surface of the second reservoir 22. The positions of the first blocking member 31 and the second blocking member 32 in FIG. 17 are referred to as “initial positions”.
 支持半体91a,91bの構成は、実施形態2と概略同じである。但し、本実施形態では、血液貯留槽20に装着された2つの支持半体91a,91bが分離しないように、環状の支持リング91cが支持半体91a,91bの外周面上に装着されている(図16、図17参照)。支持リング91cは、血液貯留槽20に対する支持半体91a,91bの組み付け作業性を向上するのに有利である。 The configuration of the support halves 91a and 91b is substantially the same as that of the second embodiment. However, in the present embodiment, an annular support ring 91c is mounted on the outer peripheral surface of the support halves 91a and 91b so that the two support halves 91a and 91b mounted in the blood reservoir 20 are not separated. (See FIGS. 16 and 17). The support ring 91c is advantageous in improving the workability of assembling the support halves 91a and 91b to the blood reservoir 20.
 [血液成分分離方法]
 上記のように構成された装置3を用いて、採取した血液を各血液成分に遠心分離する方法を説明する。
[Blood component separation method]
A method for centrifuging collected blood into each blood component using the apparatus 3 configured as described above will be described.
 実施形態2と同様に、遠心分離される血液(骨髄液)を採取する。血液の血液量とヘマトクリット値を測定し、赤血球成分の量、血漿量を計算する。 As in Embodiment 2, blood to be centrifuged (bone marrow fluid) is collected. Measure blood volume and hematocrit value of blood, and calculate the amount of red blood cell component and plasma volume.
 第1遮断部材31及び第2遮断部材32が図17に示した初期位置にある空の装置3を準備する。遠心分離後のバフィーコートが血液貯血槽20の第3貯留部23内に形成されるように、ボトムキャップ80を回転させて蛇腹構造28の圧縮変形量を調整する。実施形態2と同様に、目盛り98を用いて圧縮変形量を調整してもよい。 The empty device 3 in which the first blocking member 31 and the second blocking member 32 are in the initial positions shown in FIG. 17 is prepared. The bottom cap 80 is rotated to adjust the amount of compressive deformation of the bellows structure 28 so that the buffy coat after centrifugation is formed in the third reservoir 23 of the blood reservoir 20. Similar to the second embodiment, the amount of compressive deformation may be adjusted using the scale 98.
 次いで、天板255に設けられた血液注入ポート256bを介して、採取した血液を血液貯留槽20内に注入する。その後、血液注入ポート256bを液密に封止する。図18に示したように、血液面Lは、第1チューブ371及び第2チューブ372の上端の開口より下に位置している。 Next, the collected blood is injected into the blood storage tank 20 through the blood injection port 256 b provided on the top plate 255. Thereafter, the blood injection port 256b is sealed in a liquid-tight manner. As shown in FIG. 18, the blood surface L is located below the openings at the upper ends of the first tube 371 and the second tube 372.
 次いで、血液が充填された装置2を遠心分離機にかけ、遠心分離を行う。遠心力は、中心軸1aと平行に、図16、図17の矢印Fの向きに作用する。第1遮断部材31の下面は第1貯留部21の底面に当接している。また、第2ロッド242に連結されたストッパー347はロック状態にある。従って、遠心分離時に遠心力Fが作用しても、第1遮断部材31及び第2遮断部材32の上下方向位置は、いずれも初期位置から変化することはない。 Next, the device 2 filled with blood is centrifuged and centrifuged. The centrifugal force acts in the direction of arrow F in FIGS. 16 and 17 in parallel with the central axis 1a. The lower surface of the first blocking member 31 is in contact with the bottom surface of the first storage portion 21. Further, the stopper 347 connected to the second rod 242 is in a locked state. Therefore, even if the centrifugal force F acts upon centrifugation, the vertical position of the first blocking member 31 and the second blocking member 32 does not change from the initial position.
 遠心分離後、装置3を遠心分離機から取り出す。バフィーコートが第3貯留部23に形成されていることを確認する。必要に応じて、ボトムキャップ80を回転させて、バフィーコートの上下方向位置を微調整してもよい。 After centrifugation, remove the device 3 from the centrifuge. It is confirmed that the buffy coat is formed in the third storage part 23. If necessary, the bottom cap 80 may be rotated to finely adjust the vertical position of the buffy coat.
 次いで、第1ロッド41の上端を掴み、第1ロッド41を上方に引き上げる。そして、図19に示すように、第1遮断部材31を第3貯留部23の下側の開口に嵌入させる。第3貯留部23の第1貯留部21側の開口が第1遮断部材31で塞がれる。この結果、第1貯留部21と第3貯留部23との連通が、第1遮断部材31によって液密に遮断される。第2遮断部材32は初期位置(図17参照)のままである。 Next, the upper end of the first rod 41 is grasped, and the first rod 41 is pulled upward. Then, as shown in FIG. 19, the first blocking member 31 is fitted into the lower opening of the third reservoir 23. The opening of the third reservoir 23 on the first reservoir 21 side is closed by the first blocking member 31. As a result, the communication between the first storage unit 21 and the third storage unit 23 is liquid-tightly blocked by the first blocking member 31. The second blocking member 32 remains at the initial position (see FIG. 17).
 次に、ストッパー347を図16及び図17の状態から回動させて、ロック状態を解除する。続いて、操作片245を下方に押し下げる。第2ロッド242が下降するのにともなって、密閉空間273の容積が減少する。密閉空間273内に存在していた空気は、第2チューブ372を通って第2貯留部22内に流入し、更に、ポート256aに設けられた通気フィルタ226を通って装置3外に放出される。従って、密閉空間273内の圧力が上昇することはなく、第2ロッド242を下降させる操作は容易である。 Next, the stopper 347 is rotated from the state shown in FIGS. 16 and 17 to release the locked state. Subsequently, the operation piece 245 is pushed downward. As the second rod 242 descends, the volume of the sealed space 273 decreases. The air existing in the sealed space 273 flows into the second reservoir 22 through the second tube 372 and is further discharged to the outside of the device 3 through the ventilation filter 226 provided in the port 256a. . Therefore, the pressure in the sealed space 273 does not increase, and the operation of lowering the second rod 242 is easy.
 操作片245を操作して、図20に示すように、第2遮断部材32を第3貯留部23の上側の開口に嵌入させる。第3貯留部23の第2貯留部22側の開口が第2遮断部材32で塞がれる。この結果、第2貯留部22と第3貯留部23との連通が、第2遮断部材32によって液密に遮断される。第1遮断部材31は、図19の位置から変位していない。第1チューブ371が、第2遮断部材32が下降したことにともなって変形している。 The operation piece 245 is operated, and the second blocking member 32 is inserted into the upper opening of the third reservoir 23 as shown in FIG. The opening of the third reservoir 23 on the second reservoir 22 side is closed by the second blocking member 32. As a result, the communication between the second storage part 22 and the third storage part 23 is liquid-tightly blocked by the second blocking member 32. The first blocking member 31 is not displaced from the position of FIG. The first tube 371 is deformed as the second blocking member 32 is lowered.
 かくして、赤血球成分が貯留された第1貯留部21と、白血球成分が貯留された第3貯留部23と、血漿成分が貯留された第2貯留部22とが、相互に液密に分断される。 Thus, the first storage unit 21 storing the red blood cell component, the third storage unit 23 storing the white blood cell component, and the second storage unit 22 storing the plasma component are separated from each other in a liquid-tight manner. .
 図21は、第2遮断部材32が第3貯留部23の上側の開口を塞いだ図20に示した状態にある装置3の斜視図である。ストッパー347が回動軸347a周りに回動し、天板255より上に突出している。操作片245の大部分は、案内筒270内に収納されている。本実施形態3のように、操作片245の先端にストッパー347を回動可能に連結することにより、操作片245の長さを短くしても、第2遮断部材32で第3貯留部23の上側の開口を塞ぐ作業をストッパー347を操作して容易に行うことができる。また、実施形態1のストッパー47(図5参照)や実施形態2のストッパー247(図10参照)と異なり、ストッパー347は第2ロッド242の操作片245に連結されているので、ストッパー347を紛失してしまう可能性はない。 FIG. 21 is a perspective view of the device 3 in the state shown in FIG. 20 in which the second blocking member 32 blocks the upper opening of the third storage unit 23. The stopper 347 rotates around the rotation shaft 347 a and protrudes above the top plate 255. Most of the operation piece 245 is accommodated in the guide tube 270. Even if the length of the operation piece 245 is shortened by connecting the stopper 347 to the tip of the operation piece 245 so as to be rotatable as in the third embodiment, the second blocking member 32 causes the third storage portion 23 to be The operation of closing the upper opening can be easily performed by operating the stopper 347. Further, unlike the stopper 47 (see FIG. 5) of the first embodiment and the stopper 247 (see FIG. 10) of the second embodiment, the stopper 347 is connected to the operation piece 245 of the second rod 242, and thus the stopper 347 is lost. There is no possibility of doing so.
 次に、第1ロッド41の上端に、柔軟なチューブ等を介して空のシリンジの口部(オスルアー)を接続し、シリンジのプランジャを引く。これにより、第3貯留部23内の白血球成分を、図22において矢印65で示すように、第1遮断部材31の上面の開口31aから、流路31b、第1ロッド41を順につなぐ流路(第1流路261)を介してシリンジ内に吸い込み回収する。白血球成分が第3貯留部23からシリンジへ移動するにしたがって、外界の空気が、矢印66で示すように、ポート256aに設けられた通気フィルタ226(図20参照)、第1チューブ371、第2遮断部材32の貫通孔32hを順につなぐ流路(第2流路262)通って第3貯留部23内に流入する。従って、第3貯留部23内が過大に負圧になることはなく、白血球成分を容易に回収することができる。 Next, an empty syringe mouth (male luer) is connected to the upper end of the first rod 41 via a flexible tube or the like, and the plunger of the syringe is pulled. Thereby, as shown by an arrow 65 in FIG. 22, the white blood cell component in the third reservoir 23 is connected to the flow path 31b and the first rod 41 in order from the opening 31a on the upper surface of the first blocking member 31 ( It is sucked and collected into the syringe through the first flow path 261). As the leukocyte component moves from the third reservoir 23 to the syringe, the outside air is, as indicated by the arrow 66, the ventilation filter 226 (see FIG. 20) provided in the port 256a, the first tube 371, the second It flows into the 3rd storage part 23 through the flow path (2nd flow path 262) which connects the penetration hole 32h of the interruption | blocking member 32 in order. Accordingly, the inside of the third reservoir 23 does not become excessively negative pressure, and the white blood cell component can be easily recovered.
 更に、実施形態1,2と同様に、第1ロッド41内の第1流路261を介して第3貯留部23に生理食塩水を注入してもよい。その後、生理食塩水を第1ロッド41内の第1流路261を介して回収する。生理食塩水が第1流路261を介して第3貯留部23に対して流入/流出するのにともなって、空気が第2流路262を介して第3貯留部23に対して流出/流入する。これにより、第3貯留部23や第1ロッド41及び流路31b内に残存する白血球成分を、生理食塩水とともに回収することができる。 Furthermore, as in the first and second embodiments, physiological saline may be injected into the third reservoir 23 via the first flow path 261 in the first rod 41. Thereafter, the physiological saline is collected through the first flow path 261 in the first rod 41. As physiological saline flows into / out of the third reservoir 23 via the first flow path 261, air flows out / inflow of the third reservoir 23 via the second flow path 262. To do. Thereby, the leukocyte component remaining in the third reservoir 23, the first rod 41, and the flow path 31b can be collected together with the physiological saline.
 [作用]
 本実施形態3は、実施形態1の作用に加えて、以下の作用を奏する。
[Action]
The third embodiment has the following operation in addition to the operation of the first embodiment.
 本実施形態3では、第1ロッド41内に、実施形態1,2では存在していたチューブ43が存在しない。これは、第1ロッド41内にチューブ43を挿入する作業を不要にするので、装置3の組立作業の簡単化に有利である。また、第1ロッド41を介して第3貯留部23内の白血球成分を吸い込み回収するとき、白血球成分が流れる第1ロッド41内の流路(即ち、第1流路261)の断面積が拡大する。これは、流動抵抗を低下させるので、白血球成分の回収作業の容易化に有利である。 In the third embodiment, the tube 43 present in the first and second embodiments does not exist in the first rod 41. This eliminates the need to insert the tube 43 into the first rod 41, which is advantageous for simplifying the assembly work of the device 3. Further, when the white blood cell component in the third reservoir 23 is sucked and collected via the first rod 41, the cross-sectional area of the flow path (that is, the first flow path 261) in the first rod 41 through which the white blood cell component flows is enlarged. To do. This lowers the flow resistance, which is advantageous for facilitating the recovery of the leukocyte component.
 第3貯留部23内の白血球成分は、第1遮断部材31の上面の開口31aから、流路31bを通って第1ロッド41へ流れる。従って、第1ロッド41の外周面に白血球成分が流入する孔を形成する必要がない。また、白血球成分に代わって第3貯留部23内に流入する空気は、第1ロッド41ではなく、第1チューブ371、第2遮断部材32の貫通孔32hを順に通って第3貯留部23内に流入する。従って、第1ロッド41に、実施形態1,2のような複数の第2孔41bを形成する必要がない。このように、本実施形態では、第1ロッド41の外周面に孔を形成する必要がないので、第1ロッド41の構造が簡単になる。また、第1ロッド41の機械的強度が向上するので、第1ロッド41を操作して第3貯留部23の下側の開口を第1遮断部材31で塞ぐ作業を容易且つ確実に行うことができる。 The white blood cell component in the third reservoir 23 flows from the opening 31a on the upper surface of the first blocking member 31 to the first rod 41 through the flow path 31b. Therefore, it is not necessary to form a hole into which the white blood cell component flows in the outer peripheral surface of the first rod 41. In addition, the air flowing into the third reservoir 23 instead of the leukocyte component passes through the first tube 371 and the through hole 32h of the second blocking member 32 instead of the first rod 41 in the third reservoir 23. Flow into. Therefore, it is not necessary to form a plurality of second holes 41b in the first rod 41 as in the first and second embodiments. Thus, in this embodiment, since it is not necessary to form a hole in the outer peripheral surface of the first rod 41, the structure of the first rod 41 is simplified. In addition, since the mechanical strength of the first rod 41 is improved, it is possible to easily and reliably perform the operation of operating the first rod 41 and closing the lower opening of the third storage portion 23 with the first blocking member 31. it can.
 但し、第1ロッド41外周面の、第1遮断部材31の近傍の位置に貫通孔を形成し、当該貫通孔を介して白血球成分を回収してもよい。この場合、第1遮断部材31の開口31a及び流路31bは不要である。 However, a through hole may be formed at a position near the first blocking member 31 on the outer peripheral surface of the first rod 41, and the white blood cell component may be collected through the through hole. In this case, the opening 31a and the flow path 31b of the first blocking member 31 are not necessary.
 第2遮断部材32の貫通孔32hとこれに接続された中空の第1チューブ371とが、圧力開放機構を構成する。第3貯留部23の上側の開口を第2遮断部材32で塞ぐときに第3貯留部23内が陽圧になると、第3貯留部23内の白血球成分が、貫通孔32h及び第1チューブ371を通って第2貯留部22へ流れる。これにより、第3貯留部23内の圧力が異常に上昇するのを防止できる。 The through hole 32h of the second blocking member 32 and the hollow first tube 371 connected thereto constitute a pressure release mechanism. When the inside of the third reservoir 23 becomes positive when the upper opening of the third reservoir 23 is closed with the second blocking member 32, the leukocyte component in the third reservoir 23 becomes the through-hole 32h and the first tube 371. Flows through the second reservoir 22. Thereby, it can prevent that the pressure in the 3rd storage part 23 rises abnormally.
 実施形態2の圧力解放機構は、第2遮断部材32の貫通孔32hと、当該貫通孔32hに設けた一方向弁235とで構成された。この構成では、第3貯留部23内の陽圧の程度によっては、一方向弁235が開かず、そのため第3貯留部23の圧力が開放されない場合が起こりうる。これに対して、本実施形態の圧力解放機構は、第2遮断部材32の貫通孔32hに単に中空の第1チューブ371を接続しただけで構成される。圧力解放機構が弁を有しないので、第3貯留部23の陽圧の程度に関わらず、第3貯留部23内の圧力は確実に開放される。従って、圧力解放機構の動作の信頼性が向上し、実施形態2で説明した白血球成分の外界への漏れ出しや誤操作を防止できる。これは、白血球成分の回収率の向上に有利である。 The pressure release mechanism of the second embodiment is configured by a through hole 32h of the second blocking member 32 and a one-way valve 235 provided in the through hole 32h. In this configuration, depending on the degree of positive pressure in the third reservoir 23, the one-way valve 235 may not open, and therefore the pressure in the third reservoir 23 may not be released. In contrast, the pressure release mechanism of the present embodiment is configured by simply connecting the hollow first tube 371 to the through hole 32 h of the second blocking member 32. Since the pressure release mechanism does not have a valve, the pressure in the third reservoir 23 is reliably released regardless of the degree of positive pressure in the third reservoir 23. Therefore, the reliability of the operation of the pressure release mechanism is improved, and the leakage and erroneous operation of the white blood cell component described in the second embodiment can be prevented. This is advantageous for improving the recovery rate of leukocyte components.
 第1チューブ371の上端は、血液貯血槽20内の血液面Lより上方で開口している。従って、第3貯留部23の下側開口及び上側開口を第1遮断部材31及び第2遮断部材32でそれぞれ塞いだ状態(図22参照)で第3貯留部23内の白血球成分を吸い込み回収するときに、第2貯留部22内の血漿成分が第1チューブ371を通って第3貯留部23に流入することはない。また、ポート256aには通気フィルタ226が設けられているので、第3貯留部23から第1チューブ371を通って流出した白血球成分が、装置3外に漏れ出ることはない。 The upper end of the first tube 371 is opened above the blood surface L in the blood reservoir 20. Therefore, the leukocyte component in the third reservoir 23 is sucked and collected in a state where the lower opening and the upper opening of the third reservoir 23 are respectively closed by the first blocking member 31 and the second blocking member 32 (see FIG. 22). Sometimes, the plasma component in the second reservoir 22 does not flow into the third reservoir 23 through the first tube 371. Further, since the ventilation filter 226 is provided in the port 256a, the leukocyte component that has flowed out from the third reservoir 23 through the first tube 371 does not leak out of the device 3.
 第1チューブ371の上端の開口が水平方向を向くように、第1ホルダ376は第1チューブ371を保持している。従って、第1チューブ371を通って流出した白血球成分が、通気フィルタ226を濡らす可能性は低い。また、第2遮断部材32が下降することによって第1チューブ371が下方に向かって引っ張られても、第1ホルダ376から第1チューブ371が脱落する可能性は低い。 The first holder 376 holds the first tube 371 so that the opening at the upper end of the first tube 371 faces the horizontal direction. Therefore, the possibility that the leukocyte component that has flowed out through the first tube 371 wets the ventilation filter 226 is low. Moreover, even if the first tube 371 is pulled downward due to the lowering of the second blocking member 32, the possibility that the first tube 371 drops from the first holder 376 is low.
 図22で説明したように、本実施形態の圧力開放機構は、第3貯留部23内の白血球成分を第1流路261を介して回収する際、白血球成分に代わって第3貯留部23内に外界の空気を流入させるための第2流路262としても機能する。実施形態2の圧力解放機構は第2流路として機能することはできないので、実施形態2では圧力解放機構とは別に第2流路を確保する必要がある。本実施形態では、圧力解放機構と第2流路とを共通する部材で構成することができるので、装置3を構成する部品数を少なくすることができ、またその構成を簡単化することができる。 As described with reference to FIG. 22, the pressure release mechanism according to the present embodiment allows the leukocyte component in the third reservoir 23 to be collected in the third reservoir 23 instead of the leukocyte component when the leukocyte component is collected through the first flow path 261. It also functions as a second flow path 262 for allowing outside air to flow in. Since the pressure release mechanism of the second embodiment cannot function as the second flow path, the second flow path needs to be secured separately from the pressure release mechanism in the second embodiment. In the present embodiment, since the pressure release mechanism and the second flow path can be configured by a common member, the number of parts configuring the device 3 can be reduced, and the configuration can be simplified. .
 本実施形態3は、上記を除いて実施形態1,2と同じである。実施形態1,2の説明は、本実施形態3にも同様に適用される。 The third embodiment is the same as the first and second embodiments except for the above. The description of the first and second embodiments is similarly applied to the third embodiment.
 (各種変更形態)
 上記の装置1~3は例示にすぎない。本発明は、上記の例に限定されず、適宜変更することができ、そのような変更も本発明に含まれる。
(Various changes)
The above devices 1 to 3 are merely examples. The present invention is not limited to the above examples, and can be modified as appropriate. Such modifications are also included in the present invention.
 上記の実施形態では、液密なシールを形成するために、第1遮断部材31には第1Oリング51が装着され、第2遮断部材32には第2Oリング52及び第3Oリング53が装着されていた。但し、第1遮断部材31及び第2遮断部材32自身をゴム弾性を有する材料(エラストマーとも呼ばれる)で構成することにより、Oリング51,52,53を省略することができる。この場合、第1遮断部材31及び第2遮断部材32の材料として使用可能なゴム弾性を有する材料としては、特に制限はないが、天然ゴム、イソプレンゴム、シリコーンゴム等のゴムや、スチレン系エラストマー、オレフィン系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマーを用いることができる。第1遮断部材31及び第2遮断部材32の材料としてゴム弾性を有する材料を用いることにより、例えば第1ロッド41の末端に固定した第1遮断部材31を第2貯留部22側から第3貯留部23を通過させて第1貯留部21に配置する等、装置の組み立て性を改善できる可能性がある。 In the above embodiment, the first blocking member 31 is mounted with the first O-ring 51 and the second blocking member 32 is mounted with the second O-ring 52 and the third O-ring 53 in order to form a liquid-tight seal. It was. However, the O- rings 51, 52, and 53 can be omitted by configuring the first blocking member 31 and the second blocking member 32 themselves with a material having rubber elasticity (also called an elastomer). In this case, the material having rubber elasticity that can be used as the material of the first blocking member 31 and the second blocking member 32 is not particularly limited, but rubber such as natural rubber, isoprene rubber, silicone rubber, or styrene elastomer Thermoplastic elastomers such as olefin elastomers and polyurethane elastomers can be used. By using a material having rubber elasticity as the material of the first blocking member 31 and the second blocking member 32, for example, the first blocking member 31 fixed to the end of the first rod 41 is stored in the third reservoir from the second reservoir 22 side. There is a possibility that the assemblability of the apparatus can be improved, for example, by passing the part 23 through the first storage part 21.
 実施形態1,2では、第1流路61及び第2流路62がいずれも第1ロッド41内に形成されたが、本発明はこれに限定されない。例えば、実施形態1において、第2ロッド42を中空の棒状部材で構成し、当該第2ロッド42の下端を第2遮断部材32を上下方向に貫通する貫通孔に挿入し、当該第2ロッド42の上端を操作片45を貫通させて上方に向かって開口させてもよい。これにより、液密にシールされた第3貯留部23と血液貯留槽20外とを連通させる第2流路を第2ロッド42内に形成することができる。この場合、第1ロッド41内には1つの流路(第1流路)のみが形成されればよい。従って、チューブ43は不要になる。また、第1ロッド41に第2孔41bを形成する必要もない。 In Embodiments 1 and 2, the first flow path 61 and the second flow path 62 are both formed in the first rod 41, but the present invention is not limited to this. For example, in Embodiment 1, the 2nd rod 42 is comprised with a hollow rod-shaped member, the lower end of the said 2nd rod 42 is inserted in the through-hole which penetrates the 2nd interruption | blocking member 32 to an up-down direction, and the said 2nd rod 42 The upper end may be opened upward through the operation piece 45. Thereby, the 2nd flow path which makes the 3rd storage part 23 and the blood storage tank 20 exterior which were sealed fluid-tightly communicate can be formed in the 2nd rod 42. FIG. In this case, only one flow path (first flow path) needs to be formed in the first rod 41. Therefore, the tube 43 becomes unnecessary. Further, it is not necessary to form the second hole 41b in the first rod 41.
 第3貯留部23の内周面は、内径が中心軸1a方向において一定である円筒面である必要はない。例えば、その内径が、中心軸1a方向において変化していてもよい。 The inner peripheral surface of the third storage part 23 does not have to be a cylindrical surface whose inner diameter is constant in the direction of the central axis 1a. For example, the inner diameter may change in the direction of the central axis 1a.
 第3貯留部23と第1貯留部21及び第2貯留部22との連通を遮断する方法は、上記の例のように血液貯留槽内で第1遮断部材31及び第2遮断部材32を上下方向に移動させる方法に限定されない。 The method of blocking the communication between the third reservoir 23 and the first reservoir 21 and the second reservoir 22 moves the first blocking member 31 and the second blocking member 32 up and down in the blood reservoir as in the above example. It is not limited to the method of moving in the direction.
 例えば、図23Aに示すように、第1遮断部材431及び第2遮断部材432を、水平方向に膨張可能なバルーンで構成してもよい。2つのバルーン431,432は、チューブ433を介して互いに連通している。チューブ433は血液貯留槽20外に導出されている。チューブ433を介してバルーン431,432に流体を注入すると、図23Bに示すようにバルーン431,432が膨らんで、バルーン431が第1貯留部21と第3貯留部23との連通を遮断し、バルーン432が第2貯留部22と第3貯留部23との連通を遮断する。バルーン431,432を膨らませるための流体としては、特に制限はないが、生理食塩水等の液体や空気を用いることができる。遠心分離後のバフィーコートの上下方向の位置に応じて、チューブ433を上下方向に移動させてバルーン431,432の上下方向位置を調整できるように構成してもよい。図23A及び図23Bにおいて、461,462は、遠心分離後にバルーン431,432によって液密に封止された第3貯留部23から白血球成分を回収する際に上記の流路61,62と同様に用いられる第1及び第2流路である。 For example, as shown in FIG. 23A, the first blocking member 431 and the second blocking member 432 may be configured with balloons that are inflatable in the horizontal direction. The two balloons 431 and 432 communicate with each other through a tube 433. The tube 433 is led out of the blood reservoir 20. When fluid is injected into the balloons 431 and 432 through the tube 433, the balloons 431 and 432 are inflated as shown in FIG. 23B, and the balloon 431 blocks communication between the first storage unit 21 and the third storage unit 23. The balloon 432 blocks communication between the second storage unit 22 and the third storage unit 23. The fluid for inflating the balloons 431 and 432 is not particularly limited, but liquid such as physiological saline or air can be used. Depending on the vertical position of the buffy coat after centrifugation, the vertical position of the balloons 431 and 432 may be adjusted by moving the tube 433 in the vertical direction. 23A and 23B, reference numerals 461 and 462 denote the same as the flow paths 61 and 62 described above when the leukocyte component is collected from the third reservoir 23 that is liquid-tightly sealed by the balloons 431 and 432 after centrifugation. It is the 1st and 2nd flow path used.
 あるいは、図24Aに示すように、第1遮断部材及び第2遮断部材として機能する2つのバルーン431,432が、相互に連通されることなく、それぞれ別個のチューブ435,436に接続されていてもよい。本例では、2つのバルーン431,432を互いに独立して膨張させることができる。図24Bは、バルーン431,432を膨らませ、バルーン431が第1貯留部21と第3貯留部23との連通を遮断し、バルーン432が第2貯留部22と第3貯留部23との連通を遮断した状態を示す。図24A及び図24Bの装置は、2つのバルーン431,432を互いに独立して膨らませることができる点を除いて、図23A及び図23Bの装置と同じである。 Alternatively, as shown in FIG. 24A, two balloons 431 and 432 functioning as a first blocking member and a second blocking member may be connected to separate tubes 435 and 436 without being communicated with each other. Good. In this example, the two balloons 431 and 432 can be inflated independently of each other. FIG. 24B inflates the balloons 431 and 432, the balloon 431 blocks communication between the first reservoir 21 and the third reservoir 23, and the balloon 432 allows communication between the second reservoir 22 and the third reservoir 23. Shows the shut-off state. The device of FIGS. 24A and 24B is the same as the device of FIGS. 23A and 23B, except that the two balloons 431 and 432 can be inflated independently of each other.
 図25は、カメラのレンズシャッターと類似した構造を有する第2遮断部材532及びその近傍の断面図である。図26A及び図26Bは第2遮断部材532の斜視図であり、図26Aはその閉状態を示し、図26Bはその開状態を示す。第2遮断部材532は、薄板からなる複数の羽根541を備える。複数の羽根541のそれぞれは、中央に開口が形成された支持プレート542に揺動可能に軸支されている。支持プレート542は血液貯留槽20に固定されている。支持プレート542との間で複数の羽根541を挟むように、円環形状を有するカム環543が設けられている。カム環543は、支持プレート542に対して回動可能である。カム環543は、複数の羽根541のそれぞれに設けられたスロット状の開口であるカム溝(図示せず)に係合する複数のカムピン(図示せず)を備える。図25に示すように、血液貯留槽20の外周面上のカム環543に対向する位置に、円環形状を有するマグネットリング545が設けられている。マグネットリング545は、血液貯留槽20に対して回動可能である。マグネットリング545は、例えば周方向に一定間隔で配置された複数のマグネットを備え、カム環543を磁気吸着する。マグネットリング545を回動させると、これに追従してカム環543が回動し、複数の羽根541が変位して、開状態(図26A)と閉状態(図26B)とを切り替えることができる。図25、図26A、図26Bでは、第2貯留部22と第3貯留部23との間に設けられて、両者間の連通を遮断する第2遮断部材532を示した。図示を省略するが、これと同様の遮断部材(第1遮断部材)が、第1貯留部21と第3貯留部23との間に、両者間の連通を遮断するために設けられる。遠心分離後にレンズシャッターと類似の構造を有する第1及び第2遮断部材で封止された第3貯留部23から白血球成分を回収するために、図23A、図23B、図24A、図24Bに示された流路461,462と同様の流路が第3貯留部23に設けられる。 FIG. 25 is a cross-sectional view of the second blocking member 532 having a structure similar to a lens shutter of the camera and the vicinity thereof. 26A and 26B are perspective views of the second blocking member 532, FIG. 26A shows its closed state, and FIG. 26B shows its open state. The second blocking member 532 includes a plurality of blades 541 made of a thin plate. Each of the plurality of blades 541 is pivotally supported by a support plate 542 having an opening at the center. The support plate 542 is fixed to the blood storage tank 20. A cam ring 543 having an annular shape is provided so as to sandwich the plurality of blades 541 with the support plate 542. The cam ring 543 is rotatable with respect to the support plate 542. The cam ring 543 includes a plurality of cam pins (not shown) that engage with cam grooves (not shown) that are slot-like openings provided in each of the plurality of blades 541. As shown in FIG. 25, a magnet ring 545 having an annular shape is provided at a position facing the cam ring 543 on the outer peripheral surface of the blood reservoir 20. The magnet ring 545 is rotatable with respect to the blood storage tank 20. The magnet ring 545 includes, for example, a plurality of magnets arranged at regular intervals in the circumferential direction, and magnetically attracts the cam ring 543. When the magnet ring 545 is rotated, the cam ring 543 is rotated following the rotation of the magnet ring 545, and the plurality of blades 541 are displaced to switch between the open state (FIG. 26A) and the closed state (FIG. 26B). . In FIG. 25, FIG. 26A, FIG. 26B, the 2nd interruption | blocking member 532 which was provided between the 2nd storage part 22 and the 3rd storage part 23, and interrupted | blocks communication between both was shown. Although illustration is omitted, a similar blocking member (first blocking member) is provided between the first storage unit 21 and the third storage unit 23 in order to block communication between them. FIG. 23A, FIG. 23B, FIG. 24A, and FIG. 24B show how to collect white blood cell components from the third reservoir 23 sealed with the first and second blocking members having a structure similar to the lens shutter after centrifugation. A flow path similar to the flow paths 461 and 462 is provided in the third storage unit 23.
 実施形態1~3の装置1~3が備える上下方向に移動する第1遮断部材31及び第2遮断部材32のうちの一方(特に第1遮断部材31)を図24A及び図24Bに示した半径方向に膨張可能なバルーン又は図25、図26A、図26Bに示した開閉可能な複数の羽根を備えた遮断部材で構成してもよい。 One of the first blocking member 31 and the second blocking member 32 (particularly the first blocking member 31) that moves in the vertical direction included in the devices 1 to 3 of the first to third embodiments is shown in FIGS. 24A and 24B. You may comprise the interruption | blocking member provided with the balloon which can expand | swell in a direction, or several wing | blade which can be opened and closed shown to FIG. 25, FIG.
 図23A、図23B、図24A、図24Bのように第1遮断部材及び第2遮断部材を膨張可能なバルーンで構成することにより、あるいは、図25、図26A、図26Bのように第1遮断部材及び第2遮断部材を開閉可能な複数の羽根を備えた遮断部材で構成することにより、第1遮断部材及び第2遮断部材を移動させる機構が不要になるので、隣り合う貯留部間の連通を遮断するための構成を簡単化することができる。 By configuring the first blocking member and the second blocking member with an inflatable balloon as shown in FIGS. 23A, 23B, 24A, and 24B, or as shown in FIGS. 25, 26A, and 26B. By configuring the member and the second blocking member with a blocking member having a plurality of blades that can be opened and closed, a mechanism for moving the first blocking member and the second blocking member becomes unnecessary, so communication between adjacent reservoirs It is possible to simplify the configuration for shutting off.
 血液貯留槽20の形状を維持するための支持部材90の構成は、上記の例に限定されず、任意である。例えば、支持部材が、中空円筒状部材を、上記の例のように2分割するのではなく、3以上に分割した3以上の部材で構成されていてもよい。支持部材が、周方向(中心軸1aを取り囲む方向)において互いに離間した複数の柱状の部材で構成されていてもよい。血液貯留槽20を構成する部品に支持部材を一体的に形成するなどによって、血液貯留槽20が、遠心分離時の遠心力によって変形しない程度の強度を有する場合には、血液貯留槽20とは別部材としての支持部材を省略してもよい。 The configuration of the support member 90 for maintaining the shape of the blood reservoir 20 is not limited to the above example, and is arbitrary. For example, the support member may be composed of three or more members divided into three or more instead of dividing the hollow cylindrical member into two as in the above example. The support member may be composed of a plurality of columnar members that are separated from each other in the circumferential direction (the direction surrounding the central axis 1a). When the blood storage tank 20 has such a strength that it is not deformed by the centrifugal force at the time of centrifugation, such as by integrally forming a support member on the components constituting the blood storage tank 20, what is the blood storage tank 20? A support member as a separate member may be omitted.
 上記の実施形態2,3では、蛇腹調整機構は、蛇腹構造28を上下方向に圧縮し、その圧縮量を調整するように構成されていたが、蛇腹構造28を上下方向に伸長させ、その伸長量を調整するように構成されていてもよい。 In the second and third embodiments, the bellows adjustment mechanism is configured to compress the bellows structure 28 in the vertical direction and adjust the compression amount. However, the bellows structure 28 is elongated in the vertical direction and the extension is performed. It may be configured to adjust the amount.
 上記の実施形態2,3では、蛇腹構造28の伸縮量を調整する蛇腹調整機構を構成する雄ネジ93及び雌ネジ83が支持部材90及びボトムキャップ80にそれぞれ形成されていたが、支持部材90に雌ネジが形成され、ボトムキャップ80に雄ネジが形成されていてもよい。 In the second and third embodiments, the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism that adjusts the amount of expansion and contraction of the bellows structure 28 are formed on the support member 90 and the bottom cap 80, respectively. A female screw may be formed on the bottom cap 80, and a male screw may be formed on the bottom cap 80.
 上記の実施形態2,3では、蛇腹調整機構は、支持部材90とボトムキャップ80との回転位置や雄ネジ93と雌ネジ83との螺合深さによって蛇腹構造28の圧縮量を調整するよう構成されていたが、これ以外の方法で調整を行ってもよい。たとえば、ボトムキャップ80の底部80bと第1貯留部21の底部21bとの間に、蛇腹の圧縮幅に応じた厚みを有する板状部材を介在させて、支持部材90とボトムキャップ80とを嵌合させる方法が考えられる。このとき、板状部材によってボトムキャップ80の底部80bが底上げされるため、螺合深さを調節せずとも、支持部材90とボトムキャップ80を嵌合させた時点で蛇腹構造28を所望量圧縮させることができる。 In the second and third embodiments, the bellows adjustment mechanism adjusts the compression amount of the bellows structure 28 according to the rotational position of the support member 90 and the bottom cap 80 and the screwing depth of the male screw 93 and the female screw 83. However, the adjustment may be performed by other methods. For example, the support member 90 and the bottom cap 80 are fitted with a plate-like member having a thickness corresponding to the compression width of the bellows interposed between the bottom portion 80 b of the bottom cap 80 and the bottom portion 21 b of the first storage portion 21. A method of combining them is conceivable. At this time, since the bottom 80b of the bottom cap 80 is raised by the plate-like member, the bellows structure 28 is compressed by a desired amount when the support member 90 and the bottom cap 80 are fitted without adjusting the screwing depth. Can be made.
 上記の実施形態2,3の蛇腹構造28及び蛇腹調整機構と同様の第2の蛇腹構造及び第2の蛇腹調整機構を第3貯留部23に設けてもよい。遠心分離後のバフィーコートの厚さ(上下方向寸法)は、血液によって異なる場合がある。第3貯留部23に第2の蛇腹構造及び第2の蛇腹調整機構を設けることにより、バフィーコートの厚さに応じて第3貯留部23の上下方向寸法を変更することができるので、白血球成分の回収率を更に向上させることができる。 A second bellows structure and a second bellows adjustment mechanism similar to the bellows structure 28 and the bellows adjustment mechanism of the second and third embodiments may be provided in the third reservoir 23. The thickness (vertical dimension) of the buffy coat after centrifugation may vary depending on the blood. Since the third reservoir 23 is provided with the second bellows structure and the second bellows adjustment mechanism, the vertical dimension of the third reservoir 23 can be changed according to the thickness of the buffy coat. The recovery rate can be further improved.
 雄ネジ93が支持部材90以外の部材に設けられていてもよく、また、雌ネジ83がボトムキャップ80以外の部材に設けられていてもよい。例えば、蛇腹調整機構を構成する雄ネジ93及び雌ネジ83の少なくとも一方を血液貯留槽20に設けてもよい。例えば、雄ネジ93を血液貯留槽20の蛇腹機構28よりも上側の位置に設けることができる。この場合、血液貯留槽20が、遠心分離時の遠心力によって変形しない程度の強度を有する場合には、支持部材90を省略することができる。あるいは、雄ネジ93を血液貯留槽20の蛇腹機構28よりも下側の位置に設けることができる。この場合、支持部材90のスカート部92を下方に延長し、その内周面に雌ネジを形成する。ボトムキャップ80を省略することができる。血液貯留槽20に対して支持部材90を回転させて蛇腹機構28の伸長量を調整することができる。 The male screw 93 may be provided on a member other than the support member 90, and the female screw 83 may be provided on a member other than the bottom cap 80. For example, at least one of the male screw 93 and the female screw 83 constituting the bellows adjustment mechanism may be provided in the blood reservoir 20. For example, the male screw 93 can be provided at a position above the bellows mechanism 28 of the blood reservoir 20. In this case, the support member 90 can be omitted when the blood reservoir 20 has a strength that does not cause deformation due to the centrifugal force during centrifugation. Alternatively, the male screw 93 can be provided at a position below the bellows mechanism 28 of the blood reservoir 20. In this case, the skirt portion 92 of the support member 90 is extended downward, and a female screw is formed on the inner peripheral surface thereof. The bottom cap 80 can be omitted. The extension amount of the bellows mechanism 28 can be adjusted by rotating the support member 90 relative to the blood reservoir 20.
 血液貯留槽20の容積を調整するための容積調整機構は、実施形態2,3に示した蛇腹構造28に限定されない。例えばダイアフラム、ピストン、バルーンなどで容積調整機構を構成することができる。容積調整機構は、例えば第1貯留部21の容積を変更することができるように、第1貯留部21内に又はこれに連通して設けることができる。遠心分離前に血液のヘマトクリット値を求め、遠心分離後にバフィーコートが第3貯留部23内に形成されるように、容積調整機構を用いて血液貯留槽20の容積を調整することができる。 The volume adjustment mechanism for adjusting the volume of the blood reservoir 20 is not limited to the bellows structure 28 shown in the second and third embodiments. For example, the volume adjustment mechanism can be configured by a diaphragm, a piston, a balloon, or the like. The volume adjustment mechanism can be provided in or in communication with the first reservoir 21 so that the volume of the first reservoir 21 can be changed, for example. The hematocrit value of blood can be obtained before centrifugation, and the volume of the blood reservoir 20 can be adjusted using a volume adjustment mechanism so that a buffy coat is formed in the third reservoir 23 after centrifugation.
 本発明の利用分野は、特に制限はなく、血液を遠心分離する必要がある分野に広範囲に利用することができる。中でも、血液中の必要な成分のみを患者に輸血する成分輸血などを行う場合の血液成分の分離、白血球成分を主として用いる骨髄移植、再生医療の分野に好ましく利用することができる。 The application field of the present invention is not particularly limited, and can be widely used in fields where blood needs to be centrifuged. Among them, the present invention can be preferably used in the fields of blood component separation, bone marrow transplantation mainly using leukocyte components, and regenerative medicine when performing component transfusion for transfusion of only necessary components in blood.
1,2,3 血液成分分離用装置
20 血液貯留槽
21 第1貯留部
22 第2貯留部
23 第3貯留部
28 蛇腹構造
31 第1遮断部材
32 第2遮断部材
32h 貫通孔(圧力解放機構)
41 第1ロッド(外側管)
42 第2ロッド
43 チューブ(内側管)
47,247,347 ストッパー(移動規制機構)
61,261 第1流路
62 第2流路
80 ボトムキャップ
83 雌ネジ(蛇腹調整機構)
93 雄ネジ(蛇腹調整機構)
431 バルーン(第1遮断部材)
432 バルーン(第2遮断部材)
235 一方向弁(圧力開放機構)
242 第2ロッド
245 第2ロッドの操作片
371 第1チューブ(圧力開放機構)
532 第2遮断部材
541 羽根
1, 2, 3 Blood component separation device 20 Blood reservoir 21 First reservoir 22 Second reservoir 23 Third reservoir 28 Bellows structure 31 First blocking member 32 Second blocking member 32h Through hole (pressure release mechanism)
41 First rod (outer tube)
42 Second rod 43 Tube (inner tube)
47, 247, 347 Stopper (movement restriction mechanism)
61,261 1st flow path 62 2nd flow path 80 Bottom cap 83 Female thread (bellows adjustment mechanism)
93 Male thread (bellows adjustment mechanism)
431 Balloon (first blocking member)
432 Balloon (second blocking member)
235 One-way valve (pressure release mechanism)
242 Second rod 245 Second rod operation piece 371 First tube (pressure release mechanism)
532 Second blocking member 541 Blade

Claims (21)

  1.  血液を貯留するための血液貯留槽を備え、前記血液貯留槽内に貯留した血液を遠心分離するために用いられる血液成分分離用装置であって、
     前記血液貯留槽は、第1貯留部と、第2貯留部と、前記第1貯留部と前記第2貯留部との間に設けられ、前記第1貯留部及び前記第2貯留部と連通した第3貯留部とを備え、
     前記血液成分分離用装置は、前記血液貯留槽内に、第1遮断部材及び第2遮断部材を備え、
     前記第1遮断部材は、前記第1貯留部と前記第3貯留部との連通を遮断することができるように構成されており、
     前記第2遮断部材は、前記第2貯留部と前記第3貯留部との連通を遮断することができるように構成されていることを特徴とする血液成分分離用装置。
    A device for separating blood components, comprising a blood reservoir for storing blood, and used for centrifuging blood stored in the blood reservoir,
    The blood reservoir is provided between the first reservoir, the second reservoir, the first reservoir and the second reservoir, and communicates with the first reservoir and the second reservoir. A third reservoir,
    The blood component separation device includes a first blocking member and a second blocking member in the blood reservoir.
    The first blocking member is configured to block communication between the first storage unit and the third storage unit,
    The device for separating blood components, wherein the second blocking member is configured to block communication between the second reservoir and the third reservoir.
  2.  前記第1遮断部材は、前記第1貯留部内で移動して前記第1貯留部と前記第3貯留部との連通を遮断する請求項1に記載の血液成分分離用装置。 The apparatus for separating blood components according to claim 1, wherein the first blocking member moves in the first reservoir and blocks communication between the first reservoir and the third reservoir.
  3.  前記第1遮断部材を保持し且つ前記血液貯留槽外に導出された第1ロッドを備え、
     前記第1ロッドを移動させることにより前記第1遮断部材を移動させることができる請求項2に記載の血液成分分離用装置。
    A first rod that holds the first blocking member and is led out of the blood reservoir;
    The blood component separation device according to claim 2, wherein the first blocking member can be moved by moving the first rod.
  4.  前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態において前記第3貯留部内と前記血液貯留槽外とを連通させる第1流路が設けられている請求項3に記載の血液成分分離用装置。 In a state where the first blocking member blocks communication between the first storage unit and the third storage unit and the second blocking member blocks communication between the second storage unit and the third storage unit. The blood component separation device according to claim 3, wherein a first flow path is provided for communicating the inside of the third reservoir and the outside of the blood reservoir.
  5.  前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態において前記第3貯留部内と前記血液貯留槽外とを連通させる第2流路が更に設けられている請求項4に記載の血液成分分離用装置。 In a state where the first blocking member blocks communication between the first storage unit and the third storage unit and the second blocking member blocks communication between the second storage unit and the third storage unit. The blood component separation device according to claim 4, further comprising a second flow path for communicating the inside of the third reservoir and the outside of the blood reservoir.
  6.  前記第1流路及び前記第2流路のうちの少なくとも一方が前記第1ロッド内に設けられている請求項5に記載の血液成分分離用装置。 The blood component separation device according to claim 5, wherein at least one of the first flow path and the second flow path is provided in the first rod.
  7.  前記第1ロッドが外側管内に内側管が挿入された二重管構造を有し、
     前記内側管内に前記第1流路が形成され、前記内側管と前記外側管との間に前記第2流路が形成されている請求項5又は6に記載の血液成分分離用装置。
    The first rod has a double tube structure in which an inner tube is inserted into an outer tube,
    The blood component separation device according to claim 5 or 6, wherein the first channel is formed in the inner tube, and the second channel is formed between the inner tube and the outer tube.
  8.  前記第1遮断部材を前記第1貯留部の底面に当接して配置することができる請求項2~7のいずれかに記載の血液成分分離用装置。 The blood component separation device according to any one of claims 2 to 7, wherein the first blocking member can be disposed in contact with the bottom surface of the first reservoir.
  9.  前記第2遮断部材は、前記第2貯留部内で移動して前記第2貯留部と前記第3貯留部との連通を遮断する請求項1~8のいずれかに記載の血液成分分離用装置。 The blood component separation device according to any one of claims 1 to 8, wherein the second blocking member moves in the second reservoir and blocks communication between the second reservoir and the third reservoir.
  10.  前記第2遮断部材を保持し且つ前記血液貯留槽外に導出された第2ロッドを備え、
     前記第2ロッドを移動させることにより前記第2遮断部材を移動させることができる請求項9に記載の血液成分分離用装置。
    A second rod that holds the second blocking member and is led out of the blood reservoir;
    The blood component separation device according to claim 9, wherein the second blocking member can be moved by moving the second rod.
  11.  遠心分離時に前記第2遮断部材が前記血液貯留槽内で移動して前記第2貯留部と前記第3貯留部との連通を遮断することがないように、前記第2遮断部材の移動を規制する移動規制機構を更に備える請求項9又は10に記載の血液成分分離用装置。 The movement of the second blocking member is restricted so that the second blocking member does not move in the blood storage tank and block the communication between the second reservoir and the third reservoir during centrifugation. The blood component separation device according to claim 9 or 10, further comprising a movement restriction mechanism.
  12.  前記移動規制機構が、前記血液貯留槽外に設けられた取り外し可能なストッパーを含む請求項11に記載の血液成分分離用装置。 The blood component separation device according to claim 11, wherein the movement restriction mechanism includes a removable stopper provided outside the blood reservoir.
  13.  前記移動規制機構が、前記血液貯留槽外に設けられ且つ前記第2ロッドに連結されたストッパーを含む請求項11に記載の血液成分分離用装置。 The blood component separation device according to claim 11, wherein the movement restriction mechanism includes a stopper provided outside the blood reservoir and connected to the second rod.
  14.  前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断したときの前記第3貯留部内の圧力を開放するための圧力解放機構を更に備える請求項1~13のいずれかに記載の血液成分分離用装置。 The first blocking member blocks communication between the first storage portion and the third storage portion, and the second blocking member blocks communication between the second storage portion and the third storage portion. The blood component separation device according to any one of claims 1 to 13, further comprising a pressure release mechanism for releasing the pressure in the third reservoir.
  15.  前記圧力開放機構は、前記第2貯留部と前記第3貯留部とを連通するように前記第2遮断部材に設けられた貫通孔を含む請求項14に記載の血液成分分離用装置。 The blood component separation device according to claim 14, wherein the pressure release mechanism includes a through hole provided in the second blocking member so as to communicate the second storage portion and the third storage portion.
  16.  前記圧力開放機構は、前記貫通孔に設けられた一方向弁を更に含み、
     前記一方向弁は、前記貫通孔を通って前記第3貯留部から前記第2貯留部への流れを許容し、且つ、前記貫通孔を通って前記第2貯留部から前記第3貯留部への流れを禁止する請求項15に記載の血液成分分離用装置。
    The pressure release mechanism further includes a one-way valve provided in the through hole,
    The one-way valve allows a flow from the third reservoir to the second reservoir through the through hole, and passes from the second reservoir to the third reservoir through the through hole. The blood component separation device according to claim 15, wherein the flow of water is prohibited.
  17.  前記圧力開放機構は、前記貫通孔に一端が接続されたチューブを更に含み、
     前記チューブの他端は、前記血液貯留槽内の血液面より上の位置で開口している請求項15に記載の血液成分分離用装置。
    The pressure release mechanism further includes a tube having one end connected to the through hole,
    The blood component separation device according to claim 15, wherein the other end of the tube is opened at a position above the blood surface in the blood reservoir.
  18.  前記第1遮断部材が前記第1貯留部と前記第3貯留部との連通を遮断し且つ前記第2遮断部材が前記第2貯留部と前記第3貯留部との連通を遮断した状態で前記第3貯留部内の白血球成分を吸引して回収するとき、前記圧力解放機構は、外界の空気を前記第3貯留部内に流入させる流路を構成する請求項14、15、又は17に記載の血液成分分離用装置。 The first blocking member blocks communication between the first storage unit and the third storage unit, and the second blocking member blocks communication between the second storage unit and the third storage unit. 18. The blood according to claim 14, 15, or 17, wherein when the white blood cell component in the third reservoir is sucked and collected, the pressure release mechanism constitutes a flow path for allowing outside air to flow into the third reservoir. Equipment for component separation.
  19.  更に、前記血液貯留槽に設けられた蛇腹構造と、前記蛇腹構造の伸縮量を調整する蛇腹調整機構とを備え、
     前記蛇腹調整機構を用いて前記蛇腹構造の伸縮量を変えることにより、前記血液貯留槽の容積を調整することができる請求項1~18のいずれかに記載の血液成分分離用装置。
    Furthermore, the bellows structure provided in the blood storage tank, and a bellows adjustment mechanism for adjusting the amount of expansion and contraction of the bellows structure,
    The blood component separation device according to any one of claims 1 to 18, wherein the volume of the blood reservoir can be adjusted by changing the amount of expansion and contraction of the bellows structure using the bellows adjustment mechanism.
  20.  前記蛇腹構造は、遠心分離後に赤血球成分が貯留される前記第1貯留部に設けられている請求項19に記載の血液成分分離用装置。 20. The blood component separation device according to claim 19, wherein the bellows structure is provided in the first storage part in which red blood cell components are stored after centrifugation.
  21.  前記蛇腹調整機構は、雄ネジと雌ネジとを備え、
     前記雄ネジと前記雌ネジとの螺合深さを調整することにより、前記蛇腹構造の伸縮量を調整することができる請求項19又は20に記載の血液成分分離用装置。
    The bellows adjustment mechanism includes a male screw and a female screw,
    21. The blood component separation device according to claim 19 or 20, wherein an expansion / contraction amount of the bellows structure can be adjusted by adjusting a screwing depth between the male screw and the female screw.
PCT/JP2014/071853 2013-08-22 2014-08-21 Device for separating blood components WO2015025912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532890A JP6154904B2 (en) 2013-08-22 2014-08-21 Blood component separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013171991 2013-08-22
JP2013-171991 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025912A1 true WO2015025912A1 (en) 2015-02-26

Family

ID=52483683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071853 WO2015025912A1 (en) 2013-08-22 2014-08-21 Device for separating blood components

Country Status (2)

Country Link
JP (1) JP6154904B2 (en)
WO (1) WO2015025912A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105031753A (en) * 2015-08-24 2015-11-11 董晓辉 Medical negative pressure drainage device
WO2017126279A1 (en) * 2016-01-21 2017-07-27 株式会社ジェイ・エム・エス Blood component separating device
JP2019122757A (en) * 2018-01-12 2019-07-25 レヴ−メド株式会社Rev−Med, Inc. Body fluid separation device
CN110547812A (en) * 2019-09-23 2019-12-10 江苏科华医疗器械科技有限公司 Surrounding floating type blood sampling device
JP2020081881A (en) * 2018-11-30 2020-06-04 レブ−メッド インコーポレイテッド Kit for separating body fluid cell including stem cell and condensing
US20220133974A1 (en) * 2020-10-30 2022-05-05 Covidien Lp Variable orifice fistula graft
US11674614B2 (en) 2020-10-09 2023-06-13 Icu Medical, Inc. Fluid transfer device and method of use for same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558170B2 (en) * 1976-01-14 1980-03-03
JPH0246895B2 (en) * 1977-05-03 1990-10-17 Greenspan Donald J
JPH11502502A (en) * 1994-12-02 1999-03-02 ブリストル−マイヤーズ・スクイブ・カンパニー Method and apparatus for separating fibrin I from blood plasma
JP2963539B2 (en) * 1990-05-14 1999-10-18 イー・アール・スクウイブ・アンド・サンズ・インコーポレイテツド Apparatus for preparing concentrates of blood coagulation factors from blood samples
JP2005524451A (en) * 2002-05-03 2005-08-18 ハヌマン・エルエルシー Method and apparatus for isolating platelets from blood
JP4399453B2 (en) * 2003-05-19 2010-01-13 ハーベスト・テクノロジーズ・コーポレイション Method and apparatus for separating liquid components
JP4431929B2 (en) * 2001-03-29 2010-03-17 株式会社ジェイ・エム・エス Blood bag for blood component separation and blood separation method
US20110251041A1 (en) * 2010-04-12 2011-10-13 Biomet Biologics, Llc Method and Apparatus for Separating a Material
JP2011528802A (en) * 2008-07-21 2011-11-24 ベクトン・ディキンソン・アンド・カンパニー Density phase separator
JP2012034725A (en) * 2010-08-04 2012-02-23 Japan Health Science Foundation Mononuclear cell separation tube, mononuclear cell separation system, and method of separating mononuclear cell, mononuclear cell, and intracorporally-administered medicine
JP2012522610A (en) * 2009-04-03 2012-09-27 バイオメット バイオロジックス,リミテッド ライアビリティ カンパニー An integrated means for separating blood components
JP2012533304A (en) * 2009-07-16 2012-12-27 バイオメット・バイオロジクス,エルエルシー Method and apparatus for separating biological materials
JP2013526901A (en) * 2010-03-18 2013-06-27 シンジェン, インコーポレーテッド Method for purifying certain cell populations in blood or bone marrow by depleting others

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558170B2 (en) * 1976-01-14 1980-03-03
JPH0246895B2 (en) * 1977-05-03 1990-10-17 Greenspan Donald J
JP2963539B2 (en) * 1990-05-14 1999-10-18 イー・アール・スクウイブ・アンド・サンズ・インコーポレイテツド Apparatus for preparing concentrates of blood coagulation factors from blood samples
JPH11502502A (en) * 1994-12-02 1999-03-02 ブリストル−マイヤーズ・スクイブ・カンパニー Method and apparatus for separating fibrin I from blood plasma
JP4431929B2 (en) * 2001-03-29 2010-03-17 株式会社ジェイ・エム・エス Blood bag for blood component separation and blood separation method
JP2005524451A (en) * 2002-05-03 2005-08-18 ハヌマン・エルエルシー Method and apparatus for isolating platelets from blood
JP4399453B2 (en) * 2003-05-19 2010-01-13 ハーベスト・テクノロジーズ・コーポレイション Method and apparatus for separating liquid components
JP2011528802A (en) * 2008-07-21 2011-11-24 ベクトン・ディキンソン・アンド・カンパニー Density phase separator
JP2012522610A (en) * 2009-04-03 2012-09-27 バイオメット バイオロジックス,リミテッド ライアビリティ カンパニー An integrated means for separating blood components
JP2012533304A (en) * 2009-07-16 2012-12-27 バイオメット・バイオロジクス,エルエルシー Method and apparatus for separating biological materials
JP2013526901A (en) * 2010-03-18 2013-06-27 シンジェン, インコーポレーテッド Method for purifying certain cell populations in blood or bone marrow by depleting others
US20110251041A1 (en) * 2010-04-12 2011-10-13 Biomet Biologics, Llc Method and Apparatus for Separating a Material
JP2012034725A (en) * 2010-08-04 2012-02-23 Japan Health Science Foundation Mononuclear cell separation tube, mononuclear cell separation system, and method of separating mononuclear cell, mononuclear cell, and intracorporally-administered medicine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105031753A (en) * 2015-08-24 2015-11-11 董晓辉 Medical negative pressure drainage device
TWI704934B (en) * 2016-01-21 2020-09-21 日商托朗塞爾股份有限公司 Device for separating blood components
WO2017126279A1 (en) * 2016-01-21 2017-07-27 株式会社ジェイ・エム・エス Blood component separating device
CN108601868A (en) * 2016-01-21 2018-09-28 托朗塞爾股份有限公司 Blood constituent separation device
EP3406276A4 (en) * 2016-01-21 2019-09-18 Transell Co., Ltd. Blood component separating device
AU2016387808B2 (en) * 2016-01-21 2019-09-26 Transell Co., Ltd. Blood component separating device
US11192121B2 (en) 2016-01-21 2021-12-07 Transell Co., Ltd. Blood component separator with slider for sealing
AU2019284105B2 (en) * 2016-01-21 2021-04-01 Transell Co., Ltd Blood component separating device
JP2019122757A (en) * 2018-01-12 2019-07-25 レヴ−メド株式会社Rev−Med, Inc. Body fluid separation device
JP2020081881A (en) * 2018-11-30 2020-06-04 レブ−メッド インコーポレイテッド Kit for separating body fluid cell including stem cell and condensing
US11224368B2 (en) * 2018-11-30 2022-01-18 Rev-Med, Inc. Kit for separating and concentrating body fluid cells
CN110547812A (en) * 2019-09-23 2019-12-10 江苏科华医疗器械科技有限公司 Surrounding floating type blood sampling device
CN110547812B (en) * 2019-09-23 2022-05-27 江苏科华医疗器械科技有限公司 Surrounding floating type blood sampling device
US11674614B2 (en) 2020-10-09 2023-06-13 Icu Medical, Inc. Fluid transfer device and method of use for same
US20220133974A1 (en) * 2020-10-30 2022-05-05 Covidien Lp Variable orifice fistula graft

Also Published As

Publication number Publication date
JPWO2015025912A1 (en) 2017-03-02
JP6154904B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6154904B2 (en) Blood component separation device
JP6360486B2 (en) Blood component separation device
JP6618209B2 (en) Blood component separation device
JP6079018B2 (en) Biological sample transfer device and biological sample transfer method
CN101711904B (en) Disposable precision filter infusion set for children
JP2015054181A (en) Blood component separation device
CN102302809A (en) Blood storage tank of closed type and extracorporeal blood circulation system using the same
JP2016198386A (en) Blood component separation apparatus
WO2013146505A1 (en) Device for separating blood components and method of separating blood components
JP5136848B2 (en) Infusion tube and infusion set
CN102716534B (en) Method and device for automatically sealing two contact surfaces twice for drip injection
CN214435617U (en) Novel negative pressure phlegm collection of accurate measurement device
JP5860326B2 (en) Posture holder for blood component separation device
WO2023074303A1 (en) Liquid collection container, method for producing liquid collection container, and liquid component removal system
JP6999108B2 (en) Blood collection device and blood collection kit
CN107485755A (en) Intravenous drip infusion device
CN201596192U (en) Disposable accurate filter transfusion system used for children
CN103566425B (en) A kind of drop automatic injection solution apparatus of not blood back
JP2009095658A (en) Blood component preparation container and blood component separation/storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838286

Country of ref document: EP

Kind code of ref document: A1