WO2015025519A1 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
WO2015025519A1
WO2015025519A1 PCT/JP2014/004256 JP2014004256W WO2015025519A1 WO 2015025519 A1 WO2015025519 A1 WO 2015025519A1 JP 2014004256 W JP2014004256 W JP 2014004256W WO 2015025519 A1 WO2015025519 A1 WO 2015025519A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
food
heating chamber
water film
boiler
Prior art date
Application number
PCT/JP2014/004256
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 龍太
片岡 章
梶浦 智彰
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112014003833.4T priority Critical patent/DE112014003833T5/en
Priority to CN201480041697.5A priority patent/CN106133448B/en
Priority to JP2015532710A priority patent/JP6421339B2/en
Publication of WO2015025519A1 publication Critical patent/WO2015025519A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/15General methods of cooking foods, e.g. by roasting or frying using wave energy, irradiation, electrical means or magnetic fields, e.g. oven cooking or roasting using radiant dry heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • H05B6/6479Aspects related to microwave heating combined with other heating techniques combined with convection heating using steam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing

Definitions

  • the present disclosure relates to a heating apparatus that heats and thaws frozen food, and heats the thawed food to a predetermined time or a predetermined temperature (hereinafter referred to as “thaw heating”).
  • a heating device there is a configuration in which water vapor is supplied to a heating chamber in which frozen food is stored, and the frozen food is thawed using condensation heat when water vapor condenses on the surface of the frozen food. It is disclosed (for example, see Patent Document 1).
  • the above conventional heating device is more efficient than blowing hot air on food, but only the surface temperature of the food rises, the rise in the internal temperature of the food is slow, and it takes several minutes to more than 10 minutes to complete the thawing. .
  • microwave heating In order to quickly raise the internal temperature of food, dielectric heating by microwaves, that is, microwave heating is suitable. For this reason, microwave ovens have been used to thaw frozen foods. However, since the conventional microwave oven only performs microwave heating, there is a large local difference in heating temperature, and it has been difficult to thaw the food uniformly.
  • this method is effective with respect to the food surface when performing uniform thawing, but is not very effective with respect to the inside of the food. This is because the dielectric loss of ice is less than one-thousandth of water, and the microwave irradiated to the frozen food penetrates the ice and is hardly absorbed by the food as heat.
  • the present disclosure solves the above-described conventional problems, and provides a heating apparatus that improves the absorption efficiency of microwaves in frozen foods and efficiently heats the frozen foods by thawing heating in a short time.
  • the purpose is to provide.
  • a heating device that heats and thaws frozen food, and includes a heating chamber that stores food inside, and a surface of the food.
  • a water film forming unit that supplies moisture to the heating chamber to form a water film
  • a microwave supply unit that supplies microwaves to the heating chamber to heat food
  • a water film forming unit that controls the microwave supply unit.
  • the control unit executes a first step of operating the water film forming unit, and executes a second step of operating the water film forming unit and the microwave supply unit after the first step.
  • the heating device of the present disclosure in thawing heating of frozen food, by supplying steam to the heating chamber to form a sufficient water film on the entire surface of the food, absorption of microwaves on the entire surface of the food Efficiency can be improved. As a result, uniform thawing heating without uneven heating becomes possible.
  • the microwave absorption efficiency in the food is improved before the microwave supply, a high-output microwave can be supplied from the start of the microwave supply. As a result, the thawing heating is completed in a short time.
  • FIG. 1 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the first embodiment of the present disclosure.
  • FIG. 2 is a control block diagram of the heating device according to the first embodiment of the present disclosure.
  • FIG. 3 is a time chart illustrating a thawing heating process in the heating apparatus according to the first embodiment of the present disclosure.
  • FIG. 4 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the second embodiment of the present disclosure.
  • FIG. 5 is a control block diagram of the heating device according to the second embodiment of the present disclosure.
  • FIG. 6 is a time chart illustrating a thawing heating process in the heating apparatus according to the second embodiment of the present disclosure.
  • FIG. 1 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the first embodiment of the present disclosure.
  • FIG. 2 is a control block diagram of the heating device according to the first embodiment of the present disclosure.
  • FIG. 3 is a time chart
  • FIG. 7 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the third embodiment of the present disclosure.
  • FIG. 8 is a control block diagram of the heating device according to the third embodiment of the present disclosure.
  • FIG. 9 is a time chart illustrating a thawing heating process in the heating apparatus according to the third embodiment of the present disclosure.
  • the heating device is a heating device that heats and thaws frozen food, in order to form a water film on the surface of the food heating chamber and the food inside Control the water film forming unit for supplying moisture to the heating chamber, the microwave supplying unit for supplying microwave to the heating chamber, the water film forming unit and the microwave supplying unit for microwave heating the food A control unit.
  • the control unit executes a first step of operating the water film forming unit, and executes a second step of operating the water film forming unit and the microwave supply unit after the first step.
  • a water film is formed on the entire surface of the food as the steam condenses.
  • the formed water film is heated by microwaves, so that the ice in contact with the water film is melted and the water film becomes thick. In this way, due to the synergistic effect of steam and microwaves, the entire surface of the food can be quickly covered with a necessary and sufficient water film.
  • control unit executes the third step of stopping the water film forming unit and operating the microwave supply unit after the second step. Is.
  • the absorption efficiency of microwaves on the entire surface of the food can be improved by the water film formed up to the second step. After that, by performing microwave heating in the third step, uniform thawing heating without heating unevenness becomes possible.
  • the microwave absorption efficiency in the food is improved before the microwave is supplied, a high-output microwave can be supplied from the start of the third step. As a result, the thawing heating is completed in a short time.
  • control unit executes the third step of stopping the microwave supply unit and operating the water film forming unit after the second step. Is.
  • only the water film forming part can be continuously operated to prevent the surface of the food having a poor texture due to drying or lack of moisture from being dried.
  • a heating device is the first aspect, further comprising a heater provided in the heating chamber for radiantly heating food, and controlled in the first step, the second step, and the third step. The part operates the heater.
  • the moisture on the surface of the food is evaporated by radiant heating, so that the food has a crunchy texture.
  • a heating apparatus is the heating apparatus according to the first aspect, further comprising: a preheater that preheats the inner wall of the heating chamber; and a temperature sensor that detects the temperature of the inner wall, and the control unit includes the preheater.
  • the preheating process for operating the is performed before the first process, and the preheating process is terminated according to the detection result of the temperature sensor.
  • the steam supplied into the heating chamber is prevented from being cooled and condensed by the inner wall due to the preheating of the inner wall in the preheating step, it is possible to suppress a decrease in the steam in the heating chamber. As a result, the supplied steam is efficiently used for water film formation.
  • the preheater in the fifth aspect, includes a boiler that supplies steam to the heating chamber. According to this aspect, since the boiler has already been started in the preheating step, steam can be continuously supplied by the boiler. Moreover, it is not necessary to provide a preheater separately, which leads to cost reduction.
  • the water film forming unit includes a boiler that supplies steam to the heating chamber. According to this aspect, it is not necessary to separately provide a water film former, leading to cost reduction.
  • a heating device is the heating apparatus according to the first aspect, in which the control unit is configured such that in the second step, the boiler is attached until the amount of vapor deposited per unit area of the food becomes 2.5 mg / cm 2. It is to be operated.
  • the microwave absorption efficiency in the frozen food can be dramatically improved.
  • FIG. 1 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the first embodiment of the present disclosure
  • FIG. 2 is a control block diagram of the heating device according to the present embodiment.
  • the heating chamber 12 has an opening covered by a door (not shown) on the front surface, and stores the food 11 therein.
  • the magnetron 14 (Magnetron 14) is a microwave supply section that is provided above the heating chamber 12 and generates microwaves.
  • the microwave generated by the magnetron 14 is supplied to the rotating antenna 22 via the waveguide 27.
  • the rotating antenna 22 agitates the microwave by the rotation of the antenna and supplies it to the heating chamber 12.
  • the boiler 13 (Boiler 13) is provided outside the heating chamber 12, and water is boiled by an electric heater (for example, a sheathed heater (Sheathed heater)) installed therein to generate saturated steam at about 100 ° C.
  • a steam injection port 15 provided in the heating chamber 12 is connected to the boiler 13 via a pipe. The steam generated in the boiler 13 is supplied into the heating chamber 12 via the pipe and the steam injection port 15 and fills the heating chamber 12.
  • the boiler 13 functions as a water film forming unit.
  • the shelf network 16 is provided in the heating chamber 12 above the steam injection port 15 and is used for placing the frozen food 11. Since the shelf network 16 is formed by combining stainless steel bars in a lattice shape, the steam supplied from below the shelf network 16 passes through the shelf network 16 and reaches the space above the shelf network 16. To do.
  • the temperature sensor 20 is composed of, for example, a thermistor, is installed in the heating chamber 12, and outputs information corresponding to the temperature of the inner wall 12 a of the heating chamber 12.
  • the control unit 23 is configured using a microcomputer (not shown) having a CPU, a memory, an input / output interface, and the like, and is electrically connected to the boiler 13, the magnetron 14, the temperature sensor 20, and the rotating antenna 22.
  • the control unit 23 includes a timer 24, a storage unit 25, and a determination unit 26 therein.
  • the control unit 23 controls the start and stop of the boiler 13 and the magnetron 14 by measuring a time preset in the storage unit 25 by the timer 24. Further, when performing microwave heating, the control unit 23 rotates the rotating antenna 22.
  • the control unit 23 detects the temperature of the inner wall 12a of the heating chamber 12 (inner wall temperature Tp) according to the information from the temperature sensor 20.
  • the determination unit 26 compares the detected inner wall temperature Tp with information stored in advance in the storage unit 25, and determines the next operation according to the comparison result.
  • control unit 23 controls the boiler 13 and the magnetron 14 by the time measurement by the timer 24 and the temperature comparison by the determination unit 26 to manage the thawing heating process.
  • FIG. 3 is a time chart showing the thawing heating step in the present embodiment.
  • preheating means an operation of heating the inner wall 12a of the heating chamber 12 to a predetermined temperature before the food 11 is stored in the heating chamber 12.
  • the temperature of the inner wall 12a may decrease while the food after thawing heating is replaced with the food before thawing heating.
  • the operation of automatically reheating the inner wall 12a to a predetermined temperature before the start of the next thawing heating is also included in the preheating.
  • the control unit 23 starts the boiler 13 and starts the preheating process as shown in FIG.
  • the boiler 13 functions as a preheater.
  • the inner wall temperature Tp is usually lower than the steam temperature, and the steam condenses on the surface of the inner wall 12a and condenses.
  • the inner wall temperature Tp rises quickly due to the condensation heat at this time.
  • the determination unit 26 determines whether or not the detected inner wall temperature Tp exceeds a preheating temperature Tps (for example, 90 ° C.) that is a temperature at which preheating is completed. When the inner wall temperature Tp is lower than the preheating temperature Tps (Tp ⁇ Tps), the control unit 23 continues the preheating process by the boiler 13.
  • a preheating temperature Tps for example, 90 ° C.
  • the control unit 23 stops the boiler 13 and notifies the completion of the preheating. Even after notification of the completion of preheating, the control unit 23 controls the boiler 13 so that the inner wall temperature Tp is maintained at the preheating temperature Tps.
  • control unit 23 instructs the user to start thawing heating via an operation unit (not shown). In response, the thawing heating step shown in FIG. 3 is started.
  • the steam 30 generated by the boiler 13 is supplied from the steam injection port 15 to the heating chamber 12 and contacts the food 11. Since the food 11 is in a frozen state, the vapor 30 is condensed and condensed on the surface of the food 11. This condensation forms a water film (hereinafter referred to as a water film) and covers the surface of the food 11.
  • a water film a water film
  • the thawing heating step proceeds to the second step, and the controller 23 continues to supply steam by the boiler 13 and starts irradiation of the microwave 31 by the magnetron 14. That is, microwave irradiation and water film formation are performed simultaneously.
  • the thawing heating process shifts to the second process.
  • the duration of the first step is set for each type of food 11 and is stored in the storage unit 25.
  • the formation of a water film is unnecessary, and the boiler 13 and the magnetron 14 are activated simultaneously with the start of the thawing heating process. That is, the first step is not executed and the thawing heating step shifts to the second step.
  • the water film formed on the entire surface of the food 11 is heated by microwaves and its temperature rises.
  • the ice in contact with the formed water film is melted and the water film becomes thick.
  • a water film grows due to the synergistic effect of the vapor 30 and the microwave 31.
  • the second step is continued until the vapor deposition amount per unit area of the food 11 becomes about 2.5 mg / cm 2 . With such a water film, the absorption efficiency of microwaves in the frozen food 11 is dramatically improved.
  • the thawing heating process shifts to the third process.
  • the duration of the second step is set for each type of food 11 and stored in the storage unit 25.
  • the third step only the supply of microwaves by the magnetron 14 is performed, and the food 11 is heated for a set time by microwave heating.
  • the third step ends.
  • the duration of the second step is set for each type of food 11 and stored in the storage unit 25.
  • the present embodiment in the thawing heating for frozen food, by supplying steam to the heating chamber to form a sufficient water film on the entire surface of the food, microwave absorption efficiency on the entire surface of the food Can be improved. As a result, uniform thawing heating without uneven heating becomes possible.
  • the microwave absorption efficiency in the food is improved before the microwave supply, a high-output microwave can be supplied from the start of the microwave supply. As a result, the thawing heating is completed in a short time.
  • the steam supplied into the heating chamber 12 is prevented from being cooled and condensed by the inner wall 12a due to the preheating of the inner wall 12a in the preheating step, the steam is reduced in the heating chamber 12. Can be suppressed. As a result, the supplied steam is efficiently used for water film formation.
  • the boiler 13 is used as a preheater.
  • an electric heater provided below the shelf network 16 in the heating chamber 12 may be used as a preheater.
  • the preheating temperature Tps can be set to 100 ° C. or higher (for example, 200 ° C.), and the water film can be formed more efficiently.
  • the boiler 13 is used as the water film forming unit.
  • a configuration may be adopted in which water droplets atomized using a pressure spray nozzle or the like are supplied into the heating chamber.
  • the heat of condensation is applied to the surface of the frozen food. Even if the method of giving and melting is used, it is sufficient if a water film can be formed on the entire surface of the food.
  • the third step ends with the elapse of a set time.
  • the third step may be completed when the temperature of the food 11 reaches a predetermined temperature.
  • an infrared sensor provided outside the heating chamber 12 detects infrared rays emitted from the food 11 through a window provided in the heating chamber 12 and outputs information corresponding to the detected infrared rays.
  • the control part 23 is a structure which detects the surface temperature of the foodstuff 11 according to the information from an infrared sensor.
  • FIG. 4 is a front sectional view showing a schematic configuration of the heating apparatus according to the present embodiment
  • FIG. 5 is a control block diagram of the heating apparatus according to the present embodiment.
  • the heating device according to the present embodiment includes a temperature sensor 21 in addition to the temperature sensor 20.
  • the present embodiment is the same as the first embodiment.
  • the temperature sensor 21 is an infrared sensor provided outside the heating chamber 12.
  • the temperature sensor 21 detects infrared rays emitted from the food 11 through the window provided in the heating chamber 12 and outputs information corresponding to the detected infrared rays.
  • the control unit 23 detects the surface temperature of the food 11 according to information from the temperature sensor 21.
  • FIG. 6 is a time chart showing the thawing heating step in the present embodiment.
  • the thawing heating step in the present embodiment is the same as that in the first embodiment until the start of the second step.
  • the thawing heating process shifts to the second process.
  • the time for forming the water film is set for each type of food 11 and stored in the storage unit 25.
  • the surface needs to be rehydrated in order to improve the texture such as the softness of the dough.
  • moisture easily evaporates due to microwave heating.
  • the duration of the first step is slightly longer (from 30 seconds to 120 seconds) than in the first embodiment. It is desirable to set.
  • a water film is formed on the entire surface of the food 11 by the steam 30 in the first step.
  • a water film on the surface of the food 11 grows due to the synergistic effect of the steam 30 and the microwave 31.
  • the microwave heating is stopped, and the thawing heating process is a third process in which only the supply of steam is performed. Transition.
  • the third process ends when the set time has elapsed.
  • the duration of the third step is set for each type of food 11 and is stored in the storage unit 25.
  • the third step ends with the elapse of a set time.
  • the third step may be completed based on the surface temperature of the food 11 from the temperature sensor 21.
  • the boiler 13 is continuously operated from the start of the preheating process to the end of the third process. However, if the inside of the heating chamber 12 can be raised to a predetermined temperature within a predetermined time and maintained at the predetermined temperature, the boiler 13 may operate intermittently.
  • FIG. 7 is a front sectional view showing a schematic configuration of the heating device according to the present embodiment
  • FIG. 8 is a control block diagram of the heating device according to the present embodiment.
  • the heating device according to the present embodiment includes an upper heater 17a and a lower heater 17b.
  • the present embodiment is the same as the first embodiment.
  • the upper heater 17a is provided in the heating chamber 12 and near the ceiling of the heating chamber 12, and radiates and heats the food 11 from above.
  • the lower heater 17b is provided in the heating chamber 12 and below the shelf net 16, and radiates and heats the food 11 from below.
  • the control unit 23 controls the energization amount to the upper heater 17a and the lower heater 17b in addition to the control of the boiler 13, the magnetron 14, and the rotating antenna 22.
  • the upper heater 17a and the lower heater 17b are collectively referred to as the heater 17.
  • FIG. 9 is a time chart showing the thawing heating step in the present embodiment.
  • the preheating process by the heater 17 is started as shown in FIG.
  • the boiler 13 operates intermittently to supply steam to the heating chamber 12 intermittently.
  • the boiler 13 and the heater 17 (upper heater 17a, lower heater 17b) function as a preheater.
  • control unit 23 performs the same control as in the first embodiment except that the heater 17 is operated from the start of the preheating step to the end of the third step. As a result, the following effects occur.
  • the supply of condensation heat to the inner wall 12a by steam causes the temperature rise of the inner wall 12a to be faster than in the case of only radiant heating by the heater, and the preheating process is completed earlier.
  • the ice on the surface of the food 11 is melted by the radiant heat from the heater 17, thereby forming a water film. Is promoted.
  • the moisture inside the food 11 may become vapor due to microwave heating and leak to the outside, and may appear as moisture on the surface of the food 11.
  • the surface may be swollen by this moisture.
  • the moisture on the surface of the food 11 is evaporated by the radiant heat from the heater 17.
  • the thawing heating process according to the present embodiment is particularly suitable for fried dishes and grilled dishes.
  • the heater 17 operates continuously from the start of the preheating process to the end of the third process.
  • the heater 17 may be operated intermittently as long as the inside of the heating chamber 12 can be raised to a predetermined temperature within a predetermined time and maintained at the predetermined temperature.
  • the food 11 is radiantly heated by the heater 17.
  • the heater 17 a configuration may be adopted in which hot air is supplied and circulated in the heating chamber 12 by an electric heater and a circulation fan provided outside and behind the heating chamber 12.
  • a configuration in which at least one of the upper heater 17a and the lower heater 17b is combined may be adopted.
  • the heating device can defrost and heat a frozen food without heating. For this reason, it is applicable not only to a heating cooker but also to various industrial uses including a drying apparatus when thawing and heating an article in a frozen state.

Landscapes

  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

This heating device that thaws by heating a frozen food product (11) comprises a heating chamber in which a food product is accommodated, a boiler (13) that supplies steam (30) to the heating chamber in order to form a film of water on the surface of the food product, a magnetron (14) that supplies microwaves (31) to the heating chamber in order to dielectrically heat the food product, and a control unit for controlling the boiler and the magnetron. The control unit performs a first step of operating the boiler, and performs, after the first step, a second step of operating the boiler and the magnetron. By virtue of the invention of this disclosure, the absorption efficiency of the microwaves over the entire surface of the food product can be improved by forming a sufficient film of water over the entire surface of the food product by way of supplying steam to the heating chamber for the heating and thawing of frozen food products. As a result, uniform heating and thawing without uneven heating is possible.

Description

加熱装置Heating device
 本開示は、冷凍された食品を加熱して解凍し、解凍された食品を所定時間または所定温度まで加熱する(以下、解凍加熱という)加熱装置に関する。 The present disclosure relates to a heating apparatus that heats and thaws frozen food, and heats the thawed food to a predetermined time or a predetermined temperature (hereinafter referred to as “thaw heating”).
 一般的に、冷凍された食品を解凍するには、例えば、室温で放置する、送風により空気の顕熱を利用する、静止水または流水に浸す、電子レンジで誘電加熱する、水蒸気や過熱水蒸気を用いる等の方法がある。 In general, to thaw frozen foods, for example, leave at room temperature, use sensible heat of air by blowing air, immerse in still water or running water, dielectrically heat in a microwave oven, steam or superheated steam There are methods such as using.
 加熱装置としては、冷凍された食品が収納された加熱室に水蒸気を供給し、冷凍された食品の表面で水蒸気が凝縮する際の凝縮熱を利用して、冷凍された食品を解凍する構成が開示されている(例えば、特許文献1参照)。 As a heating device, there is a configuration in which water vapor is supplied to a heating chamber in which frozen food is stored, and the frozen food is thawed using condensation heat when water vapor condenses on the surface of the frozen food. It is disclosed (for example, see Patent Document 1).
 上記従来の加熱装置は、熱風を食品に吹き付けるより効率的ではあるが、食品の表面温度ばかりが上昇し、食品の内部温度の上昇が遅く、解凍完了までに数分から10分超の時間を要する。 The above conventional heating device is more efficient than blowing hot air on food, but only the surface temperature of the food rises, the rise in the internal temperature of the food is slow, and it takes several minutes to more than 10 minutes to complete the thawing. .
 食品の内部温度をすばやく上昇させるには、マイクロ波による誘電加熱、すなわち、マイクロ波加熱が適している。そのため、冷凍された食品の解凍に電子レンジが使用されていた。ただ、従来の電子レンジは単にマイクロ波加熱するだけなので、加熱温度の局所的な差が大きく、食品を均一に解凍することは困難であった。 In order to quickly raise the internal temperature of food, dielectric heating by microwaves, that is, microwave heating is suitable. For this reason, microwave ovens have been used to thaw frozen foods. However, since the conventional microwave oven only performs microwave heating, there is a large local difference in heating temperature, and it has been difficult to thaw the food uniformly.
 他の方法として、まずマイクロ波加熱し、その後、冷却ファン装置により食品に風を送るという方法により、均一に解凍しようとするものがある(例えば、特許文献2参照)。 As another method, there is a method in which microwave heating is first performed, and then air is sent to the food by a cooling fan device to try to thaw uniformly (see, for example, Patent Document 2).
 しかしながら、この方法は、均一な解凍を行う上で、食品表面に関しては効果的であるが、食品内部に関してはあまり効果的でない。なぜならば、氷の誘電損は水の千分の一以下であるため、冷凍された食品に照射されたマイクロ波は氷を透過し、熱としてほとんど食品に吸収されないからである。 However, this method is effective with respect to the food surface when performing uniform thawing, but is not very effective with respect to the inside of the food. This is because the dielectric loss of ice is less than one-thousandth of water, and the microwave irradiated to the frozen food penetrates the ice and is hardly absorbed by the food as heat.
 また、もともと氷結していなかった水分や、一部融け出した水分が食品に付着していると、水分が付着した部分とそれ以外の部分とでマイクロ波の吸収量が大きく異なり、加熱むらが大きくなる。 Also, if moisture that was not frozen or partially melted is adhering to food, the amount of microwave absorption differs greatly between the part where the moisture is attached and the other part, and uneven heating is caused. growing.
 この加熱むらは食品の表面だけに生じるものではないため、送風により食品の表面温度を均一にしようとしても、顕著な効果が得られない。 Since this uneven heating does not occur only on the surface of the food, even if an attempt is made to make the surface temperature of the food uniform by blowing air, a remarkable effect cannot be obtained.
特開昭58-205483号公報JP 58-205483 A 特開平9-101035号公報JP-A-9-101035
 本開示は、上記従来の課題を解決するもので、冷凍された食品におけるマイクロ波の吸収効率を向上させて効率的にマイクロ波加熱することで、冷凍食品を短時間で解凍加熱する加熱装置を提供することを目的とする。 The present disclosure solves the above-described conventional problems, and provides a heating apparatus that improves the absorption efficiency of microwaves in frozen foods and efficiently heats the frozen foods by thawing heating in a short time. The purpose is to provide.
 上記従来の課題を解決するために、本開示の一態様である加熱装置は、冷凍された食品を加熱して解凍する加熱装置であって、内部に食品を収納する加熱室と、食品の表面に水膜を形成するために、加熱室に水分を供給する水膜形成部と、食品をマイクロ波加熱するために、加熱室にマイクロ波を供給するマイクロ波供給部と、水膜形成部とマイクロ波供給部とを制御する制御部と、を備える。 In order to solve the above-described conventional problems, a heating device according to an aspect of the present disclosure is a heating device that heats and thaws frozen food, and includes a heating chamber that stores food inside, and a surface of the food. A water film forming unit that supplies moisture to the heating chamber to form a water film, a microwave supply unit that supplies microwaves to the heating chamber to heat food, and a water film forming unit. A control unit that controls the microwave supply unit.
 制御部は、水膜形成部を作動させる第1工程を実行し、水膜形成部とマイクロ波供給部とを作動させる第2工程を、第1工程の後に実行する。 The control unit executes a first step of operating the water film forming unit, and executes a second step of operating the water film forming unit and the microwave supply unit after the first step.
 本開示の加熱装置によれば、冷凍された食品に対する解凍加熱において、蒸気を加熱室に供給して食品の表面全体に十分な水膜を形成することにより、食品の表面全体におけるマイクロ波の吸収効率を向上させることができる。その結果、加熱むらのない均一な解凍加熱が可能となる。 According to the heating device of the present disclosure, in thawing heating of frozen food, by supplying steam to the heating chamber to form a sufficient water film on the entire surface of the food, absorption of microwaves on the entire surface of the food Efficiency can be improved. As a result, uniform thawing heating without uneven heating becomes possible.
 また、マイクロ波の供給前に食品におけるマイクロ波の吸収効率が向上しているため、マイクロ波の供給開始時点から高出力のマイクロ波を供給することができる。その結果、短時間で解凍加熱が終了する。 Also, since the microwave absorption efficiency in the food is improved before the microwave supply, a high-output microwave can be supplied from the start of the microwave supply. As a result, the thawing heating is completed in a short time.
図1は、本開示の実施の形態1に係る加熱装置の概略構成を示す正面断面図である。FIG. 1 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1に係る加熱装置の制御ブロック図である。FIG. 2 is a control block diagram of the heating device according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1に係る加熱装置における解凍加熱工程を示すタイムチャートである。FIG. 3 is a time chart illustrating a thawing heating process in the heating apparatus according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態2に係る加熱装置の概略構成を示す正面断面図である。FIG. 4 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the second embodiment of the present disclosure. 図5は、本開示の実施の形態2に係る加熱装置の制御ブロック図である。FIG. 5 is a control block diagram of the heating device according to the second embodiment of the present disclosure. 図6は、本開示の実施の形態2に係る加熱装置における解凍加熱工程を示すタイムチャートである。FIG. 6 is a time chart illustrating a thawing heating process in the heating apparatus according to the second embodiment of the present disclosure. 図7は、本開示の実施の形態3に係る加熱装置の概略構成を示す正面断面図である。FIG. 7 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the third embodiment of the present disclosure. 図8は、本開示の実施の形態3に係る加熱装置の制御ブロック図である。FIG. 8 is a control block diagram of the heating device according to the third embodiment of the present disclosure. 図9は、本開示の実施の形態3に係る加熱装置における解凍加熱工程を示すタイムチャートである。FIG. 9 is a time chart illustrating a thawing heating process in the heating apparatus according to the third embodiment of the present disclosure.
 本開示の第1の態様に係る加熱装置は、冷凍された食品を加熱して解凍する加熱装置であって、内部に食品を収納する加熱室と、食品の表面に水膜を形成するために、加熱室に水分を供給する水膜形成部と、食品をマイクロ波加熱するために、加熱室にマイクロ波を供給するマイクロ波供給部と、水膜形成部とマイクロ波供給部とを制御する制御部と、を備える。 The heating device according to the first aspect of the present disclosure is a heating device that heats and thaws frozen food, in order to form a water film on the surface of the food heating chamber and the food inside Control the water film forming unit for supplying moisture to the heating chamber, the microwave supplying unit for supplying microwave to the heating chamber, the water film forming unit and the microwave supplying unit for microwave heating the food A control unit.
 制御部は、水膜形成部を作動させる第1工程を実行し、水膜形成部とマイクロ波供給部とを作動させる第2工程を、第1工程の後に実行する。 The control unit executes a first step of operating the water film forming unit, and executes a second step of operating the water film forming unit and the microwave supply unit after the first step.
 本態様によれば、第1工程において、蒸気が凝縮することで食品の表面全体に水膜が形成される。第2工程において、引き続き蒸気が凝縮して形成される水膜に加えて、形成された水膜がマイクロ波加熱されることで、水膜に接する氷が融かされて水膜が厚くなる。このようにして、蒸気とマイクロ波との相乗効果により、食品の表面全体を必要十分な水膜で素早く覆うことができる。 According to this aspect, in the first step, a water film is formed on the entire surface of the food as the steam condenses. In the second step, in addition to the water film formed by subsequent condensation of steam, the formed water film is heated by microwaves, so that the ice in contact with the water film is melted and the water film becomes thick. In this way, due to the synergistic effect of steam and microwaves, the entire surface of the food can be quickly covered with a necessary and sufficient water film.
 本開示の第2の態様に係る加熱装置は、第1の態様において、制御部が、水膜形成部を停止させ、マイクロ波供給部を作動させる第3工程を、第2工程の後に実行するものである。 In the heating device according to the second aspect of the present disclosure, in the first aspect, the control unit executes the third step of stopping the water film forming unit and operating the microwave supply unit after the second step. Is.
 本態様によれば、第2工程までに形成された水膜により、食品の表面全体におけるマイクロ波の吸収効率を向上させることができる。その後、第3工程においてマイクロ波加熱することにより、加熱むらのない均一な解凍加熱が可能となる。 According to this aspect, the absorption efficiency of microwaves on the entire surface of the food can be improved by the water film formed up to the second step. After that, by performing microwave heating in the third step, uniform thawing heating without heating unevenness becomes possible.
 また、マイクロ波の供給前に食品におけるマイクロ波の吸収効率が向上しているため、第3工程の開始時点から高出力のマイクロ波を供給することができる。その結果、短時間で解凍加熱が終了する。 Also, since the microwave absorption efficiency in the food is improved before the microwave is supplied, a high-output microwave can be supplied from the start of the third step. As a result, the thawing heating is completed in a short time.
 本開示の第3の態様に係る加熱装置は、第1の態様において、制御部が、マイクロ波供給部を停止させ、水膜形成部を作動させる第3工程を、第2工程の後に実行するものである。 In the heating device according to the third aspect of the present disclosure, in the first aspect, the control unit executes the third step of stopping the microwave supply unit and operating the water film forming unit after the second step. Is.
 本態様によれば、水膜形成の後も、水膜形成部のみを引き続き作動させ、乾燥や水分不足により食感が悪化しやすい食品に対して、その表面の乾燥を防止することができる。 According to this aspect, even after the formation of the water film, only the water film forming part can be continuously operated to prevent the surface of the food having a poor texture due to drying or lack of moisture from being dried.
 本開示の第4の態様に係る加熱装置は、第1の態様において、加熱室内に設けられ、食品を輻射加熱するヒータをさらに備え、第1工程と第2工程と第3工程とにおいて、制御部がヒータを作動させるものである。 A heating device according to a fourth aspect of the present disclosure is the first aspect, further comprising a heater provided in the heating chamber for radiantly heating food, and controlled in the first step, the second step, and the third step. The part operates the heater.
 本態様によれば、輻射加熱により、食品の表面の水分を蒸発させて、食品にサクサクとした食感を与えることができる。 According to this aspect, the moisture on the surface of the food is evaporated by radiant heating, so that the food has a crunchy texture.
 本開示の第5の態様に係る加熱装置は、第1の態様において、加熱室の内壁を予熱する予熱器と、内壁の温度を検出する温度センサと、をさらに備え、制御部が、予熱器を作動させる予熱工程を第1工程の前に実行し、温度センサの検出結果に応じて予熱工程を終了させるものである。 A heating apparatus according to a fifth aspect of the present disclosure is the heating apparatus according to the first aspect, further comprising: a preheater that preheats the inner wall of the heating chamber; and a temperature sensor that detects the temperature of the inner wall, and the control unit includes the preheater. The preheating process for operating the is performed before the first process, and the preheating process is terminated according to the detection result of the temperature sensor.
 本態様によれば、予熱工程における内壁の予熱により、加熱室内に供給された蒸気が内壁により冷却されて凝縮することが防止されるため、加熱室内における蒸気の減少を抑制することができる。その結果、供給された蒸気が効率的に水膜形成に利用される。 According to this aspect, since the steam supplied into the heating chamber is prevented from being cooled and condensed by the inner wall due to the preheating of the inner wall in the preheating step, it is possible to suppress a decrease in the steam in the heating chamber. As a result, the supplied steam is efficiently used for water film formation.
 本開示の第6の態様に係る加熱装置は、第5の態様において、予熱器が、加熱室に蒸気を供給するボイラを含むものである。本態様によれば、ボイラは予熱工程で既に起動済みなので、引き続きボイラによる蒸気の供給が可能である。また、予熱器を別途設ける必要がなく、コスト削減につながる。 In the heating device according to the sixth aspect of the present disclosure, in the fifth aspect, the preheater includes a boiler that supplies steam to the heating chamber. According to this aspect, since the boiler has already been started in the preheating step, steam can be continuously supplied by the boiler. Moreover, it is not necessary to provide a preheater separately, which leads to cost reduction.
 本開示の第7の態様に係る加熱装置は、第1の態様において、水膜形成部が、加熱室に蒸気を供給するボイラを含むものである。本態様によれば、水膜形成器を別途設ける必要がなく、コスト削減につながる。 In the heating device according to the seventh aspect of the present disclosure, in the first aspect, the water film forming unit includes a boiler that supplies steam to the heating chamber. According to this aspect, it is not necessary to separately provide a water film former, leading to cost reduction.
 本開示の第8の態様に係る加熱装置は、第1の態様において、制御部が、第2工程において、食品の単位面積当たりの蒸気付着量が2.5mg/cmになるまで、ボイラを作動させるものである。 A heating device according to an eighth aspect of the present disclosure is the heating apparatus according to the first aspect, in which the control unit is configured such that in the second step, the boiler is attached until the amount of vapor deposited per unit area of the food becomes 2.5 mg / cm 2. It is to be operated.
 本態様によれば、少量の蒸気を供給することにより、冷凍食品におけるマイクロ波の吸収効率を飛躍的に向上させることができる。 According to this aspect, by supplying a small amount of steam, the microwave absorption efficiency in the frozen food can be dramatically improved.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下の全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In all the following drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 (実施の形態1)
 図1は、本開示の実施の形態1に係る加熱装置の概略構成を示す正面断面図であり、図2は、本実施の形態に係る加熱装置の制御ブロック図である。
(Embodiment 1)
FIG. 1 is a front cross-sectional view illustrating a schematic configuration of the heating device according to the first embodiment of the present disclosure, and FIG. 2 is a control block diagram of the heating device according to the present embodiment.
 図1、図2に示すように、加熱室12は、前面に扉(不図示)によって覆われた開口を有し、内部に食品11を収納する。マグネトロン14(Magnetron 14)は、加熱室12の上方に設けられた、マイクロ波を生成するマイクロ波供給部である。 As shown in FIG. 1 and FIG. 2, the heating chamber 12 has an opening covered by a door (not shown) on the front surface, and stores the food 11 therein. The magnetron 14 (Magnetron 14) is a microwave supply section that is provided above the heating chamber 12 and generates microwaves.
 マグネトロン14によって生成されたマイクロ波は、導波管27を経由して回転アンテナ22に供給される。回転アンテナ22は、マイクロ波をアンテナの回転により攪拌し、加熱室12に供給する。 The microwave generated by the magnetron 14 is supplied to the rotating antenna 22 via the waveguide 27. The rotating antenna 22 agitates the microwave by the rotation of the antenna and supplies it to the heating chamber 12.
 ボイラ13(Boiler 13)は、加熱室12の外側に設けられ、内部に設置された電気ヒータ(例えば、シーズヒータ(Sheathed heater))により水を沸騰させて約100℃の飽和蒸気を生成する。加熱室12に設けられた蒸気噴射口15は、配管を介してボイラ13と連結される。ボイラ13で生成された蒸気は、配管と蒸気噴射口15を経由して加熱室12内に供給され、加熱室12内に充満する。 The boiler 13 (Boiler 13) is provided outside the heating chamber 12, and water is boiled by an electric heater (for example, a sheathed heater (Sheathed heater)) installed therein to generate saturated steam at about 100 ° C. A steam injection port 15 provided in the heating chamber 12 is connected to the boiler 13 via a pipe. The steam generated in the boiler 13 is supplied into the heating chamber 12 via the pipe and the steam injection port 15 and fills the heating chamber 12.
 供給された蒸気は食品11の表面で凝縮し、食品11の表面に水膜が形成される。本実施の形態では、ボイラ13が水膜形成部として機能する。 Supplied steam condenses on the surface of the food 11 and a water film is formed on the surface of the food 11. In the present embodiment, the boiler 13 functions as a water film forming unit.
 棚網16は、蒸気噴射口15より上方の加熱室12内に設けられ、冷凍された食品11を載置するために用いられる。棚網16は、ステンレスの棒が格子状に組み合わされて形成されているので、棚網16の下方から供給された蒸気は、棚網16を通過して棚網16の上方の空間にも到達する。 The shelf network 16 is provided in the heating chamber 12 above the steam injection port 15 and is used for placing the frozen food 11. Since the shelf network 16 is formed by combining stainless steel bars in a lattice shape, the steam supplied from below the shelf network 16 passes through the shelf network 16 and reaches the space above the shelf network 16. To do.
 温度センサ20は、例えばサーミスタで構成され、加熱室12内に設置されて加熱室12の内壁12aの温度に応じた情報を出力する。 The temperature sensor 20 is composed of, for example, a thermistor, is installed in the heating chamber 12, and outputs information corresponding to the temperature of the inner wall 12 a of the heating chamber 12.
 制御部23は、CPU、メモリ、入出力インターフェース等を有するマイクロコンピュータ(不図示)を用いて構成され、ボイラ13、マグネトロン14、温度センサ20、回転アンテナ22と電気的に接続される。 The control unit 23 is configured using a microcomputer (not shown) having a CPU, a memory, an input / output interface, and the like, and is electrically connected to the boiler 13, the magnetron 14, the temperature sensor 20, and the rotating antenna 22.
 制御部23は、内部にタイマー24と記憶部25と判定部26とを含む。制御部23は、記憶部25に予め設定された時間をタイマー24によって計測することにより、ボイラ13およびマグネトロン14の起動と停止とを制御する。また、マイクロ波加熱を行う際、制御部23は回転アンテナ22を回転させる。 The control unit 23 includes a timer 24, a storage unit 25, and a determination unit 26 therein. The control unit 23 controls the start and stop of the boiler 13 and the magnetron 14 by measuring a time preset in the storage unit 25 by the timer 24. Further, when performing microwave heating, the control unit 23 rotates the rotating antenna 22.
 制御部23は、温度センサ20からの情報に応じて、加熱室12の内壁12aの温度(内壁温度Tp)を検出する。判定部26は、検出された内壁温度Tpと、記憶部25に予め記憶された情報とを比較し、その比較結果に応じて次の動作を決定する。 The control unit 23 detects the temperature of the inner wall 12a of the heating chamber 12 (inner wall temperature Tp) according to the information from the temperature sensor 20. The determination unit 26 compares the detected inner wall temperature Tp with information stored in advance in the storage unit 25, and determines the next operation according to the comparison result.
 このように、制御部23は、タイマー24による時間計測と判定部26による温度比較とにより、ボイラ13およびマグネトロン14を制御して、解凍加熱工程を管理する。 Thus, the control unit 23 controls the boiler 13 and the magnetron 14 by the time measurement by the timer 24 and the temperature comparison by the determination unit 26 to manage the thawing heating process.
 以上のように構成された加熱装置における解凍加熱工程について、図3を用いて説明する。図3は、本実施の形態における解凍加熱工程を示すタイムチャートである。 The thawing heating process in the heating apparatus configured as described above will be described with reference to FIG. FIG. 3 is a time chart showing the thawing heating step in the present embodiment.
 本実施の形態において、予熱とは、食品11が加熱室12に収納される前に、加熱室12の内壁12aを所定温度まで加熱しておく作業を意味する。解凍加熱を繰り返す場合、解凍加熱後の食品と解凍加熱前の食品とを入れ替える間に、内壁12aの温度が低下することがある。この場合における、次の解凍加熱の開始までに内壁12aを自動的に所定温度まで加熱し直す作業も、予熱に含まれる。 In the present embodiment, preheating means an operation of heating the inner wall 12a of the heating chamber 12 to a predetermined temperature before the food 11 is stored in the heating chamber 12. When thawing heating is repeated, the temperature of the inner wall 12a may decrease while the food after thawing heating is replaced with the food before thawing heating. In this case, the operation of automatically reheating the inner wall 12a to a predetermined temperature before the start of the next thawing heating is also included in the preheating.
 操作部(不図示)を経由して使用者から予熱工程の開始が指示されると、図3に示すように、制御部23は、ボイラ13を起動して予熱工程を開始する。本実施の形態では、ボイラ13が予熱器として機能する。 When the start of the preheating process is instructed by the user via the operation unit (not shown), the control unit 23 starts the boiler 13 and starts the preheating process as shown in FIG. In the present embodiment, the boiler 13 functions as a preheater.
 予熱工程の開始時点では、通常、内壁温度Tpは蒸気の温度よりも低く、内壁12aの表面で蒸気が凝縮して結露する。この時の凝縮熱により内壁温度Tpは素早く上昇する。 At the start of the preheating process, the inner wall temperature Tp is usually lower than the steam temperature, and the steam condenses on the surface of the inner wall 12a and condenses. The inner wall temperature Tp rises quickly due to the condensation heat at this time.
 判定部26は、検出された内壁温度Tpが予熱完了の温度である予熱温度Tps(例えば90℃)を超えているか否かを判定する。内壁温度Tpが予熱温度Tpsより低い場合(Tp<Tps)、制御部23は、ボイラ13による予熱工程を継続させる。 The determination unit 26 determines whether or not the detected inner wall temperature Tp exceeds a preheating temperature Tps (for example, 90 ° C.) that is a temperature at which preheating is completed. When the inner wall temperature Tp is lower than the preheating temperature Tps (Tp <Tps), the control unit 23 continues the preheating process by the boiler 13.
 内壁温度Tpが予熱温度Tps以上の場合(Tp≧Tps)、制御部23は、ボイラ13を停止して予熱完了を報知する。予熱完了の報知後も、制御部23は内壁温度Tpが予熱温度Tpsに保たれるようにボイラ13を制御する。 When the inner wall temperature Tp is equal to or higher than the preheating temperature Tps (Tp ≧ Tps), the control unit 23 stops the boiler 13 and notifies the completion of the preheating. Even after notification of the completion of preheating, the control unit 23 controls the boiler 13 so that the inner wall temperature Tp is maintained at the preheating temperature Tps.
 予熱工程が完了し、冷凍された食品11が加熱室12内の棚網16の上に載せられると、制御部23は、操作部(不図示)を経由した使用者による解凍加熱開始の指示に応じて、図3に示す解凍加熱工程を開始する。 When the preheating process is completed and the frozen food 11 is placed on the shelf 16 in the heating chamber 12, the control unit 23 instructs the user to start thawing heating via an operation unit (not shown). In response, the thawing heating step shown in FIG. 3 is started.
 まず第1工程において、ボイラ13により生成された蒸気30が、蒸気噴射口15から加熱室12に供給され、食品11と接触する。食品11は冷凍状態なので、蒸気30は食品11の表面で凝縮し結露する。この結露が水の膜(以下、水膜という)となって食品11の表面を覆う。 First, in the first step, the steam 30 generated by the boiler 13 is supplied from the steam injection port 15 to the heating chamber 12 and contacts the food 11. Since the food 11 is in a frozen state, the vapor 30 is condensed and condensed on the surface of the food 11. This condensation forms a water film (hereinafter referred to as a water film) and covers the surface of the food 11.
 本実施の形態において、ボイラ13は、第1工程の前の予熱工程で既に起動済みなので、第1工程に移行後、すぐに蒸気の供給を開始することが可能である。 In the present embodiment, since the boiler 13 has already been started in the preheating step before the first step, it is possible to start supplying steam immediately after shifting to the first step.
 第1工程が終了すると、解凍加熱工程は第2工程に移行し、制御部23は、引き続いてボイラ13による蒸気の供給を行うとともに、マグネトロン14によるマイクロ波31の照射を開始する。すなわち、マイクロ波照射と水膜形成とが同時に行われる。 When the first step is completed, the thawing heating step proceeds to the second step, and the controller 23 continues to supply steam by the boiler 13 and starts irradiation of the microwave 31 by the magnetron 14. That is, microwave irradiation and water film formation are performed simultaneously.
 本実施の形態では、水膜形成のための時間、すなわち、食品11の表面全体が水膜に覆われるまでに要する時間が経過すると、解凍加熱工程は第2工程に移行する。第1工程の継続時間は、食品11の種類ごとに設定され、記憶部25に記憶されている。 In this embodiment, when the time for forming the water film, that is, the time required for the entire surface of the food 11 to be covered with the water film has elapsed, the thawing heating process shifts to the second process. The duration of the first step is set for each type of food 11 and is stored in the storage unit 25.
 なお、表面に氷結していない水分が多く付着する食品11の種類の場合、水膜形成は不要であり、解凍加熱工程の開始とともにボイラ13とマグネトロン14とが同時に起動される。すなわち、第1工程が実行されることなく、解凍加熱工程は第2工程に移行する。 In addition, in the case of the type of food 11 that has a lot of moisture that is not frozen on the surface, the formation of a water film is unnecessary, and the boiler 13 and the magnetron 14 are activated simultaneously with the start of the thawing heating process. That is, the first step is not executed and the thawing heating step shifts to the second step.
 第2工程において、食品11の表面全体に形成された水膜はマイクロ波加熱され、その温度が上昇する。その結果、形成された水膜に接する氷が融かされて水膜が厚くなる。このようにして、蒸気30とマイクロ波31との相乗効果により水膜が成長する。 In the second step, the water film formed on the entire surface of the food 11 is heated by microwaves and its temperature rises. As a result, the ice in contact with the formed water film is melted and the water film becomes thick. In this way, a water film grows due to the synergistic effect of the vapor 30 and the microwave 31.
 マイクロ波31を吸収するために必要十分な厚さの水膜が食品11の表面全体を覆うように形成されると、ボイラ13による蒸気の供給が停止され、解凍加熱工程は第3工程に移行する。食品11に過度の水分が付着する前に蒸気の供給を停止するのは、含有塩分量の低下や食感の悪化等の食品の変質を防止するためである。 When a water film having a thickness sufficient to absorb the microwave 31 is formed so as to cover the entire surface of the food 11, the supply of steam by the boiler 13 is stopped, and the thawing heating process shifts to the third process. To do. The reason why the supply of steam is stopped before excessive moisture adheres to the food 11 is to prevent deterioration of the food such as a decrease in the amount of salt content or a deterioration in texture.
 第2工程は、食品11の単位面積当たりの蒸気付着量が約2.5mg/cmになるまで継続される。この程度の水膜で、冷凍された食品11におけるマイクロ波の吸収効率は飛躍的に向上する。 The second step is continued until the vapor deposition amount per unit area of the food 11 becomes about 2.5 mg / cm 2 . With such a water film, the absorption efficiency of microwaves in the frozen food 11 is dramatically improved.
 本実施の形態では、食品11の表面が上記所定量の水膜に覆われるまでの時間が経過すると、解凍加熱工程は第3工程に移行する。第2工程の継続時間は、食品11の種類ごとに設定され、記憶部25に記憶されている。 In the present embodiment, when the time until the surface of the food 11 is covered with the predetermined amount of water film elapses, the thawing heating process shifts to the third process. The duration of the second step is set for each type of food 11 and stored in the storage unit 25.
 第3工程では、マグネトロン14によるマイクロ波の供給のみが行われ、マイクロ波加熱により食品11が設定された時間加熱される。設定された時間が経過すると第3工程が終了する。第2工程の継続時間は、食品11の種類ごとに設定され、記憶部25に記憶されている。 In the third step, only the supply of microwaves by the magnetron 14 is performed, and the food 11 is heated for a set time by microwave heating. When the set time has elapsed, the third step ends. The duration of the second step is set for each type of food 11 and stored in the storage unit 25.
 本実施の形態によれば、冷凍された食品に対する解凍加熱において、蒸気を加熱室に供給して食品の表面全体に十分な水膜を形成することにより、食品の表面全体におけるマイクロ波の吸収効率を向上させることができる。その結果、加熱むらのない均一な解凍加熱が可能となる。 According to the present embodiment, in the thawing heating for frozen food, by supplying steam to the heating chamber to form a sufficient water film on the entire surface of the food, microwave absorption efficiency on the entire surface of the food Can be improved. As a result, uniform thawing heating without uneven heating becomes possible.
 また、マイクロ波の供給前に食品におけるマイクロ波の吸収効率が向上しているため、マイクロ波の供給開始時点から高出力のマイクロ波を供給することができる。その結果、短時間で解凍加熱が終了する。 Also, since the microwave absorption efficiency in the food is improved before the microwave supply, a high-output microwave can be supplied from the start of the microwave supply. As a result, the thawing heating is completed in a short time.
 また、本実施の形態では、予熱工程における内壁12aの予熱により、加熱室12内に供給された蒸気が内壁12aにより冷却されて凝縮することが防止されるため、加熱室12内における蒸気の減少を抑制することができる。その結果、供給された蒸気が効率的に水膜形成に利用される。 In the present embodiment, since the steam supplied into the heating chamber 12 is prevented from being cooled and condensed by the inner wall 12a due to the preheating of the inner wall 12a in the preheating step, the steam is reduced in the heating chamber 12. Can be suppressed. As a result, the supplied steam is efficiently used for water film formation.
 なお、本実施の形態において、ボイラ13が予熱器として用いられる。しかしながら、ボイラ13の代わりに、加熱室12内の棚網16の下方に設けられた電気ヒータを予熱器として使用してもよい。また、加熱室12の外側かつ後方に設けられた電気ヒータと循環ファンとにより、加熱室12内に熱風が供給され循環する構成としてもよい。 In this embodiment, the boiler 13 is used as a preheater. However, instead of the boiler 13, an electric heater provided below the shelf network 16 in the heating chamber 12 may be used as a preheater. Moreover, it is good also as a structure which a hot air is supplied and circulates in the heating chamber 12 with the electric heater and circulation fan which were provided in the outer side of the heating chamber 12, and back.
 予熱器として電気ヒータを用いる場合、予熱温度Tpsを100℃以上(例えば、200℃)に設定することができ、より効率的に水膜形成を行うことができる。 When an electric heater is used as the preheater, the preheating temperature Tps can be set to 100 ° C. or higher (for example, 200 ° C.), and the water film can be formed more efficiently.
 また、本実施の形態において、ボイラ13が水膜形成部として用いられる。しかしながら、ボイラ13により加熱室に蒸気を供給する代わりに、圧力噴霧ノズル等を用いて霧化された水滴を加熱室内に供給する構成としてもよい。 In the present embodiment, the boiler 13 is used as the water film forming unit. However, instead of supplying steam to the heating chamber by the boiler 13, a configuration may be adopted in which water droplets atomized using a pressure spray nozzle or the like are supplied into the heating chamber.
 また、冷凍された食品を水に浸漬させるような手作業的な方法を用いても、または、気化したメタノール等の他の熱媒体を噴霧することで、冷凍された食品の表面に凝縮熱を与えて融かす方法を用いても、食品の表面全体に水膜が形成できればよい。 Also, by using a manual method such as immersing the frozen food in water, or by spraying another heat medium such as vaporized methanol, the heat of condensation is applied to the surface of the frozen food. Even if the method of giving and melting is used, it is sufficient if a water film can be formed on the entire surface of the food.
 さらに、本実施の形態では、設定された時間の経過で第3工程が終了する。しかしながら、食品11の温度が所定温度に到達すると、第3工程が終了する構成としてもよい。 Furthermore, in the present embodiment, the third step ends with the elapse of a set time. However, the third step may be completed when the temperature of the food 11 reaches a predetermined temperature.
 具体的には、加熱室12の外側に設けられた赤外線センサが、食品11から放出される赤外線を加熱室12に設けられた窓越しに検出し、検出した赤外線に応じた情報を出力する。制御部23が、赤外線センサからの情報に応じて、食品11の表面温度を検出する構成である。 More specifically, an infrared sensor provided outside the heating chamber 12 detects infrared rays emitted from the food 11 through a window provided in the heating chamber 12 and outputs information corresponding to the detected infrared rays. The control part 23 is a structure which detects the surface temperature of the foodstuff 11 according to the information from an infrared sensor.
 (実施の形態2)
 以下、本開示の実施の形態2に係る加熱装置について、図4~図6を用いて説明する。
(Embodiment 2)
Hereinafter, the heating apparatus according to the second embodiment of the present disclosure will be described with reference to FIGS.
 図4は、本実施の形態に係る加熱装置の概略構成を示す正面断面図であり、図5は、本実施の形態に係る加熱装置の制御ブロック図である。 FIG. 4 is a front sectional view showing a schematic configuration of the heating apparatus according to the present embodiment, and FIG. 5 is a control block diagram of the heating apparatus according to the present embodiment.
 図4、図5に示すように、本実施の形態に係る加熱装置は、温度センサ20に加えて、温度センサ21を有する。それ以外の構成要件に関しては、本実施の形態は実施の形態1と同一である。 As shown in FIGS. 4 and 5, the heating device according to the present embodiment includes a temperature sensor 21 in addition to the temperature sensor 20. With respect to other configuration requirements, the present embodiment is the same as the first embodiment.
 温度センサ21は、加熱室12の外側に設けられた赤外線センサである。温度センサ21は、加熱室12に設けられた窓越しに食品11から放出される赤外線を検出し、検出した赤外線に応じた情報を出力する。制御部23は、温度センサ21からの情報に応じて、食品11の表面温度を検出する。 The temperature sensor 21 is an infrared sensor provided outside the heating chamber 12. The temperature sensor 21 detects infrared rays emitted from the food 11 through the window provided in the heating chamber 12 and outputs information corresponding to the detected infrared rays. The control unit 23 detects the surface temperature of the food 11 according to information from the temperature sensor 21.
 以上のように構成された加熱装置における解凍加熱工程について、図6を用いて説明する。図6は、本実施の形態における解凍加熱工程を示すタイムチャートである。 The thawing heating process in the heating apparatus configured as described above will be described with reference to FIG. FIG. 6 is a time chart showing the thawing heating step in the present embodiment.
 図6に示すように、本実施の形態における解凍加熱工程は、第2工程の開始までは実施の形態1と同一である。 As shown in FIG. 6, the thawing heating step in the present embodiment is the same as that in the first embodiment until the start of the second step.
 本実施の形態においても、実施の形態1と同様に、水膜形成のための時間が経過すると、解凍加熱工程は第2工程に移行する。水膜形成のための時間は、食品11の種類ごとに設定され、記憶部25に記憶される。 Also in the present embodiment, as in the first embodiment, when the time for forming the water film has elapsed, the thawing heating process shifts to the second process. The time for forming the water film is set for each type of food 11 and stored in the storage unit 25.
 例えば、乾燥や水分不足により食感が悪化しやすい食品(例えば、中華まん)の場合、生地のふんわり感等の食感を向上させるために、その表面に水分補給が必要である。第2工程では、マイクロ波加熱によって水分が蒸発しやすくなるので、このような食品に対しては、第1工程の継続時間を実施の形態1の場合より少し長め(30秒~120秒)に設定するのが望ましい。 For example, in the case of foods whose texture is likely to deteriorate due to drying or lack of moisture (for example, Chinese buns), the surface needs to be rehydrated in order to improve the texture such as the softness of the dough. In the second step, moisture easily evaporates due to microwave heating. For such foods, the duration of the first step is slightly longer (from 30 seconds to 120 seconds) than in the first embodiment. It is desirable to set.
 実施の形態1と同様に、第1工程において、蒸気30により食品11の表面全体に水膜が形成される。第2工程において、蒸気30とマイクロ波31との相乗効果により、食品11の表面の水膜が成長する。 As in Embodiment 1, a water film is formed on the entire surface of the food 11 by the steam 30 in the first step. In the second step, a water film on the surface of the food 11 grows due to the synergistic effect of the steam 30 and the microwave 31.
 温度センサ21により、食品11の少なくとも一部の表面の温度がマイナスからプラスに転じたことが検出されると、マイクロ波加熱が停止され、解凍加熱工程は蒸気の供給のみを行う第3工程に移行する。 When the temperature sensor 21 detects that the temperature of at least a part of the surface of the food 11 has changed from minus to plus, the microwave heating is stopped, and the thawing heating process is a third process in which only the supply of steam is performed. Transition.
 第3工程において、ボイラ13からの蒸気が引き続き加熱室12内に供給される。供給された蒸気が、食品11に対して水分補給と加熱とを行う。 In the third step, steam from the boiler 13 is continuously supplied into the heating chamber 12. The supplied steam performs hydration and heating for the food 11.
 第3工程は、設定された時間が経過すると終了する。第3工程の継続時間は、食品11の種類ごとに設定され、記憶部25に記憶されている。 The third process ends when the set time has elapsed. The duration of the third step is set for each type of food 11 and is stored in the storage unit 25.
 なお、中華まん等を解凍加熱する場合、水分補給により加熱前より重量が10%程度増加するまで第3工程を継続するのが望ましい。 In addition, when defrosting and heating Chinese buns, etc., it is desirable to continue the third step until the weight increases by about 10% from before heating due to water replenishment.
 本実施の形態によれば、第3工程においてマイクロ波加熱のみを行う実施の形態1と異なり、第3工程において蒸気のみが供給される。その結果、食品11の表面の乾燥が防止され、表面の乾燥により生じる食感の悪化が防止される。 According to the present embodiment, unlike the first embodiment in which only microwave heating is performed in the third step, only steam is supplied in the third step. As a result, drying of the surface of the food 11 is prevented, and deterioration of texture caused by drying of the surface is prevented.
 なお、本実施の形態では、設定された時間の経過で第3工程が終了する。しかしながら、温度センサ21からの食品11の表面温度に基づいて第3工程が終了するようにしてもよい。 In the present embodiment, the third step ends with the elapse of a set time. However, the third step may be completed based on the surface temperature of the food 11 from the temperature sensor 21.
 また、本実施の形態では、予熱工程の開始から第3工程の終了まで、ボイラ13が連続して作動する。しかしながら、加熱室12内を所定時間内に所定温度まで上昇させ、所定温度に維持することができれば、ボイラ13が断続的に作動する構成としてもよい。 In this embodiment, the boiler 13 is continuously operated from the start of the preheating process to the end of the third process. However, if the inside of the heating chamber 12 can be raised to a predetermined temperature within a predetermined time and maintained at the predetermined temperature, the boiler 13 may operate intermittently.
 (実施の形態3)
 以下、本開示の実施の形態3に係る加熱装置について、図7~図9を用いて説明する。
(Embodiment 3)
Hereinafter, the heating apparatus according to the third embodiment of the present disclosure will be described with reference to FIGS.
 図7は、本実施の形態に係る加熱装置の概略構成を示す正面断面図であり、図8は、本実施の形態に係る加熱装置の制御ブロック図である。 FIG. 7 is a front sectional view showing a schematic configuration of the heating device according to the present embodiment, and FIG. 8 is a control block diagram of the heating device according to the present embodiment.
 図7、図8に示すように、本実施の形態に係る加熱装置は、上ヒータ17aと下ヒータ17bとを有する。それ以外の構成要件に関しては、本実施の形態は実施の形態1と同一である。 As shown in FIGS. 7 and 8, the heating device according to the present embodiment includes an upper heater 17a and a lower heater 17b. With respect to other configuration requirements, the present embodiment is the same as the first embodiment.
 上ヒータ17aは、加熱室12内かつ加熱室12の天井の近くに設けられ、食品11を上方から輻射加熱する。下ヒータ17bは、加熱室12内かつ棚網16の下方に設けられ、食品11を下方から輻射加熱する。 The upper heater 17a is provided in the heating chamber 12 and near the ceiling of the heating chamber 12, and radiates and heats the food 11 from above. The lower heater 17b is provided in the heating chamber 12 and below the shelf net 16, and radiates and heats the food 11 from below.
 制御部23は、ボイラ13、マグネトロン14、回転アンテナ22の制御に加えて、上ヒータ17aおよび下ヒータ17bへの通電量の制御を行う。以下の説明において、上ヒータ17aと下ヒータ17bとを、集合的にヒータ17と呼ぶ。 The control unit 23 controls the energization amount to the upper heater 17a and the lower heater 17b in addition to the control of the boiler 13, the magnetron 14, and the rotating antenna 22. In the following description, the upper heater 17a and the lower heater 17b are collectively referred to as the heater 17.
 以上のように構成された加熱装置における解凍加熱工程について、図9を用いて説明する。図9は、本実施の形態における解凍加熱工程を示すタイムチャートである。 The thawing heating process in the heating apparatus configured as described above will be described with reference to FIG. FIG. 9 is a time chart showing the thawing heating step in the present embodiment.
 操作部(不図示)を経由して使用者から予熱工程の開始が指示されると、図9に示すように、ヒータ17による予熱工程が開始される。予熱工程において、ボイラ13は断続的に作動して、加熱室12に蒸気を断続的に供給する。本実施の形態では、ボイラ13とヒータ17(上ヒータ17a、下ヒータ17b)とが予熱器として機能する。 When the start of the preheating process is instructed by the user via the operation unit (not shown), the preheating process by the heater 17 is started as shown in FIG. In the preheating process, the boiler 13 operates intermittently to supply steam to the heating chamber 12 intermittently. In the present embodiment, the boiler 13 and the heater 17 (upper heater 17a, lower heater 17b) function as a preheater.
 以降の工程において、制御部23は、予熱工程の開始から第3工程の終了まで、ヒータ17を作動させる以外、実施の形態1と同様の制御を行う。その結果、以下の効果が生じる。 In the subsequent steps, the control unit 23 performs the same control as in the first embodiment except that the heater 17 is operated from the start of the preheating step to the end of the third step. As a result, the following effects occur.
 本実施の形態では、予熱工程において、蒸気による内壁12aへの凝縮熱の供給によって、ヒータによる輻射加熱のみの場合より内壁12aの温度上昇が早くなり、それだけ早く予熱工程が終了する。 In the present embodiment, in the preheating process, the supply of condensation heat to the inner wall 12a by steam causes the temperature rise of the inner wall 12a to be faster than in the case of only radiant heating by the heater, and the preheating process is completed earlier.
 第1工程および第2工程において、蒸気30とマイクロ波31との相乗効果による水膜形成に加えて、ヒータ17からの輻射熱により食品11の表面の氷が融かされることで、水膜形成が促進される。 In the first step and the second step, in addition to the formation of a water film by the synergistic effect of the steam 30 and the microwave 31, the ice on the surface of the food 11 is melted by the radiant heat from the heater 17, thereby forming a water film. Is promoted.
 実施の形態1による解凍加熱工程の場合、第3工程において、マイクロ波加熱により食品11の内部の水分が蒸気となって外部に漏れ出し、食品11の表面に水分となって現れる場合がある。食品11の種類によっては、この水分により表面がふやけてしまう可能性がある。 In the case of the thawing heating step according to the first embodiment, in the third step, the moisture inside the food 11 may become vapor due to microwave heating and leak to the outside, and may appear as moisture on the surface of the food 11. Depending on the type of food 11, the surface may be swollen by this moisture.
 本実施の形態によれば、第3工程において、ヒータ17からの輻射熱により食品11の表面の水分が蒸発する。その結果、実施の形態1の場合と比べて食品11によりサクサクした食感を与えることができる。そのため、本実施の形態による解凍加熱工程は、特に揚げ物料理、焼き物料理に適している。 According to the present embodiment, in the third step, the moisture on the surface of the food 11 is evaporated by the radiant heat from the heater 17. As a result, it is possible to give a crisp texture with the food 11 compared to the case of the first embodiment. Therefore, the thawing heating process according to the present embodiment is particularly suitable for fried dishes and grilled dishes.
 なお、本実施の形態では、予熱工程の開始から第3工程の終了まで、ヒータ17が連続して作動する。しかしながら、加熱室12内を所定時間内に所定温度まで上昇させ、所定温度に維持することができれば、ヒータ17が断続的に作動する構成としてもよい。 In the present embodiment, the heater 17 operates continuously from the start of the preheating process to the end of the third process. However, the heater 17 may be operated intermittently as long as the inside of the heating chamber 12 can be raised to a predetermined temperature within a predetermined time and maintained at the predetermined temperature.
 また、本実施の形態では、ヒータ17により食品11が輻射加熱される。しかしながら、ヒータ17の代わりに、加熱室12の外側かつ後方に設けられた電気ヒータと循環ファンにより、加熱室12内に熱風が供給され循環する構成としてもよい。 In the present embodiment, the food 11 is radiantly heated by the heater 17. However, instead of the heater 17, a configuration may be adopted in which hot air is supplied and circulated in the heating chamber 12 by an electric heater and a circulation fan provided outside and behind the heating chamber 12.
 さらに、上記熱風循環の構成に加えて、上ヒータ17aおよび下ヒータ17bの少なくとも一つを組み合わせた構成としてもよい。 Furthermore, in addition to the hot air circulation configuration, a configuration in which at least one of the upper heater 17a and the lower heater 17b is combined may be adopted.
 以上のように、本開示にかかる加熱装置は、冷凍された食品を短時間に加熱むらなく解凍加熱することができる。このため、加熱調理器のみならず、乾燥装置を含む各種工業用の用途において、冷凍状態の物品を解凍加熱する場合に適用可能である。 As described above, the heating device according to the present disclosure can defrost and heat a frozen food without heating. For this reason, it is applicable not only to a heating cooker but also to various industrial uses including a drying apparatus when thawing and heating an article in a frozen state.
 11 食品
 12 加熱室
 12a 内壁
 13 ボイラ
 14 マグネトロン
 17 ヒータ
 17a 上ヒータ
 17b 下ヒータ
 20,21 温度センサ
 23 制御部
 25 記憶部
 26 判定部
 27 導波管
 30 蒸気
 31 マイクロ波
DESCRIPTION OF SYMBOLS 11 Food 12 Heating chamber 12a Inner wall 13 Boiler 14 Magnetron 17 Heater 17a Upper heater 17b Lower heater 20, 21 Temperature sensor 23 Control part 25 Memory | storage part 26 Judgment part 27 Waveguide 30 Steam 31 Microwave

Claims (8)

  1.  冷凍された食品を加熱して解凍する加熱装置であって、
     内部に前記食品を収納する加熱室と、
     前記食品の表面に水膜を形成するために、前記加熱室に水分を供給する水膜形成部と、
     前記食品をマイクロ波加熱するために、前記加熱室にマイクロ波を供給するマイクロ波供給部と、
     前記水膜形成部と前記マイクロ波供給部とを制御する制御部と、
    を備え、
     前記制御部が、前記水膜形成部を作動させる第1工程を実行し、前記水膜形成部と前記マイクロ波供給部とを作動させる第2工程を、前記第1工程の後に実行する加熱装置。
    A heating device for heating and thawing frozen food,
    A heating chamber for storing the food inside,
    In order to form a water film on the surface of the food, a water film forming unit that supplies moisture to the heating chamber;
    In order to microwave heat the food, a microwave supply unit that supplies microwaves to the heating chamber;
    A control unit for controlling the water film forming unit and the microwave supply unit;
    With
    The control unit performs a first step of operating the water film forming unit, and performs a second step of operating the water film forming unit and the microwave supply unit after the first step. .
  2.  前記制御部が、前記水膜形成部を停止させ、前記マイクロ波供給部を作動させる第3工程を、前記第2工程の後に実行する請求項1に記載の加熱装置。 The heating apparatus according to claim 1, wherein the control unit executes a third step of stopping the water film forming unit and operating the microwave supply unit after the second step.
  3.  前記加熱室に蒸気を供給するボイラをさらに備え、
     前記制御部が、前記マイクロ波供給部を停止させ、前記ボイラを作動させる第3工程を、前記第2工程の後に実行する請求項1に記載の加熱装置。
    A boiler for supplying steam to the heating chamber;
    The heating apparatus according to claim 1, wherein the control unit executes a third step of stopping the microwave supply unit and operating the boiler after the second step.
  4.  前記加熱室内に設けられ、前記食品を輻射加熱するヒータをさらに備え、
     前記第1工程と前記第2工程と前記第3工程とにおいて、前記制御部が前記ヒータを作動させる請求項2に記載の加熱装置。
    A heater provided in the heating chamber for radiantly heating the food;
    The heating apparatus according to claim 2, wherein the control unit operates the heater in the first step, the second step, and the third step.
  5.  前記加熱室の内壁を予熱する予熱器と、
     前記内壁の温度を検出する温度センサと、をさらに備え、
     前記制御部が、前記予熱器を作動させる予熱工程を前記第1工程の前に実行し、前記温度センサの検出結果に応じて前記予熱工程を終了させる請求項1に記載の加熱装置。
    A preheater for preheating the inner wall of the heating chamber;
    A temperature sensor for detecting the temperature of the inner wall,
    The heating apparatus according to claim 1, wherein the control unit executes a preheating step for operating the preheater before the first step, and ends the preheating step according to a detection result of the temperature sensor.
  6.  前記予熱器が、前記加熱室に蒸気を供給するボイラを含む請求項5に記載の加熱装置。 The heating apparatus according to claim 5, wherein the preheater includes a boiler that supplies steam to the heating chamber.
  7.  前記水膜形成部が、前記加熱室に蒸気を供給するボイラを含む請求項1に記載の加熱装置。 The heating apparatus according to claim 1, wherein the water film forming unit includes a boiler that supplies steam to the heating chamber.
  8.  前記制御部が、前記第2工程において、前記食品の単位面積当たりの蒸気付着量が2.5mg/cmになるまで、前記ボイラを作動させる請求項7に記載の加熱装置。 The heating device according to claim 7, wherein the controller operates the boiler until a vapor deposition amount per unit area of the food becomes 2.5 mg / cm 2 in the second step.
PCT/JP2014/004256 2013-08-22 2014-08-20 Heating device WO2015025519A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014003833.4T DE112014003833T5 (en) 2013-08-22 2014-08-20 heater
CN201480041697.5A CN106133448B (en) 2013-08-22 2014-08-20 heating device
JP2015532710A JP6421339B2 (en) 2013-08-22 2014-08-20 Heating device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013171892 2013-08-22
JP2013-171891 2013-08-22
JP2013-171892 2013-08-22
JP2013-171893 2013-08-22
JP2013171893 2013-08-22
JP2013171891 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025519A1 true WO2015025519A1 (en) 2015-02-26

Family

ID=52483314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004256 WO2015025519A1 (en) 2013-08-22 2014-08-20 Heating device

Country Status (4)

Country Link
JP (1) JP6421339B2 (en)
CN (1) CN106133448B (en)
DE (1) DE112014003833T5 (en)
WO (1) WO2015025519A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340311B1 (en) * 2022-03-31 2023-09-07 新光食品機械販売株式会社 Frozen bread thawing device, frozen bread thawing method
JP7355357B1 (en) * 2022-03-31 2023-10-03 新光食品機械販売株式会社 Frozen bread thawing device, frozen bread thawing method
WO2023190551A1 (en) * 2022-03-31 2023-10-05 新光食品機械販売株式会社 Frozen bread thawing device, and frozen bread thawing method
US11953261B2 (en) 2017-10-26 2024-04-09 BSH Hausgeräte GmbH Food treatment device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100995A (en) * 2019-05-24 2019-08-09 典发食品(苏州)有限公司 A kind of frozen food heating device
CN110145768B (en) * 2019-05-30 2020-10-23 广东美的厨房电器制造有限公司 Microwave oven and unfreezing control method and device thereof
EP4017216A1 (en) * 2020-12-16 2022-06-22 Electrolux Appliances Aktiebolag Method of operating an appliance, in particular household or cooking appliance, appliance, and computer-program product
CN113519609B (en) * 2021-06-02 2023-10-13 成都工业职业技术学院 Quick thawing equipment and quick thawing method for frozen food
CN114835667B (en) * 2022-04-20 2024-03-22 浙江蓝美生物技术有限公司 Method for cleanly producing high-content anthocyanin powder by taking frozen blueberry fruits as raw materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211100A (en) * 1998-01-27 1999-08-06 Matsushita Electric Ind Co Ltd Heater/cooker
JP2003269728A (en) * 2002-03-12 2003-09-25 Matsushita Electric Ind Co Ltd Control method for high-frequency heating device with steam generating function
JP2004286439A (en) * 2004-06-02 2004-10-14 Matsushita Electric Ind Co Ltd High-frequency heating device
JP2006170612A (en) * 2006-02-17 2006-06-29 Matsushita Electric Ind Co Ltd Combined cooker
JP2007024388A (en) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd Cooking apparatus
JP2007236843A (en) * 2006-03-13 2007-09-20 Miura Co Ltd Steam heater
JP2007327700A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Heating cooking apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE449523T1 (en) * 2002-03-12 2009-12-15 Panasonic Corp HIGH FREQUENCY HEATING DEVICE AND CONTROL METHOD THEREOF
JP4221667B2 (en) * 2004-08-25 2009-02-12 ソニー株式会社 Information processing apparatus, information processing method, recording medium, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211100A (en) * 1998-01-27 1999-08-06 Matsushita Electric Ind Co Ltd Heater/cooker
JP2003269728A (en) * 2002-03-12 2003-09-25 Matsushita Electric Ind Co Ltd Control method for high-frequency heating device with steam generating function
JP2004286439A (en) * 2004-06-02 2004-10-14 Matsushita Electric Ind Co Ltd High-frequency heating device
JP2007024388A (en) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd Cooking apparatus
JP2006170612A (en) * 2006-02-17 2006-06-29 Matsushita Electric Ind Co Ltd Combined cooker
JP2007236843A (en) * 2006-03-13 2007-09-20 Miura Co Ltd Steam heater
JP2007327700A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Heating cooking apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953261B2 (en) 2017-10-26 2024-04-09 BSH Hausgeräte GmbH Food treatment device
JP7340311B1 (en) * 2022-03-31 2023-09-07 新光食品機械販売株式会社 Frozen bread thawing device, frozen bread thawing method
JP7355357B1 (en) * 2022-03-31 2023-10-03 新光食品機械販売株式会社 Frozen bread thawing device, frozen bread thawing method
WO2023190551A1 (en) * 2022-03-31 2023-10-05 新光食品機械販売株式会社 Frozen bread thawing device, and frozen bread thawing method
WO2023190552A1 (en) * 2022-03-31 2023-10-05 新光食品機械販売株式会社 Thawing device for frozen bread and thawing method for frozen bread

Also Published As

Publication number Publication date
JP6421339B2 (en) 2018-11-14
CN106133448B (en) 2019-01-11
CN106133448A (en) 2016-11-16
JPWO2015025519A1 (en) 2017-03-02
DE112014003833T5 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6421339B2 (en) Heating device
JP4444312B2 (en) Cooker
JP2012247092A (en) Heating cooker
JP5526754B2 (en) Food cooking method
JP2011125258A (en) Food heating and cooking method
JP5677387B2 (en) Induction heating cooker
JP3864990B2 (en) Combined cooker
JP3973479B2 (en) Cooker
WO2015141208A1 (en) High-frequency heating device
JP4179108B2 (en) Cooker
JP2007327700A5 (en)
JP2005061669A (en) Heating device and driving method thereof
JP2005077019A (en) Heating cooker
CN107549288A (en) A kind of unfreezing control method for thawing apparatus
JP5463394B2 (en) Cooker
JP3633037B2 (en) High frequency heating device
JPS63196251A (en) Thawing, heating and cooking for frozen food and device therefor
JP2005233493A (en) High frequency heating cooker
JP3841090B2 (en) Microwave heating device
JP2006292233A (en) Heating cooker
JP2004245540A (en) Heating cooker
JP2907734B2 (en) Cooking device
JP4036232B2 (en) Microwave heating device
JP3867714B2 (en) Combined cooker
JP2009068746A (en) Cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838409

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015532710

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014003833

Country of ref document: DE

Ref document number: 1120140038334

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838409

Country of ref document: EP

Kind code of ref document: A1