WO2015025380A1 - プラント監視装置 - Google Patents

プラント監視装置 Download PDF

Info

Publication number
WO2015025380A1
WO2015025380A1 PCT/JP2013/072286 JP2013072286W WO2015025380A1 WO 2015025380 A1 WO2015025380 A1 WO 2015025380A1 JP 2013072286 W JP2013072286 W JP 2013072286W WO 2015025380 A1 WO2015025380 A1 WO 2015025380A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
arrow
display
current value
noise removal
Prior art date
Application number
PCT/JP2013/072286
Other languages
English (en)
French (fr)
Inventor
久美子 竹川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/911,427 priority Critical patent/US20160195873A1/en
Priority to JP2015532616A priority patent/JPWO2015025380A1/ja
Priority to PCT/JP2013/072286 priority patent/WO2015025380A1/ja
Publication of WO2015025380A1 publication Critical patent/WO2015025380A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0232Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on qualitative trend analysis, e.g. system evolution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user

Definitions

  • the present invention relates to a plant monitoring apparatus for monitoring a parameter indicating a plant state.
  • Plant monitoring devices are used in a wide range of fields such as nuclear power plants, chemical plants, power distribution facilities, and water and sewage systems.
  • the operator grasps their changing tendency while monitoring various parameters indicating the state of the plant on the screen of the plant monitoring device, and performs a process of stabilizing the parameter in the deviation tendency.
  • the parameters include generator output, furnace output, furnace water level, furnace pressure, and the like.
  • the tendency of the input data to be changed is determined by a tendency determination device, and the tendency is determined to be unchanged, with a constant velocity rising (decreasing) tendency, and with a rapid increase in acceleration ( It is classified as a downward trend and a slow upward (downward) tendency with a negative acceleration, and each is indicated by a differently shaped arrow.
  • the plant state quantity and the rate of change thereof are compared with a plurality of preset alarm levels to determine the alarm state, and an arrow indicating the change state of the plant state quantity
  • the display color of is changed according to the alarm state.
  • the present invention suppresses visual noise caused by parameter fluctuations and reduces the burden on an operator when displaying a change tendency of a parameter indicating the state of the plant with an arrow.
  • the purpose is to obtain a monitoring device.
  • the plant monitoring apparatus is a plant monitoring apparatus that monitors a parameter indicating the state of the plant, and the parameter is determined to be abnormal when it exceeds a preset allowable range. Fluctuations within an allowable range are observed, and the current value of the parameter is acquired at a predetermined cycle from the display means having a screen for displaying the change tendency of the parameter with an arrow and the plant equipment to be monitored Parameter input means, parameter difference calculation means for calculating the difference between the current value of the parameter acquired from the parameter input means and the previous value, and the parameter value based on the difference between the current value of the parameter acquired from the parameter difference calculation means and the previous value.
  • a change tendency determining means for determining a change tendency, and a change tendency and parameter determined by the change tendency determining means.
  • Visual noise removal processing means for suppressing the influence of parameter fluctuation on the arrow displayed on the display means based on at least one of the difference between the current value of the current value and the previous value, and the current value of the parameter, and visual noise Display processing means for displaying an arrow processed by the removal processing means on the display means is provided.
  • the plant monitoring apparatus includes visual noise removal processing means for suppressing the influence of parameter fluctuations on the arrow displayed on the screen of the display means, and the arrow frequently changes due to the fluctuation of the parameter during normal times. Since the visual noise is suppressed, the burden on the operator who monitors the parameter is reduced.
  • FIG. 1 shows the configuration of the plant monitoring apparatus according to the first embodiment.
  • the plant monitoring device 1 acquires various parameters indicating the state of a plant from a plant facility 10 including a control device, a measuring device, and the like, and monitors the current values and change trends of those parameters.
  • parameters indicating the state of the plant are generator output, reactor output, reactor water level, reactor pressure, radiation dose, and the like. Many of these parameters are judged to be abnormal when they exceed the permissible range set for each parameter, but even under normal conditions, they are allowed depending on external conditions such as temperature and pressure, and internal conditions such as reactivity. Fluctuations that vary within the range are observed.
  • the parameter input means 2 acquires the current value of the parameter from the monitored plant equipment 10 at a predetermined cycle.
  • the predetermined cycle is set for each parameter according to the nature and importance of the parameter, and can be changed according to the circumstances such as normal times and abnormal times.
  • the parameter difference calculation means 3 calculates the difference (change amount) between the current value of the parameter acquired from the parameter input means 2 and the previous value.
  • the change tendency determination means 4 determines the parameter change tendency based on the difference between the current value of the parameter acquired from the parameter difference calculation means 3 and the previous value. That is, when the difference is positive, it is determined that it is increasing, when it is negative, it is decreasing, and when it is zero, it is determined that there is no change.
  • the parameter change tendency is determined based on the difference between the current value of the parameter and the previous value.
  • the determination method of the change tendency is not limited to this. For example, a method of calculating a difference between a reference value set for each parameter and the current value of the parameter and determining a parameter change tendency based on the difference may be employed.
  • the visual noise removal processing means 5 is displayed on the display device 7 based on at least one of the change tendency determined by the change tendency determination means 4, the difference between the current value of the parameter and the previous value, and the current value of the parameter.
  • the process of suppressing the influence of parameter fluctuation is performed on the arrows.
  • the visual noise removal processing unit 5 includes a continuous number counting unit 51 and an arrow enhancement degree setting unit 52.
  • the continuous number counting means 51 counts the number of times that the same change tendency appears continuously in a certain parameter.
  • the arrow emphasis degree setting means 52 determines the presence / absence of an arrow display based on the counting result by the continuous number counting means 51. When the arrow display is present, the arrow emphasis degree setting means 52 emphasizes as the number counted by the continuous number counting means 51 increases. Set a large arrow.
  • the arrow emphasis degree setting means 52 changes the degree of arrow emphasis step by step by changing at least one of display color shading, display color type, and arrow size. For example, when the background color of the screen of the display device 7 is black, the degree of emphasis increases as the display color of the arrow is lighter (for example, white> light gray> gray> dark gray).
  • the display processing means 6 performs processing for displaying the arrow processed by the visual noise removal processing means 5 on the display device 7. Specifically, an upward arrow is selected when the change tendency determined by the change tendency determination means 4 is an increasing tendency, and a downward arrow is selected when the change tendency is decreasing, and this is set as the emphasis set by the visual noise removal processing means 5. Display in degrees. Note that the arrow is not displayed when the parameter is unchanged.
  • the shape of the arrow, the upward and downward angles, etc. are not particularly limited and can be arbitrarily set.
  • the plant monitoring device 1 includes an input device such as a mouse, a keyboard, and a touch device for an operator to operate, and a storage unit that stores input parameters and calculation results. I have.
  • step 1 the parameter input means 2 reads the current parameter value Y n from the plant facility 10.
  • step 4 the visual noise removal processing means 5 performs visual noise removal processing for suppressing the influence of parameter fluctuation on the arrow displayed on the display device 7.
  • the visual noise removal processing in the first embodiment will be described in detail later using the flowchart of FIG.
  • step 5 the visual noise removal processing means 5 determines whether or not an arrow is displayed on the display device 7 based on the result of the process of S4. If there is no display (NO), the process returns to S1. In the case of display (YES), an arrow in which visual noise is suppressed is displayed in S4, and the process returns to S1. This completes one process.
  • the visual noise removal processing unit 5 performs a process of setting the color flag of the arrow of the emphasis level corresponding to the continuous number of times based on the counting result by the continuous number counting unit 51.
  • step 11 (S11) the continuous number counting means 51 acquires the parameter change tendency from the change tendency determining means 4, and counts the number N of times that the same change tendency appears continuously.
  • Step 12 it is determined whether or not N ⁇ 1, and if N ⁇ 1 (YES), the process proceeds to Step 14 (S14). If N ⁇ 1 in S12 (NO), it is determined that the number of consecutive times is 0, and in step 13 (S13), “no arrow display” is determined.
  • step 14 it is determined whether or not N ⁇ 2, and if N ⁇ 2 (YES), the process proceeds to step 16 (S16). If N ⁇ 2 in S14 (NO), it is determined that the number of consecutive times is one, and in step 15 (S15), the color flag of the arrow of enhancement level 1 is set.
  • N ⁇ 3 it is determined whether or not N ⁇ 3. If N ⁇ 3 (YES), the process proceeds to Step 18 (S18). If N ⁇ 3 in S16 (NO), it is determined that the number of consecutive times is 2, and in step 17 (S17), the color flag of the arrow with the enhancement level 2 is set.
  • N ⁇ 4 it is determined whether or not N ⁇ 4. If N ⁇ 4 (YES), the process proceeds to step 20 (S20). If N ⁇ 4 in S18 (NO), it is determined that the number of consecutive times is three, and in step 19 (S19), the color flag of the arrow of enhancement level 3 is set.
  • N ⁇ 5 N ⁇ 5
  • S21 the color of the arrow at the enhancement level 4 is determined.
  • N ⁇ 5 N ⁇ 5 (YES)
  • N ⁇ 5 N ⁇ 5 (YES)
  • an emphasis level 5 arrow color flag is set in step 22 (S22).
  • the plant monitoring apparatus 1 displays an arrow with a higher emphasis as the number of times that the same change tendency of parameters appears continuously by the visual noise removal processing unit 5.
  • the arrow is not displayed, so that the number of times the arrow is displayed can be reduced, and visual noise is suppressed (see Example 1 in FIG. 9).
  • the arrow display due to the fluctuation can be suppressed, and the burden on the operator who monitors the parameter can be reduced.
  • the change tendency is obtained from the difference between the current value of the parameter and the previous value, it is possible to display the change tendency without a time lag as an arrow.
  • FIG. 1 The overall configuration of the plant monitoring apparatus according to Embodiment 2 of the present invention is the same as that of Embodiment 1 described above, and therefore the description thereof is omitted (see FIG. 1).
  • the visual noise removal processing means 5 of the plant monitoring apparatus 1 according to the second embodiment includes a continuous number counting means 51 and an arrow enhancement degree setting means 52 as in the first embodiment.
  • the arrow emphasis degree setting means 52 sets an arrow having a higher emphasis degree as the number of consecutive times counted by the consecutive number counting means 51 increases, and when the same change tendency does not appear continuously. An arrow is not displayed, but an arrow is also displayed when the number of consecutive times is small.
  • the arrow emphasis degree setting means 52 is preset with the number of consecutive times counted by the consecutive number counting means 51. When the number of times is less than the allowable number, a process not displaying an arrow is performed. The allowable number of times is set for each parameter and can be changed.
  • FIG. 4 is a flowchart showing the flow of visual noise removal processing in the second embodiment.
  • step 31 the continuous frequency counting means 51 of the visual noise removal processing means 5 acquires the parameter change tendency from the change tendency determining means 4, and counts the number N of times that the same change tendency appears continuously. .
  • step 32 the arrow emphasis degree setting means 52 determines whether or not the number N counted in S31 is within an allowable number.
  • the process proceeds to Step 33 (S33), and it is determined that there is no arrow display.
  • the process proceeds to step 34 (S34), and it is determined that an arrow is displayed.
  • the degree of arrow emphasis increases as the number of consecutive times increases, as in the first embodiment.
  • the number of times the arrow is displayed can be further reduced as compared with the first embodiment, and the visual noise is suppressed. (See Example 2 in FIG. 9).
  • Embodiment 3 The overall configuration of the plant monitoring apparatus according to the third embodiment of the present invention is the same as that of the first embodiment, and a description thereof will be omitted (see FIG. 1).
  • the visual noise removal processing means 5a in the plant monitoring apparatus according to the third embodiment is at least one of the current value of the parameter and the difference (change amount) between the current value of the parameter and the previous value.
  • an arrow display determination means 53 for determining the presence or absence of an arrow display.
  • the arrow display determination unit 53 acquires the current value of the parameter from the parameter input unit 2, and performs a process of not displaying the arrow when the current value of the parameter is within a preset allowable range.
  • the allowable range is set for each parameter and can be changed.
  • FIG. 6 is a flowchart showing the flow of processing by the visual noise removal processing means 5a according to the third embodiment.
  • step 41 the arrow display determination unit 53 of the visual noise removal processing unit 5a reads the current value Y n parameters from the parameter input unit 2.
  • step 42 determines whether the current value Y n is the allowable range of parameters obtained in S41.
  • the process proceeds to step 43 (S43), it determines that no arrows appear.
  • the process proceeds to Step 44 (S44), where it is determined that an arrow is displayed, and an arrow based on the determination result by the change tendency determination unit 4 is displayed.
  • the arrow display determination means 53 may determine the presence or absence of the arrow display based on the change amount of the parameter. In that case, the arrow display determination unit 53 obtains the difference between the current value and the previous value of the parameter, that is, the change amount from the parameter difference calculation unit 3, and when this change amount is equal to or less than a preset allowable change amount, Processing that does not display the arrow.
  • the allowable change amount is set for each parameter and can be changed.
  • the arrow display determination means 53 may determine whether or not an arrow is displayed based on both the current value and the change amount of the parameter.
  • the allowable range of the current value of the parameter is set based on the average value ⁇ or deviation ⁇ of the parameter.
  • ⁇ ⁇ Y n ⁇ + ⁇ can be used as an example of an allowable range of parameters.
  • ⁇ ⁇ Y n ⁇ can be used as an example of the allowable change amount of the parameter.
  • the arrow display determination means 53 calculates a difference between a “reference value” set in advance for each parameter and the current value of the parameter, and performs processing that does not display an arrow when the difference is within an allowable range. It may be.
  • the visual noise removal processing means 5a in the third embodiment may be provided with the continuous number counting means 51 and the arrow enhancement degree setting means 52 in the first or second embodiment.
  • the presence / absence of arrow display is determined based on the counting result by the continuous number counting means 51 and the determination result by the arrow display determination means 53.
  • an arrow with the degree of emphasis corresponding to the number of consecutive times is displayed.
  • the number of times the arrow is displayed is determined.
  • the visual noise can be suppressed (see Example 3 in FIG. 9).
  • arrow display due to fluctuation can be suppressed.
  • Embodiment 4 The overall configuration of the plant monitoring apparatus according to Embodiment 4 of the present invention is the same as that of Embodiment 1 described above, and a description thereof will be omitted (see FIG. 1).
  • the visual noise removal processing unit 5b according to the fourth embodiment is based on the difference between the current value of the parameter and the previous value, and the larger the change amount of the parameter, the greater the horizontal direction of the arrow axis.
  • An arrow angle setting unit 54 is provided for performing processing for increasing the angle.
  • the arrow angle setting means 54 sets a plurality of angles, for example, three stages, from the horizontal direction to the vertical direction with respect to the axis of the arrow.
  • the arrow axis When the change tendency is increasing, the arrow axis has an upward angle with respect to the horizontal direction, and when the change tendency is decreasing, the arrow axis has an downward angle with respect to the horizontal direction. The angle increases as the amount of change increases.
  • FIG. 8 is a flowchart showing the flow of processing by the visual noise removal processing means 5b according to the fourth embodiment.
  • step 51 (S51) the arrow angle setting means 54 of the visual noise removal processing means 5b acquires the parameter change amount ⁇ Y n from the parameter difference calculation means 3.
  • step 52 it is determined whether or not the parameter change amount ⁇ Y n acquired in S51 is zero.
  • the visual noise removal processing means 5b in the fourth embodiment may be provided with the continuous number counting means 51 and the arrow emphasis degree setting means 52 in the first embodiment or the second embodiment. Furthermore, you may provide the arrow display determination means 53 in the said Embodiment 3.
  • FIG. 1 A diagrammatic representation of the visual noise removal processing means 5b in the fourth embodiment.
  • the operator can grasp the degree of the amount of change of the parameter from the angle of the arrow.
  • the burden is reduced. Further, by performing processing such as not displaying an arrow with a small angle or displaying an arrow with a relatively low degree of emphasis, visual noise due to parameter fluctuations can be suppressed.
  • the power generation plant generator output (MW) is used as a parameter, and the visual noise removal processing is performed on the arrow indicating the change tendency. The results are shown in FIG.
  • Example 1 the visual noise removal processing unit 5 according to the first embodiment performs processing for displaying an arrow with a higher emphasis as the number of times the same change tendency appears continuously is increased. It is.
  • four levels of enhancement are provided, and level 1 ⁇ level 2 ⁇ level 3 ⁇ level 4.
  • an arrow is displayed when the number of consecutive times is 1 or more.
  • Example 2 the visual noise removal processing unit 5 according to the second embodiment performs the process of setting the allowable number of consecutive times as 1 and displaying the arrow of the degree of emphasis according to the continuous number of times. It is.
  • an arrow is not displayed when the number of consecutive times is 1, but a level 1 arrow is displayed when the number of consecutive times is 2, and a level 2 arrow is displayed when the number of times is continuous. As a result, the number of times the arrow is displayed is smaller than in Example 1.
  • the allowable range of the parameter input value (current value) is set to 800 MW to 850 MW by the visual noise removal processing unit 5a according to the third embodiment, and an arrow is not displayed when the allowable range is within the allowable range. It is what went. In this processing method, the number of times the arrow is displayed is further reduced by setting the allowable range wider.
  • Example 4 the angle of the arrow corresponding to the parameter change amount ⁇ Y n is set by the visual noise removal processing unit 5b according to the fourth embodiment.
  • the angle is provided in three stages, angle 1 ⁇ angle 2 ⁇ angle 3, angle 1 when
  • Example 4 the degree of parameter change can be determined from the angle of the arrow. Also, in Example 4, by adopting the determination of the presence or absence of the arrow display according to any of Examples 1 to 3, the number of times the arrow is displayed can be reduced, and the degree of parameter change can be grasped. it can.
  • the processing by the visual noise removal processing means 5, 5a, and 5b according to the first to third embodiments and the fourth embodiment can be appropriately combined, and by combining them, a higher visual A noise removal effect can be obtained.
  • the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
  • the present invention can be used as a plant monitoring device for monitoring the state of a plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

 視覚的ノイズ除去処理手段(5)は、パラメータの変化傾向、パラメータの現在値と前回値の差分、及びパラメータの現在値の少なくとも1つに基づいて、表示装置(7)に表示される矢印に対しパラメータの揺らぎの影響を抑制する処理を行う。連続回数計数手段(51)は、パラメータの同じ変化傾向が連続して出現した回数を計数し、矢印強調度設定手段(52)は、該回数の増加に伴い矢印の強調度を大きくする。

Description

プラント監視装置
 本発明は、プラントの状態を示すパラメータを監視するプラント監視装置に関するものである。
 プラント監視装置は、原子力発電プラント、化学プラント、受配電設備及び上下水道等、幅広い分野で用いられている。運転員は、プラント監視装置の画面上でプラントの状態を示す各種パラメータを監視しながらそれらの変化傾向を把握し、逸脱傾向にあるパラメータを安定させる処置を行う。例えば原子力発電プラントの場合、パラメータとして、発電機出力、炉出力、炉水位、炉圧力等がある。
 従来、パラメータを監視する運転員の負担を軽減することを目的とし、パラメータの変化傾向を矢印で表示する工夫がなされている。例えば、特許文献1に提示されたプロセス監視装置では、入力されたデータの変化傾向を傾向判定装置で判定し、その傾向を、変化なし、等速上昇(下降)傾向、加速度がプラスの急上昇(下降)傾向、加速度がマイナスの緩上昇(下降)傾向に分類し、それぞれ異なる形状の矢印で表示している。
 また、特許文献2に提示されたプラント状態表示方法では、プラントの重要パラメータに関する現在値、前回値、制限値の各データに基づいて、制限値への接近度合、増減傾向、制限値までの時間的余裕を判断し、それぞれに応じた色と向きの矢印を、現在値のメータ表示と同時に表示している。
 また、特許文献3に提示されたプラント状態表示装置では、プラント状態量とその変化率を予め設定された複数の警報レベルと比較して警報状態を判定し、プラント状態量の変化状態を示す矢印の表示色を、その警報状態に応じて変えるようにしている。
特開平1-287419号公報 特開昭58-189708号公報 特開昭61-101812号公報
 プラントの状態を示すパラメータの多くは、予め設定された許容範囲を超えた場合に異常であると判断される一方、平常時においても、温度や圧力等の外部条件や反応度等の内部条件により許容範囲内で変動する揺らぎが観察される。このようなパラメータの揺らぎは、異常時のパラメータの変動とは異なるもので、運転員による処置の必要はない。
 しかしながら、上記特許文献1~3のような従来方法においては、平常時のパラメータの揺らぎも含めたパラメータの変化量から変化傾向を判定し、矢印表示を行っていた。このため、矢印の方向や色が頻繁に変化する視覚的ノイズとなり、パラメータを監視する運転員の負担となっていた。
 本発明は、上記問題点に鑑み、プラントの状態を示すパラメータの変化傾向を矢印で表示する際に、パラメータの揺らぎによる視覚的ノイズを抑制し、運転員の負担を軽減することが可能なプラント監視装置を得ることを目的とする。
 本発明に係るプラント監視装置は、プラントの状態を示すパラメータを監視するプラント監視装置であって、パラメータは、予め設定された許容範囲を超えた場合に異常であると判断される一方、平常時においても許容範囲内で変動する揺らぎが観察されるものであり、パラメータの変化傾向を矢印で表示する画面を有する表示手段と、監視対象のプラント設備から所定の周期でパラメータの現在値を取得するパラメータ入力手段と、パラメータ入力手段から取得したパラメータの現在値と前回値の差分を計算するパラメータ差分演算手段と、パラメータ差分演算手段から取得したパラメータの現在値と前回値の差分に基づいてパラメータの変化傾向を判定する変化傾向判定手段と、変化傾向判定手段により判定された変化傾向、パラメータの現在値と前回値の差分、及びパラメータの現在値の少なくとも1つに基づいて、表示手段に表示される矢印に対しパラメータの揺らぎの影響を抑制する視覚的ノイズ除去処理手段と、視覚的ノイズ除去処理手段により処理された矢印を表示手段に表示する表示処理手段を備えたものである。
 本発明に係るプラント監視装置は、表示手段の画面に表示される矢印に対しパラメータの揺らぎの影響を抑制する視覚的ノイズ除去処理手段を備え、平常時のパラメータの揺らぎにより矢印が頻繁に変化する視覚的ノイズを抑制するようにしたので、パラメータを監視する運転員の負担が軽減される効果を有する。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1に係るプラント監視装置を示す図である。 本発明の実施の形態1~4に係るプラント監視装置によるパラメータ処理の流れを示す図である。 本発明の実施の形態1に係る視覚的ノイズ除去処理手段による処理の流れを示す図である。 本発明の実施の形態2に係る視覚的ノイズ除去処理手段による処理の流れを示す図である。 本発明の実施の形態3に係る視覚的ノイズ除去処理手段を示す図である。 本発明の実施の形態3に係る視覚的ノイズ除去処理手段による処理の流れを示す図である。 本発明の実施の形態4に係る視覚的ノイズ除去処理手段を示す図である。 本発明の実施の形態4に係る視覚的ノイズ除去処理手段による処理の流れを示す図である。 本発明の実施の形態1~4に係るプラント監視装置による矢印表示の例を示す図である。
実施の形態1.
 以下に、本発明の実施の形態1に係るプラント監視装置について、図面に基づいて説明する。図1は、本実施の形態1に係るプラント監視装置の構成を示している。プラント監視装置1は、制御装置、計測機器等を含むプラント設備10から、プラントの状態を示す各種パラメータを取得し、それらのパラメータの現在値や変化傾向を監視するものである。
 原子力発電プラントを例に挙げると、プラントの状態を示すパラメータとは、発電機出力、原子炉出力、原子炉水位、原子炉圧力、及び放射線量等である。これらのパラメータの多くは、パラメータ毎に設定された許容範囲を超えた場合に異常であると判断される一方、平常時においても温度や圧力等の外部条件や反応度等の内部条件により、許容範囲内で変動する揺らぎが観察される。
 パラメータ入力手段2は、監視対象のプラント設備10から所定の周期でパラメータの現在値を取得する。なお、所定の周期とは、パラメータの性質や重要性に応じてパラメータ毎に設定されるものであり、平常時や異常時等の状況に応じて変更可能なものである。
 パラメータ差分演算手段3は、パラメータ入力手段2から取得したパラメータの現在値と前回値の差分(変化量)を計算する。変化傾向判定手段4は、パラメータ差分演算手段3から取得したパラメータの現在値と前回値の差分に基づいて、パラメータの変化傾向を判定する。すなわち差分がプラスの場合は増加傾向、マイナスの場合は減少傾向、零の場合は変化なしと判定する。
 なお、本実施の形態1では、パラメータの現在値と前回値の差分に基づいてパラメータの変化傾向を判定しているが、変化傾向の判定方法はこれに限定されるものではない。例えば、パラメータ毎に設定された基準値と該パラメータの現在値との差分を算出し、該差分に基づいてパラメータの変化傾向を判定する方法を採用することもできる。
 視覚的ノイズ除去処理手段5は、変化傾向判定手段4により判定された変化傾向、パラメータの現在値と前回値の差分、及びパラメータの現在値の少なくとも1つに基づいて、表示装置7に表示される矢印に対しパラメータの揺らぎの影響を抑制する処理を行う。
 本実施の形態1に係る視覚的ノイズ除去処理手段5は、連続回数計数手段51と矢印強調度設定手段52を備えている。連続回数計数手段51は、あるパラメータに同じ変化傾向が連続して出現した回数を計数する。矢印強調度設定手段52は、連続回数計数手段51による計数結果に基づいて矢印表示の有無を判定し、矢印表示ありの場合には、連続回数計数手段51により計数された回数の増加に伴い強調度の大きい矢印を設定する。
 また、矢印強調度設定手段52は、表示色の濃淡、表示色の種類、矢印の大きさの少なくとも1つを変化させることにより、矢印の強調度を段階的に変化させる。例えば表示装置7の画面の背景色が黒色の場合は、矢印の表示色の濃淡が淡いほど強調度は大きくなる(例えば、白色>薄灰色>灰色>濃灰色)。
 一般にパラメータの平常時の揺らぎにおいては、同じ変化傾向が連続して出現することは少なく、連続して出現した場合でもその回数は少ない。一方、事故発生時のような異常時においては、同じ変化傾向が連続して出現することが多い。このため、上記の処理により、パラメータの揺らぎによる変化傾向に対しては強調度の小さい矢印が設定され、異常時の変化傾向に対しては強調度の大きい矢印が設定される。
 表示処理手段6は、視覚的ノイズ除去処理手段5により処理された矢印を表示装置7に表示する処理を行う。具体的には、変化傾向判定手段4により判定された変化傾向が増加傾向の場合は上向き矢印、減少傾向の場合は下向き矢印を選択し、これを視覚的ノイズ除去処理手段5により設定された強調度で表示する。なお、パラメータが変化なしの場合は矢印を表示しない。矢印の形状や上向き、下向きの角度等は特に限定されるものではなく、任意に設定することができる。
 なお、図1では省略しているが、プラント監視装置1は、運転員が操作を行うためのマウスやキーボード、タッチデバイス等の入力装置と、入力されたパラメータや演算結果を記憶する記憶手段を備えている。
 次に、プラント監視装置1によるパラメータ処理の流れについて、図2のフローチャートを用いて説明する。なお、図2のフローチャートは、本発明の実施の形態1~4に共通な処理の流れを示している。まず、ステップ1(S1)において、パラメータ入力手段2は、プラント設備10からパラメータの現在値Yを読み込む。続いてステップ2(S2)において、パラメータ差分演算手段3は、パラメータの現在値Yと前回値Yn-1の差分ΔYを算出する(ΔY=Y-Yn-1)。
 続いてステップ3(S3)において、変化傾向判定手段4は、S2で求めた差分ΔYに基づいて、パラメータの変化傾向を判定する。ΔY>0であれば増加傾向、ΔY<0であれば減少傾向、ΔY=0であれば変化なしと判定する。
 次に、ステップ4(S4)において、視覚的ノイズ除去処理手段5は、表示装置7に表示される矢印に対し、パラメータの揺らぎの影響を抑制するための視覚的ノイズ除去処理を行う。本実施の形態1における視覚的ノイズ除去処理については、後に図3のフローチャートを用いて詳細に説明する。
 続いてステップ5(S5)において、視覚的ノイズ除去処理手段5は、S4の処理の結果に基づいて表示装置7への矢印表示の有無を判定する。表示なし(NO)の場合はS1に戻る。表示あり(YES)の場合は、S4において視覚的ノイズが抑制された矢印を表示し、S1に戻る。これで1回の処理が終了する。
 次に、本実施の形態1に係る視覚的ノイズ除去処理手段5による視覚的ノイズ除去処理について、図3のフローチャートを用いて詳細に説明する。なお、図3では、強調度レベルを5段階(レベル1<レベル2<レベル3<レベル4<レベル5)設けているが、強調度レベルを何段階設けるかは任意に変更可能である。本実施の形態1に係る視覚的ノイズ除去処理手段5は、連続回数計数手段51による計数結果に基づいて、連続回数に応じた強調度レベルの矢印の色フラグを立てる処理を行う。
 まず、ステップ11(S11)において、連続回数計数手段51は、変化傾向判定手段4からパラメータの変化傾向を取得し、同じ変化傾向が連続して出現した回数Nを計数する。
 次に、ステップ12(S12)において、N≧1であるか否かを判定し、N≧1の場合(YES)はステップ14(S14)に進む。S12においてN<1の場合(NO)は、連続回数0回と判定し、ステップ13(S13)において、「矢印表示なし」と決定する。
 続いてS14において、N≧2であるか否かを判定し、N≧2の場合(YES)はステップ16(S16)に進む。S14においてN<2の場合(NO)は、連続回数1回と判定し、ステップ15(S15)において、強調度レベル1の矢印の色フラグを立てる。
 続いてS16において、N≧3であるか否かを判定し、N≧3の場合(YES)はステップ18(S18)に進む。S16においてN<3の場合(NO)は、連続回数2回と判定し、ステップ17(S17)において、強調度レベル2の矢印の色フラグを立てる。
 続いてS18において、N≧4であるか否かを判定し、N≧4の場合(YES)はステップ20(S20)に進む。S18においてN<4の場合(NO)は、連続回数3回と判定し、ステップ19(S19)において、強調度レベル3の矢印の色フラグを立てる。
 続いてS20において、N≧5であるか否かを判定し、N<5の場合(NO)は、連続回数4回と判定し、ステップ21(S21)において、強調度レベル4の矢印の色フラグを立てる。S20において、N≧5の場合(YES)は、連続回数5回以上であると判定し、ステップ22(S22)において強調度レベル5の矢印の色フラグを立てる。
 以上のように、本実施の形態1に係るプラント監視装置1は、視覚的ノイズ除去処理手段5により、パラメータの同じ変化傾向が連続して出現した回数が多いほど強調度の大きい矢印を表示し、同じ変化傾向が連続して出現しない場合は矢印を表示しないので、矢印を表示する回数を減らすことができ、視覚的ノイズが抑制される(図9の例1参照)。
 特に、パラメータの揺らぎによる変化傾向は、連続して増加あるいは減少することが少ないため、揺らぎによる矢印表示を抑制することができ、パラメータを監視する運転員の負担を軽減することができる。また、パラメータの現在値と前回値の差分から変化傾向を求めているので、タイムラグのない変化傾向を矢印表示することが可能である。
実施の形態2.
 本発明の実施の形態2に係るプラント監視装置の全体構成は、上記実施の形態1と同様であるので説明を省略する(図1参照)。本実施の形態2に係るプラント監視装置1の視覚的ノイズ除去処理手段5は、上記実施の形態1と同様に、連続回数計数手段51と矢印強調度設定手段52を備えている。
 上記実施の形態1では、矢印強調度設定手段52は、連続回数計数手段51により計数された連続回数が多いほど強調度の大きい矢印を設定し、同じ変化傾向が連続して出現しない場合には矢印を表示しないが、連続回数が少ない場合にも矢印を表示する。
 そこで、本実施の形態2では、パラメータの平常時の揺らぎによる視覚的ノイズをさらに抑制するために、矢印強調度設定手段52は、連続回数計数手段51により計数された連続回数が予め設定された許容回数以下の場合には、矢印を表示しない処理を行う。なお、許容回数はパラメータ毎に設定されており、変更可能なものである。
 図4は、本実施の形態2における視覚的ノイズ除去処理の流れを示すフローチャートである。ステップ31(S31)において、視覚的ノイズ除去処理手段5の連続回数計数手段51は、変化傾向判定手段4からパラメータの変化傾向を取得し、同じ変化傾向が連続して出現した回数Nを計数する。
 続いて、ステップ32(S32)において、矢印強調度設定手段52は、S31で計数された回数Nが許容回数以内か否かを判定する。S32において、許容回数以内の場合(YES)は、ステップ33(S33)に進み、矢印表示なしと判定する。S32において、許容回数を超えている場合(NO)はステップ34(S34)に進み、矢印表示ありと判定する。なお、S34において矢印を表示する場合には、上記実施の形態1と同様に、連続回数が多いほど矢印の強調度を大きくする。
 本実施の形態2によれば、連続回数が許容回数以下の場合には矢印を表示しないので、上記実施の形態1よりもさらに矢印を表示する回数を減らすことができ、視覚的ノイズが抑制される(図9の例2参照)。
実施の形態3.
 本発明の実施の形態3に係るプラント監視装置の全体構成は、上記実施の形態1と同様であるので説明を省略する(図1参照)。図5に示すように、本実施の形態3に係るプラント監視装置における視覚的ノイズ除去処理手段5aは、パラメータの現在値、及びパラメータの現在値と前回値の差分(変化量)の少なくとも1つに基づいて、矢印表示の有無を判定する矢印表示判定手段53を備えている。
 矢印表示判定手段53は、パラメータ入力手段2からパラメータの現在値を取得し、このパラメータの現在値が予め設定された許容範囲内の場合、矢印を表示しない処理を行う。なお、許容範囲はパラメータ毎に設定されており、変更可能なものである。
 図6は、本実施の形態3に係る視覚的ノイズ除去処理手段5aによる処理の流れを示すフローチャートである。ステップ41(S41)において、視覚的ノイズ除去処理手段5aの矢印表示判定手段53は、パラメータ入力手段2からパラメータの現在値Yを読み込む。
 続いて、ステップ42(S42)において、S41で取得したパラメータの現在値Yが許容範囲内か否かを判定する。S42において、パラメータの現在値Yが許容範囲内の場合(YES)は、ステップ43(S43)に進み、矢印表示なしと判定する。S42において、パラメータの現在値Yが許容範囲内に含まれない場合(NO)はステップ44(S44)に進み、矢印表示ありと判定し、変化傾向判定手段4による判定結果に基づく矢印を表示させる。
 また、矢印表示判定手段53は、パラメータの変化量に基づいて矢印表示の有無を判定するようにしても良い。その場合、矢印表示判定手段53は、パラメータ差分演算手段3からパラメータの現在値と前回値の差分、すなわち変化量を取得し、この変化量が予め設定された許容変化量以下の場合には、矢印を表示しない処理を行う。なお、許容変化量はパラメータ毎に設定されており、変更可能なものである。
 さらに、矢印表示判定手段53は、パラメータの現在値及び変化量の両方に基づいて、矢印表示の有無を判定するようにしても良い。
 パラメータの現在値の許容範囲は、パラメータの平均値μまたは偏差σに基づいて設定される。例えばパラメータの許容範囲の一例として、μ-σ<Y<μ+σを用いることができる。また、パラメータの許容変化量の一例として、-σ<ΔY<σを用いることができる。
 また、矢印表示判定手段53は、パラメータ毎に予め設定した「基準値」と該パラメータの現在値との差分を算出し、この差分が許容範囲内の場合には矢印を表示しない処理を行うものであっても良い。
 なお、本実施の形態3における視覚的ノイズ除去処理手段5aに、上記実施の形態1または実施の形態2における連続回数計数手段51と矢印強調度設定手段52を設けても良い。その場合、連続回数計数手段51による計数結果と矢印表示判定手段53による判定結果に基づいて矢印表示の有無が判定される。矢印表示ありの場合には、連続回数に応じた強調度の矢印が表示される。
 本実施の形態3によれば、パラメータの現在値(または変化量)が、予め設定された許容範囲内(または許容変化量以下)の場合には矢印を表示しないので、矢印を表示する回数を減らすことができ、視覚的ノイズが抑制される(図9の例3参照)。特に、パラメータの揺らぎによる変化量は小さいため、揺らぎによる矢印表示を抑制することができる。
実施の形態4.
 本発明の実施の形態4に係るプラント監視装置の全体構成は、上記実施の形態1と同様であるので説明を省略する(図1参照)。図7に示すように、本実施の形態4に係る視覚的ノイズ除去処理手段5bは、パラメータの現在値と前回値の差分に基づいて、パラメータの変化量が大きいほど矢印の軸の水平方向に対する角度を大きくする処理を行う矢印角度設定手段54を備えている。
 矢印角度設定手段54は、矢印の軸に対し水平方向から垂直方向までの間で複数、例えば3段階の角度を設定する。変化傾向が増加の場合には、矢印の軸は水平方向に対して上向きの角度を持ち、変化傾向が減少の場合には、矢印の軸は水平方向に対して下向きの角度を持つ。また、変化量が大きいほどその角度は大きくなる。
 図8は、本実施の形態4に係る視覚的ノイズ除去処理手段5bによる処理の流れを示すフローチャートである。ステップ51(S51)において、視覚的ノイズ除去処理手段5bの矢印角度設定手段54は、パラメータ差分演算手段3からパラメータの変化量ΔYを取得する。
 続いて、ステップ52(S52)において、S51で取得したパラメータの変化量ΔYが0であるか否かを判定する。S52において、ΔY=0の場合(YES)は、ステップ53(S53)に進み、矢印表示なしと判定する。S52において、ΔY≠0の場合(NO)は、ステップ54(S54)において矢印表示ありと判定し、変化量に応じた矢印の角度を設定する。
 なお、本実施の形態4における視覚的ノイズ除去処理手段5bに、上記実施の形態1または実施の形態2における連続回数計数手段51と矢印強調度設定手段52を設けても良い。さらに、上記実施の形態3における矢印表示判定手段53を設けても良い。
 本実施の形態4によれば、パラメータの変化量に応じた角度の矢印を表示するようにしたので、運転員は矢印の角度からパラメータの変化量の程度を把握することができ、運転員の負担が軽減される。また、角度の小さい矢印については表示しない、あるいは強調度の比較的小さい矢印で表示する等の処理を行うことにより、パラメータの揺らぎによる視覚的ノイズを抑制することができる。
 上記実施の形態1~3、及び本実施の形態4に係るプラント監視装置1において、発電プラントの発電機出力(MW)をパラメータとし、その変化傾向を示す矢印に視覚的ノイズ除去処理を行った結果を図9に示す。
 図9において、例1は、上記実施の形態1に係る視覚的ノイズ除去処理手段5により、同じ変化傾向が連続して出現した回数が多いほど強調度の大きい矢印を表示する処理を行ったものである。ここでは強調度レベルは4段階設けられ、レベル1<レベル2<レベル3<レベル4である。例1では、連続回数が1回以上の場合に矢印を表示している。
 例2は、上記実施の形態2に係る視覚的ノイズ除去処理手段5により、連続回数の許容値を1回と設定し、且つ連続回数に応じた強調度の矢印を表示する処理を行ったものである。この例2では、連続回数1回では矢印を表示せず、連続回数2回でレベル1の矢印、3回でレベル2の矢印を表示している。これにより、例1よりも矢印を表示する回数が少なくなっている。
 例3は、上記実施の形態3に係る視覚的ノイズ除去処理手段5aにより、パラメータ入力値(現在値)の許容範囲を800MW~850MWと設定し、許容範囲内の場合には矢印を表示しない処理を行ったものである。この処理方法では、許容範囲をより広く設定することにより、矢印を表示する回数がさらに少なくなる。
 例4は、本実施の形態4に係る視覚的ノイズ除去処理手段5bにより、パラメータの変化量ΔYに応じた矢印の角度を設定したものである。ここでは、角度は3段階設けられ、角度1<角度2<角度3であり、|ΔY|≦20の場合は角度1、20<|ΔY|≦40の場合は角度2、|ΔY|>40の場合は角度3としている。
 なお、例4では、矢印の角度からパラメータの変化量の程度を把握することができる。また、例4において、例1~例3のいずれかによる矢印表示有無の判定を採用することにより、矢印を表示する回数を少なくすることができると共に、パラメータの変化量の程度を把握することができる。
 上記実施の形態1~3、及び本実施の形態4に係る視覚的ノイズ除去処理手段5、5a、5bによる処理は、適宜組み合わせて実施することが可能であり、組み合わせることにより、さらに高い視覚的ノイズ除去効果が得られるものである。本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 本発明は、プラントの状態を監視するプラント監視装置として利用することができる。

Claims (7)

  1.  プラントの状態を示すパラメータを監視するプラント監視装置であって、前記パラメータは、予め設定された許容範囲を超えた場合に異常であると判断される一方、平常時においても前記許容範囲内で変動する揺らぎが観察されるものであり、
    前記パラメータの変化傾向を矢印で表示する画面を有する表示手段と、
    監視対象のプラント設備から所定の周期で前記パラメータの現在値を取得するパラメータ入力手段と、
    前記パラメータ入力手段から取得した前記パラメータの現在値と前回値の差分を計算するパラメータ差分演算手段と、
    前記パラメータ差分演算手段から取得した前記パラメータの現在値と前回値の差分に基づいて前記パラメータの変化傾向を判定する変化傾向判定手段と、
    前記変化傾向判定手段により判定された変化傾向、前記パラメータの現在値と前回値の差分、及び前記パラメータの現在値の少なくとも1つに基づいて、前記表示手段に表示される矢印に対し前記パラメータの揺らぎの影響を抑制する処理を行う視覚的ノイズ除去処理手段と、
    前記視覚的ノイズ除去処理手段により処理された矢印を前記表示手段に表示する表示処理手段を備えたことを特徴とするプラント監視装置。
  2.  前記視覚的ノイズ除去処理手段は、前記パラメータに同じ変化傾向が連続して出現した回数を計数する連続回数計数手段と、前記連続回数計数手段による計数結果に基づいて矢印表示の有無を判定し、矢印表示ありの場合には該回数の増加に伴い強調度の大きい矢印を設定する矢印強調度設定手段を備えたことを特徴とする請求項1記載のプラント監視装置。
  3.  前記矢印強調度設定手段は、表示色の濃淡、表示色の種類、矢印の大きさの少なくとも1つを変化させることにより、矢印の強調度を段階的に変化させることを特徴とする請求項2記載のプラント監視装置。
  4.  前記矢印強調度設定手段は、前記連続回数計数手段により計数された回数が、予め設定された許容回数以下の場合には、矢印を表示しないことを特徴とする請求項2または請求項3に記載のプラント監視装置。
  5.  前記視覚的ノイズ除去処理手段は、前記パラメータの現在値が前記許容範囲内の場合には、矢印を表示しないことを特徴とする請求項1から請求項4のいずれか一項に記載のプラント監視装置。
  6.  前記視覚的ノイズ除去処理手段は、前記パラメータの現在値と前回値の差分が予め設定された許容変化量以下の場合には、矢印を表示しないことを特徴とする請求項1から請求項5のいずれか一項に記載のプラント監視装置。
  7.  前記視覚的ノイズ除去処理手段は、前記パラメータの現在値と前回値の差分が大きいほど、矢印の軸の水平方向に対する角度を大きくすることを特徴とする請求項1から請求項6のいずれか一項に記載のプラント監視装置。
PCT/JP2013/072286 2013-08-21 2013-08-21 プラント監視装置 WO2015025380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/911,427 US20160195873A1 (en) 2013-08-21 2013-08-21 Plant monitoring device
JP2015532616A JPWO2015025380A1 (ja) 2013-08-21 2013-08-21 プラント監視装置
PCT/JP2013/072286 WO2015025380A1 (ja) 2013-08-21 2013-08-21 プラント監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072286 WO2015025380A1 (ja) 2013-08-21 2013-08-21 プラント監視装置

Publications (1)

Publication Number Publication Date
WO2015025380A1 true WO2015025380A1 (ja) 2015-02-26

Family

ID=52483190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072286 WO2015025380A1 (ja) 2013-08-21 2013-08-21 プラント監視装置

Country Status (3)

Country Link
US (1) US20160195873A1 (ja)
JP (1) JPWO2015025380A1 (ja)
WO (1) WO2015025380A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040627A (ja) * 2018-11-09 2019-03-14 横河電機株式会社 機器保全装置、機器保全方法、機器保全プログラム及び記録媒体
US10949062B2 (en) 2016-05-25 2021-03-16 Yokogawa Electric Corporation Device maintenance apparatus, device maintenance method, device maintenance program, and recording medium
JP2021047523A (ja) * 2019-09-17 2021-03-25 株式会社東芝 異常予兆検知装置、方法及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6445859B2 (ja) * 2014-12-16 2018-12-26 株式会社東芝 プラント監視装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821288A (ja) * 1981-07-29 1983-02-08 株式会社日立製作所 状態量表示装置
JPS58189708A (ja) * 1982-04-28 1983-11-05 Toshiba Corp プラント状態表示方法
JPH03109011U (ja) * 1990-02-20 1991-11-08
JP2006039786A (ja) * 2004-07-23 2006-02-09 Chugoku Electric Power Co Inc:The プラントデータ評価システムと方法、復水器真空度監視方法、データマイニング方法、および、プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224011A (en) * 1991-04-19 1993-06-29 Gas Research Institute Multifunction protective relay system
US8217620B2 (en) * 2005-03-31 2012-07-10 Energycs Llc Method and system for retrofitting a full hybrid to be a plug-in hybrid
CN103492966B (zh) * 2011-04-19 2016-08-17 Abb研究有限公司 用于控制工业系统的方法和系统
JP2014048697A (ja) * 2012-08-29 2014-03-17 Hitachi Ltd 設備状態監視方法及び設備状態監視装置
US9863854B2 (en) * 2013-08-02 2018-01-09 General Electric Company System and method for presenting information in an industrial monitoring system
US9195384B2 (en) * 2013-08-02 2015-11-24 General Electric Company System and method for presenting information in an industrial monitoring system
US10073421B2 (en) * 2015-11-17 2018-09-11 Rockwell Automation Technologies, Inc. Predictive monitoring and diagnostics systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821288A (ja) * 1981-07-29 1983-02-08 株式会社日立製作所 状態量表示装置
JPS58189708A (ja) * 1982-04-28 1983-11-05 Toshiba Corp プラント状態表示方法
JPH03109011U (ja) * 1990-02-20 1991-11-08
JP2006039786A (ja) * 2004-07-23 2006-02-09 Chugoku Electric Power Co Inc:The プラントデータ評価システムと方法、復水器真空度監視方法、データマイニング方法、および、プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10949062B2 (en) 2016-05-25 2021-03-16 Yokogawa Electric Corporation Device maintenance apparatus, device maintenance method, device maintenance program, and recording medium
JP2019040627A (ja) * 2018-11-09 2019-03-14 横河電機株式会社 機器保全装置、機器保全方法、機器保全プログラム及び記録媒体
JP2021047523A (ja) * 2019-09-17 2021-03-25 株式会社東芝 異常予兆検知装置、方法及びプログラム
JP7309548B2 (ja) 2019-09-17 2023-07-18 株式会社東芝 異常予兆検知装置、方法及びプログラム

Also Published As

Publication number Publication date
US20160195873A1 (en) 2016-07-07
JPWO2015025380A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015025380A1 (ja) プラント監視装置
US9798320B2 (en) Method and apparatus for alarm monitoring
CN112188531A (zh) 异常检测方法、装置、电子设备及计算机存储介质
GB201108778D0 (en) System monitor and method of system monitoring
JP2016038688A (ja) データ表示システム
CN111400155B (zh) 一种数据检测方法及装置
Qu et al. A new control chart for monitoring the event frequency and magnitude
WO2020211698A1 (zh) 基于数据中心监控系统的智能设备监测方法、装置及设备
JP6073400B2 (ja) 発電所加熱および冷却運転過度事件の疲労評価における補正係数の算出方法
WO2014141837A1 (ja) ノウハウ可視化装置及びノウハウ可視化方法
US10175685B2 (en) Diagnostic device and method for monitoring the operation of control loops
WO2017096875A1 (zh) 数据更新方法及装置
JP2013250156A (ja) 音検知装置及びその制御方法、プログラム
US10712375B2 (en) Data processing device, data processing method, and non-transitory storage medium
Khoo Power functions of the Shewhart control chart
Morrison et al. The early event detection toolkit
JP2019159406A (ja) データ解析システム、データ解析方法、及びプログラム
JPWO2015040683A1 (ja) センサ健全性判定方法およびセンサ健全性判定装置
JP2020187616A (ja) プラント監視モデル作成装置、プラント監視モデル作成方法およびプラント監視モデル作成プログラム
JP2015073800A (ja) X線画像処理装置および方法、並びにx線撮像装置、プログラム
TWI676519B (zh) 用於爐溫誤差處理的方法、非暫時性電腦可讀媒體與設備
JP2013029948A (ja) プラント監視装置およびプラント監視方法
JP6868981B2 (ja) ヒートマップ表示装置およびヒートマップ表示方法
CN110826362B (zh) 用于炉温误差处理的方法和非暂时性计算机可读介质
JP7307332B2 (ja) 品質解析装置、品質解析方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532616

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891696

Country of ref document: EP

Kind code of ref document: A1