WO2015025687A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2015025687A1
WO2015025687A1 PCT/JP2014/070065 JP2014070065W WO2015025687A1 WO 2015025687 A1 WO2015025687 A1 WO 2015025687A1 JP 2014070065 W JP2014070065 W JP 2014070065W WO 2015025687 A1 WO2015025687 A1 WO 2015025687A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generating
generating component
flow path
cooling air
electronic device
Prior art date
Application number
PCT/JP2014/070065
Other languages
French (fr)
Japanese (ja)
Inventor
誠 稲垣
崇弘 大黒
祐樹 松永
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2015532789A priority Critical patent/JP6112745B2/en
Publication of WO2015025687A1 publication Critical patent/WO2015025687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft

Definitions

  • the present invention relates to an electronic device having a cooling structure.
  • the electronic device is used in an electronic device having a plurality of heat generating components such as a video camera, and distributes an appropriate amount of cooling air to each of the plurality of heat generating components.
  • the present invention relates to an electronic device configured to efficiently dissipate heat from a plurality of heat generating components generated inside the housing.
  • Video cameras have different external shapes depending on the purpose of use, and can be broadly divided into portable types and fixed types.
  • the former includes video cameras for TV program production, news gathering, event video recording, etc.
  • handy types that emphasize mobility and high-performance high-magnification lenses can be attached, and various operation functions are provided.
  • It has an outer shape such as a studio type. Examples of the latter include medical cameras, weather observation cameras, security cameras, etc.
  • box-shaped shapes that are easy to manufacture and have good mounting efficiency because they are mounted at a fixed position.
  • a fixed camera requires screw portions for fixing a fixed position at the top and bottom of the housing, the upper and lower surfaces of the camera housing must be flat.
  • the need common to these video cameras is the miniaturization of the cameras.
  • the video cameras have been miniaturized and mounted with a high density in the same manner as other electronic devices.
  • the number of pixels of the image sensor and the drive frequency increase, the amount of heat generated by the image sensor and its drive circuit also increases.
  • the use of digital circuits for video signal processing has become mainstream.
  • the circuit scale is usually much larger than that of an analog circuit. Therefore, in general, a digital circuit is integrated in a large-scale LSI to reduce the size of the circuit.
  • FIG. 7 is a front perspective view showing the appearance of a conventional video camera.
  • FIG. 8 is a view showing a KK section along a vertical plane passing through the center of the lens portion 55 of the video camera 100 in FIG. 7 and 8 show a state in which a housing cover for covering the entire video camera is removed.
  • the conventional video camera 100 includes a front panel 50, a right side plate 51, a left side plate 52, a rear panel 53 to which a fan 59 is attached, a housing bottom plate 54, and a partition plate 63.
  • a lens unit 55, a first circuit board 56, a radiator 57, and a duct 58 are provided in the housing.
  • the radiator 57 is attached so that a part of the fin base passes through a square hole provided in the first circuit board 56 and is in close contact with the back surface of the image sensor 56a, and is arranged in the left-right direction on the opposite side of the fin base.
  • the plurality of radiating fins 57a are provided upright.
  • the duct 58 has openings 58 a for guiding the cooling air discharged from the fan 59 to the radiating fins 57 a of the radiator 57.
  • the video camera 100 includes a second circuit board 61 on which the heat generating component 61a is mounted and a third circuit board 62 on which the heat generating component 62a is mounted above the partition plate 63, and includes a second circuit.
  • the board 61 and the third circuit board 62 are attached to the partition plate 63 in a two-tiered manner via a support column 64.
  • the video camera 100 includes a chamber 60 having an opening 60a and an opening 60b above and below the radiation fins 57a of the radiator 57, respectively.
  • the image sensor 56a which is a main heat generating component arranged in close contact with the base, is cooled. Further, the cooling air flowing downward along the radiation fins 57a is discharged to the outside of the housing from a slit (not shown) provided in the housing bottom plate 54. Further, the cooling air flowing upward along the heat radiation fins 57 a flows into the chamber 60 from the opening 60 a of the chamber 60, and the pressure is increased in the chamber 60. The cooling air whose pressure is increased in the chamber 60 is blown forward from the opening 60b toward the second circuit board 61 and the third circuit board 62, whereby the second circuit board 61 and the third circuit board 62 are blown out. The heat generating component 61a and the heat generating component 62a mounted on the circuit board 62 are cooled.
  • the imaging element 56a that is the main heat generating component, or by sandwiching the Peltier element between the imaging element 56a and the radiator 57, In some cases, a current is supplied to the Peltier element to forcibly release heat from the imaging element 56a to the radiator 57.
  • Patent Document 1 in a camera case cooling structure for convection and air circulation of heat generated by an image pickup device, a heat release fin for radiating heat generated in the image pickup device, and an air flow toward the heat release fin
  • a partition member having a plurality of openings at positions corresponding to the air outlets of the fan and a fan installed between the heat radiating fins and the fan,
  • a cooling structure comprising a chamber for blowing in a direction is disclosed.
  • the conventional video camera 100 is provided with the radiator 57 for cooling the image pickup element 56a which is the main heat generating component, and the cooling air from the fan 59 toward the radiation fin 57a of the radiator 57 is provided.
  • the image pickup device 56a is cooled by jetting.
  • the cooling air that has flowed upward along the radiation fins 57a of the radiator 57 passes through the chamber 60, cools the heat generating components 61a and the heat generating components 62a other than the image sensor 56a, and then is discharged to the outside.
  • an electronic component 56b such as a signal processing semiconductor element for taking out an electric signal from the image sensor 56a is provided on the back surface of the first circuit board 56 shown in FIG.
  • the signal processing semiconductor element is also one of the heat generating components, but since it is mounted on the M part or the N part of the first circuit board 56 facing the fin base of the radiator 57, heat dissipation is performed. There is a problem that the cooling air from the fan 59 is not supplied to the electronic component 56b by being blocked by the device 57, and the temperature of the electronic component 56b becomes high.
  • the electronic component 56b which is a heat generating component other than the main heat generating component mounted on the first circuit board 56
  • it is formed between the electronic component 56b and the radiator 57 by, for example, silicon rubber or the like.
  • the heat of the electronic component 56b which is a heat generating component other than the main heat generating component, increases the temperature of the radiator 57, making it difficult to reduce the temperature of the image sensor 56a, which is the main heat generating component.
  • the cooling efficiency of the radiator 57 is further reduced.
  • the heat generating components other than the main heat generating components there may be electronic components that need to be cooled in addition to the heat generating components 61a, the heat generating components 62a, and the electronic components 56b.
  • the present invention has been made to solve such a problem, and it is possible to separately cool the main heat generating component and the heat generating component other than the main heat generating component, while ensuring the necessary cooling performance of the main heat generating component.
  • An object of the present invention is to provide an electronic device capable of cooling a heat generating component other than the main heat generating component.
  • the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is an object of the present invention to provide an electronic device that can efficiently dissipate heat from a plurality of heat generating components generated inside a housing while ensuring the above.
  • an electronic device includes a radiator for cooling the first heat-generating component in the device composed of a radiating fin portion and a fin base, and cooling sent to the radiating fin portion.
  • a second flow path in which a part of the cooling air from the blower passes through the outside of the radiator, and a cooling air that has passed through the second flow path passes through the fin base side of the radiator.
  • a first heat-generating component that is in contact with the fin base so as to be able to conduct heat is cooled through the first flow path via the radiator. Cooled by wind and mounted on the third flow path
  • the heat-generating components characterized in that it is cooled by cooling air flowing through the third flow passage.
  • the electronic device according to the present invention for achieving the above object is a circuit board in which the cooling air of the second flow path is guided to the third flow path at a position facing the fin base. And the third flow path is formed by a gap between the fin base and the circuit board.
  • the electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component and the second heat generating component are mounted on the circuit board.
  • the electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component and the second heat generating component can be cooled to different temperatures.
  • the electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component has a larger amount of heat generation than the second heat generating component.
  • the electronic device according to the present invention for achieving the above object is characterized in that the air blowing section is installed eccentrically with respect to the radiator. Moreover, the electronic device according to the present invention for achieving the above object is characterized in that the blower portion has an outer diameter larger than that of the radiator.
  • an electronic device wherein a duct portion is disposed between the heat radiating fin portion and the air blowing portion, and the first flow is provided by an opening provided in the duct portion.
  • a path and the second flow path are formed.
  • the radiator is configured to block a bottom surface of the radiating fin portion, from the opening provided below the duct portion, from the air blowing portion. The cooling air is caused to collide with the lower side of the radiating fin portion, and the cooling air flows from the lower side to the upper side through the gap of the radiating fin portion.
  • the electronic device according to the present invention for achieving the above object is characterized in that the cooling air rises from the radiating fin portion and cools the third heat generating component disposed on the upper surface substrate.
  • an electronic device includes a first circuit board on which a main heat generating component and a heat generating component other than the main heat generating component are mounted, and the heat dissipation of the main heat generating component.
  • a radiator having a fin base that is in contact with the main heat-generating component so as to conduct heat, and a radiating fin portion formed on the opposite side of the fin base, and a blower that generates cooling air to be sent to the radiating fin portion
  • a duct having an opening that is disposed between the radiating fin portion and the blower and that forms a flow path for the cooling air that is sent from the blower to the radiating fin.
  • the heat generating component is an electronic device mounted on the surface of the first circuit board in contact with the main heat generating component and the fin base of the radiator so as to be capable of conducting heat, and the size of the opening of the duct Said heat dissipation
  • the first circuit board is configured to protrude from one side of the heat sink fin portion in the same direction as the opening of the duct, and the blower is configured to protrude from the fin portion to one side.
  • the cooling air from which the cooling air has passed through the opening of the duct and injected into the heat radiating fin portion, and the cooling air that has passed through the protruding portion of the opening of the duct A part of the cooling air is divided into a second flow path that is injected so as to pass through the outside of the heat radiating fin portion, and a part of the cooling air that has flowed through the second flow path is the first circuit. After colliding with the substrate, it flows into the gap between the first circuit board and the fin base of the radiator to form a third flow path for cooling the heat generating components other than the main heat generating components.
  • an electronic apparatus wherein the main heat generating component is an image sensor, and a heat generating component other than the main heat generating component extracts an electric signal from the image sensor. It is characterized by including an element.
  • the main heat generating component and the heat generating component other than the main heat generating component can be separately cooled, so that the cooling performance of the main heat generating component is not affected.
  • the heat generating component can be cooled.
  • the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is possible to efficiently dissipate heat from a plurality of heat generating components generated inside the housing while ensuring the above.
  • FIG. 2 is a view showing a cross section taken along line FF along a vertical plane passing through the center of a lens unit 18 of the video camera 1 in FIG.
  • FIG. 2 is a diagram showing an EE cross section of a horizontal plane of the video camera 1 in FIG. 1. It is a figure which shows the GG cross section of the vertical surface of the video camera 1 in FIG.
  • FIGS. 1A and 1B are external perspective views showing an example of an electronic apparatus according to Embodiment 1 to which the present invention is applied.
  • FIG. 1A is a front perspective view
  • FIG. 1B is a rear perspective view.
  • FIG. 2 is an exploded perspective view showing the configuration of the electronic apparatus according to the first embodiment to which the present invention is applied.
  • FIG. 3 is a diagram showing an FF section along a vertical plane passing through the center of the lens portion 18 of the video camera 1 in FIG.
  • FIG. 4 is a diagram showing an EE cross section of the horizontal plane of the video camera 1 in FIG.
  • FIG. 5 is a diagram showing a GG section of the vertical plane of the video camera 1 in FIG.
  • the video camera 1 as the electronic apparatus according to the first embodiment to which the present invention is applied includes a housing bottom plate 15 and six support columns 17 erected on the housing bottom plate 15.
  • the front panel 10, the board mounting bracket (3) 11, the board mounting bracket (4) 12, the rear panel 13, the board mounting bracket (2) 26, the top frame 14, and the housing cover 16 are each screwed to the column 17.
  • a housing structure is formed.
  • the third circuit board 24 on which the heat generating component 24a is mounted is fixed to the board mounting bracket (3) 11, and the second circuit board 23 on which the heat generating component 23a is mounted is fixed to the board mounting bracket (2) 26.
  • the fourth circuit board 25 is fixed to the board mounting bracket (4) 12.
  • a fan 22 and a filter 28 are attached to the rear panel 13, and the rear panel 13 has an opening 13 a for sucking outside air when the fan 22 operates.
  • the first circuit board 19 has an image pickup device 19a that is a main heat generating component and a surface for taking out an electric signal from the image pickup device 19a on a surface different from the mounting surface of the image pickup device 19a.
  • a heat generating component 19b other than the main heat generating component such as a signal processing semiconductor element is mounted.
  • the radiator 20 is attached so that a part of the fin base passes through a square hole provided in the first circuit board 19 and is in close contact with the back surface of the image sensor 19a, and is arranged in the left-right direction on the opposite side of the fin base.
  • the plurality of radiating fins 20a are provided upright.
  • the radiator 20 may be in contact with the image sensor 19a so as to be capable of conducting heat.
  • the duct 21 has an opening 21 a for compressing the cooling air discharged from the fan 22 to increase the pressure and injecting it toward the heat radiating fins 20 a of the heat radiator 20.
  • the metal fitting 27 is a metal fitting for closing the lower end of the radiation fin 20 a of the radiator 20.
  • the fan 22 is arranged to be shifted to the right or eccentric with respect to the center line of the radiation fin 20a of the radiator 20 provided to cool the imaging element 19a. 4 and 5, the width (H2) of the opening 21a of the duct 21 is set wider than the width (H1) of the radiating fin 20a in the left-right direction, and the opening 21a of the duct 21 is set. Is projected from the right end of the radiating fin 20a (P portion (lattice portion in FIG. 5)).
  • the pressure of the cooling air discharged from the fan 22 is increased in the duct 21, and the cooling air W ⁇ b> 1 ejected from the opening 21 a of the duct 21 toward the heat radiation fin 20 a and the P of the opening 21 a of the duct 21.
  • the cooling air W2 that passes through the right outer side of the radiating fin 20a from the part (lattice part), collides with the right end of the first circuit board 19 and flows in the left direction, and the P part (lattice part) of the opening 21a of the duct 21
  • the cooling wind W3 passes through the right outer side of the heat radiating fin 20a, collides with the right end of the first circuit board 19, flows in the right direction, and further advances straight while being bent.
  • the fan 22 is arranged so as to be shifted rightward or eccentric with respect to the center line of the radiating fin 20a, but a fan having a size larger than that of the radiating fin 20a should be used. May be arranged so that the center line of the radiating fin 20a coincides with the center line of the fan, and only the opening portion of the duct may be set as described above. May be larger. Further, in this embodiment, as shown in FIG. 5, the vertical height (H4) of the opening 21a of the duct 21 is about 1/2 with respect to the vertical height (H3) of the radiating fin 20a.
  • the cooling air W1 that has passed through the opening 21a of the duct 21 and is ejected toward the radiating fins 20a has a size that flows evenly throughout the radiating fins 20a. Good.
  • FIG. 6 is an exploded perspective view for explaining the flow of cooling air discharged from the fan in the electronic apparatus according to the first embodiment to which the present invention is applied.
  • the first embodiment as shown in FIG. 6, when the fan 22 operates, cooling air is generated forward. 3 to 6, the subsequent flows of the cooling air discharged from the fan 22 are indicated by white arrows.
  • the video camera 1 as an electronic apparatus according to the first embodiment to which the present invention is applied, as shown in FIG. 6, when the fan 22 operates, the outside air is passed through the opening 13a of the rear panel 13 via the filter 28 attached to the rear panel 13.
  • the cooling air discharged from the fan 22 flows into the duct 21 disposed between the fan 22 and the heat radiating fin 20a and is compressed inside the duct 21 to increase the pressure, thereby increasing the pressure.
  • the cooling air is ejected from an opening 21 a provided in the lower part of the duct 21.
  • the cooling air W ⁇ b> 1 ejected from the openings 21 a provided below the duct 21 toward the heat radiating fins 20 a is closed by the metal fittings 27 at the lower ends of the heat radiating fins 20 a. Therefore, it becomes a collision jet, hits the gap between the heat radiation fin 20a and the heat radiation fin 20a, and flows from below to above along the heat radiation fin 57a. As a result, the image sensor 19a, which is the main heat generating component arranged in close contact with the fin base of the radiator 20, is cooled. In addition, as shown in FIG.
  • the cooling air W ⁇ b> 1 that has flowed upward along the radiation fins 20 collides with the second circuit board 23 disposed at the upper part of the casing, and forwards the casing and in the lateral direction of the casing. And flows downward through the left and right sides of the casing while cooling the heat generating component 23a mounted on the second circuit board 23, and exhausts the side of the casing provided on the left and right sides of the casing and the bottom of the casing. It is discharged to the outside of the housing through the opening 16a and the housing bottom surface exhaust port 15a.
  • the pressure is increased inside the duct 21, and the cooling air blown out from the P portion (lattice portion) of the opening 21a of the duct 21 through the right outer side of the radiating fin 20a is
  • the cooling air W2 and the cooling air W3 pass through the right outer side of the radiating fin 20a, and then collide with the first circuit board 19 and flow in the left direction as shown in FIGS.
  • the heat sink 20 wraps around the fin base side, and further flows through the gap between the fin base and the first circuit board 19 to cool the heat generating component 19b of the first circuit board 19, and is provided on the left side of the housing. It is discharged to the outside of the housing from the housing side exhaust port 16a.
  • the cooling air W3 passes through the right side of the heat radiating fin 20a, and then collides with the first circuit board 19 and flows in the right direction as shown in FIGS. While cooling the heat generating component 24a of the third circuit board 24 disposed in front, the heat generating component 24a is discharged to the outside from the case side exhaust port 16a and the case bottom exhaust port 15a provided on the right side surface and the bottom surface of the case. .
  • the first circuit board 19 extends to a position that blocks the traveling direction of the cooling air W3
  • the cooling air flowing in the right direction among the cooling air W3 colliding with the first circuit board 19 is cooled. While the wind is further bent, the wind goes straight forward to cool the heat generating component 24a of the third circuit board 24.
  • the cooling air that has traveled substantially straight forward without colliding with the first circuit board 19 Of the cooling air W3 that has partially collided the cooling air that has flowed in the right direction and traveled straight forward and further straight forward cools the heat generating component 24a of the third circuit board 24.
  • the fin base of the radiator is brought into close contact with the main heat generating component mounted on the circuit board, and the radiation fin from the front surface of the radiation fin provided on the opposite side of the fin base of the radiator.
  • heat generating components other than the main heat generating component are mounted on the circuit board, and a part of the cooling air to the heat radiating fins collides with the circuit board.
  • the cooling air is distributed to each of a plurality of heat generating parts having different temperatures required for normal operation so that the cooling air is distributed in an appropriate amount, thereby ensuring the necessary cooling performance of the main heat generating parts and the plurality of air generated inside the housing. It is possible to efficiently dissipate heat from the heat generating parts.
  • An electronic device according to another embodiment to which the present invention is applied has, for example, the following characteristics with respect to the electronic device according to Embodiment 1 of the present invention.
  • the image sensor 19a may be in the arrangement relationship shown in the first embodiment, and may be configured to be mounted on other components without being mounted on the first circuit board 19.
  • the positional relationship between the radiating fin 20a, the opening 21a of the duct 21 and the fan 22 may be determined according to the positions of the plurality of heat-generating components, and is not limited to the arrangement of the first embodiment.
  • a Peltier element may be built in the imaging element 19a which is the main heat generating component, or a Peltier element may be sandwiched between the imaging element 19a and the radiator 20, and in this case, heat dissipation of the Peltier element It does not affect the effect.
  • the present invention it is possible to cool a heat generating component other than the main heat generating component while ensuring the necessary cooling performance of the main heat generating component.
  • the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is possible to efficiently dissipate heat from a plurality of heat generating components generated inside the housing while ensuring the above.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • the electronic device to which the present invention is applied is described as a video camera.
  • the present invention is not limited to a video camera, and includes a plurality of circuit boards each having a heat generating component mounted thereon.
  • the present invention can be applied to any electronic device that is cooled by cooling air from the fan.
  • the present invention relates to an electronic device having a cooling structure.
  • the present invention is used in an electronic device on which a plurality of heat generating components are mounted, and it is necessary to efficiently dissipate heat from the plurality of heat generating components generated inside the housing. Suitable for various electronic devices.

Abstract

[Problem] To efficiently radiate heat generated from a plurality of heat-generating components within a housing in an electronic device equipped with the plurality of heat-generating components. [Solution] This electronic device is provided with a radiator which is composed of a radiation fin part and a fin base in order to cool a first heat-generating component within the device, and an air blowing part which generates cooling air to be sent out to the radiation fin part. The electronic device has a cooling structure formed by a first flow path through which the cooling air from the air blowing part flows to the radiation fin part side of the radiator to form an impinging jet, a second flow path through which part of the cooling air from the air blowing part passes the outside of the radiator, and a third flow path through which the cooling air that has passed through the second flow path passes the fin base side of the radiator, the first heat-generating component brought into contact with the fin base in a thermally conductive manner is cooled by the cooling air flowing through the first flow path via the radiator, and a second heat-generating component mounted in the third flow path is cooled by the cooling air flowing through the third flow path.

Description

電子装置Electronic equipment
 本発明は、冷却構造を有する電子装置に係り、例えば、ビデオカメラのように、複数の発熱部品が搭載された電子機器に採用され、冷却風を複数の発熱部品それぞれに適量行き渡るよう流通させことにより、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱するよう構成した電子装置に関する。 The present invention relates to an electronic device having a cooling structure. For example, the electronic device is used in an electronic device having a plurality of heat generating components such as a video camera, and distributes an appropriate amount of cooling air to each of the plurality of heat generating components. Thus, the present invention relates to an electronic device configured to efficiently dissipate heat from a plurality of heat generating components generated inside the housing.
 ビデオカメラは使用目的によって外形形状が異なり、大きくは可搬型と固定型に分けられる。前者にはテレビ番組制作用、ニュース取材用、イベント映像記録用等のビデオカメラが挙げられ、その用途によって機動性を重視したハンディタイプや高性能高倍率レンズが装着可能で様々な操作機能を備えたスタジオタイプ等の外形形状を持つ。後者にはメディカル用、天候観測用、セキュリティー用等のカメラが挙げられ、一般的には定位置に取付けて使用するため製作が容易で実装効率が良い箱型形状が多い。また固定型のカメラは筐体の上下に定位置固定用のネジ部を要するためカメラ筐体の上下面はフラットであることが必要である。 ∙ Video cameras have different external shapes depending on the purpose of use, and can be broadly divided into portable types and fixed types. The former includes video cameras for TV program production, news gathering, event video recording, etc. Depending on the application, handy types that emphasize mobility and high-performance high-magnification lenses can be attached, and various operation functions are provided. It has an outer shape such as a studio type. Examples of the latter include medical cameras, weather observation cameras, security cameras, etc. Generally, there are many box-shaped shapes that are easy to manufacture and have good mounting efficiency because they are mounted at a fixed position. In addition, since a fixed camera requires screw portions for fixing a fixed position at the top and bottom of the housing, the upper and lower surfaces of the camera housing must be flat.
 これらのビデオカメラに共通したニーズとしてカメラの小型化があり、近年のビデオカメラは他の電子機器と同様に小型化、高密度実装化が進んでいる。特に、ハイビジョン方式のビデオカメラにおいては撮像素子の画素数の増大や駆動周波数が高くなることから撮像素子やその駆動回路の発熱量も増大している。また、近年のビデオカメラでは映像信号処理にデジタル回路を用いることが主流になっている。回路をデジタル化すると通常、回路規模はアナログ回路より格段に大きくなるため、一般にデジタル回路を大規模LSIに集積し回路の小型化を図っている。
 しかし、前述のハイビジョン方式ビデオカメラの回路を1チップにした大規模LSIでは500万ゲートを越す理論回路が75MHz以上のシステムクロックレートで動作することになるため、LSI1個の消費電力が7~10Wにもなりファンを用いた強制空冷構造を適用しないと温度上昇により、部品の破壊や寿命短縮を引き起こすという問題を抱えている。
The need common to these video cameras is the miniaturization of the cameras. In recent years, the video cameras have been miniaturized and mounted with a high density in the same manner as other electronic devices. In particular, in a high-definition video camera, since the number of pixels of the image sensor and the drive frequency increase, the amount of heat generated by the image sensor and its drive circuit also increases. In recent video cameras, the use of digital circuits for video signal processing has become mainstream. When a circuit is digitized, the circuit scale is usually much larger than that of an analog circuit. Therefore, in general, a digital circuit is integrated in a large-scale LSI to reduce the size of the circuit.
However, in a large-scale LSI in which the above-mentioned high-definition video camera circuit is made into one chip, a theoretical circuit exceeding 5 million gates operates at a system clock rate of 75 MHz or more, so that the power consumption of one LSI is 7 to 10 W. If the forced air cooling structure using a fan is not applied, there is a problem that the temperature rises, causing damage to parts and shortening the service life.
 そこで、従来の一例であるファンを備えたビデオカメラについて、図7及び図8を用いて説明する。図7は、従来のビデオカメラの外観を示す前方斜視図である。図8は、図7におけるビデオカメラ100のレンズ部55の中心を通る鉛直面に沿ったK-K断面を示す図である。なお、図7及び図8では、ビデオカメラ全体を覆うための筐体カバーを外した状態で示している。
 図7及び図8に示すように、従来のビデオカメラ100は、フロントパネル50、右側板51、左側板52、ファン59が取り付けられたリアパネル53、筐体底板54、仕切板63から構成される筐体内に、レンズ部55と、第1の回路基板56と、放熱器57と、ダクト58とを備えている。
 第1の回路基板56には、主発熱部品である撮像素子56aと、その他の発熱部品である電子部品56bが実装されている。
 放熱器57は、フィンベースの一部が第1の回路基板56に設けた角穴を通り撮像素子56aの裏面に密着するように取り付けられ、また、フィンベースの反対側に、左右方向に並んで立設された複数の放熱フィン57aを有している。
 ダクト58は、ファン59から吐出された冷却風を放熱器57の放熱フィン57aに導くための開口部58aを有している。
Therefore, a conventional video camera including a fan will be described with reference to FIGS. FIG. 7 is a front perspective view showing the appearance of a conventional video camera. FIG. 8 is a view showing a KK section along a vertical plane passing through the center of the lens portion 55 of the video camera 100 in FIG. 7 and 8 show a state in which a housing cover for covering the entire video camera is removed.
As shown in FIGS. 7 and 8, the conventional video camera 100 includes a front panel 50, a right side plate 51, a left side plate 52, a rear panel 53 to which a fan 59 is attached, a housing bottom plate 54, and a partition plate 63. A lens unit 55, a first circuit board 56, a radiator 57, and a duct 58 are provided in the housing.
On the first circuit board 56, an imaging element 56a that is a main heat generating component and an electronic component 56b that is another heat generating component are mounted.
The radiator 57 is attached so that a part of the fin base passes through a square hole provided in the first circuit board 56 and is in close contact with the back surface of the image sensor 56a, and is arranged in the left-right direction on the opposite side of the fin base. The plurality of radiating fins 57a are provided upright.
The duct 58 has openings 58 a for guiding the cooling air discharged from the fan 59 to the radiating fins 57 a of the radiator 57.
 また、ビデオカメラ100は、仕切板63の上方に、発熱部品61aが実装された第2の回路基板61と、発熱部品62aが実装された第3の回路基板62とを備え、第2の回路基板61と第3の回路基板62は支柱64を介して仕切板63に2段重ねで取り付けられている。
 また、ビデオカメラ100は、放熱器57の放熱フィン57aの上方に、下方と前方にそれぞれ開口部60aと開口部60bを有するチャンバー60を備えている。
In addition, the video camera 100 includes a second circuit board 61 on which the heat generating component 61a is mounted and a third circuit board 62 on which the heat generating component 62a is mounted above the partition plate 63, and includes a second circuit. The board 61 and the third circuit board 62 are attached to the partition plate 63 in a two-tiered manner via a support column 64.
In addition, the video camera 100 includes a chamber 60 having an opening 60a and an opening 60b above and below the radiation fins 57a of the radiator 57, respectively.
 次に、従来のビデオカメラ100の冷却方法について、図8を参照して説明する。
 ビデオカメラ100において、ファン59が動作すると、後方からファン59に外気が導入され、ファン59から吐出された冷却風は、白抜きの矢印で示すように、リアパネル53に設けた開口部53a及びダクト58に設けた開口部58aを通過して、放熱器57の放熱フィン57aに噴射される。
 放熱フィン57aに噴射された冷却風は、複数の放熱フィン57aの間隙を通り放熱フィン57aの付け根に当たって衝突噴流となり、放熱フィン57aに沿って上下方向に分かれて流れることにより、放熱器57のフィンベースに密着して配置された主発熱部品である撮像素子56aが冷却される。
 また、放熱フィン57aに沿って下方に流れた冷却風は筐体底板54に設けた図示しないスリットから筐体外部に放出される。
 また、放熱フィン57aに沿って上方に流れた冷却風はチャンバー60の開口部60aからチャンバー60内に流入し、チャンバー60内で圧力が高められる。チャンバー60内で圧力が高められた冷却風は開口部60bから第2の回路基板61と第3の回路基板62に向かって前方に吹き出され、これによって、第2の回路基板61と第3の回路基板62に実装された発熱部品61a及び発熱部品62aが冷却される。
Next, a cooling method of the conventional video camera 100 will be described with reference to FIG.
In the video camera 100, when the fan 59 is operated, outside air is introduced into the fan 59 from the rear, and the cooling air discharged from the fan 59 is provided with an opening 53a and a duct provided in the rear panel 53 as indicated by white arrows. It passes through the opening 58 a provided in 58 and is sprayed to the heat radiating fins 57 a of the heat radiator 57.
The cooling air sprayed onto the heat radiating fins 57a passes through the gaps between the plurality of heat radiating fins 57a and hits the roots of the heat radiating fins 57a to form a collision jet. The image sensor 56a, which is a main heat generating component arranged in close contact with the base, is cooled.
Further, the cooling air flowing downward along the radiation fins 57a is discharged to the outside of the housing from a slit (not shown) provided in the housing bottom plate 54.
Further, the cooling air flowing upward along the heat radiation fins 57 a flows into the chamber 60 from the opening 60 a of the chamber 60, and the pressure is increased in the chamber 60. The cooling air whose pressure is increased in the chamber 60 is blown forward from the opening 60b toward the second circuit board 61 and the third circuit board 62, whereby the second circuit board 61 and the third circuit board 62 are blown out. The heat generating component 61a and the heat generating component 62a mounted on the circuit board 62 are cooled.
 なお、上記したビデオカメラ100において、主発熱部品である撮像素子56aにペルチェ素子を内蔵させたり、または、撮像素子56aと放熱器57との間にペルチェ素子を挟むよう構成したりすることにより、ペルチェ素子に電流を流し、撮像素子56aから放熱器57への放熱を強制的に行わせる場合もある。 In the video camera 100 described above, by incorporating a Peltier element in the imaging element 56a that is the main heat generating component, or by sandwiching the Peltier element between the imaging element 56a and the radiator 57, In some cases, a current is supplied to the Peltier element to forcibly release heat from the imaging element 56a to the radiator 57.
 特許文献1には、撮像装置が発生する熱を対流し空気循環させるためのカメラケースの冷却構造において、撮像装置内で発生する熱を放熱するための放熱フィンと、放熱フィンに向けて空気流を発生させるためのファンと、放熱フィンとファンとの間に設置されてファンの空気吹き出し口に対応する位置に複数の開口部を有する仕切部材と、放熱フィンから流入した空気を溜めて所定の方向に吹き出すためのチャンバーとを備えた冷却構造が開示されている。 In Patent Document 1, in a camera case cooling structure for convection and air circulation of heat generated by an image pickup device, a heat release fin for radiating heat generated in the image pickup device, and an air flow toward the heat release fin A partition member having a plurality of openings at positions corresponding to the air outlets of the fan and a fan installed between the heat radiating fins and the fan, A cooling structure comprising a chamber for blowing in a direction is disclosed.
特開2010-41085号公報JP 2010-41085 A
 上記したように、従来のビデオカメラ100においては、主発熱部品である撮像素子56aを冷却するための放熱器57が設けられ、その放熱器57の放熱フィン57aに向かってファン59からの冷却風を噴射することにより、撮像素子56aの冷却を行っている。また、放熱器57の放熱フィン57aに沿って上方に流れた冷却風はチャンバー60を通って、撮像素子56a以外の発熱部品61a及び発熱部品62aの冷却を行ったのち外部に放出される。
 しかしながら、図8に示す第1の回路基板56の撮像素子56a実装面とは反対側の裏面には、例えば、撮像素子56aから電気信号を取り出すための信号処理用半導体素子などの電子部品56bが実装されており、この信号処理用半導体素子も発熱部品の一つであるが、放熱器57のフィンベースに対向する第1の回路基板56のM部またはN部に実装されているため、放熱器57に遮られて、ファン59からの冷却風が電子部品56bには供給されず、電子部品56bの温度が高温となってしまうという問題があった。
As described above, the conventional video camera 100 is provided with the radiator 57 for cooling the image pickup element 56a which is the main heat generating component, and the cooling air from the fan 59 toward the radiation fin 57a of the radiator 57 is provided. The image pickup device 56a is cooled by jetting. The cooling air that has flowed upward along the radiation fins 57a of the radiator 57 passes through the chamber 60, cools the heat generating components 61a and the heat generating components 62a other than the image sensor 56a, and then is discharged to the outside.
However, for example, an electronic component 56b such as a signal processing semiconductor element for taking out an electric signal from the image sensor 56a is provided on the back surface of the first circuit board 56 shown in FIG. The signal processing semiconductor element is also one of the heat generating components, but since it is mounted on the M part or the N part of the first circuit board 56 facing the fin base of the radiator 57, heat dissipation is performed. There is a problem that the cooling air from the fan 59 is not supplied to the electronic component 56b by being blocked by the device 57, and the temperature of the electronic component 56b becomes high.
 また、第1の回路基板56に実装された主発熱部品以外の発熱部品である電子部品56bを冷却するために、電子部品56bと放熱器57との間に、例えば、シリコンゴム等で形成され、優れた熱伝導性を有する熱伝導シートを挟むことによって、電子部品56bから発生した熱を熱伝導シートを介して放熱器57に熱伝導させ、電子部品56bを冷却する方法がある。
 しかし、この場合、主発熱部品以外の発熱部品である電子部品56bの熱で放熱器57の温度が上昇してしまい、主発熱部品である撮像素子56aの温度を下げることが困難となるため、より冷却効果の高い放熱フィンや冷却用のファンが必要になり、それゆえ、冷却装置が大きくなったり、冷却電力も余分にかかってしまう欠点があった。
 また、主発熱部品以外の発熱部品である電子部品56bは、主発熱部品である撮像素子56aほど低い温度にする必要がないため、上記方法では電子部品56bを余分に冷却してしまうことになる。
 なお、主発熱部品である撮像素子56aにペルチェ素子を内蔵したり、または、撮像素子56aと放熱器57との間にペルチェ素子を挟むよう構成して撮像素子56aから放熱器57への放熱を強制的に行わせるような場合には、放熱器57での冷却効率の低下が更に顕著に現れる。
 ここで、主発熱部品以外の発熱部品としては、上記した発熱部品61a、発熱部品62a、電子部品56b以外にも、冷却が必要な電子部品が存在する場合がある。
Further, in order to cool the electronic component 56b which is a heat generating component other than the main heat generating component mounted on the first circuit board 56, it is formed between the electronic component 56b and the radiator 57 by, for example, silicon rubber or the like. There is a method of cooling the electronic component 56b by sandwiching a heat conductive sheet having excellent heat conductivity so that the heat generated from the electronic component 56b is conducted to the radiator 57 through the heat conductive sheet.
However, in this case, the heat of the electronic component 56b, which is a heat generating component other than the main heat generating component, increases the temperature of the radiator 57, making it difficult to reduce the temperature of the image sensor 56a, which is the main heat generating component. There is a drawback in that a cooling fin having a higher cooling effect and a cooling fan are required, and therefore the cooling device becomes large and extra cooling power is applied.
In addition, since the electronic component 56b that is a heat generating component other than the main heat generating component does not need to be as low as the imaging element 56a that is the main heat generating component, the electronic component 56b is excessively cooled by the above method. .
It should be noted that a Peltier element is built in the image sensor 56a which is a main heat generating component, or a Peltier element is sandwiched between the image sensor 56a and the heat radiator 57 to dissipate heat from the image sensor 56a to the heat radiator 57. In the case where it is forcibly performed, the cooling efficiency of the radiator 57 is further reduced.
Here, as the heat generating components other than the main heat generating components, there may be electronic components that need to be cooled in addition to the heat generating components 61a, the heat generating components 62a, and the electronic components 56b.
 本発明はこの様な問題を解決するためになされたもので、主発熱部品と主発熱部品以外の発熱部品を別々に冷却可能とすることにより、主発熱部品の必要な冷却性能を確保しつつ、主発熱部品以外の発熱部品を冷却することが可能な電子装置を提供することを目的とする。 また、正常な動作のために求められる温度が異なる複数の発熱部品が搭載された電子装置において、冷却風を複数の発熱部品それぞれに適量行き渡るよう流通させることにより、主発熱部品の必要な冷却性能を確保しつつ、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱することが可能な電子装置を提供することを目的とする。 The present invention has been made to solve such a problem, and it is possible to separately cool the main heat generating component and the heat generating component other than the main heat generating component, while ensuring the necessary cooling performance of the main heat generating component. An object of the present invention is to provide an electronic device capable of cooling a heat generating component other than the main heat generating component. In addition, in electronic devices equipped with multiple heat generating components that require different temperatures for normal operation, the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is an object of the present invention to provide an electronic device that can efficiently dissipate heat from a plurality of heat generating components generated inside a housing while ensuring the above.
 上記目的を達成するための本発明に係る電子装置は、放熱フィン部とフィンベースから構成される装置内の第一の発熱部品を冷却するための放熱器と、前記放熱フィン部に送出する冷却風を発生させる送風部と、を備えた電子装置において、前記送風部からの前記冷却風が前記放熱器の前記放熱フィン部側へ向かって流れて衝突噴流が形成される第一の流路と、前記送風部からの前記冷却風の一部が前記放熱器の外側を通過する第二の流路と、前記第二の流路を通過した冷却風が前記放熱器の前記フィンベース側を通過する第三の流路と、で形成された冷却構造を有し、前記フィンベースに熱伝導可能に接触された第一の発熱部品は前記放熱器を介して前記第一の流路を流れる冷却風により冷却され、前記第三の流路上に取り付けられた第二の発熱部品は前記第三の流路を流れる冷却風により冷却されることを特徴とする。 In order to achieve the above object, an electronic device according to the present invention includes a radiator for cooling the first heat-generating component in the device composed of a radiating fin portion and a fin base, and cooling sent to the radiating fin portion. A first flow path in which an impinging jet is formed by the cooling air from the blower section flowing toward the heat radiating fin section of the radiator. , A second flow path in which a part of the cooling air from the blower passes through the outside of the radiator, and a cooling air that has passed through the second flow path passes through the fin base side of the radiator. A first heat-generating component that is in contact with the fin base so as to be able to conduct heat is cooled through the first flow path via the radiator. Cooled by wind and mounted on the third flow path The heat-generating components, characterized in that it is cooled by cooling air flowing through the third flow passage.
 また、上記目的を達成するための本発明に係る電子装置は、前記フィンベースに対向する位置に、前記第二の流路の冷却風が前記第三の流路に導風されるよう回路基板が配置され、前記第三の流路は、前記フィンベースと前記回路基板との間隙によって形成されることを特徴とする。
 また、上記目的を達成するための本発明に係る電子装置は、前記第一の発熱部品及び前記第二の発熱部品は、前記回路基板に実装されることを特徴とする。
 また、上記目的を達成するための本発明に係る電子装置は、前記第一の発熱部品及び前記第二の発熱部品は、異なる温度に冷却可能であることを特徴とする。
 また、上記目的を達成するための本発明に係る電子装置は、前記第一の発熱部品は、前記第二の発熱部品よりも発熱量が大きいことを特徴とする。
In addition, the electronic device according to the present invention for achieving the above object is a circuit board in which the cooling air of the second flow path is guided to the third flow path at a position facing the fin base. And the third flow path is formed by a gap between the fin base and the circuit board.
In addition, the electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component and the second heat generating component are mounted on the circuit board.
The electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component and the second heat generating component can be cooled to different temperatures.
The electronic device according to the present invention for achieving the above object is characterized in that the first heat generating component has a larger amount of heat generation than the second heat generating component.
 また、上記目的を達成するための本発明に係る電子装置は、前記送風部は、前記放熱器に対して偏芯して設置されることを特徴とする。
 また、上記目的を達成するための本発明に係る電子装置は、前記送風部は、前記放熱器より大きい外径とすることを特徴とする。
Moreover, the electronic device according to the present invention for achieving the above object is characterized in that the air blowing section is installed eccentrically with respect to the radiator.
Moreover, the electronic device according to the present invention for achieving the above object is characterized in that the blower portion has an outer diameter larger than that of the radiator.
 また、上記目的を達成するための本発明に係る電子装置は、前記放熱フィン部と前記送風部との間にダクト部を配置し、前記ダクト部に設けた開口部により、前記第一の流路と前記第二の流路を形成することを特徴とする。また、上記目的を達成するための本発明に係る電子装置は、前記放熱器は、前記放熱フィン部の底面を塞ぐ構造とし、前記ダクト部の下方に設けた前記開口部から、前記送風部からの前記冷却風を前記放熱フィン部の下方に衝突させ、前記冷却風が前記放熱フィン部の間隙を通って下方から上方へ流れることを特徴とする。 According to another aspect of the present invention, there is provided an electronic device according to the present invention, wherein a duct portion is disposed between the heat radiating fin portion and the air blowing portion, and the first flow is provided by an opening provided in the duct portion. A path and the second flow path are formed. Further, in the electronic device according to the present invention for achieving the above object, the radiator is configured to block a bottom surface of the radiating fin portion, from the opening provided below the duct portion, from the air blowing portion. The cooling air is caused to collide with the lower side of the radiating fin portion, and the cooling air flows from the lower side to the upper side through the gap of the radiating fin portion.
 また、上記目的を達成するための本発明に係る電子装置は、前記放熱フィン部から冷却風が上昇し、上面基板に配置された第三の発熱部品を冷却することを特徴とする。
 また、上記目的を達成するための本発明に係る電子装置は、前記第二の流路からの冷却風のうち、前記第三の流路に流入しなかった冷却風が通過する第四の流路を備え、前記第四の流路上に第四の発熱部品を備えることを特徴とする。
The electronic device according to the present invention for achieving the above object is characterized in that the cooling air rises from the radiating fin portion and cools the third heat generating component disposed on the upper surface substrate.
According to another aspect of the present invention, there is provided an electronic device according to a fourth flow of the cooling air from the second flow path through which the cooling air that has not flowed into the third flow path passes. And a fourth heat generating component on the fourth flow path.
 また、上記目的を達成するための本発明に係る電子装置は、主発熱部品と主発熱部品以外の発熱部品が実装された第一の回路基板と、前記主発熱部品の放熱を促進させるために、前記主発熱部品に熱伝導可能に接触されたフィンベースと前記フィンベースの反対側に形成された放熱フィン部とを有する放熱器と、前記放熱フィン部に送出する冷却風を発生させる送風器と、前記放熱フィン部と前記送風器との間に配置され、前記送風器から前記放熱フィンに送出する前記冷却風の流路を形成する開口部を有するダクトとを備え、前記主発熱部品以外の発熱部品が、前記主発熱部品と前記放熱器の前記フィンベースと熱伝導可能に接触された前記第一の回路基板面に実装される電子装置であって、前記ダクトの前記開口部の大きさが前記放熱フィン部より片側に食み出すよう構成する一方、前記第一の回路基板が、前記ダクトの前記開口部と同方向に、前記放熱フィン部より片側に食み出すよう構成し、前記送風器からの前記冷却風が、前記ダクトの前記開口部を通過して前記放熱フィン部に噴射される第一の流路と、前記ダクトの前記開口部の食み出した箇所を通過した前記冷却風の一部が前記放熱フィン部の外側を通るよう噴射される第二の流路とに分かれて流通し、前記第二の流路で流通した前記冷却風の一部が、前記第一の回路基板に衝突した後、前記第一の回路基板と前記放熱器の前記フィンベースとの間隙に流入し前記主発熱部品以外の発熱部品を冷却する第三の流路となることを特徴とする。 In order to achieve the above object, an electronic device according to the present invention includes a first circuit board on which a main heat generating component and a heat generating component other than the main heat generating component are mounted, and the heat dissipation of the main heat generating component. A radiator having a fin base that is in contact with the main heat-generating component so as to conduct heat, and a radiating fin portion formed on the opposite side of the fin base, and a blower that generates cooling air to be sent to the radiating fin portion And a duct having an opening that is disposed between the radiating fin portion and the blower and that forms a flow path for the cooling air that is sent from the blower to the radiating fin. The heat generating component is an electronic device mounted on the surface of the first circuit board in contact with the main heat generating component and the fin base of the radiator so as to be capable of conducting heat, and the size of the opening of the duct Said heat dissipation The first circuit board is configured to protrude from one side of the heat sink fin portion in the same direction as the opening of the duct, and the blower is configured to protrude from the fin portion to one side. The cooling air from which the cooling air has passed through the opening of the duct and injected into the heat radiating fin portion, and the cooling air that has passed through the protruding portion of the opening of the duct A part of the cooling air is divided into a second flow path that is injected so as to pass through the outside of the heat radiating fin portion, and a part of the cooling air that has flowed through the second flow path is the first circuit. After colliding with the substrate, it flows into the gap between the first circuit board and the fin base of the radiator to form a third flow path for cooling the heat generating components other than the main heat generating components.
 また、上記目的を達成するための本発明に係る電子装置は、前記主発熱部品が撮像素子であり、前記主発熱部品以外の発熱部品が前記撮像素子から電気信号を取り出すための信号処理用半導体素子を含むことを特徴とする。 According to another aspect of the present invention, there is provided an electronic apparatus according to the present invention, wherein the main heat generating component is an image sensor, and a heat generating component other than the main heat generating component extracts an electric signal from the image sensor. It is characterized by including an element.
 以上説明したように、本発明によれば、主発熱部品と主発熱部品以外の発熱部品を別々に冷却可能とすることにより、主発熱部品の冷却性能に影響を与えずに主発熱部品以外の発熱部品を冷却することができる。また、正常な動作のために求められる温度が異なる複数の発熱部品が搭載された電子装置において、冷却風を複数の発熱部品それぞれに適量行き渡るよう流通させることにより、主発熱部品の必要な冷却性能を確保しつつ、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱することができる。 As described above, according to the present invention, the main heat generating component and the heat generating component other than the main heat generating component can be separately cooled, so that the cooling performance of the main heat generating component is not affected. The heat generating component can be cooled. In addition, in electronic devices equipped with multiple heat generating components that require different temperatures for normal operation, the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is possible to efficiently dissipate heat from a plurality of heat generating components generated inside the housing while ensuring the above.
本発明を適用した実施形態1に係る電子装置の一例を示す外観斜視図である。(a)は前方斜視図であり、(b)は後方斜視図である。It is an external appearance perspective view which shows an example of the electronic device which concerns on Embodiment 1 to which this invention is applied. (A) is a front perspective view, (b) is a rear perspective view. 本発明を適用した実施形態1に係る電子装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the electronic device which concerns on Embodiment 1 to which this invention is applied. 図1におけるビデオカメラ1のレンズ部18の中心を通る鉛直面に沿ったF-F断面を示す図である。FIG. 2 is a view showing a cross section taken along line FF along a vertical plane passing through the center of a lens unit 18 of the video camera 1 in FIG. 図1におけるビデオカメラ1の水平面のE-E断面を示す図である。FIG. 2 is a diagram showing an EE cross section of a horizontal plane of the video camera 1 in FIG. 1. 図1におけるビデオカメラ1の鉛直面のG-G断面を示す図である。It is a figure which shows the GG cross section of the vertical surface of the video camera 1 in FIG. 本発明を適用した実施形態1に係る電子装置におけるファンから吐出された冷却風の流れを説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the flow of the cooling air discharged from the fan in the electronic device which concerns on Embodiment 1 to which this invention is applied. 従来のビデオカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the conventional video camera. 図7におけるビデオカメラ100のレンズ部55の中心を通る鉛直面に沿ったK-K断面を示す図である。It is a figure which shows the KK cross section along the vertical plane which passes along the center of the lens part 55 of the video camera 100 in FIG.
<実施形態1>[電子装置の構成]  以下、本発明を適用した実施形態1に係る電子装置の構成について、図1~図5を参照して詳細に説明する。なお、本例では、本発明を適用した実施形態1に係る電子装置をビデオカメラとして説明する。
 図1は、本発明を適用した実施形態1に係る電子装置の一例を示す外観斜視図であり、(a)は前方斜視図であり、(b)は後方斜視図である。図2は、本発明を適用した実施形態1に係る電子装置の構成を示す分解斜視図である。図3は、図1におけるビデオカメラ1のレンズ部18の中心を通る鉛直面に沿ったF-F断面を示す図である。図4は、図1におけるビデオカメラ1の水平面のE-E断面を示す図である。また、図5は、図1におけるビデオカメラ1の鉛直面のG-G断面を示す図である。
<Embodiment 1> [Configuration of Electronic Device] Hereinafter, the configuration of an electronic device according to Embodiment 1 to which the present invention is applied will be described in detail with reference to FIGS. In this example, the electronic apparatus according to the first embodiment to which the present invention is applied will be described as a video camera.
1A and 1B are external perspective views showing an example of an electronic apparatus according to Embodiment 1 to which the present invention is applied. FIG. 1A is a front perspective view, and FIG. 1B is a rear perspective view. FIG. 2 is an exploded perspective view showing the configuration of the electronic apparatus according to the first embodiment to which the present invention is applied. FIG. 3 is a diagram showing an FF section along a vertical plane passing through the center of the lens portion 18 of the video camera 1 in FIG. FIG. 4 is a diagram showing an EE cross section of the horizontal plane of the video camera 1 in FIG. FIG. 5 is a diagram showing a GG section of the vertical plane of the video camera 1 in FIG.
 本発明を適用した実施形態1に係る電子装置としてのビデオカメラ1は、図1~図5に示すように、筐体底板15と、筐体底板15に立設された6つの支柱17とを有し、フロントパネル10、基板取付金具(3)11、基板取付金具(4)12、リアパネル13、基板取付金具(2)26、トップフレーム14、及び筐体カバー16がそれぞれ支柱17にネジ締結されることで、筐体構造を成している。
 基板取付金具(3)11には発熱部品24aが実装された第3の回路基板24が固定され、基板取付金具(2)26には発熱部品23aが実装された第2の回路基板23が固定され、また、基板取付金具(4)12には第4の回路基板25が固定されている。
 リアパネル13にはファン22とフィルタ28が取り付けられ、リアパネル13はファン22が動作した時に外気を吸入するための開口部13aを有している。
As shown in FIGS. 1 to 5, the video camera 1 as the electronic apparatus according to the first embodiment to which the present invention is applied includes a housing bottom plate 15 and six support columns 17 erected on the housing bottom plate 15. The front panel 10, the board mounting bracket (3) 11, the board mounting bracket (4) 12, the rear panel 13, the board mounting bracket (2) 26, the top frame 14, and the housing cover 16 are each screwed to the column 17. As a result, a housing structure is formed.
The third circuit board 24 on which the heat generating component 24a is mounted is fixed to the board mounting bracket (3) 11, and the second circuit board 23 on which the heat generating component 23a is mounted is fixed to the board mounting bracket (2) 26. The fourth circuit board 25 is fixed to the board mounting bracket (4) 12.
A fan 22 and a filter 28 are attached to the rear panel 13, and the rear panel 13 has an opening 13 a for sucking outside air when the fan 22 operates.
 また、ビデオカメラ1の筐体内には、レンズ部18と、第1の回路基板19と、放熱器20と、ダクト21と、金具27とが取り付けられている。
 第1の回路基板19には、図3及び図4に示すように、主発熱部品である撮像素子19aと、撮像素子19a実装面とは異なる面に、撮像素子19aから電気信号を取り出すための信号処理用半導体素子等の主発熱部品以外の発熱部品19bが実装されている。
 放熱器20は、フィンベースの一部が第1の回路基板19に設けた角穴を通り撮像素子19aの裏面に密着するように取り付けられ、また、フィンベースの反対側に、左右方向に並んで立設された複数の放熱フィン20aを有している。なお、放熱器20は、撮像素子19aに対して熱伝導可能に接触するようにすればよい。
 ダクト21は、ファン22から吐出された冷却風を圧縮して圧力を高め、放熱器20の放熱フィン20a等に向かって噴射するための開口部21aを有している。
 金具27は、放熱器20の放熱フィン20aの下端を塞ぐための金具である。
In addition, a lens unit 18, a first circuit board 19, a radiator 20, a duct 21, and a metal fitting 27 are attached in the casing of the video camera 1.
As shown in FIGS. 3 and 4, the first circuit board 19 has an image pickup device 19a that is a main heat generating component and a surface for taking out an electric signal from the image pickup device 19a on a surface different from the mounting surface of the image pickup device 19a. A heat generating component 19b other than the main heat generating component such as a signal processing semiconductor element is mounted.
The radiator 20 is attached so that a part of the fin base passes through a square hole provided in the first circuit board 19 and is in close contact with the back surface of the image sensor 19a, and is arranged in the left-right direction on the opposite side of the fin base. The plurality of radiating fins 20a are provided upright. The radiator 20 may be in contact with the image sensor 19a so as to be capable of conducting heat.
The duct 21 has an opening 21 a for compressing the cooling air discharged from the fan 22 to increase the pressure and injecting it toward the heat radiating fins 20 a of the heat radiator 20.
The metal fitting 27 is a metal fitting for closing the lower end of the radiation fin 20 a of the radiator 20.
 また、図4に示すように、ファン22は、撮像素子19aを冷却するために設けられた放熱器20の放熱フィン20aの中心線に対し右方向にずらして、または偏芯させて配置され、また、図4及び図5に示すように、ダクト21の開口部21aの左右方向の幅(H2)を放熱フィン20aの左右方向の幅(H1)より広めに設定し、ダクト21の開口部21aが放熱フィン20aの右端から食み出すようにする(図5のP部(格子部))。これによって、ファン22から吐出された冷却風がダクト21内で圧力が高められ、ダクト21の開口部21aから放熱フィン20aに向かって噴出される冷却風W1と、ダクト21の開口部21aのP部(格子部)から放熱フィン20aの右外側を通過し、第1の回路基板19の右端に衝突して左方向に流れる冷却風W2と、ダクト21の開口部21aのP部(格子部)から放熱フィン20aの右外側を通過し、第1の回路基板19の右端に衝突して右方向に流れ、更に曲がりながら前方に直進する冷却風W3となるよう構成されている。
 なお、本実施例においては、ファン22を放熱フィン20aの中心線に対し右方向にずらして、または偏芯させて配置する構成としているが、放熱フィン20aよりも大きいサイズのファンを使用することによって、放熱フィン20aの中心線とファンの中心線が一致するように配置し、ダクトの開口部のみ上記のように設定してもよく、偏芯させて尚且つファンのサイズを放熱フィン20aよりも大きくしてもよい。
 また、本実施例では、図5に示すように、放熱フィン20aの上下方向の高さ(H3)に対し、ダクト21の開口部21aの上下方向の高さ(H4)は約1/2で示しており、下半分開口する構造となっているが、ダクト21の開口部21aを通過して放熱フィン20aに向かって噴出された冷却風W1が放熱フィン20a全体に満遍なく流れる大きさであればよい。
Further, as shown in FIG. 4, the fan 22 is arranged to be shifted to the right or eccentric with respect to the center line of the radiation fin 20a of the radiator 20 provided to cool the imaging element 19a. 4 and 5, the width (H2) of the opening 21a of the duct 21 is set wider than the width (H1) of the radiating fin 20a in the left-right direction, and the opening 21a of the duct 21 is set. Is projected from the right end of the radiating fin 20a (P portion (lattice portion in FIG. 5)). Accordingly, the pressure of the cooling air discharged from the fan 22 is increased in the duct 21, and the cooling air W <b> 1 ejected from the opening 21 a of the duct 21 toward the heat radiation fin 20 a and the P of the opening 21 a of the duct 21. The cooling air W2 that passes through the right outer side of the radiating fin 20a from the part (lattice part), collides with the right end of the first circuit board 19 and flows in the left direction, and the P part (lattice part) of the opening 21a of the duct 21 The cooling wind W3 passes through the right outer side of the heat radiating fin 20a, collides with the right end of the first circuit board 19, flows in the right direction, and further advances straight while being bent.
In the present embodiment, the fan 22 is arranged so as to be shifted rightward or eccentric with respect to the center line of the radiating fin 20a, but a fan having a size larger than that of the radiating fin 20a should be used. May be arranged so that the center line of the radiating fin 20a coincides with the center line of the fan, and only the opening portion of the duct may be set as described above. May be larger.
Further, in this embodiment, as shown in FIG. 5, the vertical height (H4) of the opening 21a of the duct 21 is about 1/2 with respect to the vertical height (H3) of the radiating fin 20a. Although it has a structure in which the lower half is opened, the cooling air W1 that has passed through the opening 21a of the duct 21 and is ejected toward the radiating fins 20a has a size that flows evenly throughout the radiating fins 20a. Good.
[電子装置の冷却方法]  次に、本発明を適用した実施形態1に係る電子装置の冷却方法について、図3~図6を参照して詳細に説明する。なお、図6は、本発明を適用した実施形態1に係る電子装置におけるファンから吐出された冷却風の流れを説明するための分解斜視図である。本実施形態1においては、図6に示すように、ファン22が動作することにより、前方に向かって冷却風が発生する。また、図3~図6において、ファン22から吐出された冷却風のその後の各流れを白抜きの矢印で示している。
 本発明を適用した実施形態1に係る電子装置としてのビデオカメラ1では、図6に示すように、ファン22が動作すると、リアパネル13に取り付けたフィルタ28を介してリアパネル13の開口部13aから外気Wが導入され、ファン22から吐出された冷却風はファン22と放熱フィン20aとの間に配置したダクト21内に流入し、ダクト21内部で圧縮されて圧力が高められ、圧力が高められた冷却風はダクト21下部に設けた開口部21aから噴出される。
[Electronic Device Cooling Method] Next, the electronic device cooling method according to the first embodiment to which the present invention is applied will be described in detail with reference to FIGS. FIG. 6 is an exploded perspective view for explaining the flow of cooling air discharged from the fan in the electronic apparatus according to the first embodiment to which the present invention is applied. In the first embodiment, as shown in FIG. 6, when the fan 22 operates, cooling air is generated forward. 3 to 6, the subsequent flows of the cooling air discharged from the fan 22 are indicated by white arrows.
In the video camera 1 as an electronic apparatus according to the first embodiment to which the present invention is applied, as shown in FIG. 6, when the fan 22 operates, the outside air is passed through the opening 13a of the rear panel 13 via the filter 28 attached to the rear panel 13. W is introduced, and the cooling air discharged from the fan 22 flows into the duct 21 disposed between the fan 22 and the heat radiating fin 20a and is compressed inside the duct 21 to increase the pressure, thereby increasing the pressure. The cooling air is ejected from an opening 21 a provided in the lower part of the duct 21.
 ダクト21の下方に設けた開口部21aから放熱フィン20aに向かって噴出された冷却風W1は、図3、図4及び図6に示すように、放熱フィン20aの下端が金具27によって塞がれているため、衝突噴流となって放熱フィン20a並びに放熱フィン20aの間隙に当たり、放熱フィン57aに沿って下方から上方へと流れる。これにより、放熱器20のフィンベースに密着して配置された主発熱部品である撮像素子19aが冷却される。
 なお、図3に示すように、放熱フィン20aに沿って上方へ流れた冷却風W1が後方のファン22の方へ行かないようにダクト21の上方の壁によって天井部を塞ぐ構造としている。
 また、放熱フィン20に沿って上方へ流れた冷却風W1は、図3に示すように、筐体上部に配置された第2の回路基板23に衝突し、筐体前方及び筐体左右方向へと流れ、第2の回路基板23に実装された発熱部品23aの冷却を行いつつ筐体左右側面を通って下方へと流れ、筐体の左右両側面及び筐体底面に設けた筐体側面排気口16a及び筐体底面排気口15aより筐体の外部へ放出される。
As shown in FIGS. 3, 4, and 6, the cooling air W <b> 1 ejected from the openings 21 a provided below the duct 21 toward the heat radiating fins 20 a is closed by the metal fittings 27 at the lower ends of the heat radiating fins 20 a. Therefore, it becomes a collision jet, hits the gap between the heat radiation fin 20a and the heat radiation fin 20a, and flows from below to above along the heat radiation fin 57a. As a result, the image sensor 19a, which is the main heat generating component arranged in close contact with the fin base of the radiator 20, is cooled.
In addition, as shown in FIG. 3, it is set as the structure which blocks the ceiling part with the wall above the duct 21 so that the cooling air W1 which flowed upward along the radiation fin 20a does not go to the fan 22 of the back.
Further, as shown in FIG. 3, the cooling air W <b> 1 that has flowed upward along the radiation fins 20 collides with the second circuit board 23 disposed at the upper part of the casing, and forwards the casing and in the lateral direction of the casing. And flows downward through the left and right sides of the casing while cooling the heat generating component 23a mounted on the second circuit board 23, and exhausts the side of the casing provided on the left and right sides of the casing and the bottom of the casing. It is discharged to the outside of the housing through the opening 16a and the housing bottom surface exhaust port 15a.
 また、図4~図6に示すように、ダクト21内部で圧力が高められ、ダクト21の開口部21aのP部(格子部)から放熱フィン20a右外側を通過して噴出された冷却風は、冷却風W2及び冷却風W3となり、冷却風W2は、放熱フィン20aの右外側を通過した後、図4及び図5に示すように、第1の回路基板19に衝突して左方向に流れて放熱器20のフィンベース側へ回り込み、さらにフィンベースと第1の回路基板19との間隙を流れて第1の回路基板19の発熱部品19bの冷却を行いつつ、筐体左側面に設けた筐体側面排気口16aより筐体の外部へ放出される。
 一方、冷却風W3は、放熱フィン20aの右側を通過した後、図4及び図5に示すように、第1の回路基板19に衝突して右方向に流れ、更に曲がりながら前方に直進し、前方に配置された第3の回路基板24の発熱部品24aを冷却しつつ、筐体右側面及び筐体底面に設けた筐体側面排気口16a及び筐体底面排気口15aより外部へ放出される。
 尚、冷却風W3の進行方向を全て遮るような位置まで第1の回路基板19が延伸している場合には、第1の回路基板19に衝突した冷却風W3のうち右方向に流れた冷却風が更に曲がりながら前方に直進し、第3の回路基板24の発熱部品24aを冷却する。一方、冷却風W3の進行方向を一部遮るような位置に第1の回路基板19が延伸している場合には、第1の回路基板19に衝突せずに前方にほぼ直進した冷却風と、一部衝突した冷却風W3のうち右方向に流れて更に曲がりながら前方に直進した冷却風が、第3の回路基板24の発熱部品24aを冷却する。
As shown in FIGS. 4 to 6, the pressure is increased inside the duct 21, and the cooling air blown out from the P portion (lattice portion) of the opening 21a of the duct 21 through the right outer side of the radiating fin 20a is The cooling air W2 and the cooling air W3 pass through the right outer side of the radiating fin 20a, and then collide with the first circuit board 19 and flow in the left direction as shown in FIGS. The heat sink 20 wraps around the fin base side, and further flows through the gap between the fin base and the first circuit board 19 to cool the heat generating component 19b of the first circuit board 19, and is provided on the left side of the housing. It is discharged to the outside of the housing from the housing side exhaust port 16a.
On the other hand, the cooling air W3 passes through the right side of the heat radiating fin 20a, and then collides with the first circuit board 19 and flows in the right direction as shown in FIGS. While cooling the heat generating component 24a of the third circuit board 24 disposed in front, the heat generating component 24a is discharged to the outside from the case side exhaust port 16a and the case bottom exhaust port 15a provided on the right side surface and the bottom surface of the case. .
Note that when the first circuit board 19 extends to a position that blocks the traveling direction of the cooling air W3, the cooling air flowing in the right direction among the cooling air W3 colliding with the first circuit board 19 is cooled. While the wind is further bent, the wind goes straight forward to cool the heat generating component 24a of the third circuit board 24. On the other hand, when the first circuit board 19 extends in a position that partially blocks the traveling direction of the cooling air W3, the cooling air that has traveled substantially straight forward without colliding with the first circuit board 19 Of the cooling air W3 that has partially collided, the cooling air that has flowed in the right direction and traveled straight forward and further straight forward cools the heat generating component 24a of the third circuit board 24.
 以上説明したように、本発明によれば、回路基板に実装された主発熱部品に放熱器のフィンベースを密着させ、前記放熱器のフィンベースの反対側に設けた放熱フィンの正面から放熱フィンに向かって冷却風を噴射して主発熱部品を冷却する電子装置において、主発熱部品以外の発熱部品が回路基板上に実装され、放熱フィンへの冷却風の一部を回路基板に衝突させて、冷却風を回路基板上面空間に誘導することにより、主発熱部品の必要な冷却性能を確保しつつ、主発熱部品以外の発熱部品を冷却することができる。また、冷却風を正常な動作のために求められる温度が異なる複数の発熱部品それぞれに適量行き渡るよう流通させることにより、主発熱部品の必要な冷却性能を確保しつつ、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱することができる。 As described above, according to the present invention, the fin base of the radiator is brought into close contact with the main heat generating component mounted on the circuit board, and the radiation fin from the front surface of the radiation fin provided on the opposite side of the fin base of the radiator. In an electronic device that cools main heat generating components by injecting cooling air toward the heat generating component, heat generating components other than the main heat generating component are mounted on the circuit board, and a part of the cooling air to the heat radiating fins collides with the circuit board. By guiding the cooling air to the upper surface space of the circuit board, it is possible to cool the heat generating components other than the main heat generating components while ensuring the necessary cooling performance of the main heat generating components. In addition, the cooling air is distributed to each of a plurality of heat generating parts having different temperatures required for normal operation so that the cooling air is distributed in an appropriate amount, thereby ensuring the necessary cooling performance of the main heat generating parts and the plurality of air generated inside the housing. It is possible to efficiently dissipate heat from the heat generating parts.
<他の実施形態>  以下、本発明を適用した他の実施形態に係る電子装置について、詳細に説明する。
 本発明を適用した他の実施形態に係る電子装置は、本発明の実施形態1に係る電子装置に対して、例えば、以下の特徴を有するものである。(1)撮像素子19aは、実施形態1に示した配置関係であればよく、第1の回路基板19に実装せずに、他の部品に取り付けた構成としてもよい。(2)放熱フィン20aとダクト21の開口部21a及びファン22との位置関係は、複数の発熱熱部品の位置に合わせて決めればよく、本実施形態1の配置に限定されない。(3)主発熱部品である撮像素子19aにペルチェ素子を内蔵させたり、または、撮像素子19aと放熱器20との間にペルチェ素子を挟むよう構成してもよく、この場合、ペルチェ素子の放熱効果に影響を及ぼすことはない。
Other Embodiments Hereinafter, an electronic device according to another embodiment to which the present invention is applied will be described in detail.
An electronic device according to another embodiment to which the present invention is applied has, for example, the following characteristics with respect to the electronic device according to Embodiment 1 of the present invention. (1) The image sensor 19a may be in the arrangement relationship shown in the first embodiment, and may be configured to be mounted on other components without being mounted on the first circuit board 19. (2) The positional relationship between the radiating fin 20a, the opening 21a of the duct 21 and the fan 22 may be determined according to the positions of the plurality of heat-generating components, and is not limited to the arrangement of the first embodiment. (3) A Peltier element may be built in the imaging element 19a which is the main heat generating component, or a Peltier element may be sandwiched between the imaging element 19a and the radiator 20, and in this case, heat dissipation of the Peltier element It does not affect the effect.
 以上説明したように、本発明によれば、主発熱部品の必要な冷却性能を確保しつつ、主発熱部品以外の発熱部品を冷却することができる。また、正常な動作のために求められる温度が異なる複数の発熱部品が搭載された電子装置において、冷却風を複数の発熱部品それぞれに適量行き渡るよう流通させることにより、主発熱部品の必要な冷却性能を確保しつつ、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱することができる。 As described above, according to the present invention, it is possible to cool a heat generating component other than the main heat generating component while ensuring the necessary cooling performance of the main heat generating component. In addition, in electronic devices equipped with multiple heat generating components that require different temperatures for normal operation, the cooling performance required for the main heat generating components is distributed by distributing the appropriate amount of cooling air to each of the multiple heat generating components. It is possible to efficiently dissipate heat from a plurality of heat generating components generated inside the housing while ensuring the above.
 要するに本発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.
 なお、本実施例では、本発明を適用した電子装置をビデオカメラとして説明したが、ビデオカメラに限らず、それぞれに発熱部品が実装された複数の回路基板を有し、それら複数の発熱部品をファンからの冷却風によって冷却する電子機器であれば、どの様な機器であっても本発明を適用することは可能である。 In this embodiment, the electronic device to which the present invention is applied is described as a video camera. However, the present invention is not limited to a video camera, and includes a plurality of circuit boards each having a heat generating component mounted thereon. The present invention can be applied to any electronic device that is cooled by cooling air from the fan.
 本発明は、冷却構造を有する電子装置に係り、例えば、複数の発熱部品が搭載された電子機器に用いられ、筐体内部で発生した複数の発熱部品からの熱を効率よく放熱することが必要な電子装置に適している。 The present invention relates to an electronic device having a cooling structure. For example, the present invention is used in an electronic device on which a plurality of heat generating components are mounted, and it is necessary to efficiently dissipate heat from the plurality of heat generating components generated inside the housing. Suitable for various electronic devices.
1:ビデオカメラ、10:フロントパネル、11:基板取付金具(3)、12:基板取付金具(4)、13:リアパネル、13a:開口部、14:トップフレーム、15:筐体底板、15a:筐体底面排気口、16:筐体カバー、16a:筐体側面排気口、17:支柱、18:レンズ部、19:第1の回路基板、19a:撮像素子、19b:発熱部品、20:放熱器、20a:放熱フィン、21:ダクト、21a:開口部、22:ファン、23:第2の回路基板、23a:発熱部品、24:第3の回路基板、24a:発熱部品、25:第4の回路基板、26:基板取付金具(2)、27:金具、28:フィルタ、50:フロントパネル、51:右側板、52:左側板、53:リアパネル、53a:開口部、54:筐体底板、55:レンズ部、56:第1の回路基板、56a:撮像素子、56b:電子部品、57:放熱器、57a:放熱フィン、58:ダクト、58a:開口部、59:ファン、60:チャンバー、60a:開口部、60b:開口部、61:第2の回路基板、61a:発熱部品、62:第3の回路基板、62a:発熱部品、63:仕切板、64:支柱、100:ビデオカメラ。  1: video camera, 10: front panel, 11: substrate mounting bracket (3), 12: substrate mounting bracket (4), 13: rear panel, 13a: opening, 14: top frame, 15: housing bottom plate, 15a: Housing bottom exhaust port, 16: housing cover, 16a: housing side surface exhaust port, 17: support column, 18: lens unit, 19: first circuit board, 19a: imaging device, 19b: heat generating component, 20: heat dissipation 20a: radiating fin, 21: duct, 21a: opening, 22: fan, 23: second circuit board, 23a: heat generating component, 24: third circuit board, 24a: heat generating component, 25: fourth Circuit board, 26: board mounting bracket (2), 27: metal fitting, 28: filter, 50: front panel, 51: right side plate, 52: left side plate, 53: rear panel, 53a: opening, 54: housing bottom plate 55: Lens part 6: first circuit board, 56a: imaging device, 56b: electronic component, 57: radiator, 57a: radiator fin, 58: duct, 58a: opening, 59: fan, 60: chamber, 60a: opening, 60b: opening, 61: second circuit board, 61a: heat generating component, 62: third circuit board, 62a: heat generating component, 63: partition plate, 64: support, 100: video camera.

Claims (13)

  1.  放熱フィン部とフィンベースから構成される装置内の第一の発熱部品を冷却するための放熱器と、前記放熱フィン部に送出する冷却風を発生させる送風部と、を備えた電子装置において、
     前記送風部からの前記冷却風が前記放熱器の前記放熱フィン部側へ向かって流れて衝突噴流が形成される第一の流路と、
     前記送風部からの前記冷却風の一部が前記放熱器の外側を通過する第二の流路と、
     前記第二の流路を通過した冷却風が前記放熱器の前記フィンベース側を通過する第三の流路と、が形成される冷却構造を有し、
     前記フィンベースに熱伝導可能に接触された第一の発熱部品は前記放熱器を介して前記第一の流路を流れる冷却風により冷却され、
     前記第三の流路上に取り付けられた第二の発熱部品は前記第三の流路を流れる冷却風により冷却されることを特徴とする電子装置。
    In an electronic device comprising: a radiator for cooling the first heat generating component in the apparatus composed of a radiation fin part and a fin base; and a blower part for generating cooling air to be sent to the radiation fin part.
    A first flow path in which the cooling air from the blower flows toward the heat dissipating fin portion of the radiator and a collision jet is formed;
    A second flow path in which a part of the cooling air from the blower part passes outside the radiator;
    A cooling structure in which cooling air that has passed through the second flow path passes through the fin base side of the radiator and a third flow path is formed;
    The first heat-generating component that is in contact with the fin base so as to conduct heat is cooled by cooling air flowing through the first flow path via the radiator,
    2. The electronic device according to claim 1, wherein the second heat generating component mounted on the third flow path is cooled by cooling air flowing through the third flow path.
  2.  前記フィンベースに対向する位置に、前記第二の流路の冷却風が前記第三の流路に導風されるよう回路基板が配置され、前記第三の流路は、前記フィンベースと前記回路基板との間隙によって形成されることを特徴とする請求項1に記載の電子装置。 A circuit board is disposed at a position facing the fin base so that the cooling air of the second flow path is guided to the third flow path, and the third flow path includes the fin base and the fin base. The electronic device according to claim 1, wherein the electronic device is formed by a gap with the circuit board.
  3.  前記第一の発熱部品及び前記第二の発熱部品は、前記回路基板に実装されることを特徴とする請求項2に記載の電子装置。 3. The electronic device according to claim 2, wherein the first heat generating component and the second heat generating component are mounted on the circuit board.
  4.  前記第一の発熱部品及び前記第二の発熱部品は、異なる温度に冷却可能であることを特徴とする請求項1乃至請求項3に記載の電子装置。 4. The electronic device according to claim 1, wherein the first heat generating component and the second heat generating component can be cooled to different temperatures.
  5.  前記第一の発熱部品は、前記第二の発熱部品よりも発熱量が大きいことを特徴とする請求項1乃至請求項4に記載の電子装置。 5. The electronic device according to claim 1, wherein the first heat generating component has a larger heat generation amount than the second heat generating component.
  6.  前記送風部は、前記放熱器に対して偏芯して設置されることを特徴とする請求項1乃至請求項5に記載の電子装置。 The electronic device according to any one of claims 1 to 5, wherein the air blowing unit is installed eccentrically with respect to the radiator.
  7.  前記送風部は、前記放熱器より大きい外径とすることを特徴とする請求項1乃至請求項6に記載の電子装置。 7. The electronic device according to claim 1, wherein the blower has an outer diameter larger than that of the radiator.
  8.  前記放熱フィン部と前記送風部との間にダクト部を配置し、前記ダクト部に設けた開口部により、前記第一の流路と前記第二の流路を形成することを特徴とする請求項1乃至請求項7に記載の電子装置。 A duct part is disposed between the heat radiating fin part and the air blowing part, and the first flow path and the second flow path are formed by an opening provided in the duct part. The electronic device according to claim 1.
  9.  前記放熱器は、前記放熱フィン部の底面を塞ぐ構造とし、
     前記ダクト部の下方に設けた前記開口部から、前記送風部からの前記冷却風を前記放熱フィン部の下方に衝突させ、前記冷却風が前記放熱フィン部の間隙を通って下方から上方へ流れることを特徴とする請求項8に記載の電子装置。
    The radiator has a structure for closing a bottom surface of the radiation fin portion,
    The cooling air from the air blower is caused to collide with the lower part of the radiating fin part from the opening provided below the duct part, and the cooling air flows from the lower part to the upper part through the gap of the radiating fin part. The electronic device according to claim 8.
  10.  前記放熱フィン部から冷却風が上昇し、上面基板に配置された第三の発熱部品を冷却することを特徴とする請求項1乃至請求項9に記載の電子装置。 10. The electronic device according to claim 1, wherein cooling air rises from the radiating fin portion to cool the third heat generating component disposed on the upper surface substrate.
  11.  前記第二の流路からの冷却風のうち、前記第三の流路に流入しなかった冷却風が通過する第四の流路を備え、前記第四の流路上に第四の発熱部品を備えることを特徴とする請求項1乃至請求項10に記載の電子装置。 Of the cooling air from the second flow path, a fourth flow path through which the cooling air that did not flow into the third flow path passes, and a fourth heat generating component is provided on the fourth flow path. The electronic device according to claim 1, further comprising: an electronic device according to claim 1;
  12.  主発熱部品と主発熱部品以外の発熱部品が実装された第一の回路基板と、前記主発熱部品の放熱を促進させるために、前記主発熱部品に熱伝導可能に接触されたフィンベースと前記フィンベースの反対側に形成された放熱フィン部とを有する放熱器と、前記放熱フィン部に送出する冷却風を発生させる送風器と、前記放熱フィン部と前記送風器との間に配置され、前記送風器から前記放熱フィンに送出する前記冷却風の流路を形成する開口部を有するダクトとを備え、前記主発熱部品以外の発熱部品が、前記主発熱部品と前記放熱器の前記フィンベースと熱伝導可能に接触された前記第一の回路基板面に実装される電子装置であって、
     前記ダクトの前記開口部の大きさが前記放熱フィン部より片側に食み出すよう構成する一方、前記第一の回路基板が、前記ダクトの前記開口部と同方向に、前記放熱フィン部より片側に食み出すよう構成し、
     前記送風器からの前記冷却風が、前記ダクトの前記開口部を通過して前記放熱フィン部に噴射される第一の流路と、前記ダクトの前記開口部の食み出した箇所を通過した前記冷却風の一部が前記放熱フィン部の外側を通るよう噴射される第二の流路とに分かれて流通し、
     前記第二の流路で流通した前記冷却風の一部が、前記第一の回路基板に衝突した後、前記第一の回路基板と前記放熱器の前記フィンベースとの間隙に流入し前記主発熱部品以外の発熱部品を冷却する第三の流路となることを特徴とする電子装置。
    A first circuit board on which a main heat generating component and a heat generating component other than the main heat generating component are mounted; a fin base in contact with the main heat generating component so as to conduct heat; A radiator having a radiating fin portion formed on the opposite side of the fin base, a blower for generating cooling air to be sent to the radiating fin portion, and being disposed between the radiating fin portion and the blower, A duct having an opening that forms a flow path of the cooling air that is sent from the blower to the heat radiating fin, and a heat generating component other than the main heat generating component is the main heat generating component and the fin base of the radiator. An electronic device mounted on the surface of the first circuit board that is in thermal conductivity contact with the circuit board,
    The size of the opening of the duct is configured to protrude to one side from the radiating fin portion, while the first circuit board is arranged on one side of the radiating fin portion in the same direction as the opening of the duct. Configured to protrude into
    The cooling air from the blower has passed through the opening of the duct and the first flow path that is jetted to the radiating fin, and the portion of the opening of the duct that protrudes. A part of the cooling air is divided and circulated into a second flow path that is jetted so as to pass outside the radiating fin portion,
    After a part of the cooling air flowing through the second flow path collides with the first circuit board, it flows into the gap between the first circuit board and the fin base of the radiator and enters the main circuit board. An electronic device, wherein the electronic device is a third flow path for cooling a heat generating component other than the heat generating component.
  13.  前記主発熱部品が撮像素子であり、前記主発熱部品以外の発熱部品が前記撮像素子から電気信号を取り出すための信号処理用半導体素子を含むことを特徴とする請求項12に記載の電子装置。   13. The electronic apparatus according to claim 12, wherein the main heat generating component is an image sensor, and a heat generating component other than the main heat generating component includes a signal processing semiconductor element for taking out an electric signal from the image sensor.
PCT/JP2014/070065 2013-08-19 2014-07-30 Electronic device WO2015025687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532789A JP6112745B2 (en) 2013-08-19 2014-07-30 Electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169651 2013-08-19
JP2013-169651 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025687A1 true WO2015025687A1 (en) 2015-02-26

Family

ID=52483468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070065 WO2015025687A1 (en) 2013-08-19 2014-07-30 Electronic device

Country Status (2)

Country Link
JP (1) JP6112745B2 (en)
WO (1) WO2015025687A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612874B (en) * 2015-11-16 2018-01-21 Azbil Corp Dashboard mounting bracket
WO2018053823A1 (en) * 2016-09-26 2018-03-29 深圳市大疆创新科技有限公司 Heat dispersion structure, and unmanned aerial vehicle provided with heat dispersion structure
JP2019091884A (en) * 2017-11-14 2019-06-13 キヤノンメディカルシステムズ株式会社 Electronic apparatus
WO2019119903A1 (en) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
US10855870B2 (en) * 2015-04-10 2020-12-01 Blackmagic Design Pty Ltd Digital video camera
EP3780922A4 (en) * 2018-03-27 2021-12-01 Kyocera Corporation Electronic equipment, imaging device, and mobile body
US20220240414A1 (en) * 2021-01-27 2022-07-28 Panasonic Intellectual Property Management Co., Ltd. Imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133338A (en) * 1987-11-18 1989-05-25 Mitsubishi Electric Corp Heat sink
JPH02277299A (en) * 1989-04-19 1990-11-13 Hitachi Ltd Air cooling structure of electronic apparatus
JPH08255855A (en) * 1995-03-17 1996-10-01 Nec Corp Multi-chip cooling device
JP2002329991A (en) * 2001-04-26 2002-11-15 Olympus Optical Co Ltd Electronic equipment provided with cooling structure
JP2004088023A (en) * 2002-08-29 2004-03-18 Toshiba Corp Cooling device for heat generating element in housing and power electronics equipment
JP2010041085A (en) * 2008-07-31 2010-02-18 Hitachi Kokusai Electric Inc Camera case

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133338A (en) * 1987-11-18 1989-05-25 Mitsubishi Electric Corp Heat sink
JPH02277299A (en) * 1989-04-19 1990-11-13 Hitachi Ltd Air cooling structure of electronic apparatus
JPH08255855A (en) * 1995-03-17 1996-10-01 Nec Corp Multi-chip cooling device
JP2002329991A (en) * 2001-04-26 2002-11-15 Olympus Optical Co Ltd Electronic equipment provided with cooling structure
JP2004088023A (en) * 2002-08-29 2004-03-18 Toshiba Corp Cooling device for heat generating element in housing and power electronics equipment
JP2010041085A (en) * 2008-07-31 2010-02-18 Hitachi Kokusai Electric Inc Camera case

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855870B2 (en) * 2015-04-10 2020-12-01 Blackmagic Design Pty Ltd Digital video camera
TWI612874B (en) * 2015-11-16 2018-01-21 Azbil Corp Dashboard mounting bracket
WO2018053823A1 (en) * 2016-09-26 2018-03-29 深圳市大疆创新科技有限公司 Heat dispersion structure, and unmanned aerial vehicle provided with heat dispersion structure
JP2019091884A (en) * 2017-11-14 2019-06-13 キヤノンメディカルシステムズ株式会社 Electronic apparatus
JP7280678B2 (en) 2017-11-14 2023-05-24 キヤノン株式会社 Electronics
WO2019119903A1 (en) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
EP3780922A4 (en) * 2018-03-27 2021-12-01 Kyocera Corporation Electronic equipment, imaging device, and mobile body
US11382230B2 (en) 2018-03-27 2022-07-05 Kyocera Corporation Electronic apparatus, imaging apparatus, and mobile body
EP4236337A3 (en) * 2018-03-27 2023-10-11 Kyocera Corporation Electronic equipment, imaging device, and mobile body
US20220240414A1 (en) * 2021-01-27 2022-07-28 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US11936966B2 (en) * 2021-01-27 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Imaging device with cooling mechanism

Also Published As

Publication number Publication date
JPWO2015025687A1 (en) 2017-03-02
JP6112745B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6112745B2 (en) Electronic equipment
EP3438740B1 (en) Image capturing module
US9277672B2 (en) Television, radiating member, and electronic apparatus
CN108513630B (en) Casing subassembly and have its shooting equipment
US20130206367A1 (en) Heat dissipating module
JP5649369B2 (en) Electronics
JP2007174526A (en) Heat radiation structure for portable electronic device
JP5295043B2 (en) Heat dissipation structure of electronic control unit
JP2017228876A (en) Imaging device
JP2008098432A (en) Heat-dissipating device of electronic component
JP2008235418A (en) Cooling device and electronic equipment equipped with the same
JP2021039966A (en) Electrical device and electronic control device
KR101419636B1 (en) Heat sink, and method for producing same
JP6156913B2 (en) Electronic equipment
TWI487474B (en) Electronic device
JP2006295855A (en) Cooling structure for video camera
WO2009157080A1 (en) Power supply unit
JP2009206951A (en) 3-ccd camera
JP2010283673A (en) Video camera provided with cooling function
WO2021095547A1 (en) Imaging device
JP2012044300A (en) Camera case
JP2011103393A (en) Structure for cooling base station
JP2014056958A (en) Electronic device
JP2012169875A (en) Video camera
JP2007250692A (en) Structure and method of mounting heat sink to substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837960

Country of ref document: EP

Kind code of ref document: A1